
Detection of Web Service Refactoring Opportunities

by

Taghreed Hassouna

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
(Computer and Information Science)

in The University of Michigan-Dearborn
2017

Master’s Thesis Committee:

Assistant Professor Marouane Kessentini, Chair
Associate Professor Bruce Maxim
Professor William I. Grosky



ii

DEDICATION

To My Family.



iii

ACKNOWLEDGEMENTS

It is with a great joy that I reserve these few lines of gratitude and deep appreciation to all those

who directly or indirectly contributed to the completion of this work:

First and foremost I offer my sincerest gratitude to Dr. Marouane Kessentini, who dedicated all

his  wonderful  time  to  collaborate,  support  and  lead  me  to  the  end  of  this  piece  of  work.   His

advices, dedication, availability, relevant comments, corrections and committeemen led to the

success of this work.

I also express my greatest thanks to SBSE members who supported me with valuable feedback

and always kindly encouraged me to succeed this project.

I thank all the lecturers of the CIS master degree who have used their valuable time to transmit

the knowledge that help in putting this work together me.

Finally, I wish to express my deep gratitude and thank my family who has consistently expressed

its unconditional support and encouragement.

All those who contributed in one way or another, to make this work, can be found here, the

crowning of their efforts.

Thank you.



iv

TABLE OF CONTENTS

DEDICATION ......................................................................................................................... ii

ACKNOWLEDGEMENTS .................................................................................................... iii
LIST OF FIGURES ..................................................................................................................v

LIST OF TABLES .................................................................................................................. vi
ABSTRACT............................................................................................................................ vii
CHAPTER 1: INTRODUCTION .............................................................................................1

CHAPTER 2: BACKGROUND AND PROBLEM STATEMENT ........................................4
2.1 BACKGROUND: WEB SERVICE ANTIPATTERNS .................................................4

2.2 PROBLEM STATEMENT AND RELATED WORK ...................................................6

CHAPTER 3: MULTI-OBJECTIVE WEB SERVICE ANTIPATTERNS DETECTION .. 10
3.1 MULTI-OBJECTIVE GENETIC PROGRAMMING ................................................ 10

3.2.1 PROBLEM FORMULATION ............................................................................... 12

3.2.2 SOLUTION APPROACH ...................................................................................... 14

3.2.2.1 SOLUTION REPRESENTATION ..................................................................... 14

3.2.2.2 EVALUATION FUNCTIONS............................................................................. 15

CHAPTER 4: EVALUATION ............................................................................................... 16
4.1 RESEARCH QUESTIONS ..................................................................................... 16

4.2 EXPERIMENTAL DESIGN ................................................................................... 16

4.3 RESULT ................................................................................................................... 19

4.3.1 RESULTS FOR RQ1 .............................................................................................. 19

4.3.2 RESULTS FOR RQ2 .............................................................................................. 20

4.3.3 RESULTS FOR RQ3 .............................................................................................. 20

4.3.4 RESULTS FOR RQ4 .............................................................................................. 21

CHAPTER 5: RELATED WORK ......................................................................................... 23
CHAPTER 6: CONCLUSION AND FUTURE WORK ........................................................ 25

REFERENCES ........................................................................................................................ 26



v

LIST OF FIGURES

Figure 1: An example of god object Web service. 12

Figure 2: Solution representation example. 19

Figure 3: Detection results for each antipattern type. 26

Figure 4: Comparative results of MOGP, Mono-objective GP and SODA-W 26



vi

LIST OF TABLES

Table 1: List of Web service interface metrics used. 14

Table 2: List of Web service code metrics used 14

Table 3: Web services used in the empirical study. 22

Table 4: MOGP results on the different Web services. 24



vii

ABSTRACT

We  propose,  in  this  thesis,  to  consider  the  problem  of  Web  service  antipatterns  detection  as  a

multi-objective problem where examples of Web service antipatterns and well-designed code are

used to generate detection rules. To this end, we use multi-objective genetic programming

(MOGP) to find the best combination of metrics that maximizes the detection of Web service

antipattern examples and minimizes the detection of well-designed Web service design

examples.

We  report  the  results  of  an  empirical  study  using  8  different  types  of  common  Web  service

antipatterns. We compared our multi-objective formulation with random search, one existing

mono-objective approach, and one state-of-the-art detection technique not based on heuristic

search. Statistical analysis of the obtained results demonstrates that our approach is efficient in

antipattern detection, on average, with a precision score of 94% and a recall score of 92%.

Keywords-Web service antipatterns, interface design, multi-objective optimization.



1

CHAPTER 1: INTRODUCTION

Web services are becoming the leading Service Oriented Architecture (SOA) technology used to

build  Service-based  systems  (SBSs)  [1].  YouTube,  Fedex,  eBay,  Google,  FedEx,  PayPal,  and

many other companies are leveraging these Web services in a reusable, distributed and portable

fashion that can be invoked by the users [2]. SBSs evolve over time to meet new requirements or

to fix bugs. Such continuous changes may have a negative impact on the quality of the services.

Web services must be carefully designed and implemented to adequately fit in the required

system’s design whilst achieving good quality of services [3]. Indeed, there is no exact recipe to

follow for proper service design. A set of guiding quality principles for service-oriented design

exists, including such principles as service flexibility, operability, composability, and loose

coupling. However, the design of services is strongly influenced by the context, environment and

other decisions the service designers take, and such factors may lead to violations of quality

principles. The presence of programming patterns associated with bad design and programming

practices, known as antipatterns, are indications of such violations [2]. Furthermore, it is widely

believed that such antipatterns lead to various maintenance and evolution problems including an

increased bug rate, fragile design and inflexible code. Despite the extensive adoption of Web

service technologies, very few studies has been proposed for the first step of the refactoring

process which is  the detection of antipatterns [4].  Indeed, the vast  majority of existing work in

Web services antipattern detection merely attempts to provide definitions and/or the key

symptoms that characterize common antipatterns. Recent works [5] [6] rely on a declarative rule-

based language to specify antipattern symptoms at a higher-level of abstraction using



2

 combinations of quantitative (metrics), structural, and/or lexical information. However, in an

exhaustive scenario, the number of possible antipatterns to be characterized manually and

formulated with rules can be large. To make the situation worse, it is difficult to find a consensus

to characterize and formulate such symptoms. For these reasons, the detection task is still mainly

a manual, time-consuming and subjective process. To address the above-mentioned limitations,

we propose in this thesis a multi-objective search-based approach for the generation of

antipatterns detection rules from both bad and well-designed service examples. The process aims

at finding the optimal combination of quality metrics, from an exhaustive list of possible metric

combinations, that:

1. Maximizes the coverage of a set of antipattern examples collected from different systems.

2. Minimizes the detection of examples of good-design practices.

In fact, it is difficult to ensure that the used design defect examples cover all possible bad-design

practices. Thus, we used good design practices as another objective to detect antipatterns that are

not  similar  to  the  well-designed  service  examples  and  design  defect  examples.  To  this  end,  a

multi-objective genetic programming (MOGP) [7] is used to generate the antipatterns detection

rules that find trade-offs between the two above-mentioned objectives. MOGP is a powerful

evolutionary metaheuristic which extends the generic model of learning to the space of programs

[7].

To validate our proposal, we present an empirical evaluation of our approach on a benchmark of

415 Web services from ten different application domains and we considered 8 common Web

service antipattern types. We compared multi-objective approach with random search, an

existing mono-objective technique [6] [8] and a rule-based approach [5] not based on heuristic



3

search techniques. Statistical analysis demonstrates the efficiency of our approach in detecting

Web service antipatterns, on average, with a precision score of 94% and a recall score of 92%.

To the best of our knowledge, this is the first work to use multi-objective evolutionary

algorithms for the detection of Web service antipatterns.

The remainder of this thesis is organized as follows. Chapter 2 describes the necessary

background details and presents the different challenges related to the detection of Web service

antipattern; Chapter 3 explains our multi-objective approach to address this problem. Chapter 4

discusses the obtained experimental results. Chapter 5 is dedicated to view surveys related work

and finally we conclude and outline our future research directions in Chapter 6.



4

CHAPTER 2: BACKGROUND AND PROBLEM STATEMENT

We first detail some required background information to understand the problem addressed in

this work, then we present a motivating example to illustrate the limitations of existing studies.

Finally, we present an overview of existing work.

2.1 BACKGROUND: WEB SERVICE ANTIPATTERNS

Antipatterns are symptoms of poor design and implementation practices that describe bad

solutions to recurring design problems. They often lead to software which is hard to maintain and

evolve [3], and may be introduced unintentionally during initial design or during software

development due to bad design choices, poorly planned changes or time pressure. Different types

of antipatterns presenting a variety of symptoms have been recently studied with the intent of

improving their detection and suggesting improvements paths [1].

Common Web service antipatterns include:

∂ God object Web service (GOWS): implements a multitude of methods related to different

business and technical abstractions in a single service.

∂ Fine grained Web service (FGWS): is a too fine-grained service whose overhead

(communications, maintenance, and so on) outweighs its utility. This antipattern refers to a

small Web service with few operations implementing only a part of an abstraction.



5

∂ Chatty Web service (CWS): represents an antipattern where a high number of operations,

typically attribute-level setters or getters, are required to complete one abstraction.

∂ Data Web service (DWS): contains typically accessor operations, i.e., getters and setters. In a

distributed environment, some Web services may only perform some simple information

retrieval or data access operations.

∂ Ambiguous Web service (AWS): is an antipattern where developers use ambiguous or

meaningless names for denoting the main elements of interface elements (e.g., port types,

operations, messages).

∂ Redundant PortTypes (RPT): is an antipattern where multiple portTypes are duplicated with

the similar set of operations

∂ CRUDy Interface (CI): is an antipattern where the design encourages services the RPC-like

behavior by declaring create, read, update, and delete (CRUD) operations, e.g., createX(),

readY(), etc. Interfaces designed in that way might be chatty because multiple operations

need to be invoked to achieve one goal.

∂ Maybe  It  is  Not  RPC  (MNR):  is  an  antipattern  where  the  Web  service  mainly  provides

CRUD-type operations for significant business entities. These operations will likely need to

specify a significant number of parameters and/or complexity in those parameters



6

Figure 1: An example of god object Web service.

Figure 1 illustrates an example of a GOWS antipattern. One of the main symptoms of a GOWS

is that it implements multiple core business and/or technical abstractions with un-cohesive

operations. This is can detected at the service interface where public operations involve different

entities or abstractions. In this example, it is clear that there are methods that operate on different

core functionalities. For instance, the bookFlight() method is used to book a flight trip, while the

reserveHotel() method attempts to reserve the specified hotel room. Overall, this GOWS

supports the functionalities flight, car and hotel booking, payment, invoice services, and so on.

Each of these is a significant core business abstraction, and typically will have many associated

methods.

2.2 PROBLEM STATEMENT AND RELATED WORK

Several quality metrics can be used to capture the structural and semantic attributes of the Web

services, and can be a reliable indicator of the quality of design [6]. These quality indicators can



7

then be used to quantitatively estimate and reflect the design signatures of Web Services

architecture in terms of many metrics.

The antipatterns detection process usually involves finding the fragments of the design which

violate these metrics. In this work, we used a set of static and dynamic Web service metrics as

detailed in Table 1 and Table 2. Static metrics aim at measuring the structural properties of Web

services in both the interface (WSDL) and code levels, whereas dynamic metrics aim at invoking

the Web services and measuring different properties, e.g., response time.

Many metric combinations are possible, so the detection rules generation process is, by nature, a

combinatorial optimization problem. The number of possible solutions quickly becomes huge as

the number of metrics and possible threshold values increases. A deterministic search is not

practical in such cases, and hence the use of heuristic search is warranted. The dimensions of the

solution space are set by the metrics, their threshold values, and logical operations between them,

e.g., union (metric1 OR metric2) and intersection (metric1 AND metric2). A solution is

determined by assigning a threshold value to each metric.

The manual definition of rules to identify maybe difficult and can be time-consuming. The main

issue with Web service antipattern detection is that there is no general consensus on how to

decide if a particular design violates a quality heuristic. Indeed, there is a difference between

detecting symptoms and asserting that the detected situation is an actual antipattern. Deciding

which Web services are antipattern candidates heavily depends on the interpretation of each

analyst. In some contexts, an apparent violation of a design principle may be consensually

accepted as normal practice. For example, a translation Web service1 may have in its interface

1 http://www.webservicex.net/TranslateService.asmx?WSDL



8

only a single operation translate which is responsible for translating text from one language to

another language. Although this service might be designed properly, from a strict antipattern

definition, it may be considered as a fine-grained Web service.

Another inherent problem is related to the definition of threshold values when dealing with

quantitative information. Indeed, there is no general agreement on extreme manifestations of

Web service antipatterns [2]. That is, for each antipattern, rules that are expressed in terms of

metrics need substantial calibration efforts to find the right threshold value for each metric,

above which an antipattern is said to be detected.

To address or circumvent the above mentioned issues and challenges, we introduce a multi-

objective heuristic-based approach to automatically detect Web service antipatterns as detailed in

the next section.

Table 1: List of Web service interface metrics used.



9

Table 2: List of Web service code metrics used.



10

CHAPTER 3: MULTI-OBJECTIVE WEB SERVICE ANTIPATTERNS DETECTION

We first present an overview of our multi-objective Genetic Programming approach. And then

we provide the details of our problem formulation and the solution approach.

3.1 MULTI-OBJECTIVE GENETIC PROGRAMMING

Genetic Programming (GP) is a powerful evolutionary metaheuristic which extends the generic

model of learning to the space of programs [7]. Differently to other evolutionary approaches, in

GP, population individuals are themselves programs following a tree-like structure instead of

fixed length linear string formed from a limited alphabet of symbols. GP can be seen as a process

of program induction that allows automatically generating programs that solve a given task. Most

exiting work on GP makes use of a single objective formulation of the optimization problem to

solve using only one fitness function to evaluate the solution. Differently to single-objective

optimization problems, the resolution of Multi-objective Optimization Problems (MOPs) yields a

set of trade-off solutions called non-dominated solutions and their image in the objective space is

called the Pareto front.

A high-level view of MOGP is depicted in Algorithm 1. The algorithm starts by randomly

creating an initial population P0 of individuals encoded using a specific representation (line 1).

Then, a child population Q0 is generated from the population of parents P0 (line 2) using genetic

operators (crossover and mutation). Both populations are merged into an initial population R0 of

size N (line 5). Fast non-dominated-sort [7] is the technique used by MOGP to classify individual



11

solutions into different dominance levels (line 6). Indeed, the concept of non-dominance consists

of comparing each solution x with every other

solution in the solution x1 is said to dominate another solution x2, if x1 is no worse than x2 in all

objectives and x1 is strictly better than x2 in at least one objective”. Formally, if we consider a set

of objectives fi , i ∈ 1..n, to maximize, a solution x1 dominates x2

Algorithm 1 High level pseudo code for MOGP

1. Create an initial population P0

2. Generate an offspring population Q0

3. t=0;

4. while stopping criteria not reached do

5. Rt = Pt ∪ Qt;

6. F = fast-non-dominated-sort (Rt);

7. Pt+1 = ∅ and i=1;

8. while | Pt+1| +|Fi| ≤ N do

9. Apply crowding-distance-assignment(Fi);

10. Pt+1 = Pt+1∪ Fi ;

11. i = i+1;

12. end

13. Sort(Fi, ≺ n);

14. Pt+1 = Pt+1 ∪ Fi[1 : (N-| Pt+1 |)];

15. Qt+1 = create-new-pop(Pt+1);

16. t = t+1;

17. end

The whole population that contains N individuals (solutions) is sorted using the dominance

principle  into  several  fronts  (line  6).  Solutions  on  the  first  Pareto-front  F0  get  assigned

dominance level of 0 Then, after taking these solutions out, fast-non-dominated-sort calculates

the Paretofront F1 of the remaining population; solutions on this second front get assigned



12

dominance  level  of  1,  and  so  on.  The  dominance  level  becomes  the  basis  of  selection  of

individual solutions for the next generation. Fronts are added successively until the parent

population Pt+1 is filled with N solutions  (line  8).  When NSGA-II  has  to  cut  off  a  front Fi and

select a subset of individual solutions with the same dominance level, it relies on the crowding

distance to make the selection (line 9). This parameter is used to promote diversity within the

population. This front Fi to  be  split,  is  sorted  in  descending  order  (line  13),  and  the  first  (N-

|Pt+1|) elements of Fi are chosen (line 14). Then a new population Qt+1 is created using selection,

crossover and mutation (line 15). This process will be repeated until reaching the last iteration

according to stop criteria (line 4).

3.2 MULTI-OBJECTIVE ALGORITHM ADAPTATION

3.2.1 PROBLEM FORMULATION

The Web service antipatterns detection problem involves searching for the best metric

combinations among the set of candidate ones, which constitutes a huge search space. A solution

of our antipatterns detection problem is a set of rules (metric combination with their thresholds

values) where the goal of applying these rules is to detect design defects in a web service. We

propose a multi-objective formulation of the Web service antipatterns rules generation problem.

Consequently, we have two objective functions to be optimized: (1) maximizing the coverage of

antipattern examples, and (2) minimizing the detection of good designpractice examples of Web

services. The collected examples of well-designed Web services and antipatterns are taken as an

input for our approach. Analytically speaking, the formulation of the multi-objective problem

can be stated as follows:



13

 where | DCS(x) | is the cardinality of the set of detected antipatterns by the metric combination x,

| ECS | is the cardinality of the set of existing antipatterns, and | EGE | is the cardinality of the set

of existing good examples. Once the bi-objective trade-off front is obtained, the developer can

navigate through this front in order to select his/her preferred solution (metric combination).

The basic idea of the algorithm is to explore the search space by making a population of

candidate solutions, also called individuals, and evolve this population towards an “optimal”

solution for the detection of antipatterns. To evaluate the solutions, the fitness functions, as

explained previously, are used. The best solutions (detection rules) will cover the maximum of

anti-pattern examples and a minimum of good design examples of Web services.

In the initialization of the MOGP algorithm, our base of examples is split into ten subsets, each

representing a different application domain, e.g., finance, travel, etc. One subset (WS) is the test

dataset and the remaining subsets of good and bad design examples are the training datasets (the

ground truth). Thus, MOGP is run to detect antipatterns in the selected subset (WS), which is not

of course part of the training set.

The initial population for MOGP is a set of individuals (I) that stand for possible solutions

representing detection rules (metrics combination). Then, the algorithm explores the search space

and constructs new individuals by combining metrics to generate rules. In each iteration of the

training process, antipatterns are iteratively evaluated using the generated rules. As described

earlier, the process is driven by two fitness functions that calculates the quality of each candidate

solution (detection rule) by comparing the list of detected antipatterns with the expected ones

from the base of examples along with the percentage of covered well-designed examples. A new

population of individuals is generated by iteratively selecting pairs of parent individuals from



14

population Pop and applying genetic operators to them (crossover and mutation). We include

both the parent and child variants in the new population. We then apply the mutation operator,

with a probability score, for both parent and child to ensure solution diversity; this produces the

population for the next generation. Developers can use the best rules (solution) to detect potential

antipatterns on any new Web service.

3.2.2 SOLUTION APPROACH

In the following, we describe the main steps of adaptation of the MOGP algorithm to our

problem.

3.2.2.1 SOLUTION REPRESENTATION

Candidate solutions to the problem are antipattern detection rules. A solution is represented as a

set of IF−THEN rules, each with the following structure: IF “Combination of metrics with their

thresholds” THEN “antipattern type” The antecedent of the IF statement combines some metrics

and their threshold values using logic operators (AND, OR). If these conditions are satisfied by a

Web service, then it is determined to be of the antipattern type featuring in the THEN clause of



15

the rule. Figure 2 provides an example. More formally, each candidate solution S is a sequence

of detection rules where each rule is represented by a binary tree such that:

1) Each leaf node (terminal) L represents a metric (our metric suite described earlier) and its

corresponding threshold, generated randomly.

2) Each internal node (function) N represents a logic operator, either AND or OR.

We will have as many rules as types of antipatterns to be detected. In this thesis, we focus on the

detection of eight common types as defined in Section II-A.

3.2.2.2 EVALUATION FUNCTIONS

The solution is evaluated based on the two objective functions defined in the previous section.

Since we are considering a bi-objective formulation, we use the concept of Pareto optimality to

find a set of compromise (Pareto-optimal) solutions. The fitness of a particular solution in

MOGP corresponds to a couple (Pareto Rank, Crowding distance). In fact, MOGP classifies the

population individuals (of parents and children) into different layers, called non-dominated

fronts. The output of MOGP is the last obtained parent population containing the best of the non-

dominated solutions found. When plotted in the objective space, they form the Pareto-front from

which the user will select his preferred antipatterns detection rules solution.



16

CHAPTER 4: EVALUATION

In order to evaluate our approach for Identification of web service refactoring opportunities as a

multi-objective problem, we conducted a set of experiments based on real-world web services.

The obtained results are subsequently statistically analyzed with the aim to compare our proposal

with a variety of existing approaches. In this section, we present our research questions and then

describe and discuss the obtained results.

4.1 RESEARCH QUESTIONS

We designed our experiments to answer the following research questions:

• RQ1: How does our multi-objective approach, MOGP, compare to random search and an

existing mono-objective technique [8]?

 • RQ2: To what extent can the proposed approach efficiently detect Web service antipatterns?

 • RQ3: What types of Web service antipatterns does it detect correctly?

 • RQ4: How does MOGP perform compared to existing Web service antipattern detection

approach not based on heuristic search [5]?

4.2 EXPERIMENTAL DESIGN

To evaluate our approach, we collected a set of Web services using different Web service search

engines including eil.cs.txstate.edu/ServiceXplorer, programmableweb.com, biocatalogue.org,

webservices.seekda.com, taverna.org.uk and myexperiment.org. Table III



17

summarizes the collected services. Furthermore, our collected Web services are drawn from ten

different application domains: financial, science, search, shipping, travel, weather, media,

education, messaging and location. All services were manually inspected and validated to

identify antipatterns based on guidelines from the literature [1] [2]. Furthermore, our dataset is

available online [9] to encourage future research in the area of automated detection of Web

service antipatterns.

Table 3: Web services used in the empirical study.

We considered antipattern types range from eight common antipatterns, namely god object Web

service (GOWS), fine- grained Web service (FGWS), chatty Web service (CWS), data Web

service (DWS), ambiguous Web service (AWS), redundant port types (RPT), CRUDy interface

(CI),  and maybe it  is  not RPC (MNR) (cf.  Section II-A).  In our study, we employed a 10-fold

cross validation procedure. We split our data into training data and evaluation data. For each

fold, one category of services is evaluated by using the remaining nine categories as a base of

examples (ground-truth). For instance, weather services are analyzed using antipattern instances

from travel, shipping, search, science financial, media, education, messaging, and location



18

services. We use precision and recall [10] to evaluate the accuracy of our approach. Precision

denotes the ratio of true antipatterns detected to the total number of detected antipatterns, while

recall indicates the ratio of true antipatterns detected to the total number of existing antipatterns.

 To answer RQ1, we investigate and report on the effectiveness of MOGP, since one of our

primary novelties lies in the adoption of the multi-objective formulation. To this end, we

implemented random search (RS) with the same fitness functions as MOGP. Indeed, it is

important to compare our search technique to random search, since if an intelligent search

method fails to outperform random search, then the proposed formulation is not adequate. In

addition, we compared our multi-objective algorithm to an existing mono-objective approach

where only examples of antipatterns were considered [8] without the use of positive examples of

well-designed Web services.

To answer RQ2, we use both recall and precision to evaluate the efficiency of our approach in

identifying antipatterns.

To answer RQ3, we investigated the antipattern types that were detected to find out whether

there is a bias towards the detection of specific antipattern types.

To answer RQ4,  we  compared  our  approach  with  the  SODA-W  approach  of  Palma  et  al.  [5].

SODA-W manually translates antipattern symptoms into detection rules and algorithms based on

a literature review of Web service design. All three approaches are tested on the same benchmark

described in Table 3.



19

4.3 RESULT

4.3.1 RESULTS FOR RQ1

The goal of RQ1 is to investigate how well MOGP performs against random search and an

existing single-objective approach where only antipattern examples are used [8]. Table 4 and

Figure 3 report the comparative results. Over 31 runs, RS did not perform well when compared

to MOGP in terms of precision and recall achieving average values of only 29% and 31%

respectively on the different Web services. The main reason could be related to the large search-

space of possible combinations of metrics and threshold values to explore. The results achieved

by MOGP are also better than the mono-objective roach in terms of precision and recall. In fact,

the single objective GP technique has an average of 86% and 87% of precision and recall

however MOGP has better scores with 94% of precision and 92% of recall on the different Web

services. These results confirm that an intelligent search is required to explore the search space

and that the use of well-designed Web service examples improved the obtained detection results.

Table 4: MOGP results on the different Web services.



20

4.3.2 RESULTS FOR RQ2

The results for RQ2 are presented in Table 4. The obtained results show that we were able to

detect most of the expected antipatterns in the different categories with a median precision higher

than 94%. The higher precision value for travel and Education (97%) can be explained by the

fact that these Web services are large than the others and contain a high number of operations

and complex types that match the GOWS antipattern. For the Web service weather, the precision

is the lowest one (91%), but is still a very acceptable score. This is due to the nature of the

antipatterns involved which are typically data or chatty Web services. Indeed, some false

positives are recorded for the DWS and CWS antipatterns. These antipatterns are likely to be

difficult to detect using metrics alone. Similar interpretations can be made for recall. The

obtained results indicate that our approach is able to achieve a recall of 92%. The highest values

were recorded for travel services with 96% where most of the detected services are GOWS and

AWS. The lowest recall score was recorded for the location service (91%) which is attributable

mostly to FGWS. Indeed, location Web services typically provide one or two operations which

falsely matches the symptoms of FGWS

4.3.3 RESULTS FOR RQ3

Based on the results of Fig. 3, we observe that MOGP does not have a bias towards the detection

of any specific antipattern type. As described the figure, we had an almost equal distribution of

each antipattern type. On some Web services such as weather, the distribution is not as balanced.

This is principally due to the number of actual antipattern types detected. Overall, all the 8

antipattern types are detected with good precision and recall scores (more than 88%). Most

existing guidelines/definitions [1] [5] rely heavily on the notion of size to detect antipatterns.



21

This is reasonable for antipatterns like GOWS and FGWS that are associated with a notion of

size, but for antipatterns like AWS, however, the notion of size is less important and this makes

this type of anomaly hard to detect using structural information. This difficulty limits the

performance of GP in detecting this type of antipattern. Thus, we can conclude that our MOGP

approach detects well all the types of considered antipatterns (RQ3).

4.3.4 RESULTS FOR RQ4

Figure 4 reports the comparison result of MOGP, Ouni et al. [6] [8], and SODA-W. While

SODAW shows promising results with an average precision of 71% and recall of 83%, it is still

less than MOGP in all the eight considered antipattern types. We conjecture that a key problem

with SODA-W is that it simplifies the different notions/symptoms that are useful for the

detection of certain antipatterns. Indeed, SODA-W is limited to a set of WSDL interface metrics,

but ignores the source code of the Web service artifacts. In fact, service design may look

promising at the interface level, but can prove to be an antipattern if the source code is not

implemented well. In contrast, our approach is based on both interface and code metrics. Another

limitation of SODA-W is that  in an exhaustive scenario,  the number of possible antipatterns to

manually characterize with rules can be very large, and rules that are expressed in terms of

metric combinations need substantial calibration efforts to find the suitable threshold value for

each metric. By contrast, our approach needs only some examples of antipatterns to generate

detection rules. Figure 4 also shows that the mono-objective GP [6] provides lower detection

results  for  the  eight  studied  antipatterns  with  an  average  of  72% for  both  precision  and  recall.

The lower performance can be explained by the fact that of the mono-objective formulation is

based only on interface metrics that may not be able to capture all possible antipattern symptoms.



22

Figure 3: Detection results for each

antipatterns type.
Figure 4: Comparative results of MOGP,

Mono-objective GP and SODA-W



23

CHAPTER 5: RELATED WORK

Detecting and specifying antipatterns in SOA and Web services is a relatively new area. The first

book in the literature was written by Dudney et al. [1] and provides informal definitions of a set

of Web service antipatterns. More recently, Rotem-Gal-Oz described the symptoms of a range of

SOA antipatterns [2]. Furthermore, Kral et al. [3] ´ listed seven “popular” SOA antipatterns that

violate accepted SOA principles. In addition, a number of research works have addressed the

detection of such antipatterns. Recently, Moha et al. [4] have proposed a rule-based approach

called SODA for SCA systems (Service Component Architecture). Later, Palma et al. [5]

extended this work for Web service antipatterns in SODA-W. The proposed approach relies on

declarative rule specification using a domain-specific language (DSL) to specify/identify the key

symptoms that characterize an antipattern using a set of WSDL metrics.

In another study, Rodriguez et al. [11] [12] and Mateos et al. [13] provided a set of guidelines for

service providers to avoid bad practices while writing WSDLs. Based on some heuristics, the

authors detected eight bad practices in the writing of WSDL for Web services. In other work

[14], the authors presented a repository of 45 general antipatterns in SOA. The goal of this work

is a comprehensive review of these antipatterns that will help developers to work with clear

understanding of patterns in phases of software development and so avoid many potential

problems. Mateos et al. [15] have proposed an interesting approach towards generating WSDL

documents with less antipatterns using text mining techniques.



24

 Recently, Ouni et al. [6] [8] proposed a search-based approach based on standard GP to find

regularities, from examples of Web service antipatterns, to be translated into detection rules.

However, the proposed approach can deal only with Web service interface metrics and cannot

consider all Web service antipattern symptoms. Similar to [5], the latter consider neither

deviation from common design practices nor code metrics, which leads to several false positives.

Similarly to SODA-W [5], Moha et al. [16] proposed a description of antipattern symptoms

using a domain-specific language (DSL) for their antipatterns detection approach called DECOR.

They proposed a consistent vocabulary and DSL to specify antipatterns based on their review of

existing work on code smells found in the literature. To describe antipattern symptoms different

notions are involved, such as class roles and structures. Symptoms descriptions are later mapped

to detection algorithms.



25

CHAPTER 6: CONCLUSION AND FUTURE WORK

In this thesis, we introduced a new multi-objective approach for the detection of Web Service

antipatterns. In our multi-objective adaptation, two fitness functions are used to maximize the

coverage of antipattern examples and minimize the coverage of well-designed Web service

examples. The proposed approach is evaluated on a benchmark of 415 Web services and eight

common Web service antipattern types. Statistical analysis of the obtained results provides

compelling evidence that the proposed multi-objective algorithm outperforms mono-objective

approaches, random search, and a recent state-of-the art approach with a median precision of

more than 94% and a median recall of more than 92%.

As future work, we plan to extend the approach to detect business process antipatterns in

SBS in addition to individual Web service antipatterns and automate the correction, through

refactoring, of the detected antipatterns.



26

REFERENCES

[1] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns. John
Wiley; Sons, Inc., 2003.

[2] A. Rotem-Gal-Oz, SOA Patterns. Manning Publications, 2012.

[3] J. Kral and M. Zemlicka, “Popular SOA Antipatterns,” in Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, 2009. IEEE, 2009, pp. 271–276.

[4] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Gueh´ eneuc, B. Baudry, and J.-M. J ´
ez´ equel, “Specification and ´ detection of soa antipatterns,” in Service-Oriented Computing.
Springer, 2012, pp. 1–16.

[5] F. Palma, N. Moha, G. Tremblay, and Y.-G. Gueh´ eneuc, ´ “Specification and detection of
soa antipatterns in web services,” in Software Architecture. Springer, 2014, pp. 58–73.

[6] ] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, “Web service antipatterns
detection using genetic programming,” in Proceedings of, ser. GECCO’15. ACM, 2015, pp.
1351–1358.

[7] B. K. Giri, J. Hakanen, K. Miettinen, and N. Chakraborti, “Genetic programming through bi-
objective genetic algorithms with a study of a simulated moving bed process involving
multiple objectives,” Applied Soft Computing, vol. 13, no. 5, pp. 2613–2623, 2013.

[8] A. Ouni, M. Kessentini, and K. Inoue, “Search-based web service antipatterns detection,” in
IEEE Transactions on Services Computing, to appear. IEEE, 2016.

[9] “Experimental data,” https://github.com/ouniali/ WSantipatterns, accessed: 2015-08-14.

[10] W. B. Frakes and R. Baeza-Yates, Eds., Information Retrieval: Data Structures and
Algorithms. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992.

[11] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best practices for describing,
consuming, and discovering web services: a comprehensive toolset,” Software: Practice and
Experience, vol. 43, no. 6, pp. 613–639, 2013.

[12] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Automatically detecting
opportunities for web service descriptions improvement,” in Software Services for e-World.
Springer, 2010, pp. 139–150.



27

[13] C. Mateos, A. Zunino, and J. L. O. Coscia, “Avoiding WSDL Bad Practices in Code-First
Web Services,” SADIO Electronic Journal of Informatics and Operational Research, vol.
11, no. 1, pp. 31–48, 2012.

[14] M. A. Torkamani and H. Bagheri, “A Systematic Method for Identification of Anti-patterns
in Service Oriented System Development,” International Journal of Electrical and Computer
Engineering, vol. 4, no. 1, pp. 16–23, 2014.

[15] C. Mateos, J. M. Rodriguez, and A. Zunino, “A tool to improve code-first web services
discoverability through text mining techniques,” Software: Practice and Experience, vol. 45,
no. 7, pp. 925–948, 2015.

[16] N. Moha, Y. Gueheneuc, L. Duchien, and A. Le Meur, “Decor: A method for the
specification and detection of code and design smells,” Software Engineering, IEEE
Transactions on, vol. 36, no. 1, pp. 20–36, Jan 2010.Ashok, B., Joy, J., Liang, H., Rajamani,
S.K., Srinivasa, G., and Vangala, V.: ‘DebugAdvisor: a recommender system for
debugging’, in Editor (Ed.) (ACM, 2009, edn.), pp. 373-382

[17] Dudney B., Krozak J., K., Asbury S., and Osborne D., J2EE Antipatterns. John Wiley; Sons,
Inc., 1st edition (2003).

[18] Rotem-Gal-Oz A.,  Bruno, E., and Dahan, U., SOA Patterns. Manning Publications, 38-62
(2012).

[19] Kral J. and Zemlicka M., “Popular SOA Antipatterns,” in Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, 2009. IEEE, pp. 271–276 (2009).

[20] Moha N., Palma F., Nayrolles M., Conseil B. J., Gueheneuc Y.-G., Baudry B., and Jezequel
J.-M., “Specification and detection of soa antipatterns,” in Service-Oriented Computing.
Springer, pp. 1–16 (2012).

[21] Palma F., Moha N., Tremblay G., and Gueheneuc Y.-G., “Specification and detection of soa
antipatterns in web services,” in Software Architecture. Springer, pp. 58–73 (2014).

[22] Bard J.. Practical Bilevel Optimization: Algorithms and Applications. The Netherlands:
Kluwer, Vol 30 (1998).

[23] Giri B. K., Hakanen J., Miettinen K., and Chakraborti N., “Genetic programming through
bi-objective genetic algorithms with a study of a simulated moving bed process involving
multiple objectives,” Applied Soft Computing, vol. 13, no. 5, pp. 2613–2623 (2013).

[24] Ouni A., Kessentini M., and Inoue K., “Search-based web service antipatterns detection,” in
IEEE Transactions on Services Computing, to appear. IEEE, pp. 1-21 (2016).

[25] Frakes W. B. and Baeza-Yates R., Eds., Information Retrieval: Data Structures and
Algorithms. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. (1992).



28

[26] Rodriguez J. M., Crasso M., Mateos C., and Zunino A., “Best practices for describing,
consuming, and discovering web services: a comprehensive toolset,” Software: Practice and
Experience, vol. 43, no. 6, pp. 613–639 (2013).

[27] Rodriguez J. M., Crasso M., Zunino A., and Campo M., “Automatically detecting
opportunities for web service descriptions improvement,” in Software Services for e-World.
Springer, pp. 139–150 (2010).

[28] Ankur S., Pekka M., Anton F., Kalyanmoy D., Multi-objective Stackelberg game between a
regulating authority and a mining company: A case study in environmental economics.
IEEE Congress on Evolutionary Computation, Cancun, Mexico, 478–485 (2013).

[29] Mateos C., Zunino A., and Coscia J. L. O., “Avoiding WSDL Bad Practices in Code-First
Web Services,” SADIO Electronic Journal of Informatics and Operational Research, vol.
11, no. 1, pp. 31–48 (2012).

[30] Torkamani M. A. and Bagheri H., “A Systematic Method for Identification of Anti-patterns
in Service Oriented System Development,” International Journal of Electrical and Computer
Engineering, vol. 4, no. 1, pp. 16–23  (2014).

[31] Mateos C., Rodriguez J. M., and Zunino A., “A tool to improve code-first web services
discoverability through text mining techniques,” Software: Practice and Experience, vol. 45,
no. 7, pp. 925–948 (2015).


	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BACKGROUND AND PROBLEM STATEMENT
	2.1 BACKGROUND: WEB SERVICE ANTIPATTERNS
	2.2 PROBLEM STATEMENT AND RELATED WORK

	CHAPTER 3: MULTI-OBJECTIVE WEB SERVICE ANTIPATTERNS DETECTION
	3.1 MULTI-OBJECTIVE GENETIC PROGRAMMING
	3.2 MULTI-OBJECTIVE ALGORITHM ADAPTATION
	3.2.1 PROBLEM FORMULATION
	3.2.2 SOLUTION APPROACH
	3.2.2.1 SOLUTION REPRESENTATION
	3.2.2.2 EVALUATION FUNCTIONS


	CHAPTER 4: EVALUATION
	4.1 RESEARCH QUESTIONS
	4.2 EXPERIMENTAL DESIGN
	4.3 RESULT
	4.3.1 RESULTS FOR RQ1
	4.3.2 RESULTS FOR RQ2
	4.3.3 RESULTS FOR RQ3
	4.3.4 RESULTS FOR RQ4


	CHAPTER 5: RELATED WORK
	CHAPTER 6: CONCLUSION AND FUTURE WORK
	REFERENCES

