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ABSTRACT

The vast increase in DNA sequencing capacity over the last decade has quickly turned biology

into a data-intensive science. Nevertheless, current sequencers such as Illumia HiSeq have high

random per-base error rates, which makes sequencing error correction an indispensable require-

ment for many sequence analysis applications. Most existing methods for error correction demand

large expensive memory space, which limits their scalability for handling large datasets. In this

thesis, we introduce a new disk based method, called DiskBQcor, for sequencing error correction.

DiskBQcor stores k-mers for sequencing genome data along with their associated metadata in a

disk based index tree, called the BoND-tree, and uses the index to efficiently process specially

designed box queries to obtain relevant k-mers and their occurring frequencies. It takes an input

read and locates the potential errors in the sequence. It then applies a comprehensive voting mech-

anism and possibly an efficient binary encoding based assembly technique to verify and correct

an erroneous base in a genome sequence under various conditions. To overcome the drawback of

an offline approach such as DiskBQcor for wasting computing resources while DNA sequecing is

in process, we suggest an online approach to correcting sequencing errors. The online processing

strategies and accuracy measures are discussed. An algorithm for deleting indexed k-mers from

the BoND-tree, which is a step stone for the online sequencing error correction, is also introduced.

Our experiments demonstrate that the proposed methods are quite promising in error correction for

sequencing genome data on disk. The resulting BoND-tree with correct k-mers can also be used

for sequence analysis applications such as variant detection.
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CHAPTER 1

Introduction

1.1 Motivation

DNA sequencing has been increasingly serving studies on biological problems including biomed-

ical diagnostics, gene expression analysis, drug resistance, complex microbial ecosystems, and

basic molecular biology. However, current sequencers have quite high random per-base error

rates, ranging from 1% for Illumina HiSeq to 15% for Pacific Biosciences SMRT [1]. Dealing

with sequencing errors is a significant challenge for both mapping and assembly based approaches

to sequence analysis. Error correction has emerged as one of the dominant practical problems in

sequence analysis [1]. Moreover, comparing to the conventional sequencing methods, the next-

generation sequencers produce shorter read lengths, leading to more repeats [2], which makes it

more difficult to decide an appropriate sequencing error correction method.

Fortunately, the low sequencing cost of the next-generation sequencers has made it possible to

detect and correct the errors by providing a high redundant coverage with sequencing reads for

the target genome sequence. For a sufficiently large coverage and k, almost all the sequencing

errors alter the relevant k-mers (i.e., short substrings of length k obtained from sequencing reads)

to versions that do not exist in the target genome sequence. Therefore, k-mers with low counts,

particularly those occurring just once or twice, usually inherit sequencing errors from the cor-

responding reads. Error correction and other relevant sequence analysis applications [3–5] have

made counting large amounts of k-mers a paramount need for research in bioinformatics.
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1.2 Problem Statement

Given a sample DNA, a DNA sequencer, such as Illumina HiSeq [6], determines the order of the

four types of nucleotides/bases: Adenine, Guanine, Cytosine, and Thymine (A, G, C, T), reported

as a text string (read). Each read usually contains several hundreds to thousands base pairs. A

k-mer is obtained from the read by retrieving overlapping k-length bases. For example, Figure 1.1

demonstrates how a sequence read is decomposed into shifted k-mers.

Figure 1.1: A read is decomposed to shifted k-mers.

These sequencing reads may contain errors, normally at the rate of 0.5% per base, caused by

limitations in the DNA sequencing technique or by errors during PCR amplification.

Most of the researches on error correction methods can be classified into three types: k-spectrum

based, suffix tree/array-based, and MSA-based [7]. The core problem falls on how we deal with

the computational challenges for the highly redundant large k-mer datasets. Existing data struc-

ture used including hash table [8], Bloom filter [9], suffix tree [5], and sorted bin set [10] to store

k-mers. These in-memory structures provide efficient random access to k-mers in memory.

However, they usually have a high demand on computing resources. For example, Jellyfish [8]

is a hash based counting method designed for shared memory parallel computers, which was run on

a computer with 32 cores and 256GB RAM. Such high-end computing equipment is not common

for most biology laboratories today.

One way to reduce the expensive memory requirement for an error correction method is to

develop a new technique utilizing relatively cheap disk space. There are two challenges in doing

so: (1) how to efficiently search target k-mers from a large k-mer dataset on disk, and (2) how to
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utilize search results to correct sequencing errors. If we could utilize an efficient disk based data

structure with suitable properties for supporting genome analysis problems, especially, the DNA

sequencing error correction problem, the above two challenges can be nicely solved.

1.3 Our Approach

To tackle the above challenges, we propose a novel disk based method, called DiskBQcor, that

stores the k-mers with a recently developed index structure, called the BoND-tree [11], on disk

and adopts a vast majority voting mechanism to verify and correct the sequencing errors at sus-

picious positions in the sequencing reads generated by a sequencer for a target genome sequence.

Specifically, k-mers are kept in the leaf nodes of the BoND-tree, and each k-mer is associated

with a pointer pointing to the relevant metadata (e.g., the set of ids of the sequencing reads that

contain the k-mer). Each (leaf or non-leaf) node of the BoND-tree is saved in a disk block, and

the metadata is stored in additional disk blocks linked from the leaf nodes. For a suspicious error

position in a sequencing read, a set of special box queries (BQ) are performed on the BoND tree

to count and vote for each possible base at that position and determine what the correct base is at

the position. Various scenarios are considered in DiskBQcor. The extreme cases are handled by an

efficient binary encoding based assembly technique. Experiments demonstrate that DiskBQcor is

quite promising in achieving high accuracy for error correction with reasonable efficiency, besides

the scalability benefit warranted by a disk based approach.

DiskBQcor focuses on error verification and correction. We are able to detect the suspicious

error positions in a sequencing read with k-mer abundance analysis [12]. Specifically, through

analyzing on the k-mer abundance, the separation between the high-abundance k-mers and the

low-abundance k-mers will become clear. A suspicious error position is typically at the boundary

between these two types of k-mers. By choosing a proper cutoff value, suspicious error positions

in sequencing reads can be identified. The base at each suspicious error position can be checked

3



(verified) by DiskBQcor to see if it is indeed an error. If so, DiskBQcor can find the correct base

to replace the erroneous base at the position. Furthermore, our method has been extended to an

online/streaming fashion, so that we can start error detection and correction in the very early stage

while DNA sequencing is still in process, resulting in a better utilization of computer resources.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 discusses the related works about index

methods for non-ordered discrete data, k-mer counting tools, genome error correction approaches,

and online/streaming analysis of DNA sequencing reads. Chapter 3 discusses the details of the pro-

posed DiskBQcor, which aims to utilize the BoND-tree to verify and correct errors on suspicious

positions in sequencing reads. Chapter 4 presents an algorithm to delete k-mers in the BoND-tree,

which serves as a preparation for Chapter 5. Chapter 5 extends DiskBQcor introduced in Chapter

3 to an online sequencing error correction method, and discusses its theoretical accuracy measures.

Chapter 6 concludes the thesis and highlights some future research directions.
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CHAPTER 2

Related Work

In this chapter, we discuss the work related to our study. Section 2.1 presents the work related

to indexing techniques for non-ordered discrete data. Section 2.2 reviews a few recent developed

k-mer counting tools. Section 2.3 discusses some popular genome sequencing error correction ap-

proaches related to our work. Finally, Section 2.4 overviews the related work on streaming/online

analysis of DNA sequencing reads.

2.1 Index Methods for Non-ordered Discrete Data

Existing indexing methods for multidimensional datasets are mostly developed for a multidimen-

sional (ordered) Continuous Data Spaces (CDS) such as the R-tree [13]. However, characteristics

of genome sequences require another type of index method to store k-mers that are non-ordered

and discrete. The essential geometric concepts that appear frequently in a CDS, such as a minimum

bounding rectangle and the area of a region, cannot be used in a multidimensional Non-Ordered

Discrete Data Spaces (NDDS) directly.

The ND-tree [14] is an R-tree-like index structure designed for an NDDS. The tree was origi-

nally introduced to support similarity searches/queries, which require a robust indexing technique,

and was later modified into a so-called BoND-tree to support efficient box queries in [11]. In [14],

related essential geometry concepts in a CDS were extended to an NDDS, and the structures in the

R-tree and R*-tree were modified according to the new concepts. Specifically, a leaf node in an

ND-tree contains an array of entries of the form (op, key), where key is a vector in the underlying
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NDDS and op is a pointer to the object represented by key in the database. A non-leaf node N in

an ND-tree contains an array of entries of the form (cp,DMBR), where cp is a pointer to a child

node N ′ of N in the tree, and DMBR is the discrete minimum bounding rectangle of N ′.

The M-tree [15] and the Slim-trees [16] are two examples of the indexing methods based on

metric spaces, which only require the distance measure between two vectors. However, such metric

index methods are too general to optimize the query performance since the unique characteristics

of an NDDS are not utilized. Experiments in [14] also demonstrated superior performance obtained

by the ND-tree for real genome sequence data.

On the other hand, much work has been proposed to index DNA sequences including the work

in [17–20]. Most of the indexing methods are main memory based. Cao et al. [17] proposed a

two-level index of hash table and c-trees based on q-grams of DNA sequences, which is efficient in

detecting similarity regions. However, since the c-trees are a group of dynamic trees, this method

is hard to be utilized to correct a k-mer from the trees for future use. Huang et al. [19] proposed

a scheme to index highly similar sequences based on the Burrows-Wheeler Transform. Although

their method has much less memory requirement, it is only suitable for nearby overlapping se-

quences, and not to be used for a large number of both overlapping and non-overlapping reads as

we need in our sequence analysis and error correction application. Kahveci et al. [20] presented

a wavelet-based method to map the substrings of the data into an integer space with the help of

wavelet coefficients, and index these coefficients using minimum bounding rectangles. For range

queries and nearest neighbor queries, they managed to split them into subqueries of available res-

olutions, and that large amounts of data strings are pruned from the database. While this method

compresses database and provides fast filtering, it does not support efficient box queries, since the

cost to remove false hits is high.

As previously discussed, the BoND-tree introduced in [11] is an index tree developed by mod-

ifying the ND-tree to support box queries in an NDDS. It also optimizes some of the structures

of the ND-tree to achieve an improved efficiency when processing box queries. The authors pro-
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vided three node splitting heuristics and theoretical analysis to show the optimality of the proposed

heuristics. Extensive experiments were also conducted to show effectiveness of their scheme for

supporting efficient box queries on genome sequence databases.

2.2 k-mer Counting Tools

In order to deal with the computational challenges for large k-mer datasets, a number of efficient

k-mer counting methods have been proposed in the literature. Most of them use a large in-memory

structure such as the hash table [8], the Bloom filter [9], the suffix tree [5], and the sorted bin

set [10] to store k-mers. These in-memory structures provide efficient random access to k-mers in

memory. However, they usually have a high demand on computing resources. For example, Jel-

lyfish [8] is a hash based counting method designed for shared memory parallel computers, which

was run on a computer with 32 cores and 256GB RAM. Such high-end computing equipment is

not common for most biology laboratories today.

Two k-mer counting methods, i.e., DSK [21] and KMC 2 [22], that utilize disk space to reduce

the memory requirement were proposed. The goal of these two methods is to count the number

of occurrences for every k-mer in a (multi-)set of k-mers. Both methods adopt a similar approach.

The basic idea is to divide the (multi-)set of k-mers into a number of groups/partitions, save each

group to the disk, load each group into a temporary in-memory structure separately, and count k-

mers by traversing each temporary in-memory structure. Since these two methods aim at counting

all the k-mers in the given set, they do not have to support efficient random access to the k-mers on

disk. On the other hand, the goal of our DiskBQcor is to verify and correct a suspicious error(s) at

a given position(s) in a read, which implies that we need to search and count only those interested

k-mers from the given dataset. As a result, efficient random disk access is required for DiskBQcor.

The recent BoND-tree mentioned in Section 2.1 is adopted to provide such a searching capability

for a large k-mer dataset on disk.
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2.3 Genome Error Correction Approaches

Error correction methods can be classified into three types: the k-sepctrum based, the suffix

tree/array-based, and the MSA-based [7] methods. Quake in [23] is a widely-used error correction

tool/method. It utilizes Jellyfish to perform the counting job during its error correction process.

Beyond a plain k-mer counting, Quake also takes into account the quality scores of base calls when

distinguishing untrusted k-mers (i.e., having low counts) from trusted ones. Lighter in [24] and the

spectral alignment based parallel error correction method in [25] utilize a Bloom filter for error

correction, while SHREC in [26] and its variant in [27] utilize suffix trees for error correction.

Coral [28] puts the k-mers as keys, with their related reads as value into a hash table, and uses

multiple alignments to identify errors.

As mentioned earlier, Quake [23] is a k-spectrum based method, widely used to correct errors

in sequencing reads with high coverage. It takes k-mer statistics as an important component to

accomplish its task. However, Quake has some limitations: (1) it has to use a sufficiently large

k to achieve high accuracy; (2) it cannot handle the cases in which untrusted k-mers are repeated

at several places or an erroneous base occurs near the boundary of a read. Limitation (1) leads

to a large size of the k-mer dataset, while limitation (2) causes Quake to trim off some true error

cases from consideration. As we will see, with carefully designed box queries and other strategies,

DiskBQcor is able to mitigate both limitations. To our knowledge, no similar work has been

reported in the literature.

2.4 Streaming/Online Analysis of DNA Sequencing Reads

Streaming/online analysis of DNA sequencing reads is a new topic attracting researchers recently.

There are two interesting observations. First, streaming analysis to analyze sequencing reads is

done in a linear time complexity. Second, a sequencer produces reads in a streaming fashion and

takes a certain amount of time, which allows us to analyze them in parallel during the process,

8



and get the result as soon as the sequencing completes. A semi-streaming approach may read the

input for more than one time, while a fully streaming approach reads the input only once, but both

run in a linear time complexity. KmerStream [29] introduces a streaming algorithm to estimate

the number of k-mers that occur exactly once, which takes a liner time complexity. It works as

follows: (1) compute the hash value of a k-mer; (2) sample the stream at different rates; (3) select

a most suitable rate. KmerStream can be further utilized for k-mer abundance analysis, and for the

estimation of error rate in a given dataset.

Zhang et al. in [12] presents a semi-streaming algorithm for k-spectrum analysis, and utilizes

digital normalization which can effectively detect and remove errors. It builds a De Bruijin graph

to detect the graph saturation to see whether a certain region reaches the expected coverage. After

that, it works as follows: first pass - if the coverage is less than the desired coverage, load the read

to the graph, else analyze the read; second pass - if the coverage is greater or equal to the desired

coverage, analyze the read. In the paper, the approach was also reduced to a fully streaming

approach, which was used to estimate the per-base error rate.

9



CHAPTER 3

A Disk Based DNA Sequencing Error Correction Method

In this chapter, we propose a disk based sequencing error correction method, called DiskBQcor,

which stores the k-mers in a BoND-tree. We will first briefly go through key concepts used for

the BoND-tree in Section 3.1, and then introduce a vast majority voting mechanism to verify and

correct the sequencing errors in Section 3.2. Various scenarios and extreme cases are considered

in DiskBQcor. Experimental results to evaluate DiskBQcor are reported in Section 3.3.

3.1 Preliminaries - Building the BoND-tree

We can view a k-mer (e.g., “agc” with k = 3) as a vector in a k-dimensional Non-ordered Discrete

Data Space (NDDS), where the letter (base) on each dimension of the vector is from alphabet

{a, t, c, g}. In general, an NDDS Ωd is a multi-dimensional vector space, where d is the number of

dimensions in Ωd. Each dimension in Ωd has an alphabet (domain) Ai (1 ≤ i ≤ d) consisting of a

finite number of letters, where no natural ordering exists among the letters. Let bi (1 ≤ i ≤ d) be

a subset of alphabet Ai (i.e., bi ⊆ Ai). The Cartesian product b1 × b2 × ...× bd is called a discrete

box (rectangle) in Ωd. More concepts about an NDDS can be found in [30, 31].

A (discrete) box query q on a dataset S in an NDDS is defined as a query with a specified

box w that returns all the vectors from S that lie within w. For example, a box query with box

{a} × {g, t} × {c, t} on a k-mer dataset (k = 3) fetches those k-mers from the dataset that have

letter (base) a on the first dimension, g or t on the second dimension, and c or t on the third

dimension. Thus, this box query is equivalent to four exact queries to search for four individual
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k-mers: agc, atc, agt, and att. As we will see, box queries can be utilized to help efficiently solve

the sequencing error correction problem.

The BoND-tree is a recent disk based index technique that was specially designed for supporting

efficient processing of box queries in an NDDS [11]. It has a balanced hierarchical indexing tree

structure (see Figure 3.1). Each (leaf or non-leaf) node consists of a set of entries and occupies

one disk block. Each entry in a non-leaf node consists of a pointer pointing to a subtree and the

minimum bounding box (mbb) for all the vectors stored in the subtree. Each entry in a leaf node

consists of a vector/k-mer (as a key) and a pointer pointing to relevant metadata. Special strategies

making use of the characteristics of an NDDS are adopted to build the tree so that box queries can

be processed efficiently on the tree [11].

(mbb1, ●) (mbb2, ●)  ……        

(mbb11, ●) (mbb12, ●)  ……        (mbb21, ●) (mbb22, ●)  ……        

(k-mer 1, ●) (k-mer 2, ●)  ……        

Level 1 (root)

Level 2

Level 3 (leaf)

metadata 1 metadata 2

Disk

Figure 3.1: The BoND-tree Structure.

When the overlapping k-mers obtained from the given sequencing reads are loaded into a

BoND-tree in DiskBQcor, the canonical representation of each k-mer, which is either the k-mer

itself or its reversed complement, is calculated and inserted into the tree. The metadata associated

with each k-mer (in the canonical form) in the corresponding leaf node in DiskBQcor is a list of

ids for the reads that contain this k-mer or its reserved complement (indicated by a flag), which

is saved in one or more linked disk blocks. Note that a conventional memory-based method can

only afford saving the k-mers and their counts in their in-memory structures due to their restricted

11



scalability for handling large datasets. Hence, more detailed information such as the read ids are

not stored with the k-mers, which need to be identified on the fly via expensive operations such

as alignments. Since DiskBQcor uses disk space, all necessary metadata can be saved with the

k-mers, which reduces a large amount of unnecessary dynamic computing overhead.

3.2 The Method

The basic idea of our disk based sequencing error correction method, DiskBQcor, works as follows.

The overlapping k-mers obtained from the sequencing reads for a target genome sequence along

with their relevant metadata are loaded into a BoND-tree on disk. For a given suspicious error

position in a sequencing read, a set of special shifted box queries are formulated and performed on

the BoND-tree to retrieve the relevant k-mers and their counts. With a special voting mechanism,

the possibly erroneous base at the given position can be verified positively or negatively, and the

correct base at the position can be identified if an error is found. In the latter case, the erroneous

base at the suspicious position in the corresponding read is replaced/corrected by the correct one.

The relevant details of the above correcting procedure are discussed in the following subsections.

3.2.1 Error Correction via Vast Majority Voting

Given a sequencing read (e.g., r = acctgga[t]tcgtag......) and a suspicious error position in the

read (e.g., the 8th position [t] in r), the possibly erroneous base (e.g., t) at the position can be

verified and corrected (if proven to be an error) by a voting approach described as follows.

We can choose a suspicious k-mer (e.g., gga[t]tc with k = 6 in the above example) that covers

the suspicious error position, replace the possibly erroneous base at the position (e.g., t in the

above example) by each of the four possible bases (i.e., a, t, c, g) to form four k-mers (e.g.,

ggaatc, ggagtc, ggattc, and ggactc in the above example), and use these k-mers1 as exact queries

1It is assumed that each k-mer is converted into its canonical representation before searching it in the BoND-tree.
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to find the number of occurrences (i.e., the count) for each of them at the suspicious position. Since

there usually is a high coverage (e.g., about 20 times) with sequencing reads at the suspicious error

position, most of the reads typically contain the correct base at the position. Using a vast majority

voting rule, we can discover if the possibly erroneous base (e.g., t) is indeed an error and, if so,

what the correct base is.

One optimization that can be further done here is to group the above four exact queries into one

box query by using set X = {a, t, c, g} at the suspicious position of the suspicious k-mer (instead

of using four individual bases separately) to indicate all the possible bases at that position. In other

words, the box used for the box query in the above example is: {g} × {g} × {a} × X × {t} ×

{c} (simply denoted by ggaXtc in the remaining discussion). The votes/counts can be found by

analyzing the result of the box query. Since only one (box) query instead four (exact) queries is

executed on the BoND-tree, the efficiency is usually further improved due to the reduced latency

and shared processing. Once an erroneous base has been verified, the error correction is just a

matter of replacing the erroneous base by the correct one.

Figure 3.2 shows an example for error verification and correction. Assume that the average cov-

erage is 20 (times), which implies that each position in the target genome sequence is covered by

about 20 sequencing reads on average. In the figure, reads 1, 2, 3, and seventeen other sequencing

reads are produced by a sequencer to cover a certain range of the target genome sequence. As-

sume that the sequencer has produced an erroneous base (altering a to t) at the indicated position

for read 3, making any k-mer that contains the position suspicious. After performing a box query

whose box is obtained by replacing the erroneous base by set X = {a, t, c, g} in a chosen suspi-

cious k-mer β on the BoND-tree, the counts for a and t can be found to be 19 and 1, respectively2.

Apparently, the correct base at the suspicious position is a.

In general, the correct base is the one that has the maximum count:
max
y∈X {count(y)} provided

2The counts for a and t (with respect to suspicious k-mer β) are the counts for modified β with a and t being placed

at the suspicious position, respectively. The counts for c and g (with respect to β) can be defined similarly.

13



X

read 1

read 2

read 3 a→t

counts

a    t    c    g

19   1   0    0

other reads …... …...

β

t

a

a

k-mer (suspicious)

Figure 3.2: Voting in Case of Solo Occurrence of a Suspicious k-mer.

that this maximum count is significantly larger than the count of any other base at the position. If

the possibly erroneous base at the position has the maximum count, it implies that this base is not

an error. Otherwise, this base is determined to be an error.

However, the above simple voting approach cannot handle the situation when a suspicious k-

mer β that we use to convert into a box query for a suspicious error position happens to also appear

as a trusted (without error) k-mer in another place of the target genome sequence. Figure 3.3 shows

such a scenario, where β appears as a suspicious k-mer in read 2 and also appears as a trusted k-

mer in read 1. Assume that the average coverage is still about 20 (times) in this example. In such

a case, the counts for the erroneous base t and the correct base a are about the same (e.g., 21 = 1

+ 20 vs. 19 = 19 + 0) since the counts for t in β from both places are combined/added. Hence,

it is difficult to determine which base is correct at the suspicious error position (note that a small

variance in the coverage is normal).

read 1

read 2 a→tt

t

X
X
X
X
X
X

counts

  a   t   c    g

21   1   0    0

20   1   0    0

…
19   21  0   0

…
20   1   0   0

β1

β2

βk

β1

β2

βk

β (suspicious)

other reads …... …... …...
β (trusted)

βi =β
β

Figure 3.3: Voting in Case of Repetitive Occurrences of a Suspicious k-mer.

To solve this problem, we consider all the (shifted) suspicious k-mers β1, β2, ..., βk that cover
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the suspicious error position as shown in Figure 3.3. For each βi (1 ≤ i ≤ k), we form a box

query by replacing the possibly erroneous base (e.g., t) at the suspicious error position by set

X = {a, t, c, g}.

After these k number of (shifted) box queries are performed on the BoND-tree, the following

k × 4 counting matrix representing all the counts with respect to the k suspicious k-mers can be

obtained: 

















a1 t1 c1 g1

a2 t2 c2 g2

...

ak tk ck gk



















(3.1)

where ai, ti, ci, gi (1 ≤ i ≤ k) are the counts for suspicious k-mer βi when its possibly erroneous

base at the suspicious error position is replaced by base a, t, c, g, respectively. Let the vote of base

y be

v(y) =
min
1≤i≤k {yi} (3.2)

where y ∈ {a, t, c, g}. For the example shown in Figure 3.3, we have v(a) = 19, v(t) = 1, v(c) =

0, and v(g) = 0.

It is noted that v(y) is usually close to the coverage number (e.g., 20) if base y is a correct one

at the suspicious position since the counts for all the βis are usually close to the coverage number

when y is placed in the suspicious position3. Hence, v(y) is relatively large in this case. On the

other hand, when base y is an error, yi is usually small if βi does not appear as a trusted k-mer in

another place, and yi is large if βi also appears as a trusted k-mer in another place. Hence, v(y) is

usually small if there exists at least one βi that does not appear as a trusted k-mer in another place.

Note that the chance for every βi is repeated as a trusted k-mer in another place is small especially

when k is reasonably large. Therefore, we can apply the following voting rule to determine a cor-

rect base:

3For a reasonable sequencer, it should produce most reads at each position of the target genome correctly.
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Vast Majority Voting Rule (VMVR): The correct base at the suspicious error position is deter-

mined to be the one that has the following maximum vote:

MV =
max
y∈X {v(y)} (3.3)

if MV is significantly larger than the vote for any other base at the position.

If the vote for the possibly erroneous base e at the suspicious error position is close to MV, e

is determined to be not an error. Otherwise, it is an error. For the example in Figure 3.3, since

MV = v(a) (=19) and no other votes are close to MV , base t is determined to be an error at the

suspicious error position, and base a is identified as the correct one at the position.

The condition for the vast majority voting mechanism based on Formula (3.3) to fail to work

is that the votes for two or more bases are close to MV. We will present a strategy to handle error

correction under this condition in Section 3.2.3.

3.2.2 Correcting Multiple Errors in One Read

Let us consider the situation in which a read has multiple suspicious error positions that need to

be verified and corrected. If these suspicious error positions are located at least k positions/bases

(distance) apart from each other in the read, they can be verified and corrected individually by the

procedure presented in Section 3.2.1. However, when the distance between two consecutive sus-

picious error positions is less than k positions/bases, the above method cannot be directly applied.

The reason is explained as follows.

Figure 3.4 shows an example in which we have two erroneous bases g and t at suspicious error

positions p1 and p2, respectively, in read 3. Assume that the distance between p1 and p2 is k − 2

(< k). When we form all the (shifted) suspicious k-mers β1, β2, ..., βk that cover the suspicious

position p2, we notice that the first two suspicious k-mers β1 and β2 also cover the other suspicious

position p1. After the box queries that are obtained by replacing the erroneous base at p2 with set
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X = {a, t, c, g} in each suspicious k-mer, the counting matrix is computed as shown in the figure.

We can see that the counts for correct base a at p2 from β1 and β2 are 0 although most of reads have

this correct base a at p2. The reason for this phenomenon is that β1 and β2 also contain another

erroneous base g at p1, which prevent them from matching the corresponding correct reads at p2

(since they have correct base c at p1). As a result, this counting matrix cannot be used by the vast

majority voting rule described in the last section since the correct base a at p2 cannot be identified

in this way (v(a) = 0).

a→t

X
X
X
X
X
X

read 1

read 2

read 3

counts

  a    t   c    g

  0   1   0    0

  0   1   0    0

 20  1   0    0

…
 19  1   0    0

g tc→g

other reads   …... …... …...

β1

β2

βk

β3

p1 p2

Figure 3.4: Multiple errors on one read.

In such a case, we adopt the following approach to correcting multiple errors in a read. We

consider each suspicious error position in a read from the right to the left. For each suspicious

position, we form all those (shifted) suspicious k-mers that cover the current suspicious position but

do not cover the next suspicious position (e.g., β3, ..., βk for position p2 in Figure 3.4), convert them

into box queries by using X = {a, t, c, g} at the current suspicious position, use their results from

the BoND-tree to form counting matrix (3.1), and apply the vast majority voting rule to determine

if the possibly erroneous base at the current suspicious position is indeed an error. Once the

current error is corrected in the read, we consider the next rightmost suspicious error position and

correct its possibly erroneous base in a similar way. This process continues until all the possibly

erroneous bases in the given read are verified and corrected. Note that, if the rightmost k-mer

in the read contains more than one erroneous base, the process can start from the leftmost k-mer
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or any k-mer in the read that contains only one erroneous base and then expand the corrected

region bigger and bigger. If no k-mer containing only one erroneous base can be found, we adopt

the alignment method to be discussed in the following subsection to correct the erroneous bases

covered by the rightmost k-mer first and then apply the method in this subsection to correct the

remaining erroneous bases (if any) in the read.

3.2.3 Alignment Strategy

As the condition at the end of Section 3.2.1 indicates, our vast majority voting mechanism does

not work if the votes for two or more bases are close to the maximum vote. Figure 3.5 shows such

a scenario, in which segment δ (with length 2k − 1) covered by all the k suspicious shifted k-mers

around the suspicious error position (with erroneous base t changed from correct base a) in read 2

also appears in read 1 that has no error. In such a case, every (shifted) suspicious k-mer in read 2 is

repeated (as a trusted one) in read 1. Hence, the counts for the two places (from reads 1 and 2) are

combined/added, which are close to the coverage number. As a result, we are unable to determine

whether a or t is a correct base at the suspicious position in read 2 since they have similar votes

(e.g., v(a) = 19 and v(t) = 20). Although such a case does not normally occur (especially when k

is large), we need to have a way in our DiskBQcor to handle such a case when it does occur. The

idea of an alignment based strategy to handle such a case is described as follows.

read 1

read 2 a→tt

X
X
X
X
X
X

counts

 a     t    c    g

19  20   0    0

19  21   0    0

20  21   0    0

…
19   20   0   0

other reads  …... …...
repeated segment δ (length 2k-1)

repeated segment δ (length 2k-1)

error

correct

t

Figure 3.5: Reads with a long repeated segment.

For a given suspicious error position p in a read r that our vast majority voting mechanism
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cannot handle, we take a suspicious k-mer β that contains position p from read r and convert β into

a box query q by replacing the possibly erroneous base4 at position p in β by set X = {a, t, c, g}.

From the result of q, we can find the set S of candidate reads that might be alignable with read

r. Our goal is to identify those candidate reads in S that can indeed be aligned with r. After r is

aligned with these candidate reads, the correct base at position p in r can be determined since most

of them have the correct base at the position.

The problem now boils down to how to align the reference read r with a candidate read r1 ∈ S.

For this special alignment problem, we introduce an efficient method here to solve it in two stages

(see Figure 3.6). In the first stage, we try to match a (short) seed segment σ from r that contains

the suspicious error position p with a (short) segment σ1 from r1. If such σ1 can be found, the

alignment moves to the second stage. Otherwise, reads r and r1 are not alignable. In the second

stage, we first place r and r1 into their aligned positions according to the alignment of σ and σ1.

We then try to match the pairs of corresponding bases at the remaining positions from r and r1.

If the total number of mismatches between r and r1 is within a tolerance, r and r1 are aligned

successfully. Otherwise, they are not alignable.

To efficiently identify a segment(s) σ1 from r1 that is alignable with seed segment σ in r in the

first stage, we use a binary encoding based technique. The key idea is described as follows. We

first encode each of reads r and r1 into a binary string/sequence by changing base “a” to “00”,

“t” to “01”, “c” to “10”, and “g” to “11” in the read. For example, a read “aggctacgttaattga” is

converted into a binary sequence “00111110010010110101000001011100”. This binary represen-

tation allows us to efficiently apply one integer (32 bits) operation to compare 16 bases together

rather than apply 16 separate character/base comparisons to get the same result.

Let n be an integer (representing seed segment σ) from r that contains the possibly erroneous

base e (in the binary form) at the suspicious position p. Assume that e is represented by the s-th

and (s + 1)-th bits (counting from the right end) in n. We then check if n is alignable with each

4If β contains multiple possibly erroneous bases, each of them is replaced by set X .
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Figure 3.6: Two-stage Alignment Method.

integer n1 shifted one base at a time from the left to the right in candidate read r1
5. If all the

corresponding bits from n and n1 match except that the s-th and/or (s + 1)-th bits may mismatch,

we say n and n1 are alignable. Specifically, we perform an Exclusive OR (⊕) operation on n and

5If an integer for a base b near the left or right boundary of r1 does not have enough bases on the left or right side

of b, we may pad it with relevant bases from n on the missing left or the right side.
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n1 to test if they are alignable as follows:

n⊕ n1 =






















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








































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

















































0 => n and n1 are alignable

(they match exactly)

2(s−1) => n and n1 are alignable

(they mismatch only at s-th bit)

2s => n and n1 are alignable

(they mismatch only at (s+ 1)-th bit)

2(s−1) + 2s => n and n1 are alignable

(they mismatch only at

s-th and (s+ 1)-th bits)

otherwise => n and n1 are not alignable.

In this criterion for alignability, we allow only one base mismatch at the suspicious error po-

sition p. If seed segment σ also contains another erroneous base(s) that is not at position p, the

chance to find an alignable segment σ1 in candidate read r1 is small since this would require that σ1

also happen to have the same erroneous base(s) at the relevant position(s) other than p. Thus, the

alignment would fail at the first stage in such a case. To increase the chance to use a seed segment

that meets the no-other-error requirement, we adopt the following strategy (see Figure 3.7). We

first use an integer n that represents a seed segment σ having position p in the middle. If n is found

to be alignable with one or more integers in r1, the alignment process moves to the second stage.

Otherwise, we use an integer n′ that represents a seed segment σ′ having position p as its leftmost

position. If n′ is found to be alignable with one or more integers in r1, the alignment process

moves to the second stage. Otherwise, we use an integer n′′ that represents a seed segment σ′′

having position p as its rightmost position. If n′′ is found to be alignable with one or more integers

in r1, the alignment process moves to the second stage. Otherwise, r and r1 are considered to be

not alignable.
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Note that, if r has no other erroneous base at a position with a distance ≤ 16/2 = 8 bases

from position p, seed segment σ (i.e., n) will meet the above no-other-error requirement. If r has

only one erroneous base at a position (other than position p) with a distance ≤ 16/2 = 8 bases

from p, seed segment σ′ (i.e., n′) or σ′′ (i.e., n′′) will meet the above no-other-error requirement.

The above seed segment choosing strategy fails only when r has two or more erroneous bases at

positions (other than position p) with a distance ≤ 16/2 = 8 bases from p and each side of p has at

least one of such erroneous bases. However, the chance for such a case to occur is very small.

read r

suspicious position p

seed segment σ

seed segment σ’

seed segment σ’’
x

x

x

Figure 3.7: Strategy for Choosing Seed Segment.

In the second stage, for integer n1 that is alignable with n (or n′ or n′′), we try to align reads

r and r1 according to the alignment of the segments represented by integers n and n1. For each

pair of corresponding bases from r and r1 that are not covered by the segments represented by n

and n1, we compare them to see if they match. If the total number of mismatches is within a given

tolerance, r and r1 are aligned successfully. Otherwise, we try another n1 (if any) that is alignable

with n to see r and r1 can be aligned using the new segment represented by n1. If none of the

integers from r1 that are alignable with n leads to a successful alignment of r and r1, reads r and

r1 are considered to be not alignable.

3.3 Experimental Results

To examine the performance of our disk based sequencing error correction method, DiskBQcor,

we conducted extensive experiments. The performance was evaluated in terms of accuracy, effi-

ciency and scalability. DiskBQcor was implemented in the C++ programming language. All the

experiments were conducted on a Dell PC with a 3.2 GHz Intel Core i7-4790 CPU, 12 GB RAM,
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5 TB Hard Drive, and Linux 3.16.0 OS. The performance data was measured based on the average

from three executions.

The genome data used in the experiments was collected from E. coli 536 (GenBank: NC008253,

5.5 M). Different coverages with sequencing reads were tested in the experiments. Simulated 36

bp reads with an error rate at 0.5% were used. Different sets of overlapping k-mers for various k

values were obtained from these reads for the experiments. For each error position p, all the shifted

k-mers covering p are generated. For each shifted k-mer, its possibly erroneous base at position p is

replaced by box X = {a, t, c, g} to form the corresponding box query used for our error correction

process.

The first set of experiments were conducted to evaluate the accuracy of our method. For each

experiment, we measured the accuracy, i.e., the percentage of the errors that were properly cor-

rected, from our method. We also measured the number of the errors that were mis-corrected and

the number of the errors that were left uncorrected. Table 3.1 shows the results when k ranges

from 12 to 16 and the coverage is fixed at 15 (times). The results demonstrate that, in general,

the accuracy of our method is increasingly better as k increases, which is consistent with what is

expected since a large k would reduce the chance for a k-mer to appear in multiple places, leading

to a better determination of an error. k = 15 is the optimal length determined by Quake [23] for

such experimental data. For this k, although the accuracy 99.87% of our method is better than the

overall accuracy 90.5% of Quake, it is not a fair comparison since Quake also includes a step to

determine the suspicious error positions while our method assumes that these positions are given.

For those error positions that Quake tries to correct, it can correct 99.8% of them, which is com-

parable to the observed accuracy of our method. On the other hand, our accuracy covers all the

error positions including those that Quake cannot handle such as the cases having repetitive sus-

picious k-mers. Hence, our method is very attractive for error correction when some suspicious

error positions need to be checked. Furthermore, the experimental results also demonstrate that

our method can yield a quite high accuracy even when k is relatively small (e.g., k = 12). Utilizing
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this advantage could help us reduce the space requirement by storing shorter k-mers, leading to an

enhanced scalability for our method.

Table 3.1: Correction Accuracy for Simulated 36 bp E. coli with Coverage=15
k Total errors Corrections Mis-corrections Errors kept Accuracy (%)

12 812764 786076 21 26667 97.00%

13 812869 806472 21 6375 99.21%

14 813890 811684 21 2185 99.73%

15 814122 813080 11 1031 99.87%

16 813816 813141 16 660 99.92%

To examine the impact of the coverage factor on the performance of our method, we conducted

experiments with various coverages. Table 3.2 shows the results when the coverages are 10, 15,

and 20 and k is fixed at 15. From the table, we can see that the coverage is not a significant factor

affecting the performance of our method, which indicates that our vast majority voting mechanism

is quite robust. For various coverages, the accuracy of our method remains almost steady. This

advantage could help us further reduce the space requirement by adopting a low coverage genome

dataset as input, which provides another way to further improve the scalability for our method. For

example, changing the coverage from 20 to 10 would reduce the BoND-tree size by about 32% in

our experiments, while the accuracy decreases very little (from 99.88% to 99.82%).

Table 3.2: Correction Accuracy for Simulated 36 bp E. coli with k=15
Coverage Total errors Corrections Mis-corrections Errors kept Accuracy

10 541662 540672 4 985 99.82%

15 814122 813080 11 1031 99.87%

20 1084518 1083262 17 1239 99.88%

To evaluate the efficiency of our method, we recorded the relevant measures in our experiments.

Table 3.3 shows the index creation time, the error correction time and the percentage of alignment

cases when k ranges from 12 to 16 and the coverage is fixed at 15 (times), while Table 3.4 shows

the same measures when the coverage ranges from 10 to 20 (times) and k is fixed at 15. From

the tables, we can see that the error correction time for our method was relatively small, which

indicates that the disk based BoND-tree can help achieve reasonable efficiency for our disk based

sequencing error correction method. From the tables, we can also see that more alignment cases

needed to be handled when k became smaller. However, the error correction time, which includes

24



alignment time, was still small even when a significant number of alignment cases (e.g., k = 12)

were processed, which indicates that the binary encoding based alignment technique adopted in

our method is efficient. From the tables, we can also see that, although the error correction itself

did not take much time, the creation of the BoND-tree took significant amount of time. Note

that the index creation time is bound to the efficiency of the index building algorithm given in

[11]. To improve the index building efficiency, a bulk loading technique like those in [32, 33]

could be developed for the BoND-tree. In fact, such a bulk loading technique has recently been

suggested [34]. Alternatively, the index tree could be built at the time during DNA sequencing in

an online/streaming fashion, which avoids a separate index tree building process. Once the index

tree is built, our method could be implemented as a service for error verification and correction

to efficiently process user’s requests on checking some suspicious error positions in a genome

sequence. The built index tree storing k-mers and relevant metadata could also be utilized to

support other sequence analysis applications such as sequence alignment, terminus searching, and

variant detection.

Table 3.3: Correction Time for Simulated 36 bp E. coli with Coverage=15
k Creation Time (minutes) Correction Time (minutes) Alignments (%)

12 194.2 33.3 23%

13 216.0 20.0 6%

14 254.1 20.7 2%

15 264.0 21.3 0.6%

16 284.1 25.3 0%

Table 3.4: Correction Time for Simulated 36 bp E. coli with k=15
Coverage Creation Time (minutes) Correction Time (minutes) Alignments (%)

10 167.7 14.5 0.6%

15 264.0 21.3 0.6%

20 343.0 38.4 0.6%

We also conducted an experiment using reads with a larger size, i.e., 124 bases. The results are

shown in Table 3.5. From the table, we can see that similar results were obtained when using a

larger read size, which indicates that our method scales well with the read size.
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Table 3.5: Experimental Results for Simulated 124 bp E. coli with k = 15 and Coverage=15
Total errors Corrections Mis-corrections Errors kept Accuracy(%)

820526 820266 5 255 99.97%

Creation Time (minutes) Correction Time (minutes) Alignments (%)

361 29.6 0.26%

To examine if our method would have similar performance on other genomic data, we conducted

an experiment using C. elegans chromosome I data (Genbank: NC003279.8, 15M) with read size

= 124, k=16 and coverage=10. We observed that, for 1,491,895 sequencing errors in the reads,

our method achieved an accuracy of 99.70%, which demonstrated a similar behavior. The error

correction time and the index creation time were 207 and 937 minutes, respectively.

The preliminary results of the work discussed in this chapter were reported in [35, 36].
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CHAPTER 4

A Deletion Technique for BoND-tree

DiskBQcor corrects errors in sequencing genome data with the BoND-tree. However, there is

a shortcoming for this method presented in Chapter 3. The current method does not correct se-

quencing errors until all the reads are obtained, i.e., in an offline fashion. As a result, computing

resources are idle and wasted during the DNA sequencing process. To develop an online method

for sequencing error correction, we need to utilize a deletion technique for the underlying storage

structure, the BoND-tree. In this chapter, we present a technique for deleting k-mers in the index

tree. This technique serves as a preparation for the work to be presented in Chapter 5.

In [37], three deletion strategies are suggested: deletion via reinserting vectors, deletion via

reinserting nodes, and deletion via borrow reinsertion. In this chapter, we develop an algorithm to

delete a vector from the BoND-tree using the strategy of reinserting nodes.

4.1 Main-deletion procedure

In order to delete a vector, or specifically, to delete an erroneous k-mer from the BoND-tree, the

vector needs to be located following a path from the root to a leaf node. The algorithm deletes

the vector from the leaf node first, and then checks if the node underflows or not. By saying

"underflow", it is the opposite of "overflow", meaning that this node has entries less than the

required minimum number. Different strategies can be used to handle the underflows. During this

process, the underflow may propagate to the root of the tree, and adjustments on DMBRs along

the path are needed. The function adjust_DMBR is the same as in [11]. Function delete_use_link

27



is described as follows in Algorithm 4.1 to delete a leaf entry.

Algorithm 4.1 Main-deletion procedure

Input: Leaf_entry α to be deleted, BoND-tree

Output: root RN of BoND-tree

1: function DELETE_USE_LINK

2: Locate the leaf_entry α following a path p by invoking find_entry_block(α, p)

3: if α does not exist in the tree then

4: return not_present

5: end if

6: delete α from its leaf node N

7: if N does not underflow then

8: invoke function adjust_DMBR()

9: else

10: repeat

11: put N into a buffer reinsert_buf

12: delete N from its parent node

13: make N = parent node

14: until N does not underflow or N is already root

15: invoke function adjust_DMBR()

16: invoke function reinsert_node(reinsert_buf, BoND_tree)

17: end if

18: end function

Step 2 locates the leaf entry that contains α, and follows the path from the root to that entry.

Steps 3-5 handle the case where α is not in the tree. Step 6 deletes α from the leaf node. Steps

7-17 discuss whether the leaf node underflows, and if it does, we will put the node to a buffer, and

this underflow may propagate to the top of tree. After we reinsert the nodes in the buffer in step

16, we adjust the tree from the bottom to the top.

4.2 Locate Leaf Entry

Before the deletion begins, we need to locate the target vector/k-mer. In other words, we need to

find the leaf node that contains the vector first. Meanwhile, after the vector has been deleted from

the leaf node, a series of impacts may happen to its parent: it may also underflow and the relevant

DMBR needs to be adjusted. The same process applies to the grandparent, and up to the root node
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if necessary. This implies that the whole path from the root to the leaf entry with the target vector

needs to be kept for convenience. Function find_entry_block uses a breadth-first search on the

BoND-tree to find the disk block number of the leaf entry, and also returns the path in two arrays.

The first array contains all the block numbers of the tree nodes along the path, and the second array

contains the index numbers of the tree nodes among all the siblings at each level.

Algorithm 4.2 Breadth-first search to locate leaf entry

Input: vector α

Output: path from root to leaf containing α

1: function FIND_ENTRY_BLOCK

2: if height of tree is 1 then

3: if root node contains α then

4: return success

5: else

6: return not_present

7: end if

8: else

9: initialize stack check_list

10: push root into check_list

11: while check_list is not empty do

12: pop node N from check_list

13: if N contains α then

14: put N’s block number and index number into the path

15: go through every covering entries E of N

16: push E to check_list

17: if N is one level above leaf and E contains α then

18: add E to path

19: return success

20: end if

21: end if

22: end while

23: end if

24: return not_present

25: end function

Steps 2-7 handle the special case where the tree height is one. In this case, we only need to

check whether α is among the vectors in the root. Steps 9-22 is the breadth-first search process

starting from the root, traversing all possible nodes whose DMBRs contain α, until α is found, or
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until there is nothing to traverse. The path is recorded during the process.

4.3 Reinsert nodes

Nodes stored in the buffer reinsert_buf from Algorithm 4.1 need to be reinserted into the tree.

Each element in the buffer is a structure containing the level and disk block number of each node.

Using the level and path information we have discussed in Section 4.2, we are able to find the

parent node of each node in the buffer. Function reinsert_node reinserts node N into its parent,

handles the situation where the parent overflows, and adjusts DMBR along the path to the top if

necessary.

Algorithm 4.3 Reinsert Nodes

Input: buffer reinsert_buf with nodes

Output: root of BoND_tree

1: function REINSERT_NODES

2: for each node N in reinsert_buf do

3: find sibling S with least overlap enlargement with N

4: insert N’s every entry to S

5: if S overflows then

6: split S to N1 and N2, put N1 into S’s block

7: assign a new node block to N2

8: end if

9: if parent has only one child then

10: make S to root

11: end if

12: end for

13: invoke function adjust_DMBR()

14: end function

Steps 3-4 describe the main idea of the reinsertion procedure - to insert node N into its sibling

node. Steps 5-8 handle the overflow condition. Steps 9-11 handle the condition where the root

has only one child, and we make that child to the root in these steps. In [37], different heuristics

were applied to find the best suitable sibling to insert N. Those heuristics are able to accommodate

different situations and to break ties. In our algorithm, for simplicity, we only use Heuristic 1. As
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long as the node can be correctly deleted, it does not affect our final error correction accuracy.

4.4 Experiment

Experiments were conducted to examine the accuracy, efficiency and effectiveness of the deletion

algorithm. The algorithm was implemented in C++. All the experiments were conducted on a Dell

PC with a 3.2 GHz Intel Core i7-4790 CPU, 12 GB RAM, 5 TB Hard Drive, and Linux 3.16.0 OS.

Since the algorithm is not an approximate one, the accuracy is 100%. Efficiency is measured in

terms of the number of disk I/Os, and effectiveness is evaluated through the quality of the resulting

BoND-tree, i.e., how the performance is in terms of executing queries.

Three BoND-trees were built, with sets of 25-dimensional k-mers of sizes 1M, 2M and 4M

respectively. The k-mers were all generated randomly from E.coli 536. Since this data has a total

length of 5.5M, the non-duplicate vector dataset size is a little bit less than the total vector dataset

size. In each of the three experiments, we first collected experimental data from the whole tree,

and then 50%, 75% and 100% deletions are performed.

Table 4.1 and Figure 4.1 show the comparison of disk utilization and I/Os for 50%, 75% and

100% deletions. While performing deletions, disk I/Os are spent on the four parts: 1) read cost of

locating the target vector; 2) cost for adjusting DMBRs and writing back to disk; 3) read cost along

the path from leaf nodes to the root when leaves underflow; 4) write cost or adjust cost along the

path from sibling leaf nodes to the root.

Table 4.1: Number of Disk I/O and Disk Utilization
Total Vec. DB Size

(Distinct Vec. DB Size)

Original

Utilization

I/O Utilization after Deletions

50% 75% 100% 50% 75% 100%

1M (902063) 67.05% 3562588 5835147 8310199 46.36% 44.79% /

2M (1632829) 71.44% 7976160 13052123 17851491 40.39% 45.28% /

4M (2713546) 71.01% 15781226 26230400 36748479 40.57% 43.92% /

The disk utilization rate maintains around 40%-50%, which is obviously lower than the normal

disk utilization rate. This is reasonable since we keep deleting the vectors from leaf nodes until the
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Figure 4.1: Deletion Performance: Number of I/Os

nodes reaches the minimum utilization, which was set to 30%. We then delete the underflowing

leaf nodes from their parent non-leaf nodes, and repeat the same process. In the worst case, every

leaf node and every non-leaf node may have only 30% of entries. We can see from the results

that the disk utilization is lower at 75% deletions than at 50% deletions for vector dataset size 1M,

but higher at 75% deletions than at 50% deletions for vector dataset sizes 2M and 4M. In fact, the

utilization is maintained between the minimum and maximum utilizations, and there is no inherent

relationship between the number of vectors deleted and the disk utilization.

Table 4.2: Box Query Performance
Total Vec. DB Size

(Distinct Vec. DB Size)

I/O

0% 50% 75%

1M (902063) 4.01 8.27 14.07

2M (1632829) 5.01 9.51 15.42

4M (2713546) 5.01 12.05 18.18

Table 4.2 and Figure 4.2 show the comparison of box query performance. In each experiment,
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the result shows the average number of I/Os for 100 random box queries performed on the resulting

tree. Note that all the sets of queries were conducted at a tree height of 4 even when 75% of

deletions are performed, so that the tree height does not interfere of the number of I/Os.

Figure 4.2: Average I/O performance

Our deletion algorithm does decrease the query performance to a reasonable degree, and it

decreases more when performing more deletions. However, we plan to perform deletions for erro-

neous k-mers, which constitutes only a tiny portion of the whole tree. As long as the performance

is within the tolerance, we still consider accuracy as the most important factor.
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CHAPTER 5

An Online Approach for Sequencing Error Correction

In this chapter, we propose an online sequencing error correction method. It extends the ideas from

DiskBQcor in Chapter 3 by adding another online error analyzing phase while the sequencing reads

arrive in a streaming fashion. A detailed discussion about correction accuracy estimation is also

presented in Section 5.3, followed by an experimental evaluation in Section 5.4.

5.1 Preliminaries

In reality, a sequencer generates reads for a DNA sequence in a relatively slow streaming fashion.

For example, Illumina MiSeq takes about 24 hours to generate a 5Gb dataset of 150bp reads [38].

This fact has inspired us to consider the following question: can we begin the error correction as

soon as sufficient reads are generated, instead of waiting until all the reads are produced, so that

the two processes of DNA sequencing and error correction can be integrated to better utilize the

sequencing and computer resources?

5.1.1 Observations

Our technique introduced in Chapter 3 corrects sequencing errors after all the reads are obtained.

It presents a limitation on utilizing both computing resources and time. While reads are still being

generated, the computing resources are idle and wasted in waiting for them. Meanwhile, a large

k-mer set has to be loaded into disk all in once, and corrected altogether, which leads to a longer

time delay.
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Using a large, complete BoND-tree can certainly give us a higher accuracy level on error cor-

rection since the information for the entire read set is available. However, it has to handle a large

tree when performing insertions and queries, resulting in a non-optimized efficiency.

In fact, correcting erroneous k-mers does not have to wait until the whole read set is obtained.

The voting approach distinguishes the correct and incorrect bases through their relative counts.

Thus it can be done as long as the two kinds of bases have unbalanced occurring frequencies.

Given a reasonable minimum coverage at which a correct base is already distinguishable from

the incorrect ones, the voting method can be applied, although the reliability may be affected to

some extent. In an ideal circumstance, error corrections can start earlier and accuracy is gradually

improved when the tree grows. In this case, a better utilization of the computing resources is

achieved, since the DNA sequencing and error correction are performed in parallel.

Moreover, the index tree with correct k-mers can be obtained as soon as the DNA sequencing is

completed. This final tree can be used for sequence analysis applications such as variants detection

and error verification. If we want to maintain an index tree for correct k-mers only, this procedure

can continue to proceed on top of the correct index tree.

5.1.2 Assumptions

Based on the above observations, we introduce an online approach for (sequencing) error correc-

tion. The assumptions are:

• A DNA sequencer produces reads one by one.

• The generated reads are randomly distributed and covering the whole underlying genome

sequence.

• Each read is decomposed into fixed length k-mers and inserted into a BoND-tree for the

storage and future processing purpose.

• The sequencer may produce sequencing erroneous bases at some positions of a read.
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• The error rate is low, compared to the correct bases in reads.

• A high percentage of errors (but may not be all of them) are corrected.

• The quality of the BoND-tree, in terms of keeping correct k-mers, is gradually improving as

the tree grows bigger.

5.2 The Method

Correcting errors as the sequencing reads arriving one by one will be done in two phases. First,

before the minimum coverage (threshold) is reached, the reads are decomposed into k-mers and

inserted into the BoND-tree (Section 5.2.2, Insertion Phase). Then, once the minimum coverage is

reached in the tree, we can start to correct the errors (Section 5.2.3, Correction Phase).

5.2.1 Measures

Coverage Statistics

Given a sample DNA sequence, we assume that the sequencer outputs sequencing reads one by one.

The average coverage of each base at a specific time during the sequencing process is calculated

through:

rc =
N ∗ l

G
(5.1)

in which N is the total number of reads arrived, l is the length of one read, and G is the whole

genome size. rc is an important indicator of the current loading situation in the tree. Other similar

measures include: the (current) maximum coverage Mc, which reflects the peak k-mer coverage

of a base; the (current) minimum k-mer count mc, which reflects the smallest coverage of a base.

Ideally, we want all the k-mers to be distributed evenly. If some regions have very high Mc, the

weak coverage regions may have nearly no coverage, and those weak regions cannot be captured

since k-mers for such regions are not in the tree at all.
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Changing rates

The count change rate cr for two consecutive shifted k-mers k1 and k2 is calculated as:

∆c

∆x
=

count(k2)− count(k1)

1
= count(k2)− count(k1) (5.2)

In this equation, ∆x denotes the number of steps between two k-mers, which is 1 for two consec-

utive k-mers k1 and k2. A large negative cr may indicate an error has occurred (i.e., k2 hits an

erroneous position (from left to right)), and may also indicate entering a low coverage area from

a high coverage area; while a large positive cr may indicate k2 entering a correct area without

erroneous positions, and may also indicate entering a high coverage area from a low coverage

area.

The region change rate rr for two consecutive shifted k-mers k1 and k2 is calculated as:

∆r

∆x
= size(readId_set(k2))− size(readId_set(k1)) (5.3)

where readId_set(k) denotes the set of ids for the reads containing k-mer k. The reverse region

change rate rr(−1) for two consecutive shifted k-mers k1 and k2 is calculated through:

∆(−r)

∆x
= size(readId_set(k1))− size(readId_set(k2)) (5.4)

We only consider high-count areas in read r. Low-count areas can be handled using the count

change rate in Equation(5.3). There are several cases to consider:

• Case 1: small rr and small rr(−1): indicates that k2 is correct without a duplication in

another region.

• Case 2: large rr and small rr(−1): indicates that k2 is correct but is duplicated in another

region not in r, and we are entering the correct duplicate area.
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• Case 3: small rr and large rr(−1): indicates that k2 makes us leave the correct duplicate

area and return to the non-duplicate area (k1 is still duplicated).

• Case 4: large rr and large rr(−1): At the odd time (2n − 1), k2 has an error at its k-

th position and is duplicated in another region not in r, and we are entering the incorrect

duplicate area. At the even time (2n), k1 has an error at its first position and is duplicated in

another region, k2 makes us leave the incorrect duplicate area and return to the non-duplicate

area in read r.

5.2.2 Insertion Phase

In the Insertion Phase, our goal is to decompose the reads generated by the sequencer into k-mers,

and insert the k-mers into the tree, without considering whether a k-mer is a correct one or not.

This is the original tree building phase.

Algorithm 5.1 Insertion Phase Procedure

Input: reads, minimum coverage C

Output: BoND-tree BT , k-mers of first part inserted

1: function INSERT_BEFORE_MINIMUM

2: repeat receive a new read r

3: Decompose r into shifted overlapping k-mers

4: for each shifted k-mer k from left to right do

5: Insert k into BoND-tree BT

6: end for

7: update rc

8: until rc >= C

9: end function

In Algorithm 5.1 Insertion Phase Procedure, lines 2-8 are a loop to continuously insert k-mers

into the BoND-tree. Line 3 decomposes the arriving read into overlapping k-mers. Lines 4-5 insert

all the k-mer generated from the read into the tree.
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5.2.3 Correction Phase

In the Correction Phase, our goal is to continue to decompose the generated reads into k-mers, and

compare them with those already inserted in the tree. Specifically, through analyzing on the k-mer

abundance (counts), the separation between the high-abundance k-mers and the low-abundance

k-mers will become clear. A suspicious error position is typically at the boundary between these

two types of k-mers. The base at each suspicious error position can be checked (verified) by

DiskBQcor to see if it is indeed an error. If so, DiskBQcor can find the correct base to replace the

erroneous base at the position. We then update the relevant high-abundance area and the relevant

low-abundance area on the read. The Correction Phase is described in Algorithm 5.2.

In Algorithm 5.2 Correction Phase Procedure, lines 2-4 are similar to those in the Insertion

Phase, except that we keep the count of each overlapping k-mer to find an untrusted area, and also

keep the read ID sets to correct the error if such an area exists. Lines 5-7 find the low-count and

high-count area lists. In lines 8-17, we correct the errors in each low-count area.

Line 16 invokes an error correction function error_correct(). For each base (suspicious po-

sition) in LL list, we utilize DiskBQcor to verify if it is indeed an error. If so, DiskBQcor can

find the correct base to replace the erroneous base at the position. After the base is successfully

corrected, we update every k-mer overlapping the position by deleting it from the BoND-tree first,

and reinserting the correct k-mer into the tree. Meanwhile, we search for its associated read ID set,

and correct all the reads in the set.

5.3 Correction Accuracy Estimation

Once the method is developed, correction accuracy is largely affected by the threshold used to dis-

tinguish erroneous reads from correct ones. With a larger low count threshold, the initial insertion

phase takes longer, so that more errors are inherited from this phase; while a smaller low count

threshold makes the initial insertion phase shorter. However, if a correct base is falsely "corrected"
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Algorithm 5.2 Correction Phase Procedure

Input: reads, minimum coverage C

Output: BoND-tree BT , k-mers inserted

1: function INSERT_BEFORE_MINIMUM

2: while receive a new read r do

3: Decompose r into shifted overlapping k-mers

4: Insert these k-mers into BT and find their counts, read ID sets and calculate count

change rates rc′s and region change rate rr′s for r

5: Use the count change rates cr′s to find areas boundaries with dramatic changing cr′s

6: Let LL = the list of low-count areas in r ordered from left to right

7: Let HL = the list of high-count areas in r ordered from left to right

8: while LL is not empty do

9: Let Al[l1,l2] be an area in LL that

10: (1) has a left adjacent high-count area in HL, or

11: (2) has a right adjacent high-count area in HL, or

12: (3) is the first area in LL if no area in LL satisfies (1) or (2)

13: Let (p,direction,pk) = find_start_error_position(Al[l1,l2], HL, BT )

14: more_error_in_Al = true

15: while more_error_in_Al do

16: error_correct(Al[l1,l2], BT )

17: end while

18: end while

19: Use the region change rate rr′s to find the boundary positions of incorrect duplicate

areas in read r based on a dramatic changing rr and keep all incorrect duplicate areas in list

DL

20: end while

21: end function

to another base, more correct bases will become false negative ones due to a chain reaction.

There are three parameters required to calculate the threshold: k, length of k-mer; l, length of

read; and C, current average coverage. We have already demonstrated an appropriate determi-

nation of the length of k-mers in Chapter 3 according to Quake’s method. Now, given a specific

coverage, we want to find the threshold based on the distribution of these k-mers.

5.3.1 Sensitivity

Let Ti be a random k-mer starting at the position i of a genome sequence G, and C be the current

coverage. In most cases where Ti is not sampled from the very beginning or end of the sequence,
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only the reads starting from positions i + k − l to i contain Ti. Thus Ti can be obtained from

l− k + 1 reads. When G’s size g is big enough to make g >> l, the probability that Ti is sampled

s times can be calculated by

P (s) =

(

n

s

)

(
l − k + 1

g
)s(1−

l − k + 1

g
)n−s (5.5)

where n is total number of reads, calculated by

n =
gC

l
(5.6)

When g is very large, the distribution can be approximated by the Poisson distribution, with a

mean value

λ = n ∗
l − k + 1

g

= C ∗
l − k + 1

l

(5.7)

In fact, the coverage of sequencing reads follows the Poisson distribution in theory in the sense

that:

• The sampling process is random.

• The occurrence of one sampling read does not affect the second one. Thus, they are inde-

pendent.

• The whole genome sequence length is close to infinite, comparing to one sample read.

Similar conclusions have been made in [23,39–41]. In some sequencers, for example, Illumina,

the sequencing process has substantial biases, which adds a variance [42]. Some studies model

it as the Gaussian distribution [23]. In our discussion, we adopt the Poisson distribution because

our Correction phase may start earlier from a coverage as small as 5. In either way, the accuracy

estimations have similar results.

41



For a coverage of 5, the distribution of k-mers, without considering errors, can be plotted in

Figure 5.1. When x-axis has a value less or equal to 0, it means that some of the k-mers are not

covered at all. Let k = 15, l = 36, then λ = 3.06. If we start the Correction Phase at this coverage

and set threshold to 1, we are claiming that those k-mers with more than one count to be correct.

The proportion of k-mers that we have correctly identified as incorrect k-mers (sensitivity) is equal

to the possibility that a random k-mer has more than one count, i.e., P (x > 1) = 0.8096.

Figure 5.1: Distribution when coverage is 5

Similarly, if we start the Correction Phase at a coverage of 10, and make the threshold to 2, the

theoretic sensitivity can be estimated as P (x > 2) = 0.9428. See Figure 5.2.

On the other hand, when the algorithm suggests that some k-mer T ’s count falls into the "un-

trusted" area, we apply the Voting Approach for error correction. It is possible that T has a smaller

count only because of a low coverage. In this case, the Voting Approach is unable to find another

base replacement for the position. As a result, this position is not "corrected", which may be the

correct result. Therefore, the sensitivity value may be much higher.
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Figure 5.2: Distribution when coverage is 5

5.3.2 Specificity

In order to estimate the specificity, we look at one specific base in the genome. The possible

number of times it has been covered follows the Poisson distribution too:

P (k) = e−λ
λk

k!
(5.8)

in which λ is the average coverage times of the genome sequence, and k is the possible coverage

times we need to know.

While we are at a certain average coverage C, and the threshold value is M , the false positive

ones are those k-mers with a frequency greater than M , but are actually generated as a variance

of correct k-mers because of errors. Similar to Section 5.3.1, in order to calculate the specificity,

we need to generate a curve chart with x-axis as the occurrence times of k-mers, and y-axis as the

possibility/proportion of the erroneous k-mers that appear that many times.

Let us assume that a k-length area is k-mer Tt originally, and turns to T because of t errors. If

each base has an error rate of p, the possibility that we get k-mer T with specified t errors, instead
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of Tt is

Perr(t) = (
p

3
)t(1− p)k−t (5.9)

The possibility that a k-mer T is generated by another k-mer Tt, with t bases falsely sequenced

is

Pocc(t) =
3t
(

k

t

)

4k
(5.10)

Knowing a k-mer is sampled s times, the possibility that r of them is T , s− r of them is Tt can

be calculated using Equations 5.9 and 5.10:

Pr(s, r) =
k

∑

t=1

Pocc(t)Psam(s)(

(

s

r

)

Perr(t)
r(1− Perr(t))

s−r) (5.11)

In [43], the probability that one k-mer T appears r times has been fully studied using the above

possibilities. Because the number of sampling times for a normal k-mer follows the Poisson dis-

tribution as discussed in Section 5.3.1, there are 3 parameters in Equation 5.11. The exact overall

possibility is hard to give by a simple function. Instead, let us consider the basic condition where

there is only one error in Tt, and all of the k-mers are sampled λ times using the mathematical

expectation, i.e., t = 1 and s = λ. Equation 5.11 can be simplified to

Pr(r) = Pocc(1)(

(

λ

r

)

Perr(1)
r(1− Perr(1)

λ−r) (5.12)

To further simplify the equation, suppose that each region [i, i+k−1] yields only 1 error k-mer

at most. There are

m = Pocc(1) ∗ g (5.13)

kinds of k-mers with 1 base distance with target k-mer T in the dataset, and the possibility that this
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k-mer has x times of coverage equals to

P
′

(x) =

(

m

x

)

Pr(1)
x(1− Pr(1))

m−x (5.14)

Through Equation 5.14, when m is large, this possibility follows the Poisson distribution. Since

this equation measures the possibility of one target k-mer, the possibility for all possible k-mers

follows

P (x) = 4k
(

m

x

)

Pr(1)
x(1− Pr(1))

m−x (5.15)

with the following mean value

λ = 4kmPr(1) (5.16)

For a coverage of 5, λ = 0.0728. Let k = 15. If we set the threshold M to 1, P (x > 1) =

0.0025, and P (x = 1) = 0.0677, the proportion of k-mers that we have correctly identified as

correct k-mers (specificity) is equal to

P (x = 1)

P (x >= 1)
= 0.9640 (5.17)

Similarly, for a coverage of 10, if we make threshold M to 2, λ = 0.1445, theoretic specificity

will be

P (x = 1) + P (x = 2)

P (x >= 1)
= 0.9966 (5.18)

On the other hand, our algorithm in the Correction Phase requires a set of continuous low-count

k-mers to decide a low-count area, and that if one or more of the k-mers in this area has abnormally

higher count, it may affect our determination of low-count areas, and thus makes some of the error

not able to be correctly identified. The possibility that one or more k-mers has a higher count in a
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"low-count" area can be calculated by:

Pe = 1− (
P (1 <= x <= M)

P (x >= 1)
)k (5.19)

When k = 15 and a coverage of 10, a threshold of 2, Pe is only 0.049. However, for a coverage

of 5, a threshold of 1, Pe can be as high as 0.42. That is to say, once we have found out a suspicious

position, the specificity level can reach 96.40%. However, in order to successfully find out the

falsely sampled base, the algorithm’s ability to consider some of the conditions described above is

much more important. For example, we still make the area to qualify as "low-count" regions where

one of the overlapping k-mers has a high count, and all others have low counts.

5.4 Experiment

Experiments were conducted on a Dell PC with a 3.2 GHz Intel Core i7-4790 CPU, 12 GB RAM,

5 TB Hard Drive, and Linux 3.16.0 OS.

Genome data was collected from E. coli 536 (GenBank: NC008253, 5.5 M). The dataset and

environment are both the same as what we used in Chapter 3. Let k = 15, readlength = 36. The

threshold of counts to separate a low-abundance area with a high-abundance area is set to a ratio

of 0.2, i.e., when the coverage is 10, if a k-mer K has a count of less than or equal to 2, it belongs

to a low-abundance area; otherwise it is classified to a high-abundance area.

In experiment 1, the coverage (times) was set to 40. We set the minimum coverage as a thresh-

old, and perform the Insertion Phase until the minimum coverage is reached, and then proceed with

the Correction Phase until the coverage of 40 times is reached. Table 5.1 shows the comparison of

the results when we set the minimum coverage from 5 to 9. From the table we can see that while

the threshold is increasing, the accuracy is decreasing, which is obvious because we arbitrarily

insert the first part of reads without correcting them before the minimum coverage is reached; yet

mis-corrections is decreasing when the threshold is increasing.
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Table 5.1: Correction Accuracy, low count ratio=0.2, no repeat
Minimum Coverage

(Threshold)

Corrections

(TP)

Mis-corrections

(FP)

Errors Kept

(FN)

Untrusted

(trimed)
Sensitivity Specificity

5 864148 152008 185837 50096 0.8230 0.9993

6 845307 119307 207969 42152 0.8026 0.9995

7 824330 103459 231143 37837 0.7810 0.9995

8 802396 95665 254884 34995 0.7589 0.9996

9 779951 92190 278650 33385 0.7368 0.9996

We are able to correct the first several times of coverages by correcting and inserting them again

into the tree, which will actually provide us with a more beneficial set of data. In fact, the overall

accuracy level can be improved by running the whole process again. That is to say, to repeat the

Correction Phase for all the reads after all the k-mers have been inserted for the first time. In

experiment 2, the coverage times were still set to 40. Similar to experiment 1, we set the minimum

coverage as a threshold, and perform the Insertion Phase until the minimum coverage is reached

(let R be the set of these reads), and then proceed with the Correction Phase until the coverage of 40

times is reached. After that, we run the reads in set R again with the Correction Phase algorithm.

Table 5.2 shows the comparison of the result when we set the minimum coverage from 5 to 9.

From the table we can see that the sensitivity increases when the threshold increases. The increase

rate of sensitivity is higher at first, and becomes more steady when the minimum coverage is set to

9. Figure 5.3 plots the sensitivity change with the minimum coverage change.

Table 5.2: Correction Accuracy, low count ratio=0.2 with repeat
Minimum Coverage

(Threshold)

Corrections

(TP)

Mis-corrections

(FP)

Errors Kept

(FN)

Untrusted

(trimed)
Sensitivity Specificity

5 983910 160568 59908 54623 0.9426 0.9993

6 989022 129783 56900 47530 0.9456 0.9994

7 991979 115810 54984 44038 0.9475 0.9995

8 994004 109934 53541 42088 0.9489 0.9995

9 995218 108196 52511 41311 0.9499 0.9995

In order to see how the threshold of counts to separate a low-abundance area from a high-

abundance area affects the accuracy of the result, another experiment was conducted, keeping the

minimum coverage to 7, and changing the threshold ratio. Table 5.3 shows the results. Note
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Figure 5.3: Sensitivity, low count ratio = 0.2

that the ratio starts at 0.15 because we want the Correction Phase to truly operate as soon as the

coverage reaches 7, in that case the threshold count is 1.

Table 5.3: Correction Accuracy, minimum coverage = 7, with repeat
Ratio

(Threshold)

Corrections

(TP)

Mis-corrections

(FP)

Errors Kept

(FN)

Untrusted

(trimed)
Sensitivity Specificity

0.15 993609 88933 56005 37777 0.9466 0.9996

0.20 991979 115810 54984 44038 0.9475 0.9995

0.25 982929 212117 55262 68075 0.9468 0.9990

From Table 5.3 we can see that the ratio of 0.20 is the best for the minimum coverage of 7,

although the difference of the sensitivity result between the three ratios is less than 0.001. Figure

5.4 plots the sensitivity change with the ratio change.

The overall accuracy is comparable to existing error correction methods. [12] has a higher

sensitivity of 0.997 and a lower specificity of 0.688. Other methods all have a specificity of almost

1.0. According to BLESS [41], Quake has a sensitivity of 0.838, and BLESS has a sensitivity of
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Figure 5.4: Sensitivity, minimum coverage = 7

0.968.
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CHAPTER 6

Conclusions

The dramatic increase in DNA sequencing capacity over the last decade has quickly turned biology

into a data-intensive science. Areas as diverse as human medicine, microbial ecology, and basic

molecular biology are undergoing a rapid transformation as DNA sequencing becomes quick, easy,

and inexpensive. However, current sequencers suffer from the problem of having high random

per-base error rates. Hence, sequencing error correction is crucial to many sequence analysis

applications in bioinformatics. Existing sequencing correction techniques cannot scale well to

large datasets due to their requirements on huge expensive computer memory space.

To overcome the above limitation, we present a novel disk based sequencing error correction

method, DiskBQcor, in this thesis. Although DiskBQcor has an improved scalability, comparing to

the main memory based methods, it also suffers from a drawback, i.e., not fully utilizing computing

resources when the DNA sequencing is in process. To overcome this drawback, we extend the

way to apply DiskBQcor to make it an online sequencing error correction method. The main

contributions of our work are summarized as follows:

• The BoND-tree, which is a recently-developed index structure on disk [11], is utilized in our

method to perform sequencing error verification and correction. Since input k-mers and their

relevant medata are stored on disk with the BoND-tree that supports efficient processing of

box queries, our method provides an efficient way for error verification and correction on

disk in addition to the benefit of scalability warranted by inexpensive disk space.

• A special set of box queries is designed to efficiently retrieve relevant k-mers and their counts
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from the BoND-tree so that suspicious sequencing errors can be verified and corrected even

if a suspicious k-mer is repetitive in the target genome sequence.

• A comprehensive vast majority voting mechanism and its relevant formulas are derived to

effectively determine sequencing errors for both repetitive and non-repetitive suspicious k-

mers.

• An efficient alignment strategy is adopted in our method to handle extreme cases when the

vast majority voting mechanism does not work. In particular, a special binary encoding

based technique is applied to efficiently locate a pair of alignable segments from two target

sequencing reads.

• A vector deletion algorithm for the BoND-tree is suggested as a step stone for the online

sequencing error correction method. Experiments demonstrates that this algorithm is both

efficient and effective.

• A k-mer abundance analysis technique is proposed on top of DiskBQcor to analyze the low-

abundance k-mer area and verify the bases on the area boundaries. DiskBQcor is able to find

the correct base to replace the erroneous base at the position.

• An online sequencing error correction approach is discussed, which starts the k-mer abun-

dance analysis at the early stage so that a BoND-tree with correct k-mers can be obtained

as soon as the DNA sequencing is done. This final tree can be used for genome sequence

analysis applications such as variants detection. If we want to maintain a BoND-tree with

correct k-mers only, this procedure can proceed with the correct index tree.

• Extensive experiments were conducted on real genomic datasets to evaluate the performance

of each of our proposed methods. The results demonstrate that the proposed methods are

quite promising in achieving high accuracy for error correction with reasonable efficiency,

besides the scalability benefit warranted by a disk based approach.
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To our knowledge, the presented methods are the first in the field that utilizes a disk based index

tree to achieve scalability and efficiency for sequencing error correction. It can be used to locate

sequencing errors, and to verify and correct the errors in an online/streaming fashion. Further-

more, memory restrictions with existing memory-based error correction methods require that only

a summary of the reads (typically a combined summary of the k-mers and associated quality in-

formation) be kept in memory, limiting the opportunity to make use of positional information and

sample metadata (e.g., sequencing chemistry, machine version) used to generate the data. The ap-

proaches adopted in our method to use a BoND-tree storing a large set of k-mers along with their

relevant metadata not only creates a potential to use the extra metadata in error correction but also

can benefit a number of other sequence analysis applications such as local alignment searching,

sequence assembly, and terminus searching.

Our future research includes incorporating base quality scores into our error correction methods,

improving the accuracy when localizing error regions, conducting alignment on reads, developing

an associative correction strategy to correct sequencing errors in the initial set of reads for the

online method, exploring our methods in the Hadoop/MapReduce environment, and applying our

BoND-tree storing k-mers and their relevant metadata to other sequence analysis applications.

52



Bibliography

[1] Michael L. Metzker. Sequencing technologies-the next generation. Nature Reviews Genetics,

11(1):31–46, 2010.

[2] Todd J. Treangen and Steven L. Salzberg. Repetitive dna and next-generation sequencing:

computational challenges and solutions. Nature Reviews Genetics, 13(1):36–46, 2012.

[3] Phillip E.C. Compeau, Pavel A. Pevzner, and Glenn Tesler. How to apply de bruijn graphs to

genome assembly. Nature Biotechnology, 29(11):987–991, 2011.

[4] Robert C Edgar. Muscle: multiple sequence alignment with high accuracy and high through-

put. Nucleic acids research, 32(5):1792–1797, 2004.

[5] Stefan Kurtz, Apurva Narechania, Joshua C. Stein, and Doreen Ware. A new method to

compute k-mer frequencies and its application to annotate large repetitive plant genomes.

BMC Genomics, 9(1):517, 2008.

[6] Michael L Metzker. Sequencing technologies?the next generation. Nature reviews genetics,

11(1):31–46, 2010.

[7] Xiao Yang, Sriram P. Chockalingam, and Srinivas Aluru. A survey of error-correction meth-

ods for next-generation sequencing. Briefings in Bioinformatics, 14(1):56–66, 2013.

[8] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient parallel count-

ing of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

[9] Qingpeng Zhang, Jason Pell, Rosangela Canino-Koning, Adina Chuang Howe, and C Titus

Brown. These are not the k-mers you are looking for: efficient online k-mer counting using a

probabilistic data structure. PloS one, 9(7):e101271, 2014.

[10] Jason R. Miller, Arthur L. Delcher, Sergey Koren, Eli Venter, Brian P. Walenz, Anushka

Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger Sutton. Aggressive as-

sembly of pyrosequencing reads with mates. Bioinformatics, 24(24):2818–2824, 2008.

[11] Changqing Chen, Alok Watve, Sarah Pramanik, and Qiang Zhu. The BoND-Tree: An effi-

cient indexing method for box queries in nonordered discrete data spaces. IEEE Transactions

on Knowledge and Data Engineering, 25(11):2629–2643, 2013.

[12] Qingpeng Zhang, Sherine Awad, and C Titus Brown. Crossing the streams: a framework for

streaming. PeerJ PrePrints, 2015.

53



[13] Antonin Guttman. R-trees: a dynamic index structure for spatial searching, volume 14.

ACM, 1984.

[14] Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. The ND-tree: a dynamic indexing

technique for multidimensional non-ordered discrete data spaces. Proc. of The 29th Interna-

tional Conference on Very Large Data Bases, pages 620–631, 2003.

[15] M. Patella, P. Ciaccia, and P. Zezula. M-tree: An efficient access method for similarity search

in metric spaces. Proc. of The 23rd International Conference on Very Large Data Bases,

pages 1241–1253, 1997.

[16] Caetano Traina Jr., Agma Traina, Christor Faloutsos, and Bernhard Seeger. Fast indexing

and visualization of metric data sets using slim-trees. IEEE Transactions on Knowledge and

Data Engineering, 14(2):244–260, 2002.

[17] Xia Cao, Shuai Cheng Li, and Anthony K.H. Tung. Indexing DNA sequences using q-grams.

Database Systems for Advanced Applications, pages 4–16, 2005.

[18] Xia Cao, Beng Chin Ooi, Anthony K.H. Tung, Hwee Hwa Pang, and Kian-Lee Tan. DSIM: A

distance-based indexing method for genomic sequences. Proc. of The 5th IEEE Symposium

on Bioinformatics and Bioengineering, pages 97–104, 2005.

[19] Songbo Huang, Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, and Siu-Ming Yiu. Indexing

similar dna sequences. Algorithmic Aspects in Information and Management, pages 180–190,

2010.

[20] Tamer Kahveci and Ambuj K. Singh. An efficient index structure for string databases. Proc.

of The 27th International Conference on Very Large Data Bases, pages 351–360, 2001.

[21] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer counting with very

low memory usage. Bioinformatics, page 20, 2013.

[22] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.

KMC 2: Fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

[23] David R. Kelley, Michael C. Schatz, Steven L. Salzberg, et al. Quake: quality-aware detection

and correction of sequencing errors. Genome Biology, 11(11):R116, 2010.

[24] Li Song, Liliana Florea, and Ben Langmead. Lighter: fast and memory-efficient sequencing

error correction without counting. Genome Biology, 15:509, 2014.

[25] Haixiang Shi, Bertil Schmidt, Weiguo Liu, and Wolfgang Müller-Wittig. A parallel algorithm

for error correction in high-throughput short-read data on cuda-enabled graphics hardware.

Journal of Computational Biology, 17(4):603–615, 2010.

[26] Jan Schröder, Heiko Schröder, Simon J. Puglisi, Ranjan Sinha, and Bertil Schmidt. Shrec: a

short-read error correction method. Bioinformatics, 25(17):2157–2163, 2009.

54



[27] Leena Salmela. Correction of sequencing errors in a mixed set of reads. Bioinformatics,

26(10):1284–1290, 2010.

[28] Leena Salmela and Jan Schröder. Correcting errors in short reads by multiple alignments.

Bioinformatics, 27(11):1455–1461, 2011.

[29] Páll Melsted and Bjarni V Halldórsson. Kmerstream: Streaming algorithms for k-mer abun-

dance estimation. Bioinformatics, 30(24):3541–3547, 2014.

[30] Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. Dynamic indexing for multidimen-

sional non-ordered discrete data spaces using a data-partitioning approach. ACM Transac-

tions on Database Systems (TODS), 31(2):439–484, 2006.

[31] Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. A space-partitioning-based index-

ing method for multidimensional non-ordered discrete data spaces. ACM Transactions on

Information Systems (TOIS), 24(1):79–110, 2006.

[32] Hyun-Jeong Seok, Gang Qian, Qiang Zhu, Alexander R Oswald, and Sakti Pramanik. Bulk-

loading the nd-tree in non-ordered discrete data spaces. Proc. of The 13th International

Conference on Database Systems for Advanced Applications, pages 156–171, 2008.

[33] Gang Qian, Hyun-Jeong Seok, Qiang Zhu, and Sakti Pramanik. Space-partitioning-based

bulk-loading for the nsp-tree in non-ordered discrete data spaces. Proc. of The 19th Interna-

tional Conference on Database and Expert Systems Applications’08, pages 404–418, 2008.

[34] Dong Yoon Choi, A. K M Tauhidul Islam, Sakti Pramanik, and Qiang Zhu. A bulk-loading

algorithm for the bond-tree index scheme for non-ordered discrete data spaces. Proc. of The

25th International Conference on Software Engineering and Data Engineering, pages 123–

128, 2016.

[35] Yarong Gu, Xianying Liu, Qiang Zhu, Youchao Dong, C Titus Brown, and Sakti Pramanik.

A new method for dna sequencing error verification and correction via an on-disk index tree.

Proc. of The 6th ACM Conference on Bioinformatics, Computational Biology and Health

Informatics, pages 503–504, 2015.

[36] Yarong Gu, Qiang Zhu, Xianying Liu, Youchao Dong, C Titus Brown, and Sakti Pramanik.

Using disk based index and box queries for genome sequencing error correction. Proc. of

The 8th International Conference on Bioinformatics and Computational Biology, pages 69–

76, 2016.

[37] Hyun-Jeong Seok, Qiang Zhu, Gang Qian, Sakti Pramanik, and Wen-Chi Hou. Deletion

techniques for the nd-tree in non-ordered discrete data spaces. Proc. of The 18th International

ConferenceSoftware Engineering and Data Engineering, pages 1–6, 2009.

55



[38] Michael A Quail, Miriam Smith, Paul Coupland, Thomas D Otto, Simon R Harris, Thomas R

Connor, Anna Bertoni, Harold P Swerdlow, and Yong Gu. A tale of three next generation

sequencing platforms: comparison of ion torrent, pacific biosciences and illumina miseq

sequencers. BMC genomics, 13(1):341, 2012.

[39] Wei-Chun Kao, Andrew H Chan, and Yun S Song. Echo: a reference-free short-read error

correction algorithm. Genome research, 21(7):1181–1192, 2011.

[40] Robert C Edgar and Henrik Flyvbjerg. Error filtering, pair assembly and error correction for

next-generation sequencing reads. Bioinformatics, page btv401, 2015.

[41] Yun Heo, Xiao-Long Wu, Deming Chen, Jian Ma, and Wen-Mei Hwu. Bless: bloom filter-

based error correction solution for high-throughput sequencing reads. Bioinformatics, page

btu030, 2014.

[42] Juliane C Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmelbauer. Substantial

biases in ultra-short read data sets from high-throughput dna sequencing. Nucleic acids re-

search, 36(16):e105–e105, 2008.

[43] Francis YL Chin, Henry CM Leung, Wei-Lin Li, and Siu-Ming Yiu. Finding optimal thresh-

old for correction error reads in dna assembling. BMC bioinformatics, 10(1):S15, 2009.

56


