1	Iron isotopic evolution during fractional crystallization of the uppermost
2	Bushveld Complex layered mafic intrusion
3	Laura D. Bilenker ¹ [†] , Jill A. VanTongeren ² , Craig C. Lundstrom ³ , and Adam C. Simon ¹
4	¹ Department of Earth and Environmental Sciences, University of Michigan, 2534 C.C. Little
5	Building, 1100 N. University Ave., Ann Arbor, MI 48109-1005 USA
6	² Department of Earth and Planetary Sciences, Rutgers University, Wright Geological Laboratory
7	343, 610 Taylor Rd., Piscataway, NJ 08854-8066 USA
8	³ Department of Geology, University of Illinois, Urbana-Champaign, 152 Computer Applications
9	Building, 605 E. Springfield Ave., Champaign, IL 61820 USA
10	Corresponding author: Laura Bilenker (bilenker@umich.edu)
11	[†] Current address: Pacific Centre for Isotopic and Geochemical Research, Department of Earth,
12	Ocean, and Atmospheric Sciences, 2020-2207 Main Mall, University of British Columbia,
13	Vancouver, B.C. V6T 1Z4 Canada
14	Key Points:
15	• Whole rock and magnetite separates from the uppermost portion of the Bushveld
16	Complex were analyzed for their Fe isotope compositions.
17	• We find no systematic variation in whole rock or magnetite Fe isotope ratios with
18	stratigraphic height.
19	• 85% crystallization of a dry tholeiitic multiply-saturated magma does not significantly
20	fractionate Fe isotopes.
21	

22 Abstract

We present δ^{56} Fe (56 Fe/ 54 Fe relative to standard IRMM-014) data from whole rock and 23 24 magnetite of the Upper and Upper Main Zones (UUMZ) of the Bushveld Complex. With it, we 25 assess the role of fractional crystallization in controlling the Fe isotopic evolution of a mafic 26 magma. The UUMZ evolved by fractional crystallization of a dry tholeiitic magma to produce 27 gabbros and diorites with cumulus magnetite and fayalitic olivine. Despite previous experimental work indicating a potential for magnetite crystallization to drastically change magma δ^{56} Fe, we 28 observe no change in whole rock δ^{56} Fe above and below magnetite saturation. We also observe 29 no systematic change in whole rock δ^{56} Fe with increasing stratigraphic height, and only a small 30 variation in δ^{56} Fe in magnetite separates above magnetite saturation. Whole rock δ^{56} Fe (errors 31 32 twice standard deviation, $\pm 2\sigma$) throughout the UUMZ ranges from -0.01 $\pm 0.03\%$ to 0.21 $\pm 0.09\%$ (δ^{56} Fe_{averageWR} = 0.10 $\pm 0.09\%$; n=21, isotopically light outlier: δ^{56} Fe_{WR} = -0.15‰), and 33 magnetites range from 0.28 $\pm 0.04\%$ to 0.86 $\pm 0.07\%$ (δ^{56} Fe_{averageMgt} = 0.50 $\pm 0.15\%$; n=20), 34 35 similar to values previously reported for other layered intrusions. We compare our measured δ^{56} Fe_{WR} to a model that incorporates the changing normative mineralogy, calculated 36 37 temperatures, and published fractionation factors of Fe-bearing phases throughout the UUMZ and produces δ^{56} Fe_{WR} values that evolve only in response to fractional crystallization. Our 38 39 results show that the Fe isotopic composition of a multiply-saturated (multiple phases on the 40 liquidus) magma is unlikely to change significantly during fractional crystallization of magnetite 41 due to the competing fractionation of other Fe-bearing cumulus phases.

42 **1 Introduction**

43 Significant variations of stable Fe isotope ratios are predicted to occur under
44 magmatic/magmatic-hydrothermal conditions (i.e., high T, P) [e.g., *Shahar et al.*, 2008].

Proposed magmatic processes leading to isotopic fractionation include fractional crystallization
[e.g., *Schuessler et al.*, 2007; *Schuessler et al.*, 2009; *Teng et al.*, 2008], fluid exsolution
[*Poitrasson and Freydier*, 2005; *Heimann et al.*, 2008; *Telus et al.*, 2012], changes in oxygen
fugacity (fO₂) [*Williams et al.*, 2005; *Sossi et al.*, 2012, *Foden et al.*, 2015], bonding environment
[e.g., *Dauphas et al.*, 2014; *Sossi et al.* 2017] and thermal gradients [*Lundstrom et al.*, 2009;

50 Huang et al., 2010; Zambardi et al., 2014].

51 Several of these processes are likely at play in a magmatic/magmatic-hydrothermal 52 system during and after its formation, and the Fe isotope signature of whole rock samples will 53 reflect all of them. Iron isotope fractionation factors among mineral, melt, and aqueous fluid 54 have been determined by analyses of natural and experimental samples, as well as estimated 55 theoretically. Using these published fractionation factors, it is possible to combine these data 56 with field, petrological, and additional geochemical observations to elucidate the contributions of 57 individual processes to the measured Fe isotope ratio of a sample. Isolating processes by 58 studying a controlled experimental or closed natural system can help advance our understanding 59 of Fe isotope fractionation at magmatic/magmatic-hydrothermal conditions and in turn improve 60 our ability to interpret the geologic history of a deposit or intrusion based upon the Fe isotope 61 composition of rocks and minerals.

62 Schuessler et al. [2007], Shahar et al. [2008], and Sossi and O'Neill [2017] are the only 63 published experimental studies to date conducted at conditions relevant to igneous systems. This 64 is significant because such high-temperature experimental studies allow for direct measurement 65 of isotope fractionation factors at conditions approaching equilibrium between crystals and 66 liquid. The studies of *Schuessler et al.* [2007] and *Shahar et al.* [2008] demonstrated that Fe 67 isotopes should fractionate in igneous systems due to the crystallization of individual mineral

68	phases as well as due to magmatic redox processes. In the first published high-temperature
69	experimental Fe isotope fractionation study, Schuessler et al. [2007] found that pyrrhotite (Fe1-
70	_x S) preferentially incorporates isotopically light Fe by an average fractionation factor
71	$(\Delta^{56}\text{Fe}_{pyrrhotite-melt})$ of about 0.35% relative to a silicic melt with ~62% Fe ³⁺ between 800°C and
72	1000°C. Similarly, Shahar et al. [2008] performed experiments that demonstrated that magnetite
73	is isotopically heavy relative to fayalite and quantified the amount of equilibrium fractionation
74	between the two phases over a range of magmatic/magmatic-hydrothermal temperatures. The
75	results of these studies are consistent with expectations based upon the fact that the Fe in the
76	pyrrhotite and fayalite structures is Fe^{2+} while the Fe in magnetite is mostly Fe^{3+} , although other
77	factors such as ligand strength (e.g., Fe is bonded to S in pyrrhotite) also play a role.
78	Theoretical studies predicted this correlation between higher valence and heavier isotopic
79	composition [e.g., Polyakov and Mineev, 2000; Polyakov et al., 2007], and the force constant
80	measurements and subsequent modeling of Dauphas et al. [2014] is also consistent with Fe
81	isotope fractionation being connected to redox and bonding environment. In the most recent
82	experimental study on stable Fe isotope fractionation in magmatic systems, Sossi and O'Neill.
83	[2017] performed piston-cylinder experiments between a FeCl ₂ -bearing fluid and various
84	minerals within which Fe^{2+} exists in VIII, VI, IV coordination. Magnetite, which contains Fe^{3+} in
85	addition to Fe ²⁺ and therefore has Fe in a mix of VI and IV coordination, was the isotopically
86	heaviest mineral in the study. Their work provides further evidence that coordination number and
87	bond length control fractionation.
88	The above experimental data are also consistent with field-based observations, such as

those of Sossi et al. [2012]. Iron isotope data from the Red Hill sill supports a hypothesis that

90 couples redox and fractional crystallization. Sossi et al. [2012] sampled stratigraphically

91 throughout the 420 m thick sill in Tasmania, which is thought to have formed by a single 92 intrusive event. The system was assumed closed to O_2 and experienced fractional crystallization. 93 The whole rock data for the Red Hill sill show a trend toward isotopically heavy compositions 94 early during the crystallization of pyroxene, which peak at magnetite saturation, and then 95 become systematically lighter during magnetite crystallization (i.e., isotopically light Fe is 96 removed from the melt by pyroxene and isotopically heavy Fe is removed from the melt by 97 magnetite).

98 Teng et al. [2008] was the first study to present evidence in natural rocks for Fe isotope 99 fractionation during fractional crystallization. By analyzing whole rocks and mineral separates 100 from Kilauea Iki, Hawaii, USA, they showed that olivine, which preferentially incorporates Fe^{2+} , 101 is isotopically lighter than a co-existing melt with respect to Fe isotopes. Later work on Kilauea 102 Iki olivine phenocrysts combined Mg isotope measurements and Mg/Fe ratios with Fe isotope 103 data [Teng et al., 2011]. The resulting modeling suggested that the olivine grains might be 104 isotopically light with respect to Fe due to the ability of lighter isotopes to diffuse faster than 105 heavier isotopes during magmatic differentiation. Schuessler et al. [2009] also focused on natural 106 samples during their study on the dacitic and rhyolitic eruption products of Hekla volcano in 107 Iceland. The Fe isotope compositions of the rhyolite samples were isotopically heavy compared 108 to the dacite samples. Due to a lack of evidence for extensive fluid exsolution, the authors 109 concluded that the difference in isotopic composition between the two groups of samples 110 reflected fractional crystallization as the magma evolved from a dacite to a rhyolite; however no 111 fractionating phase assemblage was specified to make this a quantitative model. Indeed, the 112 original premise of Poitrasson and Freydier [2005] that there exists a strong hyperbolic increase 113 toward heavier Fe isotopes in higher silica igneous rocks is clearly supported by the global

- 114 database (e.g., *Heimann et al.*, 2008; *Schuessler et al.*, 2009; *Teng et al.*, 2011; *Sossi et al.*, 2012;
 115 *Foden et al.*, 2015).
- 116 1.1 Iron isotopes in layered mafic intrusions

Despite these important studies, the mechanisms that control Fe isotope fractionation are still being actively investigated [e.g., *Young et al.*, 2015], and little work has been done to apply Fe isotopes as a tool for studying the processes that form layered mafic intrusions [*Schoenberg et al.*, 2009; *Chen et al.*, 2014; *Liu et al.* 2014]. Layered mafic intrusions are fossilized shallow crustal magma chambers found worldwide and in many cases contain economic amounts of platinum group elements and chromite.

123 Among the layered mafic intrusions exposed today, the ~ 2.06 Ga Bushveld Complex 124 located in the Kaapvaal craton is the largest. Within the Bushveld Complex, the mafic-ultramafic 125 Rustenberg Layered Suite (RLS) was likely formed from four major pulses of magma, and the 126 uppermost ~2.5 km of the 8-9 km thick intrusion are represented by the Upper and Upper Main 127 Zones (UUMZ) (Fig 1). On the basis of major element, trace element, and isotopic geochemical 128 trends, the rocks of the UUMZ are thought to reflect the crystallization products from the final 129 pulse of magma into the chamber [e.g., Kruger et al., 1987; Tegner et al., 2006; VanTongeren et 130 al., 2010; VanTongeren and Mathez, 2013] with little to no volumetrically significant additional 131 input of new magma or crustal contamination above this level. This makes the well-characterized 132 RLS the ideal location in which to further investigate the evolution of Fe isotopes during 133 fractional crystallization in a multiply saturated system (multiple phases on the liquidus at a 134 given temperature) with and without magnetite.

Above a 3 m thick orthopyroxenite layer, the Pyroxenite Marker, the UUMZ is characterized by an evolving phase assemblage of pyroxene (px) + plagioclase (plag) \rightarrow px +

137	plag + magnetite (mgt) \rightarrow px + plag + mgt + fayalitic olivine (ol) \rightarrow px + plag + mgt + ol +
138	apatite (ap). For the first ~1500 m, opx and cpx co-exist, but opx disappears shortly after
139	magnetite saturation. VanTongeren et al. [2010] showed that the cumulus mineral compositions
140	and phase assemblages in the UUMZ evolved by fractional crystallization from a single parent
141	magma composition from the Pyroxenite Marker to the roof of the intrusion (Fig. 1, Fig. S1).
142	The lower \sim 500 m of the UUMZ is a two-pyroxene gabbro with approximately 40%
143	pyroxene and 60% plagioclase. At \sim 2850 m cumulus magnetite joins the stratigraphy and is
144	typically present as minor (2-10 modal %) disseminated grains throughout the gabbroic rocks.
145	Below 2850 m, there is a small amount of intercumulus magnetite present. In addition, the Upper
146	Zone is known for its 21 layers of nearly monomineralic magnetitite. Magnetitite layers range in
147	thickness from 10s of cm, to >3 m for the Main Magnetite Layer, however local variations in
148	thickness do occur. For example, the uppermost magnetite layer (Seam 21) in the eastern
149	Bushveld reaches up to 60 m thick in certain locations. Fayalitic olivine becomes a liquidus
150	phase at ~3500 m, forming an initial troctolite horizon before the stratigraphy becomes
151	dominated by ol-diorites for the remainder of the crystallization sequence. In this study, we
152	report Fe isotope data from whole rocks and magnetite separates throughout the stratigraphy of
153	the UUMZ in the eastern Bushveld Complex to investigate the effect of magmatic differentiation
154	on the isotopic evolution of the magma in a well-characterized, large intrusion.
155	Considering the available published data on Fe isotope fractionation at relevant magmatic
156	conditions, one would predict that whole rock isotopic compositions of samples near the bottom
157	of the UUMZ (i.e., prior to magnetite saturation with abundant Fe ²⁺ -rich phases) would be
158	isotopically lighter than those near the roof. Assuming crystallizing phases are separated
159	instantaneously from the melt, around the stratigraphic level of magnetite saturation, we would

160	expect the whole rock Fe isotope composition to peak at its heaviest and become lighter
161	stratigraphically upward. Deviations from, or consistency with, this hypothesized pattern will
162	provide insight into the magmatic processes that formed the layered rocks of UUMZ.
163	
164	2 Estimating Fe Isotope Evolution throughout the UUMZ During Fractional
165	Crystallization
166	We construct a simple model that incorporates the normative abundances of all cumulus
167	phases throughout the UUMZ, their FeO contents, and their fractionation factors, in order to
168	investigate the effect of fractional crystallization on the Fe isotope composition of the bulk rocks
169	throughout the UUMZ. The Fe isotope composition of the UUMZ is likely controlled by the
170	phase containing the largest proportion of the Fe in the rocks: magnetite. In addition, published
171	fractionation factors imply a large fractionation of Fe isotopes between magnetite and melt. Each
172	of the other Fe-bearing phases present (ol, opx, cpx, plag) will also have a varying effect.
173	Therefore, it is reasonable to expect that the Fe isotope systematics of the UUMZ will reflect
174	fractional crystallization, and accumulation.
175	Our model of the UUMZ assumes perfect fractional crystallization; i.e., a controlled
176	amount of liquid crystallizes at each step (5% of the initial liquid present, not 5% of the liquid
177	present at each step). The model stops at 15% liquid remaining, at which point the residual
178	magma is erupted to the surface to form portions of the Rooiberg Group lavas and/or Rashoop
179	Granophyres. This was proposed by VanTongeren et al. [2010] on the basis of MELTS phase
180	equilibria and further supported by trace element equilibrium between the uppermost cumulates
181	and the Rooiberg lavas [e.g. VanTongeren and Mathez, 2012]. Values incorporated into the

model for percent liquid remaining are correlated to the stratigraphic height in the UUMZaccording to the following relationship:

184 Liquid remaining (%) = 15 + 100*(4625 - d)/2850 (eqn. 1) 185 where d represents the stratigraphic depth in meters above the Merensky Reef in the eastern 186 Bushveld. The term 100*(4625– d) is then divided by the original thickness of the UUMZ 187 magma column prior to eruption. The Pyroxenite Marker defines the base of the UUMZ at 2200 188 m (100% liquid remaining). The roof of the UUMZ is at 4625 m (15% liquid remaining). The 189 total original thickness of magma present in the UUMZ is 2850 m, which takes into account the 190 total current UUMZ thickness of 2425 m plus the 425 m of magma estimated to be lost (15% of 191 the original; e.g. VanTongeren et al., 2010).

- 192
- 193 2.1 Modeling the evolution of δ^{56} Fe

The isotopic composition of a system (i.e., whole rock) can be calculated from the sum of
the isotopic values of each component (i.e., each mineral) weighted by their relative abundances.
The fractionation of Fe isotopes throughout the UUMZ stratigraphy was modeled by the mass
balance equations:

198
$$\delta^{56} Fe_{\text{liquid}Y} = X_{\text{liquid}(Y-1)} * \delta^{56} Fe_{\text{liquid}(Y-1)} - X_{\text{WR}(Y-1)} * \delta^{56} Fe_{\text{WR}(Y-1)}$$
 (eqn. 2)

199
$$\delta^{56} Fe_{WR} = \delta^{56} Fe_{phase1} * X_{phase1} * FeO_{phase1} / FeO_{WR} + \delta^{56} Fe_{phase2} * X_{phase2} * FeO_{phase1} / FeO_{WR} + \dots$$

200
$$+ \delta^{56} Fe_{phaseX} * X_{phaseX} * FeO_{phase1} / FeO_{WR} (eqn. 3)$$

where Y is the current step within the evolution of the magma and Y-1 represents the previous step. In equation 2, X_{liquid} is the proportion of liquid remaining and X_{WR} is the mass fraction of whole rock that is removed (i.e., crystallized) at each step. In equation 3, X represents the normalized modal abundance of an individual phase within the whole rock and FeO_{phase}/FeO_{WR}

205	represents the fraction of FeO that the phase contributes to the whole rock value (Fig. 3, Table
206	1).

For each step, equations 2 and 3 require knowledge of (1) an estimate of the initial δ^{56} Fe of the parent melt; (2) the crystallizing phase assemblage and proportion of phases; (3) the amount (Fig. 3) and isotopic composition of Fe in each phase.

(1) The starting δ^{56} Fe of the modeled liquid was fixed at 0.17‰ (Table 1). This value was 210 chosen to match the observed δ^{56} Fe_{WR} value at the base of the UUMZ (see Results below), 211 however, the initial δ^{56} Fe_{liauid} assumption has no bearing on the trends produced by the model. 212 213 (2) Normative abundances of each phase are based upon values reported by *VanTongeren* 214 et al. [2010] (Figs. 1, 2; Table 1), and all approximations of abundances from whole rock data 215 were verified within 2-3 modal% by point-counting of a representative thin section. Due to the 216 presence of large (meters to tens of meters) and small (cm) scale modal layering in the UUMZ, 217 the modal abundance of an individual hand-sample may not be representative of the liquidus 218 proportions. To account for this in our modeling of the liquid line of descent, we fit a line 219 through all of the normative abundances from VanTongeren et al. (2010) with stratigraphic 220 height (Fig. 2). In the UUMZ, pyroxene modal abundance generally decreases with increasing 221 stratigraphic height (from 50% at the base to 15% at the roof); above cumulus magnetite 222 saturation, oxide modal abundance generally increases (from 2% to 15%); and above olivine 223 saturation, its normative abundance remains relatively constant, at approximately 15% (although 224 it varies between 0 and 35%; Fig. 2). Based on this observation, the "projected" abundance 225 calculated from the best-fit line at each stratigraphic height, and therefore each % liquid 226 remaining step, was used in our liquid line of descent modeling (Table 1, "Step 1" of the 227 working model in Supporting Material).

The abundance of an individual mineral ($X_{mineral}$) was considered to be 0 until the stratigraphic height at which it appears as a cumulus phase (pyroxene: 2200 m and 100% liquid remaining; magnetite: ~2850 m and ~80% liquid remaining; olivine: ~3500 m and ~55% liquid remaining).

(3) The FeO content of each phase was also incorporated in order to accurately portray
the effect of each phase on the whole rock isotopic composition by compensating for mineral
phases that are abundant (Fig. 2) but do not contain much Fe (e.g., plagioclase) (Fig. 3, details
below).

The Fe isotope composition of each mineral phase was calculated or assigned based upon published data. All fractionation factors (Δ^{56} Fe _{phaseA-phaseB}) used in the model are from previously published field- or lab-based studies and are calculated by incorporating T and converting to Δ^{56} Fe _{phaseA-phaseB} by the relationship: Δ^{57} Fe _{phaseA-phaseB} / 1.5 = Δ^{56} Fe _{phaseA-phaseB}. The use of these fractionation factors also requires an assumption of equilibrium. The temperature-dependent equations for each cumulus Fe-bearing mineral are:

242
$$\Delta^{56}$$
Fe_{pyroxene-melt} $\leq -0.25 * (10^6/T^2) / 1.5$ [Sossi et al., 2012]

243
$$\Delta^{56}$$
Fe magnetite-melt = 0.2 * (10⁶/T²) / 1.5 [Sossi et al., 2012]

244
$$\Delta^{56}$$
Fe magnetite-fayalite = 0.30 * (10⁶/T²) / 1.5 [Shahar et al., 2008]

The Δ^{56} Fe _{pyroxene-melt} and Δ^{56} Fe _{magnetite-melt} equations are derived from measurements of samples from the Red Hill Intrusion, described in section 1, which is a sill containing dolerite and granophyre that was injected in a single event and evolved as a closed system [*Sossi et al.*, 2012, section 1]. Δ^{56} Fe _{fayalite-magnetite} is based on data obtained from a series of experiments over a range in temperatures performed by *Shahar et al.* [2008] and is consistent with the study of *Roskosz et al.* [2015]. The experimental approach utilized the three-isotope method in which a 251 "spike" of one isotope of Fe is added to one experimental phase and time-series runs are 252 performed. In this way, equilibrium can be graphically projected if not fully obtained. These 253 equations are the only mineral-melt fractionation factors available in the literature, to our 254 knowledge, which are applicable for the T range and composition of the UUMZ. Clinopyroxene 255 and orthopyroxene compositions were calculated by using the same fractionation factor since Fe 256 isotope fractionation is not expected to differ [Roskosz et al., 2015], while ilmenite was treated 257 like fayalite, consistent with the findings of Sossi et al. 2017. Magnetite and olivine were not 258 included in the model until the height at which they appear as a cumulus phase (Figs. 1, 2, Table 259 1), even though small amounts of intercumulus magnetite and olivine occur in the rocks of the 260 UUMZ below these levels.

261 Due to the temperature dependence of isotope fractionation, we calculate crystallization 262 temperatures by utilizing results from the T_{REE} thermometer of Sun et al. [2013] and Liang et al. 263 [2013], who observe a linear change in temperature from ~1250°C at 2200 m to ~1050°C at 264 3500 m in the UUMZ. Above \sim 3500 m in the stratigraphy, the REE thermometer is no longer 265 calibrated for the compositional range. However, due to the linearity of the thermometer below 266 3500 m, we are able to calculate the temperatures for the stratigraphy from 3500 m to 4625 m by 267 assuming the same slope in temperature vs. stratigraphic height. Over the course of the entire 268 UUMZ stratigraphy, the crystallization temperature in our model decreases by ~15°C per 5% 269 decrease in percent liquid remaining (i.e., at each model step). Using the two-pyroxene 270 thermometer or the QUILF program would be insufficient here since both approaches would 271 only allow for the determination of closure temperature of the system. Since layered intrusions 272 are generally expected to cool slowly, those temperatures would likely be reset considerably.

273	Lastly, since the whole rocks contain a normative abundance of plagioclase of up to 86%
274	(Fig. 2), it was incorporated into the model despite this phase's low Fe content. Little work has
275	been done thus far to constrain the Fe isotopic composition of plagioclase in terrestrial magmatic
276	systems, but <i>Wang</i> [2013] found that lunar regolith plagioclase has a δ^{56} Fe of 0.15-0.30‰. Thus,
277	we fixed the δ^{56} Fe _{plagioclase} value at 0.20‰. However, it is important to note that plagioclase
278	contributes such a small amount of FeO to the system that despite its abundance, it does not
279	significantly influence the model regardless of its Fe isotopic value.
280	For a working version of the model with annotations that reiterate the justification of
281	parameters described here, please consult the Supplementary File.
282	
283	2.2 Model Results
284	The results of our fractional crystallization model for the UUMZ are shown in Fig. 3.
285	Our model reveals three important trends: (1) despite the positive mineral-melt fractionation
286	factor for magnetite (Δ^{56} Fe _{mgt-melt} =~ 0.2 * 10 ⁶ /T ² / 1.5; <i>Sossi et al.</i> , 2012), the low abundance of
287	magnetite relative to pyroxene and olivine in the UUMZ samples buffers the effect of magnetite
288	crystallization on the evolution of δ^{56} Fe in the liquid. Consequently, our model predicts only a
289	subtle change in the δ^{56} Fe of the liquid from 0.17‰ to 0‰ through the whole UUMZ and no
290	major shift in slope after magnetite or olivine saturation (Fig. 4). (2) The model predicts an
291	overall decrease in the δ^{56} Fe _{WR} of about 0.11‰. This is likely due to the decreasing proportion
292	of FeO contributed to the whole rock by magnetite relative to the isotopically lighter phases
293	pyroxene and olivine in the cumulus assemblage (Fig. 3). The amount of FeO in the whole rock
294	that is contributed by pyroxene and olivine increases with stratigraphic height while the
295	proportion of FeO in the whole rock from magnetite remains constant. (3) The model also

296	predicts no significant change in δ^{56} Fe _{mgt} with stratigraphic height, varying just 0.08‰
297	throughout the UUMZ (Table 1, Supplementary Material).
298	The lack of change in δ^{56} Fe predicted by the fractional crystallization model is somewhat
299	surprising given previously published fractionation factors for single minerals [e.g., Schuessler et
300	al., 2007; Shahar et al., 2008; Sossi et al. 2012], which predict a large crystal-liquid
301	fractionation. In order to test our model results, we present data on δ^{56} Fe for whole rock and
302	magnetite mineral separates in the UUMZ of the Bushveld Complex.
303	
304	3 Sampling and Analytical Methods
305	3.1 Sampling Details
306	Samples were collected from exposed sections of the eastern limb of the RLS and are the
307	same as those analyzed in the studies of VanTongeren et al. [2010], VanTongeren and Mathez
308	[2012], and VanTongeren and Mathez [2013] (Fig. 1). We analyzed 22 whole rock samples,
309	measuring the Fe isotopic composition of the UUMZ approximately every 100 m within the ~ 2.5
310	km thick section (Fig. 1). Above cumulus magnetite saturation, magnetite is the dominant
311	control on the Fe concentration in the whole rock in that it contributes more FeO than any other
312	Fe-bearing phase (Fig. 3). Accordingly, magnetite separates were analyzed from each sample
313	where available (20 of 22 samples) in order to determine their control on the Fe isotopic
314	composition of the whole rocks.
315	
316	3.2 Sample Preparation
317	To prepare the samples for isotopic analysis, magnetite was first separated by hand
318	magnet and subsequently picked under a binocular microscope at 30x magnification. Only

319	magnetite grains without visible impurities were used. About 5-10 mg of whole rock samples
320	was measured out so that no more than ${\sim}500~\mu g$ of Fe was processed through the columns later.
321	Magnetite samples were measured out to weigh 0.5 to 1 mg. Crushed whole rock samples were
322	first digested in a solution of HF and HNO3 on a hot plate and dried down. Magnetite and whole
323	rock samples were digested on a hotplate in aqua regia, dried down, and digested and dried
324	again in 8N HCl prior to column chemistry. The 1 ml columns were filled with Biorad AG1-X8
325	ion exchange resin, which was conditioned prior to samples being loaded. First, the column
326	reservoir was filled with 8M HNO ₃ , followed by 1 full reservoir of H_2O , 1 full reservoir of 0.1N
327	HCl, and finally 2ml 8N HCl. The sample was dissolved again on the hotplate in 0.2 ml 8N HCl
328	for loading. Next, the resin was rinsed four times by using 0.5 ml of 8N HCl. Then, to elute the
329	Fe 0.5 ml of 8N HNO ₃ was introduced, and then 1 ml of 0.5N HCl was introduced twice. Next,
330	0.5 ml of H_2O , 1 ml 8N HNO ₃ , and then 0.5 ml of H_2O were used in succession to elute the rest
331	of the Fe. Zambardi et al. [2014] used the same column chromatography method and
332	demonstrated that Ca, Na, Al, and Mg were eluted prior to Fe and did not linger in the columns.
333	They also checked that Fe was not being eluted early with the matrix and routinely checked that
334	the column yields were ~99%. Zinc may also be of concern when using this elution scheme for
335	digested whole rock samples, however, Millet et al. [2012] demonstrated that Zn only interferes
336	with Fe during analysis by multi-collector inductively coupled plasma mass spectrometer (MC-
337	ICP-MS) when the two elements are present in the same concentration. In these Bushveld
338	samples, Zn concentrations vary between 50-180 ppm while Fe concentrations are never below 5
339	wt%.

Samples were then dried down and re-dissolved in 20 µl of concentrated HNO₃ before
being dried down one last time before analysis. All acids used were sub-boiling distilled and all

342	water used was ultrapure. During each session of column chromatography, we produced 1 blank
343	sample to monitor for potential environmental contamination. The Fe blank was insignificant
344	(<0.1%) relative to the amount of Fe loaded on the column.

345

346 3.3 Analytical Details

347 After performing the column chromatography, samples were dissolved in 2% HNO₃ for 348 introduction to the mass spectrometer. Stable Fe isotope analyses were performed on whole rock $(\delta^{56}Fe_{WR})$ and magnetite $(\delta^{56}Fe_{mgt})$ samples by using a Nu Plasma HR MC-ICP-MS at the 349 350 University of Illinois, Urbana-Champaign. Mass resolution was >6000 and samples were run in 351 dry plasma mode with a desolvating nebulizer system. All standard and sample solutions were run at concentrations of ~1ppm. We employed the 57 Fe- 58 Fe double-spike method of *Millet et al*. 352 353 [2012] by adding 0.5ppm of well-characterized spike solution containing a known composition of ⁵⁷Fe and ⁵⁸Fe to all measured samples and standards, including those used to bracket sample 354 355 measurements. The double spike deconvolution was performed online during the analytical 356 method, wherein the precise isotopic composition of the double spike solution was taken into 357 account. It entails an online iteration that subtracts from the measured values the contributions 358 from the double spike solution and calculates mass bias with convergence within ten calculation 359 cycles. The IRMM-014 (Institute of Reference Materials and Measurements standard number 360 014) bracketing standard was run between every sample analysis and secondary standards (BCR-361 2, UI-Fe) were run as every fourth sample. This standard-sample bracketing method is widely 362 used to correct for instrumental mass bias and improve data precision. To correct for interferences with Ni on ⁵⁸Fe and Cr on ⁵⁴Fe, each sample and standard analysis included 363 364 measurements of these two elements, and the data were used to adjust the analyzed Fe values

accordingly. The average ratio $(\pm 2\sigma)$ of 52/54 was 0.0001 (± 0.002) and the average ratio of 60/58 was 0.00006 (± 0.0001) .

367

368 **4 Results**

369 Data are reported in Table 2 and Figure 5 in the conventional delta notation, following370 the equation:

371
$$\delta^{56} Fe_{sample}$$
 (‰) = [(⁵⁶Fe/⁵⁴Fe)_{sample} / (⁵⁶Fe/⁵⁴Fe)_{IRMM-014} - 1] * 1000 (eqn. 4)

Each unknown sample and standard measurement included 2-3 repeated analyses. USGS rock

373 powder standard BCR-2 was also processed alongside unknown samples. BCR-2 and in-house

374 standard UI-Fe were analyzed throughout each session to monitor accuracy and instrumental

drift. The precision reported is given based on the 2SD of 2-3 repeat analyses, and reported as

376 0.03‰ if there was no variation between the analyses (i.e., $2\sigma=0.00\%$). USGS rock powder

377 standard BCR-2 gives $0.06 \pm 0.09\%$ (average over one five-day analytical session; n=9), which is

378 within error of other studies [Dauphas et al., 2009; Wombacher et al., 2009; Craddock and

379 Dauphas, 2011; Huang et al., 2011; Sossi et al., 2012]. The in-house standard UI-Fe gives δ^{56} Fe

 $380 = 0.71\% \pm 0.04\%$ (2SD, n=8 throughout the same five-day session).

We observe little variability within a tight range of δ^{56} Fe_{WR} values throughout the UUMZ; δ^{56} Fe_{WR} ($\pm 2\sigma$) ranges from -0.01 $\pm 0.03\%$ to 0.21 $\pm 0.09\%$ (δ^{56} Fe_{WR} average ~0.10 $\pm 0.09\%$, excluding isotopically light outlier B06-062, δ^{56} Fe_{WR} = -0.15 $\pm 0.07\%$). There is no correlation with stratigraphic height and therefore magma evolution within the UUMZ (Fig. 5, Table 2). Measured δ^{56} Fe_{mgt} ($\pm 2\sigma$) are consistently isotopically heavier than their whole rock counterparts, an expected pattern based on experimental data [*Shahar et al.*, 2008] and measurements of natural samples [e.g., *Heimann et al.*, 2008]. In general, however, the 388 stratigraphic variations in UUMZ magnetite are also unsystematic (δ^{56} Fe_{mgt} = 0.28 ±0.05‰ to 389 0.86 ±0.07‰; average = 0.48 ±0.16‰) (Fig. 5).

390

391 **5 Discussion**

392 5.1 The Effect of Fractional Crystallization on Fe Isotope Evolution

393 The observed absence of significant variation or a systematic trend in the Fe isotope 394 composition of the UUMZ whole rock samples is consistent with our model (Fig. 6), based upon 395 calculated parameters rather than measured ones. Our simple model mimics the overall variation 396 observed in the measured Fe isotope composition of the UUMZ, particularly between ~80 and 397 30% liquid remaining, and therefore demonstrates that fractional crystallization plays an 398 important role in the Fe isotope evolution of the UUMZ. Because the calculations of the predicted δ^{56} Fe_{WR} values are principally controlled by the abundance of individual Fe-bearing 399 400 phases, each of which prefers a certain isotope, oxidation state of Fe, or coordination, the whole 401 rock Fe isotope composition appears to be buffered by the changing Fe-bearing mineral 402 assemblage. This agrees with previous work, such as Sossi et al. [2012]. As we observe in the 403 measured values, we predict a tight range and unsystematic variability in the overall trend 404 throughout the stratigraphy (Fig. 6).

In the uppermost portion of the stratigraphy (above 30% liquid remaining, ~4000 m above the Merensky Reef), the modeled and measured whole rock values diverge more, with the measured δ^{56} Fe values behaving quite erratically. This may be due to the fact that processes other than fractional crystallization play a key role in the formation of these rocks.

409 5.1.1 Comparison of modeled and measured δ^{56} Fe

410	The simplified fractional crystallization model for Fe isotopes (section 2) predicts that
411	values for δ^{56} Fe in the whole rock and liquid would not change significantly with stratigraphic
412	height in the UUMZ using the observed normative abundances of mineral phases. Modeled
413	whole rock values are consistently lighter than measured whole rock in the UUMZ, with the
414	exception of one sample prior to magnetite crystallization. Although we did not expect for our
415	model to identically match the measured values, the differences between the predicted Fe isotope
416	values and measured whole rock data may be a result of several factors.
417	First, the presence of an unknown amount of trapped melt in the whole rock samples
418	could result in values higher or lower than model, depending on the relative proportions of
419	cumulus pyroxene and magnetite in the whole rock. If the melt is indeed isotopically heavier
420	than the whole rock as our model predicts, this could explain why our measured δ^{56} Fe values are
421	more positive than the modeled ones. While there is currently no observed evidence of trapped
422	melt in the samples analyzed, perhaps the Fe isotope data provides an indication.
423	We should also consider the model calculations themselves, which can provide insight
424	into the measured values. Importantly, the fractionation factors were calculated from previously
425	published experimental and natural samples, which may have crystallized under conditions
426	different from those of the UUMZ. They also require an assumption of equilibrium. While there
427	are published beta factors for some of the phases (which agree with the magnetite fractionation
428	factor in our model; Roskosz et al.[2015]), the paucity of these data at relevant conditions for
429	every considered phase (ol, opx, cpx, mgt, ilm, melt, and plag) hindered the attempt to use these
430	more recent data in the model. This may also be the case for the set isotopic value of plagioclase,
431	however the value does not significantly influence the model.

Another important aspect to note is that our modeled liquid, upon which our modeled whole rock relies, is based on *trends* in normative abundances with increasing stratigraphic height. This was done to compensate for the layered nature of the intrusion today. On the other hand, the calculated whole rock is based upon the normative abundances themselves. This projection of modes used in the calculation of the liquid may cause some smoothing of the modeled results that are not reflected in the measured data.

438 Processes that occurred during or after the cooling of the intrusion may also have 439 influenced the measured values. For example, diffusion of Fe at sub-solidus conditions could alter the δ^{56} Fe values of individual minerals, and in the case of oxides this effect may be unequal 440 441 [Dziony et al., 2014]. Chen et al. [2014] proposed this hypothesis to explain the discrepancy in 442 the δ^{56} Fe values measured in magnetite and ilmenite collected from the Baima layered intrusion, 443 China, where olivine and pyroxene were apparently unaltered by re-equilibration of Fe isotopes. 444 Therefore, our magnetite samples might be isotopically heavier than they were during 445 crystallization, and this may also explain the erratic nature of the data (Figs. 5, 6). However, it is important to note that sub-solidus re-equilibration may occur to affect the δ^{56} Fe of individual 446 447 phases but mobility of Fe is low, meaning that the whole rock faithfully records its magmatic 448 signature. A major conclusion from previous Fe isotope studies is that whole rock compositions 449 show systematic changes with index of differentiation and are thus best suited to understanding 450 differentiation processes [Poitrasson, 2006]. 451 Notably, the top portion (>4000m above the MR, <35% liquid remaining) of the analyzed

452 stratigraphy displays scattered measured values not mirrored by our estimations (Fig. 6).
453 *VanTongeren and Mathez* [2012] proposed that the uppermost 625 m of the Upper Zone
454 underwent large-scale silicate liquid immiscibility, and the study of *Fischer et al.* [2016]

455	identified the presence of both Fe-rich and Si-rich melt inclusions trapped in apatite grains within
456	the Upper Zone. Our data within the potential liquid immiscibility portion do follow markedly
457	different trends than the data below it (Fig. 5). There currently exists no published fractionation
458	factor to describe Fe isotope behavior between Fe-rich and Si-rich immiscible melts, but
459	previous work does predict a measurable fractionation of Fe isotopes between the two melts.
460	Zhu et al. [2015] performed calculations based on thermal diffusion that predict an
461	enrichment of isotopically heavy Fe in the Si-rich melt relative to the bulk Fe-melt from which it
462	formed. This is consistent with the work of Dauphas et al. [2014], although their conclusion is
463	based upon a different mechanism; they observe an increase in the force constants of Fe bonds in
464	silicate glasses with SiO ₂ content accompanying enrichment in isotopically heavy Fe. However,
465	the fractionation of Fe isotopes between two such melts is quite complex and may also be
466	controlled by factors including the growth rate of the immiscible melt, the concentration of SiO_2
467	and Fe in each melt, and Fe diffusivity. It is also likely that there is an unknown degree of
468	isotopic re-equilibrium between the two melts, which would attenuate the relative differences in
469	δ^{56} Fe caused by liquid immiscibility. We cannot tell at this time whether the more Si-rich
470	samples above 4000m are isotopically heavier with respect to Fe isotopes due to liquid
471	immiscibility or the fact that they are more evolved.

472

473 5.2 Measured δ⁵⁶Fe_{mgt} and Potential Implications for the Formation of the UUMZ
474 Magnetitite Layers

One of the most well-known aspects of the Upper Zone of the Bushveld Complex is the
presence of over twenty layers of nearly mono-mineralic magnetite [*Molyneux*, 1974] (Fig. S2).
Proposed hypotheses for the origin of these layers include gravitational settling [e.g., *Cawthorn*

478 and Ashwal, 2009], periodic changes in fO₂ [e.g., Klemm et al., 1982; Reynolds et al., 1985] 479 possibly due to new pulses of magma added to the resident magma chamber [e.g., Irvine and 480 Sharpe, 1986], pressure fluctuations [Cawthorn and McCarthy, 1980], and silicate liquid 481 immiscibility [e.g., Scoon and Mitchell, 1994; Harney and von Gruenewaldt, 1995]. There is no 482 recorded change in fO₂ in the UUMZ rocks analyzed here [c.f. VanTongeren and Mathez, 2012], 483 and there is no change in the geochemical characteristics (isotopes, major and trace elements) 484 above and below magnetite layers [c.f. Cawthorn and Ashwal, 2009] that would indicate 485 formation due to new pulses of magma. Evidence for large-scale silicate liquid immiscibility 486 exists in the diorites at the top of the UUMZ [VanTongeren and Mathez, 2012]; however there is 487 no such evidence available from the lower portions of the UUMZ, which also contain abundant 488 magnetite layers.

Our measured δ^{56} Fe_{mgt} values are significantly but inconsistently isotopically heavier 489 than the measured δ^{56} Fe_{WR} values. Comparably high δ^{56} Fe_{mot} have also been reported in the 490 491 Skaergaard [Dziony et al., 2014]. Above and below the magnetitite layers, the measured Fe 492 isotope composition of the magnetite separates and corresponding whole rock samples do not markedly change. The lack of change in δ^{56} Fe_{mgt} and δ^{56} Fe_{WR} above and below magnetite layers 493 494 in the UUMZ (Fig. S2) suggests that the formation of these horizons is likely due to 495 gravitational settling of magnetite as a result of normal fractional crystallization, consistent with 496 the conclusions of *Cawthorn and Ashwal* [2009]. However, with the information currently 497 available, further speculation about the formation of these layers is not possible.

498

499 5.3 Comparison of the Fe Isotope Systematics of the Bushveld with other Single-Event
 500 Igneous Systems with Evidence of Fractional Crystallization

501	δ^{56} Fe values of whole rock samples from the UUMZ are consistent with previous studies
502	of mafic or low silica intrusive igneous rocks (Fig. 7). Sossi et al. [2012] measured the δ^{56} Fe
503	composition of 16 whole rock and 6 magnetite-pyroxene pairs from the ~420 m thick Red Hill
504	sill, Tasmania. This single injection of tholeiitic magma underwent fractional crystallization in a
505	closed system, similar to the UUMZ albeit on a significantly smaller scale. They report
506	increasing δ^{56} Fe _{WR} with decreasing whole rock MgO wt% until magnetite saturation (Fig. 7B),
507	and attributed this to the effects of fractional crystallization of Fe-bearing phases on the Fe $^{3+}/\Sigma Fe$
508	of the melt. Teng et al. [2008] report a similar range in MgO wt% versus Fe isotope composition
509	of whole rocks from Kilauea Iki, Hawaii, in that δ^{56} Fe increases with decreasing MgO. Sossi et
510	al. suggested that systems open to O_2 (i.e., buffered at a specific fO_2) would not record
511	significant changes in δ^{56} Fe _{WR} until late in their crystallization history (i.e., higher SiO ₂),
512	whereas those closed to O ₂ (e.g., Red Hill, Kilauea Iki) should display increasing δ^{56} Fe _{WR}
513	throughout the stratigraphy (Fig. 7B). Aside from differences in scale and layering, fayalite
514	disappears as a cumulus phase after magnetite saturation in the Red Hill sill while fayalite co-
515	crystallizes with magnetite throughout much of the top ~ 2 km of the Bushveld. Throughout the
516	UUMZ, magnetite-ilmenite pairs record equilibrium fO2 values near FMQ-1 [e.g., VanTongeren
517	and Mathez, 2012], which is likely buffered by the presence of both fayalite and magnetite.
518	Thus, the lack of systematic changes in fO_2 and $\delta^{56}Fe_{WR}$ in the UUMZ is consistent with the
519	hypothesis of Sossi et al. [2012].
520	
521	5.4. Comparison to the Baima Mafic Layered Intrusion
522	In the most comprehensive study of Fe isotope fractionation in layered mafic intrusions

523 to date, *Chen et al.* [2014] provide δ^{56} Fe data for whole rock, olivine, pyroxene, magnetite,

524	ilmenite mineral separates throughout the stratigraphy of the Baima Intrusion, China. They
525	observed little change in δ^{56} Fe _{WR} with increasing stratigraphic height, but they noticed a
526	distinctive trend of increasing magnetite δ^{56} Fe values with height. To a first order, the increase in
527	magnetite δ^{56} Fe appears to be the opposite of that observed in our study (the δ^{56} Fe _{mgt}
528	composition of samples near magnetite saturation is higher than the δ^{56} Fe _{mgt} composition of
529	samples in the uppermost portion of the UUMZ). However two important points must be
530	considered: (1) The Baima Intrusion is unique in that the Basal and Lower Zones are dominated
531	by Fe-Ti oxides, constituting up to 55 modal % of the rocks. The abundance of Fe-Ti oxides, and
532	the ratio of magnetite/ilmenite, decreases with increasing stratigraphic height, which is opposite
533	to what is observed in the UUMZ; (2) the Baima Intrusion received multiple pulses of magma
534	throughout its crystallization history, and may not be a reliable record of closed system
535	processes.
536	

536

537 5.5 The Potential Effect of Ilmenite

538 Comparison with the Baima Intrusion also highlights the potential effect of sub-solidus 539 re-equilibration between magnetite and co-existing Fe-bearing minerals (in particular ilmenite), 540 which may contribute to the observed differences between the Baima and the UUMZ as well as the scatter in the measured δ^{56} Fe values at the top of the stratigraphy (Fig. 5, 6). *Chen et al.* 541 542 [2014] observed that the extent to which magnetite and ilmenite exchange chemically depends 543 upon their relative abundances within the rock. And in some cases, the magnetite likely retained its original δ^{56} Fe composition. On the other hand, the majority of the other Fe-bearing minerals 544 545 that were analyzed (ol, cpx) had mantle-like Fe isotope compositions, interpreted to be largely 546 unaffected by sub-solidus re-equilibration. Dziony et al. [2014] studied in detail Fe isotopic

547	differences between co-existing magnetite and ilmenite in a variety of settings, including
548	variable lithology from seafloor drill core (IODP hole 1256D, East Pacific Rise), massive
549	hydrothermal deposits from the Mid-Atlantic Ridge, and gabbros from the Skaergaard Intrusion
550	Middle Zone. In addition to varying differences between the two oxides in each setting, Dziony
551	<i>et al.</i> also observed variations in δ^{56} Fe _{mgt} within individual grains, which has been demonstrated
552	in other studies as well. Although it is important to point out that many of their samples had
553	experienced extensive sub-solidus fluid-rock interaction that likely modified the Fe isotope
554	ratios, in general, magnetite was isotopically heavier than ilmenite. This is also consistent with
555	the experimental work of Sossi and O'Neill [2017]. No correlation between the measured Fe
556	isotope values of UUMZ whole rock and magnetite and the normative abundances of each of the
557	oxides exists, however, we cannot rule out the accidental inclusion of a small amount of ilmenite
558	in our magnetite fraction. Considering the information available for our UUMZ samples,
559	disentangling the potential effect of ilmenite is not straightforward at this time.

560

561 6 Conclusions

We provide the first δ^{56} Fe data for whole rock and magnetite separates throughout the 562 563 sequence of the UUMZ of the Bushveld Complex layered intrusion, the trends of which are 564 consistent with a simple model based solely on fractional crystallization. Our model incorporates 565 the normative abundances and FeO content of each Fe-bearing phase throughout the stratigraphy 566 as well as published fractionation factors and calculated temperature changes. We predict no significant change in δ^{56} Fe in the whole rock or liquid during fractional crystallization of the 567 multiply-saturated UUMZ. Measured δ^{56} Fe_{WR} values confirm this result, and do not change 568 569 systematically with stratigraphic height, but do display slight variability that corresponds to

570 changes in pyroxene, magnetite, and olivine normative abundance. Our data demonstrate two571 important points:

(1) While crystallization of a single mineral phase will have an effect on the Fe isotopic
evolution of the liquid, the overall effect of fractional crystallization of a multiply-saturated (i.e.,
buffered) nominally anhydrous Fe-rich tholeiitic magma will be minimal.

575 (2) The Fe isotopic composition of a multiply saturated magma is unlikely to change 576 significantly during fractional crystallization of magnetite if there is *competing* fractionation of 577 other Fe-bearing cumulus phases (in particular, olivine and pyroxene). Therefore, it is 578 fundamentally important to consider both the modal mineralogy and contribution of FeO by each 579 phase to the whole rock when interpreting whole rock Fe isotopic data of cumulate rocks.

580 Acknowledgements and Data

All data that support the conclusions of this paper can be found in the figures and tables included here. Any data not produced by the authors are cited by the original published work. A working, annotated example of the model is provided in the Supplementary Material. The authors would like to thank Laura Sammon for her help in sample separation and Norbert Gajos for his help during some of the analyses. Helpful reviews from Helen Williams, Franck Poitrasson, Paolo Sossi, and 1 anonymous reviewer greatly improved the manuscript, as did the editorial handling of Janne Blichert-Toft.

588 References

Cawthorn, R.G., and T.S. McCarthy, (1980), Variations in Cr content of magnetite from the
upper zone of the Bushveld complex – evidence for heterogeneity and convection
currents in magma chambers. Earth Planet. Sci. Lett., 46, 335-343, doi:10.1016/0012-

592 821X(80)90049-7.

- 593 Cawthorn, R.G., and L.D. Ashwal (2009), Origin of anorthosite and magnetitite layers in the
- Bushveld Complex, constrained by major element compositions of plagioclase. J. Petrol.,
 50, 1607-1637, doi:10.1093/petrology/egp042.
- 596 Charlier, B. and T. Grove (2012) Experiments on liquid immiscibility along tholeiitic liquid lines
- 597 of descent. Contrib. Mineral. Petrol., 164, 27-44, doi:10.1007/s00410-012-0723-y.
- 598 Chen, L-M., X-Y. Song, X-K. Zhu, X-Q. Zhang, S-Y. Yu, J-N. Yi, (2014), Iron isotope
- fractionation during crystallization and sub-solidus re-equilibration: constraints from the
- Baima mafic layered intrusion, SW China. Chem. Geol., 380, 97-109,
- 601 http://dx.doi.org/10.1016/j.chemgeo.2014.04.020.
- 602 Craddock, P.R., and N. Dauphas (2011), Iron isotopic compositions of geological reference

603 materials and chondrites. Geostand. Geoanal. Res., 35, 101-123,

- 604 doi:10.1016/j.epsl.2013.01.011.
- 605 Dauphas, N., P.R. Craddock, P.D. Asimow, V.C. Bennett, A.P. Nutman, D. Ohnenstetter, (2009),
- Iron isotopes may reveal the redox conditions of mantle melting from Archean to present.
 Earth Planet. Sci. Lett., 299, 255-267, doi:10.1016/j.epsl.2009.09.029.
- 608 Dauphas, N., M. Roskosz, E.E. Alp, D.R. Neuville, M.Y. Hu, C.K. Sio, F.L.H. Tissot, J. Zhao, L.
- 609 Tissandier, E. Médard, and C. Cordier (2014), Magma redox and structural controls on
- 610 iron isotope variations in Earth's mantle and crust. Earth Planet. Sci. Lett., 308, 127-140,
- 611 http://dx.doi.org/10.1016/j.epsl.2014.04.033.
- 612 Dziony, W., I. Horn, D. Lattard, J. Koepke, G. Steinhoefel, J.A. Schuessler, F. Holtz, (2014) In-
- 613 situ Fe isotope ratio determination in Fe-Ti oxides and sulfides from drilled gabbros and
- basalt from the IODP Hole 1256D in the eastern equatorial Pacific. Chem. Geol., 363,
- 615 101-113, reserved, http://dx.doi.org/10.1016/j.chemgeo.2013.10.035.

- 616 Fischer L.A., M. Wang, B. Charlier, O. Namur, R.J. Roberts, I.V. Veksler, R.G. Cawthorn, F.
- 617 Holtz (2016) Immiscible iron- and silica-rich liquids in the Upper Zone of the Bushveld
 618 Complex. Earth Planet. Sci. Lett., 443, 108-117.
- 619 Foden, J., P.A. Sossi, and C.M. Wawryk, (2015), Fe isotopes and the contrasting petrogenesis of
- 620 A-, I- and S-type granite. Lithos, 212-215, 32-44, doi:10.1016/j.lithos.2014.10.015.
- Harney, D.M.W., and G. von Gruenewaldt (1995), Ore-forming processes in the upper part of
 the Bushveld Complex, South Africa. J. African Earth Sci., 20, 77-89.
- 623 Heimann A., B.L. Beard, and C.M. Johnson (2008), The role of volatile exsolution and sub-
- 624 solidus fluid/rock interactions in producing high ⁵⁶Fe/⁵⁴Fe ratios in siliceous igneous
- 625 rocks. Geochim. Cosmochim. Acta, 72, 4379-4396, doi:10.1016/j.gca.2008.06.009.
- Huang, F., P. Chakraborty, C.C. Lundstrom, C. Holmden, J.J.G. Glessner, S.W. Kieffer, and C.E.
- 627 Lesher (2010), Isotope fractionation in silicate melts by thermal diffusion. Nature, 464,
 628 396-400, doi:10.1038/nature08840.
- 629 Irvine, T.N., and M.R. Sharpe (1986), Magma mixing and the origin of stratiform oxide ore
- cones in the Bushveld and Stillwater Complexes, Metallogeny of Basic and Ultrabasic
- Rocks, edited by M.J. Gallagher, et al., pp. 183-198, Institute of Mining Metallurgy,London.
- 633 Klemm, D.D., R. Snethlage, R.M. Dehm, J. Henchel, R. Schmidt-Thomé (1982), The formation
- of chromite and titanomagnetite deposits within the Bushveld Igneous Complex, Ore
- 635 Genesis: The State of the Art, Special Publication of the Society for Geology Applied to
- 636 Mineral Deposits, v.ol 2, edited by G.C. Amstutz, p. 351-370, Springer Berlin
- 637 Heidelberg, doi:10.1007/978-3-642-68344-2 35.
- 638 Kruger, F.J., R.G. Cawthorn, and K.L. Walsh (1987), Strontium isotopic evidence against

- magma addition in the Upper Zone of the Bushveld Complex. Earth Planet. Sci. Lett., 84,
 51-58, doi:10.1016/0012-821X(87)90175-0.
- 641 Liang, Y., C. Sun, L.D. Ashwal, and J.A. VanTongeren (2013), Spatial variations in temperature
- 642 across the Bushveld layered intrusion revealed by REE-in-plagioclase-pyroxene
- 643 thermometers with implications for magma chamber processes [abs.]: Transactions,
- 644 American Geophysical Union, abstract #V54B-07.
- Liu, P-P., M-F. Zhou, B. Luais, D. Cividini, and C. Rollion-Bard (2014), Disequilibrium iron
- 646 isotopic fractionation during the high-temperature magmatic differentiation of the Baima
- 647 Fe-Ti oxide-bearing mafic intrusion, SW China. Earth Planet. Sci. Lett., 399, 21-29,
- 648 doi:10.1016/j.epsl.2014.05.0220012-821X.
- 649 Lundstrom, C.C. (2009), Hypothesis for the origin of convergent margin granitoids and Earth's
 650 continental crust by thermal migration zone refining. Geochim. Cosmochim. Acta 73,
- 651 5709-5729, doi:10.1016/j.gca.2009.06.020.
- 652 Mathez, E. A., J.A. VanTongeren, and J. Schweitzer (2013), On the relationships between the
- 653 Bushveld Complex and its felsic roof rocks, part 1: petrogenesis of Rooiberg and related 654 felsites. Contrib. Mineral. Petrol., 166, 435-449, doi:10.1007/s00410-013-0884-3.
- Millet, M., J. Baker, and C. Payne (2012), Ultra-precise stable Fe isotope measurements by high
 resolution multi-collector inductively coupled plasma mass spectrometry with a ⁵⁷Fe-⁵⁸Fe
- 657 double spike. Chem. Geol., 304-305, 18-25, doi:10.1016/j.chemgeo.2012.01.021.
- 658 Molyneux, T.G. (1974), A geological investigation of the Bushveld Complex in Sekhukhuneland
- and part of the Steelpoort Valley. Trans. Geological Society of South Africa, 77, 329-
- 660 <u>338</u>.

- 661 Poitrasson, F., and R. Freydier (2005), Heavy iron isotope composition of granites determined by
- high resolution MC-ICP-MS. Chem. Geol., 222, 132-147,
- 663 doi:10.1016/j.chemgeo.2005.07.005.
- 664 Poitrasson, F. (2006), On the iron isotope homogeneity level of the continental crust. Chem.

665 Geol., 235, 195-200, doi:10.1016/j.chemgeo.2006.06.010.

- Polyakov, V.B. and S.D. Mineev (2000) The use of Mössbauer spectroscopy in stable isotope
 geochemistry. Geochim. Cosmochim. Acta, 64, 849-865.
- 668 Polyakov, V.B., R.N. Clayton, J. Horita and S.D. Mineev (2007) Equilibrium iron isotope
- 669 fractionation factors of minerals: Reevaluation from the data of nuclear inelastic resonant
- 670 X-ray scattering and Mössbauer spectroscopy. Geochim. Cosmochim. Acta, 71, 3833-
- 671 3846, doi:10.1016/j.gca.2007.05.019.
- 672 Reynolds, I.M. (1985), The nature and origin of titaniferous magnetite-rich layers in the upper

zone of the Bushveld Complex; a review and synthesis. Econ. Geol., 80, 1089-1108.

- 674 Roskosz M., C.K.I. Cio, N. Dauphas, W. Bi, F.L.H. Tissot, M.Y. Hu, J. Zhao and E.E. Alp
- 675 (2015) Spinel-olivine-pyroxene equilibrium iron isotopic fractionation and applications to
- 676 natural peridotites. Geochim. Cosmochim. Acta, 169, 184-199,
- 677 http://dx.doi.org/10.1016/j.gca.2015.07.035.
- 678 Schuessler, J.A., R. Schoenberg, H. Behrens, and F. von Blanckenburg (2007), The experimental
 679 calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline
- 680 rhyoltic melt. Geochim. Cosmochim. Acta, 71, 417-433, doi:10.1016/j.gca.2006.09.012.
- 681 Schuessler, J.A., R. Schoenberg, and O. Sigmarsson (2009), Iron and lithium isotope systematics
- 682 of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma
- 683 differentiation. Chem. Geol., 258, 78-91, doi:10.1016/j.chemgeo.2008.06.021.

684	Schoenberg, R., M.A.W. Marks, J.A. Schuessler, F. von Blanckenburg, and G. Markl (2009), Fe
685	isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock
686	suite of the Ilimaussaq Complex, South Greenland. Chem. Geol., 258, 65-77,
687	10.1016/j.chemgeo.2008.06.023.
688	
689	Scoon, R.N., and A.A. Mitchell (1994), Discordant iron-rich ultramafic pegmatites in the
690	Bushveld Complex and their relationship to iron-rich intercumulus and residual liquids. J.
691	Petrol., 35, 881-917.
692	Shahar, A., E.D. Young, and C.E. Manning (2008), Equilibrium high-temperature Fe isotope
693	fractionation between fayalite and magnetite: An experimental calibration. Earth Planet.
694	Sci. Lett., 268, 330-338, doi:10.1016/j.epsl.2008.01.026.
695	Sossi, P.A., J.D. Foden, and G.P. Halverson (2012), Redox-controlled iron isotope fractionation
696	during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania.
697	Contrib. Mineral. Petrol., 164, 757-779, doi:10.1007/s00410-012-0769-x.
698	Sossi, P.A. and H. O'Neill (2017) The effect of bonding environment on iron isotope
699	fractionation between minerals at high temperature. Geochim. Cosmochim. Acta, 196,
700	121-143, http://dx.doi.org/10.1016/j.gca.2016.09.017.
701	Sun, C., Y. Liang, L. Ashwal, J. VanTongeren (2013), Temperature variations along
702	stratigraphic height across the Bushveld Complex with implications for magma chamber
703	processes in layered intrusions [abs]: Geological Society of America Abstracts with
704	Programs, 45, 390.

- 705 Tegner, C., R.G. Cawthorn and F.J. Kruger (2006) Cyclicity in the Main and Upper Zones of the
- Bushveld Complex, South Africa: Crystallization from a Zoned Magma Sheet. J. Petrol.,
 47, 2257-2279, doi:10.1093/petrology/egl043.
- 708 Telus, M., N. Dauphas, F. Moynier, F.L.H. Tissot, F-Z. Teng, P.I. Nabelek, P.R. Craddock, and
- 709 L.A. Groat (2012), Iron, zinc, magnesium and uranium isotopic fractionation during
- 710 continental crust differentiation: The tale from migmatites, granitoids, and pegmatites.
- 711 Geochim. Cosmochim. Acta,, 97, 247-265, http://dx.doi.org/10.1016/j.gca.2012.08.024.
- 712 Teng, F., N. Dauphas, and R.T. Helz (2008), Iron isotope fractionation during magmatic
- 713 differentiation in Kilauea Iki Lava Lake. Science, 320, 1620-1622,
- 714 doi:10.1126/science.1157166.
- Teng, F., W.F. McDonough, R.L. Rudnick and R.J. Walker (2011) Diffusion-driven extreme
 lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth

717 Planet. Sci. Lett., 243, 701-710, doi:10.1016/j.epsl.2006.01.036.

718 VanTongeren, J.A., E.A. Mathez, and P.B. Kelemen (2010), A felsic end to Bushveld

719 differentiation. J. Petrol., 51, 1891-1942, doi:10.1093/petrology/egq042.

- VanTongeren, J.A., and E.A. Mathez (2012), Large-scale liquid immiscibility at the top of the
 Bushveld Complex. Geology, 40, 491-494, doi:10.1130/G32980.1.
- 722 VanTongeren, J.A., and E.A. Mathez (2013), Incoming magma composition and style of
- recharge below the Pyroxenite Marker, Eastern Bushveld Complex, South Africa. J.
- 724 Petrol., 54, 1585-1605, doi:10.1093/petrology/egt024.
- 725 Wang, K. (2013), Iron isotope cosmochemistry, Ph.D dissertation, Dept. Earth and Planetary
- 726 Sciences, Washington University in St. Louis, St. Louis, Washington, USA.

727	Williams, H.M., A. H. Peslier, C. McCammon, A.N. Halliday, S. Levasseur, N. Teutsch, and J-P.
728	Burg (2005), Systematic iron isotope variations in mantle rocks and minerals: The effects
729	of partial melting and oxygen fugacity. Earth Planet. Sci. Lett., 235, 435-452,
730	doi:10.1016/j.epsl.2005.04.020.
731	Wombacher F., A. Eisenhauer, A. Heuser, and S. Weyer (2009). Separation of Mg, Ca and Fe
732	from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and
733	double-spike TIMS. J. Anal. At. Spectrom, 24, 627-636, doi:10.1039/B820154D.
734	Young, E.D., C.E. Manning, E.A. Schauble, A. Shahar, C.A. Macris, C. Lazar, and M. Jordan
735	(2015), High-temperature equilibrium isotope fractionation of non-traditional stable
736	isotopes: Experiments, theory, and applications. Chem. Geol., 395, 176-195,
737	doi:10.1016/j.chemgeo.2014.12.0130009-2541.
738	Zambardi, T., C.C. Lundstrom, X. Li, M. McCurry (2014), Fe and Si isotope variations at Cedar
739	Butte volcano; insight into magmatic differentiation. Earth Planet. Sci. Lett., 405, 169-
740	179, doi:10.1016/j.epsl.2014.08.020.
741	Zhu D., B. Huiming, Y. Liu (2015), Non-traditional stable isotope behaviors in immiscible

silica-melts in a mafic magma chamber. Nature, Scientific Reports, doi:10.1038/srep175.

743 Table 1. Abbreviated compilation of model inputs. NA—modes were not available for that

- sample. For a working version of the model with accompanying justification of all terms
- reiterated from the text, please see the Supplementary Material.

% liquid remaining	100	95	90	85	80	75	70	65	60	22	50	45	40	35	30	25	20	15
Equivalent strat. height Projected modes	C7077	2545	C.1842	2030	C7117	C167	C./ CD.6	3200	6.2455	5485	C.1205	31/0	C:2165	cc04	C/614	4340	6.7844	C204
Plagioclase	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
Orthopyroxene	0.312	0.278	0.244	0.210	0.176	0.143	0.109	0.075	0.041	0.007	0	0	0	0	0	0	0	0
Clinopyroxene	0.158	0.192	0.226	0.260	0.294	0.327	0.361	0.395	0.429	0.245	0.240	0.227	0.215	0.203	0.190	0.178	0.166	0.153
Olivine	0	0	0	0	0	0	0	0	0	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Magnetite	0	0	0	0	0.004	0.012	0.021	0.029	0.037	0.045	0.054	0.062	0.070	0.078	0.087	0.095	0.103	0.111
Ilmenite	0	0	0	0	0.002	0.006	0.010	0.014	0.018	0.023	0.027	0.031	0.035	0.039	0.043	0.047	0.051	0.055
Fe content of each phase (FeO phase/FeO WR	FeO phase/F	'eO WR)																
Plagioclase	0.067	0.057	0.049	0.042	0.037	0.032	0.028	0.024	0.021	0.019	0.016	0.014	0.012	0.010	0.00	0.007	0.006	0.005
Orthopyroxene	2.315	2.228	2.158	2.101	2.053	2.013	1.978	1.948	1.921	1.898	1.877	1.858	1.841	1.826	1.812	1.799	1.788	1.777
Clinopyroxene	0.526	0.604	0.666	0.718	0.761	0.797	0.828	0.855	0.879	0.900	0.919	0.936	0.951	0.964	779.0	0.988	666.0	1.008
Olivine	0	0	0	0	0	0	0	0	0	2.665	2.713	2.756	2.794	2.829	2.861	2.890	2.917	2.941
Magnetite	0	0	0	0	7.783	7.192	6.685	6.245	5.859	5.518	5.2.15	4.943	4.698	4.476	4.275	4.090	3.921	3.765
Ilmenite	0	0	0	0	4.501	4.160	3.866	3.612	3.388	3.191	3.016	2.859	2.717	2.589	2.472	2.365	2.268	2.178
8 56Fe of each phase (calculated)	dated)																	
Liquid	0.168	0.165	0.154	0.144	0.135	0.126	0.116	0.106	0.096	0.086	0.074	0.063	0.052	0.042	0.033	0.025	0.018	0.012
Plagioclase	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Orthopyroxene	0.060	0.054	0.041	0.027	0.014	0.001	-0.012	-0.027	-0.041	-0.057	-0.074	-0.091	-0.108	-0.125	-0.141	-0.156	-0.171	-0.185
Clinopyroxene	0.060	0.054	0.041	0.027	0.014	0.001	-0.012	-0.027	-0.041	-0.057	-0.074	-0.091	-0.108	-0.125	-0.141	-0.156	-0.171	-0.185
Olivine	0.125	0.121	0.109	0.097	0.087	0.076	0.064	0.053	0.040	0.028	0.013	-0.001	-0.015	-0.028	-0.041	-0.052	-0.063	-0.074
Magnetite	0.253	0.253	0.245	0.238	0.231	0.225	0.218	0.211	0.204	0.197	0.188	0.179	0.172	0.165	0.159	0.155	0.152	0.149
Ilmenite	0.125	0.121	0.109	0.097	0.087	0.076	0.065	0.053	0.042	0.030	0.016	0.003	-0.010	-0.022	-0.034	-0.044	-0.054	-0.062
Measured Data																		
Sample name	B07-009	B06-062	B06-064	B06-065	B06-067			B07-057	B06-020*	B07-061	B06-054	B06-042	B06-039	B06-029	B07-027	B06-037	B07-036	B07-041
Strat. height	2210	2325	2495	2620	2775			3122	3260	3425	3634	3741	3925	4083	4232	4305	4460	4590
% liquid equivalent	99.74	95.70	89.74	85.35	79.91			67.74	62.89	57.11	49.77	46.02	39.56	34.02	28.79	26.23	20.79	16.23
Modes from LSQR Matlab (VanTongeren et al., 2010)	b (Van Tonge.	ren et al., 201	(0															
Plagioclase	0.45	0.37	0.54		0.49	NA	NA	0.58	0.49	0.84	0.79	0.44	0.46	0.46	0.54	0.55	0.46	0.42
Orthopyroxene	0.31	0.49	0.21		0.23	NA	NA	0.14	0.19	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Clinopyroxene	0.22	0.13	0.25		0.26	NA	NA	0.16	0.19	0.01	0.09	0.29	0.30	0.10	0.05	0.06	0.16	0.20
Olivine	0.00	0.00	0.00		0.00	NA	NA	0.00	0.00	0.00	0.05	0.17	0.12	0.24	0.23	0.22	0.24	0.19
Magnetite	0.00	0.00	0.00		0.00	NA	NA	0.08	0.09	0.04	0.04	0.03	0.06	0.07	0.07	0.07	0.00	0.02
Ilmenite	0.00	0.00	0.00	0.00	0.00	NA	NA	0.02	0.01	0.02	0.02	0.04	0.04	0.04	0.04	0.04	0.05	0.04
Modeled Whole Rock Fe Isotope Composition baesd on Observed	sotope Com	position bacs.	d on Observe	Modes a	1 Calculated 1	Liquid Comp	osition											
Whole Rock §56Fe	0.06	0.07	0.03	0.02	0.01 NA NA	NA	NA	0.10	0.09	0.04	0.04	0.01	0.02	0.02	0.02	0.00	-0.07	-0.06
								*	This is the mode of B06-021	de of B06-02								

Table 2. δ^{56} Fe values from whole rock and magnetite analyses with associated 2σ and lithology

of the accompanying unit.

Stratigraphic position relative to the Merensky Reef (m)	Sample Number	Latitude (S) ²	Longitude (E) ²	Equivalent % liquid remaining	$\delta^{56} Fe_{WR}(\%)$	2σ	δ^{56} Fe _{magnetite} (‰) ¹	2σ ¹	Lithology
2210	B07-009	24°51.778'	29°58.114'	99.74	0.06	0.09	0.61	0.06	gabbro
2325	B06-062	24°51.778'	30°01.770'	95.70	-0.15	0.07	NA	NA	gabbro
2495	B06-064	24°51.851'	30°01.842'	89.74	0.06	0.04	0.69	0.08	gabbro
2620	B06-065	24°51.858'	30°01.565'	85.35	0.19	0.13	0.65	0.08	gabbro
2775	B06-067	24°51.917'	30°01.398'	79.91	0.09	0.07	0.47	0.11	gabbro
3122	B07-057	24°48.985'	29°58.275'	67.74	0.15	0.08	0.86	0.07	gabbro
3260	B06-020	24°48.974'	29°58.149'	62.89	0.12	0.07	0.34	0.03	gabbro
3425	B07-061	24°48.914'	29°57.798'	57.11	0.16	0.07	NA	NA	anorthosite
3515	B06-024	24°48.910'	29°57.711'	53.95	0.08	0.08	0.28	0.05	troctolite
3634	B06-054	24° 48.763'	29°57.186'	49.77	0.07	0.08	0.53	0.06	gabbro
3741	B06-042	24°48.776'	29°57.036'	46.02	0.08	0.05	0.61	0.04	gabbro
3925	B06-039	24°48.857'	29°56.833'	39.56	-0.01	0.03	0.59	0.04	gabbro
4083	B06-029	24°48.895'	29°56.650'	34.02	0.08	0.05	0.37	0.07	troctolite
4232	B07-027	24°49.072'	29°56.433'	28.79	0.21	0.09	0.35	0.09	diorite
4305	B06-037	24°48.747'	29°56.407'	26.23	0.09	0.02	0.30	0.05	diorite
4355	B06-055	24°51.874'	29°54.756'	24.47	0.12	0.06	0.38	0.02	diorite
4460	B07-036	24°51.845'	29°54.607'	20.79	0.07	0.03	0.32	0.03	diorite
4508	B07-037	24°51.827'	29°54.550'	19.11	0.16	0.05	0.63	0.17	diorite
4530	B07-038	24°51.823'	29°54.519'	18.33	0.02	0.06	0.38	0.02	diorite
4555	B07-039	24°51.800'	29°54.488'	17.46	0.18	0.04	0.63	0.05	diorite
4573	B07-040	24°51.794'	29°54.465'	16.82	0.06	0.06	0.38	0.05	diorite
4590	B07-041	24°51.829'	29°54.430'	16.23	0.07	0.03	0.56	0.03	diorite

750 751 ¹NA indicates that not enough pure magnetite could be separated from the sample for Fe isotope analysis. ²GPS coordinates form VanTongeren et al. (2010), VanTongeren and Mathez (2012) and VanTongeren and Mathez (2013).

752 Figure Captions

753	Figure 1. a) geologic map of the Bushveld Complex and sampling sites for this study; b)
754	observed modal mineralogy throughout the UUMZ; c) the change in whole rock Mg# with
755	stratigraphic height throughout the UUMZ (all data from VanTongeren et al., 2010). In panel a,
756	all shades of blue in correspond to zones within the Rustenburg Layered Suite (teal = Upper
757	Zone, blue = Main Zone; navy blue = Lower Zone; dark blue = Critical Zone). Purple =
758	Dullstroom Formation; Green = Damwal Formation; Yellow = Kwaggasnek Formation; Red =
759	Schrikkloof Formation. Yellow dots and larger circles denote sampling locations within the map.
760	
761	Figure 2. Normative abundances of constituent minerals with stratigraphic height. Lines indicate
762	the trend of "projected modal abundances" used in the fractional crystallization model (See
763	Supplementary Material for details). Due to the lack of trend in the normative abundance of
764	clinopyroxene with stratigraphic height, the projected normative abundance of clinopyroxene
765	was calculated as Cpx [modal%] = 1 – Plag [modal%] – Opx [modal%] – Oxide [modal%] – Ol
766	[modal%].
767 768	Figure 3. Observed FeO (wt%) of whole rock and mineral phases with stratigraphic height.
769	Lines indicate the compositional trend used in the fractional crystallization model.
770	
771	Figure 4. Predicted evolution of the Fe isotope composition of the liquid and whole rock (WR)
772	based only on the projected and observed normative abundances, respectively (see "Step 1" for
773	the liquid and "Step 2" for the whole rock in the Supplementary Material). The model
774	incorporates published fractionation factors (pyroxene, magnetite, olivine), available published
775	δ^{56} Fe _{plagioclase} data, calculated crystallization temperatures over the stratigraphy, and the Fe

Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

776	content of each phase. The % liquid remaining is calculated for each stratigraphic height
777	assuming 15% magma loss from the UUMZ to form some portion of the Rooiberg Group lavas
778	and/or Rashoop Granophyres (e.g., VanTongeren et al., 2010; Mathez et al., 2013). Approximate
779	saturation levels for magnetite and fayalite are noted with solid black lines at about 80% and
780	55% liquid remaining, respectively.
781	
782	Figure 5. Measured Fe isotope compositions of whole rock (circles) and magnetite (diamonds)
783	samples plotted at stratigraphic height relative to the Merensky Reef. These data are compared to
784	the normative abundances of phases from the base of the UUMZ (Pyroxenite Marker at 2200 m)
785	to the roof (4625 m). All normative abundance approximations from whole rock data were
786	verified within 2-3 modal% by point-counting of a representative thin section and observed
787	modal % values were calculated by least squares by incorporating measured geochemical data
788	(modified from VanTongeren et al., 2010). Error bars are 25. Ap-apatite saturation; ol-olivine
789	saturation; mgt—magnetite saturation.
790	
791	Figure 6. Comparison of the modeled evolution of the Fe isotope composition of the whole rock
792	(WR) predicted solely from fractional crystallization (see "Step 2" in the Supplementary
793	Material) and the measured WR values (error bars are 2σ).
794	
795	Figure 7. Whole rock Bushveld Complex δ^{56} Fe values (black circles, error bars are 2σ) from this
796	study plotted versus (a) whole rock SiO ₂ content and (b) MgO content with other published
797	studies on igneous whole rocks that evolved from a single event closed to O_2 gain/loss. The
798	isotopic range is consistent between the studies, and additional scatter within the Bushveld data

- is likely due to its layered nature. White squares Kilauea Iki, Hawaii, USA (*Teng et al.,* 2008);
- 800 gray triangles Red Hill Intrusion, Tasmania (Sossi et al., 2012). *Only Teng et al. samples with
- 801 MgO content >7wt.% were plotted, since these data are thought to reflect fractional
- 802 crystallization processes.

Figure 1.

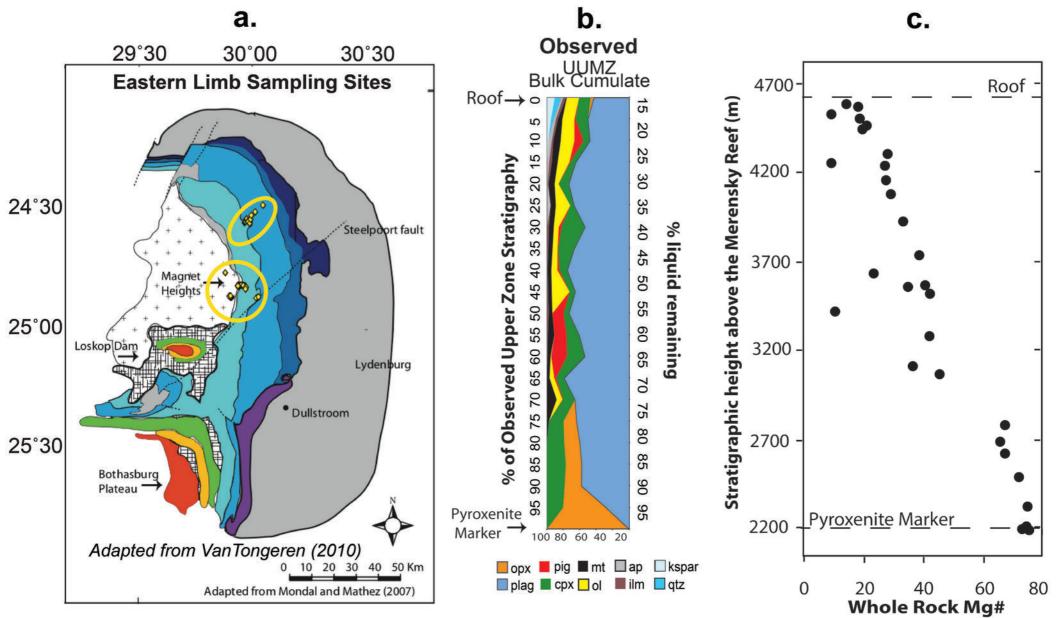
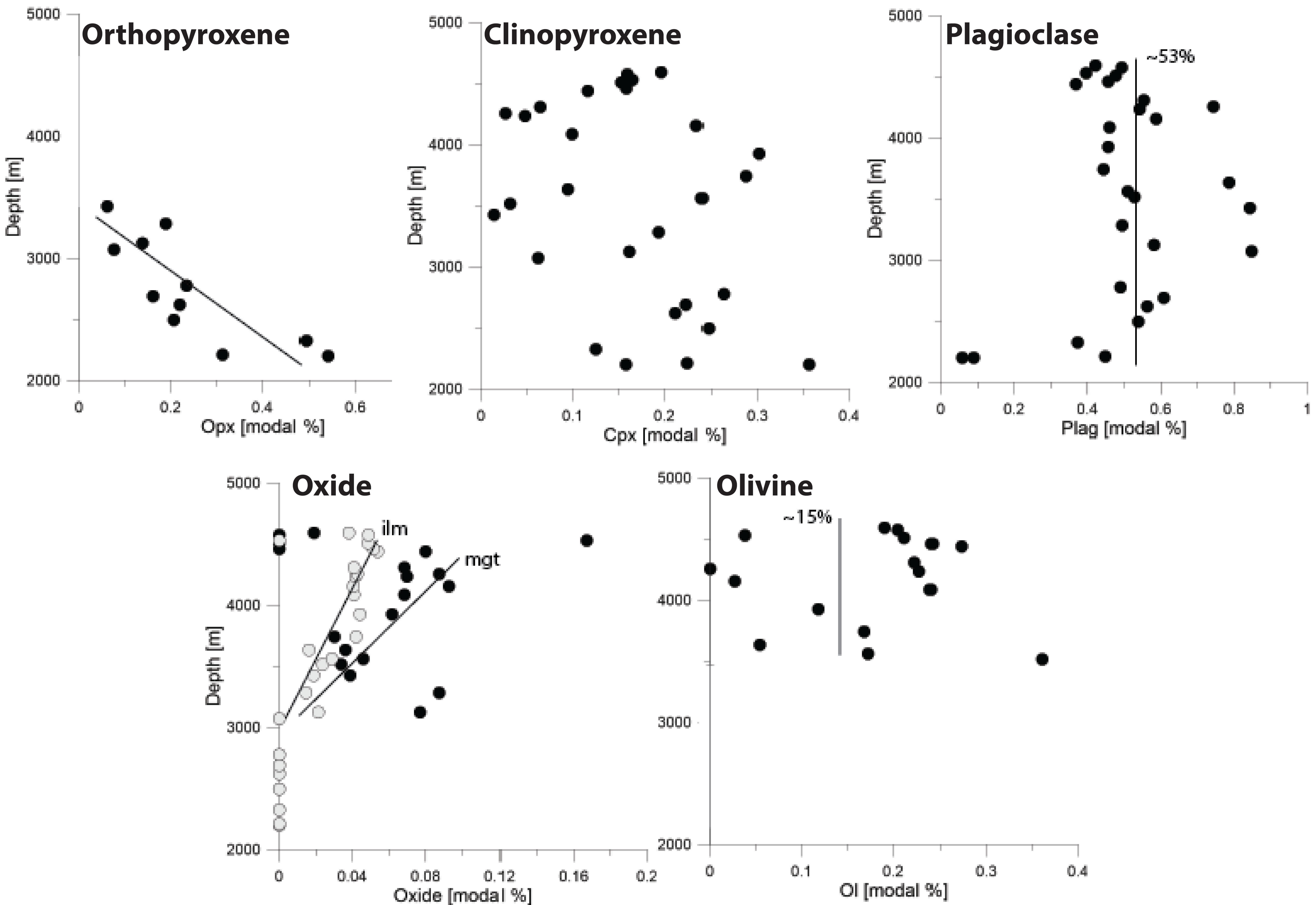
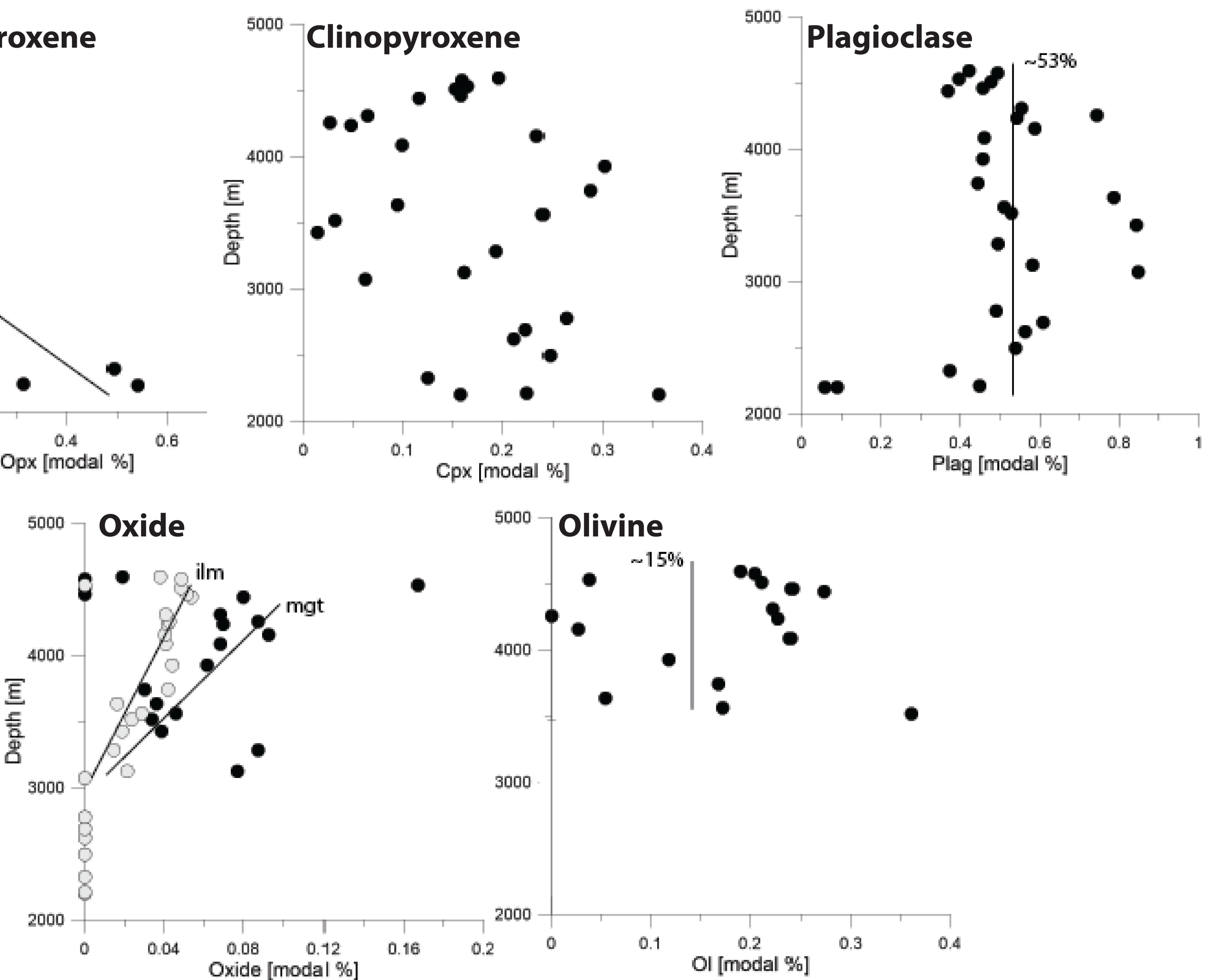




Figure 2.

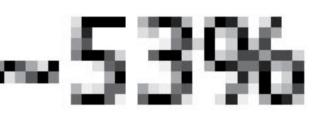


Figure 3.

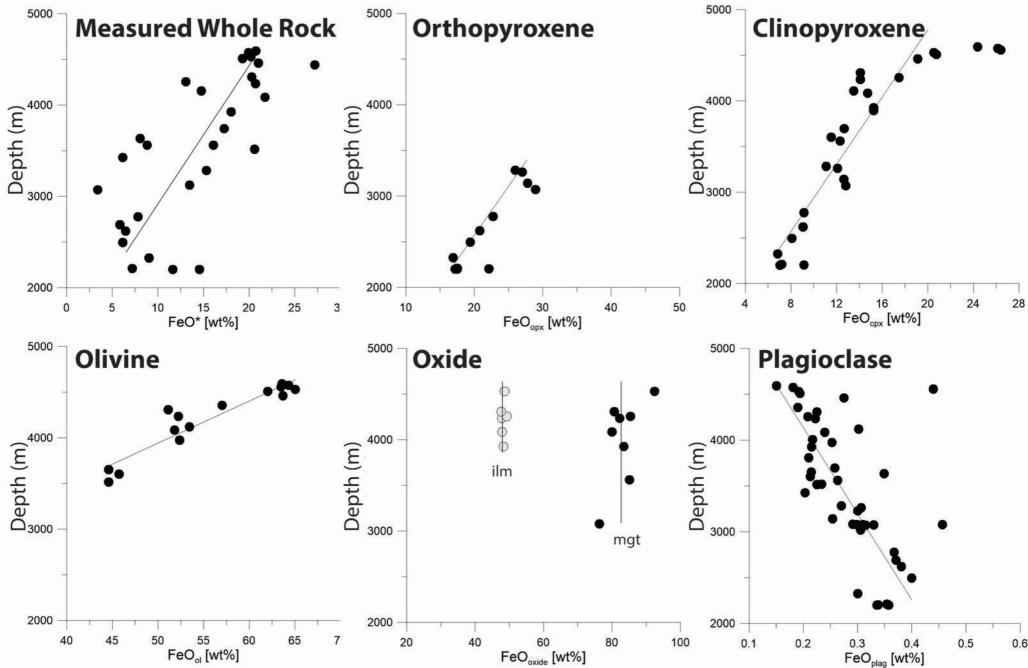
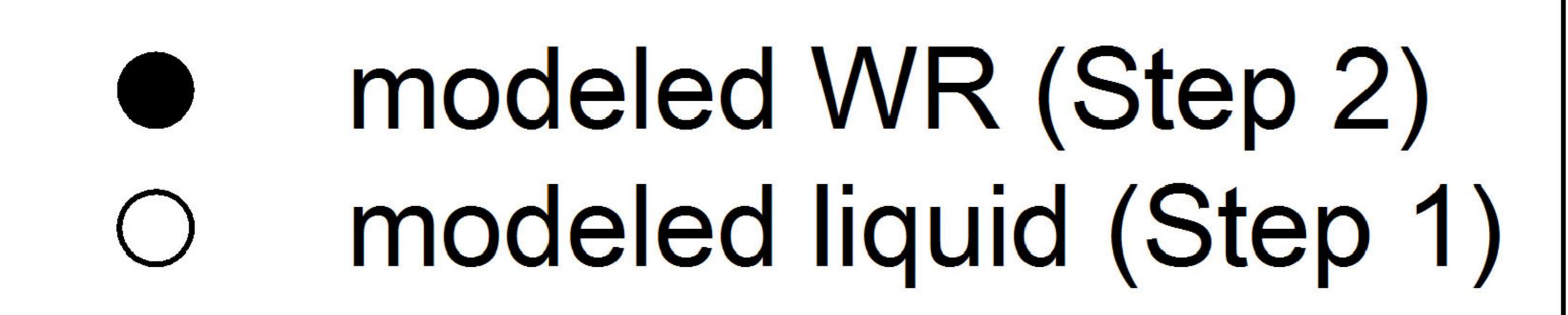
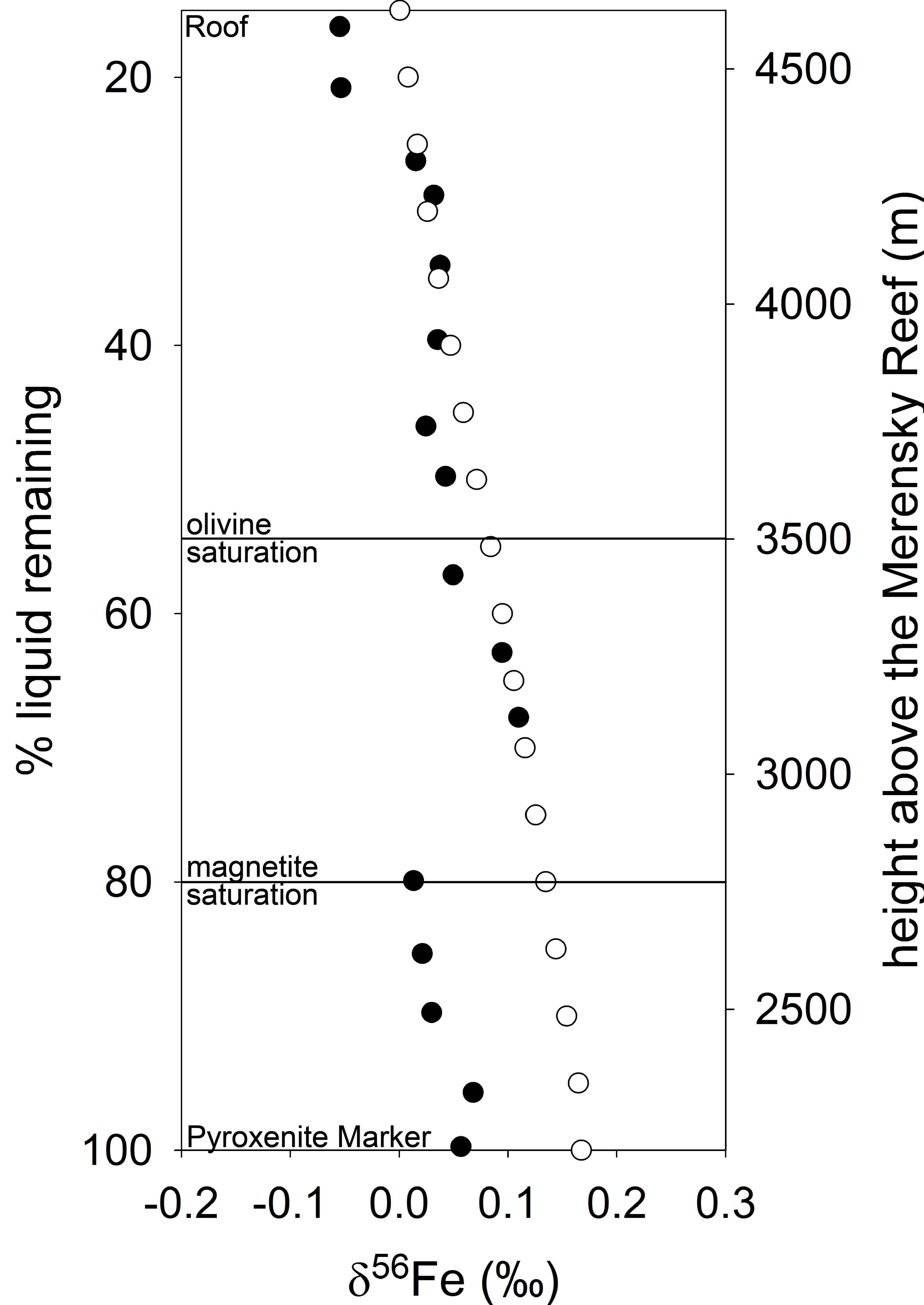




Figure 4.

Predicted δ^{56} Fe evolution of liquid and whole rock throughout UUMZ

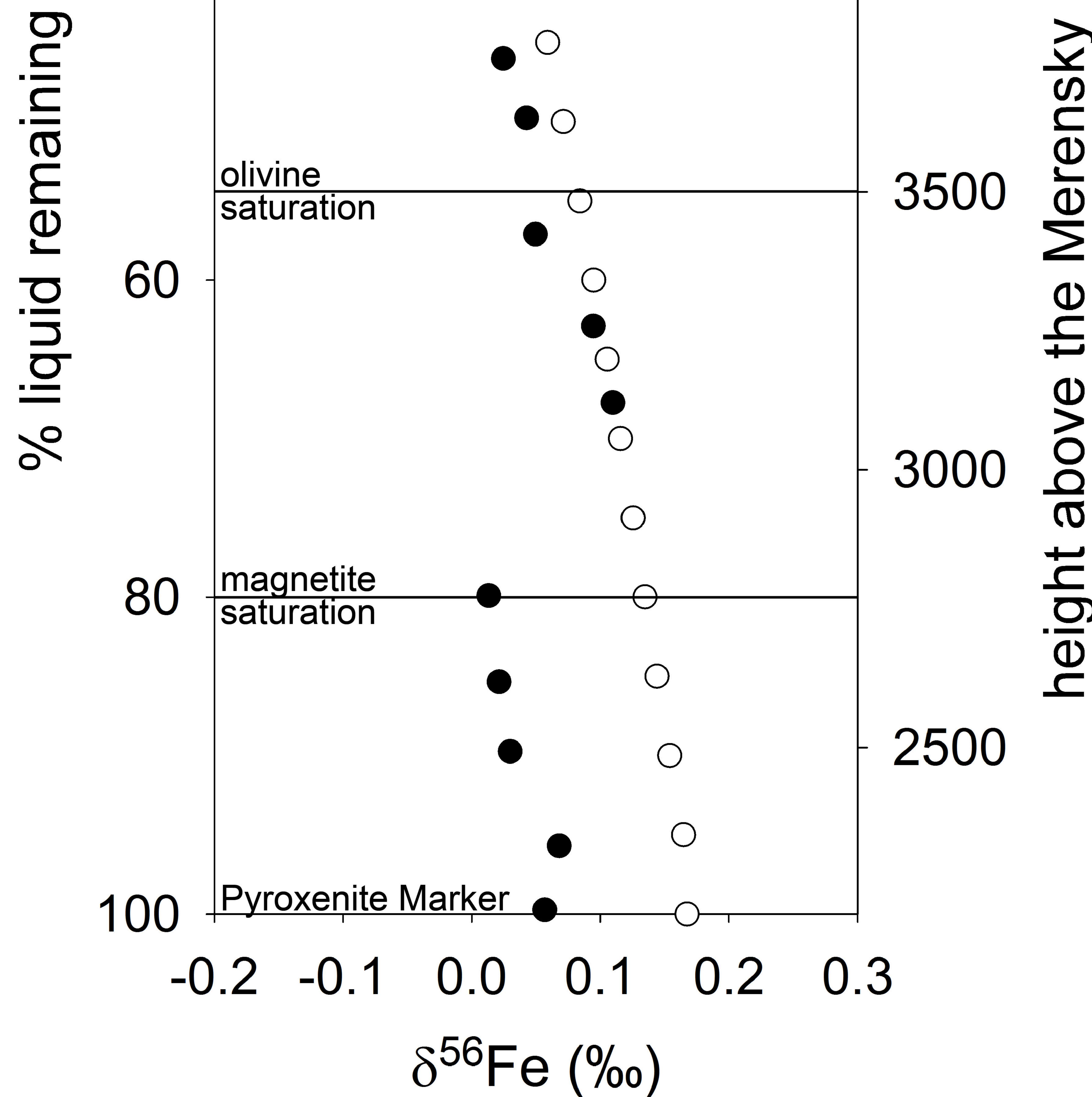


Figure 5.

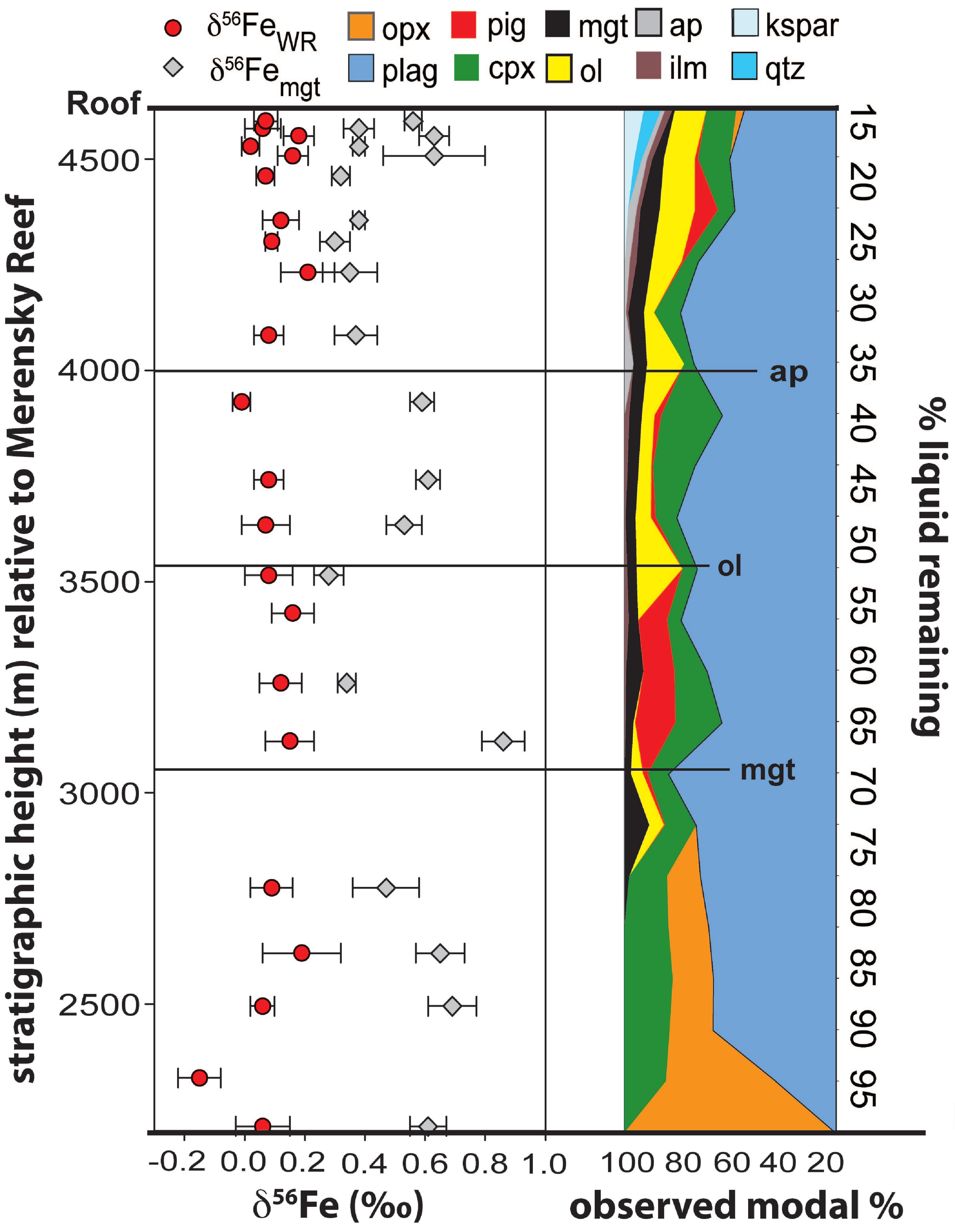
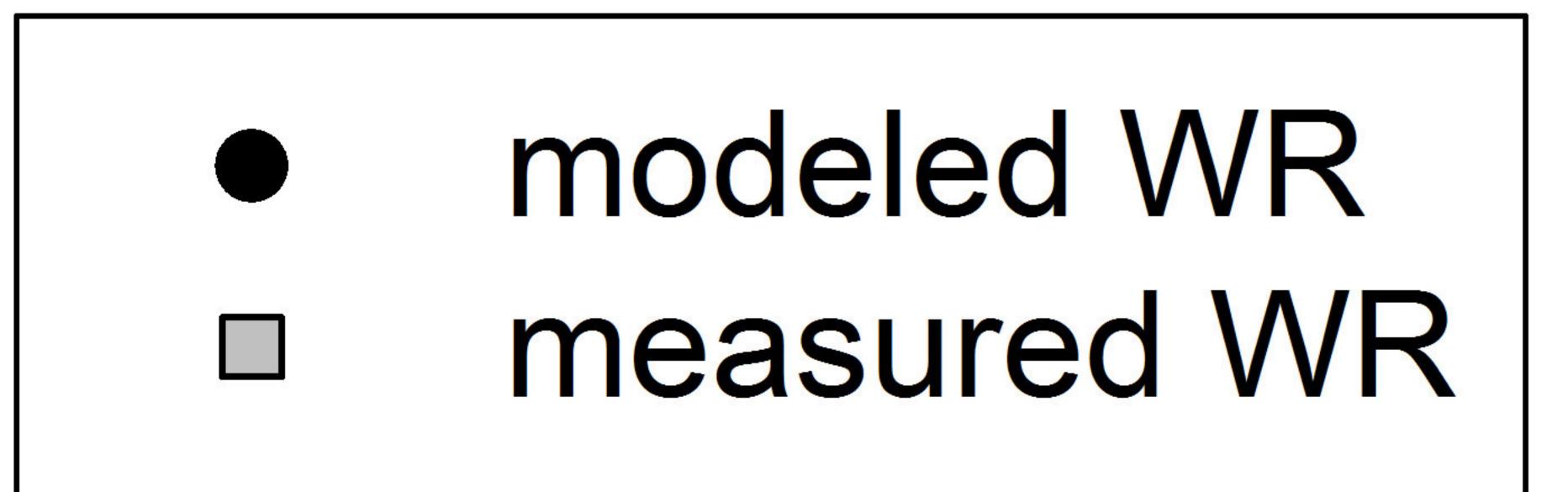
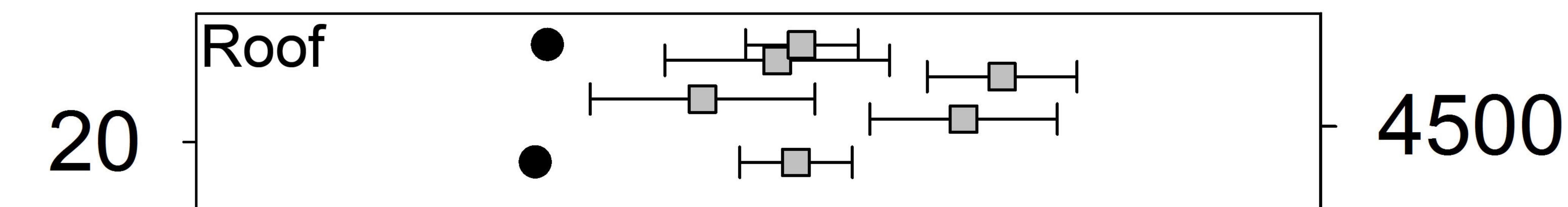




Figure 6.

Modeled and measured δ^{56} Fe evolution of whole rock throughout the UUMZ

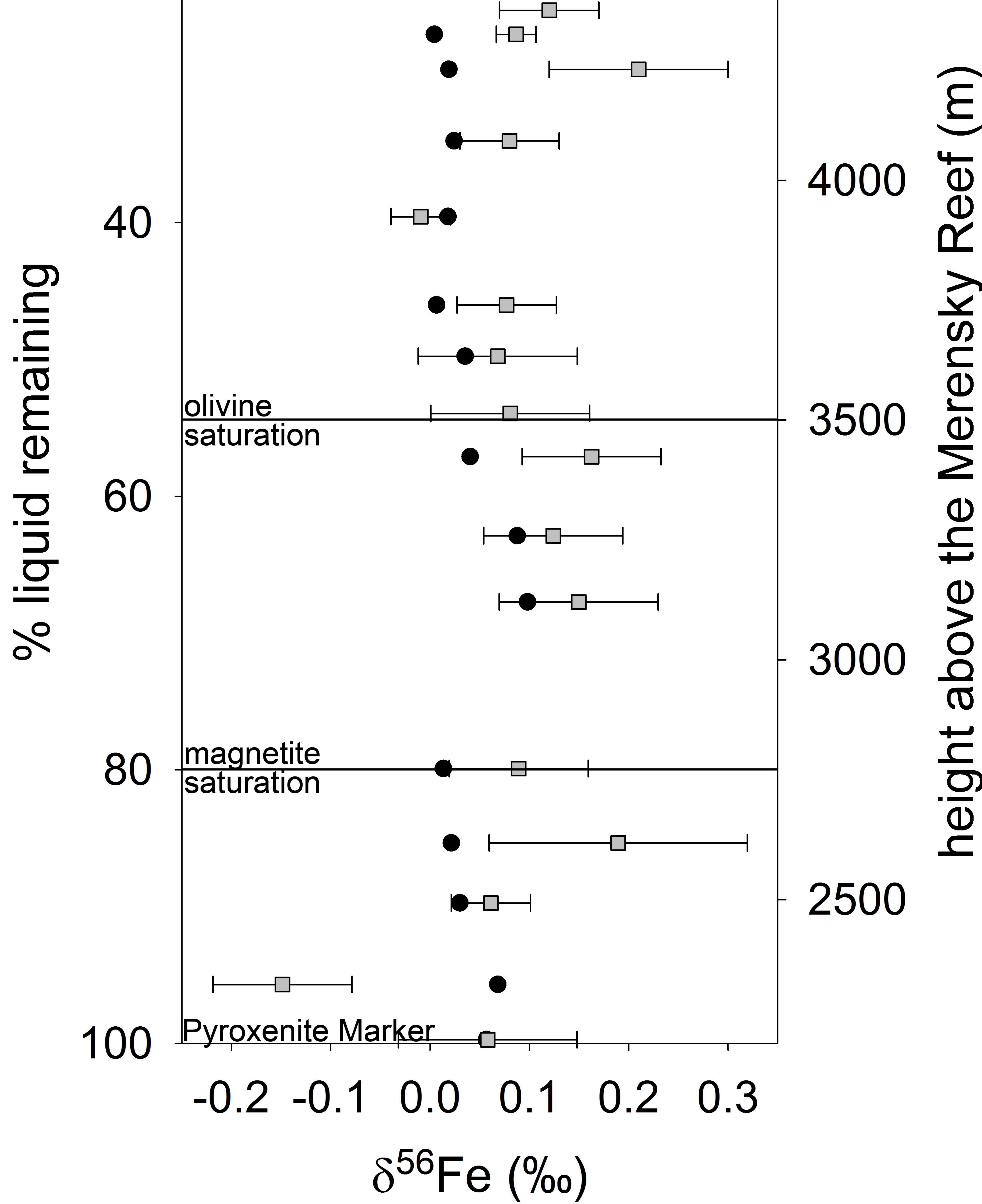
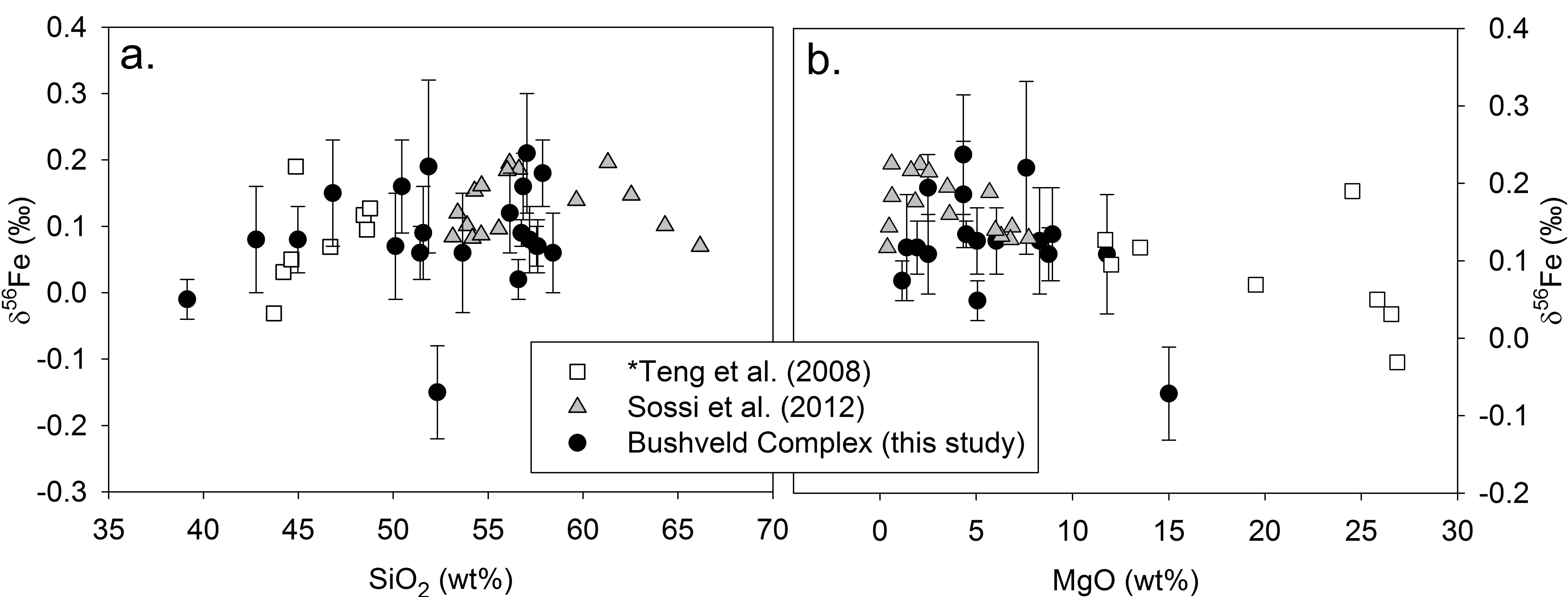



Figure 7.

% liquid remaining	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15
Equivalent strat. height	2202.5	2345	2487.5	2630	2772.5	2915	3057.5	3200	3342.5	3485	3627.5	3770	3912.5	4055	4197.5	4340	4482.5	4625
Projected modes																		
Plagioclase	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
Orthopyroxene	0.312	0.278	0.244	0.210	0.176	0.143	0.109	0.075	0.041	0.007	0	0	0	0	0	0	0	0
Clinopyroxene	0.158	0.192	0.226	0.260	0.294	0.327	0.361	0.395	0.429	0.245	0.240	0.227	0.215	0.203	0.190	0.178	0.166	0.153
Olivine	0	0	0	0	0	0	0	0	0	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Magnetite	0	0	0	0	0.004	0.012	0.021	0.029	0.037	0.045	0.054	0.062	0.070	0.078	0.087	0.095	0.103	0.111
Ilmenite	0	0	0	0	0.002	0.006	0.010	0.014	0.018	0.023	0.027	0.031	0.035	0.039	0.043	0.047	0.051	0.055
Fe content of each phase	(FeO phase/	FeO WR)																
Plagioclase	0.067	0.057	0.049	0.042	0.037	0.032	0.028	0.024	0.021	0.019	0.016	0.014	0.012	0.010	0.009	0.007	0.006	0.005
Orthopyroxene	2.315	2.228	2.158	2.101	2.053	2.013	1.978	1.948	1.921	1.898	1.877	1.858	1.841	1.826	1.812	1.799	1.788	1.777
Clinopyroxene	0.526	0.604	0.666	0.718	0.761	0.797	0.828	0.855	0.879	0.900	0.919	0.936	0.951	0.964	0.977	0.988	0.999	1.008
Olivine	0	0	0	0	0	0	0	0	0	2.665	2.713	2.756	2.794	2.829	2.861	2.890	2.917	2.941
Magnetite	0	0	0	0	7.783	7.192	6.685	6.245	5.859	5.518	5.215	4.943	4.698	4.476	4.275	4.090	3.921	3.765
Ilmenite	0	0	0	0	4.501	4.160	3.866	3.612	3.388	3.191	3.016	2.859	2.717	2.589	2.472	2.365	2.268	2.178
856Fe of each phase (calc	ulated)																	
Liquid	0.168	0.165	0.154	0.144	0.135	0.126	0.116	0.106	0.096	0.086	0.074	0.063	0.052	0.042	0.033	0.025	0.018	0.012
Plagioclase	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Orthopyroxene	0.060	0.054	0.041	0.027	0.014	0.001	-0.012	-0.027	-0.041	-0.057	-0.074	-0.091	-0.108	-0.125	-0.141	-0.156	-0.171	-0.185
Clinopyroxene	0.060	0.054	0.041	0.027	0.014	0.001	-0.012	-0.027	-0.041	-0.057	-0.074	-0.091	-0.108	-0.125	-0.141	-0.156	-0.171	-0.185
Olivine	0.125	0.121	0.109	0.097	0.087	0.076	0.064	0.053	0.040	0.028	0.013	-0.001	-0.015	-0.028	-0.041	-0.052	-0.063	-0.074
Magnetite	0.253	0.253	0.245	0.238	0.231	0.225	0.218	0.211	0.204	0.197	0.188	0.179	0.172	0.165	0.159	0.155	0.152	0.149
Ilmenite	0.125	0.121	0.109	0.097	0.087	0.076	0.065	0.053	0.042	0.030	0.016	0.003	-0.010	-0.022	-0.034	-0.044	-0.054	-0.062
Measured Data																		
Sample name	B07-009	B06-062	B06-064	B06-065	B06-067			B07-057	B06-020*	B07-061	B06-054	B06-042	B06-039	B06-029	B07-027	B06-037	B07-036	B07-041
Strat. height	2210	2325	2495	2620	2775			3122	3260	3425	3634	3741	3925	4083	4232	4305	4460	4590
% liquid equivalent	99.74	95.70	89.74	85.35	79.91			67.74	62.89	57.11	49.77	46.02	39.56	34.02	28.79	26.23	20.79	16.23
Modes from LSQR Matla	ab (VanTong	eren et al., 20)10)															
Plagioclase	0.45	0.37	0.54	0.56	0.49	NA	NA	0.58	0.49	0.84	0.79	0.44	0.46	0.46	0.54	0.55	0.46	0.42
Orthopyroxene	0.31	0.49	0.21	0.22	0.23	NA	NA	0.14	0.19	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Clinopyroxene	0.22	0.13	0.25	0.21	0.26	NA	NA	0.16	0.19	0.01	0.09	0.29	0.30	0.10	0.05	0.06	0.16	0.20
Olivine	0.00	0.00	0.00	0.00	0.00	NA	NA	0.00	0.00	0.00	0.05	0.17	0.12	0.24	0.23	0.22	0.24	0.19
Magnetite	0.00	0.00	0.00	0.00	0.00	NA	NA	0.08	0.09	0.04	0.04	0.03	0.06	0.07	0.07	0.07	0.00	0.02
Ilmenite	0.00	0.00	0.00	0.00	0.00	NA	NA	0.02	0.01	0.02	0.02	0.04	0.04	0.04	0.04	0.04	0.05	0.04
Modeled Whole Rock Fe	Isotope Con	position baes	d on Observe	ed Modes and	Calculated L	iquid Comp	osition											
Whole Rock §56Fe	0.06	0.07	0.03	0.02	0.01	NA	NA	0.10	0.09	0.04	0.04	0.01	0.02	0.02	0.02	0.00	-0.07	-0.06
									*This is the n	node of B06-0	21.							

position relative to the Merensky Reef (m)	Sample Number	Latitude (S) ²	Longitude (E) ²	Equivalent % liquid remaining	δ^{56} Fe _{WR} (‰)	2σ	$\delta^{56} \mathrm{Fe}_{\mathrm{magnetite}}$ (‰) ¹	$2\sigma^1$	Lithology
2210	B07-009	24°51.778'	29°58.114'	99.74	0.06	0.09	0.61	0.06	gabbro
2325	B06-062	24°51.778'	30°01.770'	95.70	-0.15	0.07	NA	NA	gabbro
2495	B06-064	24°51.851'	30°01.842'	89.74	0.06	0.04	0.69	0.08	gabbro
2620	B06-065	24°51.858'	30°01.565'	85.35	0.19	0.13	0.65	0.08	gabbro
2775	B06-067	24°51.917'	30°01.398'	79.91	0.09	0.07	0.47	0.11	gabbro
3122	B07-057	24°48.985'	29°58.275'	67.74	0.15	0.08	0.86	0.07	gabbro
3260	B06-020	24°48.974'	29°58.149'	62.89	0.12	0.07	0.34	0.03	gabbro
3425	B07-061	24°48.914'	29°57.798'	57.11	0.16	0.07	NA	NA	anorthosite
3515	B06-024	24°48.910'	29°57.711'	53.95	0.08	0.08	0.28	0.05	troctolite
3634	B06-054	24° 48.763'	29°57.186'	49.77	0.07	0.08	0.53	0.06	gabbro
3741	B06-042	24°48.776'	29°57.036'	46.02	0.08	0.05	0.61	0.04	gabbro
3925	B06-039	24°48.857'	29°56.833'	39.56	-0.01	0.03	0.59	0.04	gabbro
4083	B06-029	24°48.895'	29°56.650'	34.02	0.08	0.05	0.37	0.07	troctolite
4232	B07-027	24°49.072'	29°56.433'	28.79	0.21	0.09	0.35	0.09	diorite
4305	B06-037	24°48.747'	29°56.407'	26.23	0.09	0.02	0.30	0.05	diorite
4355	B06-055	24°51.874'	29°54.756'	24.47	0.12	0.06	0.38	0.02	diorite
4460	B07-036	24°51.845'	29°54.607'	20.79	0.07	0.03	0.32	0.03	diorite
4508	B07-037	24°51.827'	29°54.550'	19.11	0.16	0.05	0.63	0.17	diorite
4530	B07-038	24°51.823'	29°54.519'	18.33	0.02	0.06	0.38	0.02	diorite
4555	B07-039	24°51.800'	29°54.488'	17.46	0.18	0.04	0.63	0.05	diorite
4573	B07-040	24°51.794'	29°54.465'	16.82	0.06	0.06	0.38	0.05	diorite
4590	B07-041	24°51.829'	29°54.430'	16.23	0.07	0.03	0.56	0.03	diorite

Table 2. δ^{56} Fe values from whole rock and magnetite analyses with associated 2σ and lithology of the accompanying unit. Stratigraphic

¹NA indicates that not enough pure magnetite could be separated from the sample for Fe isotope analysis.

²GPS coordinates form VanTongeren et al. (2010), VanTongeren and Mathez (2012) and VanTongeren and Mathez (2013).