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Key Points.

◦ Irregularity length scales are determined from single GPS station total

electron content.

◦ Kilometer scale irregularities were detected along the poleward edge of

the storm enhanced density plume and into the trough.

◦ Kilometer scale irregularities were not detected on the equatorward gra-

dient or within the storm enhanced density plume.

Abstract.4

Kilometer-scale density irregularities in the ionosphere can cause ionospheric5

scintillation — a phenomenon that degrades space-based navigation and com-6

munication signals. During strong geomagnetic storms, the mid-latitude iono-7

sphere is primed to produce these ∼1-10 km small-scale irregularities along8

the steep gradients between mid-latitude storm enhanced density (SED) plumes9

and the adjacent low-density trough. The length scales of irregularities on10

the order of 1-10 km are determined from a combination of spatial, tempo-11

ral, and frequency analyses using single-station ground based Global Posi-12

tioning System Total Electron Content (TEC) combined with radar ion ve-13

locity measurements. Kilometer-scale irregularities are detected along the bound-14

aries of the SED plume and depleted density trough during the 17 March15

2015 geomagnetic storm, but not equatorward of the plume or within the16

plume itself. Analysis using the Fast Fourier Transform (FFT) of high pass17

filtered slant TEC suggests that the kilometer-scale irregularities formed near18

the poleward gradients of SED plumes can have similar, intensity and length19
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scales to those typically found in the aurora, but are shown to be distinct20

phenomena in spacecraft electron precipitation measurements.21
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1. Introduction

The small-scale (∼1-10 km) density structure of the storm-time, mid-latitude ionosphere22

is a crucial observation in understanding the space weather effects on key space-based in-23

frastructure and especially communication and navigation systems. Though these systems24

are generally unaffected by the mid-latitude ionosphere, there can be significant techno-25

logical impacts during strong geomagnetic storms. Geomagnetic storms have been shown26

to drive structural changes in the Earth’s ionosphere that deviate dramatically from the27

typical quiet-time conditions [e.g., Foster and Rideout , 2005]. Observations of Total Elec-28

tron Content (TEC) have revealed that some of the most dramatic changes are the SED29

plumes that occur in the mid-latitude ionosphere [e.g., Foster , 1993; Kelley et al., 2004;30

Zou et al., 2013, 2014]. Storm Enhanced Density (SED) plumes and the sub-auroral po-31

larization stream (SAPS) can generate radio-disrupting ionospheric density irregularities32

[Foster and Burke, 2002; Basu et al., 2008] that produce up to 20 dB signal fade at the33

Global Positioning System (GPS) L1 (1575 MHz) frequency and scintillations in HF and34

VHF communications [Basu and Groves , 2001; Ledvina et al., 2002; Seo et al., 2011]. Steep35

density gradients along the plumes’ edges can produce a cascade of small-scale density ir-36

regularities and subsequently, a potentially worsening scintillation environment for Global37

Navigation Satellite Systems (GNSS) such as GPS, and space-based communication users.38

Small-scale variations (or irregularities) in ionospheric electron density corresponding to39

the Fresnel radius of radio frequencies — between 100 MHz - 3 GHz for a receiver on the40

ground — can have dramatic impacts on space-based systems operating in this frequency41

range [Datta-Barua et al., 2014; Doherty et al., 2004; Datta-Barua et al., 2003].42
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This paper will demonstrate, through a case study into the geomagnetic storm of 1743

March 2015, a proof-of-concept for the detection and characterization of small-scale (∼1-44

10 km) irregularities from a single GPS TEC station (located in Ann Arbor, Michigan —45

42.29 ◦ N, -83.71◦ E Geodetic, 53.31◦ N, -10.34◦E CGM). When combined with coherent46

high frequency (HF) and incoherent scatter radar (ISR) ion velocities, the irregularity47

length scales can be inferred. Further, using publicly available TEC maps from the MIT48

Madrigal Archival Database to plot the location of the single station TEC measurements49

places these observations in context of the broader SED plume background system. These50

are the first observations of mid-latitude kilometer-scale irregularities during a SED event51

to identify length scales from single-station GPS TEC.52

1.1. Background

The origins of kilometer-scale irregularities at mid-latitudes owe to three potential53

sources. In the first, spatially structured and temporally variable particle precipitation54

produces localized small-scale structure in the E and F regions of the auroral zone. [Schunk55

and Nagy , 2009]. In the second, it has been suggested that small-scale irregularities are56

generated near the SED plume by a horizontal Rayleigh-Taylor instability (also known as57

the gradient drift instability) caused by the motion of lower density plasma moving into the58

density gradient. This condition becomes unstable when (E×B) · ∇n > 0 [Simon, 1963;59

Sun et al., 2013]. Finally, in the third, velocity shear instability (Kelvin-Helmholtz) may60

play a role in generating small-scale irregularities at the interface between fluids of differ-61

ent densities [Hargreaves , 1992], such as in the case of the SED/SAPS boundary. Although62

the physics underpinning the formation of small-scale irregularities is well understood, the63

complexity of the storm-time mid-latitude ionosphere demands further observation and64
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characterization of its density structure at all scales to improve our understanding of the65

typical formation and evolution of storm-time small-scale irregularities and the potential66

for mid-latitude radio scintillation. This paper describes a method for detecting small-67

scale density irregularities using spectral analysis (Fast Fourier Transform) of GPS TEC68

observations from a single ground station. While simultaneously “zooming-out” to see69

the location of the single station measurements in the broader (1000 km) context of the70

SED plume system.71

Mid-latitude irregularities and scintillation have been a subject of study for several72

decades. An early investigation by Bramley and Browning [1978], over a twelve-month73

period, analyzed the spectral composition of VHF scintillation near Slough, in Berkshire,74

England (48.4◦ N and 79.3◦ E CGM). Using spaced, arial antennas to measure amplitude75

fluctuations from the interaction between a geostationary satellite signal and ionospheric76

irregularities. They were able to infer both the irregularity size and approximate orienta-77

tion from the ground diffraction pattern. The irregularities they observed had character-78

istic spatial scales ranging from 180 m to 2 km and found no correlation of the occurrence79

of these irregularities with geomagnetic activity — suggesting their observations were not80

of storm related effects.81

The stormtime effects of SED have been extensively described in the literature over82

the past decade. Doherty et al. [2004] established a connection between SED gradients83

and disruption of the Federal Aviation Administration’s (FAA) Wide-Area Augmentation84

System (WAAS) during the October/November 2003 “Halloween Storms”. During those85

events, the WAAS vertical navigation (VNAV) system was inoperable for more than 2886

hours over a two day period. Similarly, Basu et al. [2008] looked at a geomagnetic storm87
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7-8 November 2004 with a minimum Kyoto Disturbance Storm Time index (Dst) of -39488

nT. They observed mid-latitude GNSS disruption due to irregularities from an expanding89

auroral oval and nightime sub-auroral polarization stream (SAPS) flow. Datta-Barua90

et al. [2014] also described the the impact on the WAAS during 24-25 October 201191

and 9 October 2012 geomagnetic storms that included reduced service coverage over the92

continental United States lasting several hours and anomalous receiver tracking due to93

ionospheric scintillation.94

Coster [2007] first reported the impact of TEC variability on the performance of key95

infrastructure, including WAAS, and specifically the impact of TEC gradients. Using96

observations of GPS tracks crossing SED plumes, Coster [2007] observed the TEC gra-97

dients near SED plumes can exhibit differing degrees of variability and even between the98

poleward and equatorward gradients. The nature and specific irregularity length scales of99

such crossings remains an open research area.100

Another study by Sun et al. [2013] analyzed the formation of irregularities associated101

with North American SED plumes during geomagnetic storms on 31 March 2001 (Dst = -102

387 nT) and 30 October 2003 (Dst = -383 nT). In their study, the presence of irregularities103

was indicated in TEC maps with 0.5◦ x 1.0◦ resolution using a 30 s rate of TEC (ROT)104

and the ROT index (ROTI) formulated by Pi et al. [1997] at each grid point. ROT and105

ROTI are defined as the differential vertical TEC (VTEC) between time steps converted106

to TEC units per minute (TECU/min), where a TECU = 1×1016 electrons m−2, and the107

standard deviation of the ROT over a specified time interval — commonly 5 minutes. Sun108

et al. [2013] observed that irregularities were most present along the poleward boundary of109

the SED — along the low density trough — and that the irregularity intensity increased110
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with steepening TEC gradients in some cases. They concluded that the formation of111

irregularities appeared to depend on both steep TEC gradients and strong ion drifts112

(1-2 km s−1) as favorable conditions. However, while they identified the presence of113

irregularities and the gradients associated with ROTI, they did not specify the length-114

scale of irregularities present in each grid cell.115

Previously, characteristic sizes of mid-latitude small-scale irregularities associated with116

SED plumes have been inferred from amplitude scintillation measurements at a fixed117

point [Basu et al., 2008] and van der Meeren et al. [2014] used similar methodology to118

that presented here to identify irregularities in 50 Hz GPS phase data detrended with119

fourth-order polynomial fit and a high-pass Butterworth filter to investigate irregularities120

at the front of a polar tongue of ionization on 31 October 2011. They found phase121

variations at spatial scales from 100 m to 5 km using spectrograms and estimates of TOI122

drift speed from arrival time of the Tongue of Ionization at two European Incoherent123

Scatter (EISCAT) Radar antennae.124

To date, there have been no such studies inferring the spatial scale of kilometer-scale125

irregularities associated with mid-latitude SED plumes from single station GPS TEC126

using multiple GPS IPPs in an SED plume system. This paper describes the detection127

and length-scale estimation of irregularities associated with the mid-latitude SED plume128

as it moves over the GPS receiver during the 17 March 2015 geomagnetic storm.129

1.2. The 2015 St. Patrick’s Day Storm

On 17 March 2015, the Earth experienced a G4 “severe” geomagnetic storm on the Na-130

tional Oceanic and Atmospheric Administration (NOAA) geomagnetic storm scale [Love131

and Rigler , 2015]. At 04:45 UTC, the Kyoto Dst indicated a 55 nT enhancement of the132
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horizontal geomagnetic field which is characteristic of a sudden storm commencement.133

The storm reached the peak of its main phase around 19:00 UTC with minimum mag-134

netic field disturbances: Kyoto Provisional Dst = -223 nT and Sym H = -234 nT. Over135

the period between 16 March 2015 and 19 March 2015, the NOAA Planetary K-index136

(Kp) was greater than 5 for 48 of 72 hours and Kp = 8 for a total of 9 hours during the137

main phase of the storm. Meanwhile, throughout 17 and 18 March, the NOAA reported138

K-index reached Kp≥ 7 on four of twenty-four 3-hour periods and above 5 during sixteen139

periods. A SED plume was observed in the MIT Madrigal TEC map during the North140

American afternoon/dusk period on 17 March (shown in Figure 1). The SED plume be-141

gan in a region of enhanced TEC (the SED base) that was poleward and distinct from the142

TEC peaks of the enhanced equatorial anomaly. The plume extended to the northwest143

across the Great Lakes region and toward the noontime cusp. A low-density, mid-latitude144

trough is also visible in Figure 1, while the auroral oval extended as far south as 39◦
145

geographic latitude at 23:17 UT (inferred from Figure 6 and discussed in section 3.5).146

The Dst minimum was reached at approximately 23:00 UT. This paper includes obser-147

vations from a single GPS station in Ann Arbor, Michigan: ANNA (42.29 N, -83.71 E148

Geodetic; 53.31 N, -10.34 E CGM), during the end of the main phase and the beginning149

of the recovery phase between 20:00 UT 17 March 2015 and 23:57 UT 18 March 2015.150

The availability of high rate (1 Hz) TEC is rare within this region for this time. Of151

the few stations within 250 km of Ann Arbor that have 1 Hz data available during this152

event, two Canadian stations, ALGO (45.96 N -78.07 E GEO, 56.74 N -2.57 E CGM) and153

NRC1 (45.454 N -75.62 E GEO, 56.04 N 0.97 E CGM), do have 1 Hz data for this time,154

but are too high in latitude and too far ahead in local time relative to the SED plume155
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to distinguish between auroral precipitation and plume generated irregularities and are156

therefore not used. Within 1000 km, there are six stations in the UNAVCO database with157

1 Hz data rates. Stations in Ames, IA (AMES: 41.98 N -93.68 E GEO, 52.58 N -25.37158

E CGM) and near St. Clairsville, PA (P817: 40.14 N -78.51 E GEO, 52.59 N -3.51 E159

CGM) were analyzed using the the same methods described in Section 2 of this paper160

and produce similar results to the data observed at ANNA in terms of general trend, but161

being 900 km west and 700 km east of ANNA respectively, they exhibit the expected162

localized differences in density structure >10 km. This suggests that for the purpose of163

this study, ANNA is representative of the available 1 Hz GPS TEC data for this event.164

2. Methodology

Kilometer-scale irregularities are identified near the SED plume using multiple line-of-165

sight GPS TEC measurements from a single GPS receiver. Slant TEC (STEC) from each166

GPS satellite/receiver pair was measured at 1 Hz using a Trimble NetR9 dual-frequency167

GPS receiver, and pseudo random noise (PRN) codes — assigned 1-32 to each of the cur-168

rently operational GPS spacecraft — are used to identify individual satellites and their169

associated Ionospheric Pierce Points (IPP). IPP are defined as the point of intersection170

between a GPS signal path and the altitude of the ionospheric F-peak, which is approxi-171

mated as a spherical shell at 300 km altitude. TEC is derived from the differential (GPS172

L1 and L2 frequencies) P-code pseudorange and the carrier phase. The two-frequency dif-173

ferential carrier phase measurement allows precise measurement of the carrier phase delay174

while the PRN code pseudorange is used to resolve the cycle ambiguity inherent to the175

carrier phase measurements. The STEC is converted to the local vertical TEC (VTEC)176

at the IPP using a spherical mapping function. A post-processing elevation mask of 20◦
177
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is applied to reduce errors from the vertical mapping function and obstructions near the178

horizon. The STEC data are then filtered using a tenth-order Butterworth high pass179

filter shaped with stop and pass frequencies at 30 and 100 mHz respectively. The filter’s180

frequency and forward phase response are shown in the top panel of Figure 2. The filter181

is designed to suppress the low-frequency background density structure in STEC while182

maintaining higher frequency power from smaller fluctuations. It is also designed to min-183

imize phase shifts and the filter function was convolved with the data both forward and184

backward to further cancel phase changes to the filtered signal. The unfiltered and filtered185

STEC are shown in the bottom panel of Figure 2.186

The Discrete (Fast) Fourier Transform (FFT) of the filtered STEC for each PRN was187

computed in a sliding five-minute window advanced in ten seconds increments. The188

sliding five-minute window (300 samples, 290 overlap) was chosen as a balance between189

three factors: first, to achieve a sufficient number of samples to resolve spectra with a190

resolution of at least 0.1 Hz; second, to maintain a sufficiently short IPP track (∼15 km)191

so that the resulting spectra can be attributed to a specific location within the SED plume192

system (e.g. a gradient crossing) and third, to take advantage of the maximum temporal193

resolution available from the TEC maps which are updated every five minutes.194

Additionally, to ensure a consistent number of samples between PRN in each FFT in-195

terval, measurements of PRN that were visible less than 90% of the interval were excluded196

from analysis.197

Finally, by combining the FFT spectra with the radar velocity measurements, including198

those shown in Figure 1, the length-scales of small-scale variability can be estimated.199

Millstone Hill radar measures the ion drift velocity during azimuthal scans looking at 6◦
200
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elevation toward the west and observes the ionosphere at a height of ∼300 km above the201

Ann Arbor viewing area. Several mid-latitude SuperDARN radars (Blackstone, Christmas202

Valley East, Fort Hays East, and Wallops Island) also measure ion velocity in this region.203

If it is assumed that irregularities are frozen-in with the background plasma flow (as204

has been suggested by [e.g., Yeh and Liu, 1982]), and the IPP velocity vipp <<vion,205

(vipp ∼50 m s−1), then the FFT power at various frequencies can reasonably be attributed206

to irregularities of certain length scales being transported past the relatively stationary207

IPP at the ion velocity. Consider the simplified scenario: discrete and uniformly-spaced208

boxcar irregularities passing a nearly stationary IPP produce a periodicity in the slant209

TEC data that is revealed in the FFT frequency domain. Therefore, if the irregularity210

velocity is known (which is assumed to be with the background ion velocity), then the211

irregularity length-scale can be estimated by Lirr ≈ vion/fFFT . Uncertainty introduced212

by the IPP velocity contributes only at most a shift in the frequency spectra of ∼0.005213

Hz within the 0 - 0.5 Hz Nyquist window.214

Unlike methods that measure signal amplitude to detect ionospheric variability and215

scintillation at that signal frequency, this method can be used to detect irregularities of216

multiple length-scales and is limited only by the TEC sample rate. The case presented217

here uses TEC sampled at 1 Hz. Future studies will extend this approach to sample rates218

of 20 Hz and higher to include smaller length scales and expand to include multiple GPS219

TEC stations.220

The single station TEC measurements and analysis are put compared and contextual-221

ized in the broader SED plume system using multi-station GPS TEC maps downloaded222

from the MIT Madrigal archival site at Millstone Hill, MA. The location of the Ann Ar-223
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bor station IPP tracks are then superimposed on the MIT Madrigal TEC map. The MIT224

Madrigal Database provides global maps of TEC on a 1◦ × 1◦ spatial grid updated every225

five minutes. The maps are fitted to a 1/6◦ x 1/6◦ subgrid mesh using bi-cubic spline226

interpolation — a common image sharpening technique. The interpolated map clarifies227

the locations and boundaries of the SED plume, through, and auroral enhancement so228

that the location of the IPPs from the single-station data can be plotted on the map and229

categorized by their location within the SED plume system. However, since interpolation230

cannot add information, the location of structural dimensions appearing less than a degree231

in scale, such as the plume boundary’s thickness, is uncertain using the TEC map data232

alone, however TEC structures with dimensions larger than a degree (e.g. the line of the233

plume boundary, 10-20◦ lon. in scale), are reliably defined using this technique. Definitive234

boundary crossings of each IPP are confirmed using the direct measurement Ann Arbor235

single station TEC time series.236

While the Madrigal TEC maps provide the background density structure spatial scales237

on the order of the SED plume system (100-1000 km), the Ann Arbor STEC data provide238

measurements a of the density structure on much smaller (<100 km) spatial and temporal239

scales. GPS IPP tracks for the Ann Arbor receiver are calculated from the precise GPS240

satellite ephemeris, provided by the International GNSS Service (IGS) and the NASA Jet241

Propulsion Laboratory (JPL) in Standard Product-3 (.SP3) format, and are superimposed242

onto the TEC maps to illustrate where the small-scale STEC measurements were made243

relative to the background SED plume density structure.244

One of the interesting, and perhaps counter-intuitive, aspects of the Earth-fixed TEC245

maps is the apparent southwestward motion of the SED plume through the observation246
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area. This is due to two factors: 1) at mid-latitudes, the SED plume is connected to the247

plasmaspheric convection flow and does not co-rotate with the Earth. A consequence of248

this is that, in the Earth-fixed inertial frame, the Earth rotates underneath the plume249

— giving the impression of a westward moving plume. 2) the plasma within the plume250

is convecting to the northwest from a broader base region and is angled relative to the251

Earth’s eastward rotation. This means that what appears in figures to be a southward252

component in the motion of the plume is actually due to the Earth rotating under a253

broader region of the plume near the SED base region.254

An animation (Dynamic Figure 1) encompassing the period from 20:00 UT to 23:57255

UT 17 March 2015 to combines single station VTEC time series, sliding FFT, and MIT256

Madrigal TEC maps into three panes. Each of the animation’s three panes are synchro-257

nized with the five-minute TEC map update and IPP track. Since the IPP move at about258

50 m s−1, a five-minute window covers ∼15 km and the IPP tracks appear as short line259

segments overlaid in the mapping pane. The VTEC time series and FFT are updated260

more frequently — corresponding to the ten-second sliding FFT window. A gray vertical261

bar superimposed on the VTEC time series illustrates the period of the FFT interval.262

Meanwhile, the Madrigal TEC map is updated when the leading edge of the FFT win-263

dow is at the mid-point between five-minute map update intervals. This ensures that the264

displayed map best represents the background against which the single station TEC FFT265

was computed.266

In addition to GPS TEC observations, observations from the Defense Meteorological267

Satellite Program (DMSP) and the Active Magnetosphere and Planetary Electrodynam-268

ics Response Experiment (AMPERE) are used to locate regions of auroral precipitation.269
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DMSP measures vertical electron and ion fluxes while AMPERE estimates the hemi-270

spherical polar radial field-aligned current density derived from reduced magnetic field271

perturbation data from the Iridium satellite constellation. The DMSP and AMPERE ob-272

servations are used here to estimate the location of the auroral oval’s equatorward bound-273

ary in order to delineate between the density irregularities and enhancements caused by274

aurora and those associated with the SED plume.275

3. Observations

The SED plume is clearly visible from VTEC data in the observation area beginning276

around 20:00 UT. Figures 3-6 show results from key intervals, 20:40, 22:00 23:00, and277

23:20 UT, during the SED plume’s passage over the Ann Arbor observation area. Each of278

these figures contains: Left: the track of IPPs in relation to the SED plume, Right Top:279

the VTEC time series, and Right Bottom: the 5-minute STEC FFT. Observations for the280

entire period of 20:00 UT 17 March 2015 to 00:00 UT 18 March 2015 are contained in the281

supplemental animation.282

3.1. 20:00 to 20:45 UT, Entering the SED Plume

During the period from 20:00 to 20:45 UT, the SED plume’s equatorward edge and283

density peak passed over Ann Arbor (Figure 3). Overall, VTEC measurements from284

PRN IPPs that tracked equatorward of the SED plume were comparable to quiet time285

levels, and those that tracked near or inside the plume showed VTEC that was elevated286

above quiet time levels with minimal increased variability seen in the VTEC time series.287

For example, PRN 3, shown in bright green in Figure 3, has an IPP that remained ahead288

of the plume’s advancing equatorward edge and showed smooth and relatively constant289
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VTEC values with little FFT power above 100 mHz. By contrast PRN 16 (purple), which290

tracked poleward into the plume, showed smooth, but increasing VTEC. Around 20:37,291

as it traveled > 1◦ equatorward of the plume’s equatorward edge, PRN 3 exhibited an292

increase in FFT power just above 100 mHz, though there were no variations observed at293

other frequencies or in the VTEC times series. PRN 23 (light blue) and PRN 31 (black)294

were first observed inside the plume and near its equatorward edge (not shown). PRN295

23 was located in the narrower, westward portion of the plume at -86◦ E, while PRN 31296

was located to the east (near -81◦ E) and closer to the SED base region. Both exhibited297

elevated VTEC, although PRN 23 was initially ∼7 TECU lower than PRN 31. Between298

20:00 and 20:45, the plume moved so that both PRN 23 and 31 were tracking across the299

plume. PRN 23 VTEC increased steadily, though with persistent small-scale variations300

and a slight increase in FFT power just above the noise floor at ∼0.005 TECU2 Hz−1 near301

100 mHz at 20:20 UT — corresponding to its crossing into a large-scale bite-out in VTEC302

along the SED plume’s poleward edge. PRN 31 VTEC held at a consistent 26-27 TECU303

and exhibited small variations in the VTEC time series, but these did not significantly304

affect the FFT power spectra (<0.005 TECU2 Hz−1) . PRN 31 also tracked between some305

of the plume’s 1-2◦ lon. high density structures visible in the VTEC map — suggesting a306

possible explanation for its near constant VTEC.307

3.2. 20:45 to 21:20 UT, Longitudinal Asymmetries and Inside the Plume

At 20:45, the plume crossed the PRN 9 IPP which tracked parallel to the plume’s308

poleward edge. It registered an increase of 5 TECU accompanied by a slight increase309

in FFT power just above 0.005 TECU2 Hz−1 around 100 mHz upon entering the plume310

before it was again crossed by the plume’s poleward edge, when it recorded a drop in311
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VTEC of ∼15 TECU and exhibited rapid fluctuations in VTEC of ∼3-5 TECU with312

periods of 5-10 minutes through the decrease. These decreases were accompanied by FFT313

power of 0.04 TECU2 Hz−1 between 100 and 300 mHz. PRN 31 was observed along a314

similar path along the plume’s poleward edge, though further east — near -80◦ E. VTEC315

for PRN 31 was 5 TECU less than PRN 9, but registered a comparable decrease in VTEC316

after crossing the plume’s edge. However, in contrast with PRN 19, the decrease exhibited317

smooth fluctuations over distances of ∼30 km, which were accompanied by a broadband318

increase in FFT power that continued until PRN 31 left the observation area at 21:25 UT.319

Meanwhile, PRN 16 and 23 both showed increased VTEC as they moved through the SED320

plume. PRN 23 initially continued its track inside the plume along its length, from -87◦ to321

-85◦ E and near the poleward edge. It crossed the poleward edge around 21:00 and the arc322

of its IPP track continued a southward turn that followed behind the plume’s advancing323

poleward edge. This afforded sustained observations of the plume’s poleward boundary324

which exhibited large undulations in VTEC of ∼10 TECU over periods of approximately325

ten minutes accompanied by FFT power up to 0.03 TECU2 Hz−1. PRN 16 continued326

tracking northward through the plume and toward the the poleward edge near -80◦ E.327

Instead of small-scale variations observed in PRN 23 as it crossed the plume, PRN 16328

exhibited only smooth increases in VTEC with large-scale variations of 1-3 TECU over329

∼10 km were observed, similar to PRN 23, with no observable change in FFT power until330

21:23 when it crossed the poleward edge and recorded drops in VTEC of 10 TECU over331

five minutes and FFT power up to 0.06 TECU2 Hz−1 up to 0.2 Hz.332
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3.3. 21:30 to 22:50 UT, Entering the Mid-latitude Trough

Around 21:30, the plume’s poleward edge passed over the observation area and PRN333

9,16, 23, and 31 showed sudden increases in FFT power while near the plume’s poleward334

edge — PRN 23 especially showed a large increase in FFT power >0.1 TECU2 Hz−1
335

between 100 mHz and 300 mHz during 21:50-22:00 UT (Figure 4). During this interval,336

PRN 7 (dark green), 9 (brown), and 16 (purple) were inside the low-density trough and337

also exhibited increased FFT power of ∼0.03-0.05 TECU2 Hz−1. PRN 19 and 27 were338

located entirely within the SED plume with no observable FFT power above 0.005 TECU2
339

Hz−1. At 22:30 UT PRN 7 and 9 were in the vicinity of a gradient between the340

trough and the trough minimum and, unlike the other PRN observed at this time, showed341

a small increase in FFT power >0.05 TECU2 Hz−1beginning at ∼80 mHz and extending342

as high as 300 mHz. PRN 16, 19, 23, and 27 were also within the trough — though343

either well inside the trough minimum or far away from its edge gradients and showed no344

increase in FFT power >0.005 TECU2 Hz−1.345

3.4. 22:50 to 23:30, The Mid-latitude Trough

Figure 5 shows the interval between 22:50 and 23:00 UT. Most of the observable PRN346

were located within the trough and away from density gradients near the SED plume or347

low-density trough minimum. VTEC values leveled off between 10 and 15 TECU and there348

were only minor changes in FFT power (∼0.01 TECU2 Hz−1) — mostly associated with349

PRN 9 and 16, which were approaching the observed VTEC enhancement of the auroral350

oval. PRN 23 (light blue) was the closest to the SED plume and headed equatorward,351

though still lagging behind the SED plume’s poleward edge. It recorded increasing VTEC352

as the plume’s poleward gradient crossed over it, but no FFT power was observed. PRN353
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19 (black) traversed a similar portion of the plume during this time, but moving poleward,354

and showed a steady and smooth, but slightly steeper decrease in density away from the355

plume with no FFT power changes. PRN 9 (brown) and 27 (blue) were near the trough356

region and showed a difference of ∼2 TECU between the trough’s poleward gradient357

(PRN 9) and its base (PRN 27) and their FFT spectra do not show any obvious small-358

scale variations. Meanwhile, PRN 7 (dark green) and 16 (purple) were on the poleward359

edge of the trough, near the positive gradient into a region of auroral density enhancement.360

Both IPP time series showed low VTEC (10-15 TECU), with a slight increase of ∼0.01361

TECU2 Hz−1in the FFT power for PRN 7 — likely due small-scale structure in the auroral362

enhancement.363

Figure 6 shows the interval between 23:10 and 23:20 UT. Shortly after the period shown364

in Figure 5, PRN 23 continued to track just poleward of the SED plume and showed a365

slight decrease in VTEC with some increased FFT power of 0.02 TECU2 Hz−1 near 100366

mHz. PRN 19, which had previously been parallel to PRN 23, continued its poleward367

track and traversed the low-density trough around 23:10 UT and measuring VTEC ∼5368

TECU accompanied by FFT power of 0.03 TECU2 Hz−1 at 100 mHz. PRN 9, 16, and369

27 continued to track poleward and crossed into the region of auroral enhancement and370

showed the expected increase in VTEC and strongly increased FFT power on a band371

around ∼100 mHz and extending to 350 mHz (in the case of PRN 7). PRN 7 and 30372

(violet) traverse the edges of the densest regions of the auroral enhancement. They showed373

the expected increase in VTEC from auroral ionization and also a strong increase in FFT374

power (> 0.1 TECU2 Hz−1)centered around 100 mHz, but also broad increases to 200 mHz.375

Similar observations are made through 23:30 after which VTEC decreases for most PRN376
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with amplitude fluctuations in FFT power < 0.02 TECU2 Hz−1 near 100 mHz. During377

this time PRN 11 (sea green) crossed the plumes poleward edge, but tracking northward378

from inside the plume it observed only slight increases in FFT power beginning near 100379

mHz and extending to nearly 400 mHz. This is contrasted with earlier crossings of the380

plume’s poleward edge that were closer to the tip of the plume and observed much higher381

FFT power.382

3.5. Auroral Observations

Figure 7 shows DMSP particle flux intensity at 22:00, 23:00, and 23:20 UT measured383

near the observation region. At 22:00 UT DSMP satellite F19 observed increased proton384

and electron flux at 44.4◦N, 299.8◦E geodetic (52.4◦ N, 21.4◦ E CGM), suggesting the385

auroral boundary was poleward of the SED plume within one hour of the Ann Arbor386

observation magnetic local time (MLT). AMPERE summary plots (not shown) also indi-387

cate upward radial current beginning at ∼44-45◦N geodetic latitude at Ann Arbor MLT,388

further suggesting that electron precipitation, and consequently the equatorward auroral389

boundary, began at least several degrees poleward of the SED plume’s poleward edge.390

Similarly, at 23:00 and 23:17 UT, DMSP satellites F16 and F17 both observed increased391

precipitation fluxes beginning at least ∼5◦ latitude poleward of the SED plume. Figure 6392

shows the magnetic footprint track for DMSP F17 mapped to 300 km altitude as a white393

line with the enhanced particle flux shown from Figure 7 highlighted in pink beginning394

near ∼41◦N. The period of DMSP precipitation is spatially consistent with the enhanced395

TEC observed in bot the single station TEC and MIT Madrigal TEC Maps.396
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4. Inference of Irregularity Size from Single Station GPS TEC Using Radar

Velocities

During this same period, both Millstone Hill Incoherent Scatter Radar (ISR) and the397

SuperDARN radars at Christmas Valley East, Blackstone, Fort Hays East, and Wallops398

Island (e.g., Figure 1) show ion velocities within the Ann Arbor observation area of ∼1000399

(±300) m s−1 in the F-region. Assuming the irregularities are frozen-in with the bulk ion400

flow, the increased spectral power observed in IPP crossings of the SED/trough and401

auroral/trough interfaces is consistent with what would be expected for irregularities402

between 3 km (±900 m) and 10 km (±3 km) in size transported past the IPPs at those403

velocities. The motion of the IPPs ( 50 m s−1), is nearly stationary relative to the ion404

flow and only slightly influence the observed frequency of FFT power (±10 mHz).405

5. Discussion

During the passage of the SED plume on 17 March 2015 between 20:00 and 23:57 UT406

on 17 March 2015, several general trends are observed. First, there is little observed407

TEC variation indicated in the FFT spectra equatorward of the advancing SED plume,408

along its equatorward edge, or through the plume peak. The equatorward region is best409

illustrated by observations from PRNs 3 and 32, which do not cross the SED plume and410

travel ahead of the advancing equatorward edge of the plume throughout the observation,411

and show only occasional TEC variability — comparable with FFT spectra during quiet-412

time conditions. This pattern is further reinforced by similar observations from PRN 16,413

as described in Section 3.1, which also travels through the plume system’s equatorward414

region, but crossing into the plume on a poleward trajectory while showing no FFT power415

above 0.005 TECU2Hz−1. During the entire observation, seven PRNs pass through the416
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SED plume and none exhibited FFT power above 0.005 TECU2 Hz−1 prior to crossing417

the plume’s poleward gradient. This suggests that small-scale irregularities are scarce418

equatorward of the SED plume and and that the plume itself contains few kilometer-419

scale irregularities. Second, observations near observations near the plume’s poleward420

edge exhibit TEC variation and FFT power comparable to that observed in the aurora421

(∼0.1 TECU2 Hz−1) — consistent with the variability asymmetry between equatorward422

and poleward gradients reported by Coster [2007] and Sun et al. [2013]. As the PRN423

IPPs crossed the poleward edge of the SED plume and its boundary with the trough,424

sudden decreases in VTEC were accompanied by rapid fluctuations on multiple scales as425

indicated by the VTEC time series and FFT spectra, which showed increased power up to426

0.1 TECU2 Hz−1 between 100 and 300 mHz. Minor TEC fluctuations at similar frequencies427

were also found around the edge gradients of the trough minimum, but diminished once428

the IPPs had tracked inside it. Importantly, DMSP and AMPERE observations confirm429

that GPS TEC variability observed in and around the SED plume was not due to colocated430

auroral irregularities. At both 22:00 and 23:00 UT, DMSP indicated vertical proton and431

electron fluxes beginning poleward of the SED plume respectively by four degrees latitude432

within one hour MLT to the east, and two degrees latitude directly in the observation433

area. AMPERE field-aligned-current (FAC) plots at 22:00 (not shown) also indicate434

downward FAC extending equatorward to∼44◦ geographic latitude while the SED plume’s435

poleward edge was located at ∼42◦. Finally, as the trough/auroral boundary, an increase436

in VTEC variability and the FFT spectra showed increased power 0.05 to 0.1 TECU2 Hz−1
437

around 100 mHz. This suggests the location of TEC gradients adjacent to the trough and438

colocated with high speed ion flow.439
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In their recent paper, Cherniak and Zakharenkova [2015] suggest that irregularities440

observed in the polar cap may be transported from the mid-latitude SED plume. The441

present observation and detection of small-scale irregularities associated with the SED442

plume supports this suggestion. Furthermore, observations of longitudinal asymmetries443

in TEC structure between PRN with near-simultaneous crossings of the SED plume, such444

as those described in sections 3.2 and 3.4 demonstrate that the plume exhibits ∼100 km445

scale longitudinal assymmetries in TEC variability observed at higher latitudes (45◦ -50◦
446

lat.) that are not observed closer to the SED base region (35◦ to 40◦ lat.). This suggests447

that such structuring of the plume may be occurring as the plume moves toward the cusp448

and may be an early indicator of the formation of polar patches [Zou et al., 2014].449

6. Irregularity Altitude

Recent work by Liu et al. [2016], that characterized the density profile of the SED450

plume during 17-March-2015 SED plume suggests that the increased TEC observed in451

the SED plume may be due to density enhancements in the topside ionosphere and not452

nmF2. This is supported by COSMIC observations that saw a factor of two increase in453

topside TEC despite a decrease in nmF2. This suggests that irregularities during this454

storm may be occurring higher in altitude than the hmF2, consistent with [Coster et al.,455

2003] and [Yuan et al., 2009] which found that half of SED TEC is found above 800456

km altitude and [Moldwin et al., 2016], which reviewed the body of literature connecting457

plasmaspheric and SED plumes and [Yizengaw , 2005] which connected the plasmapause458

to the mid-latitude trough.This suggests that the irregularities detected in this study may459

be generated in the top-side ionosphere or plasmasphere.460
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7. Conclusion

Combining temporal and frequency analysis from single GPS ground receivers has been461

used to suggest the presence of ionospheric irregularities in various regions of the SED462

plume/trough/auroral system as indicated on TEC maps and in the time series data of463

single station GPS TEC time series. The addition of radar observations to these analyses464

provides an estimate between 3 and 10 km for the irregularity length scales primarily465

located on the SED plume’s poleward edge, but also observed in the trough for the case466

of the 17 March 2015 storm — though this range is limited by the observation sample467

rate at 1 Hz. Since smaller irregularities may also be present, future work will investigate468

additional storms, expand the range of detectable frequencies with TEC sample rates up469

to 20 Hz, and incorporate additional high rate TEC stations now coming online.470
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Figure 1. The SED plume is visible in the 1◦ x 1◦ TEC map as a red band stretching to-

ward the northwest at 22:00 UT. The colored circles indicate the location of SuperDARN

Radar backscatter and line-of-site ion speeds from Christmas Valley East, Fort Hays East

and Wallops Island while the polar equipotential lines (solid lines) show the direction of

plasma convection (westward within the Great Lakes region). The day/night termina-

tor is shown as a dotted line. Figure courtesy of Evan Thomas, Virginia Technological

University.

Figure 2. Top: Frequency and phase response of high pass filter used to remove low

frequency (<100 mHz, long temporal) background from the STEC signal. Bottom: The

unfiltered STEC signal from PRN 23 is shown in blue while the filtered signal is shown

in orange. The filter removed the large-scale STEC variations associated with the SED

plume in order to extract smaller-scale variations of interest to this study
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2040Fig.pdf

Figure 3. Left: Interpolated Madrigal VTEC map with 5-minute IPP tracks for the

interval ending at 20:45 UT. The location of the ANNA receiver is marked with a five-

pointed star and a white circle demarcates the field-of-view boundary with a 20◦ elevation

mask. The SED plume, SED base region, and mid-latitude trough are visible. Inset:

TEC over North America. Right Top: The cumulative VTEC time series from 20:00. The

five-minute FFT window is indicated by the two black vertical lines at the end of the time

series. Right Bottom: The 5-minute FFT for the observable GPS PRN.
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2200Fig.pdf

Figure 4. Left: Interpolated Madrigal VTEC map with 5-minute IPP tracks for

the interval ending at 22:00 UT. The location of the ANNA receiver is marked with a

five-pointed star and a white circle demarcates the field-of-view boundary with a 20◦

elevation mask. The SED base region, SED plume, mid-latitude trough, and auroral

enhancement are visible from bottom to top. Inset: TEC over North America. Right

Top: The cumulative VTEC time series from 20:00. The five-minute FFT window is

indicated by the two black vertical lines at the end of the time series. Right Bottom: The

5-minute FFT for the observable GPS PRN.D R A F T March 11, 2017, 1:12pm D R A F T
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2300Fig.pdf

Figure 5. Left: Interpolated Madrigal VTEC map with 5-minute IPP tracks for the

interval ending at 23:05 UT. The SED base region, SED plume, mid-latitude trough,

and auroral enhancement are visible from bottom to top with all IPP tracks (with the

exception of PRN 23) are located in the mid-latitude trough. Inset: TEC over North

America. Right Top: The cumulative VTEC time series from 21:00. Right Bottom: The

5-minute FFT for the observable GPS PRN.

D R A F T March 11, 2017, 1:12pm D R A F T
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2320Fig.pdf

Figure 6. Left: Interpolated Madrigal VTEC map with 5-minute IPP tracks for the

interval ending at 23:205 UT. The SED plume, SAPS, trough, and auroral enhancement

are visible from bottom to top and all of the IPP tracks (except PRN 23) are located

within the auroral zone. The magnetic footprint track for DMSP F17 mapped to 300

km altitude (white line) is also shown with the detected enhanced particle precipitation

(shown in Figure 7) flux highlighted in magneta along the track beginning near ∼41◦N.

Inset: TEC over North America. Right Top: The cumulative VTEC time series from

23:25. Right Bottom: The 5-minute STEC FFT for the observable GPS PRN.D R A F T March 11, 2017, 1:12pm D R A F T
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F19_ParticlePrecip_076_2202-2209UT.pdf

F16_ParticlePrecip_076_2300-2306UT.pdf

F17_ParticlePrecip_076_2316-2322UT.pdf

Figure 7. Top: DMSP F19 particle flux

showing auroral electron precipitation was

4◦ poleward of the SED plume within 18◦

east (1.2 hours MLT) of the observation area.

Middle: DMSP F16 showing auroral pre-

cipitation beginning > 2◦ poleward of the

SED plume within 15◦ west (1 hour MLT) of

the observation area. Bottom: DMSP F17

showing auroral precipitation beginning > 2◦

poleward of the SED plume within the ob-

servation area consistent with TEC enhance-

ment observed in this region at the time.

D R A F T March 11, 2017, 1:12pm D R A F T
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