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Abstract

The rapid and accurate calculation of solvent accessible surface area (SASA) is ex-
tremely useful in the energetic analysis of biomolecules. For example, SASA models can
be used to estimate the transfer free energy associated with biophysical processes, and
when combined with coarse-grained simulations, can be particularly useful for account-
ing for solvation effects within the framework of implicit solvent models. In such cases,
a fast and accurate, residue-wise SASA predictor is highly desirable. Here we develop a
predictive model that estimates SASAs based on Cα-only protein structures. Through
an extensive comparison between this method and a comparable method, POPS-R,
we demonstrate that our new method, Protein-Cα Solvent Accessibilities or PCASA,
shows better performance, especially for unfolded conformations of proteins. We antici-
pate that this model will be quite useful in the efficient inclusion of SASA-based solvent
free energy estimations in coarse-grained protein folding simulations. PCASA is made
freely available to the academic community at https://github.com/atfrank/PCASA.
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INTRODUCTION

Compared to simulations in which solvent molecules are explicitly represented, simulations

that employ implicit solvent models are significantly more efficient. Typically, this improved

efficiency is exploited to either carry out longer simulations or to simulate larger and more

complex molecular systems. One group of implicit solvent models employ solvent accessible

surface area (SASA) as an indicator of solute-solvent contacts and the corresponding solva-

tion forces and energies, for a given atom in a molecular system, can estimate as a function

of its corresponding atom type and its SASA.1–3 These methods are usually constructed

by estimating the solvent transfer free energy (TFE) mostly based on the famous model of

Tanford.2,4,5 The same idea has also been applied to study changes in biomolecular stability

in different solvent environments by calculating the transfer free energies between different

solvent conditions.6–8 Implicit solvent models have also been used in simulations in which the

biomolecule is coarse-grained (i.e., modeled using a reduced representation). For instance,

O’Brien et al. developed the molecular transfer model (MTM) to study protein folding in

different osmolyte solvents by incorporating the SASA-based transfer free energy estimation

with their two-bead per residue Gō model.9,10.

SASA can be rigorously calculated by rolling a spherical probe along the surface of a

biomolecule.7,11 Analytical formula for SASA calculation have been derived by Connolly

et al. ,12 Richmond,13 followed by Busa et al. ,14 and Klenin et al. .15 These calculations

are computationally expensive and so it is not efficient to directly implement SASA-based

TFE calculations on-the-fly during simulations of biomolecules. Therefore, it is desirable

to have a fast and accurate numerical estimator for SASA, and several all-atom methods

have been developed.16–18 Most of these methods, such as the method implemented by Hasel

et al. ,18 LCPO,19 and POPS,20,21 are constructed in the spirit of the fundamental framework

by Wodak and Janin,22 which accurately estimates SASAs using a probability estimation as

a function of relative distances of each atom with its neighbors. The most recent and pop-

ular variant of this approach, POPS,20,21 reported very accurate estimation of SASA values

for all-atom structures and the method was further extended for Cα based coarse grained

protein structures (POPS-R).21 Unfortunately, because POPS-R was parameterized using
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only native protein structures, it exhibits reduced performance when applied to unfolded

conformations and is thus of diminished utility in protein folding studies.

In this work, we develop a fast and accurate predictive model that estimates SASA from

Cα coordinates only, and importantly, one that exhibits reduced bias for folded structures.

More specifically, we implemented a simple linear model that, for a given residue, depends

only on the geometric distance between the corresponding Cα of that residue and Cα of the

residues within some cutoff distance. Unlike other methods, the training set used for param-

eterizing our method contained both folded and unfolded protein conformations. Compared

to the current-state-of-the-art, POPS-R, our method, Protein-Cα Solvent Accessibilities

(which will be referred to as PCASA), exhibited better overall accuracy over an independent

testing set that contained both folded and unfolded protein conformations. The consistency

of the performance for both folded and unfolded conformations indicates an unbiased pa-

rameterization, which is a merit of its implementation, and makes it particularly well-suited

for SASA-based TFE calculations during coarse-grained protein folding simulations.

METHODOLOGY

Model formula and parameterization.

The SASA of a given residue, i, is calculated as

SASAi = αi −
∑

j∈(rij<rcut)

βijr
γ
ij, (1)

where the index j runs over all residues within rcut of residue i, αi is the reference SASA

corresponding to a fully exposed residue of type i, βij is a scaling parameter that depends on

both i and j, and γ is a common parameter. Separate predictive models were parameterized

with rcut and γ set to either 5.0, 10.0, 15.0, and 20.0 Å and −5, −3, and −1, respectively.

For each combination of rcut and γ, a predictive model was parameterized using a linear

Bayesian regression model via the MCMCregress function implemented in the R package,

MCMCpack23. In addition to providing parameters for the models (αis and βijs), MCM-

Cregress also returns an estimate of the accuracy of the predictive models (σ). The σ values
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determined for each model were used to determine the best combination of rcut and γ, and

thus final predictive model implemented in PCASA.

The simplicity of the model we use to predict SASA results in a more straightforward

expression of SASA of some residue i with respect to rij than current physics-based models.

Specifically, the derivative of SASA with respect rij as required for calculation of SASA-based

solvation forces, is simply expressed as

d

drij
SASAi = −γ

∑

j∈(rij<rcut)

βijr
γ−1
ij . (2)

Protein structure dataset for model parameterization.

To parameterize PCASA, we employed a large protein structure dataset containing 527 pro-

teins that was randomly chosen from the protein data bank (PDB). To reduce performance

bias towards folded, native-like protein conformations, for each protein in the data set, 10

folded and 10 unfolded conformations were generated by performing MD simulations. Sim-

ulations were performed with the KB Gō-like model at 600K with the step size of 22 fs.

Structures were saved every 200 steps. For the entire data set, a total of 10520 structures

were therefore obtained.

To calculate the reference SASAs (the target used to train PCASA), all-atom models

were first reconstructed from the Cα KB Gō-like models using MMTSB.24 For each all-

atom model, the reference SASA for each residue was calculated using CHARMM.25 To

parameterize PCASA, the 527 proteins was first divided into a training set (80%; Table S1)

and an independent testing set (20%; Table S2). PCASA was then trained using the training

set and the performance evaluated using the testing set.

Assessing the performance of PCASA.

To assess the performance of PCASA, we compared the PCASA-calculated SASAs to the

reference SASAs by computing the Pearson correlation coefficient (R); the Spearman rank

correlation coefficient (ρ); the Kendall correlation coefficient (τ); the mean-absolute-error

(MAE); and the root-mean-squared-error (RMSE). Using these “metrics”, PCASA was eval-

uated on an independent testing set that included both folded and unfolded conformations,
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and then separately on subsets that included only folded (native-like) conformations and only

unfolded (denatured) conformations. For comparison, the same analyses were also performed

when predicting SASAs using POPS-R.

RESULTS AND DISCUSSION

The predictive model with rcut and γ set to 10 Å and −1, respectively,

exhibited the lowest estimated errors

Table 1: Bayesian-derived estimates of the expected errors (σ) of SASA predictors parame-

terized using different combinations of rcut and γ.

γ = −5 γ = −3 γ = −1

rcut = 5.0 Å 47.5 Å2 47.5 Å2 45.6 Å2

rcut = 10.0 Å 47.5 Å2 47.3 Å2 28.0 Å2

rcut = 15.0 Å 47.5 Å2 47.1 Å2 32.1 Å2

rcut = 20.0 Å 47.5 Å2 47.1 Å2 34.9 Å2

In this work we parameterized simple predictive models that enabled residue-wise SASAs

to be estimated based solely on Cα coordinates. As is evident from Eq. 1, in addition to

the model parameters α and β, the model also depends on the choice of rcut and γ. In

this work, we explored predictive models in which rcut and γ were set to 5.0, 10.0, 15.0,

and 20.0 Å and −5, −3, and −1, respectively. Shown in Table 1 are the expected errors of

the various models explored in this work. These estimates were obtained as output of the

linear Bayesian regression that we carried out using MCMCregress function in MCMCpack

R package.23 As can be observed in Table 1, the model with rcut and γ set to 10 Å and −1,

respectively, exhibited the lowest expected error (28.0 Å). As such, we chose this model to

be the model implemented in PCASA (Table S3-S5).
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PCASA predicts total SASA and residue-wise SASA with high accuracy.

Table 2: Statistics for protein-based SASA estimations by PCASA and POPS-R.

R τ ρ RMSE (Å2) MAE (Å2)

PCASA 0.999 0.968 0.998 627.5 448.3

POPS-R 0.998 0.962 0.998 2332.1 1994.3

We first assessed the performance of PCASA by computing the total SASAs (in Å2) for

all the proteins in the testing set (Table S2). As can be seen in Figure 1, PCASA-predicted

SASAs agree well with the reference SASAs, as evidenced by the high correlation between the

two. For example, the Pearson (R), Kendall (τ), and Spearman (ρ) correlations were 0.999,

0.968, and 0.998, respectively (Table 2). By comparison, the R, τ , and ρ values for POPS-R

were 0.998, 0.962, and 0.998, respectively (Table 2). Together, these results indicate that

both PCASA and POPS-R were able to predict SASAs with good accuracy. For this testing

set, however, PCASA was able to achieve a higher degree of accuracy than POPS-R. For

example, the mean-absolute-error (MAE) and the root-mean-squared-error (RMSE) between

PCASA-predicted and reference SASA were 448.3 and 627.5 Å2, compared with 1994.3 and

2332.1 Å2, respectively, for POPS-R. It is interesting to note that this discrepancy appears

to be more pronounced for proteins with larger total SASAs (Figure 1).

To test whether the difference in performance of PCASA and POPS-R for proteins with

larger total SASAs may be due to differences in the statistically “coverage” in the database

used to train PCASA and POPS-R, respectively, we compared the distribution of total

SASAs in both training sets. We found that the distribution of total SASAs in the PCASA

training set was more continuous than POPS-R, and spanned a larger range, [2,329 to 69,850

Å2], compared to [2,009, 46,789 Å2] for POPS-R; generally, there were more examples of

proteins with larger total SASAs in the PCASA training set than POPS-R. These differences

in the training set distributions provide the most likely explanation as to why PCASA

exhibits greater accuracy for proteins with larger to total SASAs (Figure 2 ).
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Mirroring the results above, the R, τ , and ρ values for PCASA were 0.843, 0.654, and 0.843,

respectively (Table 3), compared with 0.799, 0.612, and 0.807, respectively, for POPS-R

(Table 3). Likewise, the MAE and RMSE between PCASA-predicted and reference SASA

were 26.9 and 20.8 Å2, compared with 31.5 and 24.4 Å2, respectively, for POPS-R, confirming

that not only was PCASA better able to recapitulate the total reference SASAs for proteins,

it was also able to better recapitulate the residue-wise reference SASAs.

Table 3: Statistics for residue-based SASA estimations by POPS-R and PCASA of structures

in the testing set.

R τ ρ RMSE (Å2) MAE (Å2)

POPS-R 0.799 0.612 0.807 31.5 24.4

PCASA 0.843 0.654 0.843 26.9 20.8

PCASA predicts SASAs for folded and unfolded conformations with sim-

ilar accuracy.

As mentioned above, we suspected that the performance of POPS-R for the unfolded struc-

tures would not be as good as for folded structures due to their bias for the native structures

in the training set used to parameterize the model. To test this point, we performed sta-

tistical analysis by dividing our dataset into two groups (folded and unfolded) based on

the protein radius of gyration (Rg). Since we recorded structures from simulations approxi-

mately with equal sampling of folded and unfolded states, half of the structures with low Rg

for each protein are grouped as the folded structures and the rest as the unfolded structure.

In Table 4 we present the statistics for PCASA and POPS-R SASA estimation for folded

and unfolded conformations.

As assumed, the POPS-R performance is the much better for the folded protein structures

with a much higher R value of 0.808 than for the unfolded structures with an R value of

0.751. While the model developed in this work shows consistent performance for both folded
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Table 4: Statistics for residue-based SASA estimations from POPS-R and PCASA for folded-

like and unfolded sets of structures.

Folded Unfolded

R τ ρ RMSE (Å2) MAE (Å2) R τ ρ RMSE (Å2) MAE (Å2)

POPS-R 0.808 0.615 0.811 30.0 23.4 0.751 0.559 0.755 33.1 25.7

PCASA 0.838 0.647 0.838 26.3 20.3 0.819 0.621 0.814 27.2 21.1

and unfolded structures with very similar R values of 0.838 and 0.819. The same picture

emerges from the comparison of the MAE and RMSE.

To examine this further, six proteins were randomly picked from our testing set and

representative folded, molten globule-like, and unfolded structures were selected for each. For

each protein and each representative conformation, the total PCASA- and POPS-R-predicted

SASAs were compared directly to their corresponding reference values. Consistently, for

the folded, molten globule-like, and unfolded conformations, PCASA predictions mirrored

closely the reference values. In contrast, POPS-R exhibited increasing discrepancies going

from folded to unfolded conformations (Figure 3). The difference is especially apparent

when the difference between the reference and predicted SASA values are projected onto

the individual structures of the proteins. As exemplified for the protein shown in Figure 4,

the residue-wise discrepancy between predicted and reference SASA is more pronounced for

POPS-R than PCASA, and in the case of POPS-R, the discrepancy increases as one goes

from the folded to unfolded conformations.

To summarize the results presented above, our findings highlight the ability of PCASA

to accurately recapitulate the reference SASAs, regardless of whether the conformations are

native-like (folded) or non-native-like (unfolded). This consistency is highly desired since

an important potential application of PCASA is to study protein folding and unfolding

via coarse grained simulations coupled with a SASA-based implicit solvent model. In such

simulations, folded and unfolded conformations may dynamically interconvert, and as such,

accurately calculating the solvation energy differences, and in turn, the SASAs, will be
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like, nucleic acids, lipids, and small molecules. To facilitate its widespread use, PCASA is

made freely available to the academic community at https://github.com/atfrank/PCASA.

ACKNOWLEDGMENTS

The authors would like to acknowledge the valuable scientific contribution of Sean M. Law,

who wrote the C++ library used to implement PCASA.

12

Page 12 of 38

John Wiley & Sons, Inc.

Journal of Computational Chemistry

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Page 13 of 38

John Wiley & Sons, Inc.

Journal of Computational Chemistry

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
References

1. M. Feig and C. L. Brooks III, Curr. Opin. Struct. Biol. 14, 217 (2004).

2. G. Ziv and G. Haran, J. Am. Chem. Soc. 131, 2942 (2009).

3. A. Momen-Roknabadi, M. Sadeghi, H. Pezeshk, and S.-A. Marashi, BMC Bioinformatics

9, 1 (2008).

4. C. Tanford, Adv. Protein Chem. 23, 121 (1968).

5. C. Tanford, Adv. Protein Chem. 24, 1 (1970).

6. S. L. Lin, R. Nussinov, D. Fischer, and H. J. Wolfson, Proteins 18, 94 (1994).

7. A. Shrake and J. Rupley, J. Mol. Biol. 79, 351 (1973).

8. F. M. Richards, Annu. Rev. Biophys. Bioeng. 6, 151 (1977).

9. E. P. O’Brien, B. R. Brooks, and D. Thirumalai, Biochemistry 48, 3743 (2009).

10. E. P. O’Brien, G. Ziv, G. Haran, B. R. Brooks, and D. Thirumalai, Proc. Natl. Acad.

Sci. 105, 13403 (2008).

11. B. Lee and F. M. Richards, J. Mol. Biol. 55, 379 (1971).

12. M. L. Connolly, J. Appl. Crystallogr. 16, 548 (1983).

13. T. J. Richmond, J. Mol. Biol. 178, 63 (1984).
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ing for solvation effects within the framework of implicit solvent models. In such cases,
a fast and accurate, residue-wise SASA predictor is highly desirable. Here we develop a
predictive model that estimates SASAs based on Cα-only protein structures. Through
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INTRODUCTION

Compared to simulations in which solvent molecules are explicitly represented, simulations

that employ implicit solvent models are significantly more efficient. Typically, this improved

efficiency is exploited to either carry out longer simulations or to simulate larger and more

complex molecular systems. One group of implicit solvent models employ solvent accessible

surface area (SASA) as an indicator of solute-solvent contacts and the corresponding solva-

tion forces and energies, for a given atom in a molecular system, can estimate as a function

of its corresponding atom type and its SASA.1–3 These methods are usually constructed

by estimating the solvent transfer free energy (TFE) mostly based on the famous model of

Tanford.2,4,5 The same idea has also been applied to study changes in biomolecular stability

in different solvent environments by calculating the transfer free energies between different

solvent conditions.6–8 Implicit solvent models have also been used in simulations in which the

biomolecule is coarse-grained (i.e., modeled using a reduced representation). For instance,

O’Brien et al. developed the molecular transfer model (MTM) to study protein folding in

different osmolyte solvents by incorporating the SASA-based transfer free energy estimation

with their two-bead per residue Gō model.9,10.

SASA can be rigorously calculated by rolling a spherical probe along the surface of a

biomolecule.7,11 Analytical formula for SASA calculation have been derived by Connolly

et al. ,12 Richmond,13 followed by Busa et al. ,14 and Klenin et al. .15 These calculations

are computationally expensive and so it is not efficient to directly implement SASA-based

TFE calculations on-the-fly during simulations of biomolecules. Therefore, it is desirable

to have a fast and accurate numerical estimator for SASA, and several all-atom methods

have been developed.16–18 Most of these methods, such as the method implemented by Hasel

et al. ,18 LCPO,19 and POPS,20,21 are constructed in the spirit of the fundamental framework

by Wodak and Janin,22 which accurately estimates SASAs using a probability estimation as

a function of relative distances of each atom with its neighbors. The most recent and pop-

ular variant of this approach, POPS,20,21 reported very accurate estimation of SASA values

for all-atom structures and the method was further extended for Cα based coarse grained

protein structures (POPS-R).21 Unfortunately, because POPS-R was parameterized using
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only native protein structures, it exhibits reduced performance when applied to unfolded

conformations and is thus of diminished utility in protein folding studies.

In this work, we develop a fast and accurate predictive model that estimates SASA from

Cα coordinates only, and importantly, one that exhibits reduced bias for folded structures.

More specifically, we implemented a simple linear model that, for a given residue, depends

only on the geometric distance between the corresponding Cα of that residue and Cα of the

residues within some cutoff distance. Unlike other methods, the training set used for param-

eterizing our method contained both folded and unfolded protein conformations. Compared

to the current-state-of-the-art, POPS-R, our method, Protein-Cα Solvent Accessibilities

(which will be referred to as PCASA), exhibited better overall accuracy over an independent

testing set that contained both folded and unfolded protein conformations. The consistency

of the performance for both folded and unfolded conformations indicates an unbiased pa-

rameterization, which is a merit of its implementation, and makes it particularly well-suited

for SASA-based TFE calculations during coarse-grained protein folding simulations.

METHODOLOGY

Model formula and parameterization.

The SASA of a given residue, i, is calculated as

SASAi = αi −
∑

j∈(rij<rcut)

βijr
γ
ij, (1)

where the index j runs over all residues within rcut of residue i, αi is the reference SASA

corresponding to a fully exposed residue of type i, βij is a scaling parameter that depends on

both i and j, and γ is a common parameter. Separate predictive models were parameterized

with rcut and γ set to either 5.0, 10.0, 15.0, and 20.0 Å and −5, −3, and −1, respectively.

For each combination of rcut and γ, a predictive model was parameterized using a linear

Bayesian regression model via the MCMCregress function implemented in the R package,

MCMCpack23. In addition to providing parameters for the models (αis and βijs), MCM-

Cregress also returns an estimate of the accuracy of the predictive models (σ). The σ values
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determined for each model were used to determine the best combination of rcut and γ, and

thus final predictive model implemented in PCASA.

The simplicity of the model we use to predict SASA results in a more straightforward

expression of SASA of some residue i with respect to rij than current physics-based models.

Specifically, the derivative of SASA with respect rij as required for calculation of SASA-based

solvation forces, is simply expressed as

d

drij
SASAi = −γ

∑

j∈(rij<rcut)

βijr
γ−1
ij . (2)

Protein structure dataset for model parameterization.

To parameterize PCASA, we employed a large protein structure dataset containing 527 pro-

teins that was randomly chosen from the protein data bank (PDB). To reduce performance

bias towards folded, native-like protein conformations, for each protein in the data set, 10

folded and 10 unfolded conformations were generated by performing MD simulations. Sim-

ulations were performed with the KB Gō-like model at 600K with the step size of 22 fs.

Structures were saved every 200 steps. For the entire data set, a total of 10520 structures

were therefore obtained.

To calculate the reference SASAs (the target used to train PCASA), all-atom models

were first reconstructed from the Cα KB Gō-like models using MMTSB.24 For each all-

atom model, the reference SASA for each residue was calculated using CHARMM.25 To

parameterize PCASA, the 527 proteins was first divided into a training set (80%; Table S1)

and an independent testing set (20%; Table S2). PCASA was then trained using the training

set and the performance evaluated using the testing set.

Assessing the performance of PCASA.

To assess the performance of PCASA, we compared the PCASA-calculated SASAs to the

reference SASAs by computing the Pearson correlation coefficient (R); the Spearman rank

correlation coefficient (ρ); the Kendall correlation coefficient (τ); the mean-absolute-error

(MAE); and the root-mean-squared-error (RMSE). Using these “metrics”, PCASA was eval-

uated on an independent testing set that included both folded and unfolded conformations,
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and then separately on subsets that included only folded (native-like) conformations and only

unfolded (denatured) conformations. For comparison, the same analyses were also performed

when predicting SASAs using POPS-R.

RESULTS AND DISCUSSION

The predictive model with rcut and γ set to 10 Å and −1, respectively,

exhibited the lowest estimated errors

Table 1: Bayesian-derived estimates of the expected errors (σ) of SASA predictors parame-

terized using different combinations of rcut and γ.

γ = −5 γ = −3 γ = −1

rcut = 5.0 Å 47.5 Å2 47.5 Å2 45.6 Å2

rcut = 10.0 Å 47.5 Å2 47.3 Å2 28.0 Å2

rcut = 15.0 Å 47.5 Å2 47.1 Å2 32.1 Å2

rcut = 20.0 Å 47.5 Å2 47.1 Å2 34.9 Å2

In this work we parameterized simple predictive models that enabled residue-wise SASAs

to be estimated based solely on Cα coordinates. As is evident from Eq. 1, in addition to

the model parameters α and β, the model also depends on the choice of rcut and γ. In

this work, we explored predictive models in which rcut and γ were set to 5.0, 10.0, 15.0,

and 20.0 Å and −5, −3, and −1, respectively. Shown in Table 1 are the expected errors of

the various models explored in this work. These estimates were obtained as output of the

linear Bayesian regression that we carried out using MCMCregress function in MCMCpack

R package.23 As can be observed in Table 1, the model with rcut and γ set to 10 Å and −1,

respectively, exhibited the lowest expected error (28.0 Å). As such, we chose this model to

be the model implemented in PCASA (Table S3-S5).
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PCASA predicts total SASA and residue-wise SASA with high accuracy.

Table 2: Statistics for protein-based SASA estimations by PCASA and POPS-R.

R τ ρ RMSE (Å2) MAE (Å2)

PCASA 0.999 0.968 0.998 627.5 448.3

POPS-R 0.998 0.962 0.998 2332.1 1994.3

We first assessed the performance of PCASA by computing the total SASAs (in Å2) for

all the proteins in the testing set (Table S2). As can be seen in Figure 1, PCASA-predicted

SASAs agree well with the reference SASAs, as evidenced by the high correlation between the

two. For example, the Pearson (R), Kendall (τ), and Spearman (ρ) correlations were 0.999,

0.968, and 0.998, respectively (Table 2). By comparison, the R, τ , and ρ values for POPS-R

were 0.998, 0.962, and 0.998, respectively (Table 2). Together, these results indicate that

both PCASA and POPS-R were able to predict SASAs with good accuracy. For this testing

set, however, PCASA was able to achieve a higher degree of accuracy than POPS-R. For

example, the mean-absolute-error (MAE) and the root-mean-squared-error (RMSE) between

PCASA-predicted and reference SASA were 448.3 and 627.5 Å2, compared with 1994.3 and

2332.1 Å2, respectively, for POPS-R. It is interesting to note that this discrepancy appears

to be more pronounced for proteins with larger total SASAs (Figure 1).

To test whether the difference in performance of PCASA and POPS-R for proteins with

larger total SASAs may be due to differences in the statistically “coverage” in the database

used to train PCASA and POPS-R, respectively, we compared the distribution of total

SASAs in both training sets. We found that the distribution of total SASAs in the PCASA

training set was more continuous than POPS-R, and spanned a larger range, [2,329 to 69,850

Å2], compared to [2,009, 46,789 Å2] for POPS-R; generally, there were more examples of

proteins with larger total SASAs in the PCASA training set than POPS-R. These differences

in the training set distributions provide the most likely explanation as to why PCASA

exhibits greater accuracy for proteins with larger to total SASAs (Figure 2 ).
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Mirroring the results above, the R, τ , and ρ values for PCASA were 0.843, 0.654, and 0.843,

respectively (Table 3), compared with 0.799, 0.612, and 0.807, respectively, for POPS-R

(Table 3). Likewise, the MAE and RMSE between PCASA-predicted and reference SASA

were 26.9 and 20.8 Å2, compared with 31.5 and 24.4 Å2, respectively, for POPS-R, confirming

that not only was PCASA better able to recapitulate the total reference SASAs for proteins,

it was also able to better recapitulate the residue-wise reference SASAs.

Table 3: Statistics for residue-based SASA estimations by POPS-R and PCASA of structures

in the testing set.

R τ ρ RMSE (Å2) MAE (Å2)

POPS-R 0.799 0.612 0.807 31.5 24.4

PCASA 0.843 0.654 0.843 26.9 20.8

PCASA predicts SASAs for folded and unfolded conformations with sim-

ilar accuracy.

As mentioned above, we suspected that the performance of POPS-R for the unfolded struc-

tures would not be as good as for folded structures due to their bias for the native structures

in the training set used to parameterize the model. To test this point, we performed sta-

tistical analysis by dividing our dataset into two groups (folded and unfolded) based on

the protein radius of gyration (Rg). Since we recorded structures from simulations approxi-

mately with equal sampling of folded and unfolded states, half of the structures with low Rg

for each protein are grouped as the folded structures and the rest as the unfolded structure.

In Table 4 we present the statistics for PCASA and POPS-R SASA estimation for folded

and unfolded conformations.

As assumed, the POPS-R performance is the much better for the folded protein structures

with a much higher R value of 0.808 than for the unfolded structures with an R value of

0.751. While the model developed in this work shows consistent performance for both folded
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Table 4: Statistics for residue-based SASA estimations from POPS-R and PCASA for folded-

like and unfolded sets of structures.

Folded Unfolded

R τ ρ RMSE (Å2) MAE (Å2) R τ ρ RMSE (Å2) MAE (Å2)

POPS-R 0.808 0.615 0.811 30.0 23.4 0.751 0.559 0.755 33.1 25.7

PCASA 0.838 0.647 0.838 26.3 20.3 0.819 0.621 0.814 27.2 21.1

and unfolded structures with very similar R values of 0.838 and 0.819. The same picture

emerges from the comparison of the MAE and RMSE.

To examine this further, six proteins were randomly picked from our testing set and

representative folded, molten globule-like, and unfolded structures were selected for each. For

each protein and each representative conformation, the total PCASA- and POPS-R-predicted

SASAs were compared directly to their corresponding reference values. Consistently, for

the folded, molten globule-like, and unfolded conformations, PCASA predictions mirrored

closely the reference values. In contrast, POPS-R exhibited increasing discrepancies going

from folded to unfolded conformations (Figure 3). The difference is especially apparent

when the difference between the reference and predicted SASA values are projected onto

the individual structures of the proteins. As exemplified for the protein shown in Figure 4,

the residue-wise discrepancy between predicted and reference SASA is more pronounced for

POPS-R than PCASA, and in the case of POPS-R, the discrepancy increases as one goes

from the folded to unfolded conformations.

To summarize the results presented above, our findings highlight the ability of PCASA

to accurately recapitulate the reference SASAs, regardless of whether the conformations are

native-like (folded) or non-native-like (unfolded). This consistency is highly desired since

an important potential application of PCASA is to study protein folding and unfolding

via coarse grained simulations coupled with a SASA-based implicit solvent model. In such

simulations, folded and unfolded conformations may dynamically interconvert, and as such,

accurately calculating the solvation energy differences, and in turn, the SASAs, will be

10
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like, nucleic acids, lipids, and small molecules. To facilitate its widespread use, PCASA is

made freely available to the academic community at https://github.com/atfrank/PCASA.
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