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ABSTRACT

Uncertainty Quantification for Emission Quantitative Imaging

by

Aaron M. Bevill

Chair: William R. Martin

Imaging detectors have potential to improve the reliability of plutonium holdup

measurements. Holdup measurement is a significant challenge for nuclear safeguards

and criticality safety. To infer holdup mass today, inspectors must combine data from

counting (non-imaging) detectors with spatial measurements, process knowledge, and

survey estimates. This process results in limited certainty about the holdup mass.

Imaging detectors provide more information about the spatial distribution of the

source, increasing certainty.

In this dissertation we focus on the emission quantitative imaging problem using a

fast-neutron coded aperture detector. We seek a reliable way to infer the total inten-

sity of a neutron source with an unknown spatial distribution. The source intensity

can be combined with other measurements to infer the holdup mass.

To do this we first create and validate a model of the imager. This model solves

the forward problem of estimating data given a known source distribution. We use

cross-validation to show that the model reliably predicts new measurements (with

predictable residuals).

We then demonstrate a non-Bayesian approach to process new imager data. The

approach solves the inverse problem of inferring source intensity, given various sources

of information (imager data, physical constraints) and uncertainty (measurement

noise, modeling error, absence of information, etc). Bayesian approaches are also

considered, but preliminary findings indicate the need for advanced Markov chain al-

gorithms beyond the scope of this dissertation. The non-Bayesian results reliably

provide confidence intervals for medium-scale problems, as demonstrated using a

xiii



blind-inspector measurement. However, the confidence interval is quite large, due

chiefly to modeling error.

xiv



CHAPTER I

Introduction

Improvements in Non-Destructive Assay (NDA) techniques improve nuclear safe-

guards. Safeguards inspectors use mass-in/mass-out accounting methods to detect

diversion of special nuclear material (SNM) from enrichment and reprocessing facil-

ities in non-nuclear weapon states. These methods are confounded by SNM “held

up” in pipes, ducts, tanks, and glove-boxes in the facilities. Methods to improve

the precision of holdup measurements will improve inspectors’ ability to detect small

SNM diversions.

Holdup measurement is particularly challenging at plutonium powder facilities in

Japan [18, 1, 2]. Analysts currently use the Glovebox Cleanout Assistance Tool [1, 2]

(BCAT) system to estimate holdup in powder handling glove boxes. In this system,

moderated helium-3 detectors measure the neutron fields near glove boxes. Careful

analysis and modeling with Monte Carlo N-Particle Transport Code version X [12]

(MCNPX) then yield holdup estimates with 15% uncertainty—a rather unsatisfactory

result, given that the facility processes 8 tonnes of plutonium annually. Because the

helium-3 detectors are integrating (not imaging), the glove box “voxels” on which

mass estimates are made are meters in scale. More granular source information is

not known except through “historical experience and process knowledge,” and the

holdup may be in “locations unknown to the operator” [1]. One speculates that the

uncertainty is even larger than 15% due to coarse resolution.

Similar problems arise at uranium enrichment facilities. Water ingress into UF6

process lines creates deposits of UO2F2 salt. For example, UO2F2 was distributed

along kilometers of pipes at the K-25 site near Oak Ridge, Tennessee [19, 20]. Criti-

cality safety and material control and accountability (MC&A) motivated a multi-year

effort to analyze the deposits. The analysis included dual-particle tomography with

the Nuclear Weapons Identification System (NWIS) to identify holdup geometry and

1



composition [15]. This approach is not feasible for many safeguards applications,

since tomography requires access to many sides of the object.

When enrichment facilities fall under international safeguards, inspectors use

Generalized Geometry Holdup [5] (GGH), In-Situ Object Counting System [6] (ISOCS),

and destructive analyses. The latter two provide information about the chemical and

isotopic composition of the holdup; GGH then determines the holdup mass. Unfor-

tunately, GGH is predicated on the inspector’s knowledge of the location, shape, and

extent of the deposit. This knowledge is often imperfect, and inspectors may even an-

alyze the wrong piece of equipment [21]. The resulting estimates typically have 25%

to 50% statistical error and often have relative bias above 100% [5, 22]. One question

effects large uncertainty with both GGH and BCAT: Where exactly is the holdup?

In 2012, Hausladen and colleagues demonstrated a fast-neutron coded aperture

(FNCA) system to locate plutonium holdup [23]. Fast neutron imaging is less sensitive

to inhomogeneity and self-shielding than photon imaging and GGH, and it provides

much more granular spatial information than BCAT. The strong neutron signal from

spontaneous fission of plutonium-240 makes FNCA a strong candidate for holdup

measurement at reprocessing facilities. A FNCA estimate of neutron source strength

paired with destructive-assay composition measurements would provide a precise and

robust estimate of holdup SNM.

The final piece of the FNCA system is missing: an algorithm to quantify the source

strength. Existing algorithms create a qualitative image of the source distribution

in space. Usually the image is a maximum-likelihood estimate of source strength

with noise reduction to aid interpretation. Jackson studied the source quantification

problem using simulated coded aperture imaging, he did not analyze uncertainty in

the estimate [24]. Although qualitative algorithms can be adapted to the quantitative

source-strength problem, they do not provide uncertainty estimates.

Uncertainty quantification is critical for the applications listed above. Interna-

tional safeguards could ideally detect the diversion of a “significant quantity” of

SNM—on the order of 10 kilograms. If 40 kg ±5 kg of plutonium go unaccounted

for in Japan, the international community has cause to investigate. However, when

40 kg ±80 kg go missing, one can draw fewer conclusions. In domestic holdup mea-

surement, one cannot eliminate the possibility of an accident without uncertainty

quantification; see e.g., [15]. In both applications, uncertainty quantification (UQ)

upgrades a best-guess estimate into an actionable statement.

In this dissertation we develop UQ algorithms for the FNCA emission quantitative

imaging (QI) system. We identify three key sources of uncertainty affecting the
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total-strength estimate: modeling approximations, counting statistics, and solution

nonuniqueness. We minimize the uncertainty to the extent possible, and quantify

the remaining uncertainty. Combined with the FNCA hardware, our algorithms will

form a powerful system for robust plutonium holdup estimation, e.g., in Japan.

Looking forward, one envisions the ultimate radiological analysis system: fast,

accurate, and portable. The system’s hardware platform would likely resemble ex-

isting technology, including emission imaging, transmission tomography, and photon

spectroscopy modalities. Its software would combine real-time data from all detection

modalities with analyst intuition to provide qualitative output (3-dimensional images,

spectra), quantitative estimates (mass, dimensions, composition, enrichment), and

measurement optimization advice (detector relocation, settings adjustments, alter-

native modalities). Uncertainty estimates for the quantitative outputs are complete

and robust. Existing algorithms like maximum-likelihood expectectation maximiza-

tion [13] (MLEM) and Monte Carlo library least-squares [10] (MCLLS) can provide

portions of the desired output; a comprehensive algorithm does not exist.

This dissertation provides one missing capability for that system—source strength

quantification including uncertainty analysis. We specifically target the FNCA plat-

form because of the advantages listed above, and we target the holdup application

because of the need described above. At the same time, the algorithms developed

here are an important step toward a comprehensive radiological analysis algorithm.

1.1 Dissertation Overview

This dissertation next provides background relevant to the FNCA QI problem.

Section 2.1 overviews of common analysis techniques for problems like holdup mea-

surement. Section 2.2 provides an illustration of the challenges associated with holdup

measurement. Sections 2.3 and 2.4 describe common radiation imagers and techniques

to reconstruct qualitative images of radiation fields. Section 2.5 reviews literature and

approaches most closely related to the holdup measurement problem.

The dissertation then explores each source of uncertainty individually. Chapter III

details a forward model of an FNCA imager and uses cross-valdiation to predict the

typical discrepancy between the model and observed data. Chapter IV discusses

aleatoric uncertainty, e.g., counting statistics. Chapter V discusses epistemic uncer-

tainty, e.g., the limited ability to resolve the source geometry.

The dissertation then applies this understanding of the problem to create com-

prehensive estimates using a frequentist approach (Chapter VI). The frequentist ap-
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proach is demonstrated in Chapter VII using an unknown distribution of sources.

Significant and original contributions of this dissertation include modeling and

validation of the FNCA imager (Chapter III); creation of a non-Bayesian approach

for quantifying uncertainty in total source strength (Chapter VI); enhancements to

constrained optimization algorithms to make the numerical evaluation of the non-

Bayesian problem tractable (Section 6.2); and demonstration of the approach using

“blind” measurements (Chatper VII). Preliminary findings of the overall work [25]

and of the modeling portions [26] were published in 2016.
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CHAPTER II

Background

This chapter covers background useful for understanding the structure of the dis-

sertation. The remaining chapters will include additional background where needed.

Section 2.1 casts emission QI into the archetype of an inverse UQ problem. In

this archetype we can outline the major sources of uncertainty, each of which will be

discussed further in later chapters. We can also define Bayesian and frequentist anal-

ysis approaches, which will also be discussed further in later chapters. In particular,

the discussion of these approaches should clarify our decision to pursue a particular

frequentist approach.

In Sections 2.2–2.5 we provide an illustration of inverse UQ, describe common

radiation imagers, and describe common qualitative imaging algorithms.

2.1 Uncertainty Quantification for Inverse Problems

Typical dataflow patterns for inverse UQ problems are diagrammed in Fig. 2.1. We

begin by considering a set of “hidden” parameters that cannot be observed directly.

In other problems the hidden parameters may be fundamental quantities such as

interaction cross-sections, thermohydraulic coefficients, etc. For FNCA emission QI,

the hidden parameters are neutron source strength as a function of space: s(~x). We

are chiefly concerned with sources inside a region of interest (ROI), but must consider

other sources’ effect on the data. We know physically that the source strength is non-

negative everywhere: s(~x) ≥ 0 ∀ ~x.

An analyst then experimentally acquires data to infer information about the pa-

rameters. The data is inherently noisy, which creates “aleatoric” uncertainty. Ideally

the experiment is highly sensitive to the parameters—or at least a one-to-one (in-

jective) function of the parameters. If the data are insensitive to the parameters,

the inverse problem is ill-conditioned and the aleatoric uncertainty will be amplified

5



Figure 2.1: Typical dataflow for inverse UQ problems.

when estimating the parameters. If the data are not a one-to-one function of the

parameters, the inverse problem is ill-posed—there are multiple parameter sets that

explain the data equally well. This inability of the data to suggest a unique parameter

solution is called “epistemic” uncertainty.

For FNCA QI, the data is an I-vector d̂, where
[
d̂
]
i

is the number of neutron

counts in pixel i. We assume photon counts and low-energy neutron counts have

been removed using pulse-shape discrimination. The experiment is typically not one-

to-one, because of the finite number of detector pixels and limited number of views

from which the detector may observe the ROI.

The data must be compared to a forward model of the experiment to infer infor-

mation about the parameters. The forward model predicts the data expectation (“sig-

nal”) and distribution (“noise”) as a function of the parameters. Forward models may

incorporate physics simulations of varying fidelity and calibration data (i.e., “train-

ing data”) of varying precision and completeness. These errors lead to “modeling”

uncertainty, which we consider separately from epistemic and aleatoric uncertainty.

(Some references classify modeling uncertainty as a type of epistemic uncertainty; in

this dissertation it is useful to consider modeling uncertainty separately.)

Our signal model is imperfect due to numerical and model approximations. In

FNCA QI, we discretize s(~x) using a finite number (J) of voxels or points. We solve

the radiation transport problem with deterministic or Monte Carlo methods, resulting

in truncation or stochastic errors. The geometry and composition of objects near the

ROI may not be known exactly—and encoding these features may be prohibitively

time consuming for the analyst. Scatter and attenuation by the deposit itself is almost
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always neglected so that the signal model is linear. We model detector intrinsic

efficiency, aperture opacity, and scatter effects by calibration.

Our noise model assumes that counts in each pixel will be independent and Poisson

distributed. This neglects deadtime effects that are significant at high countrates [27].

We also occasionally approximate the Poisson distribution with a similar Gaussian

distribution.

To summarize, the signal model predicts counts

d = As , (2.1)

where [d]i is the expected number of counts in pixel i of I, [s]j is the discretized

source strength at voxel j of J , and A is the “system matrix.” In radiation transport

parlance, element [A]i,j is a Green’s function from strength source voxel j to counts

in detector pixel i. The noise model predicts that d̂, the sampled data, will be

distributed

d̂ ∼ d = Poisson(d) = Gaussian(d, diag(d)) +O
(
d−1/2

)
, (2.2)

where the Gaussian covariance matrix has elements

[diag(d)]i,i′ ≡

{
[d]i , i = i′

0, else
. (2.3)

This assumes that there is no covariance among the pixels, a common assumption.

Using the sampled data, forward model, and any other available information, our

goal is to infer an interval estimate for some quantity of interest (QOI). The QOI is

generally a function of the parameters, e.g., the depletion lifetime of a nuclear reactor

configuration or the peak fuel centerline temperature in an accident. In our emission

QI problem, the QOI is the total source within the ROI:

S ≡
∫

~x∈ROI

s(~x) dV ≈
∑
j∈ROI

[s]j . (2.4)

We can infer the QOI using techniques based in the Bayesian framework or frequentist

(i.e., non-Bayesian) framework.
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2.1.1 Bayesian Framework

Bayesian analysis views the parameters as unknown random variables. Within

the Bayesian framework we can incorporate multiple sources of information into a

distribution of the parameters. Typically the information sources are categorized as

a “prior” distribution of the parameters (p(s)) and new data that will be distributed

according to p(d|s). Merging the prior with the new data gives a “posterior” distri-

bution of the parameters

p(s|d) =
p(s)p(d|s)
p(d)

. (2.5)

(The data probabilty p(d) is effectively a normalization factor.)

This posterior distribution represents our belief about what values of the param-

eters are reasonable. The parameters’ distribution can be propagated into a credible

interval for the QOI using several techniques. See Fig. 2.2.

Figure 2.2: Techniques for Bayesian analysis; compare to Fig. 2.3.

An influential prior is often appropriate. For holdup QI, one expects many ele-

ments of s to be zero. A prior reflecting this expectation could take the form

p(s) =
∏
j


ζ, [s]j > 0

1− ζ, [s]j = 0

0, else

 (2.6)

when we expect approximately ζJ nonzero elements in s. Note that this prior is not

smooth, and it can make the posterior multimodal (i.e., it has multiple local maxima).

A Bayesian analysis would analyze the posterior of the parameters or the posterior

of the QOI. A credible interval (CIb) for the QOI is the most common representation

of the distribution. Multiple definitions exist for the credible interval. We prefer the
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“highest posterior density” 95% credible interval:

CIb ≡
{
S
∣∣∣ p(S ∣∣∣d̂) > p0.95

}
(2.7)

with the posterior threshold p0.95 defined such that∫
S∈CIb

p
(
S
∣∣∣d̂) dS = 0.95 . (2.8)

Here we discuss notable Bayesian techniques: Markov chain Monte Carlo (MCMC),

the delta method, Generalized Linear Least-Squares (GLLS), and bootstrapping.

2.1.1.1 Markov chain Monte Carlo

Markov chain Monte Carlo is a stochastic numerical technique to tally attributes

(mean, variance, skew, kurtosis, ...) of a distribution. A specific MCMC algorithm,

Metropolis–Hastings sampling, requires only a closed-form function that is propor-

tional to the point density function of interest [28, 29, 30]. For this reason Metropolis

sampling is popular for Bayesian posterior sampling: we can analyze the posterior

p(s|d) =
p(s)p(d|s)
p(d)

∝ p(s)p(d|s) ≡ p̂(s|d) (2.9)

without explicitly evaluating the data-dependent normalization p(d).

To do this, the Metropolis algorithm performs a “random walk” through the

solution space. Suppose at step k the origin points are summarized in a state vector

sk. A trial state s∗k+1 is sampled from a proposal distribution Q(s∗k+1|sk) and accepted

based on the Metropolis criterion:

sk+1 =

{
s∗k+1, Zk <

p̂(s∗k+1|d)
p̂(sk|d)

Q(sk|s∗k+1)

Q(s∗k+1|sk)

sk, else
, (2.10)

where Zk ∈ [0, 1) is a uniform random real number. At each step quantities of interest

may be tallied.

Sequential steps are correlated if Q(s∗k+1|sk) is not independent of sk or if the trial

state is rejected. To maintain accuracy of the variance estimate, only every Nth step

is tallied. An ideal Q(s∗k+1|sk) will encourage trial steps that are large enough to

quickly traverse the relevant domain but small enough to be accepted often.

Special propsal distributions are required to sample from multimodal posterior dis-
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tributions. Previous work [3, 4] has demonstrated the DiffeRential Evolution Adaptive

Metropolis [3, 4] (DREAM) solver for multimodal distributions. Unfortunately this

technique is computationally expensive for problems with thousands of parameters.

For this reason DREAM remains a candidate for future work.

An important generalization of MCMC is reversible-jump Markov chain Monte

Carlo [17] (RJMCMC), which can analyze problems with variable solution-space di-

mensionality [17]. For FNCA posterior sampling, RJMCMC could evaluate solutions

with a small variable number of point sources. Since this is particularly applicable

for some QI problems, it should be considered in future work.

2.1.1.2 Delta Method

The delta method takes advantage of the fact that a linear transformation of a

Gaussian distribution is also Gaussian. Suppose we have a random Gaussian process

sampling x̂

x̂ ∼ x = Gaussian(mean[x], covar[x]) (2.11)

such that x̂ is a realization from the distribution x. If

ŷ ≡ f(x̂) , (2.12)

for some linear operation f , then ŷ is distributed

ŷ ∼ y = Gaussian(mean[y], covar[y]) (2.13)

with

mean[y] = f(mean[x]) (2.14)

and

[covar[y]]i,j =
∑
k

∑
l

(
∂[f ]i
∂[x]k

∣∣∣∣
x=mean[x]

)
[covar[x]]k,l

(
∂[f ]j
∂[x]l

∣∣∣∣
x=mean[x]

)
. (2.15)

Equation (2.15) is sometimes called the “sandwich equation.” The Jacobian ∂[f ]i
∂[x]k

∣∣∣
x=mean[x]

is also called a sensitivity matrix—although it is entirely distinct from the detection

sensitivity vector A>~1. This first-order propagation of uncertainty from x to y is
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sometimes called propagation of uncertainty.

This estimation is useful as long as f is roughly linear and x is roughly Gaus-

sian. A Poisson distribution Poisson(λ) approaches Gaussian(λ, diag(λ)) as λ → ∞.

Therefore the delta method is useful in some reconstruction problems. As we show

in Section 4.1, using the delta method with the maximum likelihood (ML) estimator

is similar to GLLS.

2.1.1.3 Generalized Linear Least Squares Regression

Generalized linear least-squares regression takes advantage of principles similar to

the delta method, but is derived within the framework of an inverse problem. This

technique is general enough that it could be derived in a Bayesian or frequentist

framework. Given a linear (or linearized) model, Gaussian-distributed data, and

covariance estimates of the data we can estimate the parameters and the covariance

associated with those estimates. This section derives the GLLS estimator and its

covariance, then discusses its shortcomings for QI.

Assume d̂ is drawn from a multivariate distribution

d̂ ∼ d ≡ Gaussian (d, Cdd) (2.16)

with covariance matrix Cdd approximately constant with respect to the parameters

Also assume that the model is perfect

In other words, we can calculate d = Astrue and Cdd exactly, if only strue were

provided. The response matrix A is also a sensitivity matrix in the sense that

[A]ij =
∂ [d]i
∂ [s]j

. (2.17)

Recall that none of the measurements is perfectly precise, so there are some mea-

surement residuals or discrepancies. The true (but unknown) measurement residuals

are

r̂(strue) ≡ Astrue − d̂ . (2.18)

Equation (2.16) implies that r̂(strue) is sampled from a multivariate Gaussian distri-

bution:

r̂(strue) ∼ r(strue) = Gaussian(0, Cdd) . (2.19)
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One implication of this is that we expect [r̂(strue)]
2
i to be approximately [Cdd]ii.

More generally, the residuals associated with any hypothesized parameter set s

are

r̂(s) ≡ As− d̂ or (2.20)

As = d̂+ r̂(s) . (2.21)

This is our linear model.

We could define an Ordinary Linear Least-Squares (OLLS) statistical metric for

s [31]

χ2
OLLS(s) ≡ r̂(s)>r̂(s) . (2.22)

Finding sOLLS ≡ argmins χ
2
OLLS(s) would be one way to infer an estimate of s. How-

ever, we expect that some values of r̂(strue) are larger than others (based on Cdd), so

weighting each element of r̂(s) equally is somewhat arbitrary.

To create better statistical metric, we first transform the system such that the

residuals are serially uncorrelated with unity variance. Suppose that some C
−1/2
dd

exists such that (
C
−1/2
dd

)>
C
−1/2
dd Cdd = II . (2.23)

This could be, for example, the Cholesky decomposition of C−1dd . Multiplying Eqs. (2.21)

by C
−1/2
dd gives

Ãs = d̃+ r̃(s) , (2.24)

with Ã ≡ C
−1/2
dd A, etc. This achieves the desired property,

r̃(strue) ∼ Gaussian (0, Cd̃d̃) with (2.25)

Cd̃d̃ = II . (2.26)

It is now appropriate to apply ordinary least squares to the transformed system.
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Our generalized linear least-squares goodness-of-fit metric is

χ2
GLLS(s) ≡ r̃(s)>r̃(s) = (Ãs− d̃)>(Ãs− d̃) (2.27)

... = r̂(s)>C−1dd r̂(s) = (As− d̂)>C−1dd (As− d̂) (2.28)

with maximum-likelihood estimator sGLLS ≡ argmins χ
2
GLLS(s). Solving for sGLLS is a

numeric problem

Ã>Ã sGLLS = Ã>d̃ (2.29)

A>C−1dd A sGLLS = A>C−1dd d̂ (2.30)

We can also use the OLLS variance estimator to evaluate the covariance of sGLLS

among repeated samples of d̂. In other words,

sGLLS ∼ Gaussian (strue, CsGLLSsGLLS
) , (2.31)

with CsGLLSsGLLS
such that

Ã>Ã CsGLLSsGLLS
≡ A>C−1dd A CsGLLSsGLLS

= II . (2.32)

We note serious limitations of this approach for QI, namely its assumptions that

sGLLS follows a Gaussian distribution, that Eq. (2.29) has a unique solution, and that

the prior is Gaussian.

The nonnegativity constraints provide information that that is not accounted for

in CsGLLSsGLLS
. Even if sGLLS is adjusted to meet the constraints, Eq. (2.32) is not

affected by this adjustment. The GLLS Gaussian approximation results in wide

estimates of CIb, since the Gaussian distribution is more broadly dispersed than a

truncated Gaussian [32].

For many QI problems I < J , so a continuum of values of sGLLS solve Eq. (2.29).

Solutions may or may not exist for Eqs. (2.29) and (2.32). Regardless, the under-

determinancy of sGLLS is a source of uncertainty not accounted for in CsGLLSsGLLS
;

see Chapter V. Ignoring this underdeterminancy results in optimistically narrow es-

timates of CIb.

The Bayesian prior (Eq. (2.6)) is significant. Generalized Linear Least-Squares

has no mechanism to incorporate a non-Gaussian prior. As Section 2.2 will show,

neglecting the prior results in narrow estimates of CIb.
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2.1.1.4 Bootstrapping

Bootstrapping, like the delta method, propagates the uncertainty through some

function of the data. Unlike the delta method, the function need not be (nearly)

linear and the data distribution can be arbitrary.

Bootstrapping approximates the data distribution by resampling datasets based

on the measured data [33]. For example, if dataset d̂ is measured from a Poisson

distribution, the dataset can be resampled K times, with dataset k sampled

d̃k ∼ Poisson(d̂) . (2.33)

Alternatively, the measurement can be subdivided into L identically distributed

sub-measurements. Then d̃k is sampled with replacement from among the sub-

measurements. This approach loses accuracy when the resampled distribution is

far from the true distribution d.

The function is applied to each dk to estimate the distribution for the quantity

of interest. For inverse problems, the function could be a reconstruction operation

to estimate s(dk), followed by a QOI calculation (S(dk)). This necessarily requires

many reconstruction calculations.

Fleenor, Ziock, and Blackston applied bootstrapping to quantitatively image known-

geometry sources [34, 35]. The geometry assumptions in that work reduce the number

of unknown parameters, eliminating epistemic uncertainty. As this dissertation dis-

cusses in Chapter V, epistemic uncertainty is significant in QI holdup measurements

(for which fewer geometry assumptions can be made). The bootstrapping procedure is

designed to account for aleatoric uncertainty (the noisy distribution of the data), but

procedures to account for epistemic uncertainty are not prominent in the literature.

2.1.2 Frequentist Framework

Frequentist techniques focus on the idea that some true source distribution strue

exists, and that we can use the data to generate interval estimates of S. A frequentist

analysis could define a 95% confidence region in the parameter space (CRf ). The

confidence interval for the QOI (CIf ) is then bounded by the extrema of S in the

confidence region. This guarantees that the confidence interval will capture the true S

in at least 95% of datasets. In practice, confidence intervals tend to be rather conser-

vative, since the extrema of S may be uncharacteristic of the confidence region. This

approach remains attractive, however, because it is fairly robust and computationally

tractable for emission QI. This approach is detailed and implemented in Chapter VI.
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Figure 2.3: A technique for frequentist analysis; compare to Fig. 2.2.

More relaxed definitions of confidence interval exist. For example, Weerahandi

proposed generalized confidence intervals in which the interval captures the true QOI

in 95% of samples of both the parameters and the data [36]. (If the parameters

are fixed at certain values, the generalized confidence interval may capture the QOI

for less than 95% of sampled datasets.) Additional guarantees could be made as a

95%–95% confidence interval: for 95% of parameter sets, 95% of sampled datasets

would result in confidence intervals that capture the true QOI. These approaches are

attractive because they generate smaller intervals than basic confidence intervals, but

it is difficult to speculate on the distribution of parameter sets (holdup distributions)

among real holdup measurement scenarios.

2.2 Illustration

As a concrete example of the concepts introduced in Section 2.1, consider a mea-

surement with two unknown parameters and one, two, or three datapoints.

Suppose laboratory inspectors needed to estimate the total intensity of two check

sources for a safety audit. They needed to estimate the total strength of two americium–

beryllium sources, numbered 0 and 1. The audit required an estimate of total-

strength

S ≡ s0 + s1 (2.34)

with a credible interval with a relative width less than 20%.

The inspectors first placed the sources on the table and set a counting (non-

imaging) helium-3 detector to record counts for 3600 seconds (livetime). While ac-

quiring data, they modeled the sources and detector using their favorite radiation

transport software. The forward model indicated that the detector response is 0.01

counts per neutron emitted from source 0 and 0.005455 counts per neutron emit-

ted from source 1. (Source 0 was closer to the detector than source 1. This is not

ideal for reasons that become apparent momentarily, but it represents true holdup
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measurements, in which deposits may exist at different distances from the imager.)

The inspectors then compared their data and model. Since the detector recorded

for 3600 seconds, the model can be summarized as a system matrix with elements

A00 = 36 count–seconds per neutron and A01 = 19.6 count–seconds per neutron.

The detector measured d̂0 = 175 counts. Using brute-force calculations, they plotted

p(d̂|s0, s1) and p(d̂|S), the Bayesian likelihood of acquiring d̂ as a function of s0 and

s1 or as a function of S. See Fig. 2.4.

Figure 2.4: After the inspectors’ first measurement, neglecting the prior: likelihood
of s and its credible region (left); likelihood of S and its credible interval (right).

The resulting credible interval (4.7, 9.3) was wider than the acceptable 20%. It

was wide chiefly because of epistemic uncertainty—one cannot use a single datapoint

to determine how many counts came from each of the two sources.

One must to determine how many counts came from each source because this

affects our conversion from counts to total source intensity. A single count in the

detector could be explained by 1/A00 ≈ 0.03 neutrons per second from source 0 or

by 1/A01 ≈ 0.05 neutrons per second from source 1. The observed counts could be

explained by a weak source 0, a strong source 1, or some combination of the two. The

estimate of S was only bounded because neither source can have negative intensity.

The inspectors then noted that, based on past experience, 99.9% of the sources in

the lab are dead. With this Bayesian prior (ζ = 0.001), the posterior distributions of
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s and S are bimodal, and the 95% credible interval is even wider. See Fig. 2.5.

Figure 2.5: After the inspectors’ first measurement: posterior of s and its credible
region (left); posterior of S and its credible interval (right).

The inspectors then prepared a second measurement. This time they slightly

shifted the sources, so that A10 = 36.364–count-seconds per neutron, and A11 =

54.545 count–seconds per neutron. The detector measured d̂1 = 279 counts.

The following morning, they updated their Bayesian posterior to include the new

datapoint. See Fig. 2.6. The second measurement indicated that neither source is

dead. However, because the second measurement was so similar to the first mea-

surement, the inverse problem was well-posed but ill-conditioned. Ill-conditioning

amplifies the measurement noise, so the credible interval was still too large.

The inspectors began to question their modeling work as well. They noticed that

the table, floor, ceiling, and detector stand were all ignored in the original model.

After adding these features, the elements of the system matrix increased 10%. In

turn, this correction decreases the estimates of s0, s1, and S by 10%.

The inspectors now recognized that their third measurement should complement

the first two measurements. In other words, the new measurement should improve

the conditioning of the response matrix. To achieve this they put source 0 behind

a thick neutron shield to isolate the counts from source 1. This yielded a total of

d̂2 = 187 counts.
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Figure 2.6: After the inspectors’ second measurement: posterior of s and its credible
region (left); posterior of S and its credible interval (right). The Gaussian fit overlaps.

With the refined model they re-calculated the entire system matrix:

A =

39.6 21.6

40 60

0.01 60

 (2.35)

count–seconds per neutron, and summarized their data

d̂ =

175

279

187

 (2.36)

counts.

The posterior calculated from this data, forward model, and prior is compactly

dispersed. See Fig. 2.7. There is still significant covariance between s0 and s1, but the

uncertainty on S is satisfactorily small. This result satisfies the audit requirements.

All of these effects are simultaneously present in typical FNCA emission QI prob-

lems. One should expect imperfect models, especially when analyst time is limited.

Similarity among the datapoints will make the inverse problem ill-posed, which will

amplify aleatoric uncertainty. If the source is finely discretized, one should expect
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Figure 2.7: After the inspectors’ third measurement: posterior of s and its credible
region (left); posterior of S and its credible interval (right). The Gaussian fit overlaps.

more parameters than datapoints, leading to epistemic uncertainty. Given the time

and access constraints of many inspection sites, even a diligently designed measure-

ment will have these sources of uncertainty.

The nonnegativity constraint mitigates these effects to a limited extent. The prior

belief that most elements of s are zero will further widen CIb. The nonnegativity con-

straint and the prior will each distort the posterior into a non-Gaussian distribution.

This creates challenges for many popular UQ approaches like GLLS, which assume

(nearly) Gaussian distributions.

From an experimental perspective, orthogonal measurements will decrease the

QOI uncertainty most rapidly. This could take the form of a second measurement from

a different location. Another example of orthogonal measurements is the selection of

the coded aperture mask pattern—experts design patterns to make each detector pixel

sensitive to different source voxels. Alternatively, the system matrix could be designed

such that the QOI estimate is unaffected by the covariance among the parameters.

This degree of control over the experiment is not always possible.

From a UQ perspective, the analysis should estimate modeling, aleatoric, and

epistemic uncertainty. To neglect any of these sources is to express undue confidence

in the estimate.
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2.3 Imaging Radiation Detectors

Imaging radiation detectors collect information about the spatial or angular dis-

tribution of radiation at the detector.

For example, X-ray radiography and tomography detectors measure the spatial

distribution of radiation from a small source. The data are interpreted to infer infor-

mation about the materials between the source and detector. This process is called

attenuation radiography or tomography, since the source is well characterized and

the “unknown” parameters are attenuation factors. Associated particle imaging is an

extension of attenuation tomography in which timing and angular information about

source events is also collected [37, 38].

Angle-sensitive detectors—scatter cameras and coded aperture imagers—are more

common in safeguards applications. Scatter cameras use the position and energy

of two or more interactions to infer a region-of-response from which the particle

originated. The response region for an event in a scatter camera is conical.

Coded aperture imagers use a patterned mask to encode the angular distribution

of particles as a spatial distribution of detection events [39]. If we compare a small

radiation source to a lightbulb, the mask casts a shadow on the detector. If the bulb

moves down, the shadow moves up; up, down; left, right; etc. This shadow is apparent

in a “hit pattern”—the spatial histogram of events recorded by the detector.

The mask should be designed so that the shadow is a unique function of the

light’s position. Other considerations like signal-to-noise ratio motivate the particular

patterns employed in practice [40]. The modified uniformly redundant array [14]

(MURA) pattern is ideal for some applications because its open elements are replaced

with closed elements (and vice versa) when it is rotated 90◦.

This property is useful because “mask–antimask” subtraction can mitigate some

nuisance signals. Particles can reach the detector from angles outside the encoded

portion of the mask, e.g., scatter off the floor near the imager. The resulting counts are

difficult to interpret, especially using analytical reconstruction techniques. By sub-

tracting twin mask- and antimask-measurements, the analyst can eliminate counts

from these angles (in the mean). However, these particles still contribute to the

measurement noise (since the variance of the counts sums when the counts are sub-

tracted).

Angle-sensitive imagers have two key limitations when determining the spatial

distribution of a source. First, particles scattered toward the imager appear to be ad-

ditional sources. These scattered particles can sometimes be minimized using energy
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thresholds or pulse-shape discrimination.

Second, angle-sensitive imagers provide limited information about the source–

detector distance. For coded apertures, moving the radiation source toward the de-

tector magnifies the mask shadow. The amount of information encoded in this shift

is limited, especially at distances far from the detector. The imager resolution is

much finer in azimuth and elevation than distance. Since distance is important for

determining the source strength, we often collect multiple orthogonal views of the

subject to infer the distance through parallax.

In this work we use a FNCA imager. See Section 3.1 for details on that imager.

2.4 Qualitative Reconstruction Solvers

Quantitative problems should be approached differently than qualitative prob-

lems. However, qualitative reconstruction methods can inform our approach to the

quantitative problem. Here we provide a brief description of several solvers used for

qualitative image reconstruction.

2.4.1 Analytical Solvers

Analytical solutions typically take advantage of the linearity of the convolution

operator. Examples include filtered back-projection. These methods typically do not

account for counting statistics and therefore provide limited-quality reconstructions

for low-count problems.

For coded aperture reconstruction, this can be implemented by matched-shift

filtering [39]. This facilitates estimation of pixel–pixel correlations in 2D reconstruc-

tions [41], which could estimate reconstruction uncertainty for strength estimates.

This correlation method has not been extended to 3D reconstruction.

2.4.2 Posterior-maximizing Iterative Solvers

To account for the varying uncertainty among detector pixels, we may recast the

deconvolution problem in a Bayesian framework. The Bayesian posterior combines

the “likelihood” of obtaining the convoluted data from a hypothetical source with the

analyst’s “prior” beliefs about reasonable source distributions to form a “posterior”

distribution of source configurations. The maximum a posteriori (MAP) solution is

the source configuration that maximizes the posterior.

The prior in qualitative imaging is a form of regularization. Non-influential priors

are common, but may yield excessive noise for low-count reconstructions. In these
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cases an influential prior can be used to “smooth” the reconstructed image. When

the prior is non-influential, the MAP is equivalent to ML.

We can gain an intuitive sense of the maximum likelihood solution for emission

tomography by comparing it to the generalized least-squaress solution. The ML source

satisfies a system similar to the generalized least-squares system with covar[d̂] =

diag(Aŝ):

A>diag(Aŝ)−1Aŝ = A>diag(Aŝ)−1d̂ , or equivalently (2.37)

A>~1 = A>diag(Aŝ)−1d̂ . (2.38)

Note that values of ŝ satisfying this system typically have negative elements, which

are prohibited on physical grounds [42]. The system is also not linear with respect to

ŝ and must be solved iteratively. The J-vector A>~1 is called the detector “sensitivity”

vector—the expected total counts for each unit-strength source discretization basis.

The ML system is not always well-posed and well-conditioned. If we approximate

diag(Aŝ)−1 ≈ diag(As), then the reconstruction step is equivalent to solving the linear

system

(
A>diag(As)−1A

)
ŝ = A>diag(As)−1d̂ (2.39)

for ŝ. The solution is only unique if A>diag(As)−1A is full rank; it cannot be full

rank if I < J . Even if it is full rank, Poisson noise in d̂ is amplified up to a factor

κML ≡ κ
(
A>diag(As)−1A

)
≡
∥∥A>diag(As)−1A

∥∥∥∥(A>diag(As)−1A)−1
∥∥ , (2.40)

where ‖ · ‖ refers to the matrix Euclidian norm. This condition number characterizes

the amount of reconstruction information the data contain.

Many algorithms exist to iteratively solve for the ML or MAP source, such as

MLEM, OSEM, and PSCA. Here we consider the Maximum-likelihood expectation-

maximization (MLEM) algorithm as a typical solver.

2.4.2.1 MLEM

The MLEM algrithm iteratively updates estimates of ŝ. This section connects the

MLEM iteration step to the ML equation.
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We first use the property

diag(Aŝ)−1Aŝ = ~1 (2.41)

(since multiplying by diag(·)−1 is equivalent to elemental division) to simplify the left

side of Eq. (2.37):

A>~1 = A>diag(Aŝ)−1d̂ , (2.42)

where ~1 is an I-vector of ones. This is a system of J equations

∑
i

[A]i,j =
∑
i

[A]i,j[d̂]i∑
j′ [A]i,j′ [ŝ]j′

∀j ∈ J . (2.43)

The MLEM algorithm iteratively solves the system of Eq. (2.43). We are searching

for a solution ŝ such that [ŝ]j ≥ 0∀j. The iteration prescription

[ŝ]
(n+1)
j =

[ŝ]
(n)
j∑

i[A]i,j

∑
i

[A]i,j[d̂]i∑
j′ [A]i,j′ [ŝ]

(n)
j′

∀j ∈ J (2.44)

approaches a solution ŝ as the iteration count n approaches ∞. At each iteration,

[ŝ]
(n+1)
j > 0 if [ŝ]

(n)
j > 0 (since [A]i,j ≥ 0 and [d̂]i ≥ 0).

The MLEM algorithm does not converge as quickly as competing algorithms, but

is fairly robust and simple to code. It also allows only non-negative solutions. The

solution converges roughly exponentially, as derived in the next section.

2.4.2.2 MLEM Convergence

In this section we show that MLEM iteration converges in norm as ρnMLEM , where

ρMLEM is the spectral radius of an iteration matrix. This convergence model assumes

that the nonnegativity constraints are inactive. As we will demonstrate, the model

breaks down when constraints are active.

Define an iteration’s voxelwise error ε(n+1) ≡ ŝ(n+1) − ŝ. Use a first-order Taylor

expansion to approximate

[A(ŝ+ ε)]−1i = [Aŝ]−1i +
∑
j

[ε]j
∂[Aŝ′]−1i
∂[ŝ′]j

∣∣∣∣
ŝ′=ŝ

+O(ε2) = [Aŝ]−1i −
[Aε]i
[Aŝ]2i

+O(ε2) ,

(2.45)
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so

diag(A(ŝ+ ε))−1 = diag(Aŝ)−1 − diag(Aε)diag(Aŝ)−2 +O(ε2) . (2.46)

The MLEM step is

ŝ+ ε(n+1) = diag(ŝ+ ε(n))diag(A>~1)−1A>diag(A(ŝ+ ε(n)))−1d̂ (2.47)

ŝ+ ε(n+1) = diag(ŝ+ ε(n))diag(A>~1)−1A>
(
diag(Aŝ)−1 − diag(Aε(n))diag(Aŝ)−2

)
d̂

(2.48)

after dropping the O(ε2) terms. Substituting the re-arranged ML equation

diag(A>~1)−1A>diag(Aŝ)−1d̂ = ~1 (2.49)

leaves

ŝ+ ε(n+1) = diag(ŝ+ ε(n))
(
~1− diag(A>~1)−1A>diag(Aε(n))diag(Aŝ)−2d̂

)
(2.50)

Neglecting O(ε2) terms leaves

ŝ+ ε(n+1) = diag(ŝ+ ε(n))~1− diag(ŝ)diag(A>~1)−1A>diag(Aε(n))diag(Aŝ)−2d̂

(2.51)

ŝ+ ε(n+1) = ŝ+ ε(n) − diag(ŝ)diag(A>~1)−1A>diag(Aŝ)−2diag(d̂)Aε(n) (2.52)

ε(n+1) =
(
I− diag(ŝ)diag(A>~1)−1A>diag(Aŝ)−2diag(d̂)A

)
ε(n) (2.53)

∥∥ε(n+1)
∥∥ ≤ ‖I−M‖ ‖ε(n)‖ , (2.54)

with M ≡ diag(ŝ)diag(A>~1)−1A>diag(Aŝ)−2diag(d̂)A. Hence ε(n) decreases faster

than ρnMLEM , where the spectral radius

ρMLEM ≡ ρ(I−M) ≡ max
‖u‖=1

‖(I−M)u‖ . (2.55)
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Figure 2.8: Convergence of MLEM
(blue) compared to the prediction
ρMLEM (black) when the constraints are
inactive.

Figure 2.9: Convergence of MLEM
(blue) compared to the prediction
ρMLEM (black) when constraints are ac-
tive.

This is similar to Hero and Fessler’s finding

∥∥ln ŝ(n+1) − ln ŝ
∥∥
H
≤ ρ(I−M)

∥∥ln ŝ(n) − ln ŝ
∥∥
H

, (2.56)

where the logarithms are elemental and the norm is defined ‖u‖2H ≡ u>diag(A>~1)diag(ŝ)u

[43].

For well-posed problems α < 1; see Section 2 of [43]. If M is not full rank, ε may

be in the null space of M . This suggests that MLEM may converge on any solution of

the ML equation, depending on ŝ(0). Underdetermined problems are discussed more

in Chapter V.

We can demonstrate this convergence property using two problems from Sec-

tion 4.2. The solution in Section 4.2.2 is far from the constraints; Section 4.2.4 is sim-

ilar, but the solution is bounded by some of the constraints. The norm ‖ŝ(n) − ŝ(N)‖
(where N is the final iteration) is plotted in Figs. 2.8 and 2.9. The spectral radius

ρMLEM is predictive only for the inactive-constraint problem.

This observation about MLEM convergence suggests that MLEM may converge

faster in some parts of the solution space than others. The convergence is faster when
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the reconstruction problem is well-posed.

2.4.3 Origin Ensembles

Origin ensemble methods use an alternative source representation to solve the

ML equation [44]. Rather than using basis functions, the origin ensemble represents

the source using a set of origin points corresponding to the origin of each detection

pulse. The stochastic origin ensembles (SOE) solver stochastically relocates these

origin points to sample from the posterior. The iterative adjustment process is one

example of a Markov chain random walk. Refer to Section 2.1.1.1 on Markov chain

Monte Carlo.

2.5 Quantitative Imaging and Uncertainty Quantification

Several projects in the literature demonstrate different types of QI. These projects

vary in their assumptions about the source and degree of UQ sophistication. We can

broadly categorize the literature based on whether the source is assumed to be a

small number of point sources or a more general distribution. We will begin with the

point-source literature.

Hull and colleagues at PHDs locate and quantify source intensity [45, 46]. Their

approach acknowledges that the imager data has limited ability to infer the source–

detector distance, so the user is required to measure the distance separately [47].

Uncertainty of the source intensity is not estimated.

The SOE reconstruction method is a Markov chain process, so it can be naturally

adapted into MCMC UQ. Goodman and He have demonstrated this approach for

estimating uncertainty of the position of a localized source [48]. Source–detector

distance and source intensity are not considered.

Generalizing somewhat from point-sources, Ziock and Blackston have used imag-

ing data quantify the count and arrangement of block-shaped sources [35]. They

estimated uncertainty on the blocks’ positions using bootstrapping. Since this work

is intended for arms-control, it does not address source–detector distance and source

intensity.

Other authors have investigated non-imaging spectroscopy for inferring a few

source and shielding parameters. Bledsoe and colleagues solve this problem using non-

linear minimization of a goodness-of-fit metric [49, 50], and Mattingly and Mitchell

propose similar [51]. Uncertainty is quantified using GLLS or MCMC. Streicher and

colleagues demonstrated similar inference using bootstrapping [52].
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Hausladen and colleagues inferred the source strength using FNCA with holdup-

like geometries [23]. The work includes uncertainty estimates on the total source

intensity. Their technique used a single view of the data, so the data contained

limited information about the source–detector distance. To infer the distance, they

calculated reconstructions at multiple distances and selected the distance with the

reconstruction that best fit the data. The implicit assumption in this approach is

that all of the sources are at the same distance; this assumption should be avoided

for holdup quantification.

Four examples exist of QI or holdup measurement that do not assume the source

is localized.

First, GGH (implemented by Holdup Measurement System-4 [5] (HMS4)) has

been used in many holdup measurement applications, including demolition of the K-

25 uranium processing facility [20]. The GGH approach assumes that the holdup is

uniformly distributed as a point, line segment, or flat area [5]. The model is otherwise

quite sophisticated, accounting for energy-dependent detector efficiency, attenuation,

and self-shielding. However, the model requires the inspector to infer the holdup

location and extent (linear or areal). The model then predicts count rates of a non-

imaging detector as a function of the source mass. This inverse problem is well-posed

because of the many modeling assumptions and approximations.

Uncertainty estimates using GGH are very limited. The HMS4 software auto-

matically estimates uncertainty from counting statistics. It also allows the inspector

to note uncertainty in the source extent, which it propagates to the mass estimate.

Unfortunately, it is difficult to reliably estimate uncertainty in position, shape and ex-

tent using non-imaging survey techniques. In some cases inspectors even mis-identify

which piece of equipment contains holdup [21]. Estimated uncertainty can be on the

order of 25% to 50% [5], but measurement bias above 100% is common [22].

Second, dual-particle transmission tomography systems have been used to mea-

sure large holdup deposits [15, 53]. These measurements were analyzed to infer the

holdup mass and composition with uncertainty, but the UQ procedures are not spec-

ified. One speculates that UQ based on propagating counting statistics is sufficient

for this imaging modality, since modeling and epistemic uncertainties are minimal.

Unfortunately transmission tomography systems require time and access that is im-

practical in safeguards inspection scenarios.

Third, Jackson performed source intensity quantification using FNCA data. Jack-

son performed MLEM reconstruction of a 2-dimensional (source–detector distance

and one angular dimension) source distribution. The reconstruction allows for con-
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tinuous source distributions, but the examples include only point sources. The source–

detector distance is inferred using only the imager data, and Jackston notes consid-

erably improved estimates using parallax measurements. Jackson does not quantify

uncertainty on the intensity estimate.

Fourth, holdup measurements published by Nakamura and colleagues [1, 2] are

similar to the measurements and goals of this dissertation. Nakamura performs emis-

sion tomography across a complex facility using a series of helium-3 neutron mea-

surements. Although the detector is non-imaging, the measurements are spatially

sensitive because the detector is repositioned. In this sense the holdup measurements

are an example of QI and are mathematically similar to the FNCA measurements we

analyze in this dissertation.

Nakamura estimates holdup mass uncertainty using GLLS [1, 54]. An MCNPX

forward model calculates a 57 × 53 response matrix. One speculates that the se-

lection of I = 57 datapoints to infer source strength in J = 53 voxels was chosen

deliberately so that the GLLS problem is well-posed. This is an example of geomet-

ric assumptions concealing epistemic uncertainty: The data can only determine the

source distribution with resolution on the scale of meters, but distribution changes

of tens of centimeters would significantly affect the mass estimate. One therefore

speculates that Nakamura’s uncertainty estimate of ∼ 15% is optimistic.

The literature survey did not turn up references on UQ for underdetermined QI

problems. Emission tomography systems that are practical for safeguards holdup

measurements have limited resolution, especially in the distance dimension. Uncer-

tainty in the total source intensity—a product of modeling error, counting statistics,

and geometry uncertainty—is not observed in the cited literature.
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CHAPTER III

Forward Model

Accurate and expedient forward modeling is crucial for solving the inverse prob-

lem. The forward model is our mapping from the parameter space to the data space,

so its errors are transferred to the inverse solution. The inverse solver usually eval-

uates the forward model serially, so the computation time per evaluation drastically

increases the overall time-to-solution. The analyst may also have limited time to en-

code details of the model into an input file. These competing considerations force the

developer and analyst to compromise forward-model accuracy to reduce the analyst

burden and provide a timely solution.

Our first objective is a forward model that quickly and accurately predicts detector

data. In this section we describe a forward model based on ray tracing. Parameters

for the model are determined using calibration measurements. The model accuracy

is evaluated using cross-validation.

Our second objective is a noise model that predicts the distribution of prediction–

measurement residuals. Because of model errors and measurement statistics, the

predictions cannot perfectly match measured data. The error model is important

because it allows us to statistically compare measured data to hypothetical source

distributions.

Phenomena that affect the FNCA emission QI problem are listed in Table 3.1.

Several phenomena are “fundamental” to the coded aperture technique. These will

be calculated using ray-tracing radiation transport.

Phenomena related to detector response are typically difficult to model. However,

since these phenomena depend on the detector (not the particular measurement),

the forward model can account for them using calibration. We make two exceptions:

Pulse-shape discrimination techniques are sufficiently advanced that mis-classification

of fast neutrons is negligible. We do not expect significant pulse pileup because of

the low count rates in our measurements.
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Table 3.1: Phenomena relevant to FNCA forward modeling.

category phenomenon approach

fundamental
tracklength through mask ray trace
detector pixel orientation ray trace

source–pixel distance ray trace

near-detector

finite mask and scintillator thickness ray trace
attenuation in scintillator ray trace

scatter (mask and detector) calibrate
pixel mis-identification calibrate

intrinsic efficiency calibrate
mask penetration calibrate

energy-dependent effects calibrate
photon/neutron mis-classification neglect

pulse pileup neglect

near-ROI

attenuation evaluate
scatter evaluate

self-attenuation and -scatter evaluate
nuisance sources avoid

ambient
sources and scatter nuisance parameters

attenuation irrelevant

numerical
detector discretization (sub-pixels) evaluate

source discretization (voxels) evaluate
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Phenomena near the ROI generally cannot be calibrated, but are also difficult to

model. For example, neutron attenuation and scatter in glove box walls significantly

affects the number of fast neutrons reaching the imager. To model attenuation, the

analyst must encode the ROI geometry and materials for the ray tracer. To model

scatter, ray tracing is insufficient; full-fidelity radiation transport must be used, which

increases the computational burden. Self-attenuation and self-scatter further increase

the burden, since they make the forward model non-linear; this precludes the usual

approach of tabulating a system matrix. We will evaluate the effect of neglecting

near-ROI phenomena to estimate their impact.

For good analysis, one must eliminate “nuisance” neutron sources that are near

the ROI but excluded from the QOI. The imager has finite resolution, and cannot

distinguish a source that is slightly inside the ROI from one slightly outside the ROI.

However, we anticipate ambient sources away from the ROI. The distribution

of these ambient sources is a “nuisance parameter” that we must account for when

interpreting the data. Therefore the forward model should include a smattering of

point sources (in addition to the voxelized source in the ROI). The strength of each

of these sources is an unknown parameter that is excluded when calculating the QOI.

Ambient scatter is indistinguishable from a ambient sources, especially when pulse-

shape discrimination eliminates non-fast neutrons from the hit pattern. Ambient

attenuation only removes nuisance neutrons, so it is ignored.

Finally, we must consider numerical error. Discretizing the detector pixels and

source is far more significant than other sources (e.g., roundoff). If the discretization

is sufficiently fine, the numerical error will be trivial compared to the other approxi-

mations. We evaluate the pixel discretization error in this chapter and evaluate the

effect of source discretization in later chapters.

In this section we will define and calibrate a model to predict FNCA data. We will

also infer a distribution of the discrepancies between the model and measured data

(which typically exceed counting statistics). We demonstrate the predictive power

of the model using cross-validation, we show the need to model near-ROI materials,

and we determine adequate discretization for the source and scintillator. A subset of

these results were published by Bevill and Martin in late 2016 [26].

3.1 Equipment

We will model the P24 FNCA [16]. Hausladen and colleagues demonstrated this

system for locating neutron sources hidden in mock holdup scenarios [55]. For calibra-
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tion we will measure a small bare neutron source in multiple locations. See Fig. 3.1.

This section describes that equipment and the pre-processing logic used to generate

a hit pattern.

Figure 3.1: Typical setup of the P24 imager, including a neutron source (A), mask
(in the anti-mask orientation, B), and scintillator blocks (C).

The P24 imager has 24 × 24 = 576 scintillator pixels. The sensitive region is

9 blocks of EJ-299-34 scintillator plastic, each subdivided into 64 optically isolated

channels. See Fig. 3.2. Light from each block is collected in four photomultiplier

tubes. Onboard electronics assign each event to a pixel using Anger logic [56]. Each

pixel measures 1.35 cm× 1.35 cm× 5 cm, so each block measures 10.8 cm× 10.8 cm×
5 cm. Gaps of 0.4 cm separates the blocks. The scintillators are centered 116.5 cm

above the floor.

The electronics report a digitized waveform for every recorded pulse. Photon

events are eliminated using pulse-shape discrimination [57]. Low-energy neutron

events are eliminated by setting a minimum waveform amplitude.

For measurements in this work, the P24 was outfitted with a polyethylene mask

5.08 cm thick. The mask is cut with a tiled base-11 MURA pattern. See Fig. 3.3. The

pattern is 50.8 cm×50.8 cm; including the unpatterned border, the mask is 81.28 cm×
81.28 cm. The mask center is 30.54 cm from the scintillator center (adjustable).

The neutron source is a californium-252 sample with identification number Cf-

252-5557. The source is certified as 9.96× 10−4 Ci as of 2007-03-13, so its activity as
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A single block of 8× 8 pixels [16]. The 3× 3 arrangement of blocks.

Figure 3.2: The scintillator geometry of the P24 imager.

mask orientation antimask orientation

Figure 3.3: The P24 imager’s mask pattern used in this work. Open elements are
white.
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of 2016-08-03 is

9.96× 10−4 Ci×
(

1

2

)9.3938 a / 2.645 a

= 8.50× 10−4 Ci (3.1)

and its neutron emission rate is

(
8.50× 10−4 Ci

)(3.7× 1010 decays/s

1 Ci

)
(0.030 92 fiss /decay) (3.7509 n/fiss ) = ...

(3.2)

... = 3.65× 105 neutrons/s. This source is positioned in the imager field of view for

calibration measurements.

3.2 Model Specification

In this Section we define a ray-tracing model to predict counts measured by the

(P24) imager. We also propose several “covariance models” that predict the covari-

ance of prediction–measurement residuals. The first covariance model assumes that

the data are Poisson-distributed with no covariance. The second covariance model

assumes that modeling error creates relative uncertainty and covariance among the

pixels. The third covariance model makes similar assumptions but uses the sampled

data, not the predicted data, to predict covariance.

The forward model and the latter two covariance models require calibration, which

will be described in Section 3.3.

3.2.1 Forward Model

The forward model solver uses ray-tracing to calculate fundamental detector ef-

fects. Consider the calculation of the expected counts in pixel i from a point source

at xj.

The solver first selects a set of discrete interaction sites in pixel i. Each site xk

(k ∈ Ki) represents a 3D sub-pixel of pixel i. Each pixel has the same quadrature size

|Ki|. In this work Ki is a uniform Cartesian grid of 3
√
|Ki| × 3

√
|Ki| × 3

√
|Ki| points,

so |Ki| must be a perfect cube. The sub-pixels are a spatial quadrature for pixel i.

The solver then traces line segment xjxk from xj to each xk. If xjxk intersects

a closed mask element, then the expected count rate in sub-pixel k decreases by

exp(−Σmtm). The coefficient Σm is an “effective” cross section determined through

calibration; the closed-element tracklength tm is calculated using structured-mesh ray
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tracing. Interaction likelihood depends on the source spectrum, so the Σm depends

on the source isotope. For the P24 imager with the californium-252 source, a typical

Σm ≈ 0.15 /cm.

The model also accounts for angular effects and attenuation in the scintillator.

Neglecting the mask, the probability an isotropically emitted neutron will interact in

the subpixel around xk is approximately proportional to

exp(−Σsts)(1− exp(−Σstk))
ak

4π|xk − xj|2
, (3.3)

where Σs is the effective cross section of the scintillator, ts is the neutron tracklength

to reach the subpixel, tk is the neutron tracklength through the subpixel, and ak

is the subpixel area perpendicular to the ray. The first term is the probability of

penetrating to reach the subpixel. The second term is the probability of interacting

in the subpixel. The third term is the arcangle fraction the subpixel subtends. For

the P24 imager, a typical Σm ≈ 0.19 /cm.

It is difficult to rapidly calculate ak and tk unless the ray travels perpendicular to a

subpixel face. However, if the subpixels are small then we can reasonably approximate

(1− exp(−Σstk))ak = Σsvk +O (tk) , (3.4)

where the subpixel volume vk ≡ aktk is trivial to calculate. Therefore the subpixel

interaction likelihood is approximately proportional to

Σsvk exp(−Σsts)

4π|xk − xj|2
. (3.5)

Light collection efficiency varies across the face of the photomultiplier tubes and

varies as a function of the source spectrum. Therefore pixel i has an effective intrinsic

efficiency [ε]i ∈ [0, 1], which should be determined by calibration. This calibrated

parameter subsumes the constant Σs outside the exponential of Eq. (3.5).

Although the scintillator pixels are optically separated, the Anger logic can mis-

identify the interaction pixel. Indeed, the scintillator pixels represent a lower bound

on the detector’s spatial resolution; the resolution may be much poorer due to mis-

placement. We model this effect by blurring the expectation with a five-point stencil.

If the unblurred expectation is [Au]i,j, then the blurred response is

[A]i,j = (1− 4b) [Au]i,j + b
∑
i′∈Ni

[Au]i′,j , (3.6)
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with blur factor b ∈ [0, 1] and Ni indexing the four immediate neighbors of pixel i. If

i is at the edge of the scintillator block, [Au]i′,j = 0 for the “absent” neighbor (since

misplacement across a block boundary is unlikely).

The expectation is proportional to the measurement livetime. Preliminary studies

indicate that the P24 deadtime is not significant for the source strengths available in

our lab. We therefore approximate the livetime with the walltime.

The walltime is generally identical for all pixels in a single measurement. How-

ever, it is convenient to aggregate data from a series of measurements by stacking the

response matrix. In this case, the index i refers to a specific pixel in a specific mea-

surement. For example, the top-left pixel may be indexed i = 0 in one measurement,

i = 576 in a second measurement, i = 1152 in a third measurement, etc. Because the

livetime varies among measurements, we specify the livetime for pixel i as Ti.

Finally, we choose to model the difference between a mask–antimask pair of mea-

surements instead of modeling each separately. The pair difference is much less sen-

sitive to sources and scatter outside of the fully coded field of view. (Refer to the

mask–antimask explanation in Section 2.3.) Using the pair difference reduces calibra-

tion error. Denote the mask response matrix A0 and the antimask response matrix

A1. If multiple mask–antimask pairs are measured, each new pair adds rows to A0

and A1 as described in the previous paragraph.

In summary, our model predicts that in the normal mask orientation, neglecting

blur, pixel i will record an average of

[A0,u]i,j = [ε]i Ti
∑
k∈Ki

(
vk exp (−Σmtm − Σsts)

4π|xk − xj|2

)
(3.7)

from a unit-strength point source at xj. (The calculation is identical in the antimask

configuration, except that tm has changed.) The expectation is then blurred according

to Eq. (3.6). Response matrices for the mask (A0) and antimask (A1) configurations

are intended to be used together to predict the antimask-subtracted hit pattern. To

use the model, the analyst must specify the source distribution or discretization; the

mask size, thickness, position, orientation, and pattern; and the detector position,

orientation, thickness, and pixel geometry. Calibration parameters ε, Σm, Σs, and b

will be experimentally determined in Section 3.3.

36



3.2.2 Covariance Model I

The covariance models predict the typical distribution of prediction–measurement

residuals. Covariance model I assumes that the model is perfect, and the detector

counts are Poisson distributed. We use the usual Gaussian approximation: Given a

vector s of point-source strengths, the counts would be distributed with mean

mean[d] = As (3.8)

and covariance

covar[d] = diag(As) . (3.9)

We define prediction–measurement residuals

r̂0 ≡ A0s− d̂0 and (3.10)

r̂1 ≡ A1s− d̂1 . (3.11)

Since we are using mask–antimask subtracted data, the residuals of interest are

r̂ ≡ (A0s− A1s)−
(
d̂0 − d̂1

)
= r0 − r1 . (3.12)

Accounting for only counting statistics, r̂ will be distributed with mean

mean[r] = 0 (3.13)

and covariance

covar[r] = diag(A0s+ A1s) . (3.14)

Unfortunately this model typically underestimates the counting-statistics uncer-

tainty. Scatter around the mask makes the count rates higher than the model predic-

tion. These counts are typically cancelled in the mean (Eq. (3.13)) but still contribute

to the variance. To account for this additional noise we approximate

covar[r] ≈ diag(d̂0 + d̂1) . (3.15)
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Although this variance model can bias quantitative estimates, the effect appears to

be reasonably small in pratice.

This approximation also assumes that the model error is insignificant compared to

the data noise. Later results will show that the model error is signficant. This moti-

vates us to create a second, calibrated covariance model that captures the uncertainty

introduced by model error.

3.2.3 Covariance Model II

Here we add three calibrated terms to the noise model of Eq. (3.15): relative

uncertainty, same-measurement correlation, and mask–antimask correlation. These

terms effectively enhance the covariance matrix to include uncertainty from modeling

error, calibration uncertainty, and aleatoric uncertainty (discussed in Chapter IV).

The relative uncertainty term increases the variance in the pixel-i mask residual

to

[covar[r0]]i,i =
[
d̂0

]
i
+ ρ [A0s]

2
i , (3.16)

with ρ ∈ [0, 1] determined by calibration. Similarly for the antimask,

[covar[r1]]i,i =
[
d̂1

]
i
+ ρ [A1s]

2
i , (3.17)

with the same value of ρ.

We also observe some correlation among the pixels within a mask or antimask

measurement. This could be explained by gain shifts in the electronics, for example.

We estimate the covariance between pixels i and i′ in a mask measurement

[covar[r0]]i,i′ = ρ00

√
[covar[r0]]i,i [covar[r0]]i′,i′ ∀ i 6= i′ , (3.18)

with ρ00 ∈ [0, 1) determined by calibration. The antimask correlation takes the same

form using the same coefficient.

We also allow for some correlation between same-pixel measurements of a mask–

antimask measurement pair. We denote the covariance between pixel i of the mask

measurement and pixel i′ of the antimask measurement as [covar[r0, r1]]i,i′ . Similar
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to Eq. (3.18),

[covar[r0, r1]]i,i′ =

ρ01
√

[covar[r0]]i,i [covar[r1]]i,i i = i′

0 else
, (3.19)

with mask–antimask correlation constant ρ01 ∈ [0, 1) determined by calibration.

Propagating the uncertainty gives the covariance of the mask–antimask difference

[covar[r]]i,i′ = [covar[r0]]i,i′ + [covar[r1]]i,i′ − [covar[r0, r1]]i,i′ − [covar[r0, r1]]i′,i
(3.20)

... =



[
d̂0

]
i
+ r [A0s]

2
i +

[
d̂1

]
i
+ r [A1s]

2
i + ...

...− 2ρ01
√

[covar[r0]]i,i [covar[r1]]i,i i = i′

ρ00

√([
d̂0

]
i
+ r [A0s]

2
i

)([
d̂0

]
i′

+ r [A0s]
2
i′

)
+ ...

...+ ρ00

√([
d̂1

]
i
+ r [A1s]

2
i

)([
d̂1

]
i′

+ r [A1s]
2
i′

)
i 6= i′

. (3.21)

3.2.4 Covariance Model III

We also propose a third covariance model that is similar to covariance model II.

However, this model uses only the observed counts, not the predicted counts:

[covar[r]]i,i′ =



[
d̂0

]
i
+ r

[
d̂0

]2
i

+
[
d̂1

]
i
+ r

[
d̂1

]2
i

+ ...

...− 2ρ01
√

[covar[r0]]i,i [covar[r1]]i,i i = i′

ρ00

√([
d̂0

]
i
+ r

[
d̂0

]2
i

)([
d̂0

]
i′

+ r
[
d̂0

]2
i′

)
+ ...

...+ ρ00

√([
d̂1

]
i
+ r

[
d̂1

]2
i

)([
d̂1

]
i′

+ r
[
d̂1

]2
i′

)
i 6= i′

. (3.22)

This difference means that the noise is constant with respect to s.

We determine parameters for the forward model and variance models II and III

using calibration.
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3.3 Calibration

We calibrate the model by taking a series of measurements and calculating the

best-fit calibration parameters.

3.3.1 Measurements

We took a series of P = 15 measurement pairs. A measurement pair consists

of twin mask and antimask measurements with identical walltime, detector position,

etc. For all measurements, the mask is centered at (190.5, 0, 116.5) cm. The imager

faces the −x direction. See Fig. 3.4.

Figure 3.4: Calibration setup with origin (O) and coordinate system (xyz) marked.

For pair p, we measured the source position as x̂p. See Table 3.2. The measured

source positions are denoted as a set X̂P ≡ {x̂p | p = 1...P}. The source locations

were chosen to span the detector’s fully and partially coded field of view. (A source

position is “fully encoded” if the mask outline overshadows the entire detector face;

the position is “partially encoded” if the mask outline overshadows a portion of the

detector face.) We anticipate that application measurements may include nuisance

sources outside the fully encoded region. We did not include calibration positions

outside the partially encoded region, such as the region opposite the FNCA field of

view.
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Table 3.2: Source locations (centimeters), walltimes (seconds), and total counts for
the calibration measurement pairs.

position walltime (s) total counts
p (cm) mask antimask mask antimask
1 (−5.1,−0.6, 121.0) 21600 21600 579712 585937
2 (−3.2, 108.1, 121.0) 5400 5400 105960 98447
3 (61.1,−82.5, 121.0) 5400 5400 195510 177780
4 (−136.7,−23.2, 121.0) 27000 27000 319898 319840
5 (113.0,−0.3, 121.0) 1800 1800 189115 189079
6 (89.5, 92.1, 121.0) 3600 3600 131484 116840
7 (89.9, 92.7, 155.9) 3600 3600 118016 102812
8 (121.9,−2.2, 155.6) 1800 1800 174984 188594
9 (−69.5, 153.2, 155.6) 27000 27000 298122 283653
10 (−1.0, 0.0, 155.9) 5400 5400 137636 144154
11 (0.3,−83.8, 156.2) 5400 5400 118418 119137
12 (−134.3,−41.0, 155.9) 27000 27000 312607 309235
13 (34.8,−46.2, 155.9) 1800 1800 58580 58231
14 (96.7,−81.1, 155.9) 1800 1800 70613 66026
15 (−51.8,−84.0, 156.2) 27000 27000 431456 436547

We stored the measured mask data in a matrix D̂0 ∈ IRI×P, where
[
D̂0

]
i,p

is the

number of counts in pixel i in measurement p. For the P24 imager, I = 576 pixels.

Similarly, the antimask data are stored in D̂1 ∈ IRI×P.

3.3.2 Forward Model

We used nonlinear optimization to determine calibration parameters that best fit

the subtracted data D̂0−D̂1. For convenience, let us summarize the scalar calibration

parameters as a vector

c ≡
[
Σm Σs b

]>
∈ IR3 . (3.23)

Table 3.3 lists constraints for the calibration parameters.

We also allow for small adjustments of the source positions. Our measurements

X̂P are precise within a few centimeters, but our P24 measurements are somewhat

sensitive to perturbations of this order of magnitude—especially parallel to the de-

tector face. For this reason we allow some in-plane adjustment of source position xp

from the as-measured value x̂p. Adjustments of the source distance ([xp]x) are not

considered. Again, see Table 3.3.
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Table 3.3: Bounds on the calibration parameters c and adjusted source positions xp.

Pixel intrinsic efficiency 0 < [ε]i ≤ 1 ∀i ∈ [1, I]
Mask cross section 0.02 ≤ c1 ≡ Σm ≤ 0.2
Scintillator cross section 0.02 ≤ c2 ≡ Σs ≤ 0.2
Blur factor 0 ≤ c3 ≡ b ≤ 0.15
Source distance [xp]x = [x̂p]x ∀p ∈ [1, P ]
Source lateral [x̂p]y − 15 ≤ [xp]y ≤ [x̂p]y + 15 ∀p ∈ [1, P ]

Source height [x̂p]z − 15 ≤ [xp]z ≤ [x̂p]z + 15 ∀p ∈ [1, P ]

We model the measurements to determine best-fit estimates of ε, c and XP . Our

forward model predicts counts

[D0(ε, c,XP )]i,p ≡ [A0(ε, c,XP )]i,p s
(p) , (3.24)

with source intensity s(p) = 3.65× 105 neutrons/s for all p. The response matrix (as

defined in Eqs. (3.6) and (3.7)) now depends on c and XP :

[A0(ε, c,XP )]i,p = (1− 4c3) [A0,u(ε, c,XP )]i,p + c3
∑
i′∈Ni

[A0,u(ε, c,XP )]i′,p (3.25)

with

[A0,u(ε, c,XP )]i,p ≡ [ε]i Tp,0
∑
k∈Ki

(
vk exp (− [c]1 tm − [c]2 ts)

4π|xk − xp|2

)
. (3.26)

The walltime for the mask measurement of pair p is Tp,0. In these expressions (D0, A0)

are for the mask; use analogous expressions (D1, A1) for the antimask. This defines

a matrix of subtracted residuals

R̂(ε, c,XP ) ≡ (D0(ε, c,XP )−D1(ε, c,XP ))−
(
D̂0 − D̂1

)
, (3.27)

with R̂(ε, c,XP ) ∈ IRI×P.

Note that R̂(ε, c,XP ) is sampled (since D̂ is sampled). For simplicity, use covari-

ance model I: assume
[
R̂(ε, c,XP )

]
i,p

is sampled with variance

var[[R]i,p] =
[
D̂0

]
i,p

+
[
D̂1

]
i,p

(3.28)

and with no modeling error and no covariance among pixels, measurements, or pairs.
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Based on this model, a reasonable goodness-of-fit metric is

ζ(ε, c,XP ) ≡
∑
i,p

[
R̂(ε, c,XP )2

]
i,p[

D̂0

]
i,p

+
[
D̂1

]
i,p

. (3.29)

A small value of ζ(ε, c,XP ) indicates that c and XP fit the subtracted data well. The

weighted least-squares calibration estimator is then

ε∗, c∗, X∗P ≡ argmin
ε,c,XP

ζ(ε, c,XP ) . (3.30)

We evaluate ε∗, c∗, and X∗P using nonlinear optimization. The intrinsic efficiencies

ε can be estimated in one step. Given estimates of c∗ and X∗P , the optimal ε is

approximately

[ε∗]i ≈ [ε]i

∑
pw0,p

[
D̂0

]
i,p

+ w1,p

[
D̂1

]
i,p∑

pw0,p [D0(ε, c∗, X∗P )]i,p + w1,p [D1(ε, c∗, X∗P )]i,p
, with (3.31)

w0,p ≡
1√[
D̂0

]
i,p

. (3.32)

This is a weighted average ratio between measured and predicted counts. Although

this may not satisfy Eq. (3.30) exactly, it is guaranteed to be non-negative.

We use this prescription for ε to optimize the components of c and XP . Using

a bisection line search, we can minimize each component. We update ε at each

evaluation in the line search. Each line search terminates when the solution ζ is

estimated to be within within 0.1% of the minimum ζ. Because ζ is not a separable

function, we cycle through the line searches serially until every component’s change

is smaller than 10−6.

Using this analysis procedure, the effective intrinsic efficiencies range from 0.1539%

to 3.048%. See Fig. 3.5.

The best-fit calibration parameters are Σm = 0.1392 cm−1, Σs = 0.178 cm−1, and

b = 0.0949. The mask cross section is reasonable for the californium-252 spectrum

in polyethylene. It indicates that the mask is 0.71 mean-free-paths thick, and a

neutron beam normally incident on a closed element is attenuated to 49% of its

original strength. The scintillator cross section is much higher than expected. This
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Figure 3.5: Best-fit intrinsic efficiencies from the calibration measurements.
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suggests that the typical interaction depth in the scintillator is quite shallow, perhaps

for reasons other than scintillator attenuation. The blur value indicates that roughly

half of the fast neutron events are misplaced in a neighboring pixel. This finding is

consistent with previous findings personally communicated with Paul Hausladen.

The XP adjustments show a distinct trend shifting the sources in the +y direction.

See Table 3.4. Follow-up measurements confirm that the imager was oriented slightly

to the left of the −x-axis, so the +y correction is reasonable.

Table 3.4: Calibration adjustments to Xp.

p Xp − X̂p

1 ( 0.0, 2.44629, -0.75439 )
2 ( 0.0, 3.04688, -0.82031 )
3 ( 0.0, 2.46094, -0.74707 )
4 ( 0.0, 4.21875, -1.40625 )
5 ( 0.0, 0.82031, 0.0293 )
6 ( 0.0, 1.875, -0.23438 )
7 ( 0.0, 2.10938, -0.05859 )
8 ( 0.0, 0.9668, -0.0293 )
9 ( 0.0, 3.75, -1.75781 )
10 ( 0.0, 2.92969, -0.58594 )
11 ( 0.0, 3.28125, -0.82031 )
12 ( 0.0, 4.10156, -1.64062 )
13 ( 0.0, 2.46094, -0.70312 )
14 ( 0.0, 1.64062, -0.70312 )
15 ( 0.0, 3.92578, -1.23047 )

It is possible to propagate measurement uncertainty from the calibration data

to the calibrated parameters. However, one expects that the model’s approxima-

tions limit its predictive power far more than calibration data uncertainty does. We

therefore forgo uncertainty analysis on the calibration parameters. Instead we will

train a covariance model based on the observed prediction–measurement residuals

(Section 3.3.4), then use cross-validation to determine the validity of the calibrated

model (Section 3.4).

3.3.3 Covariance Model I

Before we train our generalized covariance model, we should assess the accuracy

of the Poisson covariance model. Covariance model I is based on counting statistics

and has no calibration parameters. (Refer to Eq. (3.15).)
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We can tabulate a goodness-of-fit parameter

χ̂2
p ≡

[
R̂
]>
:,p

(
covar[[R]:,p]

)−1 [
R̂
]
:,p

(3.33)

to evaluate the fit between the modeled and measured data of pair p. The residu-

als are calculated using the calibrated forward model, and the covariance matrix is

calculated using covariance model I. If [R]:,p is a normal distribution with mean zero

and covariance covar[[R]:,p], we expect χ̂2
p to be sampled from a chi-squared distri-

bution with I degrees of freedom. Based on the chi-squared distribution, we expect

χ̂2
p ≈ I and the right-tail probability density function (PDF) integral P (χ2 > χ̂2

p) to

distribute uniformly between 0% and 100%. Calculated values of χ̂2
p, etc. are listed

in Table 3.5.

The values of χ̂2
p are unreasonably large. This indicates that the model signifi-

cantly under-predicts the magnitude of prediction–measurement residuals. This mo-

tivates us to use of a more generalized covariance model.

Table 3.5: Goodness-of-fit parameter for each calibration pair using covariance model
I. (Pair p is included in the calibration data.)

p χ̂2
p I χ̂2

p/I P (χ2 > χ̂2
p)

1 2256.5 576 3.92 0.0%
2 691.0 576 1.20 0.1%
3 1034.4 576 1.80 0.0%
4 1166.4 576 2.03 0.0%
5 1286.2 576 2.23 0.0%
6 1009.7 576 1.75 0.0%
7 1131.8 576 1.96 0.0%
8 1017.7 576 1.77 0.0%
9 1202.2 576 2.09 0.0%
10 880.3 576 1.53 0.0%
11 739.6 576 1.28 0.0%
12 1141.5 576 1.98 0.0%
13 679.9 576 1.18 0.2%
14 845.9 576 1.47 0.0%
15 1401.1 576 2.43 0.0%

3.3.4 Covariance Model II

The analysis to calibrate covariance model II is similar to the analysis to cali-

brate the forward model. The calibration parameters are the relative error ρ, the
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same-measurement correlation ρ00, and the mask–antimask correlation ρ01. (Refer to

Eq. (3.21).)

In later sections we perform non-Bayesian inference using the χ2 goodness-of-fit

metric. There we take advantage of the fact that χ2 follows a chi-squared distribution.

As the results in Section 3.3.3 show, this property is only true if the covariance is

predicted correctly.

Using covariance model II, the goodness-of-fit metric for pair p is

χ̂2
p(ρ, ρ00, ρ01) ≡

[
R̂
]>
:,p

(
covar[[R]:,p](ρ, ρ00, ρ01)

)−1 [
R̂
]
:,p

, (3.34)

where
[
R̂
]
:,p

is column p of the calibrated-model residuals R̂(ε∗, c∗, X∗P ) and covar[[R]:,p]

is the estimated covariance of
[
R̂
]
:,p

. Since covar[[R]:,p] depends on the calibration

parameters (ρ, ρ00, ρ01), χ̂
2
p does too.

Since
[
R̂
]
:,p

has I elements, we expect χ̂2
p ≈ I. Therefore a reasonable objective

function for fitting is

ζ(ρ, ρ00, ρ01) ≡
∑
p

(
χ̂2
p(ρ, ρ00, ρ01)− I

)2
. (3.35)

Our best-fit calibration parameters are

ρ∗, ρ∗00, ρ
∗
01 ≡ argmin

ρ,ρ00,ρ01

ζ(ρ, ρ00, ρ01) . (3.36)

We use the Nelder–Mead algorithm [58, 59, 60] to solve this relatively small nonlinear

optimization problem.

The best-fit covariance parameters are ρ = 3.522× 10−3, ρ00 = 7.77× 10−1, and

ρ01 = −5.63× 10−1. Roughly speaking, we expect a prediction–measurement error

on the order of
√
ρ ≈ 5% in addition to counting statistics. Based on the correlation

coefficients, we note that roughly ρ200 ≈ 60% of var[R] can be explained by same-

measurement covariance and ρ201 ≈ 32% of var[R] can be explained by same-pixel

mask–antimask covariance.

The magnitude of these parameters is surprisingly high. Model improvements may

yield less error and covariance, and further effort could improve the calibraiton mea-

surements by minimizing counts from scattered neutrons. However, if the covariance

model is predictive, then we can proceed with quantitative inference.

Table 3.6 shows the goodness-of-fit metric using covariance model II. The values
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of χ̂2
p calculated using covariance mdoel II are much more reasonable than the values

calculated using model I. These results indicate that the forward model and covariance

model II fit the calibration data well.

Table 3.6: Goodness-of-fit parameter for each calibration pair using covariance model
II. (Pair p is included in the calibration data.)

p χ̂2
p I χ̂2

p/I P (χ2 > χ̂2
p)

1 586.9 576 1.02 36.7%
2 532.5 576 0.92 90.2%
3 579.2 576 1.01 45.5%
4 579.5 576 1.01 45.1%
5 649.2 576 1.13 1.8%
6 559.8 576 0.97 67.8%
7 595.4 576 1.03 27.9%
8 563.4 576 0.98 63.8%
9 520.7 576 0.90 95.2%
10 600.5 576 1.04 23.2%
11 555.3 576 0.96 72.5%
12 580.3 576 1.01 44.2%
13 604.8 576 1.05 19.7%
14 634.9 576 1.10 4.5%
15 508.2 576 0.88 98.0%

3.3.5 Covariance Model III

We repeat the calibration procedure of covariance model II with covariance model

III. (Refer to the model definition in Eq. (3.22).) The best-fit covariance parameters

are ρ = 1.612× 10−3, ρ00 = 9.01× 10−2, and ρ01 = −1.94× 10−1. Table 3.7 shows

the goodness-of-fit metric using covariance model III.

Covariance model III predicts far less correlation among the datapoints than model

II. This is useful because correlation can make the inference problem poorly condi-

tioned. Unfortunately, the fit metric in Table 3.7 shows significant trends.

Tables 3.5–3.7 show reasonably good fit between the predictions, covariance mod-

els II and III, and the data. However, showing that the model fits the calibration data

is insufficient to show that the model predicts future measurements [61]. A model

with many degrees of freedom could perfectly fit an arbitrary dataset without pro-

viding any capability to predict future data. Since we need a predictive capability to

perform quantitative inference, we will use cross-validation to assess this capability.
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Table 3.7: Goodness-of-fit parameter for each calibration pair using covariance model
III. (Pair p is included in the calibration data.)

p χ̂2
p I χ̂2

p/I P (χ2 > χ̂2
p)

1 619.8 576 1.08 10.1%
2 453.9 576 0.79 100.0%
3 607.2 576 1.05 17.8%
4 502.0 576 0.87 98.8%
5 642.4 576 1.12 2.8%
6 636.1 576 1.10 4.2%
7 712.7 576 1.24 0.0%
8 572.6 576 0.99 53.2%
9 570.2 576 0.99 56.0%
10 528.0 576 0.92 92.5%
11 493.1 576 0.86 99.5%
12 505.5 576 0.88 98.4%
13 492.6 576 0.86 99.5%
14 628.2 576 1.09 6.5%
15 547.3 576 0.95 80.0%

3.4 Cross-Validation

We hypothesize that predictions made using the calibrated model will match ex-

perimental data and that the prediction–measurement residuals will be distributed

according to covariance model I, II, or III. To show this we use leave-one-out cross-

validation: recalibrate using all pairs except a validation pair pval, then compare

the pval measurement data to the model prediction. See Fig. 3.6. The resulting

goodness-of-fit metric χ2
pval

ideally follows a chi-squared distribution with I degrees

of freedom. Even when it does not follow a chi-squared distribution, we can use the

cross-validation result to set a threshold on what values of χ2 are reasonable for a

95% confidence region.

Table 3.8 lists the recalibrated parameters for the forward model. The source

positions XP were not adjusted. Tables 3.9 and 3.10 list the recalibrated parameters

for covariance models II and III. We use these calibration parameters to evaluate the

model fit for individual pixels and for the overall chi-squared distribution.

We would like to show that the prediction–measurement residuals r̂pval follow the

Gaussian distribution defined by the covariance model. We can de-correlate the

prediction–measurement residuals of a measurement pair using the covariance ma-
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Figure 3.6: Diagram of leave-one-out cross-validation.

Table 3.8: Forward model calibration parameters calculated using all pairs except
pval.

pval Σm Σs b
1 0.1388 0.178 0.0984
2 0.1392 0.178 0.0949
3 0.1385 0.178 0.0938
4 0.1409 0.178 0.0967
5 0.1378 0.178 0.0938
6 0.1385 0.178 0.0949
7 0.1385 0.183 0.0949
8 0.1378 0.172 0.0938
9 0.1402 0.178 0.0932
10 0.1390 0.178 0.0949
11 0.1392 0.178 0.0938
12 0.1406 0.178 0.0949
13 0.1388 0.178 0.0938
14 0.1385 0.178 0.0949
15 0.1402 0.178 0.0938
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Table 3.9: Calibration parameters for covariance model II calculated using all pairs
except pval.

pval ρ ρ00 ρ01
1 2.775× 10−3 0.515 -0.361
2 3.231× 10−3 0.661 -0.477
3 3.447× 10−3 0.606 -0.387
4 3.563× 10−3 0.639 -0.414
5 3.534× 10−3 0.815 -0.591
6 3.403× 10−3 0.669 -0.456
7 3.313× 10−3 0.539 -0.324
8 3.486× 10−3 0.548 -0.324
9 3.515× 10−3 0.715 -0.499
10 3.571× 10−3 0.600 -0.365
11 3.367× 10−3 0.585 -0.377
12 3.51× 10−3 0.607 -0.387
13 3.767× 10−3 0.614 -0.355
14 3.566× 10−3 0.516 -0.270
15 3.826× 10−3 0.582 -0.333

Table 3.10: Calibration parameters for covariance model III calculated using all pairs
except pval.

pval ρ ρ00 ρ01
1 1.348× 10−3 0.0354 -0.161
2 1.583× 10−3 0.136 -0.225
3 1.791× 10−3 0.0982 -0.136
4 1.933× 10−3 0.0884 -0.0939
5 1.891× 10−3 0.0672 -0.0792
6 1.81× 10−3 0.100 -0.128
7 1.927× 10−3 0.106 -0.0896
8 1.87× 10−3 0.0816 -0.110
9 1.783× 10−3 0.0765 -0.122
10 1.763× 10−3 0.118 -0.159
11 1.746× 10−3 0.0813 -0.143
12 1.928× 10−3 0.0841 -0.0937
13 1.613× 10−3 0.135 -0.216
14 2.036× 10−3 0.0946 -0.0715
15 2.027× 10−3 0.0514 -0.0639
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trix:

r̂′pval ≡ Σ−1/2r̂pval , (3.37)

where Σ−1/2 is the inverse of the Cholesky decomposition of the covariance matrix

(calculated using the covariance model). We expect that the elements of r̂′pval are

uncorrelated and follow a standard normal distribution. Figure 3.7 compares r̂′pval
to the quantiles of a standard normal distribution. For example, we plot the lowest

element of r̂′pval against the 1−1/2
I

quantile of a standard normal distribution, plot

the second-lowest element against the 2−1/2
I

quantile, etc. Figure 3.7 is a Quantile–

Quantile (QQ) plot using covariance model I; the procedure is repeated for models II

and III in Figs. 3.8 and 3.9.

If there is covariance among the pixels, a scaled residual does not correspond to any

particular detector pixel. However, covariance model I assumes no covariance, so the

residuals correspond to pixels. Figure 3.10 plots r̂′pval as calculated using covariance

model I. This plot shows significant residuals for pval = 1 and in the lower-left (−y,−z)

scintillator block.

These QQ plots show the best agreement between the residuals and the distri-

bution predicted by covariance model II. In a few pairs—especially pval = 1—the

observed lower quantiles are more extreme than the expected quantiles. This “long

tail” of the distribution indicates that the residual magnitude is underpredicted in

some pixels. This warrants further investigation.

We also would like to show that χ̂2
pval

follows a chi-squared distribution with I

degrees of freedom. Observed values of χ̂2
pval

are listed in Tables 3.11–3.13. Fig-

ures 3.11–3.13 are QQ plots of χ̂2
pval

.

For covariance model I, the quantiles of χ̂2
pval

far exceed a chi-squared distribution.

However we can use the observed distribution to assign an empirical threshold χ2
I;0.95 =

1500 for I = 576 degrees of freedom.

For covariance model II, the observed distribution of χ̂2
pval

appears to have the same

mean—but a somewhat broader dispersion—compared to the expected distribution.

The clear outlier pval = 1 is the measurement with the most counts. This could

indicate a limit on the model’s predictive capabiility: the calibrated forward model

and covariance model are valid for measurements with fewer than 5× 105 counts. We

assign an empirical threshold χ2
I;0.95 = 750 for I = 576 degrees of freedom for model

II.

Results for covariance model III are similar to model II, but with even broader
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Figure 3.7: Quantiles of the cross-validation residuals (vertical axis) vs a stan-
dard normal distribution (horizontal axis) using covariance model I. Expected trend
marked in black.
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Figure 3.8: Quantiles of the cross-validation residuals (vertical axis) vs a stan-
dard normal distribution (horizontal axis) using covariance model II. Expected trend
marked in black.
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Figure 3.9: Quantiles of the cross-validation residuals (vertical axis) vs a stan-
dard normal distribution (horizontal axis) using covariance model III. Expected trend
marked in black.
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Figure 3.10: Cross-validation scaled residuals r̂′pval calculated using covariance model
I. Horizontal and vertical axes correspond to y and z, respectively.
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Table 3.11: Goodness-of-fit parameter for each calibration pair using covariance model
I. (Pair pval is excluded from the calibration data.)

pval I χ̂2
pval

χ̂2
pval
/I P (χ2 > χ̂2

pval
)

1 576 2348.5 4.08 0.0%
2 576 673.1 1.17 0.3%
3 576 999.2 1.73 0.0%
4 576 1181.0 2.05 0.0%
5 576 1280.6 2.22 0.0%
6 576 961.6 1.67 0.0%
7 576 1108.9 1.93 0.0%
8 576 986.3 1.71 0.0%
9 576 1201.5 2.09 0.0%
10 576 861.1 1.49 0.0%
11 576 733.6 1.27 0.0%
12 576 1119.0 1.94 0.0%
13 576 685.3 1.19 0.1%
14 576 834.2 1.45 0.0%
15 576 1391.6 2.42 0.0%
overall 8640 16365.4 1.89 0.0%

Table 3.12: Goodness-of-fit parameter for each calibration pair using covariance model
II. (Pair pval is excluded from the calibration data.)

pval I χ̂2
pval

χ̂2
pval
/I P (χ2 > χ̂2

pval
)

1 576 743.8 1.29 0.0%
2 576 504.7 0.88 98.5%
3 576 575.2 1.00 50.2%
4 576 596.7 1.04 26.7%
5 576 613.9 1.07 13.3%
6 576 546.7 0.95 80.5%
7 576 604.3 1.05 20.0%
8 576 535.0 0.93 88.8%
9 576 512.9 0.89 97.2%
10 576 593.2 1.03 30.1%
11 576 547.2 0.95 80.0%
12 576 570.8 0.99 55.3%
13 576 623.2 1.08 8.5%
14 576 644.1 1.12 2.6%
15 576 482.3 0.84 99.8%
overall 8640 8694.1 1.01 33.9%
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Figure 3.11: Quantiles of χ̂2
pval

(vertical axis) from covariance model I vs a chi-
squared distribution with I = 576 degrees of freedom (horizontal axis). Expected
trend marked in black.
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Figure 3.12: Quantiles of χ̂2
pval

(vertical axis) from covariance model II vs a chi-
squared distribution with I = 576 degrees of freedom (horizontal axis). Expected
trend marked in black.
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Figure 3.13: Quantiles of χ̂2
pval

(vertical axis) from covariance model III vs a chi-
squared distribution with I = 576 degrees of freedom (horizontal axis). Expected
trend marked in black.
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Table 3.13: Goodness-of-fit parameter for each calibration pair using covariance model
III. (Pair pval is excluded from the calibration data.)

pval I χ̂2
pval

χ̂2
pval
/I P (χ2 > χ̂2

pval
)

1 576 803.5 1.39 0.0%
2 576 442.6 0.77 100.0%
3 576 601.8 1.04 22.1%
4 576 503.5 0.87 98.7%
5 576 626.3 1.09 7.2%
6 576 633.6 1.10 4.8%
7 576 755.7 1.31 0.0%
8 576 551.5 0.96 76.2%
9 576 551.4 0.96 76.3%
10 576 519.7 0.90 95.5%
11 576 490.4 0.85 99.6%
12 576 486.2 0.84 99.7%
13 576 496.1 0.86 99.3%
14 576 677.4 1.18 0.2%
15 576 499.1 0.87 99.1%
overall 8640 8638.9 1.00 50.1%

dispersion. We assign an empirical threshold χ2
I;0.95 = 800 for I = 576 degrees of

freedom for model III.

3.5 Region-of-Interest Phenomena

The model specified in Section 3.2 ignores scatter and attenuation near the ROI.

In this section we model a simplified glove box holdup scenario using Monte Carlo

N-Particle Transport Code version 5 [11] (MCNP5) to evaluate the impact of these

phenomena.

The model is shown in Fig. 3.14. An example of the MCNP5 input is included in

Appendix A. The model includes 1 cm-thick lead glass representing the glove box wall

and 0.8 cm-thick stainless steel 304 representing the wall of a pipe. It also includes

plutonium nitrate on the sides and in the corners of the glove box and along the sides

of the pipe. Cross-section libraries are specified in Table A.6.

We calculate the angular flux at the point (225, 0, 0) cm using a pinhole tally. The

image is recorded by a grid of pixels on the x = 250 cm plane. The simulations use

106 histories and terminates neutrons below 0.1 MeV. In this work we use MCNP5

version 1.60.

If we compare the images formed neglecting materials (vacuum) to the images

61



Figure 3.14: Slices through an MCNP5 model of a glove box holdup scenario at y = 0
(left) and x = 0 (right).

formed with materials, the differences are significant. For example, images tallied

with holdup along the sides of the glove box are plotted in Fig. 3.15.

The overall number of neutrons reaching the detector is increased by 33%. See

Table 3.14. MCNP5 predicts similar increases when the source is distributed in

the corners of the glove box and lining the pipe. It is somewhat surprising that

the flux at the detector increases with the addition of materials. This could be

explained by the particular model geometry—more neutrons are scattered toward the

detector than away from the detector. From these result we conclude that the vacuum

approximation causes unacceptably large errors when modeling detector response.

Table 3.14: Neutron flux through a pinhole camera modeled using MCNP5.

Holdup location Glove box sides Glove box corners Pipe lining
Holdup thickness (cm) 0.25 cm 3 cm 1 cm
Flux (neutrons/cm2 per source neutron)

Vacuum 5.8544× 10−7 5.9131× 10−7 4.7014× 10−7

Uncollided 4.1198× 10−7 3.8639× 10−7 2.6912× 10−7

Diff w/rt vac. -29.6% -34.7% -42.8%
Full physics 7.7706× 10−7 7.9568× 10−7 7.7488× 10−7

Diff w/rt vac. +32.7% +34.6% +64.8%
No self-shielding 7.6759× 10−7 7.7148× 10−7 7.4331× 10−7

Diff w/rt full phys. -1.2% -3.0% -4.1%

We also need to assess whether self-shielding (interaction of neutrons within the
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Figure 3.15: MCNP5 simulated images for 0.25 cm of holdup along the sides of a
glove box. Images are in neutrons/cm2 per source neutron. Differences scaled with
respect to the brightest pixel in the vacuum image.

deposit) significantly affects detector response. To do this we compare the full-fidelity

model to a model with the holdup material replaced with vacuum. See the last rows of

Table 3.14. The self-shielding increases the detector response by a few percent. Since

real-world deposits would likely be smaller than the modeled deposits, the effect is

probably much smaller than other sources of error and uncertainty. This finding is

important because it means that the linear model (neglecting self-shielding) is often

sufficient.

3.6 Discretization

Source and scintillator discretizations are major sources of modeling error. In this

section we assess the affect of discretization on the model estimates.

The unknown source is discretized as a 3D grid of point sources. The grid is ideally

fine enough that the goodness-of-fit parameter is insensitive to the approximation.

We use the calibration models to assess the resolution of measurements similar to the

calibration measurements.

Figure 3.16 plots the goodness-of-fit metric χ̂2
p as a function of source position for

pair p = 1. The fit metric rises rapidly away from a small minimum value. We can

define a width of the minimum by setting a threshold on χ̂2
p at 1.05× the minimum.
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This resolution width is listed for all pairs in Table 3.15. These results suggest that

a discretization on the order of 10 cm is appropriate in the x direction and on the

order of 3 cm in the y and z directions.

Figure 3.16: Goodness of fit as a function of source repositioning in each dimension
(x, y, z) for calibration pair p = 1.

Scintillator pixel i is discretized into |Ki| subpixels. This discretization introduces

errors in the forward model. We perform a mesh refinement study on the calibration

models to determine a sufficiently large |Ki|.
The first part of the mesh refinement study compares pairs’ predictions (D0−D1)

to reference predictions with |Ki| = 303 = 27000. The comparison metric is the

2-norm of the predictions’ difference, i.e.,

∥∥(D0 −D1)
(|Ki|) − (D0 −D1)

(27000)
∥∥
2

. (3.38)

The results are plotted in Fig. 3.17. These results indicate limited benefit above

|Ki| = 143 = 2744.

The second part of the mesh refinement study compares pairs’ evaluation of χ̂2

across all of the pairs. This study uses covariance model I. The results plotted in

Fig. 3.17 indicated limited affect on χ̂2 above |Ki| = 103 = 1000.

Based on these results, we make recommendations for source and scintillator dis-
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Table 3.15: Width of the source domain in x, y, or z for which χ̂2
p is less than 1.05×

its minimum.

p Width
x y z

1 20.4 1.8 1.2
2 16.2 7.8 4.2
3 7.2 3.6 2.4
4 30.0 4.8 4.2
5 10.8 1.2 1.2
6 6.6 4.2 1.8
7 7.2 4.2 2.4
8 4.2 0.6 1.2
9 13.8 6.6 4.8
10 20.4 3.6 3.6
11 15.0 5.4 4.2
12 30.0 4.8 4.8
13 19.2 6.0 5.4
14 7.8 5.4 3.6
15 11.4 3.0 2.4

Figure 3.17: Mesh refinement study results for the detector quadrature (per pixel)
|Ki| based on the predictions’ 2-norm (left) and the goodness-of-fit metric (right).
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cretization. Source voxels should be 10 cm perpendicular to the detector plane and

3 cm parallel to the detector plane. Scintillator pixels should be discretized into 143

subpixels.

3.7 Conclusions

In this chapter we described and modeled Oak Ridge National Laboratory’s P24

FNCA imager. We used point-source measurements to calibrate the model, infer the

distribution of prediction–measurement residuals, and cross-validate this distribution.

The observed values of χ̂2
pval

are distributed more broadly than the chi-squared dis-

tribution would predict, but the approximation is reasonable.

We also determined minimum requirements for FNCA modeling. Models should

account for scatter and attenuation near the ROI, but self-shielding can be neglected.

Source voxels should be 10 cm perpendicular to the detector plane and 3 cm parallel

to the detector plane. Scintillator pixels should be discretized into 143 subpixels.
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CHAPTER IV

Aleatoric Uncertainty

Aleatoric uncertainty refers to the limited precision of a measurement. If we repeat

a detection measurement using the same setup, we expect slightly different results due

to counting statistics. In particular, we expect the counts to follow a nearly Poisson

distribution. Although our model attempts to predict the mean of this distribution,

it cannot possibly predict the exact value that will be sampled. In this sense, even a

“perfect” model will have non-zero prediction–measurement residuals.

If our estimate of the parameters is an inversion of the model, then inverting noisy

data will result in a noisy estimate. The magnitude of the noise is typically amplified

by the inverse problem, so aleatoric uncertainty can contribute significantly to the

overall uncertainty in the estimate.

In our QI UQ problem, noise in the data d̂ propagates through the inverse problem

to uncertainty in ŝ and Ŝ. For simplicity of illustration we will use covariance model I

(no modeling error, counting statistics only). In this chapter we derive delta-method

uncertainty estimates using MLEM reconstruction. We also show that this approach

is similar to GLLS. The results show that the delta method describes the aleatoric

uncertainty well in problems that are well-posed (I > J) and when the solution is

away from inequality constraints. These approaches are less reliable when the solution

approaches inequality constraints like the nonnegativity constraints on s.

4.1 Delta-Method Approach

Reconstructed-voxel covariance estimates similar to [41] are possible using MLEM.

See also [62, 63, 64]. The covariance matrix could be combined with a total-strength

sensitivity matrix to calculate a first-order estimate of the strength uncertainty. The

usefulness of this approach depends on the computational cost of estimating the
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covariance matrix and the validity of a first-order uncertainty estimate. This may

also be useful for creating a 2D benchmark.

We can use a first-order uncertainty approximation to estimate the variance in Ŝ

among repeated realizations of the data d̂. See background on the delta method in

Section 2.1.1.2.

We first propagate the variance in d to a covariance matrix for s. The detector

data is Poisson in nature, so it has covariance covar[d] = diag(d) = diag(As). Using

the delta method, the reconstructions are approximately Gaussian-distributed with

covariance

covar[s] = B>covar[d]B , (4.1)

where the I×J Jacobian matrix B has elements [B]i,j ≡ ∂[ŝ]j

∂[d̂]i

∣∣∣
ŝ=s,d̂=As

. (This definition

of B transposes the mathematical convention for the Jacobian so that the shapes of

A and B match.) Equation (4.1) is sometimes called the “sandwich equation.” The

Jacobian matrix is also called the sensitivity matrix. When s and d are not known,

we can approximate

covar[d] ≈ diag(Aŝ) and (4.2)

B ≈ B̂ , (4.3)

where [B̂]i,j ≡ ∂[ŝ]j

∂[d̂]i

∣∣∣
ŝ=ŝ,d̂=Aŝ

. (The approximation covar[d] ≈ diag(Aŝ) is more accu-

rate than covar[d] ≈ diag(d̂).)

We then propagate covar[s] to var[S]. Since Ŝ =
∑

j[ŝ]j,
∂Ŝ
∂[ŝ]j

= 1. The delta

method then approximates

var[S] ≈ ~1>covar[s]~1 =
∑
j

∑
j′

[covar[s]]j,j′ . (4.4)

The balance of this section is dedicated to the non-trivial step of calculating the

Jacobian matrix B. For convenience, we refer to row i of B as bi ≡ ∂ŝ

∂[d̂]i

∣∣∣
ŝ=s,d̂=As

.

We can derive an estimator of bi by differentiating the ML equation to form I linear

systems of J equations.
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Differentiating Eq. (2.42) with respect to the counts in detector pixel i gives

∂

∂[d̂]i

(
A>~1

)
=

∂

∂[d̂]i

(
A>diag(Aŝ)−1d̂

)
(4.5)

~0 = A>
∂

∂[d̂]i

(
diag(Aŝ)−1

)
d̂+ A>diag(Aŝ)−1~ei , (4.6)

where ~0 is a J-vector of zeros and ~ei is an I-vector such that

[~ei]i′ ≡

{
1 i′ = i

0 else
. (4.7)

Chain rule gives

∂

∂[d̂]i

(
diag(Aŝ)−1

)
= −diag(Aŝ)−2 diag

(
A
∂ŝ

∂[d̂]i

)
. (4.8)

We can substitute Eq. (4.8) into Eq. (4.6) and re-arrange to show

A>diag(Aŝ)−2diag

(
A
∂ŝ

∂[d̂]i

)
d̂ = A>diag(Aŝ)−1~ei . (4.9)

Since diag(x)y = diag(y)x,

A>diag(Aŝ)−2diag(d̂)A
∂ŝ

∂[d̂]i
= A>diag(Aŝ)−1~ei . (4.10)

We evaluate this expression at ŝ = s, d̂ = As to show

A>diag(As)−1A bi = A>diag(As)−1~ei (4.11)

or evaluate at ŝ = ŝ, d̂ = Aŝ to show

A>diag(Aŝ)−1A b̂i = A>diag(Aŝ)−1~ei or (4.12)

A>diag(Aŝ)−1A B̂> = A>diag(Aŝ)−1 . (4.13)

We must use linear algebra techinques to solve for B̂. Conveniently the left-side
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coefficients in Eqs. (4.11) and (4.12) are independent of i. Therefore a single LDL>-

decomposition of the left side can accelerate the Gaussian-elimination solution of all

I systems. The system can be ill-conditioned for large J , which precludes accurate

calculation of B̂.

Note that this result of combining MLEM with the delta method is very similar to

GLLS. Substituting B̂ in Eq. (4.13) as B in Eq. (4.1) and undoing the approximation

covar[d] ≈ diag(Aŝ) gives

covar[s] =
((
A>covar[d]−1A

)−1
A>covar[d]−1

)
...

... covar[d]
((
A>covar[d]−1A

)−1
A>covar[d]−1

)>
(4.14)

... =
(
A>covar[d]−1A

)−1
A>
(

covar[d]−1>A
(
A>covar[d]−1A

)−1>)
. (4.15)

Because covar[d] and A>covar[d]−1A are symmetric,

... =
(
A>covar[d]−1A

)−1
A>
(

covar[d]−1A
(
A>covar[d]−1A

)−1)
(4.16)

... =
(
A>covar[d]−1A

)−1
, (4.17)

which is similar to the GLLS covariance estimate given in Eq. (2.32).

4.2 Application

We propose three test problems here. The scalar-source problem is a small con-

ceptual model to demonstrate that the delta-method approach is consistent with non-

imaging counting statistics. Two five-points models demonstrate the UQ approaches

for small, well-posed systems of varying condition number. Future test problems

should analyze the scalability of the UQ approaches.

4.2.1 Scalar Source

This trivial reconstruction problem is used to show consistency with non-imaging

problems. Consider a point source at a known location; hence J = 1. Since A is an
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I × 1 matrix and s is a scalar, the ML equation simplifies as

A>diag(A)−1Aŝ = A>diag(A)−1d̂ (4.18)

~1>Aŝ = ~1>d̂ (4.19)

ŝ =

∑
i[d̂]i∑
i[A]i

(4.20)

with I × 1 sensitivity matrix elements

bi ≡
∂ŝ

∂[d̂]i

∣∣∣∣∣
ŝ=s,d̂=As

=
1∑
i′ [A]i′

. (4.21)

The variance of the reconstructed source strength is

var[S] = B>diag(As)B =
~1>diag(As)~1

(
∑

i′ [A]i′)
2 =

s∑
i′ [A]i′

=

∑
i′ [d]i′

(
∑

i′ [A]i′)
2 , (4.22)

which we expect since d is Poisson. If s is unknown, b̂i = bi, so we can approximate

var[S] ≈ ŝ∑
i′ [A]i′

. (4.23)

Note that this approximation under-estimates var[(]S) when ŝ < s and over-estimates

var[S] when ŝ > s.

4.2.2 Well-Conditioned

Here we make our first attempt to derive our system coefficients A from a physical

system. Five source points are arranged perpendicular to a FNCA imager. See

Fig. 4.1. Each source is assigned a random strength. Detector data d̂ is sampled from

d = Poisson(As). Our goal is to calculate Ŝ and its associated standard deviation

var[S].

The sources are spaced 12 cm apart along the z axis and centered at the origin.

A one-dimensional base-19 MURA-patterned mask is centered at x = 120 cm; it is

60 cm wide. The mask is oriented as shown in Fig. 4.1 to enhance discrimination in

the z direction. A 100-pixel detector is 60 cm behind the mask; it is 42.8 cm wide.
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Figure 4.2: The first 20 rows of A in the
well-conditioned test problem. Units:
count-seconds per emission.

Figure 4.3: The first 20 rows of A in
the ill-conditioned test problem. Units:
count-seconds per emission.

The forward physics model accounts for mask attenuation, the distance and orien-

tation of the detector pixels, and the intrinsic efficiency of the detector. Opaque mask

elements attenuate 68% of incident neutrons; transparent elements do not attenuate.

The detector intrinsic efficiency is 20%. Counts are recorded for 3600 seconds.

Each source strength is chosen randomly for each realization of the problem.

Strength sj in neutrons per second is sampled uniformly in the interval [106, 2× 106].

This “meta-distribution” of source strengths allows us to evaluate the estimators’

behavior for many sources.

The first 20 rows of A for this problem are plotted in Fig. 4.2. The row-sums of A

range from 1.695 to 2.214; thus an incorrect ŝ is unlikely to accidentally yield a correct

Ŝ. Values of κML and ρMLEM depend on s; typically κML ≈ 45 and ρMLEM ≈ 0.975.

Based on ρMLEM , 2000 MLEM iterations are used to achieve precision on the order

of machine ε.

We first show that the only error in ŝ is from statistical noise in d̂. For a source s

sampled as described, we can calculate an exact value of d. We introduce error into

d̂ by rounding each element to the nearest 10, 100, etc. The linear convergence in

Fig. 4.4 indicates that other sources of error are trivial.
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Figure 4.4: Root-mean-square error d̂
vs ŝ for the well-posed five-points prob-
lem.

Figure 4.5: A quantile–quantile plot for
the well-conditioned five-points prob-
lem. Variances estimated using the
delta-method approach with B̂ (blue)
and B (green) overlap.
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We then test the delta-method approach using K trials. Consider trial k of K. A

true source sk is sampled from the meta-distribution. From this true source we sample

a dataset d̂k from dk. We then reconstruct ŝk and Ŝk and estimates var[Sk]. Estimates

of var[Sk] are calculated using both B (supposing sk is known) and B̂ (supposing sk

is hidden). The delta method is implemented using LDL>-decomposition.

We then calculate the standard score

Zk ≡
Ŝk − Sk√

var[Sk]
. (4.24)

Figure 4.5 plots the quantiles of Zk in a QQ plot. We also list

χ2 ≡
∑
k

Z2
k (4.25)

in Table 4.1 as a quantitative assessment of the variance estimator.

Table 4.1: Quantitative analysis of the delta-method approach applied to the well-
conditioned and ill-conditioned problems.

Problem Well-posed Ill-posed Near constraints
χ2 degrees of freedom = K 1000 1000 1000
χ2 from B 934.3 961.0 934.1
p(χ′2 > χ2|K) 93.1% 80.8% 93.2%

χ2 from B̂ 934.3 960.9 933.9
p(χ′2 > χ2|K) 93.1% 80.8% 93.3%
xyz

Based on the QQ plots and χ2, we draw two conclusions: The Poisson error in d̂

propagates to an approximately Gaussian error in Ŝ. The delta-method estimates of

var[S] are reasonably accurate and unbiased.

4.2.3 Ill-conditioned

This test problem modifies the well-conditioned test problem of Section 4.2.2 to

be ill conditioned. We use this problem to confirm that our UQ methods work well

even when the Poisson uncertainty is greatly amplified by reconstruction.

The differences between this problem and the well-conditioned problem are as

follows: The five source points are re-arranged perpendicular to the detector. The

sources are each 22 cm apart and are centered 145 cm from the mask. The mask

pattern is changed to a base-19 2-dimensional MURA.
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Figure 4.6: Root-mean-square error d̂
vs ŝ for the ill-posed five-points problem.

Figure 4.7: A quantile–quantile plot
for the ill-conditioned five-points prob-
lem. Variances estimated using the
delta-method approach with B̂ (blue)
and B (green) overlap.

The first 20 rows of A for this problem are plotted in Fig. 4.3. Note that the

columns of A are nearly multiples of one another—a demonstration of a high condition

number. The row-sums of A range from 1.719 to 5.348; thus an incorrect ŝ is unlikely

to accidentally yield a correct Ŝ. Values of κML and ρMLEM depend on s; typically

κML ≈ 104 and ρMLEM ≈ 0.99986. Based on ρMLEM , 200000 MLEM iterations are

used to achieve precision on the order of machine ε.

Again, the error in ŝ decreases as d̂ converges on d. See Fig. 4.6. The QQ plot

of Zk and the overall χ2 agree with a standard normal distribution. See Fig. 4.7 and

Table 4.1. From this we conclude that the distribution of Ŝ is insensitive to κML.

4.2.4 Near Constraints

The well- and ill-conditioned problems both sampled the elements of sk from

Uniform(106, 2 × 106). Since the true source strength is far from the nonnegativity

constraints, it is unlikely that ŝ will be near any of the constraints. This problem is

like the well-conditioned problem, but with ŝ close to the nonnegativity constraints.
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The source strengths are now sampled from a delta function. With 50% probability

a point source’s intensity is sampled from Uniform(0, 1e4); otherwise it is zero. If all

sources are zero the entire source is resampled.

Figure 4.8: A quantile–quantile plot for the five-points problem near the constraints.
Variances estimated using the delta-method approach with B̂ (blue) and B (orange)
overlap.

The QQ plot in Fig. 4.8 show that the distribution of Ŝ is predicted well. The

goodness-of-fit metric is also reasonable; see Table 4.1. However, if we evaluate a

goodness of fit metric based on ŝ and covar[s], the fit is improbably good: P (χ2 >

3323.6|dof = 5000) > 99.9%. This indicates that the propagation approach does

not account for the additional information provided by the inequality constraints.

However, this has only a small impact on Ŝ in this example because the elements of

ŝ are negatively correlated.

4.3 Conclusions

The delta-method UQ approach accurately estimates var[S] for small problems

with varying κML. However, it tends to over-estimate the uncertainty when many

elements in s are near zero.

These test problems are all fully determined, i.e., I ≥ J ; the approaches in this
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chapter will not work when I < J . When I < J there may be many equally valid

reconstructions, and these approaches do not consider this possibility. Because un-

derdetermined problems are common in FNCA imaging, we must also evaluate incer-

titude, i.e., epistemic uncertainty.
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CHAPTER V

Epistemic Uncertainty

The ML equation is often underdetermined. Rather than having a unique maxi-

mum, the solution space may have a region that maximizes likelihood. Any s in that

region will satisfy the ML equation. Several authors have provided notes on propa-

gating epistemic incertitude in the absence of aleatoric uncertainty, e.g., [65, 66, 67].

Qualitative imaging addresses solution underdeterminancy in several ways. The

reconstruction domain can be coarsened in such a way that the ML solution is unique.

Qualitative imaging objectives and algorithms typically converge on a solution ŝ that

smoothes the source, i.e., regularization. These solutions are the most reasonable for

clinical interpretation.

Quantitative imaging must address underdeterminancy in the opposite way. Smooth-

ing regularization is not appropriate because the Ŝ extrema have many zero elements

of s. The relevant solutions will have compact non-zero regions, not broad non-zero

regions created by smoothing.

In this chapter we analyze underdetermined reconstruction using subspace meth-

ods. We then show that linear programming approaches can quantify uncertainty

in Ŝ when statistical noise is neglegible. First, we demonstrate underdeterminancy

problem in QI using a simple example.

5.1 Illustration

The single-pixel problem is a simple conceptual model. Suppose we have two

sources of strength s0 and s1. We observe these sources simultaneously with a non-

imaging detector (I = 1). The reponse matrix

A =
[
A0 A1

]
(5.1)
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is strictly positive. We observe d̂ > 0 counts in the detector with trivial statistical

error.

Arbitrarily set A0 = 100, A1 = 200, and s0 = s1 = 1. Figure 5.1 plots the Poisson

likelihood of d̂ = 300 for hypothetical values of s0 and s1. The surface has no unique

maximum, but a stationary curve connecting the intercepts s0 = d̂/A0 and s1 = d̂/A1.

All first-quadrant points on this curve satisfy the ML equation. It is impossible to

map d̂ to a unique ŝ without some form of regularization. Because statistical error is

trivial, our true s lies on that curve.

Figure 5.1: Likelihood of d̂ = 300 as a function of s0 and s1 in the single-pixel test
problem.

We can decompose s as the weighted sum of an influential vector and a noninflu-

ential vector:

s =

[
d̂/A1

d̂/A0

]
cI +

[
d̂/A0

−d̂/A1

]
cN , (5.2)

where cI and cN are scalar. The influential vector is perpendicular to the ML solution

curve. Both cI and cN affect s, but only changes in cI affect d. When considering

cN , the reconstruction can only rule out values violate the nonnegativity constraint

on s.
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We conclude that Ŝ ≡ ŝ0 + ŝ1 is bounded

min(
d

A0

,
d

A1

) ≤ Ŝ ≤ max(
d

A0

,
d

A1

) , (5.3)

but not uniquely determined—despite the absence of statistical uncertainty.

5.2 Noninfluential Subspaces

We begin by defining the influential and noninfluential subspaces of s [68]. Again

consider a system with response matrix A with I < J . In most physical systems

A is full rank (but perhaps ill-conditioned) because of small differences in response

even among neighboring voxels—so R ≡ rk(A) = I. We can then divide IRJ into an

influential subspace I and a noninfluential subspace N .

The influential subspace I corresponds to the rowspace of A. Equivalently, I is the

columnspace or range of A>. If we represent I as a J ×R matrix of orthogonal basis

vectors, we can define define a vector of coefficients cI ∈ IRR such that AIcI = As

for any s ∈ IRJ.

The remaining noninfluential subspace N corresponds to the nullspace of A. Rep-

resentN as a J×(J−R) matrix of orthogonal basis vectors. By definition, AN cN = ~0

for all cN ∈ IRJ−R. To summarize in block notation,

s =
[
I N

] [cI
cN

]
, but (5.4)

As = AIcI . (5.5)

Smith recommends rank-revealing QR decomposition for determining I and singular

value decomposition (SVD) for determining N [68]. We rely on SciPy (version 0.15.1)

implementations of these decompositions.

We make two notes. First, the positivity constraint on s effectively constrains

cN . In physical systems with penetration and scatter, all elements of A are (at least

slightly) positive. The basis vectors in N then must have mixed sign, i.e.,

min
k

([N ]k,j) max
k

([N ]k,j) < 0 ∀ j ∈ (J −R) , (5.6)

and any linear combination of the basis vectors must have mixed sign (except cN = ~0).
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Therefore ‖cN‖ → ∞ would preclude [s]j ≥ 0∀j, and our solution is bounded.

Second, in the underdetermined system, ML solutions also satisfy Aŝ = d̂. This is

rarely true in the overdetermined system; the ML equation represents a compromise

among the data. As the subspace analysis of s shows, Aŝ = d̂ defines a ŝ domain

with J −R degrees of freedom. Any ŝ satisfying Aŝ = d̂ also solves the ML equation,

and linear techniques can be used to evaluate ŝ.

Two exceptions exist: First, some members of ŝ can be overdetermined while

others are underdetermined (in which case A is not full rank). This is unlikely, but

it reminds us that the fully determined problem AI ĉI = d̂ may be ill-conditioned.

Second, statistical or numerical error may yield a d̂ that has no corresponding non-

negative ŝ solutions. Except for these cases, linear programming methods to explore

N can bound Ŝ.

5.3 The Simplex Method

Given noise-free data d̂ and a full rank matrix A with I < J , we can bound Ŝ:

Ŝ ≤ max
ŝ

∑
j

[ŝ]j (5.7)

with ŝ subject to constraints

Aŝ = d̂ and (5.8)

[s]j ≥ 0 ∀ j . (5.9)

We can also bound Ŝ from below:

Ŝ ≥ min
ŝ

∑
j

[ŝ]j (5.10)

subject to the same constraints. These are linear programming problems that can be

solved using the simplex method [69].

The simplex method is based on Gaussian elimination-like manipulations of an

augmented system matrix. In its first phase, simplex uses “artificial” variables to

satisfy equality constraints (Eq. (5.8)). In its second phase, simplex determines which

inequality constraints (Eq. (5.9)) limit Ŝ. We rely on the SciPy (version 0.15.1)

implementation of simplex for now.
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5.4 Application

We propose two underdetermined reconstruction problems to test our UQ ap-

proaches. First, a single-pixel problem illustrates the ML region and provides an

analytical benchmark. Second, an underdetermined problem of arbitrary size is given

to demonstrate the scalability of the UQ approaches and the interactions between

the Aŝ = d̂ equations and the nonnegative-source constraints. These problems omit

statistical uncertainty on d̂ to isolate the underdetermined-reconstruction uncertainty.

5.4.1 Single Pixel

We can first consider the single-pixel illustration of Section 5.1. If we calculate I
using QR, we get

I =

[
−0.447

−0.894

]
∝

[
d̂/A1

d̂/A0

]
. (5.11)

If we calculate N using SVD, we get

N =

[
−0.894

0.447

]
∝

[
d̂/A0

−d̂/A1

]
. (5.12)

The simplex method returns the expected bounds Ŝ ∈ [1.5, 3].

5.4.2 Half-Shade

The half-shade test problem mimics an idealized one-dimensional aperture system

with I pixels. We prescribe ∼ 2× as many source locations as detector pixels: J =

2I − 1. Elements of A are prescribed

[A]i,j =


2(j + 1) 2i < j + 1

1(j + 1) 2i = j + 1

10−6(j + 1) 2i > j + 1

(5.13)

with elements indexed from zero. (Each row is multiplied by j + 1 so different ar-

rangements of ŝ are less likely to accidentally yield the same Ŝ.) For example, if
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I = 3,

A =

 2 4 6 8 10

10−6 2 6 8 10

10−6 2× 10−6 3× 10−6 4 10

 (5.14)

The response matrix A is full rank for any I > 0. When [s]j are sampled uniformly

in [1, 2], Ŝ is not unique but is bounded. In this case we can observe the accuracy

and central processing unit (CPU) cost as I → ∞. When [s]j = δj=k for some k in

[0, J), the s ≥ 0 constraints force a unique solution. In this case we can observe the

accuracy and robustness of the simplex implementation when many s ≥ 0 constraints

are active.

First consider I = 15 with sj = ~1. The true S = 29 falls within the simplex

bounds Ŝ ∈ [28.52, 29.48]. With I = 20, the simplex implementation is unable to find

the extrema. The code reports that the simplex algorithm is unable to satisfy the

equality constraints in phase 1. This does not match our expectations and warrants

further study.

Second consider I = 10 with sj = δj=4. The true S = 1 is at the edge of the

simplex bounds Ŝ ∈ [1, 5]. This matches our understanding that the extrema occur

in solutions in which many sj are bounded. To evaluate the impact of statistical and

numerical errors, we perturb [d̂]3 from 5 × 10−6 to 4.9999 × 10−6. The code again

reports that the simplex algorithm is unable to satisfy the equality constraints in

phase 1. This matches our expectation that data errors in d̂ may cause Aŝ = d̂ to

have no nonnegative solutions.

5.5 Conclusions

The single-pixel test problem demonstrates that underdetermined reconstruction

problems can yield uncertain estimates, even in the absence of statistical noise.

Straightforward application of the simplex algorithm can quantify the assicated un-

certainty in Ŝ. In many cases, however, numerical or statistical errors will make all

linear programming solutions infeasible. For robustness we must identify a method

that estimates overall uncertainty in underdetermined problems with statistical er-

rors.
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CHAPTER VI

Frequentist Approach

Solving for the frequentist confidence interval is a convex optimization problem.

This is true when the parameters are unknown source strengths and the QOI is their

sum; it is not true for all inverse problems.

We begin with background on confidence regions and intervals and on convex

optimization. We then introduce our confidence interval formulation, describe im-

provements that make the convex optimization solver converge reliably, and calculate

the derivatives necessary to implement the solver. We conclude with demonstration

and analyses of the solver, including a scaling study.

6.1 Background

A frequentist analysis accepts or rejects a hypothesized model by scoring its

fit with the data—without regard for alternative models. Here “model” is defined

broadly, and in QI it refers to a specific forward model and parameters. One con-

trasts frequentist analysis with Bayesian analysis, in which the posterior normalization

effects a competition among the models.

Because a frequentist scores models independent of one another, calculating CIf is

a search problem, rather than a sampling problem. This attribute is computationally

convenient. However, the frequentist approach should be used with caution. The

solution may be rather conservative in the sense that the inequality of Eq. (6.5) may

be far from equality.

In Section 6.1.1 we define a χ2 residual to score the model–data fit. Determin-

ing CIf is then an optimization problem constrained by a prescribed threshold on

χ2. Sections 6.1.2 and 6.1.3 describe an applicable constrained-optimization solver.

Section 6.1.4 shows that the convex optimization solver is appropriate for our FNCA

emission QI problem.
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6.1.1 Confidence Intervals Based on a Chi-squared Threshold

A frequentist analysis of the forward model could construct a “confidence region”

in the parameter space. A 95% confidence region is defined to capture the true

parameter for at least 95% of sampled datasets. When data are repeatedly sampled

from some true, hidden Gaussian distribution d, we expect the sampled χ2 statistic

χ̂2 ≡ (d̂−mean[d])>covar[d]−1(d̂−mean[d]) (6.1)

to follow a chi-squared distribution with I degrees of freedom. (This is a general

definition of the chi-squared distribution, not specific to QI.) In 95% of samples,

χ̂2 ≤ χ2
I;0.95, where χ2

I;0.95 can be calculated from the chi-squared distribution’s percent

point function. Therefore a 95% confidence region

CRf ≡
{
x
∣∣∣ χ2(x) ≤ χ2

I;0.95

⋂
x ≥ 0

}
with (6.2)

χ2(x) ≡
(
d̂−mean[d;x]

)>
covar[d;x]−1

(
d̂−mean[d;x]

)
(6.3)

will capture xtrue for 95% of samples of d̂. (Here we use x to represent the source

distribution s, not the spatial variable. The nonnegativity constraint is specific to

the emission QI problem.)

Hastie and colleagues mention a similar confidence-interval approach (using an

upper threshold on χ2); see Eq. 8.19 of [61].

The QOI confidence interval is then a constrained optimization problem:

CIf ≡
{
S ∈

[
min
x∈CRf

S(x), max
x∈CRf

S(x)

]}
since (6.4)

p

(
min
x∈CRf

S(x) ≤ S(xtrue) ≤ max
x∈CRf

S(x)

)
≥ 0.95 (6.5)

in repeated realizations of CRf for every possible xtrue. Here the QOI function S(x)

refers to the total source intensity; see Eq. (2.4).

This constrained optimization approach is more robust than a “generalized confi-

dence interval” [36]. With a generalized confidence interval the inequality of Eq. (6.5)

is satisfied only under repeated sampling of d̂ among many situations with various

xtrue. The generalized confidence interval is less conservative and would likely be sim-
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ilar to a Bayesian credible interval. However, the differences shrink when ζ is small,

since situations in which xtrue has many zero elements are the situations in which a

generalized confidence interval would violate Eq. (6.5).

6.1.2 Unconstrained Convex Optimization: Newton’s Method

Before we consider the constrained optimization problem, let us consider the un-

constrained optimization problem:

seek F (x∗) = min
x∈IRJ

F (x) . (6.6)

This optimization problem is convex if F is a convex function on IRJ. A function fj

is convex if

F (αx+ βx′) ≤ αF (x) + βF (x′) ∀ x, x′ ∈ D , (6.7)

where the weights 0 ≤ α, β ≤ 1 sum to unity. Equivalently, F is convex on a domain

if its Hessian ∇2F is positive semi-definite [70] everywhere in the domain:

y> ∇2F
∣∣
x
y ≥ 0 ∀ y ∈ IRJ

⋂
x ∈ D . (6.8)

Convexity is useful because it implies that any local minimum F (x∗) is the global

minimum, so we can use local minimization techniques to find the global minimum.

(The minimum may exist along a continuum, so x∗ may not be unique.)

Newton’s method solves the unconstrained convex optimization problem using a

Taylor series expansion of the objective [9]. Approximate

F (x(k) + s) = F (x(k)) + s>∇F |x(k) + s>∇2F |x(k)s+O
(
‖s‖33

)
. (6.9)

The step minimizing the second-order expansion satisfies

−∇2F
∣∣
x(k)

s(k) = ∇F |x(k) . (6.10)

This defines a sequence of steps x(k+1) = x(k) + s(k), k = 0, 1, 2, ..., K. Each step

requires solving a J × J system of linear equations. The steps converge rapidly on x∗

if the third derivative of F at x(k) is small (with respect to the second derivative and

step size). This implies that the Newton steps converge rapidly when x(k) is in some

Rapid Convergence Region (RCR) around x∗.
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If the J×J linear solve is much more expensive than evaluating F , it is reasonable

to rescale each step using a line search. By rescaling we can guarantee that each step

is decreasing, even if it is not converging rapidly. To do this we use bisection method

to estimate the real scalar

α ≡ argmin
α′∈(0,∞)

F (x(k) + α′s(k)) . (6.11)

If F is convex, then α is the unique root of

s(k)>∇F
∣∣
x(k)+αs

= 0 . (6.12)

We will use α in Section 6.2.2 to indicate the Newton step quality: If α ≈ 1 then

the second-order expansion appears to be a reasonable approximation of F , so x(k)

appears to be in RCR.

6.1.3 Constrained Convex Optimization: Logarithmic Barriers

A constrained global minimization problem

seek f0(x
∗) ≡ min

x∈CRf

f0(x) with (6.13)

CRf ≡ {x | fj(x) ≤ 0, j = 1, 2, ...} (6.14)

is a convex optimization problem if all fj (including f0) are convex functions on D,

the domain of x [9]. Again convexity is a useful property, since it implies that local

minimization techniques are guaranteed to find the global minimum.

The optimization problems used to determine a confidence interval in Section 6.1.1

are convex. The nonnegativity constraints can be expressed as

fj(x) ≡ − [x]j ≤ 0 ∀ j ∈ [1, J ] . (6.15)

The functions are linear and therefore convex. The minimization objective functions

will be

f0 ≡

{
S, to seek minx∈CRf

S

−S, to seek maxx∈CRf
S

}
. (6.16)

In both cases f0 is linear and therefore convex. In Section 6.1.4 we will show that the
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“functional” constraint

fJ+1(x) ≡ χ2(x)− χ2
I;0.95 < 0 (6.17)

is convex for emission QI (although it is not convex for other inverse problems). In

total we have J + 1 inequality constraints.

Boyd gives an algorithm based on logarithmic barrier functions and Newton’s

method to solve the convex optimization problem [9]. Similar path-following prescrip-

tions are given elsewhere for convex optimization [71, 72] and linear programming [73].

The barrier function

φ(x) ≡
J+1∑
j=1

− ln (−fj(x)) (6.18)

approaches +∞ as x approaches any of the constraints and is undefined where the

constraints are violated. We can therefore rewrite our constrained optimization prob-

lem as a family of unconstrained optimization problems seeking

x∗(µ) ≡ argmin
x

F (x;µ) , with (6.19)

F (x;µ) ≡ f0(x) + µφ(x) . (6.20)

Given an initial feasible solution x(0) ∈ CRf , any problem in this family could be

solved using Newton’s method.

The scalar µ ∈ (0, 1] adjusts the smoothness of the objective. When µ = 1, F is

very smooth, so the RCR is large and the optimization problem is easy. As µ → 0

the RCR shifts and shrinks, but optimization problem becomes more accurate:

lim
µ→0

F (x;µ) = f0(x) . (6.21)

We therefore need to gradually decrease µ in successive steps to converge as rapidly

as possible. A geometric series

µ(k+1) = γµ(k) , (6.22)

with µ(0) = 1 is typically used; γ ≈ 0.95 appears effective for our application. The
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Newton step is then

s(k) = −
(
∇2
xF (x;µ(k))

∣∣
x(k)

)−1 ∇xF (x;µ(k))
∣∣
x(k)

(6.23)

for steps k = 1, 2, ..., K.

We conclude this section with a brief on the Karush–Kuhn–Tucker [7, 8, 9] (KKT)

conditions. The KKT conditions are necessary and sufficient conditions for the solu-

tion of a convex optimization problem. We will use them in Section 6.2.1 to create a

convergence criterion for our constrained optimization problem.

At the optimum x∗, constraint j may be active (fj(x
∗) = 0) or inactive (fj(x

∗) <

0). The KKT conditions tells us that the optimal x∗ must satisfy stationarity

∇f0|x∗ +
J+1∑
j=1

λj∇fj|x∗ = ~0 , (6.24)

with “KKT multipliers” constrained to

λj ≥ 0 (6.25)

for dual feasibility. “Complementary slackness” indicates that

λjfj(x
∗) = 0 (6.26)

for every constraint. In other words, if objective gradient at the solution is al-

ways zero—unless the solution cannot move further down the gradient because it

is “blocked” squarely by active constraints. The f0 gradient at x∗ can therefore be

expressed as a linear combination of the active constraint gradients. We will use these

properties of the solution to solve for a bounding estimator on the extrema and to

show it converges.

6.1.4 Convexity of Chi-squared

Here we show that the Hessian matrix ∇2χ2—the second derivatives of χ2 with

respect to x—is always positive semi-definite when Ax > 0. In other words, we show

x> ∇2χ2
∣∣
x
x ≥ 0 ∀ x ∈ IRJ

⋂
x ∈ {x| [Ax]i > 0∀i} . (6.27)

This indicates that χ2 is a convex function of x in that domain. This agrees with

previous findings [74] and matches similar analysis that the log-likelihood function is
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concave [42].

Using covariance model I, our χ2 statistic is

χ2(x) ≡ (Ax− d)>diag(Ax)−1(Ax− d) =
∑
i

[Ax− d]2i
[Ax]i

. (6.28)

For convenience define I-vectors

e ≡ Ax and (6.29)

r ≡ Ax− d , (6.30)

the expectation and residual, respectively. Hence

χ2(x) ≡ r>diag(e)−1r =
∑
i

[r]2i
[e]i

. (6.31)

The expectation and residual have derivatives

∂e

∂ [x]j
=

∂r

∂ [x]j
= [A]:,j , (6.32)

where [A]:,j is column j of A. For emission QI, all elements of A are at least slightly

positive, so all elements of e are positive when any element of x is positive. We use

this to restrict the domain of x: x ∈ {x| [e]i > 0∀i}.
Differentiating χ2 with respect to [x]j gives

∂χ2

∂ [x]j
=
∑
i

2 [r]i [A]i,j
[e]i

−
∑
i

[r]2i [A]i,j

[e]2i
(6.33)

. . . = r>
(
2diag(e)−1 − diag(r)diag(e)−2

)
[A]:,j , (6.34)

so the gradient with respect to x is a J-vector

∇χ2 = A>
(
2diag(e)−1 − diag(r)diag(e)−2

)
r . (6.35)
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Differentiating again gives

∂

∂ [x]j′

∂χ2

∂ [x]j
=
∑
i

2 [A]i,j′ [A]i,j
[e]i

−
∑
i

2 [r]i [A]i,j [A]i,j′

[e]2i
. . . (6.36)

. . .−
∑
i

2 [r]i [A]i,j [A]i,j′

[e]2i
+
∑
i

2 [r]2i [A]i,j [A]i,j′

[e]3i
(6.37)

. . . =
[
A>
]
j′,:

(
2diag(e)−1 − 4diag(r)diag(e)−2 + 2diag(r)2diag(e)−3

)
[A]:,j , (6.38)

so the Hessian is

∇2χ2 = 2A>
(
diag(e)−1 − 2diag(r)diag(e)−2 + diag(r)2diag(e)−3

)
A (6.39)

... = 2A>diag(e)−1
(
I− diag(r)diag(e)−1

)2
A (6.40)

... = Υ>Υ , with (6.41)

Υ ≡
√

2diag(e)−1/2
(
I− diag(r)diag(e)−1

)
A . (6.42)

The inverse-square-root can be applied elementally to e. Because all elements of e

are positive and all elements of A and r are real, Υ ∈ IRI×J.

Showing that the Hessian can be written in this form implies that it must be

positive semi-definite: For any x ∈ IRJ,

x>(∇2χ2)x = (Υx)>Υx =
∑
i

[Υx]2i ≥ 0 . (6.43)

Therefore determining the confidence interval is a convex optimization problem.

6.2 Theory

Here we derive an estimator based on the KKT conditions that inexpensively

bounds S. The estimator can function as a convergence metric, stopping criterion,

and conservative estimate of the confidence interval. We also improve the reliability
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of the barrier method by modifying the barrier scale prescription and initialization

procedure. These measures make the solver reliable enough for non-expert use. We

then derive the appropriate derivatives of the objective functions and constraints to

implement the solver for the QI problem.

6.2.1 Convergence Criterion

For optimization problems, an ideal convergence metric bounds the error on the

solver estimate of F (x∗). In this section we use linear programming to derive the

relative error bound

w−
(
x(k)
)
≤

∣∣∣∣∣S(x(k))−minx∈CRf
S(x)

minx∈CRf
S(x)

∣∣∣∣∣ (6.44)

for the minimization search and

w+
(
x(k)
)
≤

∣∣∣∣∣S(x(k))−maxx∈CRf
S(x)

maxx∈CRf
S(x)

∣∣∣∣∣ (6.45)

for the maximization search.

To do this we first bound S(x∗). At later iterations the convex optimization solver

has a solution x(k) with

x(k) ∈ CRf and (6.46)

lim
k→∞

S(x(k)) = S(x∗) . (6.47)

We would like an estimator that uses x(k) to bound the extremum, e.g.,

S̃−
(
x(k)
)
≤ min

x∈CRf

S(x) (6.48)

that also converges

lim
x→x∗

S̃−(x) = S(x∗) (6.49)

as we minimize f0 = S. An analogous

S̃+
(
x(k)
)
≥ max

x∈CRf

S(x) (6.50)
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is useful when maximizing S. We can create these estimators by approximating the

convex optimization problem as a linear optimization problem.

We begin by taking a Taylor series expansion of χ2 about x(k). Equation (6.7)

implies that, since χ2(s) is a convex function,

χ2(hx+ (1− h)x(k)) ≤ hχ2(x) + (1− h)χ2(x(k)) , (6.51)

with 0 ≤ h ≤ 1. (For brevity, the domain restriction [Ax]i ≥ 0 ∀ i is implied.)

Algebra gives

χ2(x(k) + h(x− x(k)))− χ2(x(k))

h
≤ χ2(x)− χ2(x(k)) , (6.52)

and taking the limit h→ 0 leaves

(x− x(k))> ∇χ2
∣∣
x(k)
≤ χ2(x)− χ2(x(k)) or (6.53)

χ2(x) ≥ χ2(x(k)) + (x− x(k))> ∇χ2
∣∣
x(k)

. (6.54)

Therefore the order-1 Taylor series expansion of χ2 at x(k) bounds χ2 from below.

A lower bound on χ2 defines an outer bound on the confidence region:

CRf ⊂ C̃Rf ≡
{
x
∣∣∣ χ2(x(k)) + (x− x(k))> ∇χ2

∣∣
x(k)
≤ χ2

I;0.95

⋂
x ≥ 0

}
, (6.55)

which in turn bounds the minimum

S̃− ≡ min
x∈C̃Rf

S(x) ≤ min
x∈CRf

S(x) (6.56)

located at

x̃− ≡ argmin
x∈C̃Rf

S(x) . (6.57)

The omit the dependence of C̃Rf , S̃
−, and x̃− on x(k) for brevity.

Here we use linear programming to solve for S̃−. Evaluating S̃− is a linear pro-

gramming problem with nonnegativity constraints. Its sole functional constraint is
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re-arranged from Eq. (6.55):

f̃J+1(x) ≡ ∇χ2
∣∣>
x(k)

x−
(
χ2
I;0.95 − χ2(x(k)) + ∇χ2

∣∣>
x(k)

x(k)
)
≤ 0 , (6.58)

and the minimization objective function is S(x) =
∑

j [x]j. The gradients used in

Eq. (6.24) depend only on x(k), not on x̃−:

∇S|x̃− = ~1 , (6.59)

∇fj|x̃− = −êj ∀ j ≤ J , and (6.60)

∇f̃J+1

∣∣∣
x̃−

= ∇χ2
∣∣
x(k)

. (6.61)

Consider element j of Eq. (6.24):

(1) + λj(−1) + λJ+1

[
∇χ2

∣∣
x(k)

]
j

= 0 or (6.62)

λj = 1 + λJ+1

[
∇χ2

∣∣
x(k)

]
j

. (6.63)

Assume that ∇χ2|x(k) has at least one negative element at j′ that bounds [x̃−]j′ above

zero. The corresponding constraint is inactive: fj′ < 0, so Eq. (6.26) requires λj′ = 0,

so

λJ+1 =
−1

[∇χ2|x(k) ]j′
. (6.64)

Equation (6.25) requires λJ+1 ≥ 0, so [∇χ2|x(k) ]j′ < 0—but we have already assumed

this. Substituting Eq. (6.64) into Eq. (6.63) for all other j 6= j′ gives

λj = 1−
[∇χ2|x(k) ]j
[∇χ2|x(k) ]j′

, (6.65)

so λj ≥ 0 and [∇χ2|x(k) ]j′ < 0 together imply

[
∇χ2

∣∣
x(k)

]
j
≥
[
∇χ2

∣∣
x(k)

]
j′

and (6.66)
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j′ = argmin
j

[
∇χ2

∣∣
x(k)

]
j

. (6.67)

This implies that [x]j > 0 only if [∇χ2|x(k) ]j = [∇χ2|x(k) ]j′—in which case the linear

programming problem is “degenerate” with many x̃− but a unique S̃−. We assume

that [x̃−]j′ is as small as permitted by the functional constraint:

x̃− =


χ2
I;0.95−χ

2(x(k))+∇χ2|>
x(k)

x(k)

[∇χ2|
x(k) ]j

j = j′

0 else

 and (6.68)

S̃− =
χ2
I;0.95 − χ2(x(k)) + ∇χ2|>x(k) x(k)

[∇χ2|x(k) ]j′
. (6.69)

This bound can be calculated using vector arithmetic; evaluating the gradient is

arithmetic as shown in Section 6.1.4.

We can show that the bound converges as x(k) converges, i.e.,

lim
x(k)→x∗

S̃−(x(k)) = S(x∗) . (6.70)

As x(k) approaches x∗, the KKT conditions apply:

lim
k→∞

λ
(k)
j fj(x

(k)) = 0 and (6.71)

lim
k→∞

λ
(k)
j ≥ 0 , (6.72)

where λ
(k)
j is a pseudo-KKT-multiplier that satisfies

λ
(k)
j = 1 + λ

(k)
J+1

[
∇χ2

∣∣
x(k)

]
j

. (6.73)

Together these equations and the assumption χ2(x∗) = χ2
I;0.95 imply that

lim
k→∞

[
∇χ2

∣∣
x(k)

]
j

{
= −1

λJ+1
∀ j | [x∗]j > 0

≥ −1
λJ+1

∀ j | [x∗]j = 0
with (6.74)
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λJ+1 = min
j

−1

[∇χ2|x∗ ]j
=

−1

minj [∇χ2|x∗ ]j
. (6.75)

Taking the limit k →∞ of Eq. (6.69) gives

lim
k→∞

S̃− = lim
k→∞

χ2
I;0.95 − χ2(x(k)) + ∇χ2|>x(k) x(k)

minj [∇χ2|x(k) ]j
(6.76)

... =
(0)− 1

λJ+1

∑
j [x∗]j

minj [∇χ2|x∗ ]j
(6.77)

... =
∑
j

[x∗]j = S(x∗) . (6.78)

In other words, S̃−(x(k))→ S(x∗) as x(k) → x∗.

In summary, we have defined an estimator S̃− that bounds the lower limit of CIf

from below. As S(x(k)) descends, S̃−(x(k)) rises to meet it. Since

S̃−(x(k)) ≤ S(x∗) ≤ S(x(k)) and (6.79)

S(x(k))− S(x∗) ≤ S(x(k))− S̃−(x(k)) , (6.80)

the relative error is bounded

S(x(k))− S(x∗)

S(x∗)
≤ S(x(k))− S̃−(x(k))

S̃−(x(k))
≡ w−(x(k)) . (6.81)

We can define a stopping criterion

if w−(x(k)) < εw : halt , (6.82)

for some εw several orders larger than machine precision. In this work we choose

εw = 10−4 unless otherwise specified, since the confidence interval is probably several

orders wider. The esimator S− can also be used as a conservative lower limit for CIf ,

since S̃− < minx∈CRf
S(x).

An analogous upper bound can be derived for the upper limit of CIf : When

minimizing −S, the objective gradient is −~1 and the functional-constraint gradient
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is ∇χ2|x(k) > 0. Because ∇f0|x(k) and ∇χ2|x(k) have both reversed sign, the upper

bound

S̃+ =
χ2
I;0.95 − χ2(x(k)) + ∇χ2|>x(k) x(k)

minj [∇χ2|x(k) ]j
(6.83)

is apparently identical to S̃−. However, the sign of ∇χ2 has reversed. Since

S(x(k)) ≤ S(x∗) ≤ S̃+(x(k)) and (6.84)

S(x∗)− S(x(k)) ≤ S̃+(x(k))− S(x(k)) , (6.85)

the relative error is bounded

S(x∗)− S(x(k))

S(x∗)
≤ S̃+(x(k))− S(x(k))

S(x(k))
≡ w+(x(k)) (6.86)

and create a stopping criterion

if w+(x(k)) < ε : halt . (6.87)

6.2.2 Rapid Convergence Region Monitoring

We solve the optimization problems in Section 6.1.1 using Newton’s method with

logarithmic barriers. For unconstrained optimization, the solver almost never steps

out of the RCR. For constrained optimization the RCR will shift and shrink as the

solver decreases µ, so the RCR may shift away from x(k). If the solver continues to

decrease µ, the steps may be unable to locate the shrinking RCR. Stranded outside

the RCR, the solver will not converge in reasonable time.

For example, consider the convergence plot in Fig. 6.1. In this problem we are

seeking argminx∈IR+
χ2(x) for an imaging problem with I = 576 datapoints and J =

1000 parameters. The barrier scale µ decreases by a factor γ = 0.88 at every iteration.

However, the error bound w− does not converge. After 116 iterations, x(k) moves

outside CRf because of discretization error.

The analyst faces a dilemma: aggressively decrease µ (set γ small) and risk con-

vergence failure or timidly decrease µ and converge slowly. The ideal γ can only be

determined by trial. To reduce this dilemma, the solver can freeze the RCR when x(k)

is outside the RCR. This “RCR monitoring” feature helps the solver find or return
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Figure 6.1: Convergence fails without Rapid Convergence Region monitoring.

to the RCR.

One indication that x(k) is outside the RCR is that the line-search scalar α is far

from unity. See Eq. (6.11). Using this indicator, we can update Eq. (6.22) to

µ(k+1) =

{
γµ(k), |α− 1| ≤ εα

µ(k), else
. (6.88)

Tolerance εα = 0.9 appears to work well. This prescription for the barrier coefficient

monitors whether x(k) is in the RCR.

Using RCR monitoring, the solver typically converges dispite aggressive choices

of γ. If we repeat the example of Fig. 6.1, the solver converges to w− ≈ 10−6 in 200

iterations. See Fig. 6.2.

In this plot we see that the solver decreases µ in fewer than half of the itera-

tions. This indicates that γ = 0.88 is rather aggressive, and a larger γ may converge

more quickly. Near iteration 60 the solver requires dozens of iterations to find the

RCR. However, the solver still converges beyond sufficient precision in finitely many

iterations.
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Figure 6.2: The solver converges with Rapid Convergence Region monitoring. Com-
pare to Fig. 6.1

6.2.3 Initialization

The barrier method assumes that the analyst can provide an initial x(0) ∈ CRf .

Since F (x;µ) is undefined outside of CRf , logarithmic barriers cannot be applied

until x(k) is in CRf . Various iterative schemes, e.g., expectation maximization, can

minimize χ2 and find CRf . We prefer to apply the barrier method to the minimum-χ2

problem,

seek x∗ ≡ argmin
x∈IR+

χ2(x) until (6.89)

χ2(x(k)) < χ2
t , (6.90)

with the transition threshold χ2
t = 0.999 χ2

I;0.95. We begin iteration with x(0) = ~1.

Our optimization problem therefore has two stages: first locate CRf , then search

CRf for the extrema of S.

One challenge with this approach is the transition from stage 1 to stage 2. In

Section 6.2.2 we noted that large changes of F can shift the RCR away from x(k). In

that section we focused on changes due to µ, but altering the constrained objective
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f0 can lead to the same problem. An immediate transition from minimizing f0(x) =

χ2(x) to minimizing f0(x) = S(x) significantly shifts the RCR.

For example, the analyst took special steps to find a suitable x(0)) for the example

in Fig. 6.1. If we näıvely apply the two-stage scheme to that problem, the solver

is unable to find the RCR after the transition. See Fig. 6.3. The plot uses χ2
t =

0.999 χ2
I;0.95, but results are similar with 0.9 χ2

I;0.95 and 0.99 χ2
I;0.95, and 0.9999 χ2

I;0.95.

Figure 6.3: Two-stage initialization scheme using an abrupt transition fails to con-
verge. γ = 0.9 for stage 1 and 0.95 for stage 2.

A more sophisticated approach could gradually adjust F . For example, we can

augment F with additional parameters to emphasize different objectives:

F1 (x; η0, ηp, µl, µf ) ≡ η0f0(x) + ηpχ
2(x) + µl

M−1∑
m=1

− ln [s]j (6.91)

for stage 1 and

F2 (x; η0, ηp, µl, µf ) ≡ η0f0(x) + ηpχ
2(x) + µl

M−1∑
m=1

− ln [s]j + ...

...+−µf ln
(
χ2
I;0.95 − χ2(x)

)
(6.92)
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for stage 2. The parameters η0 ∈ [0, 1] and ηp ∈ [0, 1] scale the true objective function

(f0 = S or −S) and a χ2 penalty. The parameters µl ∈ (0, 1] and µf ∈ (0, 1] reshape

the linear- and functional-constraint barriers.

These augmented functions F1 and F2 are useful because they can smoothly tran-

sition between stage 1 and stage 2. For stage 1 we adjust the parameters toward the

limit

lim
η0 → 0

ηp = 1

µl → 0

µf = 1

F1(x; η0, ηp, µl, µf ) = χ2(x) ∀x ∈ IR+ . (6.93)

For stage 2 we adjust the parameters toward the limit

lim
η0 → 1

ηp → 0

µl → 0

µf → 0

F2(x; η0, ηp, µl, µf ) = f0(x) ∀x ∈ CRf . (6.94)

To make incremental changes in F , we change the parameters by no more than a

factor γ at each step. One prescription is

η
(k+1)
0 =


η
(k)
0 , if |α− 1| > εα

γ1η
(k)
0 , else if xk 6∈ CRf

min
(
η
(k)
0 /γ2, 1

)
, else

, (6.95)

η(k+1)
p =


η
(k)
p , if |α− 1| > εα

η
(k)
p , else if xk 6∈ CRf

γ2η
(k)
p , else

, (6.96)

µ
(k+1)
l =


µ
(k)
l , if |α− 1| > εα

γ1µ
(k)
l , else if xk 6∈ CRf

γ2µ
(k)
l , else

, and (6.97)
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µ
(k+1)
f = η(k+1)

p , (6.98)

with η
(0)
0 = η

(0)
p = µ

(0)
l = µ

(0)
f = 1. The εα condition implements RCR monitoring;

see Section 6.2.2. The scale ratio γ is split into γ1 for stage 1 and γ2 for stage 2. In

this work we use γ1 = 0.9 and γ2 = 0.95 unless otherwise specified. An example of

this prescription is plotted in Fig. 6.4.

Figure 6.4: Two-stage initialization scheme using a smooth transition at iteration
41.

The naïıve transition abruptly sets η0 = 1, ηp = 0, and µl = 1. The smooth

transition avoids these abrupt changes, so the RCR shifts less. The only abrupt

change is the addition of the functional-constraint barrier. This approach is much

more likely to keep x(k) near the RCR and converge in reasonably few iterations.

6.2.4 Derivatives of the Objective Function

Section 6.1.3 describes a constrained optimization solver that requires the first

and second derivatives of the objective function F . Using the augmented definition

of F (defined in Sec. 6.2.3), our solver needs the first and second derivatives of F2
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with respect to x, i.e.,

∇xF2 (x; η0, ηp, µl, µf ) ≡ η0∇xf0(x) + ηp∇xχ
2(x) + µl

J∑
j=1

−∇x ln [x]j + ...

...+−µf∇x ln
(
χ2
I;0.95 − χ2(x)

)
and (6.99)

∇2
xF2 (x; η0, ηp, µl, µf ) ≡ η0∇2

xf0(x) + ηp∇2
xχ

2(x) + µl

J∑
j=1

−∇2
x ln [x]j + ...

...+−µf∇2
x ln

(
χ2
I;0.95 − χ2(x)

)
. (6.100)

(The terms in F1 are a subset of the terms in F2.) This section derives these terms

or estimators for these terms.

For convenience, note here that

−∇x ln (f(x)) = −∇xf

f(x)
and (6.101)

−∇2
x ln (f(x)) =

(∇xf)2 − f(x)∇2
xf

f(x)2
. (6.102)

The derivatives of the original objective function have elements

[∇xf0]j = 1 and (6.103)

[
∇2
xf0
]
j,j′

= 0 (6.104)

since f0 is the sum of x.

The derivatives of the χ2 depend on the choice of covariance model. For covariance

model I we have derived

∇xχ
2 = A>

(
2diag(Ax)−1 − diag(Ax− d)diag(Ax)−2

)
(Ax− d) and (6.105)

∇2
xχ

2 = 2A>diag(Ax)−1
(
I− diag(Ax− d)diag(Ax)−1

)2
A (6.106)

104



in Sec. 6.1.4. For covariance model II we assume that the covariance matrix covar[Ax−
d] depends only weakly on x. Using this assumption,

χ2(x) = (Ax− d)> covar[Ax− d]−1 (Ax− d) , (6.107)

∇xχ
2 ≈ 2A>covar[Ax− d]−1 (Ax− d) , and (6.108)

∇2
xχ

2 ≈ 2A>covar[Ax− d]−1A . (6.109)

For nonnegativity constraint j, the derivatives have elements

[
−∇x ln [x]j

]
j′

=

{
−1/x j = j′

0 else
and (6.110)

[
−∇2

x ln [x]j

]
j′,j′′

=

{
1/x2 j = j′ = j′′

0 else
. (6.111)

The sums in Eqs. (6.99) and (6.100) are then

J∑
j=1

−∇x ln [x]j = −diag(x)−1 and (6.112)

J∑
j=1

−∇2
x ln [x]j = diag(x)−2 . (6.113)

Like the χ2 penalty, the χ2 threshold constraint depends on the choice of noise

model. The derivatives are

−∇x ln
(
χ2
I;0.95 − χ2(x)

)
= −
∇x

(
χ2
I;0.95 − χ2(x)

)(
χ2
I;0.95 − χ2(x)

) =
∇xχ

2(x)(
χ2
I;0.95 − χ2(x)

) and (6.114)

−∇2
x ln

(
χ2
I;0.95 − χ2(x)

)
= ...

... =

(
∇x

(
χ2
I;0.95 − χ2(x)

))2 − (χ2
I;0.95 − χ2(x)

)
∇2
x

(
χ2
I;0.95 − χ2(x)

)(
χ2
I;0.95 − χ2(x)

)2 = ...
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... =
(∇xχ

2)
2

+
(
χ2
I;0.95 − χ2(x)

)
∇2
x (χ2(x))(

χ2
I;0.95 − χ2(x)

)2 , (6.115)

with χ2 and its derivatives given in Eqs. (6.105)–(6.109).

6.3 Application

In this section we use small problems to illustrate the frequentist UQ approach.

We also use a scaling study to show the computational tractability of complex QI

problems (with large I and/or J).

6.3.1 Small Problems

Let us first demonstrate the convex optimization algorithm using two small prob-

lems. The system matrices, data, and algorithm parameters are listed in Table 6.1.

Because the problems have only 2 parameters, we can create a pseudocolor plot of

χ2(s); see Figs. 6.5 and 6.6.

Table 6.1: Defining parameters for two small problems.

Problem 6.3.1a 6.3.1b

A
[
40 60

] [
39.6 21.6
40 60

]
d

[
158
] [

141 174
]>

The χ2-minimization arrives at a feasible solution within 2 iterations. The extrema

searches proceed from there.

6.3.2 Scaling

We expect the CIf to approach some steady value as we refine the source dis-

cretization. However, the computation time grows rapidly as J → ∞. To study the

effect of J on compute time and CIf , we used a pair of calibration measurements to

perform a scaling study.

For pair p = 10, source Cf-252-5557 is located near xyz = (−1.0, 0.0, 155.9) cm.

We selected this pair because the position is central among the claibration measure-

ments and has a median number of total counts. Here we treat the source distribution

as an unknown distribution in a 60× 60× 60 cm domain around the measured posi-
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Figure 6.5: The convex optimization sequence for problem 6.3.1a: first seek mins≥0 χ
2

(blue arrows), then mins∈CRf
S and maxs∈CRf

S (orange arrows). For clarity, only
selected steps are drawn. Extrema of S = x0 + x1 are marked with orange dotted
lines.

tion. In other words, the source is distributed in the domain (−31.0,−30.0, 125.9) <

(x, y, z) < (29., 30., 185.9) cm.

To better understand the information provided by the data, we performed an

MLEM reconstruction of the pair data. Views of the reconstruction are plotted in

Fig. 6.7. The reconstruction indicates that the data poorly identifies the source–

detector distance.

We then performed the frequentist analysis using varying discretizations of the

source domain. The analyses used covariance model I. The calculations are performed

on a laptop with an Intel i7-3630QM processor. Key results for this analysis are

summarized in Table 6.2.

We note several interesting trends. First, the computational walltime increases

roughly proportionally to J2.4. This scaling is reasonable based on the LAPACK

routines we use to solve the J×J linear system to calculate the Newton step. This is

true for each stage of the minimization searches and maximization searches as well;

see Fig. 6.8. In this plot the walltime is divided between stage 1 (seeking CRf )

and stage 2 (seeking the extrema of S in CRf ). The extrema searches are marked

(−) for the minimum search and (+) for the maximimum search. The increasing
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Figure 6.6: The convex optimization sequence for problem 6.3.1b: first seek mins≥0 χ
2

(blue arrows), then mins∈CRf
S and maxs∈CRf

S (orange arrows). For clarity, only
selected steps are drawn. Extrema of S = x0 + x1 are marked with orange dotted
lines.

Table 6.2: Frequentist analysis results for calibration pair p = 10 as a function of
source domain discretization.

walltime CIf
J (s) (neutrons / s)

1× 1× 1 = 1 5.53× 101 a
2× 2× 2 = 8 5.88× 101 a
5× 5× 5 = 125 5.67× 101 [3.390× 105, 7.581× 105]

5× 5× 10 = 250 7.44× 101 [3.143× 105, 7.864× 105]
5× 10× 10 = 500 9.70× 101 [2.729× 105, 8.313× 105]

10× 10× 10 = 1000 2.29× 102 [2.703× 105, 8.442× 105]
10× 10× 20 = 2000 6.89× 102 [2.669× 105, 8.541× 105]
10× 20× 20 = 4000 2.85× 103 [2.622× 105, 8.756× 105]
20× 20× 20 = 8000 1.45× 104 [2.619× 105, 8.829× 105]
Strue 3.65× 105

a Unable to find CRb
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Figure 6.7: Views of the MLEM reconstruction of calibration pair p = 10. The
measured source position is marked with a red ×.
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computational cost is driven by increasing cost per step, since the number of steps is

insensitive to J ; see Fig. 6.9.

Figure 6.8: Computational walltime for frequentist analysis of calibration pair p = 10
as a function of source discretization. Stage 2 times (unlabeled) fall between the
curves stage 1 times in the minimization (−) and maximization (+) problems.

Second, seeking CRf requires many more steps for the maximization problem

than the minimization problem. This is because the RCR is harder to locate in stage

1 of the maximization problem. For example, observe the large number of iterations

before the barrier scaling parameter µl changes; compare Figs. 6.10 and 6.11. This

behavior is not observed in stage 1 of the minimization problem, suggesting that

it is caused by the η0 term of F1. In future work we may be able to reduce the

computational cost by beginning the maximization problem with smaller values of

η0.

Third, the confidence intervals widen as J increases. This is expected, since adding

parameters will improve the fit between the model and the data and increase the size

of CRf . We even observe cases where CRf is an empty set when J < 125. (In these

cases, the solver performs 200 stage-1 steps and halts.) However as J → ∞, CIf

approaches a constant interval. In Section 3.6 we suggest using voxels that are 10 cm

perpendicular to the detector plane and 3 cm parallel to the plane. The results in this

section support suggest a similar discretization: 6 cm perpendicular to the detector

plane and 3 cm parallel to the plane.
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Figure 6.9: Number of computational steps for frequentist analysis of calibration
pair p = 10 as a function of source discretization. Stage 2 step counts (unlabeled) lie
near the stage 1 step counts for the minimization problem (−).

Finally, each step has a fixed minimum cost on the order of 0.2 seconds. This cost

is driven in part by the need to invert the I × I covariance matrix. We can assess

the scaling of this cost by repeating the J = 1000 trial with the data and response

matrix repeated once, twice, etc. See Table 6.3. The cost per step scales as O (I2.2).

Table 6.3: Frequentist analysis walltimes for calibration pair p = 10 with J = 1000
as a function of number of datapoints.

I walltime (s)
576× 1 0.53
576× 2 1.81
576× 3 4.42
576× 4 8.29

From these measurements, our overall time prediction is

1.16× 10−4I2.2 + 6.22× 10−6J2.4 seconds. (6.116)
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Figure 6.10: Convergence of the min-
imization problem for calibration pair
p = 10 with J = 8000 shows an im-
mediate decrease in µl.

Figure 6.11: Convergence of the max-
imization problem for calibration pair
p = 10 with J = 8000 shows constant
µl for the first 80 iterations.
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6.4 Conclusions

This section builds on existing constrained optimization techniques to create a

robust UQ approach. The convex optimization methods in Section 6.2 may be useful

for other optimization applications. For a problem with I = 576× 2 datapoints and

J = 104 parameters, the estimate can be computed on a laptop in roughly 7 hours.
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CHAPTER VII

Demonstration

The ultimate demonstration of the UQ approach of Chapter VI is a demonstration

with an unknown source distribution. This exercise also highlights pratical challenges

of QI using an FNCA imager.

7.1 Equipment and Setup

We used the P24 imager (described in Section 3.1) and a set of small californium-

252 sources. Paul Hausladen selected the sources and arranged them behind a curtain.

See Fig. 7.1. This is the “black box” ROI with an unknown neutron source distribu-

tion.

The number, strength, and arrangement of the sources hidden from the inspector

(Bevill). Hausladen placed a total of seven sources in three groups in the ROI. The

sources are listed in Table 7.1. (The calculation of source intensity is identical to

Sec. 3.1. Refer to the coordinate system in Fig. 7.1.)

Table 7.1: Sources used in the hidden-source demonstration.

cert. intensity on approx.
strength 2016-08-19 position

name cert. date (Ci) (neutrons/s) (cm)
Cf-252-5214 2001-09-18 1.23× 10−3 1.059× 105 (-228.6, -182.9, 121.9)
Cf-252-4863 2001-03-14 132× 10−6 9.926× 103 (-320.0, -182.9, 132.1)
Cf-252-4864 2001-03-14 132× 10−6 9.926× 103 (-320.0, -182.9, 132.1)
Cf-252-4865 2001-03-14 132× 10−6 9.926× 103 (-320.0, -182.9, 132.1)
Cf-252-4866 2001-03-14 132× 10−6 9.926× 103 (-320.0, -114.3, 132.1)
Cf-252-4867 2001-03-14 132× 10−6 9.926× 103 (-320.0, -114.3, 132.1)
Cf-252-4868 2001-03-14 132× 10−6 9.926× 103 (-320.0, -114.3, 132.1)

total 165410.
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Figure 7.1: A view of the curtain concealing an unknown distribution of californium-
252 sources.

115



We note that this total source strength is equivalent to approximately 254 to 1479

grams of plutonium. The upper estimate is based on 1 gram of “fuel grade plutonium”

[75] emitting ∼ 111.8 neutrons per second via spontaneous-fission [76]. Refer to

caclulations in Table 7.2. More neutrons could be created by (α, n) knockout reactions

and americium-241 spontaneous fission, depending on the chemical composition and

age of the plutonium. A different reference estimates 650 neutrons per second per

gram of plutonium-oxide [23]. A source intensity of around a kilogram of plutonium

is very significant in the context of holdup measurement.

Table 7.2: Calculation of spontaneous-fission neutron intensity from fuel grade plu-
tonium.

weight s.f. neutron intensity per gram Pu
Isotope fraction [75] intensity [76] (neutrons / s)
Pu-238 0.001 2600.0 2.6
Pu-239 0.861 0.022 0.018 942
Pu-240 0.120 910.0 109.2
Pu-241 0.016 0.0491 7.856× 10−4

Pu-242 0.002 0.0017 3.4× 10−6

total 111.8

7.2 Measurements

The inspector first noted the geometry of the ROI. The curtained region is

bounded (in centimeters) −297.2 < x < −137.3, −251.5 < y < 22.5, and 0 <

z < 200.7.

The inspector also noted that metal can be a significant contributor of fast-neutron

scatter toward the detector. The curtain is suspended using a metal frame, and metal

shelves were located along the −x and −y sides of the ROI.

The inspector then acquired multiple measurements of the ROI using the P24

imager. The measurements occured at various positions (A, B, C, ...) and for various

walltimes (1 hour, 2 hours, ...). The inspector selected measurements A8 (from the

+x side of the ROI) and C8 (from the +y side of the ROI) for further analysis. See

details listed in Table 7.3.
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Table 7.3: Geometry and walltime of measurements used in the demonstration anal-
ysis.

Name A8 C8
Aperture center xyz (cm) (121.6,−160.4, 116.2) (−207.7, 130.7, 116.2)
Imager orientation uvw (−0.9999,−0.01416, 0.) (−0.1123,−0.99367, 0.)
Walltime (seconds)

mask 14400 14400
antimask 14400 14400

Counts recorded
mask 102 458 101 627
antimask 130 583 129 680

7.3 Preliminary Reconstruction

Using measurements A8 and C8, the inspector created an MLEM reconstruction

of the black box source distribution. The mask and antimask measurements are

considered separately, so there are a total of I = 4 × 576 datapoints. The ROI is

discretized into a uniform 3D grid of J = 20×20×20 voxels. The response matrix was

then calculated using the calibrated model of Section 3.3. The MLEM reconstruction

used covariance model I (i.e., standard MLEM reconstruction).

Views of the 3D reconstruction are plotted in Fig. 7.2. It appears that most of the

fast neutrons reaching the detector originate at one of three regions. See Table 7.4.

When we infer the total source strength, we will limit our unknown source distribution

to these three regions.

Table 7.4: Regions of the demonstration ROI from which significant numbers of fast
neutrons reach the detector.

color domain (cm) discretization
cyan (−250,−210, 100) < (x, y, z) < (−200,−155, 140) coarse: 8× 9× 7

fine: 17× 18× 13
orange (−180,−209, 101) < (x, y, z) < (−137,−156, 139) coarse: 7× 9× 6

fine: 14× 18× 13
gray (−180,−250, 0) < (x, y, z) < (−137,−220, 90) coarse: 4× 3× 8

fine: 7× 5× 15

The first region (cyan in Fig. 7.2) appears to be a true source or set of sources

indistinguishably close to one another. Fast neutrons may scatter on metal objects in

or near the ROI, leading to nuisance “scatter sources” in the ROI. We assume that

this is the case, so we will model the cyan region as our true ROI and treat the other
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Figure 7.2: The 3D MLEM reconstruction of the ROI suggests three significant origin
areas (cyan, orange, and gray boxes). The true (hidden) source positions are marked
with red ×; two of the positions are outside the MLEM domain.
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regions as nuisance unknowns (excluded from the optimization objective).

We discretize these regions as the source domain to infer the source strength.

The sensitvity study in Section 3.6 suggests inference with voxels no wider than 3

cm. However for the sake of numerical tractability we limit our inference calculation

to J < 104 unknown source voxels. Table 7.4 includes voxel counts for a coarse

discretization (with J = 978) and a fine discretization (with J = 7779). The fine

discretization achieves ∼3 cm resolution for the cyan and orange regions and ∼6 cm

resolution for the gray region.

7.4 Frequentist Analysis

We can now use the frequentist analysis approach of Chapter VI to infer the

total source strength. The inference results vary depending on which datasets are

analyzed, which ROI discretization is used, and which covariance model is used. As

recommended in Section 3.4, threshold values of χ2
I;0.95 = 1500, 750,, and 800 are used

for covariance models, I, II, and III (respectively) when one measurement is analyzed

(I = 576). When two measurements are used, χ2
I;0.95 is doubled. The results are

listed in Tables 7.5 and 7.6.

Table 7.5: Confidence interval of the total source intensity (neutrons/s) of hidden
sources using the coarse mesh (J = 978).

dataset(s) cov. model I cov. model II cov. model III
A8 [0.0185, 3.981× 105] [0.0094,a] [0.0240, 3.603× 105]
C8 b b b
A8 + C8 [1.313× 105, 2.634× 105] b [1.371× 105, 2.027× 105]

a Interval appears unconstrained
b Unable to find CRb

Table 7.6: Confidence interval of the total source intensity (neutrons/s) of hidden
sources using the fine mesh (J = 7779).

dataset(s) cov. model I cov. model II cov. model III
A8 [0.0539, 4.117× 105] [3.977× 103,a] [0.0209, 3.722× 105]
C8 b b b
A8 + C8 [1.283× 105, 2.705× 105] b [1.339× 105, 2.092× 105]

a Interval appears unconstrained
b Unable to find CRb

Covariance models I and III give fairly consistent values of CIf . The intervals
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calculated using model III tend to be slightly smaller than using model I, but all

of the intervals contain the true S = 1.65× 105 neutrons per second. However, the

solver seldom finds values of χ2 smaller than the threshold using covariance model II.

This indicates that CRf is an empty set. When CRf is not an empty set, it appears

to be unbounded as s increases. This is possible because the covariance increases

roughly linearly as the predicted count rate increases.

Using two measurements yields a much narrower CIf . In fact, the algorithm

cannot distinguish neutrons from the true source region (cyan) from neutrons from

the scatter-source regions (orange and gray). This explains why the lower bounds

created from measurement A8 approach zero at the lower bound. When using only

measurement C8, the model cannot find a reasonable s. This is because the model

excludes the sources hidden at the −x edge of the ROI, which significantly affect the

C8 data.

The intervals calculated using the fine mesh (J = 7779) are about 10% wider than

the intervals created using the coarse mesh. This suggests that the voxel discretization

error is reasonable.

The confidence intervals are quite wide. Even the narrowest interval has a relative

width of 2.027× 105−1.371× 105

1.716× 105
= 44%. This is similar to a relative standard deviation

of 22%.

7.5 Reanalysis

Once the true source positons were disclosed, the inspector recognized that the

modeled ROI geometry did not include two of the source positions. Refer to the source

positions in Table 7.1 and the source locations marked in Fig. 7.2. This highlights

one possibility for human error, but also raises the question of how the method would

have performed had the inspector correctly bounded the ROI. In this section we

repeat the analysis procedures of Sections 7.3 and 7.4 using a larger MLEM domain.

The new domain is bounded (in centimeters) −350 < x < −137.3, −251.5 <

y < 22.5, and 0 < z < 200.7. (This is the original domain with the x lower bound

decreased to −350 cm.) The MLEM reconstruction using the new domain is plotted

in Fig. 7.3.

The updated reconstruction only suggests one new source domain. See the cyan

region marked at the −x edge of Fig. 7.3. The new domain spans (−350,−225, 100) <

(x, y, z) < (−300,−170, 140). We subdivide it into 8 × 9 × 7 = 504 uniform voxels

to achieve ∼ 6 cm resolution. Adding these voxels to the “coarse” discretization of

120



Figure 7.3: The updated 3D MLEM reconstruction of the ROI suggests four signifi-
cant origin areas (cyan, orange, and gray boxes). The true (hidden) source positions
are marked with red ×.

Section 7.3 gives a total of J = 1482 voxels to infer the total source intensity.

For the frequentist analysis, the inspector assumed that the two cyan regions were

true sources and that the orange and gray regions were nuisance scatter sources.

Results of the frequentist analysis are listed in Table 7.7.

Table 7.7: Confidence interval of the total source intensity (neutrons/s) of hidden
sources using the reanalyzed coarse mesh (J = 1482).

dataset(s) cov. model I cov. model II cov. model III
A8 [0.0433, 5.553× 105] [0.0187,a] [0.0433, 4.945× 105]
C8 [1.372× 105, 5.890× 105] [1.224× 105,a] [1.299× 105, 5.497× 105]
A8 + C8 [1.293× 105, 4.868× 105] [1.264× 105,a] [1.248× 105, 4.432× 105]

a Interval appears unconstrained

The resulting intervals are wider than in the original analysis. This is not sur-

prising, since the original CRf is subset of the reanalyzed CRf . The extrema of the

reanalyzed CRf are at least as extreme as the extrema of the original CRf . The

narrowest CIf is 112% of the mean.

Interestingly, the CRf from measurement C8 alone is no longer an empty set. The

new region provided additional flexibility to the model that explained the observed
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data.

The interval calculated using both measurements is only slightly narrower than

the interval calculated using C8 alone. This is expected because the source–detector

distance is crucial for inferring source strength. Because the source regions are nar-

row along the y-axis, the distance was narrowly constrained for measurement C8.

However, the regions would not be narrow if they were determined using an MLEM

reconstruction of only measurement C8. The distance is broadly constrained along

the x-axis, so measurement A8 needs the second measurement to infer the distance.

7.6 Conclusions

The results in Chapter VII demonstrate that FNCA imaging can infer total source

intensity within a region of interest. This inference overcomes small amounts of scatter

that the inspector identified as a nuisance source. However, the 112% measurement

uncertainty is quite large, given that the equivalent of ∼ 1 kilogram of plutonium

was measured for 16 hours. Since the data includes a large (> 4× 105) number of

counts, the uncertainty appears to be mostly due to modeling error. Models should

be improved in future work.

The results also identify the method’s reliance on subjective decisions made by

inspector. Because the inspector omitted a portion of the ROI, several sources were

absent from the initial analysis. Follow-up analysis shows that the confidence intervals

change significantly when these sources are considered. These subjective decisions

could be avoided entirely if analyses with J � 104 were computationally tractable.
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CHAPTER VIII

Conclusions

This work lays the foundation for emission QI using FNCA imagers.

We created and calibrated a model to predict the difference between mask–antimask

measurement pairs. We used cross-validation to test the predictive power of a cali-

brated forward model. Although the prediction–measurement residuals are statisti-

cally significant (vis-à-vis measurement noise), the residuals are distributed in a pre-

dictable way. Based on this validation work we can set bounds on reasonable values

of a chi-squared goodness-of-fit parameter. Having a validated model of prediction–

measurement residuals enables meaningful UQ.

Future work should include incorporation of objects near the ROI (e.g., glove

boxes) into the model. This could be a merger of the modeling here with the MCNPX

models of [1, 2].

We have also demonstrated several concepts relevant to the UQ problem. The UQ

problem is similar to other UQ problems: a (nearly) Gaussian-distributed dataset un-

dergoes a (nearly) linear operation to infer a quantity of interest. For problems like

this, traditional UQ approaches (e.g., GLLS and the delta method) are appropriate.

However, the holdup QI problem also has inequality constraints and is usually un-

derdetermined. These complications motivated us to pursue a non-traditional UQ

approach.

We account for the multiple sources of uncertainty in this problem—noisy data,

limited model accuracy, physical constraints, and epistemic uncertainty—using a fre-

quentist stastical approach. In this approach we search within a confidence region of

reasonable solutions to determine bounds on the QOI. This approach is computation-

ally tractable up to J = 104 unknowns, which is roughly a 1 m3 grid at typical FNCA

resolution. Larger problems will likely arise in practice, so alternative approaches

should be considered in future work.
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These alternative approaches could be high-performance implementations of our

frequentist approaches or perhaps Bayesian approaches. As Section 2.2 demonstrates,

the Bayesian posterior for this problem can be multimodal. This calls for advanced

Bayesian techniques such as DREAM or RJMCMC; see Section 2.1.1.1.

We conclude with a blind-inspector demonstration of the frequentist approach.

The inspector correctly inferred the total strength of multiple sources hidden in a large

volume. The resulting uncertainty is very large however, due mostly to modeling error.

Future work could improve the models to reduce the uncertainty due to modeling

error.

Two additional topics may warrant significant further research.

First, a reconstruction approach that incorporates data updates mid-calculation

would decrease the overall time-to-solution. With this system, the analysis software

could begin processing during data acquisition. This approach could also allow ana-

lysts to adjust the imager based on preliminary reconstructions. Imager adjustments

improve the robustness of the measurement by providing complementary information,

e.g., parallax.

Second, a new aperture design could provide that parallax information in a single

view. Existing FNCA imagers are rather insensitive to source distance. Since source

distance affects detector efficiency more than in-plane motion, a distance-sensitive

system would acquire more information relevant to holdup QI. For example, a mask

with apertures cut non-perpendicular to the scintillator could provide parallax in a

single-view measurement.
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APPENDIX A

MCNP5 Model

This appendix details the MCNP5 input used to model a glove box in Section 3.5.

See Tables A.1–A.6. Variations of this template were used to generate the results in

Section 3.5.
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Table A.1: MCNP5 cell cards used in Section 3.5.

Templated problem for fast-neutron imaging phenomena

c

c glovebox

100 $ fill 5 -0.001205 -130 -141 -142 -143 -144 imp:n=1

130 $ holdup lining sides 4 -2.477 130 -10 imp:n=1

141 $ holdup in corner s020 4 -2.477 -130 141 imp:n=1

142 $ holdup in corner s022 4 -2.477 -130 142 imp:n=1

143 $ holdup in corner s220 4 -2.477 -130 143 imp:n=1

144 $ holdup in corner s222 4 -2.477 -130 144 imp:n=1

101 $ glass 21 -6.22 10 -11 imp:n=1

110 $ front leg 1 -8.0 -12 13 imp:n=1

111 $ front leg hollow 5 -0.001205 -13 imp:n=1

121 $ back leg 1 -8.0 -14 15 imp:n=1

122 $ back leg hollow 5 -0.001205 -15 imp:n=1

c

c pipe

200 $ pipe wall 1 -8.0 -20 21 imp:n=1

210 $ pipe fill 5 -0.001205 -21 -221 -222 -223 -224 imp:n=1

221 $ pipe holdup r020 4 -2.477 -21 221 imp:n=1

222 $ pipe holdup r022 4 -2.477 -21 222 -221 imp:n=1

223 $ pipe holdup r220 4 -2.477 -21 223 -221 imp:n=1

224 $ pipe holdup r222 4 -2.477 -21 224 -222 -223 imp:n=1

c

c detector

500 $ void around detector to preclude nearby scatter 0 -500 imp:n=1

c

c environment

300 $ concrete 3 -2.18 -30 -99 imp:n=1

400 $ air 5 -0.001205 30 -99 11 12 14 20 500 imp:n=1

999 $ beyond 0 99 imp:n=0
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Table A.2: MCNP5 surface cards used in Section 3.5.

c glovebox

10 rpp -50.0 50.0 -200.0 200.0 -50.0 50.0 $ glovebox glass--holdup

11 rpp -51.0 51.0 -201.0 201.0 -51.0 51.0 $ glovebox glass outer

130 rpp -49.75 49.75 -200.0 200.0 -49.75 49.75 $ glovebox holdup--fill

141 p -1 0 -1 97.0 $ glovebox corner s020 plane

142 p -1 0 1 97.0 $ glovebox corner s022 plane

143 p 1 0 -1 97.0 $ glovebox corner s220 plane

144 p 1 0 1 97.0 $ glovebox corner s222 plane

12 rpp 45.0 50.0 -2.5 2.5 -150 -51.0 $ front leg outer

13 rpp 45.5 49.5 -2.0 2.0 -150 -51.0 $ front leg inner

14 rpp -50.0 -45.0 -2.5 2.5 -150 -51.0 $ rear leg outer

15 rpp -49.5 -45.5 -2.0 2.0 -150 -51.0 $ rear leg inner

c

c pipe

20 rcc 0 -200.0 -110 0 400 0 15.8 $ wall outer

21 rcc 0 -200.0 -110 0 400 0 15 $ wall--holdup interface

221 p -1 0 -1 129.79898987322332 $ pipe corner s020 plane

222 p -1 0 1 -90.20101012677667 $ pipe corner r022 plane

223 p 1 0 -1 129.79898987322332 $ pipe corner r220 plane

224 p 1 0 1 -90.20101012677667 $ pipe corner r222 plane

c

c detector

500 rpp 240 260 -40 40 -40 40

c

c environment

30 pz -150 $ ground level

99 so 10000.0 $ edge of universe
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Table A.3: MCNP5 data cards used in Section 3.5.

print 10 30 35 100 110 126 140 170

phys:n

nps 1000000 1000000

c notrn $ notrn == source contributions only

cut:n j 0.1 $ cut below 0.1 MeV

c

c tally spec

c f5:n 250 0 0 0 $ x=250

c e5 0.1 20ilog 10 1000

fip15:n

........225 0 0 $ pinhole center

........0 $ place-holder

........224 0 0 $ grid axis alignment

........0 $ no collimation

........0 $ perfect pinhole

........25 $ grid--pinhole distance

fs15 -30 39i 30 $ fir grid s-axis (y-axis)

c15 -30 39i 30 $ fir grid t-axis (z-axis)

c fir25:n $

c 250 0 0 $ grid center

c 0 $ place-holder

c -1 0 0 $ grid plane normal

c 0 $ F1 include source and scatter contributions

c 0 $ F2 no field-of-view restriction

c 0 $ F3 no spatial jitter

c fs25 -30 2i 30 $ fir grid s-axis

c c25 -30 2i 30 $ fir grid t-axis

c
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Table A.4: MCNP5 source cards used in Section 3.5.

sdef par=n tme=d1 cel=ftme d2

........x=ftme d31 y=ftme d32 z=ftme d33

........erg=d4 eff=0.012464650561431558

si1 h 0 1 2 3 4 5 6 7 8 9 10 $ t is used to choose a source (sub)cell

sp1 0

........0.3524170050576154 0.35418794478152305

........0.02213674654884519 0.02213674654884519

........0.02213674654884519 0.02213674654884519

........0.0512120159913702 0.0512120159913702

........0.0512120159913702 0.0512120159913702

ds2 l

........130 130

........141 142 143 144

........221 222 223 224

ds31 s 310 311 312 313 314 315 316 317 318 319

ds32 s 321 321 322 322 322 322 326 326 326 326

ds33 s 331 330 332 333 334 335 336 337 338 339

c si4 50e-3 10

sp4 -3

c glovebox sides---no y-sides, overlap included in z-sides

si310 h -50.0 -49.75 49.75 50.0

sp310 0 0.25 0 0.25

si311 h -50.0 50.0

sp311 0 1

si321 h -200.0 200.0

sp321 0 1

si330 h -50.0 -49.75 49.75 50.0

sp330 0 0.25 0 0.25

si331 h -49.75 49.75

sp331 0 1
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Table A.5: MCNP5 source cards used in Section 3.5 (continued).

c glovebox corners

si312 -49.75 -47.25

sp312 0 1

si313 -49.75 -47.25

sp313 0 1

si314 47.25 49.75

sp314 0 1

si315 47.25 49.75

sp315 0 1

si322 -200.0 200.0

sp322 0 1

si332 -49.75 -47.25

sp332 0 1

si333 47.25 49.75

sp333 0 1

si334 -49.75 -47.25

sp334 0 1

si335 47.25 49.75

sp335 0 1

c pipe corners

si316 -13.70738148954362 -6.091608383679711

sp316 0 1

si317 -13.70738148954362 -6.091608383679711

sp317 0 1

si318 6.091608383679711 13.70738148954362

sp318 0 1

si319 6.091608383679711 13.70738148954362

sp319 0 1

si326 -200.0 200.0

sp326 0 1

si336 -123.70738148954361 -116.09160838367971

sp336 0 1

si337 -103.90839161632029 -96.29261851045639

sp337 0 1

si338 -123.70738148954361 -116.09160838367971

sp338 0 1

si339 -103.90839161632029 -96.29261851045639

sp339 0 1

c
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Table A.6: MCNP5 material cards used in Section 3.5.

c material spec per PNNL-15870Rev1.pdf, using default XS libraries

m1 $ stainless steel 304 at -8 g/cc

........6000.80c 0.001830

........14000.60c 0.009781

........15031.80c 0.000408

........16000.62c 0.000257

........24000.50c 0.200762

........25055.80c 0.010001

........26000.55c 0.690375

........28000.50c 0.086587

m21 $ lead glass at -6.22 g/cc

........8016.80c 0.592955

........14000.60c 0.174592

........22000.62c 0.010251

........33075.80c 0.002146

........82000.50c 0.220056

m3 $ Hanford dry concrete at -2.18 g/cc

........1001.80c 0.078440

........8016.80c 0.595591

........11023.80c 0.001864

........12000.62c 0.011462

........13027.80c 0.050831

........14000.60c 0.195330

........19000.62c 0.006577

........20000.62c 0.039567

........26000.55c 0.020338

m4 $ plutonium nitrate at -2.447 g/cc

........7014.80c 0.235294

........8016.80c 0.705882

........94238.80c 0.000030

........94239.80c 0.055016

........94240.80c 0.003516

........94241.80c 0.000233

........94242.80c 0.000029

m5 $ dry sea-level air at -0.001205 g/cc

........6000.80c 0.000150

........7014.80c 0.784431

........8016.80c 0.210748

........18000.35c 0.004671
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