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Abstract 

This dissertation presents a new path-dependent non-proportional multi-axial 

fatigue model which is formulated in an incremental form of moment of load path (MLP) 

on 𝜎 − √𝛽𝜏 plane, 𝜀 − √𝛽𝜀𝛾 plane or 𝐾 plane (i.e 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane), depending upon 

if fatigue evaluation is performed in terms of stress-life, strain-life or crack growth life 

for a given application of interest. The total fatigue damage of an arbitrary non-

proportional load path is partitioned into two parts: one is due to proportional part 

(defined with respect to a reference path) of the load path and the other is due to non-

proportional part. The proportional part can be related to an effective stress range 

measured, e.g., the distance in  𝜎 − √𝛽𝜏 plane. The non-proportional part can be shown 

to be related to an integral form of strain energy densities contributed by normal and 

shear deformation with each being weighted by a path-dependent function. Furthermore, 

a dimensionless representation of non-proportional damage, termed as load path non-

proportionality factor, is used for construction of a MLP based equivalent stress or strain 

or stress intensity factor range. A material sensitivity parameter to load-path non-

proportionality is also considered in the MLP based fatigue damage model for modeling 

different materials and their different sensitivities to non-proportional loading. A general 

procedure for determining material sensitivity to load-path non-proportionality is also 

proposed and demonstrated.  

The MLP based fatigue damage model is implemented as an integral part of a 

recently developed “path-dependent maximum range” or PDMR cycle counting 
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procedure for performing both cycle counting for arbitrary non-proportional multiaxial 

loading histories and computing MLP based fatigue damage as each half cycle is being 

counted. With this new capability, comprehensive validations of the newly developed 

model are performed by analyzing multi-axial fatigue test data of various forms (from 

simple to rather complex load paths) of non-proportional loading in four major areas: (a) 

structural steels; (b) different series of aluminum alloys; (c) various types of welded 

structural components; and (d) mixed mode fatigue crack growth in carbon steel and 

stainless steel. In addition to achieving a good correlation of test data in all four areas 

above, it is also found that structural steels are more sensitive to non-proportional loading 

than aluminum alloys. Different grades of aluminum alloys exhibit different levels of 

sensitivity to non-proportional loading, showing an approximately linear relationship 

between material ductility and material sensitivity to load-path non-proportionality. 

MLP based fatigue damage model is further extended for applications in 

structural life evaluation of welded structures by formulating an equivalent structural 

stress parameter that takes into consideration of plate thickness effects, bending ratio 

effects, and residual stress effects. The effectiveness of the equivalent stress parameter in 

correlating different components from various sources is proven by its ability to collapse 

all test data into a much narrower band than those with existing methods given in major 

international codes and standards (e.g., IIW and Eurocode 3). Finally, non-proportional 

mixed mode fatigue crack growth problem is examined by extending the MLP model to 

stress intensity plane or K plane. A two-parameter mixed-mode crack growth model is 

then proposed, which takes into account of both load-path non-proportionality induced 

damage and mean stress effects computed in K plane. Analysis of available existing crack 
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growth data subjected to non-proportional loading shows that the proposed model 

provides the most effective data correlation than any other available models. 

 

  



1 
 

Chaper 1.  

Introduction 

1.1 Background 

Among many of various mechanical failure modes, fatigue failure of materials 

and structures have drawn much attention owing to the fact that it is one of the most 

common and dangerous failure modes in engineering structures. It is estimated that about 

50-90 percent of mechanical failures are caused by fatigue [1]. Based on ASTM 

definition [2], fatigue is a process of progressive localized permanent structural change 

occurring in a material subjected to conditions that produce fluctuating stresses and 

strains at some point or points and that may culminate in cracks or complete fracture after 

a sufficient number of fluctuations. One key characteristic of fatigue failure is that fatigue 

damage process is a localized process, rendering it difficult to be monitored or detected 

until almost reaching to the end of total fatigue life. As a result, once a fatigue failure 

occurs, it often leads to sudden or possibly catastrophic damage. To name a few, the 

downfall of first jet-propelled passenger airplane, the Comet, was caused by fatigue 

failure of pressurized cabin [3]; the capsize of Alexander L. Kielland oil platform [4], 

leading to the worst disaster in Norway ever since World War II in Norwegian waters 

was caused by fatigue failure in one of its fillet welded tubular components. Since fatigue 

is a localized damage process involving several stages such as crack initiation, micro-

crack growth, small crack growth and marco-crack growth with a length scale ranging 
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from micro-meter to meter scale, design against fatigue failure and fatigue life prediction 

are thus becoming challenging topics till today. 

Ever since Wöhler introduced the concept of S-N curve and fatigue limit in 1850s, 

mechanical design against fatigue failure has involved significantly in its philosophy. It 

starts from the initial infinite-life design concept in which structures or components are 

designed in an extremely conservative manner so that they are only expected to 

experience cyclic stress that is below fatigue limit to safe-life design in which durability 

of product is pre-determined by engineers. Later on, fail-safe design, a concept that 

fatigue failure of one part is accepted (will be replaced once found) as long as the part 

will not lead to failure of the whole structure. Recently, damage-tolerant design in which 

fatigue cracks are tolerated as long as they will not lead to failure within the period of 

inspection interval are developed for expensive and large scale structures. 

Major fatigue life prediction models used today such as nominal stress-life (S-N) 

model, local strain-life (𝜀 − 𝑁) model and fatigue crack growth (𝑑𝑎/𝑑𝑁 − ∆𝐾) model 

were initially proposed and applied for uniaxial loading or at least for cases when only 

one dominant stress/strain/crack mode needs to be considered. However, in practice, most 

engineering components are subjected to multi-axial cyclic stress in service for two main 

reasons: (a) multi-sources of loading are operative and (b) the complexity of engineering 

components imposes geometric constraints and as a result multi-axial stress state is 

introduced. Two most common examples are presented here as illustrations. For the first 

case, consider a rotating camshaft as shown in Fig. 1.1. The camshaft is under both cyclic 

torsion and cyclic bending owing to the periodic ignitions inside engine cylinders. 

Therefore, it can be easily imagined that the surface of the camshaft is in a bi-axial stress 
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state. As an another example for geometric constraint-induced multi-axial stress state, 

consider a plate with a hole under uniaxial tensile loading [5], it can be seen from Fig. 1.2 

(b) and Fig. 1.2 (c) that, with the increase of plate thickness, materials in the middle 

surface near the notch root is subjected to a multi-axial (tri-axial) stress state with a 

gradual increase of tensile stress in transverse direction. Therefore, it can be seen that 

multi-axial stress state is so common in real engineering structural components that each 

stress/strain component has to be dealt with properly for fatigue design and life prediction 

which fall into the regime of multi-axial fatigue.      

 

Fig. 1.1 Illustration of multi-loading sources subjected by a camshaft of engine 

𝐹  

𝐹  



4 
 

 

Fig. 1.2 Illustration of tri-axial stress state at notch root for a plate with hole under 

uniaxial tension [5]: (a) a plate with a hole under uniaxial tension; (b) plot of tensile 

strain along loading direction against transverse compressive strain as a function of plate 

thickness; (c) a list of strain and stress values at notch root for the same axial strain but 

with different plate thickness    

 

One should be cautious that it is not always the case that multi-axial loading will 

always leads to multi-axial stress state, as demonstrated in [5, 6]. However, throughout 

this whole thesis, whenever multi-axial loading or out-of-phase loading is mentioned, it 

always refers to the case that multi-axial stress state is created by multi-axial loading. 

When several stress components are operative at the same time at a material point, 

it can be categorized into two main groups. If one stress component increases and 

decreases proportionally in relation to another, it is naturally called proportional multi-

axial stress state. For example, when a thin tube is under both sinusoidal tension and 

torsion without a phase different between them, the normal and shear stress components, 
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as shown in Fig. 1.3 (a) are then proportional to each other. As a result, the tube is 

subjected to proportional multi-axial stress histories.  On the other side, if there is a phase 

shift between tension and torsion (Fig. 1.3(b)), the proportionality between these two 

stress components is lost. Naturally, it is named as non-proportional multi-axial loading. 

From a geometric point of view, if each stress component is plotted in a stress space, 

stress path for proportional multi-axial stress histories will be straight lines passing 

through the origin while non-proportional multi-axial fatigue paths can be arbitrary 

curves in stress space. From a mechanics point of view, non-proportional state of stress is 

characterized by rotation of principal stress and strain axes which will lead to quite 

different responses of materials and as a result, fatigue damage behavior in comparison 

with proportional multi-axial loading in which principal stress and strain axes directions 

remain unchanged during the whole loading process.  

The multi-axial stress state arising from geometrical constrains such as a notch 

under uniaxial tension is generally proportional. Non-proportional multi-axial stress state 

is generally caused by the non-proportionality among multiple sources of loading such as 

illustrated in Fig. 1.1. As a further demonstration, Fig. 1.4 is a plot of measured 

micrstrain along 0°, 45° and 90° directions of a crankshaft [5] showing a clear non-

proportional straining between 0° and 90° directions. For more complex real engineering 

structures under real variable amplitude loading histories, non-proportional loading can 

still be significant. Fig. 1.5 is a representative service loading histories plot recorded for 

lower wing skin of an aircraft with a variety of take-off, landing, and in-flight maneuvers 

represented [7]. One can observe from both stress history (Fig. 1.5 (a)) plot and load path 
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plot (Fig. 1.5(b)) that there exist noticeable non-proportionalities between axial and shear 

stress components.  

 

Fig. 1.3 Proportional (a) and non-proportional (b) multi-axial stress state introduced by 

in-phase and out-of-phase tension and torsion  

 

Fig. 1.4 Measured micrstrain along 0°, 45° and 90° directions of crankshaft [5] 

 

 

 =      (  ) 

 =      (  ) 

 =      (  ) 

 =      (     ) 

(a) 

(b) 
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Fig. 1.5 Representative loading segment from the variable amplitude service loading 

history in terms of (a) applied stresses vs. time and (b) axial–shear stress path [7] 

 

Compared with proportional multi-axial fatigue, two unique challenges exist for 

non-proportional multi-axial variable amplitude loading which is the most generic 

description of loading histories in real world. These two major issues will be elaborated 

in detail as follows since they are also the main challenges to be addressed by this thesis. 

Firstly, which fatigue damage parameter can be used to describe fatigue damage 

under non-proportional loading histories? It is generally observed that classical S-N 

model and 𝜀 − 𝑁  model developed under uniaxial loading cases can be extended to 

proportional multi-axial fatigue loading based on certain types of equivalent stress 

definitions such Tresca stress or von Mises stress. For example, for tubular specimen (Fig. 

1.3 (a)) under bi-axial fatigue loading, the effective stress range (von Mises stress) is 

defined as: 

 ∆𝜎𝑒 = √∆𝜎2  3∆𝜏2 (1.1) 

where ∆𝜎 = 2𝜎𝑎 and ∆𝜏 = 2𝜏𝑎  in which 𝜎𝑎 and  𝜏𝑎 are stress amplitudes of normal and 

shear stress component respectively. The above type of effective stress range definition is 

a reasonable choice for proportional multi-axial fatigue since both uniaxial loading, based 
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on which S-N and 𝜀 − 𝑁 curves are developed and proportional multi-axial loading share 

the commonality that principal stress axes remain unchanged during loading process. 

However, when Eq. 1.1 is applied to non-proportional bi-axial loading shown in Fig.1.3 

(b), the effective stress range calculated is exactly the same as that of proportional 

loading (Fig. 1.3(a)). So the question then becomes: will the fatigue damage parameter 

still effective in predicting fatigue damage of non-proportional loading? The answer is no. 

Fig. 1.6 (b) is a plot of experimental fatigue life against effective (von Mises) stress 

ranges (Eq. 1.1) for pure bending, in-phase (proportional) bending and torsion, 90° out-

of-phase (non-proportional) fatigue loading tested on welded tubular welded components 

(Fig. 1.6 (a)) done by Sonsino and Kueppers [8]. It clearly shows that when von Mises 

stress range is used for non-proportional loading (90° out-of-phase loading in this case), 

significant over prediction of fatigue life is observed. On the contrary, it gives a pretty 

good life estimation for proportional loading (in-phase loading in this case) since in-

phase and uniaxial loading (pure bending in this case) test data tend to overlap with each 

other.   
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Fig. 1.6 Tubular welded componentss under pure bending, in-phase (proportional) 

bending and torsion and 90° out-of-phase (non-proportional) fatigue loading [8]: (a) 

tubular specimen test; (b) fatigue life plot in terms of von Mises stress range 

 

As another case of demonstration, Fig. 1.7 presents proportional and non-

proportional test data on tubular specimens made of Ti–6Al–4V [9]. Since fatigue tests 

are strain controlled in these cases, the test data (Fig. 1.7 (b)) are plotted in terms of von 

Mises strain range. Again, one can observe that for proportional (PP path and TP path) 

and non-proportional load paths (CP path) shown in Fig. 1.7 (a), non-proportional 

loadings lead to a much lower fatigue life than that of proportional loading and that the 

use of von Mises strain range as a fatigue damage parameter results in under-prediction 

of fatigue damage for CP path.  

 

Fig. 1.7 Tubular non-welded specimen under strain-controlled proportional and non-

proportional loading paths [9]: (a) three different strain paths employed; (b) plot of 

fatigue lives in terms of von Mises strain range 

 

A large amount of experimental investigations, as will be reviewed in Sec. 1.2 

reveal that non-proportional cyclic loading is generally more damaging than that of 
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proportional loading. Furthermore, the extent of non-proportional damage is dependent 

both on materials examined and load paths employed. Up to now, a fatigue damage 

model that is capable of taking into account of both material and load path dependent 

non-proportional damage is still a challenging and important topic that has not been fully 

addressed, especially considering the continuous push for cost reduction through 

lightweight design while at the same time having to meet more stringent product 

reliability requirement. 

The second issue that is unique to non-proportional multi-axial fatigue damage is 

that a well-accepted multi-axial cycle counting procedure is still lacking. Realistic service 

loading histories are mostly variable amplitude, as demonstrated by Fig. 1.4 and Fig. 1.5. 

These non-proportional variable amplitude loading histories require a proper cycle 

counting procedure to break complex non-proportional loading histories into simple 

segments for which fatigue damage can be easily calculated and accumulated in order for 

total fatigue damage calculation.  When it comes to uniaxial variable amplitude loading, 

rainflow cycle counting procedure is still the best we have got in spite of some other 

cycle counting procedures are also available [10]. As for proportional multi-axial fatigue 

loading, since one stress component can be simply scaled to the other, uniaxial cycle 

counting can be applied to any stress component for cycle counting purpose. A critical 

issue will emerge when one tries to implement rainflow cycle counting to non-

proportional multi-axial variable amplitude loading histories. That is, which stress 

component should one make use of for cycle counting purpose, considering loading 

history of one stress component can be totally different from another? One typically case 

would be asynchronous loading between bending and torsion when they are applied 
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simultaneously to a tubular component shown in Fig. 1.8(a). For the two asynchronous 

normal and shear stress sinusoidal histories (Fig. 1.8(b)) with a frequency ratio 

of  𝑓𝑡 𝑓𝑏⁄ = 3 , where 𝑓𝑡  and 𝑓𝑏  are torsion and bending frequency respectively. One 

question that will arise naturally is: which load frequency should one make use of for 

fatigue life calculation? The same issue exists for more realistic and complex non-

proportional variable amplitude loading histories as shown in Fig. 1.9. Therefore, further 

investigation on non-proportional multi-axial cycle counting is needed.  

 

Fig. 1.8 Tubular specimen under asynchronous bending and torsion with loading 

frequency ratio of 3 between torsional and bending moments: (a) Tubular specimen tested; 

(b) asynchronous stress histories of normal stress and shear stress components     
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Fig. 1.9 Non-proportional multi-axial variable amplitude loading histories 

   

In spite of that the above two major challenges of non-proportional multi-axial 

fatigue variable amplitude loading were illustrated separately; they are nevertheless 

closely inter-related with each other. As discussed by Dariusz in [6], some non-

proportional fatigue damage models such as critical plane methods e.g. Fatemi-Socie 

model [11] might not need a multi-axial cycle counting procedure and uniaxial methods 

of cycle counting methods can be adapted to multi-axial counting based on the dominant 

failure mechanisms (shear stress/strain dominant or normal stress/strain dominant). On 

the other hands, spectral methods and continuum damage mechanics based models don’t 

even need a separate cycle counting method. Therefore an integrated treatment of both 

fatigue damage model and non-proportional multi-axial cycle counting (very much 

dependent on fatigue model proposed) approach is needed for dealing with realistic 

variable amplitude histories.  

It is worth mentioning that the above backgrounds on non-proportional multi-

axial fatigue under variable amplitude loading and its two unique issues are not only 

applicable for non-welded metallic components/structures, but also for welded 

components for which fatigue failure mostly occur around weld joint location. In fact, Fig. 

1.6 is a presentation of non-proportional fatigue of welded joint component. Since welded 

structures are so extensively used in off-shore, civil and transportation industries, 

treatment of non-proportional fatigue of welded components will also have to be 

examined and validated if any proposed fatigue damage model (in conjunction with 

multi-axial cycle counting) is claimed to be a robust one. Therefore, non-proportional 
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fatigue of welded joint will be covered in a separate chapter of this thesis. Furthermore, 

when a component with a pre-existing crack is subjected to non-proportional loading, it 

turns into a non-proportional mixed mode fatigue crack growth problem which is even 

more challenging. The aforementioned two major issues still exist with additional 

uncertainty involved such as crack branching and crack surface contact. An attempt will 

be made in an effort to deal with mixed mode fatigue crack growth under non-

proportional loading in Chapter 5.                 

The following section will first present a detailed and updated literature review of 

major progresses that were made in an attempt to tackle the above discussed two unique 

issues. Our review covers various types of stress/strain definitions used in fatigue damage 

models for both non-welded and welded components, multi-axial fatigue damage 

parameters including mixed mode fatigue crack growth model and multi-axial cycle 

counting procedures proposed thus far.                    

1.2 Literature Review and Assessment 

1.2. 1 Different Types of Constitutive Models and Stress/Strain Definitions used 

for Fatigue Life Prediction 

Most of fatigue damage parameters are formulated in terms of certain kinds of 

stress and (or) strain definitions. Considering that only stress histories (for load controlled 

loading) or strain histories (for displacement controlled loading) are available in most 

cases, constitutive models are needed to derive from stress (strain) to strain (stress) for 

fatigue damage models that require both stress and strain as input. As a result, several 

cyclic constitutive models are reviewed in the following first subsection.  
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Even if a cyclic elastic-plastic constitutive equation is available, it would be 

impractical to implement elastic-plastic analysis for the whole load history examined. 

Therefore, a practical strategy is that elastic analysis is usually carried out first and then 

certain kinds of elastic-plastic corrections at locations such as notches are made to obtain 

local elastic-plastic strain. Furthermore, note that fatigue damage is a localized process 

occurring not only at the material point with the highest stress, but also within a 

neighboring volume of certain size. Therefore, how to come up with a local type of 

stress/strain definition for fatigue damage models is also essential. Therefore, various 

types of local stresses/stains that were used thus far for fatigue assessment are also briefly 

reviewed and commented for non-welded and welded components in separate subsections.    

1.2.1.1 Constitutive Models for Cyclic Stress-Strain Relationship  

Whenever we talk about constitutive relationship between stress and strain for 

fatigue, it generally refers to cyclic constitutive models. It is well known that monotonic 

stress-strain behavior of a material can be quite different from that of cyclic one because 

of material hardening or softening effect. However, as for very low cycle fatigue, making 

use of stabilized cyclic stress-strain can also be questionable because materials have not 

experienced enough cyclic loading before reaching stabilized stress-strain behavior, 

especially for cases when materials experience low cycle variable amplitude service 

loading.   

For uniaxial cyclic loading, quite similar to that of monotonic stress-strain curve, 

cyclic stress-strain curve can be simply fitted in the form of Ramberg-Osgood equation 

[1]: 
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  𝜀𝑎 =
𝜎𝑎

𝐸
 
(𝜎𝑎)

1

𝑛′

𝐾′
  (1.2) 

where  𝜀𝑎 is strain amplitude and 𝜎𝑎 is applied stress amplitude.  𝐾′ and 𝑛′ are cyclic 

strength coefficient and cyclic hardening exponent.   

For multi-axial fatigue, more complex cyclic plasticity model is needed to 

describe various types of effects [12] such as Bauschinger effect, cyclic hardening or 

softening effect, non-proportional hardening effect etc. Since most cyclic plasticity 

models are built upon classical incremental plasticity theories [13,14], the essential 

elements that are required of for plasticity models should also be in place for cyclic 

plasticity model. These are [6]:  

(a) Initial yield surface definition to separate plastic region from elastic region in 

stress space. 

(b) Flow rules describing the connection between plastic strain increment and 

increment of stress. The most common flow rule is called associated flow rule, in 

which plastic strain increment is normal to yield surface. 

(c) Hardening rule: how a yield surface changes with accumulated plastic strain. 

(d) Consistency requirement: when stress state changes on yield surface, there will be 

change to yield function.  

Much effort is devoted to developing constitutive models to reflect the complex 

responses (e.g. non-proportional hardening) of materials under plastic deformation [14, 

15] in the past few decades. These include multi yield surface model [16], two-surface 

model [17] and nonlinear kinematic hardening model developed by Amstrong and 
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Frederick [18] which was further refined by Chaboche [19]. More detailed descriptions of 

these models can be found in [14, 20]. As reviewed by Jiang and Kurath [21], since 

Armstrong-Frederick model is more suitable for modeling cyclic softening and hardening 

as well non-proportional hardening, only this model will be explained in detail here:  

By assuming von Mises criterion as the initial yielding condition, yield surface in 

stress space is defined as: 

 F = 
3

2
(𝑺 − 𝒂): (𝑺 − 𝒂) − 𝜎𝑦

2(𝜀𝑒
𝑝
)=0  (1.3) 

in which 𝑺 is deviatoric stress tensor, 𝒂 is backstress and 𝜎𝑦 is yield surface as a function 

of effective plastic strain 𝜀𝑒
𝑝

. The associated flow rule requires that plastic strain 

increment is normal to the yield surface:  

 𝑑𝜺𝑝 =
1

𝐾𝑝
(𝑑𝝈: 𝒏)𝒏 (1.4) 

in which 𝐾𝑝 is plastic modulus and the normal direction of yield surface is: 

 𝒏 =
𝑺−𝒂

(𝑺−𝒂): (𝑺−𝒂)
   (1.5) 

the key part of Armstrong-Frederic model is that the backstress increment to describe the 

movement of yield surface is defined as:  

 𝑑𝒂 =
2

3
𝑐0 ∙ 𝑑𝜺

𝑝 − 𝛾0𝒂 ∙ 𝑑𝜀𝑒
𝑝
  (1.6) 

where 𝑐0 and 𝛾0 are two material constants which can be functions of effective plastic 

strain. Finally, the plastic modulus 𝐾𝑝 in Eq. 1.4 can then be obtained from consistency 

condition. 
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Chaboche [22] further suggested that backstress term in Eq. (1.6) can be further 

expressed as a series of backstress components: 

 𝒂 = ∑ 𝒂𝑖𝑀
𝑖=1    (1.7) 

where each backstress component can be written in the same form as in Eq. (1.6).  

For further including isotropic hardening effect, the radius of yield surface 

(𝜎𝑦(𝜀𝑒
𝑝)) is a function of accumulated plastic strain. Jiang and Kurah [23] introduced the 

increment of yield surface as:  

 𝑑𝜎𝑦(𝜀𝑒
𝑝) = 𝑏0 (𝑄0 − 𝜎𝑦(𝜀𝑒

𝑝)) 𝑑𝜀𝑒
𝑝
  (1.8) 

where 𝑏0 is a material constant and 𝑄0 is a function of hardening for both proportional 

and non-proportional loading with the following definition:  

 𝑄 = 𝐴𝑇𝑞𝑁  (1 − 𝐴𝑇)𝑞𝑃 (1.9) 

𝐴𝑇 in Eq. (1.9) is a measure of non-proportionality such as the one proposed by Tanaka 

[24] and 𝑞𝑁 is hardening parameter for non-proportional loading while 𝑞𝑃 is proportional 

hardening parameter. 

It can be seen from the above explanations of well-recognized elastic-plastic 

constitutive model that many material parameters are needed in order to calculate plastic 

strain based on input of stress history. Especially when it comes to non-proportional 

loading, the load calculation of load path non-proportionality 𝐴𝑇  in Eq. (1.9) would 

require a fourth rank tensor for Tanaka’s model [24]. Therefore, the application of cyclic 

plasticity models to real engineering practice is not an easy job both owing to the 
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complexity of cyclic plasticity model and the many material parameters involved for 

determination. 

The most important aspect of non-proportional loading is more slip planes and 

dislocations will be activated because of rotation of principal stress/strain axes. These 

different slip planes and dislocations interact with each other leading to quite different 

microstructures [25-28] when compared with that under proportional loading. From a 

mechanical point of view, additional cyclic hardening that is material-dependent is 

sometimes observed for some material under non-proportional loading. Therefore, to 

circumvent from the complexity of cyclic plastic constitutive model, simplified 

experiment-based empirical models were often used to describe additional cyclic 

hardening when non-proportional loading is applied. The most well-known one proposed 

by Kanazawa et al.[25] aimed at replacing cyclic strength coefficient (𝐾′) in Eq. (1.2) for 

uni-axial loading with the following one in case of non-proportional cyclic loading:  

   𝐾𝑁𝑃
′ = 𝐾′(1  𝛼𝐼𝐹0)   (1.20) 

in which 𝐾𝑁𝑃
′  is cyclic coefficient for non-proportional loading and 𝐹 is rotation factor of 

non-proportional path, which is defined as the ratio of shear strain range at 45° to 

maximum shear plane to maximum shear strain range.  

𝛼𝐼 in Eq. (1.20) is a material dependent additional hardening coefficient [5,25] defined as: 

 𝛼𝐼 =
𝜎90°−𝜎0°

𝜎0°
  (1.21) 

where 𝜎90° and 𝜎0° are equivalent stress amplitudes for 90° out of phase and in phase 

loading (Fig. 1.10 (a)), respectively, with the same applied effective strain.    
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Fig. 1.10 Effective stress-strain curve for in and out of phase test: (a) 90° out of phase 

and in phase load path; (b) equivalent stress amplitude for same applied effective strain. 

  

With Eq. (1.20) for estimating cyclic coefficient for non-proportional loading, 

additional cyclic hardening is generally taken into account [29] by Eq. (1.2). However, 

strictly speaking, the calculated 𝛼𝐼 based on Eq. (1.21) is dependent upon the amplitude 

of effective strain used. This might be part of the reason why calculated stress based on 

the strength coefficient in Eq. (1.20) tends to over predict stress under non-proportional 

loading in some cases [29].      

The sensitivities of materials to non-proportional hardening vary a lot for different 

materials [15, 28, 29] and are important parameters to be determined for calculation of 

additional cyclic hardening. Several attempts were made trying to build a connection 

between 𝛼𝐼 and other material parameters that are easily available. One important finding 

[27, 28, 30] is that additionally hardening under non-proportional loading is closely 

related to stacking fault energy (SFE) of material examined. The lower the SFE, the 

higher the additional non-proportional hardening will be observed (e.g. stainless steel). 



20 
 

On the other hand, for materials with higher SFE, such as aluminum, minimal non-

proportional hardening is found. On the other hand, Borodii and Shukaev [30] proposed 

an empirical relationship between non-proportional hardening coefficient and monotonic 

properties of materials:  

 𝑙𝑔(𝛼𝐼) = 0.705𝛽 − 1.22  (1.22) 

where 𝛽 = (𝜎𝑢 𝜎𝑦) − 1⁄ , in which 𝜎𝑢  and 𝜎𝑦  is ultimate tensile strength and yield 

strength respectively.  

Later on, Shamsaei and Fatemi [31] further suggested that additional cyclic 

hardening parameter 𝛼𝐼  can be related with both uniaxial monotonic and cyclic 

deformation properties of a material. 

It is conventionally believed until today that additional cyclic hardening 

coefficient 𝛼𝐼  is directly related with fatigue life reduction under non-proportional 

loading. However recent researches [15, 29, 31, 32] clearly showed that in cases when 

there is negligible additional hardening effect, significant reduction of fatigue life under 

non-proportional loading is still observed, indicating that more than one mechanisms are 

responsible for non-proportional fatigue damage. This critical point will be further 

elaborated in following sections.   

1.2.1.2 Stresses/Strains Typically Used for Non-Welded Components with Notches 

Currently, applications of the above reviewed several types of constitutive models 

are mainly limited to simple specimens. However, in most structures and engineering 

components, localized fatigue damage caused by stress risers such as notches are of 
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major concern. For this purpose, several approaches used for estimating local stresses are 

briefly reviewed here. 

As stated by Radaj [33]: “local approaches are assigned to the structural stress and 

strain approach, to the notch stress and strain approach and to the fracture mechanics 

approach. These local approaches supplement or substitute the older nominal stress 

approach which is of a global nature”. Nominal stress approach implies that material 

effects, stress gradient effects caused by notches and surface finish effects are all grossly 

considered in a nominal S-N curve that is specific to one category of structural 

component. Additionally, it is only applicable to cases when nominal stress can be clearly 

defined. On the contrary, local approaches attempt to separate stress state experienced by 

materials from fatigue properties of materials such that only one S-N curve from uniaxial 

fatigue test on simple specimen is enough for fatigue design and assessment of different 

components as long as local stresses can be calculated. 

(a) Notch stress/strain based approach 

Generally, with a notch radius well defined and nominal stress known, the 

maximum elastic stress at the notch root is simply the nominal stress (𝜎𝑛) multiplied by 

stress concentration factor (𝐾𝑡). However, because of stress gradient effect, stress drops 

sharply for materials away from the maximum notch stress location. Considering that real 

fatigue damage process occurs in a process zone, not only at the highest stress point, 

elastic notch stress 𝐾𝑡𝜎𝑛 will therefore always leads to an underestimation of fatigue life. 

To overcome this issue, Neuber [34] came up with a well-known fatigue notch factor 

(𝐾𝑓):  
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 𝐾𝑓 = 1  
𝐾𝑡−1

1+√
𝜌

𝑟

   (1.23) 

where 𝑟 is the notch radius and 𝜌 is a material dependent characteristic length reflecting 

the sensitivity of material to notch. The above relationship seems pretty reasonable in that 

notch radius is the most important available geometric parameter for a notch to take into 

account of stress gradient effect. However, the determination of characteristic length 𝜌 

will generally require an empirical equation.    

Later on Peterson [35] proposed a similar equation to that of Neuber’s:  

 𝐾𝑓 = 1  
𝐾𝑡−1

1+
𝜌′

𝑟

   (1.24) 

in which 𝜌′  is a characteristic length of materials which also requires an empirical 

estimation. 

Another type of notch stress is based on the theory of critical distance (TCD) [36, 

37]. The essential idea of TCD is that the stress state of a notch can be represented by the 

stress state of a material point (point method) which is certain distance away from notch 

root or by averaging stress over certain length (line method) or certain area (area method) 

or volume (volume method). As an illustration, Fig. 1.11 shows the concept of line 

method and point method as representations of notch stress state. 

However, all of the above critical distance based methods will also require a 

reference length (L) in order for satisfactory prediction [36]. One way of determining its 

value is by taking advantage of the relationship between fatigue crack threshold value 

and fatigue limit based on fatigue crack propagation of small cracks [38]: 
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    𝐿 =
1

𝜋
(
∆𝐾𝑡ℎ

𝜎𝑓
)
2

  (1.24) 

 

Fig. 1.11 Formalization of the line method (a) and the point method (b) [36] in theory of 

critical distance method  

 

When local yielding occurs around notches, which is generally true for both low 

and medium-high cycle fatigue of structural components, elastic-plastic response has to 

be estimated instead of carrying out elastic-plastic finite element analysis for whole 

service loading histories. As mentioned in previous section, elastic analysis is done 

together with certain kind of plastic correction to achieve elastic-plastic stress/strain 

responses at notches. It should be noted that, as described above, which type of elastic 

notch stress definitions should be used for plastic correction is still a concern.  
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The most common notch stress-strain estimation is based on Neuber’s rule [39]. It 

assumes that the geometric mean of stress and strain is equal to that of the elastic stress 

and strain when pure elastic analysis is carried out: 

 𝜎𝜀 = 𝜎𝑒𝜀𝑒 = (𝐾𝑡𝜎𝑛)(𝐾𝑡𝜀𝑛) =
𝐾𝑡
2𝜎𝑛
2

𝐸
   (1.25) 

where 𝜎 and 𝜀 are real elastic-plastic responses at notch root. 𝜎𝑒 and 𝜀𝑒 are pseudo stress 

and pseudo strain calculated elastic analysis. With Neuber’s rule (in terms of range 

definition) and Ramberg-Osgood type of cyclic stress-strain curve in Eq. 1.2, the elastic-

plastic histories of stress/strain responses can then be estimated.   

It is worth noting that Neuber’s rule was originally proposed for correction at the 

notch root point with largest stress. By replacing 𝐾𝑡 with 𝐾𝑓 in (Eq. 1.25), Topper et al. 

[40] found that better agreement with experimental results was achieved. As a further 

note for notch stress based analysis, when notch stress used is based on theory of critical 

distance is used, similar type of elastic-plastic correction is also needed when calculated 

stress is beyond yield stress.  

There are also other types of notch stress/strain analysis rules such as strain 

energy density or Glinka’s rule which assumes that the strain energy density at the notch 

is assumed to the same for linear elastic notch analysis and real elastic-plastic notch 

behavior. More detailed explanations can be found in [1, 41].      

(b) Structural stress approach 

To quote from a review paper from Radaj [33]: “an approach between the global 

and local versions is the structural stress approach which emphasizes the stress 



25 
 

concentrations caused by the macro-geometry, while the actual notch effect is definitely 

suppressed”. The idea of structural stress/strain is to capture the macro (structural) level 

of stress/strain state subjected by components. This type of stress definition is particular 

important in that it is the structural stress/strain that determines the overall responses of 

structural components. Taking a notched component as an illustration, in spite of the fact 

that localized plastic deformation occurs at the notch root, its cyclic response is still 

mainly dominated (strain-controlled) by its surrounding overall elastic response, as long 

as localized plastic region is surrounded by a much larger elastic region. In this case, 

capturing the precise elastic-plastic response at the notch root is of less importance than 

representing its surrounding overall structural response. With the above argument, the 

much more challenging task of calculating localized elastic-plastic response can be 

avoided and capturing overall response a component by structural stress method is good 

enough for fatigue assessment purpose. Up to now, structural stress approach is only fully 

developed for welded structures which will be reviewed in detail shortly. Part of the 

reason can be attributed to the fact that a clearly defined characteristic length is lacking 

for non-welded components. To certain extent, the characteristic lengths defined in TCD 

based notch stress definitions can be viewed as attempts for achieving such a purpose. 

For smooth specimen, structural stress is then simply reduced to nominal stress. On the 

other hand, structural stress can be viewed as notch stress if its notch radius is large 

enough. Therefore, it is attempting to postulate that for characterizing structural stress of 

notched specimen, notch radius is an important factor to be considered.  

To author’s best knowledge, the most relevant work towards structural stress 

approach is done by Köttgen et al. [42] who proposed a structural yield surface concept 



26 
 

for notch analysis. The idea is that elastic analysis is first carried out to calculate pseudo 

stress (𝜎𝑒). Then a relationship between pseudo stress and notch strain is as a power 

function is built:  

 𝜀 =
𝜎𝑒

𝐸
 (

𝜎𝑒

𝐾∗
)
(
1

𝑛∗
)

  (1.26) 

in which notch strain 𝜀 is determined by Neuber's rule. The constants 𝐾∗ and 𝑛∗ represent 

the response of the structure examined and is determined by a fitting process. As a result, 

they are structure-dependent. With Eq. (1.26) and pseudo stress response, pseudo stress-

local strain response can be obtained. Furthermore, strain controlled cyclic plasticity 

model is used to obtain the local strain - local stress response. 

1.2.1.3 Stresses/Strains Typically Used for Welded Components 

An independent section of literature review for welded joints is presented here not 

only because of welded joints are the most common fatigue failure locations of welded 

structures, but also because of several local approaches that were uniquely developed for 

fatigue analysis of welded components. Besides that, a separate chapter is devoted to 

multi-axial fatigue analysis of welded joints by comparing different types of local stress 

approaches. Four different types of widely used stress definitions, namely, nominal stress, 

notch stress, hot spot stress (geometric stress) and structural stress (traction based 

structural stress) will be briefly reviewed with special emphasis placed on traction based 

structural stress method.  

(a) Nominal stress approach 
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Nominal stress is the stress calculated in the sectional area in the absence of 

structural discontinuity being considered. It is the most traditional and still a prevailing 

fatigue design approach. The essential idea is that welded joints are put into different 

classifications based on joint configurations and loading paths. Different S-N curves are 

assigned to various types of classifications. As long as nominal stress is available and 

welded joint examined can be viewed as belonging to one type of classification provided 

by codes and standards [43, 44] based on engineers’ judgment, fatigue life can then be 

estimated based on the S-N curve that is specific to the joint classification. On example 

with two joints types and their separate S-N curves are shown Fig. 1.12 

 

Fig. 1.12 Nominal stress based design S-N curves according to IIW recommendations for 

two different structural details [45]  

 

Although dozens of typical welded joints are listed as cartoons in current 

standards [43, 44, 46] and their S-N curves are available, one clear drawback of nominal 

stress based fatigue design approach is that it is not always possible or an easy job to find 
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a proper classification to be assigned to for many new welded joint designs. What is 

worse, nominal stress cannot be easily defined for some complex structures/components, 

especially for FEA based design nowadays.  

(b) Effective notch stress 

Effective notch stress is the total and maximum stress at the root of a notch, 

taking into account of the variation of weld profile. Illustration of maximum notch stress 

in shown in Fig. 1.13. It is the most localized stress definition currently used for 

capturing all types of stress rising effects. Again, as mentioned previously, it is not 

always a good idea to try to  include as much local details as possible since fatigue 

damage occurs in a process zone, not only at the material point with the highest stress. 

What’s more, weld toe profile can hardly be modeled in an accurate manner. Fig.1.14 

shows typical measurements of radius at different weld toe locations of a welded 

cruciform joint representing current level of manufacture practice [47], demonstrating 

that local weld toe radius can be quite random and can hardly be fully considered in real 

practice. Since a sharp notch will lead to singular stress distribution and real notch 

radiuses vary significantly, a fictitious notch radius (e.g. 𝜌 = 1.0𝑚𝑚 from IIW [43]) is 

generally assumed for notch stress calculation of welded joints made of structural steels 

and aluminum alloys, as demonstrated in Fig. 1.15. There are several disadvantages of 

applying notch stress approach. First of all, very refined mesh is needed for notch stress 

calculation, thus making is less attractive for analyzing complex engineering structures. 

Secondly, an assumed fictitious notch radius introduces arbitrariness in calculated notch 

stress. Finally, notch stress does not capture stress gradient effect properly.             
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Fig. 1.13 Illustration of notch stress (𝜎𝑘) and hot spot stress (𝜎ℎ𝑠) at weld toe location as 

toe radius of (𝜌) [45] 

 

 

Fig. 1.14 Measurements of toe radius along weld a toe line: (a) 3D surface of weld, (b) 

results showing small and large variations in the measurements of the weld toe radius [47] 
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Fig. 1.15 Sketch of FEA model for notch stress calculation [43] 

  

(c) Hot spot stress 

Hot spot stress that we are referring to is also called structural or geometric stress 

(𝜎ℎ𝑠). It includes all stress raising effects of a structural detail, but excluding that due to 

the local weld profile itself. It originates from structural strain measurement certain 

distance away from weld toe location and was used as a reference strain for strain state of 

weld toe location. With FEA model widely used nowadays, it gains further attention and 

leads to hot spot stress as a codified procedure for fatigue assessment [43]. For hot spot 

stress [43] calculation, surface stresses at prescribed evaluation points in front of a weld 

toe are extrapolated to the weld toe location. As a result, hot spot stress is also called 

extrapolated hot spot stress. As shown in Fig. 1.13, the hot spot stress is assumed to 

reflect overall geometrical inhomogeneity which is believed to lead to variation of 

surface stress some distance away from weld toe location. Different linear and non-linear 

extrapolation techniques from different locations requiring proper arrangement of 

element nodes and element sizes are recommended [43]. More details of recommended 

extrapolation procedures can be found in IIW. As a demonstration, three types of hot spot 
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stresses [48] are shown in Fig.1.15. With hot spot extrapolation procedures and several 

hot spot S-N curves recommended, fatigue assessment can then be carried out.  

 

Fig. 1.16 Three different definitions of hot spot stress examined by Maddox [48] 

 

Unfortunately, as demonstrated in Fig. 1.16 and plenty of examples in [49], hot 

spot stress calculated by using different extrapolation procedures and element types 

varies a lot and it is mesh sensitive. Also note that the implementation of hot spot stress 

method requires well-controlled element size near weld toe location, even though 

acknowledging that the requirement is less stringent than that of notch stress method. 

Most importantly, extrapolated hot spot stress by surface stress lacks mechanics-based 

interpretation and it does not reflect the stress gradient effect in thickness direction along 

which most of weld toe fatigue cracks grow.      

(d) Traction based structural stress 
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Traction based structural stress developed by Dong, Dong et al. [49-51] is gaining 

popularity in recent years owing to its several important merits:  

(i) It is a structural stress method, admitting that local structural stress along 

thickness direction is of primary importance and notch stress introduced by weld 

profile is of secondary importance. The effects of variation of weld toe profiles 

are captured by the scatter band of S-N curve.  

(ii) Traction based structural stress is responsible for leading to fatigue crack growth 

failure along thickness direction and it is built on solid fracture mechanics theory. 

For this reason, both stress gradient and thickness effects are taken into account 

properly.  

(iii) Nodal forces (moments) outputted from FEA model are directly used for 

calculation of structural stress, instead of adopting a stress linearization procedure. 

Since nodal forces (moments) in displacement based finite element method are of 

a higher order accuracy than outputted stress, traction based structural stress 

calculated from nodal forces (moments) demonstrates both element type and 

element size insensitivity. As a result, pretty coarse elements can be used for 

structural stress calculation.  

(iv) Only one master S-N curve is needed for fatigue assessment of various types of 

welded joints. This single S-N curve is a consequence of the fact that traction 

based structural stress captures the essential fatigue failure mechanism of welded 

joints. That is, fatigue failure of a welded joint is dominated by fatigue crack 

growth process. Regardless of joint types and plate/tube thicknesses, traction 
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based structural stress is the only stress parameter that controls fatigue crack 

growth process.  

Noting that traction based structural stress is the most prominent local stress 

definition for fatigue assessment and it will be used for multi-axial fatigue analysis of 

welded joints in Chapter 4. The methodology and procedures for traction based structural 

stress will therefore be reviewed here in a little bit more detail [52].  

Traction based structural stress, as presented in [49 50, 53, 54] is formulated by 

representing stress state on a hypothetical crack plane in the form of membrane and 

bending stress components. Consider the stress state at a weld toe location along a 

through thickness hypothetical cut in Fig. 1.17 (a), the three stress components exposed 

by the cut is 𝜎𝑥, 𝜏𝑦 and 𝜏𝑧. Transverse shear 𝜏𝑧 is usually negligible in most cases. Within 

the context of structural mechanics, these stress components can be presented in the form 

of membrane (e.g. 𝜎𝑚  for normal membrane structural stress) and bending (e.g 𝜎𝑏  for 

normal bending structural stress) parts which can be directly related to their 

corresponding line forces and line moments if shell or plate theories are used. For 3D 

geometry, structural stress which is defined with respect to local coordinate along curved 

weld line is shown in Fig. 1.17 (b). Such a traction based structural stress definition is 

also consistent with fracture mechanics principle in view of the fact that stress intensity 

factors for a crack situated along the hypothetic plane in Fig. 1.17 (a) are fully described 

by the three traction components. Specifically, Mode I stress intensity factor is solely 

contributed by the normal structural stress 𝜎𝑠, Mode II by the in-plane shear structural 

stress 𝜏𝑠 and Mode III by the transverse shear 𝜏𝑧 . 
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Fig. 1.17 Traction based structural stress definition [52] along weld toe through thickness 

direction: (a) 2D equilibrium equivalent stress definition with respect to Line A-A; (b) 

3D Equilibrium-equivalent stress definition on a hypothetical cut surface (local x’-z’ 

plane) encompassing Line A-A; (c) weld line definition and local coordinate system for 

structural stress calculation  

 

In real practice of calculation, the traction stress along the hypothetical cut shown 

in Fig. 1.17 (b) can be calculated by extracting nodal forces and nodal moments from 

shell/plate finite element model or solid model. For example, global nodal forces and 

nodal moments are first rotated into local coordinated systems (𝑥′ − 𝑦′ − 𝑧′) at each 

node, they are then transformed into work equivalent line forces and line moments 

defined with these local coordinate systems by matrix form of equations. For example, 

line forces in 𝑦′ of Fig. 1.17 (c) contribute to membrane stress. Imposing work equivalent 
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argument for all nodal forces, one obtains the following matrix form of equations relating 

nodal forces in 𝑦′directions to line forces in 𝑦′ directions:                

     (1.27) 

where 𝐹1, …𝐹𝑛, 𝐹𝑛−1  are nodal forces in 𝑦′  directions in the local coordinate systems. 

Line forces 𝑓1, …𝑓𝑛, 𝑓𝑛−1 are line forces in 𝑦′ directions and 𝑙1, … 𝑙𝑛, 𝑙𝑛−1 are edge length 

of elements. In a similar manner, line moments along a weld line can also be calculated.  

With line force (𝑓𝑦′) in 𝑦′ direction and line moment ( 𝑚𝑥′ ) in 𝑥′  direction at 

each node calculated, traction based normal structural stress is:  

 𝜎𝑠 =
𝑓
𝑦′

𝑡
−
6𝑚

𝑥′

𝑡2
   (1.28) 

Similarly, in-plane shear structural stress based on line force (𝑓𝑥′) and line 

moment ( 𝑚𝑦′) is calculated as: 

 𝜏𝑠 =
𝑓
𝑥′

𝑡
 
6𝑚

𝑦′

𝑡2
   (1.29) 

Traction based normal structural stress and in-plane shear structural stress will be 

used for non-proportional fatigue analysis of welded joints in Chapter 4. One thing to be 
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noticed is that when non-welded components without notches are examined, as seen in 

Chapter 2 and Chapter 3, structural stress is simply reduced to nominal stress and 

nominal strain.  

1.2. 2 Multi-Axial Fatigue Damage Models 

Previous section surveyed various types of stress/strain definitions for non-welded 

and welded components and elastic-plastic models (if needed) that are commonly used in 

constructing fatigue damage parameters. This section will review various types of multi-

axial fatigue damage models with an emphasis on their capabilities of taking account of 

non-proportional damage effects. Based on our survey and interpretation, multi-axial 

fatigue damage models can be categorized into three groups: static strength (equivalent 

stress) based fatigue models; critical plane based fatigue damage models and recently 

developed new approaches for non-proportional multi-axial fatigue. These three groups 

of multi-axial fatigue damage parameters will be reviewed separately.       

1.2.2.1 Static Strength Based Fatigue Damage Models 

For equivalent stress or strain based models, fatigue damage prediction is based 

on different ways of combining stress or strain components into one parameter that is 

equivalent to the one used for uniaxial fatigue loading. It is still a prevailing way of 

dealing with multi-axial fatigue owing to its simplicity and the mechanics basis 

associated with it.    

(a) Gough Ellipse Model 

Among the early researchers, Gough [55] performed extensive combined bending 

and torsion experiments on several materials to establish fatigue limits of different 



37 
 

bending/torsion ratios. The classical formulation, also called Gough Ellipse is of the 

following form: 

 (
∆𝜎

𝜎𝑓
)
2

 (
∆𝜏

𝜏𝑓
)
2

= 1  (1.30) 

where 𝜎𝑓  is the fatigue limit under tension and 𝜏𝑓 is the fatigue limit under torsion. This 

original version of Gough Ellipse is only applicable to proportional multi-axial fatigue 

and cannot take into account of non-proportional loading effect.  

(b) Static yield strength criteria based fatigue models 

This type of criteria borrows from the static yield strength parameter and is based 

on the reasoning that fatigue damage is controlled by plastic deformation. Yield criteria 

that describe plastic deformation should then also be applicable for describing plastic 

deformation during fatigue loading. The three most common forms of yield strength 

based fatigue models are stress ranges defined in terms of maximum principal stress, 

maximum shear stress, and octahedral shear stress (von Mises criterion). Their specific 

forms are: 

  ∆𝜎𝑒𝑞
𝐼 = ∆𝜎1  (1.31) 

 ∆𝜏𝑒𝑞 =
∆𝜎1−∆𝜎3

2
   (1.32) 

 ∆𝜎𝑣𝑜𝑛 =
1

√2
√(∆𝜎1 − ∆𝜎2)2  (∆𝜎2 − ∆𝜎3)2  (∆𝜎3 − ∆𝜎1)2   (1.33) 

The von Mises effective stress range can also be written in terms of stress components: 
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∆𝜎𝑣𝑜𝑛 =
1

√2
√(∆𝜎11 − ∆𝜎22)

2  (∆𝜎22 − ∆𝜎33)
2  (∆𝜎33 − ∆𝜎11)

2  6(∆𝜎12
2  ∆𝜎23

2  ∆𝜎31
2 ) 

 (1.34) 

The von Mises stress range is the most widely used one and it can be both related 

to changes of distortion energy and shear stress on octahedral planes when multi-axial 

loading is proportional. Therefore, for ductile materials under multi-axial proportional 

loading, von Mises stress range is still a pretty reasonable choice, except for a few cases 

reported [56]. Again, as demonstrated in Fig.1.6, von Mises stress range cannot take into 

account of non-proportional damage effect. At the same time, stress range definitions by 

Eq. 1.31 to Eq. 1.32 lose their mechanics based interpretations since principal stress axes 

rotates during non-proportional loading.       

(c) Sine model 

Sines [57] proposed a linear combination of the amplitude of second deviator 

stress invariant (also called octahedral shear stress) and hydrostatic pressure for 

proportional multi-axial fatigue: 

 
∆𝜏𝑜𝑐𝑡

2
 𝛼(3𝜎ℎ𝑦𝑑) = 𝜗  (1.35) 

where ∆𝜏𝑜𝑐𝑡 =
√2

3
∆𝜎𝑣𝑜𝑛 and 𝜎ℎ𝑦𝑑 is the mean hydrostatic stress in a cycle. By comparing 

the von Mises stress range in Eq.1.34, one can tell that in spite of Sine’s model takes into 

account of mean stress effect in terms of hydrostatic stress, it is still not applicable for 

non-proportional fatigue.    



39 
 

Crossland [58] proposed a very similar form of equation like Sines’s. However, 

the mean stress effect is taken into account by the maximum value of hydrostatic stress 

that occurs in a cycle: 

 
∆𝜏𝑜𝑐𝑡

2
 𝛼(3𝜎ℎ𝑦𝑑,𝑚𝑎𝑥) = 𝜗′  (1.36) 

(d) Octahedral shear strain 

Strain based parameters are usually used in the regime of low cycle fatigue where 

significant plasticity occurs. The most popular form of equivalent strain parameter is 

octahedral shear strain range, also called von Mises strain range: 

∆𝜀𝑣𝑜𝑛 =

1

√2(1+𝜐)
√(∆𝜀11 − ∆𝜀22)2  (∆𝜀22 − ∆𝜀33)2  (∆𝜀33 − ∆𝜀11)2  

3

2
(∆𝜀12

2  ∆𝜀23
2  ∆𝜀31

2 )  

 (1.37) 

As will be seen in later chapters, equivalent strain in terms of von Mises strain 

will be often used as a reference for comparison with our proposed non-proportional 

equivalent strain whenever strain controlled test data are examined. 

To summarize, none of the above static strength based type of fatigue damage 

parameters are capable of taking into account of non-proportional fatigue damage. 

However, they are easy to implement and are reasonable choices for proportional loading 

cases.  
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1.2.2.2 Critical Plane Based Fatigue Damage Models 

Quite different from equivalent stress or equivalent strain concept which is an 

average or an overall representation of stress/strain state of a small volume of material at 

the location of our interest, critical plane models assume that fatigue damage is 

directional and mainly occurs on certain preferred planes, depending on which kind of 

failure mechanism is a dominant one. According to parameters used for fatigue 

assessment, critical plane approaches can also be classified into three categories, stress 

based criterion, strain based criterion and a combination of both stress and strain (e.g. 

energy criterion) parameters. The obvious benefit of a critical plane method is that it is 

able to predict fatigue failure planes. On the other hand, the additional complexity 

involved in a critical plane approach is that additional search process is needed for 

finding those critical planes. As a result, critical plane models are computationally-

intensive than equivalent stress or strain methods. This is especially the case when it 

comes to fatigue assessment of large and complex engineering structures under complex 

variable amplitude loading histories. 

(a) Findley’s stress based critical plane model 

Findely [59] suggested that the critical plane for fatigue crack initiation and 

growth is dependent on both alternating shear stress and maximum normal stress. The 

combined effects of shear stress and normal stress are responsible for fatigue damage. 

Linear combination of shear stress and normal stress is used as a damage parameter in the 

following way: 

 (
Δ𝜏

2
 𝑘σ)

𝑚𝑎𝑥
= √1  𝑘2 𝜏𝑓

′(2𝑁𝑓)
𝑏0

  (1.38) 
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where 𝑘  is a material dependent parameter reflecting the effect of normal stress on 

fatigue damage. 𝜏𝑓
′  and 𝑏0  are shear fatigue strength coefficient and exponent, 

respectively.  

(b) Mc Diarmid ’s stress based critical plane model 

The McDiarmid Criterion [60] defines the critical plane as the plane with largest 

shear stress range. The maximum shear stress range and maximum normal stress within a 

cycle is combined as fatigue damage parameter. The criterion is: 

   
Δ𝜏𝑚𝑎𝑥 

2
 𝜏𝐴,𝐵

𝜎𝑛,𝑚𝑎𝑥 

2𝜎𝑢
= 𝜏𝑓

′(2𝑁𝑓)
𝑏
  (1.39) 

In the above equation 𝜎𝑢is ultimate tensile strength and 𝜏𝐴,𝐵 is shear fatigue strength for 

two different types of cracking, one is the case with shear crack propagates along the 

surface of a component and the other for shear crack propagating into a component from 

surface. 

Both Findely’s and McDiarmid’s models only have stress components involved. 

They are more suitable for fatigue life prediction in high cycle fatigue regime in which 

stresses are dominated by elastic components.   

(c) Brown-Miller strain based critical plane model 

In the low cycle regime, Brown and Miller [61] proposed a model in which 

maximum shear strain range ∆𝛾𝑚𝑎𝑥 and the range of normal strain ∆𝜀𝑛 that act on the 

maximum shear strain range plane are two damage factors.  A linear combination of them 

is established: 
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Δ𝛾𝑚𝑎𝑥 

2
 𝑆 ∆𝜀𝑛 = 𝑓(𝑁𝑓)  (1.40) 

In the above equation, 𝑆 is a material-dependent parameter that represents the influence 

of the normal strain on fatigue crack growth and is determined by correlating uniaxial 

tension and pure torsion fatigue test results. When elastic and plastic strains are 

considered separately, the fatigue damage model is of the following form:  

 
Δ𝛾𝑚𝑎𝑥 

2
 𝑆 ∆𝜀𝑛 = 𝐴

𝜎𝑓
′

𝐸
(2𝑁𝑓)

𝑏
 𝐵𝜀𝑓

′(2𝑁𝑓)
𝑐
  (1.41) 

In the above equation,  𝜎𝑓
′  is fatigue strength coefficient and 𝜀𝑓

′  is shear ductility 

coefficient, 𝑏  and 𝑐  are fatigue strength exponent and fatigue ductility exponent, 

respectively. It can be observed that several material parameters are involved for 

correlation. 

Brown-Miller’s model is applicable to low cycle fatigue since fatigue is a strain 

controlled process in low cycle regime and it cannot take into account of mean normal 

strain effect  

(d) Fatemi-Socie’s critical plane model 

Fatemi and Socie [11] built on the work of Brown and Miller and suggested that 

instead of using normal strain range, normal stress should be included to reflect crack 

closure effect: 

    
Δ𝛾𝑚𝑎𝑥

2
(1  𝑘

𝜎𝑛,𝑚𝑎𝑥

𝜎𝑦
) =

𝜏𝑓
′

𝐺
(2𝑁𝑓)

𝑏
 𝛾𝑓

′(2𝑁𝑓)
𝑐
  (1.42) 
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Δ𝛾𝑚𝑎𝑥  is the maximum shear strain range on any possible plane and 𝜎𝑛,𝑚𝑎𝑥  is the 

maximum normal stress on the plane with maximum shear strain range within one cycle. 

The sensitivity of a material to normal stress is reflected in the value of 𝑘. Fatemi-Socie 

model is becoming very popular and effective for fatigue assessment [62-64] since it 

contains both stress (with mean stress effect of normal stress component considered) and 

strain requiring a constitutive model for characterizing material behavior. Therefore, the 

model is capable of capturing non-proportional hardening effect. Again for the 

application of the above equation, plenty of material constants have to be known in 

advance for both constitutive equation and fatigue damage model in Eq. 1.42.  

(e) Smith-Watson-Topper (SWT) critical plane model 

The Brown-Miller and Fatemi-Socie’s models are developed primarily for shear 

dominated fatigue failure and the critical plane is generally defined as the plane with 

maximum shear strain range. In contrast, SWT [65] was developed for materials that fail 

predominantly by crack growth on the plane with maximum principal strain range:  

 𝜎𝑛,𝑚𝑎𝑥
Δ𝜀1

2
=
𝜎𝑓
′2

𝐸
(2𝑁𝑓)

2𝑏
 𝜎𝑓

′𝜀𝑓
′(2𝑁𝑓)

𝑏+𝑐
  (1.43) 

Since 𝜎𝑛,𝑚𝑎𝑥 in Eq. 1.43 is defined on the plane with maximum principal strain range, 

mean stress effect is also included. However, for non-proportional loading with rotation 

of principal strain axes, the definition of principal strain range Δ𝜀1 seems questionable 

since at the two moments with the largest principal strain range between them, their 

principal strain axes may not be in the same direction.  
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There are also several energy-based critical plane models [5] in which strain 

energy is defined with respect to potential fatigue planes. Detailed explanations can be 

found in [5].    

As a critical assessment, critical plane methods are advantageous in their 

capability of locating the specific direction along which maximum fatigue damage occurs. 

However, both cycle counting and fatigue damage accumulation have to be carried out on 

each potential critical plane for each material point of concern. Therefore, the 

computational cost would be one order of magnitude higher than that of conventional 

methods. Admittedly, critical plane methods are generally capable of taking into account 

of non-proportional loading effect in the process of searching for various potential critical 

planes. Taking Fatemi-Socie’s model as an illustration, Fig.1.18 is a plot of Fatemi-

Socie’s fatigue damage parameter and its components as well as equivalent strain (von 

Mises equivalent strain) as a function of plane orientation [32] under in-phase and 90° 

out-of-phase fatigue loading on a titanium alloy BT9. The non-proportional effect 

between in-phase and out-of-phase is captured by the different values of Fatemi-Socie’s 

parameter on their respective most critical planes (planes with largest value of Fatemi-

Socie’s parameter). Nevertheless, one issue that emerges is how to define shear 

stress/strain ranges (e.g. Δ𝜏𝑚𝑎𝑥 in Findley’s model and Δ𝛾𝑚𝑎𝑥 in Fatemi-Socie’s model) 

for potential critical planes in real practice. This question arises from the fact that shear 

stress/strain is a vector and its trace can be of arbitrary shapes (e.g. Fig. 1.19) during non-

proportional loading. Therefore, we can then argue that a proper shear stress/strain range 

definition that includes the effect of non-proportional loading is still lacking for critical 
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plane methods. Some empirical approximations that have been proposed trying to achieve 

such a purpose will be briefly explained in the next section.           

 

Fig. 1.18 Variation of damage components with plane orientation for titanium alloy BT9 

for (a) in-phase axial–torsion, and (b) 90°out-ofphase axial–torsion loadings with same 

equivalent strain amplitude [32] 
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Fig.1.19. The shear stress vector on a potential critical plane in one non-proportional 

loading cycle 

 

1.2.2.3 Recently Developed Models for Taking into Account of Non-Proportional 

Effect 

Besides the above reviewed well-known classical and critical plane models, some 

other less known models which were specifically proposed for incorporating non-

proportional damage effect will be examined here since these are most relevant to the 

theme of this dissertation.  

(a) Modified Gough ellipse  

For non-proportional loading with clearly defined phase angle between sinusoidal 

tension and torsion, Dong and Hong [66] hypothesized a modified form of Gough ellipse 

equation: 

 (
∆𝜎

𝜎𝑓
)
2

 (
∆𝜏

𝜏𝑓
)
2

= (𝐹(𝛿))
2
  (1.44) 

where 𝐹(𝛿) is a dimensionless parameter as a function of phase angle 𝛿 . The case 𝛿 =

0° (𝐹(𝛿) = 1) corresponds to original Gough’s ellipse equation. For a given phase angle 
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𝛿, The von Mises expression used in ASME Boiler and Pressure Vessel code can be  

applied to define 𝐹(𝛿): 
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  (1.45) 

Good correlation was achieved by examining non-proportional loading of welded 

joints [8, 67, 68]. However, 𝐹(𝛿) is only applicable to non-proportional loading with 

clearly defined phase angle between normal and shear stress components. 

(b) Effective equivalent stress hypothesis (EESH) by Sonsino 

The application of EESH method [8] is also limited to out of phase loading with 

clearly defined phase angle. To overcome the incapability of von Mises stress in dealing 

with out-of-phase loading cases, non-proportional effect in EESH model is taken into 

account by the following steps (combined bending and torsion for illustration):  

i. For bending stress and torsion stress with an out-of-phase angle (𝛿) between them, 

the normal and shear stresses are 

 𝜎𝑥 = 𝜎0sin (𝑤𝑡) 

 𝜎𝑦 = 𝜎0sin (𝑤𝑡)  (1.46) 

 𝜏𝑥𝑦 = 𝜏0sin (𝑤𝑡  𝛿) 

ii. The shear stress on the plane defined by angle 𝜑 with respect to 𝑥 axis can be 

written as:  

 𝜏𝑛(𝜑) = 𝜏𝑥𝑦(cos
2𝜑 − 𝑠𝑖𝑛2 𝜑) − (𝜎𝑥 − 𝜎𝑦)cos (𝜑)sin (𝜑)  (1.47) 

iii. The total effect of shear stress could be expressed by an integral form: 
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 𝐹 =
1

𝜋
∫ 𝜏𝑛(𝜑)𝑑𝜑
𝜋

0
  (1.48) 

In the above equation, EESH assumes that failure of ductile materials is initiated 

by shear stress  𝜏𝑛(𝜑) . The reason for decreased fatigue life when principal stress 

direction rotates is the interaction of shear stresses 𝜏𝑛(𝜑) on various planes. So the non-

proportional effect could be reflected by ratio of the integral in Eq. 1.48 to that of in-

phase loading, The EESH stress is then defined as: 

 𝜎𝑒𝑞(𝛿) = 𝜎𝑒𝑞(𝛿 = 0)
𝐹(𝛿)

𝐹(𝛿=0°)
√𝐺 𝑒𝑥𝑝(1 − (

𝛿−90°

90°
)
2

)  (1.49) 

Detailed explanation of each parameter in Eq. 1.49 can be found in [8]. EESH 

provides a reasonable way of describing non-proportional loading effect. Nevertheless, it 

is currently only applicable to out of phase loading cases with the same loading frequency 

between  tension and torsion.  

(c) Itoh et al.’s principal strain based critical plane model 

Pure strain based model proposed by Itoh et al. [69] makes the use of the principal 

strain range and take it as the basis of their proposed non-proportional fatigue damage 

parameter. To include non-proportional loading effect, a path-dependent non-proportional 

factor and a material parameter are involved. With different variables illustrated in Fig. 

1.20, the main procedures needed for finding the maximum principal strain range within 

one loading block are as follows: 
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Fig. 1.20 Polar coordinate plot of max principal strain history in Itoh et al.’s model 

 

i. Search for the plane with the maximum absolute value of principal strain (𝜀𝐼𝑚𝑎𝑥) 

and its direction (𝜃𝐴) within a whole loading block. 

ii. At any time 𝑡 in a loading block, calculate the largest magnitude of principal 

strain and its direction (𝜃) with respect to 𝜃𝐴 . Plot the principal strain and its 

direction in polar coordinate shown in Fig. 1.20 for the whole loading block. The 

largest magnitude of principal strain is defined as: 

 𝜀𝐼(𝑡) = {
𝜀1(𝑡) 𝑓𝑜𝑟 𝜀1(𝑡) ≥ |𝜀3(𝑡)|

|𝜀3(𝑡)| 𝑓𝑜𝑟|𝜀3(𝑡)| > 𝜀1(𝑡)
}  (1.50) 

iii. Project principal strain 𝜀𝐼(𝑡) at any time 𝑡 to the plane with largest principal strain  

𝜀𝐼𝑚𝑎𝑥, and calculate the largest difference between 𝜀𝐼𝑚𝑎𝑥 and projected length of 

𝜀𝐼(𝑡) which is:   

  Δ𝜀𝐼 = max (𝜀𝐼𝑚𝑎𝑥 − 𝜀𝐼cos (𝜃))  (1.51) 

iv. Δ𝜀𝐼 in Eq. 1.51 is then defined as the principal strain range, the non-proportional 

effect is defined as time integration of principal strain 𝜀𝐼(𝑡) projected to the plane 
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perpendicular to the plane of 𝜀𝐼𝑚𝑎𝑥 over a load block. The normalized form, also 

called non-proportionality factor is:  

 𝑓𝑁𝑃 =
𝜋

2𝜀𝐼𝑚𝑎𝑥
∫ 𝜀𝐼(𝑡)|sin (𝜃)| 𝑑𝑡  (1.52) 

v. The proposed non-proportional equivalent strain is then defined as:  

 𝜀𝑁𝑃 = (1  𝑎𝐼𝑓𝑁𝑃)Δ𝜀𝐼  (1.53) 

where 𝑎𝐼 is a material constant to reflect the sensitivity of a material to non-proportional 

hardening as defined in Eq. 1.21 and Fig. 1.10. Later on, recognizing that including non-

proportional hardening effect by 𝑎𝐼 still fails to achieve satisfactory data correlation [70], 

another material parameter (𝛼∗) based on fatigue damage equivalence is adopted. The 

authors [70] continues to attempt to link non-proportional damage sensitivity parameter 

(𝛼∗) with additional non-proportional hardening coefficient (𝑎𝐼) which is further believed 

to be related with static yield and tensile strength properties of metals. As mentioned 

before, it is a conventional belief, as exemplified here by the attempt carried out by Itoh 

and Yang [70] that additional non-proportional hardening is the root cause for non-

proportional damage. Contrary to this common belief, recent researches [32, 71] reveal 

that materials with little or no strain hardening may still exhibit a significant amount of 

fatigue life reduction under non-proportional loading conditions. These contradictory 

observations have not yet attracted enough attention up to now.   

The fatigue model in Eq. 1.53 is built on principal strain range (Δ𝜀𝐼) which is 

believed to be more suitable for fatigue assessment of brittle materials (note that SWT 

model is also constructed with a term of Δ𝜀𝐼). On the other hand, by taking 𝜀𝐼𝑚𝑎𝑥 within a 

load block as reference for maximum principal stain range calculation, it may have the 

potential to miss the real maximum principal strain range. As shown in Fig. 1.20, the 
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maximum principal strain range may be not between A (corresponds to 𝜀𝐼𝑚𝑎𝑥 location) 

and B, but between C and D. Finally, for the application of Itoh et al.’s method to 

complex loading blocks, how to break complex loading path into simple load segments 

for damage accumulation purpose is still unresolved. Other critical assessments of Itoh’s 

method can be found in Section 1.3. 

  In spite of that further improvement of Eq. 1.53 is needed, the formulation 

structure of fatigue damage parameter is enlightening in that its simple form combines 

two independent key parameters to be considered for taking into account of non-

proportional damage: a load path related parameter to characterize load path non-

proportionality and a material parameter to reflect material-dependent response under 

external non-proportional loading. How to capture these two parameters in a more 

reasonable manner in our proposed model will be presented in Chapter 2 and Chapter 3. 

(d) Path length based fatigue damage parameter 

Recently, Dong [72] and Wei and Dong [73-74] proposed a path length based 

stress range definition which measures the accumulated path length of a loading trace in 

stress space: 

     
2

1

22

2

1 , sscyclepath ddSdSdS     (1.54) 

The significance of this new definition is that it can be used for arbitrary loading path. 

The physical basis of path length based equivalent stress was also explained by Wei and 

Dong [73-74]. Before calculating path length based equivalent stress, Path Dependent 

Maximum Range (PDMR) cycle counting procedure will have to be implemented to 
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break complex loading path into simple segements. PDMR cycle counting procedure will 

be explained in detail in the next section. 

It has been shown that path length based stress range is very effective in 

correlating non-proportional fatigue data [72-74]. However, our recent study has shown 

that Δ𝑆𝑝𝑎𝑡ℎ  is still incapable of correlating non-proportional fatigue test data [69] in 

certain special cases, especially for cases of different load paths with the same path 

length. One such example is illustrated graphically as follows: 

Tests for different non-proportional strain paths with the same path length were 

done by Itoh et al. [69] and three of these load paths having exactly the same path length 

are shown in Fig.1.21. It is expeirmentally proven that the three load cases have quite 

different non-proportional damaging effects. Case 6 is the least damaging one, having 

almost the same fatigue life as proportional loading path while Case 8 is the most 

damging one among the three paths. It can be seen that path length as a non-proportional 

fatigue damage parameter is incapable of differentiting the different extent of non-

proportional damage among the three paths.  Thus, we conclude that path length based 

equivalent stress range fails to reflect path dependent behavior of non-proportional 

loading in some cases and further improvement is needed.  
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Fig.1.21. Three tested non-proportional strain paths on 𝜀 − 𝛾 √3⁄  plane with the same 

path length [69]. 

 

(e) Other stress/strain range definitions for non-proportional loading paths 

The specific procedures for calculating equivalent stress and strain for non-

proportional fatigue models such as Modified Gough Ellipse, EESH models and Itoh’s 

model are already explained above. For other cases, especially for critical plane methods 

discussed at the end of Section 1.2.2.2, researchers are also met with the task of finding a 

proper definition of shear stress/strain range on potential critical planes since shear stress 

may change both its direction and magnitude on the plane of our interest (see Fig.1.19). 

This section will review several proposed methods including Longest Projection (LP), 

Longest Chord (LC), minimum circumscribed circle (MCC) and minimum circumscribed 

ellipse (MCE) for estimating stress/strain ranges and mean values for non-proportional 

loading paths. Each of them will be illustrated here briefly.   

(i) Longest Projection method (LP) [75] 

The longest projection method searches for a direction so that the length of the 

path projected onto this direction is the longest. Half of the projected length is defined as 

amplitude while the distance between the segment’s center and the origin defines the 

mean stress.  

(ii) Longest Chord method (LC) [75] 
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The longest chord inscribed in a path is searched, the length of the longest chord 

is defined as stress range and the distance from the middle of the chord to reference point 

is the mean value of stress.   

(iii) Minimum circumscribed circle (MCC) [75] 

It involves finding a minimum circle that circumscribes the loading path, the 

diameter of the circle is stress range and the center of the circle determines the mean 

stress.  

(iv) Minimum circumscribed ellipse (MCE) [76]  

Li et al. [76] proposed to use a minimum ellipse (Fig. 1.22) instead of a circle to 

circumscribe a non-proportional loading path as shown in Fig.1.22. Its long axis is  𝑅𝐷 

and short axis is 𝑅𝑑. The stress amplitude calculated by MCE method is: 

 𝜏𝑎 = √ 𝑅𝐷
2   𝑅𝑑

2  (1.55) 

 

Fig.1.22. Minimum circumscribed ellipse for stress range definition by Li et al. [76] 

 

Fig. 1.23 illustrates each approximation method graphically on 𝜎 − √𝛽𝜏 plane 

which is generally used for plotting non-proportional load path when two stress 
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components (𝜎 and 𝜏) are operative. It can be seen that, for arbitrary loading path, none 

of LP, LC, and MCC methods could be able to differentiate between a proportional 

loading path and a non-proportional loading path. Although MCE is able to differentiate 

between proportional and non-proportional loading paths to some extent in Fig.1.23, it 

fails in many cases between different non-proportional paths. One simple example is 

shown in Fig.1.24. It can be seen that even though Path 1 and Path 2 are totally different, 

their circumscribed ellipse is identical. As a result, MCE fails to predict the different non-

proportional damage between these two paths.   

 

Fig.1.23 Different ways of approximating stress ranges for non-proportional load path. 
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Fig.1.24 Two different non-proportional paths circumscribed by one ellipse. 

 

To briefly summarize recently developed models proposed thus far for non-

proportional fatigue, we find that non-proportional fatigue has attracted much attention 

and quite a few researches were done toward the direction of including non-proportional 

effects into consideration. As reviewed in this section, some models such as modified 

Gough Ellipse and EESH hypothesis are only applicable to cases when there is a clearly 

defined phase angle between two independent stress components. Itoh et al.’s definition 

of principal strain based equivalent strain is a pretty attractive one in terms of both its 

simple form and the inclusion of non-proportional effect by two separate parameters with 

one characterizing load path non-proportionality (as a result of external loading ) and the 

other reflecting material responses. Nevertheless, further improvement is needed 

considering principal strain range used in Itoh et al.’s model is more suitable for brittle 

material and material sensitivity parameter to non-proportional loading is not necessarily 

related with additional hardening effect. With PDMR as a cycle counting procedure, 

which will be explained shortly, path length as a non-proportional fatigue damage 

parameter is proven to be quite effective for many, but not all cases. Other stress range 

definitions based on MCE, MCC only have limited capabilities to take into account of 

non-proportional loading effect.  

1.2. 3 Multi-Axial Cycle Counting Procedures 

When it comes to complex variable amplitude fatigue loading histories, a proper 

cycle counting procedure is needed to break them into simple cycles/reversals of different 

amplitudes before fatigue damage can be accumulated. In spite of that rainflow cycle 
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counting is widely used for variable amplitude fatigue life prediciton, its application is 

generally limited to uniaxial and proportional loading cases. The fact that peak values of 

stress or strain components of non-proportional loading histories do not necessarily occur 

at the same time renders rainflow method difficut to be adopted. In this non-proportional 

loading case, one is faced with more than one independent loading history. A natural 

question would be: which stress component history should one make use of for cycle 

counting? Multi-axial cycle counting method is aimed at offering a reasonable solution to 

this challenging issue. Unfortunately, only a few multi-axial cycle counting procedures 

(if they are truly applicable) were proposed till now. This section presents three popular 

methods for cycle counting of non-proportional variable amplitude loading histories: one 

developed by Bannantine and Socie [77], another by Wang and Brown [78] and the third 

one is Path Dependent Maximum Range (PDMR) cycle counting procedure [72-74]. 

Since PDMR will be adopted in our research for cycle counting purpose, it will be 

explained and demonstrated in more detail in this section.  

(a) Bannantine and Socie’s multi-axial cycle counting method [77] 

This method was originally proposed for cycle counting purpose needed for 

critical plane based fatigue models and it is essentially a modified version of rainflow 

cycle counting to the application of critical plane models. The essential idea is that 

fatigue failures are categorized into two main groups: tensile stress dominated and shear 

stress dominated fatigue failure. Taking Fatemi and Socie’s critical plane method (Eq. 

1.42) for an illustration, shear strain range is believed to be the primary controlling 

parameter for fatigue damage and normal stress is of secondary importance by opening 

crack face. Therefore, shear strain history will be viewed as the primary channel. As a 
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result, rainlflow cycle counting will be applied to shear strain history for cycle counting 

purpose. For instance, Fig.1.25 [79] demonstrates rain flow cycle counting applied to 

shear strain history. Counted cycle results are also listed in Fig. 1.25. As for normal stress 

history, it is only viewed as auxiliary channel and no cycle counting is needed. Auxiliary 

channel is used to find the maximum normal stress within the time domain of each 

counted cycle of shear strain. So shear strain range and maximum normal stress can be 

identified for each counted cycle. One thing to be criticized is that within each counted 

cycle, the normal stress history can vary significantly without having any influence on the 

specific value fatigue damage parameter calculated in Eq. 1.42 as long as the maximum 

normal stress remains the same. Based on the above analysis, it can be argued that 

Fatemi-Socie’s critical plane method may fail to capture certain amount of non-

proportional loading effect when Bannantine and Socie’s multi-axial cycle counting is 

used.     
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Fig.1.25 Example of Bannantine and Socie’s multi-axial cycle counting for Fatemi-

Socie’s critical plane method with shear strain as primary channel [79] 

  

It can be seen that Bannantine and Socie’s cycle counting method is essentially 

rainflow counting of the primary stress or strain history that is viewed as the dominant 

role in fatigue damage process. In fact, which stress/strain component plays a dominant 

role is not always clear since fatigue life of one component can either be dominated by 

shear cracking or tensile cracking depending on loading amplitude, loading mode and 

environment. Engineering judgment is needed for determining primary and auxiliary 

channels.  

(b) Wang-Brown’s cycle counting [78] 

Wang-Brown’s multi-axial cycle counting method is based on von Mises 

equivalent strain 𝜀𝑣𝑜𝑛. The history of equivalent strain serves to define loading cycles. 

However, since the problem with the equivalent strain is that it is always positive, stress 

component signs are lost in calculation. To overcome the problem, a relative equivalent 

strain value is proposed. The method begins with searching the largest value of 

equivalent strain  𝜀𝑣𝑜𝑛
𝑚𝑎𝑥  within a loading history, then the equivalent strain history is 

organized in such a way that the  𝜀𝑣𝑜𝑛
𝑚𝑎𝑥  is the starting point for cycle searching. The 

relative value of strain components with respect to their reference points, which 

correspond to  𝜀𝑣𝑜𝑛
𝑚𝑎𝑥  is used to calculate relative von Mises strain history. The path it 

takes for relative equivalent strain  𝜀𝑣𝑜𝑛
𝑟𝑒𝑙 (𝑡)  to increase monotonically from zero to 

maximum is counted as a half cycle. 

The procedure for Wang-Brown method is as follows: 
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(i) Find the largest equivalent strain history, arrange the stress history in such a way 

it start with the largest value. 

(ii) Calculate the relative strain components history by taking the point with largest 

equivalent strain as reference.  

(iii) Calculate the relative equivalent strain history based on relative strain components 

history    𝜀𝑣𝑜𝑛
𝑟𝑒𝑙 (𝑡) = 𝜀𝑣𝑜𝑛(𝑡) −  𝜀𝑣𝑜𝑛

𝑚𝑎𝑥 

(iv) Search for the path it takes for relative equivalent strain increasing monotonically 

from zero to maximum. This path is counted a half cycle. 

(v) Eliminate the counted cycle, and go to step (1) to search for next cycle. 

Wang-Brown’s method provides a reasonable way of cycle counting for multi-

axial non-proportional loading. Nevertheless, the relative equivalent strain concept may 

not be able to find the real maximum equivalent strain/stress range. This will be 

illustrated by the example shown in Fig. 1.26. 

 

Fig. 1.26 A Sketch showing how Wang-Brown’s method fails to find maximum 

equivalent stress range 
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Point A in Fig. 1.26 has the largest equivalent stress value, which is the distance 

from A to the origin O. Taking Point A as reference, the largest relative equivalent stress 

is, let’s say, AB in Fig. 1.26. Thus the first largest range found by Wang-Brown would be 

AB. However, the true largest equivalent stress range may be actually between C and D. 

The key reason for Wang-Brown’s failure in this case is that the point with largest 

equivalent stress is taken as the start point for searching the largest relative equivalent 

stress whereas the largest range does not necessarily have to be related with the point 

with absolute value of largest equivalent stress. 

(c) Path Dependent Maximum Range (PDMR) cycle counting procedure [72-74] 

The previous two methods aim at dealing with multi-axial cycle issue by focusing 

on loading histories. A pretty new perspective of tackling multi-axial cycle counting in 

PDMR is by focusing on load path in stress space. Therefore, stress plane (𝜎 − √𝛽𝜏 

plane), which were already shown in Fig. 1.23, Fig. 1.23, Fig. 1.26 for bi-axial stress sate 

will be explained here.  

Consider von Mises type of effective stress definition in Eq. 1.1 for plane stress 

problem with 𝜎 = 𝜎𝑥, 𝜎𝑦 = 0 and 𝜏𝑥𝑦 = 𝜏, the case 𝜎𝐴 ≠ 0, 𝜏𝐴 = 0 is equivalent to the 

case 𝜎𝐵 = 0, 𝜏𝐵 ≠ 0 in terms of 𝜎𝑒 when 𝜎𝐴 = √𝛽𝜏𝐵 where 𝛽 = 3. In other words, it can 

be said that 𝜎𝐴 is equivalent to √3𝜏𝐵 when von Mises type of effective stress definition is 

concerned. Similarly, 𝜎𝐴 is equivalent to √4𝜏𝐵 in terms of equivalent Tresca stress. When 

we plot the two stress components on 𝜎 − √𝛽𝜏 plane, the distance of any stress point on 

the plane to the origin will be 𝜎𝑒, if 𝛽 = 3 is assumed. With 𝜏 scaled by √𝛽,  normal and 
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shear stresses can then be treated equivalently in a coordinate system (i.e. σ − √βτ plane) 

in which simple mathematical operations (e.g. distance between two points ) can be done 

without losing its mechanics-based implication.  

When it comes to fatigue, let’s assume that a pure tension test with stress range of 

∆𝜎 has a fatigue life of 𝑁 and a shear stress range of ∆𝜏 with  ∆𝜎 = √𝛽∆𝜏 under pure 

shear fatigue loading is needed for achieving such a fatigue life. We can then argue that 

∆𝜎 is equivalent to √𝛽∆𝜏  in terms of their fatigue damage. Therefore, √β can then be 

viewed as a fatigue equivalency parameter between normal stress and shear stress. In 

spite of that√β can be determined based on its definition, which is more generic for 

different materials, 𝛽=3 generally yields pretty good data correlation in most cases for 

ductile metals, indicating that von Mises form of equivalent stress range is still the most 

useful form of equivalent stress definition for fatigue problems under uniaxial loading or 

proportional loading.  

Note that the concept of 𝜎 − √𝛽𝜏 plot can be extended in a similar manner to 

strain space in terms of 𝜀 − √β𝜀γ where √βεis a fatigue equivalency parameter between 

𝜀 and γ and it generally takes the value of 1 √3⁄ , corresponding to von Mises type of 

equivalent strain definition. For mixed mode fatigue crack growth problems in which 

stress intensity factors of Mode I, Mode II and Mode III are most frequently used, a 

similar plane could be defined in terms of 𝐾𝐼 , 𝐾𝐼𝐼  or 𝐾𝐼𝐼𝐼  , i.e.  𝐾𝐼 −√βK𝐾𝐼𝐼𝐼  plane for 

mixed Mode I and Mode III fatigue crack problem where √β𝐾is a fatigue equivalency 

parameter between 𝐾𝐼 and 𝐾𝐼𝐼𝐼.  These types of stress/strain/stress intensity factor planes 

in different terms for dealing with different problems will be demonstrated in this thesis. 
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Finally, the above mentioned stress space definition can be further extended to 

five-dimensional stress space [80-81] when a stress tensor is needed for describing stress 

state at a point. Five-dimensional stress space is enough for stress state characterization 

since only deviatoric stress components are needed in most cases. 

For fatigue problems, it is well-known that range definition (stress range, strain 

range or stress intensity factor range), especially the maximum range is the most 

important parameter to characterize fatigue damage process. Therefore, a reasonble cycle 

counting procedure should first be able to count the maximum range reliably. Based on 

the above understanding, searching for the maximum range on stress space (e.g. 𝜎 − √𝛽𝜏) 

is the key of PDMR multi-axial cycle counting. For achieving such a purpose, it is also 

necessary to define some terminologies such as turning points, projected points and 

virtual path. This will be illustrated in Fig. 1.27. In searching for the maximum range 

with respect to a reference point, there are possibly more than one local maximum range 

points, following which the distance to the reference point is decreasing. These types of 

points are termed as turning points. In Fig. 1.27, it can be seen that a turning point, 

denoted as 𝑅 is the local maximum with reference point O. After the turning points, the 

distance to reference point is actually decreasing, till another point denoted as 𝑅∗ having 

the same distance as turning point 𝑅 is reached. Pretty much like local hysteresis loop in 

uniaxial loading, the loading history 𝑅𝑆𝑅∗ is a local hysteresis in terms of their distance 

to reference point. Thus, during the search for the maximum stress range, once a turning 

point is found, it will be projected to a point on the loading path with the same distance to 

reference point. The projected point is therefore called projected turning point. Point 𝑅∗ 

in Fig. 1.27 is one such projected turning point. The straight line or arc (𝑅𝑅∗) that 
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connects turning point 𝑅 and projected turning point 𝑅∗ is called virtual path. The virtual 

path is not the real path, but it does reflect the change of stress state from 𝑅 to 𝑅∗. 

 

Fig. 1.27. Turning point (𝑅), projected turning point (R∗) and virtual path (RR∗)) 
definition 

  

The main aim of PDMR is to find the maximum range consecutively in each 

searching step until all paths are counted and counted only once. The general procedures 

for PDMR are as follows: 

(i) Search for the maximum range between any two points of a whole loading path in 

stress plane, denoting the starting point as A and ending point as B for this 

maximum range. Noting that starting point and ending points don’t have to be at 

the start and the end of the whole path. Thus, one or two parts of the whole load 

path may be removed to the next stage of searching. 

(ii) For the load path between A and B, take the starting point A as reference and 

calculate the distance of following points to A. Once a turning point is found, 

PDMR then searches for its corresponding projected turning point. The loading 
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path (such as  𝑅𝑆𝑅∗ in Fig. 1.27 ) between a turning point and a projected point, 

also called local hysteresis path is then removed for next stage of searching. The 

virtual path (𝑅𝑅∗ in Fig. 1.27 for illustration) is counted as part of path history for 

maximum range AB. This type of searching for turning point and removing local 

hysteresis paths is repeated until no turning point is left between AB. The 

monotonically increasing load path left between A and B, possibly including 

many virtual paths is counted as half a cycle with the maximum range. 

(iii) For the counted load path segment with maximum range between A and B 

identified by step (i) and (ii), different non-proportional fatigue models can be 

used for damage calculation. 

(iv) Repeat the steps (i)-(iii) for each load path that is removed during step (i) and 

turning point projection in step(ii) 

With PDMR searching procedures elaborated, a specific example of cycle 

counting for the very simple load path in Fig. 1.27 will be demonstrated here. As 

discussed, the maximum range is between O and T. There is one turning point and one 

projected turning point between 𝑂𝑇. Therefore, the local hysteresis (𝑅𝑆𝑅∗) between R 

and R* is removed to next stage of cycle counting. The first cycle counted is path 𝑂𝑅𝑅∗𝑇 

shown in Fig. 1.28 (a). Note that the virtual path 𝑅𝑅∗ has to be taken into account for 

path length based fatigue damage parameter calculation since non-proportional stress 

state transition occurs from state 𝑅 to 𝑅∗. 

The remaining loading path left after first cycle counting is 𝑅𝑆𝑅∗ in Fig. 1.28(b). 

Starting from 𝑅, it is clear that the maximum range is from 𝑅 to 𝑆 with no turning points 
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in between. Thus, the second counted cycle is simply path 𝑅𝑆 in red in Fig. 1.28 (b). 

Finally, the last path left is  𝑆𝑅∗ shown in Fig. 1.28(c).      

 

Fig.1.28. PDMR cycle counting for loading path of Fig. 1.27 with each counted path 

plotted in red. (a) first counted half cycle for maximum range path 𝑂𝑅𝑅∗𝑇 ; (b) second 

half cycle 𝑅𝑆; (c) third half cycle 𝑆𝑅∗ 

 

With the above half cycles of different ranges counted, different fatigue damage 

parameters such as path length [72-74] can be used directly for fatigue assessment. As far 

as critical plane methods are concerned such as Findely’s model [59], the above multi-

axial cycle counting procedure is equally applicable.  

It is worth mentioning that another multi-axial cycle counting procedure named as 

the Modified Wang–Brown method was proposed by Marco Antonio Meggiolaro [80-81]. 

It essentially shares the same idea of PDMR in that it also searches for the maximum 

distance in stress space. The progress made in the publication is that it further extends 

multi-axial cycle counting procedures to five-dimensional stress space. 

PDMR based cycle counting procedures as well as further developments by [80-

81] provide a new framework for multi-axial cycle counting by identifying maximum 

range in stress space. Therefore, it was adopted in our research for cycle counting 

purpose. As will be seen later, a pretty good and straightforward integration of our 
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proposed fatigue damage model is made with PDMR cycle counting for dealing with 

non-proportional multi-axial variable amplitude loading.       

1.2. 4 Fatigue Damage Accumulation Rules 

Once non-proportional variable amplitude loading histories are broken into 

various segments by multi-axial cycle counting procedures (see Section. 1.2.3), their 

damage calculated by various damage models (see Section 1.2.2) has to be summed up 

for total damage assessment. Fatigue damage accumulation rules can be categorized into 

linear rule, namely Palmgren-Miner rule (or Miner’s rule), [82, 83] and non-linear rules. 

A comprehensive review of various types of damage accumulation rules can be found in 

[84]. 

In most cases, fatigue damage at a certain stress/strain range is defined as the ratio 

of cycles experienced in service over the total number of cycles that are needed for 

fatigue failure under the fixed stress/strain range. For instance, if a stress loading history 

of interest is counted into many different cycles (𝑛𝑖) with stress levels (∆𝜎𝑖), the fatigue 

damage of each stress level is:  

 𝐷𝑖 =
𝑛𝑖

𝑁𝑖
  (1.56) 

in which 𝑁𝑖 is the number of cycles associated with fatigue failure when constant stress 

range (∆𝜎𝑖) is applied. The specific number of 𝑁𝑖 for stress range of ∆𝜎𝑖 can be found by 

checking with S-N curve. When total fatigue damage reaches to 𝐷 = 1, final fatigue 

failure will occur. 
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Linear damage accumulation rule is the most widely adopted one in practice. It 

assumes that there is no damage interaction among various stress/strain levels and the 

total damage is calculated by adding fatigue damage of different stress levels linearly: 

 𝐷 = ∑
𝑛𝑖

𝑁𝑖

𝑛
𝑖=1   (1.57) 

Linear damage accumulation rule will be used in our data analysis for variable 

amplitude loading histories. Note that as commented by Fatemi and Shamsaei[29], some 

of the inaccuracies attributed to linear damage accumulation rule may not be actually due 

to damage rule itself, but to the fatigue damage model used. On the other hand, non-linear 

damage accumulation rule would require extra material constant to be determined in 

advance. 

For some typically used load blocks as those employed in research studies [69, 

85], it is usually convenient to combine several load path segments counted within one 

block into one equivalent cycle with a corresponding stress range based on Miner’s rule 

for data correlation purpose [72]. The reason for combining them into one equivalent 

cycle is that most of experimentalists conventionally take it as one cycle for one load 

block. Taking an applied loading block consisting of one cycle with an equivalent stress 

range of ∆𝜎𝑒
1 and one cycle with an equivalent stress range of ∆𝜎𝑒

2 as an example, the 

way of deriving such an Miner’s rule based equivalent stress range for one load block is 

as follows: 

For power-law type of S-N curve, we have  

 ∆𝜎𝑒
1 = 𝐶 ∙ 𝑁1

−1 𝑚⁄
  (1.58) 
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 ∆𝜎𝑒
2 = 𝐶 ∙ 𝑁2

−1 𝑚⁄
  (1.59) 

where 𝑁1and 𝑁2 are the fatigue lives corresponding to ∆𝜎𝑒
1and ∆𝜎𝑒

2. Based on Miner’s 

rule, since one load block in current case is assumed to consist of one cycle with stress 

range of ∆𝜎𝑒
1 and another cycle with range of ∆𝜎𝑒

2, the total fatigue damage within one 

load block is  1 𝑁1⁄  1 𝑁2⁄ . Suppose that the number of load blocks needed for fatigue 

failure is 𝑁, we thus have 

   𝑁 ∙ (
1

𝑁1
 

1

𝑁2
) = 1  (1.60) 

Based on S-N curve, the effective stress range corresponding to 𝑁 loading blocks is: 

 ∆𝜎𝑒𝑓𝑓 = 𝐶 ∙ 𝑁
−1 𝑚⁄   (1.61) 

From Eq. 1.58 to Eq.1.61, the effective stress range can then be expressed as: 

 ∆𝜎𝑒𝑓𝑓 = (∆𝜎1
𝑚  ∆𝜎2

𝑚)−1 𝑚 ⁄   (1.62) 

Similar steps can be applied to calculate effective stress of a complex loading 

block after cycle counting for the block is done. This type Miner’s rule based effective 

stress/strain range definition will be used when needed for data correlation purpose in 

later chapters.  

1.2. 5 Mixed Mode Fatigue Crack Growth 

The reviewed fatigue damage models in Sec. 1.2.2 are mainly associated with 

fatigue damage assessment in terms of stress and strain which are suitable for 

characterization of fatigue behavior of components/materials before a fatigue crack 

reaches to macro scale. In other words, stress or stain based fatigue models are most 
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commonly used for cases when fatigue lives are primarily consumed by the stage of 

fatigue crack initiation and small crack growth until a technical crack size (around 1 mm 

scale [1]) is observed. However, in many cases, especially when fatigue damage 

tolerance based design is concerned, fatigue life spent on macro scale fatigue crack 

growth might take a large portion of total fatigue life. This is especially true when initial 

defects introduced by manufacturing processes exist even before engineering structures 

are put into service. As a result, macro-scale fatigue crack growth has to be considered 

for such cases and stress intensity factors can be used instead of stress/strain for 

characterizing fatigue crack growth.  

A majority of fatigue crack growth researches focus on mode I type of crack 

under uniaxial tensile loading. In this case, a fatigue crack will always grow in a self-

similar manner maintaining its original crack growth direction. However, as far as multi-

axial stress state is concerned, a fatigue crack will be subjected to combined mixed mode 

I, mode I and mode III types of loading. Compared with pure mode I types of crack 

growth, both the direction of crack growth and an effective stress intensity factor have to 

be determined for mixed mode loading. When non-proportional mixed mode fatigue 

loading is applied, the task becomes even more challenging. This section will briefly 

review some typical research progresses made on predicting crack grow direction and 

effective stress intensity factors proposed thus far. More detailed literature reviews of this 

part can be found in [86-89].      

(a) Criteria for mixed mode crack growth direction 
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One of the earliest and most widely adopted model for predicting crack growth 

direction under mode I and mode II loading is proposed by Erdogan and Sih [90]. It 

assumes that crack will propagate in the direction perpendicular to the maximum 

tangential stress (𝜎𝜃𝜃 ) (MTS) in the polar coordinate system defined with the origin 

located at a crack tip. In other words, a crack will grow in the direction with the largest 

crack opening force. When only the singular term of elastic stress field, i.e.  𝐾𝐼 and 𝐾𝐼𝐼 

are considered, the MTS criterion will lead to the following equation for determining 

crack growth direction: 

 𝐾𝐼 sin 𝜃𝑐  𝐾𝐼𝐼 (3cos 𝜃𝑐 − 1)    (1.63) 

in which 𝜃𝑐 is the angle of maximum tangential stress. 

Later on, Sih [91] came up with minimum strain energy density criterion (S-

criterion). This criterion assumes that a crack will propagate in a direction with minimum 

local strain energy density around the crack tip. The total strain energy under mode I and 

mode II loading can be written as: 

 𝑆 =
1

16𝜋𝜇
(𝑎11𝐾𝐼

2  2𝑎12𝐾𝐼𝐾𝐼𝐼  𝑎22𝐾22
2 )  (1.64) 

where 𝑎11, 𝑎12 and 𝑎22 are functions of angle 𝜃 and can be found in [91]. By letting the 

first derivative of Eq. 1.64 be zero, the crack propagation direction can then be 

determined. 

Another criterion directly related with energy release rate concept was developed 

by Hussain and Pu [92]. It attempts to represent stress intensity factors (𝐾𝐼
(2)

for mode I 

and 𝐾𝐼𝐼
(2)

 for mode II) of an assumed kinked crack in 𝜃  direction in terms of stress 
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intensity factors (𝐾𝐼 for mode I and 𝐾𝐼 for mode II) of current configuration. The energy 

release rate of an assumed kinked crack is: 

 𝐺 =
1

𝐸′
((𝐾𝐼

(2))
2

 (𝐾𝐼𝐼
(2))

2

) (1.65) 

Then true direction of the crack will be the direction of maximum energy release rate 

(MERR) which can be determined by letting the first order of derivative of Eq. 1.65 with 

respect to angle 𝜃 be zero. 

Detailed and more comprehensive review of crack growth direction can be found 

in [86]. Overall, most of current well-known criteria tend to predict a crack will generally 

deflect to the direction along which mode I cracking is maximized and mode II cracking 

is minimized [93]. This is in general agreement with the usual observation that a crack 

will generally propagate to a direction such that only mode I type of crack is operative.  

However, there are cases when macro cracks have been shown to propagate on 

maximum shear planes or planes when both tensile and shear loading exist [5]. Based on 

MTS criterion, the deflection angle would keep on increasing with the increase of mode 

mixity (the ratio of 𝐾𝐼𝐼  to 𝐾𝐼 ). However, experiments by Maccagno and Knott [94] 

showed that with an increase of mode mixity, crack deflection angle first increases and 

then decreases back to its initial crack direction, demonstrating that crack growth along 

maximum shear stress plane by pure mode II loading is also possible. Similar 

observations of crack mode transition between mode I and mode II were also reported in 

[95-97]. Therefore, another criterion named as maximum shear stress criterion (MSSC) 

was suggested by Maccagno and Knott [94] and its competition with MTS criterion 

dictates the final direction of crack growth. More researches on the competition between 
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tensile dominated and shear dominated crack growth can be found in [89, 98, 99]. For 

mixed mode fatigue crack growth, the general observation is that the preferred crack 

growth plane depends on materials, load mixities and loading magnitudes.    

As can be seen from the above review, crack growth direction under mixed mode 

loading is complicated by many factors such as loading level and load mixity in spite of 

some well-known criteria are available. Furthermore, most of the above researches into 

mixed mode crack direction only consider the case of proportional mixed mode loading. 

Crack direction determination under non-proportional mixed mode loading [89] has not 

been well understood yet.  

(b) Effective stress intensity factor definition under mixed mode loading 

When a fatigue crack grows under mixed mode loading, a proper definition of 

stress intensity factor range is needed for incorporating the effect of different modes on 

fatigue crack growth. The most common type of stress intensity factor is effective stress 

intensity factor based on different assumptions. Some popular ones are reviewed here.  

The earliest proposition of effective stress intensity factor range for mixed mode I, 

II and III fatigue loading from Tanaka [100] is based on crack tip displacement and has 

the following form:  

 ∆𝐾𝑒 = (∆𝐾𝐼
4  8∆𝐾𝐼𝐼

4  
8∆𝐾𝐼𝐼𝐼

4

1−𝜈
)

1

4
  (1.66) 

Tanaka’s effective stress intensity factor range definition has been found to show good 

correlation [101] for fatigue crack growth test under mixed mode I and II loading with 

different ratios between 𝐾𝐼𝐼 and 𝐾𝐼.  
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Energy release rate based effective stress intensity factor assumes that its energy 

release rate is equal to the summation of the release rate of each individual part. As a 

result:  

  ∆𝐾𝑒 = (∆𝐾𝐼
2  ∆𝐾𝐼𝐼

2  (1  𝜈)∆𝐾𝐼𝐼𝐼
2 )

1

2  (1.67) 

Another type of recently proposed definition is from Richard et al.[102]:  

 ∆𝐾𝑒 =
∆𝐾𝐼

2
 
1

2
√∆𝐾𝐼

2  4(𝜂∆𝐾𝐼𝐼
2)  (1.68) 

where 𝜂 is a material constant.  

It should be noted that all of the above proposed effective stress intensity factor 

range definitions are only applicable (if they are) for proportional mixed mode fatigue 

crack loading and cannot be extended to the application of non-proportional mixed mode 

crack growth. Furthermore, loading ratio (R-ratio) effects are not taken into account. As 

for non-proportional mixed mode fatigue crack growth, plenty of experiment evidences 

[103-105] demonstrate that crack growth under non-proportional mixed mode loading is 

much faster than that of proportional case. However, few attempts are made toward this 

direction. To author’s best knowledge, only two models dealing with non-proportional 

mixed mode fatigue growth models for small cracks are available. The first one is by 

Socie et al. [106] in terms of normal and shear strain ranges: 

 𝐾𝑒 = ((𝑌𝐼𝐼𝐺Δ𝛾𝑚𝑎𝑥)
2  (𝑌𝐼𝐸Δ𝜀𝑛)

2)
1

2√𝜋𝑎  (1.69) 

where Δ𝜀𝑛 is the normal strain range to the plane with the maximum shear strain range 

Δ𝛾𝑚𝑎𝑥  and 𝑌𝐼  and 𝑌𝐼𝐼  are geometric factors for mode I and mode II respectively. By 
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applying the model to different loading conditions, pretty good correlations were reported 

[106]. 

By following similar form of critical plane based fatigue damage model proposed 

by Fatemi and Socie [11], Reddy and Fatemi [107] also introduced an effective strain 

intensity factor of the following form: 

 𝐾𝑒 = 𝐺Δ𝛾𝑚𝑎𝑥(1  𝑘
𝜎𝑛,𝑚𝑎𝑥

𝜎𝑦
)√𝜋𝑎  (1.70) 

The advantage of Eq. 1.69 and Eq. 1.70 is that both the direction and fatigue life can be 

predicted for small crack growth regardless of load path proportionality.     

As can be seen, an equivalent stress intensity factor model that is applicable for 

macro scale fatigue crack growth under both proportional and non-proportional mixed 

mode loading is not yet available based on our assessment in spite of the fact that recent 

test results [104,105] clearly indicated that non-proportional loading leads to a faster 

fatigue crack growth rate. It should be noted that the above observations were reported in 

the absence of crack surface interaction (e.g. surface pressure, friction and rubbing 

between upper and lower crack surfaces). Things can be further complicated if such 

factors are taken into account. Recent attempts to include crack surface interaction can be 

found on papers [108].      
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1.3 Existing Major Challenges 

1.3.1 A Proper Stress/Strain Definition for Fatigue Analysis of both Non-Welded 

and Welded Components 

Which type of stress/strain definition should one make use of is the first step for 

constructing a reliable fatigue damage model. Extensive literature review in Section 1.2  

indicates that besides a proper consideration of constitutive relationship between stress 

and strain (if needed), how to come up with a stress/strain definition that reflects the 

overall response of components, not the response of one specific material point, is an 

important concern for fatigue assessment of notched components. For non-welded 

components, progresses made on critical distance theory and structural yield surface 

model are the few attempts made along this direction. For welded joints, notch stress 

approach and hot spot approach are pretty commonly used nowadays by researchers and 

engineers. Nevertheless, the assumption of a fictitious notch radius in notch stress 

approach and different surface stress extrapolation techniques in hot spot stress approach 

lack of solid physical and mechanical basis. Traction based structural stress/strain is 

proven to be more suitable for fatigue analysis of welded joints subjected to dominantly 

uniaxial loading. Its potential for fatigue assessment under non-proportional multi-axial 

loading has not been fully explored yet.                   

1.3.2 An Integrated Approach for Non-Proportional Fatigue Modeling and 

Multi-Axle Cycle Counting 

Both non-proportional fatigue models and multi-axial cycle counting are 

challenging issues for fatigue research community. The majority of researchers only 

focus on one of them as their research topic. For instance, Fatemi and Socie’s work [11] 



77 
 

lies on proposing different fatigue damage parameters without paying much attention on 

cycle counting issue. Similarly, Itoh et al. [69] proposed a new formulation of non-

proportional fatigue damage parameter only for the case of simple load blocks and no 

recommendation was made on how to apply the proposed damage model to complex 

variable amplitude loading involving multi-axle cycle counting issue, leading to the 

applicability of Itoh et al. model only limited to simple cases at current stage. On the 

other hand, Wang-Brown’s work [78] mainly focused on procedures needed for non-

proportional multi-axial cycle counting.  

One important progress towards integrating fatigue damage parameter with multi-

axial cycle counting procedures was made by Dong et al.[72], Dong and Wei [73,74]. 

They proposed a PDMR cycle counting procedure and at the same time made use of path 

length of each counted load path segment as a fatigue damage parameter. This integrated 

treatment of non-proportional fatigue is enlightening. Nonetheless, as reviewed in Section 

1.2.3, there are cases and experimental evidences indicating that path length is not always 

effective in capturing non-proportional damage effect. Furthermore, path length as a 

fatigue damage parameter cannot reflect the fact that different materials under the same 

load path may have different sensitivities in terms of their damage to non-proportional 

loading. Therefore, further improvement of the integrated approach is needed.  

1.3.3 Characterization of Material Sensitivity to Non-Proportional Loading 

The most conventional belief that has been persisting in research community of 

non-proportional multi-axial fatigue is that the much more damaging effect of non-

proportional loading than that of proportional loading is caused by additional hardening 

in non-proportional case. As a result, much effort is devoted to coming up with complex 
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cyclic elastic-plastic constitutive models for calculation of stress or strain responses. As a 

consequence, additional cyclic hardening coefficient is always used to reflect material 

sensitivity to non-proportional loading [69, 109] in the construction of non-proportional 

fatigue damage parameters. However, as commented by Skibicki [6], additional 

hardening is not the only factor in contributing to non-proportional damage. The above 

argument is supported by recent experiments on Titanium alloys and steels [15, 29, 31 32] 

demonstrating that non-proportional fatigue damage is still significant with minimal non-

proportional hardening. Furthermore, this observation tends to be further supported by 

Itoh et al.’s researches showing that replacing material sensitivity parameter with 

additional hardening coefficient will not lead to a satisfactory correlation. Therefore, a 

proper definition of material sensitivity parameter and a procedure for its determination 

have to be in place for any proposed non-proportional fatigue damage models.   

1.3.4 Validation of Non-Proportional Fatigue Model by Extensive Test Data of 

Various Materials Available in Literature 

For validations of any proposed fatigue model, satisfactory correlation of test data 

collected within one research group is far from enough. Unfortunately, except of those 

well-accepted fatigue models as reviewed in Section 1.2, the majority of various types of 

proposed fatigue damage models spreading through different publications did not 

undergo sufficient validations by a large amount of test data from different sources. As a 

result, the robustness and applicability of these models are questionable if were used in 

different scenarios or for different materials. It would be best if a fatigue model can be 

validated by different materials with different material properties. This can be achieved 

by examining a vast amount of test data of other types of materials available in literature.          



79 
 

1.3.5 Extension of Non-Proportional Fatigue Model to Fatigue Crack Growth 

Regime  

A majority of non-proportional fatigue researches are dedicated to fatigue crack 

initiation stage (Stage I) of total fatigue life. Stress and (or) strain are used for the 

construction of fatigue damage model at this stage. When it comes to the stage of macro 

scale fatigue crack growth (Stage II) which might consume a significant portion of 

fatigue life, little efforts were made to capture non-proportional loading effect of Stage II 

crack growth till today. In other words, in contrary to experimental evidences [104, 105], 

current available effective stress intensity factors cannot differentiate between 

proportional and non-proportional mixed mode fatigue crack growth. Two strain based 

intensity factors [106,107] originated from critical plane methods are only applicable to 

small crack growth and are the only achievements made so far to extend the application 

of Stage I non-proportional fatigue model to the early stage of Stage II. It would be great 

if a consistent type of non-proportional fatigue damage definition is applicable to both 

fatigue crack initiation and macro scale fatigue crack growth stages. Unfortunately, little 

progress was made along this direction.  

1.4 Motivation and Objectives of Current Researches 

After a comprehensive review of state-of-the-art developments in various aspects 

of non-proportional fatigue modeling and summarizing current major challenges that 

have not been fully resolved, the author is motivated to come up with a new model for 

modeling of non-proportional fatigue under variable amplitude loading conditions with 

special focus on the following topics: 
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i. Proper selection of a suitable stress/strain definition that represents the overall 

cyclic stress/strain state at fatigue failure locations of interest as the starting point 

for a formulation of non-proportional fatigue damage parameter.  

ii. Formulation of a non-proportional fatigue damage model which is integrated into 

PDMR multi-axle cycle counting procedures for fatigue assessment of both non-

welded and welded structures/components under non-proportional multi-axial 

variable amplitude loading.  

iii. A proper characterization of material sensitivity and a specific procedure for its 

determination for different materials.  

iv. Extension of non-proportional damage model defined in terms of stress/strain to 

non-proportional mixed mode fatigue crack growth in terms of stress intensity 

factors. 

v. Validation of proposed non-proportional fatigue model by a large amount of low 

cycle and high cycle test data available from different well-documented literatures 

at both material and structural component levels.  

1.5 Outline of Dissertation 

The dissertation begins with an introductory background of non-proportional 

multi-axial fatigue and extensive literature review of state-of-the-art developments 

relevant to our research topics. Chapter 1 starts with a quick overview of stress-strain 

constitutive modeling which has been a focal point of many researchers and detailed 

evaluation of various types of stress/strain definitions for non-welded and welded 

components. Such a detailed assessment of different stress/strain definitions originates 

from our understanding that a proper definition of stress/strain that captures overall 
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responses (or structural responses) of structural components under fatigue loading is 

much more important than employing complex constitutive models to capture 

stress/strain state at one specific material point. As a result, structural stress/strain is used 

as our building block of proposed fatigue damage models when it comes to analysis of 

welded components. After that, a comprehensive review of three main groups of multi-

axial fatigue models, namely, equivalent stress/strain based, critical plane based as well 

as recently developed new models are critically assessed in terms of their capabilities in 

taking into account of non-proportional damage effects. For dealing with variable 

amplitude loading, three types of currently available multi-axial cycle counting 

procedures are explained with emphasis placed on PDMR cycle counting since it will be 

integrated into our proposed non-proportional model. Finally, as a special category of 

non-proportional fatigue problem, mixed mode crack growth under non-proportional 

loading is also reviewed in detail since it is also a topic we are going to address as a part 

of our work. With critical assessments of several reviewed topics and major challenges 

summarized, our research objectives emerge in Section 1.4 of Chapter 1. 

Chapter 2 proposes a moment of load path (MLP) based non-proportional fatigue 

damage model which is integrated into PDMR cycle counting procedure for dealing with 

complex variable amplitude loading. The essential assumptions related with damage 

decomposition and non-proportional damage representation are presented for the purpose 

of characterizing load path non-proportionality which finally leads to a MLP based 

equivalent structural stress/strain definition. The physical interpretation of the non-

proportional damage model is given in terms of weighted form of strain energy density 

and the procedures for material sensitivity determination are suggested. As a second 



82 
 

major part of Chapter 1, various types of structural steels, including both welded and non-

welded components in low and high cycle fatigue regimes are examined to validate the 

proposed model.  

Following proposed model in Chapter 2, Chapter 3, 4 and Chapter 5 focus on 

applications of MLP model to different areas. It is important to note that since separate 

papers are now already published on peer-reviewed international journals for each 

application area, these chapters are therefore composed of published journals with 

minimal modifications. As a result of the entirety of these journal papers, some 

background introduction and model description of the proposed model may also occur in 

each of these chapters. However, these seemingly overlapping contents do serve different 

purposes in the context of each chapter. 

The application of MLP model to different series of aluminum alloys is presented 

in Chapter 3. A vast amount of currently available aluminum alloys test data is examined 

in this chapter. Since a majority of non-proportional fatigue data is from out-of-phase 

tests corresponding to elliptical load paths, an analytical form of load path non-

proportionality for arbitrary elliptical load path is given first. Furthermore, detailed 

procedures with a specific example for determining material sensitivity are illustrated. 

With material sensitivity parameters calculated for all separate groups of test data, the 

effectiveness of data correlation by MLP model for each group and as a whole is 

examined. Finally, the linkage between material ductility and material sensitivity are 

explored.  
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Chapter 4 focuses on how MLP based equivalent stress can be used for non-

proportional fatigue of welded components. With structural stress definition introduced, a 

majority of well-documented proportional and non-proportional multi-axial fatigue test 

data which are grouped into residual stress relieved and as-welded are examined. With 

MLP based structural stress, a new equivalent stress parameter that further takes into 

account of thickness effect, bending ratio effect is employed for data correlation of these 

two separate groups. The correlations for stress relieved and as welded test data are then 

compared with hot spot stress based effective stress definition by following Eurocode 3 

and IIW recommendations. Finally, an overall correlation is presented with mean stress 

(R-ratio) considered and its plot against master S-N curve adopted in ASME is presented 

and discussed. 

Further extension of MLP model application to macro-scale mixed mode fatigue 

crack growth problem is made in Chapter 5. A MLP based effective stress intensity factor 

is first constructed in 𝐾  plane by following exactly the same manner as proposed in 

Chapter 2. Two additional issues are addressed in this chapter. One is how mean stress 

effect can be represented with respect to 𝐾  plane. Secondly, a two-parameter fatigue 

crack growth model to allow for mean stress effect is proposed. As a demonstration, 

stainless steel and structural steel data from non-proportional mixed mode I and mode III 

fatigue loading of disc specimens are examined by proposed two-parameter fatigue crack 

grow model. 

An overall summary for the whole dissertation is presented in Chapter 6. Some 

key and original findings from previous four chapters are reviewed. Furthermore, 
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suggestions are made on how MLP model can be improved and which direction can be 

further explored for future research. 
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Chaper 2.  

A New Path-Dependent Fatigue Damage Model for Non-Proportional Multi-

Axial Loading  

 

Abstract 

This paper presents a new path-dependent multi-axial fatigue damage model 

which is formulated based on an incremental form of moment of load path (MLP) on 

either 𝜎 − √𝛽𝜏 stress plane or 𝜀 − √𝛽𝜀 𝛾 strain plane. The resulting MLP-based fatigue 

damage parameter can be shown to be related to an integral form of strain energy 

densities contributed by normal and shear deformation and each weighted by a path-

dependent function. Then, the MLP-based damage parameter in terms of either 

equivalent stress range or strain range, in conjunction with path-dependent maximum-

range cycle counting procedure (Dong et al., 2010 and Wei and Dong, 2010), has been 

shown effective in correlating a large amount of test data obtained under non-

proportional multi-axial loading conditions both for welded joints under stress-controlled 

conditions in high cycle fatigue regime and non-welded components under strain-

controlled conditions in low-cycle regime.  

Keywords: Multi-axial fatigue, multi-axial cycle counting, non-proportional loading, 

fatigue damage modeling, welded joints 
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2.1 Introduction 

Engineering structures are often subjected to multi-axial cyclic stresses during 

service [1-3]. One common type of multi-axial stress state occurs where there is a sudden 

change of geometry such as at notches or welded joints, as a result of geometric 

constraints. Another source for multi-axial stress state is due to external multi-axial 

loading conditions leading to a stress state that is multi-axial in nature, such as that in a 

shaft component under both bending and torsion. The first type of multi-axial stress state 

is largely proportional, in which stress components vary proportionally with each other 

over time and the corresponding principal stress directions remain unchanged. Since the 

peaks and valleys of each stress component history occur at the same time for 

proportional loading, an effective stress range formulated using component stress ranges, 

e.g., in the form of von Mises stress range have been shown to be effective in fatigue 

damage modeling, as shown by [1,4-5]. Furthermore, conventional cycle counting 

methods such as Rainflow cycle counting can still be used by tracking a given time 

history of one of the stress components and scaling the rest. If stress components at a 

given material point vary independently or with a clearly defined phase shift angle in 

sinusoidal variation over time, non-proportionality effects on fatigue damage must be 

considered, as pointed out by numerous researchers, such as by Sonsino and Kueppers [6] 

and Yousefi et al. [7] for welded joints and Itoh et al. [8] on plain tube specimens, among 

others.  

It has been observed that non-proportional loading induced fatigue damage 

depends upon both load path and material [5-15]. Various experimental studies [6-10] 

have shown that fatigue damage as a result of load-path non-proportionality can be more 
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significant in some materials and to a less degree or even showing a reduced damage in 

others [13-15]. To deal with the complexity of non-proportional multi-axial fatigue, two 

key questions must be addressed: (a) how to formulate an effective fatigue damage 

parameter that is capable of capturing both load path and material effects; (b) how to 

perform cycle counting against independent component stress histories. To a large extent, 

both questions are inter-related and must be addressed concurrently when dealing with 

general variable amplitude multi-axial stress histories.  

2.1.1 Fatigue Damage Parameter 

Within the confine of constant amplitude multi-axial loading conditions, such as 

sinusoidal stress histories of shear and normal stress components with a clearly defined 

phase shift between them, or some simple path patterns that are repeated during fatigue 

testing, various fatigue damage parameter definitions have been investigated by 

numerous researchers [6, 8-9, 16-18] in the literature. Among them, Dong and Hong [18] 

proposed a Modified Gough Ellipse model in which a fatigue damage parameter is 

analytically formulated as a function of phase angle (𝛿) shift between normal and shear 

stress histories, if both stress histories can be expressed as synchronous sinusoidal wave 

forms. A good correlation was achieved by examining both proportional and non-

proportional test data [6-7, 19] obtained from welded joints. However, the Modified 

Gough Ellipse model is only applicable to constant amplitude non-proportional loading 

conditions with a clearly defined phase angle. Sonsino and Kueppers [6] showed that 

non-proportionality induced fatigue damage can be captured by an integral formulation of 

shear stress over all planes, referred as an Effective Equivalent Stress Hypothesis (EESH). 

Again, the proposed parameter in [6] can only be applied to constant amplitude sinusoidal 
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loading with a known phase angle between two stress components. Itoh et al. [8] 

proposed an equivalent non-proportional strain range definition based on principal strain 

range. A non-proportionality related parameter that takes into account of the rotation of 

the principal strain axis was used to formulate their fatigue damage parameter. Although 

a reasonable correlation of non-proportional low cycle fatigue data was demonstrated by 

Itoh et al. [8], it should be pointed out that their cycle definition for some of the load 

cases seems questionable, e.g., for similar type of “cross” load patterns, some cases being 

considered as two cycles while others as one cycle [8].  In addition, their material 

sensitivity parameter may only be applicable for low cycle fatigue applications. 

Without directly addressing the need for a consistent cycle-counting procedure, 

one important category of non-proportional fatigue damage models is of critical plane 

type. Among various proposed critical plane models, Findely’s stress-based model [20], 

Brown-Miller’s strain-based model [21] and Fatemi-Socie’s strain-stress-based model [17] 

are perhaps the most widely investigated ones. However, a common and non-trivial issue 

associated with these critical plane models is how to determine shear stress range, ∆𝜏 or 

shear strain range, ∆𝛾 on a potential critical plane since both shear stress and shear strain 

change their magnitudes and directions along non-proportional load path. As a case in 

point, a closed irregular load Path 𝐴𝐵̃ (thick lines) shown in Fig. 2.1 represents non-

proportional load path of shear stresses on one potential critical plane. It is not 

straightforward and an easy task to determine ∆𝜏 for load path 𝐴𝐵̃ in Fig. 2.1. Various 

approximate methods [22] such as Minimum Circumscribed Circle (MCC), Longest 

Chord (LC) and Longest Projection (LP) have been proposed. However, none of these 

methods could truly differentiate between a proportional path i.e., 𝐴𝐵̅̅ ̅̅  and the actual non-
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proportional load path  𝐴𝐵̃  as illustrated in Fig. 2.1. For instance, consider non-

proportional path  𝐴𝐵̃ in Fig. 2.1, MCC method involves finding a minimum circle that 

circumscribes the load path, which yields a radius (𝑅) as the shear stress amplitude. 

However, as can be seen in Fig. 2.1, the use of the radius (𝑅) for representing fatigue 

damage caused by the non-proportional load path 𝐴𝐵̃ ignores all non-proportional path 

excursions away from the straight line load path 𝐴𝐵̅̅ ̅̅ . Li et al. [23] proposed a Minimum 

Circumscribed Ellipse (MCE), also shown in Fig. 2.1 for shear stress range calculation. 

Then, an equivalent shear stress amplitude is defined as the root mean square of the semi-

major axis (denoted as 𝑎 in Fig. 2.1) and semi-minor axis (denoted as 𝑏 in Fig. 2.1). 

However, as shown by Skibicki [3], MCE has been demonstrated to be inadequate in 

differentiating various non-proportional load paths that share the same MCE. Therefore, 

an effective path-dependent fatigue damage parameter within the context of critical plane 

methods remains to be fully resolved.  

 
 

  
  

  

  

  

  

  

  

  

  

  

  

Minimum Circumscribed Ellipse (MCE) 

Minimum Circumscribed Circle (MCC) 

  

  

   

   

    ̃ 

  ̅̅ ̅̅  



97 
 

Fig. 2.1 MCC and MCE methods for calculating effective shear stress range ∆𝜏 in critical 

plane based multi-axial fatigue models 

 

2.1.2 Fatigue Cycle Definition 

Another fundamental question in the treatment of multi-axial fatigue damage in 

non-proportional variable amplitude loading is how to define a fatigue cycle. In the 

context of critical plane approach, Bannantine and Socie [24] proposed that component 

stress or strain histories can be classified as primary channel and auxiliary channel based 

on their dominance over fatigue damage and Rainflow cycle counting method can then be 

carried out only on the primary channel. Therefore, Bannantine and Socie’s multi-axial 

cycle counting is essentially an uniaxial Rainflow cycle counting method applied to a 

pre-determined dominant stress or strain component out of multiple stress or strain 

components varying over time. One major issue of Bannantine and Socie’s approach is 

that it is somewhat arbitrary and empirical in identifying one stress or strain component 

as the primary channel especially when several stress/strain components are operative. In 

directly dealing with multiple stress components and their time histories as a whole, 

Wang and Brown [16] outlined a more rational procedure for searching a maximum 

relative effective stress or strain range parameter and associated cycle definition that can 

be directly used for non-proportional variable amplitude loading histories. Their proposed 

relative effective stress or strain range parameters overcome the sign issue in using von 

Mises stress definition. However, it was demonstrated recently by Dong et al. [25] that 

Wang and Brown’s multi-axial cycle counting procedure may fail to identify the 

maximum effective range available in non-proportional variable amplitude loading 

histories.  
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2.1.3 An Integrated Approach 

In an attempt of addressing both damage parameter and cycle definition in an 

integrated manner for treating non-proportional variable amplitude multi-axial fatigue, 

Dong et al. [25] and Wei and Dong [26-27] recently developed a path-dependent cycle 

counting method referred to as Path-Dependent Maximum Range (PDMR) method that 

searches successively the maximum ranges available in a given multi-axial stress or strain 

histories mapped onto a stress (𝜎 − √𝛽𝜏) plane or strain (𝜀 − √𝛽𝜀𝛾) plane and counts 

their occurrences as half cycles. In the meantime, PDMR also tracks accumulative path 

length traversed within each counted half cycle. In their approach, path length 

accumulated in stress space or strain space in completing one half cycle was used directly 

as a fatigue damage parameter for correlating non-proportional multi-axial fatigue test 

data.  

However, the use of accumulative path length as multiaxial fatigue damage 

parameter as given in Dong et al. [25], Wei and Dong [26-27], can be shown to have 

limitations in dealing with certain types of non-proportional loading conditions such as a 

few load cases studied by Itoh et al. [8]. For illustration purpose, consider three load path 

scenarios from P to Q in Fig. 2.2, in which Path A represents a semi-circular path with a 

radius of 𝑅; Path B is a series of semi-circular load paths with a radius 𝑟 = 𝑅/𝑛 , where n 

is an integer and larger than unity, and Path C is a straight line, corresponding to a 

proportional load path. Based on PDMR method, all these three load path scenarios form 

their own one-half cycles from P to Q. In addition, it should be noted that Path A and 

Path B share the same accumulative path lengths, suggesting that fatigue damages for the 

two load cases should be the same if path length is adopted as a fatigue damage 
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parameter. However, it is not difficult to visualize that as 𝑛 increases, fatigue damage 

corresponding to Path B should approach to that represented by Path C which is a 

proportional load path. Therefore, an improved fatigue damage parameter model is 

needed to address such a deficiency illustrated in Fig. 2.2.  

 

Fig. 2.2 Schematic illustration of one deficiency of path-length-based fatigue damage 

parameter for characterizing non-proportionality induced fatigue damage 

 

With the above discussions as a starting point, this paper presents a new fatigue 

damage parameter based on an accumulative Moment of Load Path (MLP) concept, for 

which fatigue cycle definition remains the same as that determined by PDMR cycle 

counting method. The physical meaning underlying the newly proposed model can then 

be shown to be related to accumulative strain energy density contributed by normal and 

shear stresses, with each term being weighted by a path-dependent function. This new 

damage parameter can be consistently applied with respect to stress plane ( 𝜎 −

√𝛽𝜏 plane) or strain plane (𝜀 − √𝛽𝜀 𝛾  plane). Its validity in effectively correlating a 
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large amount of non-proportional multi-axial fatigue test data is then demonstrated with 

respect to 𝜎 − √𝛽𝜏 stress plane in high cycle regime and 𝜀 − √𝛽𝜀 𝛾 strain plane in low 

cycle regime. 

2.2 A Damage Model Based on Moment of Load Path  

2.2.1 Hypothesis and Formulation  

Consider a non-proportional load path from A to B, i.e., 𝐴𝐵̃, on 𝜎 − √𝛽𝜏 plane 

illustrated in Fig. 2.3, which can be shown to constitute one half cycle according to 

PDMR cycle counting procedure. We then postulate that multi-axial fatigue damage for 

any given non-proportional load path 𝐴𝐵̃ can be decomposed into two parts:  

 P NPD D D   (2.1) 

in which 𝐷𝑃  represents fatigue damage caused by the reference proportional loading 

event from A to B (i.e., 𝐴𝐵̅̅ ̅̅  ), which can be directly related to distance from A to B, or the 

effective stress range ∆𝜎𝑒. 𝐷𝑁𝑃 represents load path non-proportionality induced fatigue 

damage due to any excursions of load path 𝐴𝐵̃ deviating from reference proportional load 

path ( 𝐴𝐵̅̅ ̅̅  ). One intuitive and effective way of characterizing the extent of load path 

excursion away from its reference proportional load path is to consider the moment of 

non-proportional load path 𝐴𝐵̃ with respect of its reference path 𝐴𝐵̅̅ ̅̅ . Therefore, the load 

path non-proportionality related damage along Path 𝐴𝐵̃ can be stated as follows, in an 

incremental form: 

 𝑑𝐷𝑁𝑃 = 𝑟
′|𝑠𝑖𝑛 (𝜃)|𝑑𝑠′ (2.2) 
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as shown in Fig. 2.3 in 𝑥′ − 𝑦′ local coordinate system in which 𝑑𝐷𝑁𝑃 measures not only 

load-path non-proportionality, but also its extent of its deviation (𝑟′|𝑠𝑖𝑛 (𝜃)|) from its 

reference proportional load path 𝐴𝐵̅̅ ̅̅ . The total load path non-proportionality induced 

fatigue damage (𝐷𝑁𝑃) along Path 𝐴𝐵̃ then becomes, in an integral form: 

 ' sin( ) 'NP

AB

D r ds     (2.3) 

 

Fig. 2.3 Non-proportional load path 𝐴𝐵̃, non-proportional semi-circular load path AB  

and reference (proportional) load path 𝐴𝐵̅̅ ̅̅   

2.2.2 Dimensionless Representation  

It is convenient to represent the damage parameters in Eq. (2.1) in a 

dimensionless form. To do so, it is natural to introduce a reference non-proportional load 

path AB  that yields the maximum non-proportional damage within all possible non-
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proportional paths with the same effective range  ∆𝜎𝑒  while satisfying one-half cycle 

definition according PDMR [25-27]. Such a non-proportional load path becomes the 

semi-circular load path AB  represented by the dash line in Fig. 2.3, as supported by both 

existing test data and available multi-axial fatigue damage theories by various researchers 

[17, 28-29]. Along this line, a dimensionless formulation of load path non-proportionality 

induced damage can be expressed as follows: 

 
2

' sin( ) ' ' sin( ) '

2sin( ) '

NP AB AB
NP

Max

AB

r ds r ds
D

g
D RR ds

 


  

 


 (2.4) 

where 𝐷𝑀𝑎𝑥 represents the maximum possible non-proportional fatigue damage induced 

by the semi-circular load path represented by dashed lines in Fig. 2.3. Then, 𝑔𝑁𝑃 in Eq. 

(2.4) can be referred as a normalized load path non-proportionality damage factor with 

respect to the maximum possible damage 𝐷𝑀𝑎𝑥 , noting that 𝑔𝑁𝑃  varies from zero 

corresponding to the proportional load path 𝐴𝐵̅̅ ̅̅  to unity corresponding to the semi-

circular load path AB  in Fig. 2.3.  

As a result, Eq. (2.1) can be written in terms of effective stress range  ∆𝜎𝑒 

corresponding to reference load path and normalized non-proportionality factor 𝑔𝑁𝑃 as:  

 ∆𝜎𝑁𝑃 = ∆𝜎𝑒(1  𝛼 · 𝑔𝑁𝑃) (2.5) 

The equivalent stress ∆𝜎𝑁𝑃 incorporating load-path non-proportionality induced 

fatigue damage effects along path 𝐴𝐵̃ can be referred to as a MLP-based equivalent stress 

range. Note a material-dependent non-proportionality sensitivity parameter 𝛼 defined in 
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stress space is inserted into Eq. (2.5) to accommodate the fact that studies have shown 

that some materials are more sensitive to non-proportional multi-axial loading than others, 

depending on the ductility of materials examined [13-15,30].  

It’s worth mentioning that although it shares a similar form with that proposed by 

Itoh et al. [8], Eq. (2.5) differs from Itoh et al.’s model in two major aspects. Firstly, the 

dimensionless non-proportionality factor 𝑔𝑁𝑃 in Eq. (2.5) is calculated with respect to 

𝜎 − √𝛽𝜏 stress plane while Itoh et al.’s non-proportional damage factor is defined with 

respect to a polar coordinate based maximum principal strain plane as a function of its 

direction (angle). Secondly, the non-proportionality factor 𝑔𝑁𝑃  in Eq. (2.5) is defined 

with respect to the reference semi-circular load path which corresponds to conditions 

yielding the maximum possible damage among all possible paths between any two 

positions forming one half cycle in 𝜎 − √𝛽𝜏 plane, while Itoh et al.’s damage factor is 

calculated with respect to the maximum principal strain within a loading event.  

Eq. (2.5) can also be rephrased with respect to strain space, e.g., 𝜀 − √𝛽𝜀𝛾 plane, 

in which √𝛽𝜀 is a fatigue equivalency parameter between pure cyclic tensile strain and 

pure shear strain fatigue test results,  

 ∆𝜀𝑁𝑃 = ∆𝜀𝑒(1  𝛼
𝜀 ∙ 𝑔𝑁𝑃

𝜀 ) (2.6) 

In Eq. (2.6), 𝛼𝜀 is a material-dependent non-proportionality sensitivity parameter 

defined in strain space and 𝑔𝑁𝑃
𝜀  is evaluated according to Eq. (2.4) on 𝜀 − √𝛽𝜀𝛾 plane.  
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2.2.3 Material Sensitivity Parameter Determination 

Material sensitivity parameter 𝛼  in stress space (or 𝛼𝜀  in strain space) can be 

determined by performing two types of simple multi-axial loading tests: one type is in-

phase tests and the other simple out-of-phase tests with a circular load path, as illustrated 

in Fig. 2.4 (a). The resulting S-N test data can be plotted in Fig. 2.4 (b) in terms of 

effective stress range (∆𝜎𝑒) as defined in 𝜎 − √𝛽𝜏 plane shown in Fig. 2.4 (a). Two 

separate S-N curves can then be determined by curve fitting, i.e., (A) and (B) in Fig. 2.4 

(b), which may or may not be parallel to each other. At a given reference fatigue life 

(𝑁𝑟𝑒𝑓 ), equating their respective MLP-based equivalent stress ranges (i.e., ∆𝜎𝑁𝑃
(𝐴)
=

∆𝜎𝑁𝑃
(𝐵)

 ) results in (see [31] for further details): 

 𝛼 =
∆𝜎𝑒

(𝐴)

∆𝜎𝑒
(𝐵) − 1  (2.7)   

It is important to point out here that the above procedure for determining 𝛼 is not 

restricted to the case with a circular load path for which 𝑔𝑁𝑃 = 1, which is required by 

other non-proportional fatigue damage models available to date (e.g. Itoh et al. [8], Lee et 

al.[32]). The procedure presented here is also applicable for any elliptical load paths and 

Eq. (2.7) can be generalized as: 

 

( )

( )
1

A

e

B

e

NPg






 
 

   (2.8) 
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Fig. 2.4 Procedure for determining material sensitivity parameter 𝛼, (a) proportional and 

non-proportional circle load paths for fatigue testing; (b) Calculation of material 

sensitivity parameter 𝛼 from S-N curves corresponding two load paths 

 

When strain-based fatigue tests are considered, the corresponding material 

sensitivity parameter is defined as αε as given in Eq. (2.6) can be calculated in the same 

manner as demonstrated in Fig. 2.4, except it is now on ε − √βε γ plane.  

As illustrated by Fig. 2.4 (b) when ∆𝜎𝑒
(𝐴) > ∆𝜎𝑒

(𝐵)
, α > 0, material is considered 

as being more damaging to non-proportional loading. When ∆𝜎𝑒
(𝐴) ≤ ∆𝜎𝑒

(𝐵)
, α ≤ 0, the 

material is neutral to or even beneficial from the presence of non-proportional loading, as 

reported by Kueppers and Sonsino [13-14] on a series of tests of 6000 series of aluminum 

alloys. Further discussions on interpretation of test data as well as characterization of 

material sensitivity parameter for different series of aluminum alloys in terms of either 𝛼 

using stress-life data or 𝛼𝜀using strain-life data are given in a separate paper [31]. In the 

present study on structural steel components and specimens, both 𝛼 and 𝛼𝜀 are assumed 
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as being unity in order to focus our attention on examination of the effectiveness of non-

proportionality factor 𝑔𝑁𝑃 formulated.  

2.2.4 Physical Interpretation 

For simplicity, consider the non-proportional load path 𝐴𝐵̃  in 𝜎 − √𝛽𝜏  plane 

shown in Fig. 2.3 with its origin being situated at mid-point of proportional load path 𝐴𝐵̅̅ ̅̅ , 

i.e., assuming that any mean stress effects are negligible. With respect to 𝑥′ − 𝑦′ local 

coordinate system in Fig. 2.3, the non-proportionality induced fatigue damage 𝐷𝑁𝑃 can be 

expressed as: 

 2 2' ' ' ( ') ( ')NP

AB AB

D y ds y dx dy     (2.9) 

Note that local coordinates could be expressed in terms of global coordinates as:  

 𝑥′ = 𝑥𝑐𝑜𝑠(𝜃0)  𝑦𝑠𝑖𝑛(𝜃0) (2.10) 

 𝑦′ = −𝑥𝑠𝑖𝑛(𝜃0)  𝑦𝑐𝑜𝑠(𝜃0) (2.11) 

Also note that 

 
2 2 2 2( ') ( ') ( ) ( )dx dy dx dy    (2.12) 

Then, the non-proportionality induced damage 𝐷𝑁𝑃with respect to the global coordinate 

system can now be expressed as: 

     2 2

0 0NP

AB

D xsin ycos dx dy      (2.13) 
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By replacing 𝑥  by 𝜎  and 𝑦  by  √𝛽𝜏  and noting that 𝑑𝜎 = 𝐸𝑑𝜀  and  𝑑𝜏 = 𝐺𝑑𝛾 , 

where 𝐸 (Young’s modus), 𝐺 (shear modulus) and 𝜐 (Poisson's ratio) are related in terms 

of 𝐺 = 𝐸 (2(1  𝜐))⁄ , the non-proportional damage 𝐷𝑁𝑃 can then be written as: 

 ( , ) ( , )NP

AB

D E p d q d          (2.14) 

where  

   2

0( , ) 1 ( )
d

p sin
d


   


    (2.15) 

    2

0

1 1
( , ) 1 ( )

2(1 )

d
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d


   

  
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
 (2.16) 

It can be seen from Eq. (2.15) and Eq. (2.16) that the weight function 𝑝(𝜎, 𝜏) and 

𝑞(𝜎, 𝜏) in Eq. (2.14) are dimensionless. The integrand of Eq. (2.15) has a dimension of 

strain energy densities contributed by normal and shear stresses, with each being 

weighted by a path-dependent function, i.e., 𝑝(𝜎, 𝜏)  and 𝑞(𝜎, 𝜏) , respectively, over a 

given non-proportional load path (𝐴𝐵̃) from A to B in Fig. 2.3.  

Then, the dimensionless load path non-proportionality factor 𝑔𝑁𝑃 in Eq. (2.4) can 

be written as:  

 

' '
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where 𝑝′(𝜎, 𝜏) and 𝑞′(𝜎, 𝜏) are dimensionless weight functions of reference semi-circular 

load path (dashed semi-circle path in Fig. 2.3). It can be seen that non-proportionality 

factor 𝑔𝑁𝑃  can be interpreted as the ratio of weighted form of strain energy densities 

between an actual load path of interest and maximum damage reference load path. 

For proportional loading case, we have  𝐴𝐵̃ = 𝐴𝐵̅̅ ̅̅ , √𝛽𝜏 = 𝑘𝜎,  where  𝑘 =

sin (𝜃0) cos (𝜃0)⁄ . All terms in Eq. (2.14) cancel out, resulting in 𝐷𝑁𝑃 = 0, as it must be. 

As a case of demonstration, consider a uniaxial load path 𝐴𝑂𝐵̅̅ ̅̅ ̅̅  along 𝜎 axis shown in Fig. 

2.5, one can easily see from Eq. (2.15) that 𝑝(𝜎, 𝜏) = 0 and shear strain energy density 

term in Eq. (2.14) vanishes, resulting in:  

  0 0NP

AOB

D dx   . (2.18) 

However, if semi-circular load path 𝐴𝐶𝐵̂ shown Fig. 2.5 is considered, Eq. (2.14) 

becomes:  

 2 21
( ( ) 1) ( ) ( )

cos( )
NP

ACB ACB ACB

d
D G d G d G R Sin d

d


     

 
        

  (2.19) 

It can be seen that 𝐷𝑁𝑃 in Eq. (2.19) now depends on shear strain energy density 

𝜏𝑑𝛾 weighted by a dimensionless function that is now dependent on current position of 

load path increment 𝑑𝑠 and attains its maximum when θ = 90°.  
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Fig. 2.5 Illustration of proportional load path 𝐴𝑂𝐵̅̅ ̅̅ ̅̅  and semi-circular load path 𝐴𝐶𝐵̂ in 

terms of 𝐷𝑁𝑃 calculation 

2.3 Analysis of Test Data  

In this section, the MLP-based multi-axial fatigue damage parameter discussed in 

the previous section in combination with PDMR-based multi-axial cycle counting 

procedure will be used to demonstrate their effectiveness in correlating a large amount of 

well-documented test data in the literature. Two types of non-proportional multi-axial 

fatigue test data are considered here. The first type consists of test data on filet-welded 

tube-to-plate joints by Sonsino and Kueppers [6] using combined sinusoidal bending and 

torsion stresses with a phase shift in introducing non-proportionality effects and by 

Yousefi et al. [7] on a similar joint type by changing the frequency ratio between 

sinusoidal bending and torsion. The second type involves strain-based multi-axial test 

data [8, 9], in which un-welded thin-wall tubular specimens subjected to different non-

proportional load path patterns, e.g., “diamond”, “cross”, and “staircase” etc. defined 

respect to strain plane. 
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2.3.1 Tube-to-Plate Fillet Weld Test Data 

2.3.1.1 Tests by Sonsino and Kueppers  

Sonsino and Kueppers [6] reported a series of test results of tube-to-plate fillet-

welded joints made of StE460 steel under four sinusoidal loading conditions: pure 

bending, pure torsion, combined proportional bending and torsion (in-phase) and non-

proportional (out-of-phase) bending and torsion with a phase shift angle of 90°. The test 

specimen and set up are shown in Fig. 2.6. Based on the nominal stresses given in [6], the 

load paths on nominal stress plane (σn −√𝛽𝜏𝑛 plane) are illustrated in Fig. 2.7 (a), in 

which the out-of-phase loading case forms a circular load path and 𝛽 = 3 . As 

demonstrated in [33-34], both nominal stresses and hot spot stresses are inadequate to 

differentiate the stress concentration effects on fatigue for this joint type, particularly 

when dealing with combined loading. Here, we directly adopt the stress concentration 

factor results calculated using a mesh-insensitive structural stress method [33-34] at weld 

toe, which are referred here as normal structural stress σs = 1.7σn  corresponding to 

applied nominal bending stress σn and in-plane shear structural stress 𝜏𝑠 = 1.1𝜏𝑛 

corresponding applied nominal shear stress  𝜏𝑛 . As a result, the nominal stress based 

circular load path in Fig. 2.7 (a) becomes an elliptical load path on the structural stress 

plane (σs −√𝛽𝜏𝑠  plane) in Fig. 2.7 (b). Among the four paths used by Sonsino and 

Kueppers [6], only the elliptical path has non-zero non-proportionality factor 𝑔𝑁𝑃 

according to Eq. (2.4), which can be analytically integrated as [31]: 
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 
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where 𝜂 is the ratio of minor axis over major axis of elliptical load path. 

Then, Eq. (2.5) can be used to calculate MLP-based equivalent stress range ∆𝜎𝑁𝑃 

for all load cases, noting that ∆𝜎𝑒 being the maximum distance traversed in σs −√𝛽𝜏𝑠 

plane. The results are shown in Fig. 2.8. 

 

Fig. 2.6 Experimental setup (a) and specimen geometry (b) of Sonsino and Kueppers’ test 

[6]  

 

 

Fig. 2.7 Load paths used by Sonsino and Kueppers [6]:  (a) Load paths on nominal stress 

based  σn −√𝛽𝜏𝑛 plane; (b) load paths in structural stress based load path on σs −√𝛽𝜏𝑠 
plane 
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Fig. 2.8 Correlation of test data reported by  Sonsino and Kueppers’ test data [6] using 

MLP-based equivalent stress range 

 

As shown in Fig. 2.8, the MLP-based equivalent stress range yields an excellent 

correlation of the test data with a standard deviation of 0.226, without relying on any 

other empirical parameters. It should be pointed out that Sonsino [4] and Sonsino and 

Kueppers [6] introduced an EESH approach which shows a correlation similar to Fig. 2.8. 

However, their EESH approach was based on notch stress calculated by assuming a 

fictitious weld toe notch radius of 0.45mm [6] and two other empirical parameters (one 

was related to size effects and the other as related stress gradient). As a result, the 

applicability of the EESH parameter may be limited. Such a limitation seemed to be 

confirmed by their own results [6] when applying the EESH parameter for correlating 

multi-axial fatigue test results between constant amplitude and variable-amplitude 

loading conditions, in which Palmgren-Miner's rule based damage parameter (𝐷) had to 

be set as 0.35 (or 𝐷 = 0.35). With a PDMR path length based equivalent stress parameter 

in conjunction with the structural stress definition, both the constant and variable 
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amplitude multi-axial test data fall into the same narrow band with 𝐷 = 1, as presented in 

[25]. 

2.3.1.2 Tests by Yousefi et al. 

Yousefi et al. [7] performed non-proportional multi-axial fatigue tests on fillet-

welded tube-to-plate joints shown in Fig. 2.9. The most interesting aspect of these tests is 

that they examined asynchronous loading between sinusoidal bending and torsion with a 

frequency ratio of 𝑓𝑏 𝑓𝑡⁄ = 1 5⁄  and 𝑓𝑏 𝑓𝑡⁄ = 5  where 𝑓𝑏 represents the frequency of 

applied sinusoidal bending stress and 𝑓𝑡 of applied sinusoidal torsional stress. Again, the 

nominal stresses used by Yousefi et al. [7] are converted into the mesh-insensitive 

structural stresses given by Dong et al. [33-35] as 𝜎𝑠 = 1.73𝜎𝑛  and 𝜏𝑠 = 1.1𝜏𝑛 . The 

nominal bending and shear stress histories used by Yousefi et al. [7] can be then be 

represented in Fig. 2.10 in terms of normalized bending structural stress and shear 

structural stress, both of which are normalized by shear structural stress amplitude. With 

this normalization, PDMR-based cycle counting and MLP-based equivalent stress 

calculation can be performed with respect to the normalized load path. Then, MLP-based 

equivalent stresses under given load levels can be obtained by simply scaling the 

normalized MLP-based equivalent stresses by corresponding shear structural stress 

amplitude. 
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Fig. 2.9 Tube-to-plate joints tested by Yousefi et al. [7] 

 

 

Fig. 2.10 Normalized asynchronous sinusoidal bending and torsion structural stress 

histories corresponding to test conditions used by Yousefi et al [7]: (a) bending/torsion 

ratio equals to 1/5 (𝑓𝑏 𝑓𝑡⁄ = 1 5⁄ ); (b) bending/torsion ratio equals to 5 (𝑓𝑏 𝑓𝑡⁄ = 5) 

 

It should be pointed out here that Yousefi et al. [7] did not address how to 

consistently define a fatigue cycle for these asynchronous load cases shown in Fig. 2.10. 

Instead, they presented their test data in S-N plots with N being defined as cycles 

accumulated by the stress component with a higher frequency [7]. As a result, the loading 

history block shown in Fig. 2.10 (a) and Fig. 2.10 (b) were considered as consisting of 

five fatigue cycles by Yousefi et al. [7].  
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In applying MPL-based approach for treating the load cases shown in Fig. 2.10, 

both cycle definition and non-proportional damage parameter calculation can be clearly 

illustrated by considering the load case in Fig. 2.10 (a). After mapping the normalized 

stress histories onto σs −√𝛽𝜏𝑠 plane in Fig. 2.11, the time history depicted in Fig. 2.10 (a) 

becomes the load path represented by the solid line starting from 𝐴 to 𝐵 and then back to 

𝐴 in Fig. 2.11. Consider the load path segment from A to B for PDMR cycle counting 

illustration purpose, the maximum stress range (𝐴𝐵 ) available is first identified by 

following load path segments indicated by dashed lines (i.e., 𝐴𝐶 − 𝐶𝐶∗ − 𝐶∗𝐸 − 𝐸𝐸∗ −

𝐸∗𝐵 ) while monotonically increasing the distance measured with respect to starting 

position A. This constitutes the first half cycle. Note that 𝐶𝐶∗ and 𝐸𝐸∗ are referred to as 

virtual load paths [25-27]. Apply the same procedure for the remaining segmented load 

paths (i.e., 𝐶 − 𝐷 − 𝐶∗, 𝐸 − 𝐹 − 𝐸∗, etc.) so that all segmented load paths are all counted 

and counted only once. The final cycle counting results are summarized in Table 2.1. 

Then, normalized MLP-based equivalent stress range can be computed along load paths 

(including virtual load paths) corresponding to each cycle counted. This can be 

demonstrated by considering the half cycle giving the maximum effective stress range 

shown by dashed lines in Fig. 2.11 and re-plotted in Fig. 2.12 for clarity for illustration 

purpose. MLP-based fatigue damage parameter described in Eq. (2.5) can be readily 

calculated through numerical integration. Following the same procedure, MLP-based 

equivalent stress ranges for the remaining load path segments can be calculated, as 

summarized in Table 2.1. Since the values of MLP-based equivalent stress in Table 2.1 is 

normalized by shear structural stress amplitude, the true values of MLP-based equivalent 
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stress for different load amplitudes can be easily calculated scaling the normalized 

equivalent stress by the amplitude of shear structural stress.  

Finally, for facilitating S-N based data plotting, each load block (e.g. solid line in 

Fig. 2.11, corresponding to time history block in Fig. 2.10 (a)) can be treated as one 

equivalent cycle with respect to which a Palmgren-Miner's rule based equivalent stress is 

calculated by linearly accumulating MLP-based equivalent stress ranges contributed by 

cycles counted within one load block (see [25]). 

 

Fig. 2.11 Load path representation of Fig. 2.10 (a) on normalized 𝜎𝑠 − √3𝜏𝑠 plane and 

illustration of PDMR based path determination (red dashed lines) for the 1
st
 half cycle 

exhibiting the maximum stress range 
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Fig. 2.12 Illustration of MLP-based non-proportional damage factor calculation for load 

path AC-CC*-C*E-EE*-E*B, determined by PMDR in Fig. 2.11 

 

Table 2.1 PDMR counted cycles (𝑁𝑖), effective stress ranges (∆𝜎𝑒,𝑖), non-proportionality 

factor 𝑔𝑁𝑃,𝑖 and MLP-based equivalent stress (𝜎𝑁𝑃,𝑖) for asynchronous loading case with 

frequency ratio of 𝑓𝑏 𝑓𝑡⁄ = 1/5 

ID 

(𝑖) 

Counted 

cycles 

(𝑁𝑖) 

Effective stress 

range (∆𝜎𝑒,𝑖) Load path 

 

Non-

proportional 

factor(𝑔𝑁𝑃,𝑖) 

MLP-based 

equivalent 

stress 

(∆σ𝑁𝑃,𝑖)  
Stress 

range 

Range 

value 

1 1 AB 2.67 
AC-CC*-C*E-EE*-

E*B 
0.66 4.4322 

2 1 CD 2.04 CD 0.1 2.244 

3 1 EF 2.03 EF 0.1 2.233 

4 1 DC* 1.8 DC* 0.09 1.962 

5 1 FE* 1.45 FE* 0.08 1.566 

 

For comparison purpose, the test data from [7] are first plotted in log-log scale, as 

shown in Fig. 2.13, based on nominal stress range and the cycle definition used in [7]. As 
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expected, the scatter band is rather large, with a standard derivation of 0.45. When MLP-

based equivalent stress is used in conjunction with PDMR-based cycle definition (as 

shown in Table 2.1), a significant improvement can be seen in Fig. 2.14, with a standard 

deviation of 0.314. It is worth noting that the two sets of data with different bending and 

torsional loading frequency ratios (i.e., 𝑓𝑏 𝑓𝑡⁄ = 1 5 ⁄  versus 𝑓𝑏 𝑓𝑡⁄ = 5) are distributed 

closely around the mean line in Fig. 2.14.  

 

Fig. 2.13 Correlation of test data obtained by Yousfei et al. [7] by means of nominal 

stress range  
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Fig. 2.14. Correlation of test data obtained by Yousfei et al. [7] by means of MLP-based 

equivalent stress 

 

As a further demonstration of the generality of MLP-based equivalent stress 

parameter for correlating independent multi-axial fatigue test data from different authors, 

Fig. 2.15 combines the test data from Sonsino and Kueppers (Fig. 2.8) and those from 

Yousefi et al. (Fig. 2.14), showing that both sets of test data correlate reasonably well 

with each other, exhibiting essentially the same trend. This suggests that MLP-based 

fatigue damage parameter developed in this study offers data transferability, not only 

from proportional to non-proportional loading conditions, from synchronized to non-

synchronized sinusoidal multi-axial loading conditions, but also from one joint geometry 

to another.  
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Fig. 2.15. MLP base equivalent stress for fatigue correlation of test data from both 

Yousefi et al. (see Fig. 2.14) and Sonsino and Kueppers (see Fig. 2.8)  

 

2.3.2 Low Cycle Fatigue Data of Un-Welded Specimens 

2.3.2.1 Tests by Itoh et al.  

Strain-controlled multi-axial fatigue tests were carried out by Itoh et al. [8] on 304 

stainless steel specimens (Fig. 2.16 (a)). Tubular specimens were subjected to a combined 

push-pull and reversed torsion, by following various strain paths given Fig. 2.16 (b). 

After demonstrating the inability of the equivalent stress method based on ASME Code 

(i.e., a relative von Mises strain range) [36] in effectively correlating their test data, Itoh 

et al. [8] proposed an equivalent non-proportional strain range parameter that 

incorporates effects of both maximum principal strain axis rotation and material cyclic 

strain-hardening response. Although showing an improved correlation for the same data 

(see Fig. 2.17), their material sensitivity parameter (to non-proportional loading) 
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determined from cyclic strain-hardening response may not be generally applicable. For 

instance, it is recently found that materials without exhibiting noticeable additional cyclic 

strain-hardening effect, such as Titanium alloy [37] and 1050 QT steel [38], non-

proportional load path is still found to be much more damaging than proportional load 

path. Also note that when it comes to cycle counting, it is assumed by Itoh et al.’s that 

“one cycle is defined as a full straining for both axial and shear strain” which is not 

applicable for complex loading conditions such as Yousefi et al.’s asynchronous load 

cases [7]. 

In analyzing the same set of test data by MLP-based equivalent strain range 

according to Eq. (2.6), PDMR-based cycle counting are performed consistently for all 

cases except for Cases 0 and 5, for which no cycle counting is needed. For each identified 

one half cycle, MLP-based equivalent strain range is calculated by Eq. (2.6) 

(assuming 𝛼𝜀 = 1) with respect to 𝜀 − √𝛽𝜀𝛾 plane given in Fig. 2.16(b) where 𝛽𝜀 = 1/3. 

Without relying on any material cyclic hardening related parameters, Fig. 2.18 shows the 

MLP-based correlation results for the same data shown in Fig. 2.17, clearly showing the 

effectiveness of the proposed fatigue damage parameter in addition to its simplicity, even 

though the two models give a rather similar correlation and standard deviation with ours 

being slightly better. It’s worth mentioning that as already demonstrated in Sec. 3.1, the 

MLP model is equally effective in correlating stress-life multi-axial test data in high-

cycle fatigue regime while Itoh et al.’s model has not been demonstrated in stress space 

for high cycle fatigue. 
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Fig. 2.16 Strain-controlled multi-axial fatigue tests reported by Itoh et al. [8]: (a) thin 

tubular specimen geometry; (b) strain-controlled load paths  

 

(a) Hollow cylinder specimen geometry (b) strain-controlled load paths  
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Fig. 2.17 Fatigue life correlation of test data [8] by Itoh et al.’s [8] model  

 

 

Fig. 2.18 Data correlation of test data [8] by MLP-based equivalent strain range  

 

Of the fourteen load patterns shown in Fig. 2.16 (b), it is important to note that 

Cases 6-8 possess the same load-path length as well as the same effective strain range 

(∆𝜎𝑒) and constitute one full fatigue cycle according to Dong et al. [25], and Wei and 
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Dong [26-27]. As shown in Fig. 2.19, path-length based equivalent strain parameter fails 

to correlate the test data among the three load patterns (Cases 6-8). Once the MLP-based 

equivalent strain definition according Eq. (2.6) is used, the three sets of test results show 

an excellent correlation, as shown in Fig. 2.20, which is a replot of the same test data in 

Fig. 2.18 here for clarity. The corresponding load path non-proportionality factor 𝑔𝑁𝑃 for 

the three load patterns are also provided in Table 2.2 for a quantitative comparison 

purpose.  

 

Fig. 2.19 Data correlation using path-length-based equivalent strain for load patterns 

Cases 6-8 shown in Fig. 2.16 (b).  
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Fig. 2.20 Data correlation using MLP-based equivalent strain range for Cases 6-8 shown 

in Fig. 2.16 (b). 

 

Table 2.2. Comparison of path-length and MLP-based non-proportionality factors  

Load 

pattern [8] 

Path-length 

based non-

proportionality 

damage factor  

MLP-based non-

proportionality 

damage factor 

Case 6 0.41 0.1 

Case 7 0.41 0.17 

Case 8 0.41 0.68 

 

2.3.2.2 Tests by Socie 

Socie [9] also reported both proportional and non-proportional fatigue test results 

on 304 stainless steel. Tubular specimens with an internal diameter of 25mm and a wall 

thickness of 3.8mm were subjected to strain-controlled load paths as illustrated in Fig. 

2.21. Smith-Watson-Topper (SWT) critical plane model [39] was used for data analysis 

and the maximum principal strain plane was defined as the critical plane. With four 
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material parameters being determined in advance, a reasonably good correlation was 

demonstrated by Socie [9]. 

 

Fig. 2.21 Loading paths used by Socie [9] for 304 stainless steel test  

 

To demonstrate the simplicity and effectiveness of the approach developed in this 

study, the same test data by Socie [9] are analyzed here using MLP-based equivalent 

strain parameter in the same way as was used for analyzing Itoh et al.’s test data 

discussed in the previous section. Without introducing any material related parameter in 

Eq. (2.6), i.e., setting 𝛼𝜀 = 1, the results are shown in Fig. 2.22.  
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Fig. 2.22 MLP-based equivalent strain correlation of Socie’s data [9]  

 

 

Fig. 2.23 MLP-based equivalent strain correlation of both test data from Itoh et al. [8] and 

Socie [9] 
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Furthermore, it should be interesting to compare the test data by Itoh et al. [8] and 

those by Socie [9] using MLP-based equivalent strain parameter. Fig. 2.23 shows the 

results, indicating a rather reasonable agreement between the test data from the two 

sources. Note that Itoh et al. [8] and Socie [9] used different methods and different 

material-related parameters. The present MLP-based approach as shown in Fig. 2.23, 

again, did not use any material-related parameter, i.e.,  𝛼𝜀 = 1 is assumed in Eq. (2.6). 

This should not be interpreted as suggesting that material behavior under multi-axial 

loading conditions is not important. Rather, the intent of such a comparison shown in Fig. 

2.23 (as well as that shown in Fig. 2.15) is to highlight the reasonableness of the 

formulation of the MLP-based damage parameter. It suffices to say that if a best fit of 

material parameter  𝛼𝜀  is introduced here, a further improved correlation should be 

expected, which is not the focus on this study. 

2.4 Conclusions 

In this study, a new non-proportional fatigue damage parameter, referred to as 

MLP-based equivalent stress or strain parameter, is proposed and applied for correlating 

a large amount of multi-axial fatigue test data obtained using numerous load-path patterns 

in either stress-plane in high cycle fatigue regime or in strain-plane in low-cycle fatigue 

regime. Major findings can be stated as follows:  

(1) The MLP-based fatigue damage parameter, in conjunction with PDMR-based 

cycle counting procedure, is effective in correlating a large amount of non-

proportional multi-axial test data obtained from numerous authors with diverse 

load-path patterns.  
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(2) The MLP-based parameter can be shown to be related to an integral form of strain 

energy densities contributed by normal and shear deformation and each weighted 

by a path-dependent function, over a given non-proportional load path. 

(3) The dimensionless non-proportionality damage factor ( 𝑔𝑁𝑃 ) can be readily 

calculated along a load-path or accumulated path segments corresponding each 

one-half cycle determined by PDMR cycle counting method. 

(4) Once determined, the dimensionless non-proportionality damage factor (𝑔𝑁𝑃) can 

be used for calculating MLP-based equivalent stress or strain parameter for data 

correlation or fatigue life correlation purpose in stress-space or strain space under 

variable amplitude multi-axial fatigue loading conditions.  

Acknowledgments 

The authors acknowledge the support of this work through a grant from the 

National Research Foundation of Korea (NRF) Grant funded by the Korea government 

(MEST) through GCRC-SOP at University of Michigan under Project 2-1: Reliability 

and Strength Assessment of Core Parts and Material System. P. Dong acknowledges the 

financial support made possible by Traction Power National Key Laboratory Open 

Competition Grant (No. TPL 1605).  The authors are also grateful to fruitful discussions 

with Dr. Zhigang Wei of Tenneco Automotive during the course of this investigation.  

References  

[1] Socie DF, Marquis G. Multiaxial fatigue. Warrendale, PA: Society of Automotive Engineers; 

1999. 

[2] Susmel L. Multiaxial Notch Fatigue. Elsevier; 2009. 



130 
 

[3] Skibicki D. Phenomena and computational models of non-proportional fatigue of materials. 

Springer; 2014. 

[4] Sonsino C. Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains 

and stresses. Int J Fatigue 1995;17:55–70.  

[5] Fatemi A, Shamsaei N. Multiaxial fatigue: An overview and some approximation models for 

life estimation. Int J Fatigue 2011;33:948–958. 

[6] Sonsino CM, Kueppers M. Multiaxial fatigue of welded joints under constant and variable 

amplitude loadings. Fatigue Fract Eng Mater Struct 2001;24:309–327. 

[7] Yousefi F, Witt M, Zenner H. Fatigue strength of welded joints under multiaxial loading: 

experiments and calculations. Fatigue Fract Eng Mater Struct 2001;24:339–355. 

[8] Itoh T, Sakane M, Ohnami M, Socie DF. Nonproportional low cycle fatigue criterion for type 

304 stainless steel. J Eng Mater Technol 1995;117:285–292. 

[9] Socie D. Multiaxial Fatigue Damage Models. J Eng Mater Technol 1987;109:293–298.  

[10] Shamsaei N, Fatemi A, Socie DF. Multiaxial cyclic deformation and non-proportional 

hardening employing discriminating load paths. Int J Plast 2010;26:1680–701. 

[11] Maddox SJ, Razmjoo GR. Interim fatigue design recommendations for fillet welded joints 

under complex loading. Fatigue Fract Eng Mater Struct 2001;24:329–337.  

[12] Sonsino CM. Multiaxial fatigue assessment of welded joints - Recommendations for design 

codes. Int J Fatigue 2009;31:173–187. 

[13] Kuppers M, Sonsino CM. Critical plane approach for the assessment of the fatigue behaviour 

of welded aluminum under multiaxial loading. Fatigue Fract Eng Mat Stru 2003;26:507–513. 

[14] Kueppers M, Sonsino CM. Assessment of the fatigue behavior of welded aluminum joints 

under multi-axial spectrum loading by a critical plane approach. Int J Fatigue 2006;28:540–6. 

[15] Sonsino CM. Influence of material’s ductility and local deformation mode on multiaxial 

fatigue response. Int J Fatigue 2011;33:930–947. 

[16] Wang CH, Brown MW. Life prediction techniques for variable amplitude multiaxial 

fatigue—Part 1: Theories 1996;118:367–370. 

[17] Fatemi a, Socie DF. Critical plane approach to multiaxial fatigue damage including out-of-

phase loading. Fatigue Fract Eng Mater Struct 1988;11:149–165. 

[18] Dong P, Hong J, A Robust Structural Stress Parameter for Evaluation of Multiaxial Fatigue 

of Weldments. J ASTM Int 2006;3:100348. 

[19] Siljander A, Kurath P, Lawrence F V. Nonproportional Fatigue of Welded Structures. ASTM 

STP 1992;1122:319–338. 



131 
 

[20] Findley WN. A theory for the effect of mean stress on fatigue of metals under combined 

torsion and axial load or bending. J Eng Ind 1959;81:301–306. 

[21] Brown MW, Miller KJ. A theory for fatigue failure under multiaxial stress–strain conditions. 

Proc Inst Mech Eng 2006;187:745–755.  

[22] Papadopoulos I. Critical plane approaches in high-cycle Fatigue: on the definition of the 

amplitude and mean value of the shear stress acting on the critical plane. Fatigue Fract Eng Mater 

Struct 1998;21:269–285. 

[23] Li B, Reis L, de Freitas M. Comparative study of multiaxial fatigue damage models for 

ductile structural steels and brittle materials. Int J Fatigue 2009;31:1895–1906. 

[24] Bannantine JA, Socie D. A variable amplitude multiaxial fatigue life prediction methods. 

ICBMFF3, 2013. 

[25] Dong P, Wei Z, Hong JK. A path-dependent cycle counting method for variable-amplitude 

multi-axial loading. Int J Fatigue 2010;32:720–734. 

[26] Wei Z, Dong P. A generalized cycle counting criterion for arbitrary multi-axial fatigue 

loading conditions. J Strain Anal Eng Des 2014;49:325–341. 

[27] Wei Z, Dong P. Multiaxial fatigue life assessment of welded structures. Eng Fract Mech 

2010;77:3011–3021. 

[28] Kanazawa K, Miller KJ, Brown MW. Low-cycle fatigue under out-of-phase loading 

conditions. J Eng Mater Technol 1977;99:222–228. 

[29] Pejkowski Ł, Skibicki D, Sempruch J. High cycle fatigue behavior of austenitic steel and 

pure copper under uniaxial, proportional and non-proportional loading. Stroj Vestn - J Mech Eng 

2014;60:549–560. 

[30] Itoh T, Nakata T, Sakane M, Ohnami M. Nonproportional low cycle fatigue of 6061 

aluminum alloy under 14 strain paths. Eur Struct Integr Soc 1999;25:41–54. 

[31] Mei J, Dong P. Modeling of non-proportional multi-axial fatigue damage in aluminum alloys. 

ASTM Selected Technical Papers. Submitted.  

[32] Lee Y-L, Tjhung T, Jordan A. A life prediction model for welded joints under multiaxial 

variable amplitude loading histories. Int J Fatigue 2007;29:1162–73. 

[33] Dong P. A structural stress definition and numerical implementation for fatigue analysis of 

welded joints. Int J Fatigue 2001;23:865–876. 

[34] Dong, P. A robust structural stress method for fatigue analysis of offshore/marine structures 

J. Offshore Mech. Arct. Eng 2005; 127(1): 68-74. 

[35] Dong, P., and J. K. Hong. "The master SN curve approach to fatigue of piping and vessel 

welds." Welding in the World 48.1-2 (2004): 28-36. 

[36] ASME Code, Case N-47-23 of ASME Boiler and Pressure Vessel Code, American Society 

of Mechanical Engineers, (1988) 



132 
 

[37] Shamsaei N, Gladskyi M, Panasovskyi K, Shukaev S, Fatemi A. Multiaxial fatigue of 

titanium including step loading and load path alteration and sequence effects. Int J Fatigue 

2010;32:1862–1874. 

[38] Shamsaei N, Fatemi A, Socie DF. Multiaxial fatigue evaluation using discriminating strain 

paths. Int J Fatigue 2011;33:597–609. 

[39] Smith K, Topper TH, Watson P. A stress-strain function for the fatigue of metals(Stress-

strain function for metal fatigue including mean stress effect). J Mat. 1970;5:767-778.



133 
 

Chaper 3.  

Modeling of Path-Dependent Multi-Axial Fatigue Damage in Aluminum 

Alloys 

 

Abstract 

This paper presents a comprehensive investigation into non-proportional loading 

induced multi-axial fatigue damage in wrought aluminum alloys using a recently 

developed multi-axial fatigue damage parameter. The moment of load path (MLP) based 

fatigue damage parameter is formulated in a form of an equivalent stress or strain range 

that measures both the extent of load-path deviation from proportionality within a fatigue 

cycle and material sensitivity to load-path non-proportionality. The use of such a fatigue 

damage parameter for correlating a large amount of test data is given in a recent 

publication by Mei and Dong (2016) for structural steels that are deemed very sensitive to 

non-proportional loading. This study examines another class of materials such as various 

types of wrought aluminum alloys (including 2000, 5000, 6000 and 7000 series) that are 

typically viewed as being less sensitive to non-proportional loading. A generalized 

procedure for extracting material sensitivity parameter from stress-life or strain-life test 

data under simple multi-axial loading conditions is first presented. After obtaining 

material sensitivity parameter for each of the wrought aluminum alloys examined in this 

study, It is found that material sensitivity parameter can be related to material ductility (in 
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terms of percentage of elongation from tensile tests) in an approximately linear manner in 

both low-cycle and high cycle regimes. An excellent agreement (mostly within a factor of 

3) is achieved between model-estimated fatigue lives and test lives for all materials under 

various non-proportional multi-axial loading conditions considered in this study. 

Keywords: Multi-axial fatigue, wrought aluminum alloys, non-proportional loading, 

fatigue damage modeling, damage parameter, material sensitivity. cycle counting 

3.1 Introduction 

Over the past few decades, there has been a great deal of experimental evidence 

[1-10] documenting that additional fatigue damage can be introduced under non-

proportional multi-axial cyclic loading conditions, depending on both load paths and 

materials. Therefore, a fatigue damage model capable of both effectively capturing non-

proportional load path in its driving force formulation and consistently representing 

material resistance to load-path non-proportionality in terms of a material sensitivity 

parameter has been sought after by researchers [1, 3, 11-14] in order to achieve reliable 

fatigue life estimation for engineering structures.  

As for modeling of load-path non-proportionality in fatigue driving force 

formulation, past investigations include Kanazawa et al. [11] who proposed a shear plane 

based rotation factor (𝐹 ) as a measure of load-path non-proportionality, which was 

defined as a ratio of shear strain range acting on a plane of 45° away from the maximum 

shear plane to the maximum shear strain range;  Itoh et al.[1] introduced a normalized 

load-path non-proportionality factor (𝑓𝑁𝑃) for measuring the extent of  rotation of the 

principal strain axis during one multi-axial loading event; Sonsino and Kueppers [3] 
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considered an integrated form of shear stresses over all planes corresponding to out-of-

phase loading and defined its ratio over the value corresponding proportional loading as a 

non-proportionality factor. It should be pointed out that the model by Sonsino and 

Kueppers [3] is only applicable for non-proportional loading condition in which there 

exists a clearly defined phase angle.  

When it comes to material sensitivity to non-proportional loading induced fatigue 

damage, most of researchers tend to attribute it to additional strain hardening resulted 

from non-proportional loading. Along this line, Doong et al. [12] pointed out there exist a 

significant difference in dislocation movements between proportional and non-

proportional loadings in copper and stainless steel. The degree of non-proportional 

hardening was proposed to be measured by the difference in equivalent yield stresses 

between cyclic out-of-phase (90
0
 degree) loading and cyclic in-phase loading conditions 

at a specified equivalent plastic strain amplitude. Following a similar concept, Itoh et al. 

[1] proposed material sensitivity parameter (𝛼𝐼) to load-path non-proportionality in their 

multiaxial fatigue damage model, which can be determined by comparing cyclic stress-

strain curves generated under non-proportional and proportional loading conditions, 

respectively. Recognizing that unsatisfactory data correlation may occur for some 

applications and difficulties may exist for variable amplitude loadings, Itoh and Yang [13] 

and Itoh et al. [14] later proposed an alternative method by using monotonic strain-

hardening properties for determining material sensitivity to load-path non-proportionality. 

However, the very assumption that load-path non-proportionality induced fatigue 

damage is solely  related to material hardening behavior have been challenged by recent 

studies [6, 15-16] that have shown that materials with little or no strain hardening can still 
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exhibit a significant amount of fatigue life reduction under non-proportional loading 

conditions. Similar observations can be made when examining high cycle fatigue test 

data subjected to load-path non-proportionality, in which any plastic deformation can be 

considered insignificant or negligible while additional fatigue damage due to non-

proportional loading is seen being as significant as that in low cycle regime. As a result, a 

more appropriate definition of material sensitivity parameter is required for modeling 

multi-axial fatigue damage resulted from non-proportional loading. 

In order to construct an effective equivalent stress/strain based model for 

consistently capturing non-proportional multi-axial fatigue damage under general loading 

conditions, both loading-related non-proportionality and material-related parameters must 

be considered simultaneously and properly (see Mei and Dong [17]). In recognizing such 

a need, the authors have recently proposed a “moment of load path” (MLP) based multi-

axial fatigue damage model which contains both a dimensionless load-path non-

proportionality factor and a material sensitivity parameter. The path-dependent 

proportionality factor is determined with respect to the load path of one fatigue cycle 

defined by means of the path-dependent maximum range (PDMR) cycle counting method 

proposed by Dong et al. [18] and Wei and Dong [19-20], while the material sensitivity 

parameter to non-proportional loading can be determined by comparing two sets of 

fatigue test data, of which one is under in-phase multi-axial loading and the other is under 

out-of-phase. As shown in [17], this MLP-based model proves to be quite effective in 

correlating a large amount of multi-axial fatigue test data obtained from welded 

components made of structural steels and non-welded components of stainless steels in 

both low cycle and high cycle regimes. 



137 
 

It should be noted that when applying MLP-based model for analyzing structural 

steel and stainless steel test data [17], a material sensitivity parameter to load-path non-

proportionality was assumed to be unity and it results in a good correlation of all test data 

analyzed. As mentioned earlier, there also exists another class of materials, such as some 

wrought aluminum alloys [21-23] which may exhibit less sensitivity to load-path non-

proportionality. Therefore, the effectiveness of the MLP-based model remains to be 

demonstrated for applications in this class of materials. It is important to point out that 

the observations on material sensitivity made by above cited studies [21-23] are rather 

qualitative in nature without introducing a clearly defined effective stress or strain 

parameter in comparing test data between those under proportional and those under non-

proportional loading conditions. In addition, there exist quite a few non-proportional 

multi-axial fatigue test data on non-welded tubular specimens made of 2000, 5000, 6000 

and 7000 series of wrought aluminum alloys, as reported by other researchers [24-31]. 

These test data have not been analyzed for quantitatively establishing material sensitivity 

to non-proportional load paths due to the lack of an effective framework on which the 

data can be cross-compared.  

As a sequel to the recently published paper [17] on a MLP-based model, the 

purpose of this paper is to demonstrate how this model can be effectively used for 

characterizing non-proportional loading effects on multi-axial fatigue damage in a wide 

range of wrought aluminum alloys. This includes the determination of material sensitivity 

to non-proportional loading in a consistent manner for different aluminum alloys in order 

for its usage in fatigue test data correlation. A particularly emphasis will be given to 

establishing a relationship between material sensitivity and material ductility (i.e. 
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elongation) for wrought aluminum alloys examined in this study. A comprehensive 

collection of non-proportional multi-axial fatigue test data on aluminum alloys [24-31] 

are considered here, which include  2000, 5000, 6000 and 7000 series of wrought 

aluminum alloys  exhibiting a wide range of ductility.   

3.2 Multi-Axial Fatigue Damage Parameter 

3.2.1 Formulation  

As presented in detail by the same authors in [17], consider a non-proportional 

load path (see Fig. 3.1) from A to B, i.e.,  𝐴𝐵̃ , on 𝜎 − √𝛽𝜏  plane where that √𝛽 

represents a fatigue equivalence parameter between S-N curves obtained by performing 

pure normal stress and pure shear stress cyclic testing [18-20]. The total multi-axial 

fatigue damage (𝐷) for any given non-proportional load path 𝐴𝐵̃  is assumed to consist of 

two parts:  

 P NPD D D   (3.1) 

in which 𝐷𝑃 represents damage caused by the reference proportional loading event from 

A to B (i.e., 𝐴𝐵̅̅ ̅̅  ), which can be directly related to distance from A to B, or the effective 

stress range ∆𝜎𝑒 , and 𝐷𝑁𝑃  represents load path non-proportionality caused fatigue 

damage due to any excursions of load path 𝐴𝐵̃ deviating from the reference proportional 

path ( 𝐴𝐵̅̅ ̅̅  ). Therefore, one assumed way of representing the load path non-

proportionality related damage along Path 𝐴𝐵̃  can be stated as follows, with respect to 

local 𝑥′ − 𝑦′ coordinate system, as:  
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 ' sin( ) 'NP

AB

D r ds     (3.2) 

 

Fig. 3.1 Non-proportional load path 𝐴𝐵̃, non-proportional circular load path AB  and 

reference (proportional) load path 𝐴𝐵̅̅ ̅̅     

     

It can then be shown [17] that, a dimensionless form of load path non-proportionality 

induced damage parameter can be expressed as, with respect to the local 𝑥′ − 𝑦′ 

coordinate system:  

 
2

' sin( ) ' ' sin( ) '

2sin( ) '

NP AB AB
NP

Max

AB

r ds r ds
D

g
D RR ds

 


  

 


 (3.3) 

where 𝐷𝑀𝑎𝑥  represents the maximum possible non-proportional fatigue damage caused 

by the semi-circular load path denoted by dashed lines in Fig. 3.1. Then, 𝑔𝑁𝑃 in Eq. (3.3) 

can be referred as a normalized load-path non-proportionality damage factor with respect 
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to the maximum possible damage 𝐷𝑀𝑎𝑥, noting that 𝑔𝑁𝑃 varies from zero (corresponding 

to the proportional load path 𝐴𝐵̅̅ ̅̅  ) to unity (corresponding to the semi-circular load path 

AB ).  Then, an equivalent stress range parameter (MLP-based equivalent stress range) 

taking into account of non-proportional load path induced damage can be written as:    

 ∆𝜎𝑁𝑃 = ∆𝜎𝑒(1  𝛼 ∙ 𝑔𝑁𝑃) (3.4) 

Note that a material sensitivity parameter 𝛼 is inserted in Eq. (3.4) to accommodate the 

fact that some materials are more sensitive to non-proportional multi-axial fatigue 

loading than others as observed in [21-23].   

Eq. (3.4) can also be rephrased with respect to strain space for analyzing strain-

life based multi-axial test data, e.g.,  𝜀 − √𝛽𝜀𝛾  plane, in which 𝛽𝜀  is a fatigue 

equivalency parameter determined by comparing two 𝜀 − 𝑁 curves generated using pure 

normal strain 𝜀 and pure shear strain 𝛾 cyclic tests, respectively. Consistent with 𝛽 = 3 in 

stress space, 𝛽𝜀=1 3⁄  has being shown to be valid for most multi-axial strain-life based 

test data correlation. Then, an equivalent strain range parameter (MLP-based equivalent 

strain range) incorporating non-proportional load-path induced damage can be written as: 

 ∆𝜀𝑁𝑃 = ∆𝜀𝑒(1  𝛼
𝜀 ∙ 𝑔𝑁𝑃

𝜀 ) (3.5) 

In Eq. (3.5), ∆𝜀𝑒  is effective strain range which can be directly related to distance 

between two points on 𝜀 − √𝛽𝜀𝛾 plane.  𝛼𝜀 is a material-dependent non-proportionality 

sensitivity parameter defined in terms of cyclic strain fatigue test results and 𝑔𝑁𝑃
𝜀  can be 

evaluated according to Eq. (3.3) on  𝜀 − √𝛽𝜀𝛾 plane. 
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3.2.2 Closed Form Solution of 𝐠𝐍𝐏 for Elliptical Load Paths  

In performing laboratory multi-axial fatigue tests, it is common that both normal 

and shear components are represented in a sinusoidal wave form with a phase shift angle 

(𝛿), e.g.,  

                                                             
 

 

0

0

sin

sin

  

   



 
                                         (3.6) 

which form an elliptical load path in 𝜎 − √𝛽𝜏 plane (see Fig. 3.2 as an illustration when 

𝛿 ≠ 0), The semi-major axis (A) and semi-minor axis (B) of the elliptical load path can be 

expressed analytically as:  

 

Fig.3.2 Illustration of an elliptical load path with its semi-major axis (A) and semi-minor 

axis (B) with respect to local coordinate system 𝑥′ − 𝑦′  
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Then, by introducing a parametric representation of the ellipse in terms of  𝑥′ = 𝐴𝑐𝑜𝑠(𝜃) 

and 𝑦′ = 𝐵𝑠𝑖𝑛(𝜃) , it can be shown that the integration of non-proportional damage 

𝐷𝑁𝑃 of Eq. (3.2) for the elliptical path will lead to:   

                   
1

2 2 2

0
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2 1 1NPD AB e x dx AB e

e

 
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 
                              (3.9) 

where 𝑒 = √(𝐴2 − 𝐵2) 𝐴2⁄ . Substituting Eq. (3.9) into Eq. (3.3) results in the non-

proportionality factor of an elliptical load path as: 
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where, 
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One important application of the closed form solution given in Eq. (3.10) is that it 

makes the determination of material sensitivity parameter 𝛼  rather convenient once 

fatigue test data for proportional loading (represented by ∆𝜎𝑒 ) and those for non-
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proportional loading with a phase angle (δ) represented by ∆𝜎𝑁𝑃 become available, as 

discussed in the next section.  

3.2.3 Determination of Material Sensitivity Parameter 𝛂  

To determine the material sensitivity (𝑎) to non-proportional loading, one only 

need to conduct two sets of relatively simple multi-axial fatigue tests: one is under in-

phase (proportional) loading labeled as (P) and the other is under out-of-phase (e.g., with 

a phase angle of 90°) labeled as (Q), with the two respective load paths illustrated in Fig. 

3.3(a). When their corresponding S-N test data are plotted as illustrated in Fig. 3.3(b) in 

terms of effective stress range (∆𝜎𝑒 ), two separate mean S-N curves can then be 

determined. Now consider a reference fatigue life (𝑁𝑟𝑒𝑓 ), the MLP-based equivalent 

stress range for both in-phase loading case (Case A) and 90° out-of-phase loading case 

(Case B) should be of the same values, each represented by ∆𝜎𝑁𝑃
(𝐴)

, and ∆𝜎𝑁𝑃
(𝐵)

 respectively. 

For the in-phase case (Case A), since 𝑔𝑁𝑃
(𝐴)
= 0, ∆𝜎𝑁𝑃

(𝐴)
 can be written as, according to Eq. 

(3.4): 

 ∆𝜎𝑁𝑃
(𝐴)
= ∆𝜎𝑒

(𝐴)(1  𝛼 ∙ 𝑔𝑁𝑃
(𝐴)) = ∆𝜎𝑒

(𝐴)
 (3.12) 

For the out-of-phase case (Case B) for which  𝑔𝑁𝑃
(𝐵)
= 1 by definition (see Eq. (3.3) as 

applied to the circular load path shown in Fig. 3.3(a)), ∆𝜎𝑁𝑃
(𝐵)

 is formulated as: 

 ∆𝜎𝑁𝑃
(𝐵)
= ∆𝜎𝑒

(𝐵)(1  𝛼 ∙ 𝑔𝑁𝑃
(𝐵)) = ∆𝜎𝑒

(𝐵)(1  𝛼) (3.13) 

Since ∆𝜎𝑁𝑃
(𝐴)

 and ∆𝜎𝑁𝑃
(𝐵)

 correspond to the same fatigue life (𝑁𝑟𝑒𝑓), it follows that ∆𝜎𝑁𝑃
(𝐴)
=

∆𝜎𝑁𝑃
(𝐵)

. By equating  Eq. (3.12) with Eq. (3.13), 𝛼 can then be expressed as:  
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 𝛼 =
∆𝜎𝑒

(𝐴)

∆𝜎𝑒
(𝐵) − 1  (3.14)   

As can be seen, when ∆𝜎𝑒
(𝐴) > ∆𝜎𝑒

(𝐵)
,  α > 0, material is considered as being sensitive 

and more damaging to non-proportional loading compared with proportionally loaded; 

when α < 0, material is sensitive but less damaging to non-proportional loading; When 

α = 0, material is neutral to the presence of non-proportional loading.  

It is important to point out here that the above procedure for determining 𝛼 is not 

restricted to the availability of test data obtained using a circular load path for which 

𝑔𝑁𝑃 = 1. The procedure presented here is also applicable for any elliptical load paths for 

which, Eq. (3.14) can be generalized as: 

 

( )

( )
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e

NPg






 
 

   (3.15)  

in which 𝑔𝑁𝑃 is determined through Eq. (3.10) for given 𝜎0, 𝜏0 , and 𝛿.   

For strain-life based multi-axial data correlation, the corresponding material 

sensitivity parameter αε  given in Eq. (3.5) can be determined in exactly the same manner, 

but with respect to ε − √βε γ plane. It is tempting to seek a direct relationship between α 

and αε so that once one is determined, e.g., α in stress space, can be used to infer the 

other (i.e. αε  in strain space (αε  ) or vice versa. Such a relationship would require 

considerations of material cyclic constitutive relationship under non-proportional loading 

conditions in both high cycle and low cycle regime, which is a subject of on-going study 

by the authors. 
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Fig. 3.3. Procedure for determining material sensitivity parameter 𝛼, (a) proportional and 

non-proportional circular load paths for fatigue testing; (b) Calculation of material 

sensitivity parameter 𝛼 with respect to reference fatigue life 𝑁𝑟𝑒𝑓  

 

3.3 Analysis of Fatigue Test Data  

3.3.1 Determination of α or  𝛂𝛆  

A total of seven groups [24-31] of multi-axial (including both proportional and 

non-proportional) test data obtained from four types of wrought aluminum alloys are 

considered here, which are designated as 2000, 5000, 6000 and 7000 series. As an 

illustration for applying the procedure described in Sec. 2.3, Fig. 3.4 is a plot of strain-life 

curves for hollow tube specimen (see Fig. 3.5) test results obtained from aluminum alloy 

7075-T6 [24-25] in terms of effective strain range versus cycles to failure, in which the 

effective strain range is the distance on 𝜀 − √𝛽𝜀𝛾 plane, where 3/1 , as discussed in 

Sec. 2.  The two sets of test data can then be represented by the two mean lines, 

respectively, through a simple curve fitting. Since the two lines have slightly different 
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slopes, a mid-range life, i.e., 𝑁𝑟𝑒𝑓 = 100  in this case is chosen here for determining 𝛼𝜀 

which will be used for analyzing test data obtained under more complex non-proportional 

load paths. Substituting 𝜀𝑒
(𝐴)

 and 𝜀𝑒
(𝐵)

 into exactly the same form of Eq. (3.15) but in 

terms of strain, 𝛼𝜀 is found to be 0.35 (i.e. 𝛼𝜀 = 0.35).  

 

Fig.3.4 Determination of αε using proportional and non-proportional (phase angle of 90
0
) 

test data - aluminum alloy 7075-T6 

 

Following the same procedure, 𝛼𝜀  for another independent set of 7075-T651 

multi-axial fatigue tests data [26] using tubular specimens is also calculated as 𝛼𝜀 = 0.35. 

Table 3.1 summarizes material sensitivity parameters 𝛼 (for load-controlled tests) or 𝛼𝜀 

(for strain-controlled tests) calculated by comparing simple proportional and non-

proportional (circle load path) multi-axial fatigue test results for all the seven groups of 

wrought aluminum alloys except for Itoh et al.’s test data [27] in which pure torsion test 

data is compared with out-of-phase data since only a few in-phase data points are 
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available. Also listed in Table. 3.1 is material ductility in terms of elongation for each 

group of aluminum alloys examined. By observing the material sensitivity parameters (𝛼 

or 𝛼𝜀) and elongation of all aluminum alloys listed in Table. 3.1, the following interesting 

observations can be made: 

(a) Material sensitivity parameter 𝛼  determined from stress-life data or 𝛼𝜀 

determined from strain-life data seem to have a similar value, such as shown for 

2000 and 7000 series alloys. 

(b)  For each type of aluminum alloy, there exists a reasonable degree of consistency 

in 𝛼  or 𝛼𝜀  values determined from tests conducted independently by different 

researchers, suggesting that 𝛼  or 𝛼𝜀  indeed can be interpreted as a material 

constant.  

(c) For the four types of aluminum alloys investigated, the values of 𝛼 and 𝛼𝜀  are 

found to be in the range of 0.35-0.55,  much less than those found for structural 

steels and steel weldment tests, which were treated as unity (i.e. 𝛼 = 𝛼𝜀 = 1) in 

[17]. 

(d) For aluminum alloys showing a relatively higher ductility, such as 2000 series 

aluminum alloys in Table 3.1, they tend to possess a higher  𝛼  or 𝛼𝜀   value, 

indicating more sensitivity to non-proportional loading than those with a smaller 

value of ductility (e.g., 7000 series). Such a trend that seems consistent for all 

types of aluminum alloys examined here will be further discussed in a later 

section.         

Table 3.1. Summary of material sensitivity parameters 𝛼 or 𝛼𝜀 determined for different 

groups of wrought aluminum alloys     
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Series of 

Aluminum 
Aluminum alloys Loading types 

Ductility 

(Elongation, %) 
𝛼 or 𝛼𝜀 

7000 series alloys 

7075-T651 [24-25] Strain controlled 9.7 𝛼𝜀=0.35 

7075-T6 [26] Strain controlled 11 𝛼𝜀=0.35 

6000 series alloys 

6061-T6 [27] Strain controlled 12 𝛼𝜀=0.4 

6082-T6 [28] Load  controlled 8 𝛼=0.35 

5000 series alloys 5083 [29] Strain controlled 20 𝛼𝜀=0.48 

2000 series alloys 

2024-T4 [30] Load controlled 18 𝛼=0.5 

2024-T4 [31] Strain controlled 20 𝛼𝜀=0.5 

 

The validity of the material sensitivity parameters in term of either 𝛼  or 𝛼𝜀 

summarized in Table 3.1 will be further substantiated by its effectiveness in correlating 

the corresponding multi-axial fatigue test data obtained under various forms of non-

proportional load paths in the form of MLP-based model in the next section.  

3.3.2 MLP-Based Correlation of Multi-Axial Test Data 

3.3.2.1 7000 Series Aluminum Alloy  

Zamrick [24], Zamrick and Frishmuth [25] studied non-proportional multi-axial 

low cycle fatigue of 7075-T6 aluminum alloys by testing a large number of hollow-tube 

specimens shown in Fig. 3.5. Their strain-controlled tests involved pure tension, pure 

torsion, combined tension and torsion loading with a phase angle (𝛿) being 0
o 
, 30°, 45°, 

60° and 90° (see Eq. (3.6)), respectively. Note that the material sensitivity parameter 𝛼𝜀 

for this aluminum alloy has already been determined, as given in Table 3.1. The 

corresponding load-path non-proportionality damage factor 𝑔𝑁𝑃  corresponding to each 
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phase angle 𝛿 can be determined by Eq. (3.10). Then Eq. (3.5) can be used to calculate 

the MLP-based equivalent strain ∆𝜀𝑁𝑃 at any applied effective strain range ∆𝜀𝑒. As such, 

all test data in [24] can be converted to MLP-based equivalent strain ranges versus cycles 

to failure, as shown in Fig. 3.6, indicating an excellent correlation among all test data 

with a standard deviation of 0.26 and a correlation coefficient of 0.86. It is worth noting 

that most of fatigue life estimated using MLP-based model is within a factor of two of 

test lives except for those with extremely low-cycle lives (𝑁 < 10) cases which may 

have tube buckling involved [24].    

 

 

Fig. 3.5 Thin-walled tubular specimen test by Zamrick [24], Zamrick and Frishmuth [25]  
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Fig. 3.6 Fatigue data correlation of 7075-T6 aluminum alloy [24-25] using MLP-based 

model  

 

More recently, Zhao and Jiang [26] reported a series of non-proportional multi-

axial fatigue tests on 7075-T651 aluminum alloy using hollow tube specimens with fully 

reversed strain-controlled load paths shown in Fig. 3.7. Note that the load case with non-

zero mean effective stress given in [26] is not considered here since it would require 

additional treatment, which is under investigation and will be reported separately in the 

near future. Load paths (d) and (e) in Fig. 3.7 correspond to asynchronous loading with 

torsion/tension frequency ratios of 2 and 4, respectively, which require a proper cycle 

counting, such as using PDMR [18-20]. In addition, the authors in [26] did not discuss 

how their test data among these load cases in Fig. 3.7 should be correlated. In this study, 

PDMR based cycle counting is performed first to break the load blocks (i.e., load paths (d) 

and (e)) into multiple cycles (see examples given in [17-20]). These counted cycles are 

then treated as one equivalent cycle corresponding to Palmgren-Miner's rule based 
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equivalent strain range for correlation with other load cases, i.e., (a) through (c).  The test 

data from [26] are then represented by MLP-based equivalent strain range versus cycles 

to failure in Fig. 3.8. It can be seen that all proportional and non-proportional test data are 

now situated in a narrow band around its mean curve, demonstrating the effectiveness of 

the MLP-based equivalent strain range, especially when integrated with PDMR cycle 

counting procedures. 

 

Fig. 3.7 Load paths used in [26] for tube specimen testing under combined cyclic tension 

and torsion  

 

Another way of demonstrating the effectiveness of MLP-based model is by 

comparing MLP-based prediction of the same test data with SWT-based model prediction 

[32], as shown in Fig. 3.9 (a) and Fig. 3.9(b) respectively. The dashed lines in Fig. 3.9 (a) 

and Fig. 3.9 (b) represent a factor-of-five in life prediction from the mean line. It can be 
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clearly seen that all but one data point fall within a factor of 5 in life when MLP-based 

model is used, showing a significant improvement over SWT-based prediction presented 

by Zhao and Jiang [26] as shown in Fig. 3.9 (b).      

 

Fig. 3.8 MLP-based equivalent strain range correlation of Zhao and Jiang’s 7075-T651 

[26] aluminum alloy test data  
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Fig. 3.9 Comparison of fatigue life calculation versus actual test data [26] of 7075-T651 

aluminum alloy (a) MLP-based model; (b) SWT-based model 

 

3.3.2.2 6000 Series Aluminum Alloy  
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Fig. 3.10 Strain paths used by Itoh et al. [27] for performing multi-axial fatigue tests on 

6061 aluminum alloy  

 

Itoh et al. [27] examined non-proportional low cycle fatigue behaviors of 6061-T6 

aluminum alloy by conducting strain-controlled fatigue testing using 14 types of strain 

paths shown in Fig. 3.10. As mentioned in Sec. 3.1, the material sensitivity parameter 𝛼𝜀 

is determined using test data corresponding to Case 0 and Case 13. The use of Case 0 

rather than Case 5 is due to the consideration that there are only two data points of Case 5 

available and it is statistically insufficient for the purpose of determining 𝛼𝜀.  Also note 

that PDMR cycle counting procedure is used for Case 1 to Case 4 to determine the 

numbers of fatigue cycles each case represents, for which detailed PDMR cycle counting 

details can be found in [17-20].  Fig. 3.11 summarizes all test data by Itoh et al.[27] in 

terms of MLP-based equivalent strain range versus cycles to failure, showing an excellent 

correlation, with a standard deviation of 0.17 (i.e., STD=0.17). Among a total of 21 tests, 

19 of them fall within a factor of 2 about the mean curve.  
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Fig. 3.11  MLP-based equivalent strain range versus cycles to failure - 6061 aluminum 

alloy test data by Itoh et al.[27] 

 

By considering a similar aluminum alloy 6082-T6, Susmel and Petrone [28] 

performed a series of load-controlled multi-axial fatigue tests (pure torsion, pure bending, 

combined torsion and bending with specified phase angle of 0
0
 (in-phase), 90

o
 and 126

o
 

(out-of-phase), respectively. Solid round bar specimens were used in all these tests (see 

Fig. 3.12).  By following the same analysis procedure described earlier (note that material 

sensitivity parameter α is determined as 0.35 as given in Table 3.1), the test data [28] can 

then be presented as MLP-based equivalent stress range versus cycles plot, as shown in 

Fig. 3.13.  A good correlation of all these test data can be seen, with a standard deviation 

of around 0.21.   
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Fig. 3.12 Solid round bar specimen used by Susmel and Petrone [28] for multi-axial 

fatigue test of 6082-T6 aluminum alloy  

 

Fig. 3.13 MLP-based equivalent stress range versus cycles to failure - 6082-T6 aluminum 

alloy test data by Susmel and Petrone’s [28] 

 

3.3.2.3 5000 Series Aluminum Alloy  

Hoffmeyer et al. [29] carried out non-proportional multi-axial fatigue tests on 

5083 aluminum alloy with different typical strain paths illustrated in Fig. 3.14 in which 

asynchronous loading paths (Fig.3.14(e) and Fig.3.14(f)) were also investigated to 

demonstrate applicability of their proposed short crack growth model. Here, the authors’ 

short crack based strain life data are converted into MLP-based equivalent strain range 



158 
 

versus cycles to failure corresponding the same short crack definition, in which material 

sensitivity parameter is calculated by comparing data using proportional path (Fig.3.14(a)) 

and circular path (Fig.3.14(b)), as given in Table. 3.1.  The MLP-based correlation results 

are given in Fig. 3.15, again showing a very good correlation among different load paths 

with a standard deviation as small as 0.237.  

 

Fig. 3.14 Strain paths employed by Hoffmeyer et al [29] for multi-axial fatigue testing of 

Al 5083 aluminum alloy  
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Fig. 3.15 MLP-based equivalent strain range versus cycles to failure for Al 5083 test data 

[29] 

 

3.3.2.4 2000 Series Aluminum Alloy  

Xia and Yao [30] recently conducted load-controlled non-proportional multi-axial 

fatigue tests on 2024-T4 aluminum alloys with phase angles between tension and torsion 

set at 30
o
, 45

o
, 60

o
, and 90

o
, respectively. Their objective was mainly focused on 

examination of cumulative damage rules for dealing with multi-axial block loading 

spectrums. For the purpose of this investigation, only “Single Stage” test data in [30] are 

considered here for demonstrating the effectiveness of MLP-based model for data 

correlation. The results are given in Fig. 3.16 which clearly shows an excellent 

correlation among test data under different non-proportional loading conditions with 

different phase angles. 

For the same type of aluminum alloy, strain-controlled non-proportional fatigue 

test data were also reported by Wang et al. [31]. The MLP-based equivalent strain range 

versus cycles to failure for this set of strain controlled data is given in Fig. 3.17.  It is 

interesting to note that material sensitivity parameter  𝛼𝜀 for the strain-controlled tests is 

calculated as 𝛼𝜀 = 0.5, being the same as (i.e., 𝛼 = 0.5 )  the load controlled test data 

generated by Xia and Yao [30]. In both cases, a good data correlation can be seen, as 

shown in Figs. 16 and Fig. 3.17, respectively.  The estimated fatigue life using MLP-

based model is within a factor of 2 from the mean curve for data reported by Xia and 

Yao’s [30] while within a factor of about 3 is found for data reported by Wang et al.[31].  
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Fig. 3.16 MLP-based equivalent stress range versus cycles to failure - 2024-T4 aluminum 

alloy test data by Xia and Yao’s [30] 

 

 

Fig. 3.17  MLP-based equivalent strain range versus cycles to failure - 2024-T4 

aluminum alloy test data by Wang et al. [31] 
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3.4 Discussions 

3.4.1 Effects of Strain Hardening and Ductility 

Material sensitivity parameter to non-proportional loading, i.e., α given in Eq. (3.4) 

or αε given in Eq. (3.5) is determined directly through the comparison of fatigue test data 

under proportional and simple non-proportional loading conditions as illustrated in 

Section 3.1. A similarly defined parameter (𝛼𝐼), first introduced by Itoh et al. [1] in the 

context of a maximum principle strain range was determined by comparing two cyclic 

stress-strain curves generated under proportional and non-proportional cyclic loadings, 

respectively. This is illustrated in Fig. 3.18, which is re-plotted from Itoh et al. [1]. In 

doing so, they attributed additional fatigue damage of non-proportional loading to 

additional material hardening at a reference strain amplitude level (i.e., 𝜀𝑟𝑒𝑓 in Fig. 3.18).  

A number of issues may arise in using this approach, such as: 

(a) In high cycle fatigue regime in which any plastic deformation or strain hardening 

effects are typically negligible, it has been shown that load path non-

proportionality can cause significant fatigue damage (see Mei and Dong [17]). 

Under such conditions, the material sensitivity parameter as defined in Fig. 3.18 

in [1] seems no longer applicable. 

(b) In low cycle regime under strain-controlled loading conditions, the approach in 

Fig. 3.18 may only be applicable for constant amplitude loading, say with a given 

strain amplitude given as  𝜀𝑟𝑒𝑓 . This also suggests that material sensitivity 

parameter so determined is strain amplitude dependent. Under variable amplitude 
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loading conditions, it would require a cycle-by-cycle determination of the 

material sensitivity parameter, which can be rather inconvenient in practice.  

(c) It has been well-established that some materials that may not exhibit any 

noticeable non-proportional hardening (see Ref [6,15-16]) still show significant 

fatigue damage due to load path non-proportionality. The procedure illustrated in 

Fig. 3.18 seems not able to capture load non-proportionality induced fatigue 

damage for these materials. 

Some of the concerns seem to be confirmed by a more recent publication by Itoh 

and Yang [13].  They compared material sensitivity parameter (α*) determined by 

comparing strain life test data between proportional and non-proportional load paths 

metals with body-centered cubic (BCC) and face-centered cubic (FCC) lattice structures. 

They showed that in order to correlate their fatigue test results, α* for BCC type metals 

should be about twice as much as the material sensitivity value 𝛼𝐼  determined by the 

procedure in Fig. 3.18.   
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Fig. 3.18 Determination of non-proportional cyclic hardening material constant (𝛼). (a) 

proportional and non-proportional loading path and (b) cyclic stress-strain curve of two 

load paths 

  

Instead of relating material sensitivity parameter to non-proportional loading 

induced additional cyclic hardening behavior, as presented by Itoh et al. [1, 27], Sonsino 

[23], after a review of a large amount of non-proportional multi-axial test data ranging 

from cast irons, structural steels, aluminum alloys, as well as magnesium alloys, pointed 

out that material ductility seems to have a decisive contribution to fatigue damage 

development under non-proportional loading conditions. He then defined three groups of 

materials based on their ductility level and sensitivity to non-proportional loading, as 

follows: (a) “Ductile materials”, such as structural steels, tend to show a significant 

sensitivity to non-proportional loading by showing a reduction of fatigue lives comparing 

with those under proportional loading; (b) Materials with “low-ductility”, such as cast 

iron or cast aluminum alloys, were shown to exhibit an increase in  fatigue life when 

subjected to non-proportional loading; (c) “Semi-ductile” materials, such as cast steel, 

tend to be neutral or insensitive to non-proportional loading. It should be noted that most 

of the above observations were based on S-N plots of test data using component stress in 

terms of either nominal or a local stress definition) with corresponding shear stress being 

applied at a fixed ratio. However, the author [23] did not provide a quantitative 

relationship between material ductility and sensitivity to non-proportional damage.  

With the present developments given in Sections 2.1 and 3.1, it would be 

interesting to relate the material sensitivity parameters determined for various wrought 

aluminum alloys in Section 3.1 to their respective ductility parameters (i.e., uniaxial 
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elongation test results). The results are given in Fig. 3.19, showing an approximately 

linear relationship. Note that for the cases of Al 6061 [27] and Al 2024-T4 [31], their 

respective ductility values in terms of elongation were not given by their respective 

authors and were taken from ASM material handbook [33] for the purpose of generating 

Fig. 3.19.  It should be pointed out here that two additional sets are included in Fig. 3.19, 

i.e., cast aluminum alloy [34] with a low ductility and Al welded joint [21], both of which 

are not included in the discussions in Sec. 3.2 due to space limitation. The total of nine 

groups of multi-axial fatigue test data from 9 independent sources, as shown in Fig. 3.19, 

seem to suggest the existence of an approximately linear relationship between material 

sensitivity parameter (𝛼 or 𝛼𝜀) to non-proportional fatigue loading and material ductility. 

Mechanistically, such a dependency may be explained as follows:  

(a) In a ductile material, the likelihood of fatigue damage in the form of intrusion and 

extrusion through dislocation movement/cross slip/interaction along preferential 

slip planes [35-36] should be significantly increased at the presence of load-path 

non-proportionality due to the rotation of maximum shear stress/strain plane 

within one fatigue loading cycle.  

(b) In a brittle material with less ductility, the same amount of rotation of maximum 

shear stress/strain plane during a fatigue loading cycle has a lesser effect on 

fatigue damage due to a lack of preferential shear slip planes and dislocation 

mobility.  

If the relationship in Fig. 3.19 can be further proven for a broader category of 

materials, it can significantly simplify the efforts for determining material sensitivity 

parameter α in Eq. (3.14) or 𝛼𝜀  for non-proportional multi-axial fatigue evaluation in 
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practice, by reducing or eliminating the needs for systematic fatigue testing described in 

Fig. 3.3. To that end, the results from an on-going research by the authors on titanium 

alloys and magnesium alloys will be published in the near future.  

 

Fig. 3.19 Relationship between material sensitivity parameter 𝛼 or 𝛼𝜀 and and material 

ductility characterized by e.g. elongationfor various types of aluminum alloys. 

 

3.4.2 Overall Effectiveness of MLP-Based Model  

Finally, in order to quantitatively assess the effectiveness of the MLP-based 

model in correlating test data over all wrought aluminum alloys investigated in this study 

(see Sec. 3.2), Fig. 3.20 plots MLP-based fatigue life estimations versus fatigue life test 

results. Fig. 3.20 contains a total of 274 multi-axial fatigue test results of seven wrought 

aluminum alloys from different sources. Except for only a few data points, most of 

calculated fatigue lives are within a factor of 3 of actual tested fatigue lives, 

demonstrating the effectiveness and robustness of the MLP-based fatigue damage 
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parameter in both low cycle and high cycle regime with load paths from simple to 

complex ones which require cycle counting using PDMR method.  

 

Fig. 3.20 Estimated fatigue lives versus experimental fatigue lives for different series of 

wrought aluminum alloys from seven independent research groups. 

 

3.5 Conclusions 

This paper presents a detailed investigation into non-proportional loading induced 

multi-axial fatigue damage in a series of wrought aluminum alloys using a recently 

developed multi-axial fatigue damage model.  Major findings can be stated as follows:  

(a) All of the wrought aluminum alloys studied in this paper show a less degree of 

sensitivity to non-proportional loading comparing structural steels recently 

reported by the same authors, with material sensitivity parameter (𝛼 defined with 

respect to stress plane and 𝛼𝜀 to strain plane ) ranging from 0.35 to 0.5, much 
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smaller than that of structural steels which were found to be around unity (i.e. 

𝛼 ≈ 𝛼𝜀 ≈ 1) 

(b) Within the same aluminum alloy type, it is found that material sensitivity 

parameter (𝛼) calculated on stress plane using stress-life test data is rather close to 

the values calculated in strain plane using strain-life data (i.e.,  𝛼𝜀) 

(c) With the material sensitivity parameter (  or 
 ) being determined, MLP-based 

equivalent stress range (defined on 𝜎 − √𝛽𝜏 plane) or equivalent strain range (on 

ε − √βε γ plane) are shown to be effective in correlating a large amount of multi-

axial fatigue test data subjected to a varying degree of load-path non-

proportionality.   

(d) An approximately linear relationship between material sensitivity parameter to 

non-proportional loading and material ductility (in terms of percentage of 

elongation obtained standard tensile tests) is observed for wrought aluminum 

alloys examined in this study.  
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Chaper 4.  

An Equivalent Stress Parameter for Multi-Axial Fatigue Evaluation of 

Welded Components Including Non-Proportional loading effects 

 

Abstract 

This paper presents a comprehensive investigation into non-proportional multi-

axial fatigue of welded components by introducing an equivalent structural stress 

parameter that takes into account of load-path non-proportionality in addition to plate 

thickness and stress state effects. This is accomplished by formulating a “moment of 

load-path” or “MLP” based fatigue damage parameter that provides a consistent 

treatment of load-path non-proportionality under arbitrary multi-axial loading conditions 

for which cycle counting can be consistently performed by means of a previously 

developed path-dependent maximum range (PDMR) cycle counting procedure. To 

examine its broad applicability and effectiveness, non-proportional multi-axial test data 

obtained using different components, joint types, and loading conditions from various 

sources are analyzed using the newly developed equivalent stress parameter. The results 

show that the new equivalent stress parameter enables not only an effective consolidation 

of all multi-axial test data (up to about 300 tests) analyzed in this paper into a narrow 

band, but also the demonstrated transferability between the master S-N curve (dominated 

by test data under uniaxial cyclic loading conditions) adopted by the 2007 ASME Div 2 

and API 579 RP/ASME FFS-1 Codes and the consolidated S-N curve dominated by 
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severe non-proportional multi-axial cyclic loading conditions. As a result of the present 

development, a unified fatigue evaluation procedure based on the newly proposed 

effective stress parameter and a single master S-N curve can be implemented for arbitrary 

cyclic loading conditions regardless of stress multi-axiality or load path proportionality. 

Keywords: Multi-axial fatigue, welded joints, non-proportional loading, fatigue damage 

parameter, mesh-insensitive method, traction stress, structural stress, master S-N curve 

4.1 Introduction 

Multi-axial fatigue loading conditions [1, 2] are typically classified into two 

categories, i.e., proportional versus non-proportional loading, depending on if principal 

stress/strain directions rotate or not during one loading cycle. Non-proportional multi-

axial loading has been found more damaging than proportional loading by numerous 

researchers through experimental studies [3-13], being strongly dependent upon load 

paths applied and material examined [5,7-9, 13-16].  

Most of the early studies on non-proportional multi-axial fatigue have been 

focused on non-welded components [3-13]. Among them, Itoh et al. [5], after carrying 

out extensive experimental investigations on structural steels, aluminum alloys and 

titanium alloys, proposed an equivalent strain parameter for modeling fatigue damage 

caused by principal strain axis rotation and additional hardening as a result of non-

proportional loading. However, some recent studies [7, 17] found that non-proportional 

fatigue damage can still be significant in some materials that exhibit minimal non-

proportional strain hardening. In addition to material response, another major challenge 

in modeling non-proportional multi-axial fatigue damage is how to consistently break 
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down a complex multi-axial load path into fatigue cycles (or half cycles) on which an 

effective stress or strain range can be calculated for measuring fatigue damage 

unambiguously [18]. Along this line, different stress or strain range definitions [19-20] 

have been proposed, such as minimum circumscribed circle (MCC), or minimum 

circumscribed ellipse (MCE), as a fatigue damage parameter for modeling non-

proportional fatigue loading. As discussed in [18, 21], these type of stress range 

definitions often fail in reliably capturing effects of load-path dependency on fatigue 

damage. Furthermore, these researchers did not provide any consistent procedures for 

performing cycle counting for dealing with non-proportional loading conditions. As far as 

critical plane based methods [22-25] are concerned, uniaxial rainflow cycle counting 

method is generally used against a dominant stress/strain component with the critical 

plane being determined by searching all potential planes in terms of fatigue damage. 

As for multi-axial fatigue damage in welded components, although not as 

extensive as for non-welded components in terms of both experimental and theoretical 

studies, past investigations [26-37] have clearly demonstrated the importance of an 

appropriate treatment of non-proportional loading induced fatigue damage. Consistent 

with major findings in non-welded components, test data to date have showed that non-

proportional loading can cause significant additional fatigue damage, as much as up to a 

factor of 10 [32] when compared with proportional loading. In an attempt to formulate an 

effective stress range parameter that captures non-proportional loading induced damage, 

Dong and Hong [37] proposed a Modified Gough Ellipse based model. Their model 

enables the development of an equivalent stress based fatigue damage parameter as a 

function of phase angle between normal and shear stress histories that can be expressed 
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as sinusoidal wave forms of the same frequency. A good correlation was achieved by 

examining both proportional and non-proportional test data [27, 29-30] obtained from 

welded joints. However, the Modified Gough Ellipse model is only applicable to constant 

amplitude non-proportional loading conditions with a clearly defined phase angle. 

Sonsino and Kueppers [27] showed that non-proportionality induced fatigue damage can 

be captured by an integral form of shear stress over all planes, referred as an Effective 

Equivalent Stress Hypothesis (EESH). Again, the proposed parameter in [27] is only 

applicable to constant amplitude sinusoidal loading with a clearly defined phase angle 

between two stress components.  

Bäckström and Marquis [38] analyzed multi-axial test data available in literature 

by means of hot spot stress method and presented a comparative analysis of available 

multi-axial test results using various existing interaction equations between normal and 

shear stress components. The resulting scatter bands seem too large to be useful for 

performing reliable fatigue design and evaluation. More recently, Pedersen [39] carried 

out a similar evaluation of existing test data but using a notch stress approach and showed 

that an overall data correlation remains unsatisfactory. In addition to the lack of an 

adequate treatment of non-proportional loading, the large scatter bands resulted from both 

studies [38, 39] may also be attributed to stress definitions these researchers used, which 

may introduce variability in stress concentration calculations as a result of mesh 

sensitivity [40] in finite element computations. Furthermore, local notch stress based 

approaches require introducing an effective notch radius (e.g., 1 mm according to the 

International Institute of Welding (IIW) recommendation [41]) which in reality can vary 

in a significant manner, as demonstrated by systematic measurements given in [42-43] 
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and discussions [44-45]. With the recent developments in mesh-insensitive structural 

stress method based on the use of nodal forces and moments [40], it would be tempting to 

examine both how and how well such a traction stress based method can be used to 

correlate the same multi-axial test data. 

Existing codes and standards as well as recommended practices tend to vary in 

stipulating stress definitions and their combinations to be used for treating non-

proportional multi-axial fatigue loading. In Eurocode 3 [46], in addition to the traditional 

nominal stress based method in conjunction with joint classifications, geometric (i.e., hot 

spot) stress can also be used. For a chosen stress definition, multi-axial fatigue based 

design and evaluation according to Eurocode 3 uses an interaction equation in which the 

fatigue damage caused by normal and shear stress components are calculated separately 

based on their respective uniaxial S-N curves. One obvious limitation is that fatigue 

damage due to interactions between normal and shear stress components are not taken 

into account at cycle by cycle level, which is particularly important when load-path non-

proportionality is involved [18]. The IIW Recommendations [41] considers the use of a 

stress definition among nominal stress, hot spot stress, and notch stress as a user’s choice. 

Multi-axial fatigue is assessed by using a Gough-Pollard ellipse type interaction equation. 

It is worth mentioning regardless of the severity in load-path non-proportionality 

involved in an actual load path, the sum of total damage (D) in its interaction equation is 

fixed at D=0.5 while being as D=1.0 for proportional loading. Although being rather 

qualitative for treating non-proportional loading conditions, the IIW procedure represents 

an improvement over the one in Eurocode 3.  
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ASME BPVC 2007 SECTION VIII Division 2 [47] and API 579 RP-1/ASME FFS-1 [48] 

adopted a traction-based structural stress method as an alternative method since 2007. As 

has been demonstrated in [40, 49-50], traction structural stress calculated using nodal 

forces from finite element analysis results is insensitive to element size used, which lead 

to the development of the master S-N curve method by effectively collapsing about 1000 

large scale fatigue tests of welded components into a narrow band. However, its 

treatment of multi-axial fatigue is still based on the modified Gough ellipse developed by 

Dong and Hong [37], which is not suitable for applications in general non-proportional 

loading conditions in which a phase shift often cannot be clearly defined. Moreover, the 

applicability of its master S-N curve to multi-axial fatigue design of welded joints 

remains to be demonstrated. 

With the above discussions, the purpose of this paper is to establish an effective 

fatigue damage parameter that is capable of modeling fatigue damage under general non-

proportional loading conditions for welded components. It is highly desirable that such a 

parameter can be presented in a form that can be conveniently adopted by some of the 

Codes and Standards for finite element based fatigue evaluation of complex welded 

components. To do so, we start with a brief discussion on the traction-based structural 

stress definition and its applications for characterizing multi-axial stress state, and then 

followed by a short description of a recently developed “moment of load path (MLP)” 

model for calculating fatigue damage due to load-path non-proportionality. To enable the 

incorporation of effects of plate thicknesses and stress distribution (i.e., membrane and 

bending content), advantage is taken of the structure of the equivalent structural stress 

parameter adopted by the 2007 ASME Code [47] by recasting it in the context of non-
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proportional multi-axial loading. The resulting equivalent stress parameter is then 

validated by demonstrating its ability in effectively correlating non-proportional multi-

axial fatigue test data obtained by multiple sources on different component types and 

joint geometries.  Finally, the effectiveness of the newly proposed equivalent stress 

parameter is compared with hot spot stress based multi-axial fatigue evaluation 

procedures given by Eurocode 3 [46] and IIW [41]. 

4.2 Path-Dependent Equivalent Stress Parameter 

4.2.1 Stress Definition  

For welded components, a traction-based structural stress method has been shown 

effective in correlating a large amount of test data obtained from different joint 

geometries, plate thicknesses, and loading conditions.  The structural stresses computed 

by means of nodal forces/moments with respect to a hypothetical cut plane are mesh-

insensitive [40, 50]. The method has also been shown capable of extracting two shear 

stress components on the same cut plane, which can be used to describe multi-axial 

fatigue behavior under both proportional and non-proportional loading conditions [18, 

37]. For instance, such a traction stress state relevant to weld toe cracking in a tube-to-

flange joint can be illustrated in Fig. 4.1(a), in which the component is subjected to both 

remote cyclic bending (𝑀𝑦) and torsion (𝑀𝑧) in global coordinate system (𝑥 − 𝑦 − 𝑧). 

The hypothetical cut into tube thickness simulating weld toe cracking (Fig. 4.1(b)) 

exposes three traction stress components that are responsible for fatigue crack growth 

behavior in the context of fracture mechanics. These components are referred to as 

normal, in-plane shear, and transverse shear stress components i.e., 𝜎𝑠(𝑡), 𝜏𝑠(𝑡) and 𝜏𝑧(𝑡) 

defined with respect to the cut plane (𝑥′ − 𝑧′ plane) along weld toe, as illustrated in Fig. 
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4.1(b). As given in [40], these traction stress components with respect to the local 

coordinate system can be directly related to line force and line moments obtained from 

nodal forces and nodal moments at each nodal position in shell or plate finite element 

model by:    

 𝜎𝑠 = 𝜎𝑚  𝜎𝑏 =
𝑓
𝑦′

𝑡
−
6𝑚

𝑥′

𝑡2
  (4.1) 

 𝜏𝑠 = 𝜏𝑚  𝜏𝑏 =
𝑓
𝑥′

𝑡
 
6𝑚

𝑦′

𝑡2
  (4.2) 

 𝜏𝑧 =
𝑓
𝑧′

𝑡
  (4.3) 

In Eqs. (4.1) through (4.3), 𝑓𝑥′ , 𝑓𝑦′ , 𝑓𝑧′ represents line forces and 𝑚𝑥′ , 𝑚𝑦′ line moments 

with respect to local coordinate system 𝑥′−𝑦′ − 𝑧′, respectively, as shown in Fig. 4.1 (b). 

These lines forces/moments can be solved by means of a system of simultaneous 

equations using nodal forces/moments obtained from finite element analysis [40, 50].  If 

3D solid element models are used, a pre-processing procedure for converting nodal forces 

on a cut plane to nodal forces and nodal moments with respect to mid-thickness of the 

section is given by Nie and Dong [51]. 

For most applications, transverse shear component (𝜏𝑧) is usually negligible and 

only normal and in-plane shear components are often dominant when dealing with multi-

axial fatigue modeling, such as the cases considered in this paper. 
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Fig. 4.1 Illustration of traction-based structural stress definition: (a) Tube-to-flange 

specimen subjected to both bending and torsion; (b) hypothetical free cut along weld toe 

and traction structural stress components exposed  

 

4.2.2 Load Path Non-Proportionality 

4.2.2.1 Load Path Representation  

Any given load path depicted on a nominal stress based plane (i.e. 𝜎𝑛 −√𝛽𝜏𝑛 

plane) can be mapped onto a traction structural stress based plane (i.e., 𝜎𝑠 −√𝛽𝜏𝑠 plane), 

where √𝛽  can be interpreted as a fatigue equivalency parameter between S-N data 

obtained under pure bending and pure torsion, typically taking on a value of √3. 

As an illustration, the multi-axial fatigue tests on tube-to-flange joint specimens (see Fig. 

4.1) by Sonsino and Kueppers [27] were carried out by applying bending and torsion in 

synchronized sinusoidal wave forms with a phase shift (𝛿) difference, i.e.,  

 𝜎𝑛 =
1

2
∆𝜎0sin (𝜃)  (4.4) 
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 𝜏𝑛 =
1

2
∆𝜏0sin (𝜃 − 𝛿)  (4.5) 

where ∆𝜎0  and ∆𝜏0  are nominal stress ranges corresponding to remote bending and 

remote torsion, respectively. The resulting load paths for pure bending (∆𝜎0 ≠ 0, ∆𝜏0 =

0, 𝛿 = 0°), pure torsion (∆𝜎0 = 0, ∆𝜏0 ≠ 0, 𝛿 = 0°), in-phase loading (∆𝜎0 = 𝑘∆𝜏0, 𝛿 =

0°) and out-of-phase loading (e.g. ∆𝜎0 = 0.58 ∆𝜏0, 𝛿 = 90°) are shown in Fig. 4.2(a). It 

is worth noting that the multi-axial loading conditions described in Eqs. (4.4) and (4.5) 

yield the same maximum effective stress range regardless of phase angle according to:  

 

Fig. 4.2 Comparison of load paths between nominal and traction structural stress plane 

based representations: (a) nominal stress plane; (b) structural stress plane 

  

 ∆𝜎𝑛,𝑒 = √∆𝜎0
2  𝛽∆𝜏0

2  (4.6) 

After mapping the load paths depicted in 𝜎𝑛 −√𝛽𝜏𝑛  plane (Fig. 4.2(a)) onto 

𝜎𝑠 −√𝛽𝜏𝑠 plane, a shape change in load path often occurs, as shown in Fig. 4.2(b), since 

stress concentration for normal stress component is typically much higher than that for 
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shear stress, as to be further elaborated in Sec. 3. An alternative effective structural stress 

range, similar to longest chord concept [19] defined as:  

 ∆𝜎𝑒 = max {√(𝜎𝑠
𝐶 − 𝜎𝑠𝐷)2  𝛽(𝜏𝑠

𝐶 − 𝜏𝑠𝐷)2 } (4.7) 

can be introduced for measuring the maximum range experienced by these load paths 

shown in Fig. 4.2(b), where 𝜎𝑠
𝐶  , 𝜎𝑠

𝐷  , 𝜏𝑠
𝐶  and 𝜏𝑠

𝐷  are normal and shear structural stress 

components on 𝜎𝑠 −√𝛽𝜏𝑠 plane at any two points C and D that maximize the effective 

stress range ∆𝜎𝑒. As such, the actual effective stress range (∆𝜎𝑒) incurred along the in-

phase path should be the length of the straight line while the one incurred along an 

elliptical path should be the length of the long axis of the ellipse. They take on different 

values as shown in Fig.4.2 (b), which has been used in formulating a Moment of Load 

Path (MLP) based fatigue damage parameter for modeling load-path non-proportionality 

effects [18, 52] and will be further discussed in the next section.  

4.2.2.2 Non-Proportionality Damage Parameter  

As presented in detail by the same authors in a recent paper [18], consider a non-

proportional load path from A to B, i.e., 𝐴𝐵̃, on 𝜎𝑠 −√𝛽𝜏𝑠 plane illustrated in Fig. 4.3, 

which can be shown to constitute one half cycle according to PDMR cycle counting 

procedure (see more detailed discussions by Dong et al [53] and Wei and Dong [54-55] 

in the context of PDMR cycle counting method). A multi-axial fatigue damage parameter 

𝐷 for any given non-proportional load path 𝐴𝐵̃ is assumed to consist of two parts:  

 P NPD D D   (4.8) 
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in which 𝐷𝑃 represents damage caused by the reference loading event from A to B (i.e., 

𝐴𝐵̅̅ ̅̅  ), which can be directly related to distance from A to B, or the effective stress range 

∆𝜎𝑒  defined in Eq. (4.7). 𝐷𝑁𝑃  represents load path non-proportionality caused fatigue 

damage due to any excursions of load path 𝐴𝐵̃ deviating from the reference load path 

( 𝐴𝐵̅̅ ̅̅  ). Therefore, one possible way of representing load path non-proportionality related 

damage along Path 𝐴𝐵̃ can be stated as follows, with respect to local 𝑥′ − 𝑦′ coordinate 

system, as:  

 ' sin( ) 'NP

AB

D r ds     (4.9) 

 

Fig. 4.3 Non-proportional load path 𝐴𝐵̃, non-proportional circular load path AB  and 

reference (proportional) load path 𝐴𝐵̅̅ ̅̅      

 

It can then be shown [18] that, a dimensionless form of load path non-

proportionality induced fatigue damage factor can be expressed as: 
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2

' sin( ) ' ' sin( ) '

2sin( ) '

NP AB AB
NP

Max

AB

r ds r ds
D

g
D RR ds

 


  

 


 (4.10) 

where 𝐷𝑀𝑎𝑥  represents the maximum possible non-proportional fatigue damage caused 

by the semi-circular load path [15-16] represented by dashed lines in Fig. 4.3 Then, 𝑔𝑁𝑃 

in Eq. (4.10) can be referred as a normalized load-path non-proportionality damage factor 

with respect to the maximum possible damage 𝐷𝑀𝑎𝑥, noting that 𝑔𝑁𝑃 varies from zero 

(corresponding to the proportional load path 𝐴𝐵̅̅ ̅̅  ) to unity (corresponding to the semi-

circular load path AB ). Then, a stress range parameter taking into account of non-

proportional load path induced damage can be written as:  

 ∆𝜎𝑁𝑃 = ∆𝜎𝑒(1  𝛼 ∙ 𝑔𝑁𝑃) (4.11) 

where ∆𝜎𝑒 is defined as in Eq. (4.7) and it is the effective stress range of proportional 

reference path. Note that a material sensitivity parameter 𝛼 is inserted in Eq. (4.11) to 

accommodate the fact that some materials are more sensitive to non-proportional multi-

axial fatigue loading than others, as observed in [14, 52]. For various structure steels 

investigated [18], it is generally found that 𝛼 ≈ 1 gives a reasonable correlation and will 

therefore be used in non-proportional multi-axial fatigue analysis of weld joints in the 

following sections. For aluminum alloys range from 2000 to 7000 series, they are 

observed to be less sensitive to non-proportional loading than structural steel and their 

material sensitivity parameter 𝛼  vary from 0.35  to 0.5  depending on the ductility of 

aluminum alloys examined [52]. The specific procedures for material sensitivity 

determination can be found in [52].  
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Most of non-proportional fatigue tests considered in this paper employed a 

circular or elliptical load path (i. e. out-of-phase path in Fig. 4.2(b)) with a clearly defined 

phase angle between normal and shear stress component. For an elliptical load path 

defined by Eqs. (4.4) and (4.5), the non-proportionality damage factors (𝑔𝑁𝑃) can be 

analytically expressed as [52]:  

                           
2

0 0 2

arcsin( 1 )
( , , ) ( )

2 1
NPg


   




 


                               (4.12) 

where, 
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  

         

         

                    (4.13) 

in which A and B are major semi-axis length and minor semi-axis length of an elliptical 

load path. 

4.2.3 Thickness and Bending Ratio Effects 

Based on a two-stage crack growth model [40, 56], an equivalent normal 

structural stress parameter (∆𝑆𝜎 ) taking into account of both plate thicknesses and 

bending ratio effect is given by Dong et al. [40] under normal traction stress dominated 

loading conditions as: 

 ∆𝑆𝜎 =
∆𝜎𝑠

𝑡∗
2−𝑚
2𝑚  𝐼(𝑟𝜎)

1
𝑚

  (4.14) 

In Eq. (4.14), ∆𝜎𝑠 is traction structural stress range defined in Eq. (4.1);  𝑡∗ is a relative 

thickness with respect to a reference thickness (𝑡𝑟𝑒𝑓), i.e., 𝑡∗ = 𝑡/𝑡𝑟𝑒𝑓, which enables the 
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transferability of the resulting S-N curve for using a different reference thickness value 

such as those used in BS 7608 [57] etc.  For the present discussions,  𝑡𝑟𝑒𝑓 = 1𝑚𝑚 is used 

here, which is consistent with the 2007 ASME Code [47].  Also note that 𝑚 = 3.6 which 

was obtained by correlating both short and long crack growth data [40] under Mode I 

loading conditions. The integral 𝐼(𝑟𝜎) is a dimensionless function of bending ratio 𝑟𝜎 , 

defined as: 

 𝑟𝜎 =
|∆𝜎𝑏|

|∆𝜎𝑚|+|∆𝜎𝑏|
  (4.15) 

The specific form of 𝐼(𝑟𝜎) can be found in [40, 47], developed under dominantly uniaxial 

fatigue loading conditions. For treatment of multi-axial fatigue, we postulate that an 

equivalent structural stress parameter takes a similar form, as:  

 ∆𝑆𝑒 =
∆𝜎𝑒

𝑡∗
2−𝑚
2𝑚  𝐼(𝑟𝑒)

1
𝑚

  (4.16) 

where ∆𝜎𝑒 is shown in Eq. (4.7) and 𝑟𝑒 is defined as: 

 𝑟𝑒 =
|∆𝜎𝑏,𝑒|

|∆𝜎𝑚,𝑒|+|∆𝜎𝑏,𝑒|
  (4.17) 

in which  

 ∆𝜎𝑏,𝑒 = √∆𝜎𝑏
2  𝛽∆𝜏𝑏

2  (4.18) 

 ∆𝜎𝑚,𝑒 = √∆𝜎𝑚2  𝛽∆𝜏𝑚2   (4.19) 

since ∆𝜏𝑏 is small in all cases studied in this paper (see Table 4.2), 𝑟𝑒 can be written as, 

by ignoring ∆𝜏𝑏 term in the denominator of Eq. (4.17): 



186 
 

 𝑟𝑒 =
√∆𝜎𝑏

2+𝛽∆𝜏𝑏
2 

√∆𝜎𝑚
2 +𝛽∆𝜏𝑚

2 +|∆𝜎𝑏|
  (4.20) 

Note that m in Eq. (4.16) is assumed to be the same as the one developed for Mode I 

crack growth crack growth, i.e., 𝑚 = 3.6 due to lack of comprehensive short crack and 

long crack growth data under Mode III loading conditions at this time. 

With load path dependency considered by Eq. (4.11), the final form of proposed 

equivalent stress parameter that takes into account of load path non-proportionality, 

thickness and bending ratio effect for non-proportional multi-axial fatigue loading 

becomes: 

 ∆𝑆𝑁𝑃 =
∆𝜎𝑁𝑃

𝑡∗
2−𝑚
2𝑚  𝐼(𝑟𝑒)

1
𝑚

  (4.21) 

In the following Section, the effectiveness of Eq. (4.21) in correlating well-

documented non-proportional multi-axial fatigue test data will be examined. 

4.3 Analysis of Test Data  

4.3.1 Data Sources and Assessment 

It is important that any proposed new multi-axial fatigue parameter such as the 

one given in Eq. (4.21) be validated with a large amount of test data from different joint 

geometries, different multi-axial loading conditions, and multiple sources. In doing so, 

some essential requirements must be imposed to ensure that test data considered in such a 

validation effort were documented with sufficient details for determining parameters 

involved in Eq. (4.21) and consistent failure mode and failure criteria for comparison 
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purposes. These requirements and considerations for including a particular set of existing 

test data are as follows: 

(a) Specimen geometry and testing conditions: To facilitate the computation of 

traction stress based SCFs (see Sec. 3.2), detailed specimen geometry and 

dimensions must be available for creating a sufficiently detailed finite element 

model, including specimen mounting and loading conditions  

(b) Weld toe failure mode: Only test data that exhibit weld toe failure are considered 

in this study since weld root or throat failures would require more detailed 

information on weld size and penetration in each specimen, as discussed recently 

by Xing et al. [58] 

(c) As-welded versus stress-relieved conditions: Test data to be considered in this 

paper should have a clear indication on if welded components had gone through 

post-weld heat treatment (PWHT) based stress-relief prior to testing. A cursory 

review of existing multi-axial test data indicates that there exist noticeable 

differences in S-N data between as-welded and stress-relieved conditions 

(d) Through-thickness failure definition: Consistent with the formulation of the 

equivalent structural stress parameter in Eq. (4.21), recalling through-thickness 

hypothetical cut in Fig. 4.2, test data to be considered here should also have a 

similar through-thickness based failure criterion (or there is evidence suggesting 

applicability of a similar failure criterion that can be inferred from test conditions 

reported) and adequate monitoring procedure for determining when to stop in 

fatigue testing.  
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After a comprehensive literature search and detailed critical assessments, various 

component types, loading conditions, test sources [27-36] to be considered for further 

examination in this study are illustrated in Fig. 4.4 under stress-relieved and Fig. 4.5 

under as-welded conditions, respectively. Additional test details are given in Table 4.1.  

 

Fig. 4.4 Residual-stress-relieved multi-axial fatigue test specimens 
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Fig. 4.5 As-welded multi-axial fatigue test specimens and loading conditions 

 

Table.4.1 A summary of multi-axial fatigue tests and test details to be examined in this 

paper  

Multi-axial 

fatigue test 
Joint type 

Steels 

types 

thicknes

s 

Load 

combinatio

ns 

R 

rati

o 

Shea

r 

stres

s R 

ratio 

Residual 

stress 

state 

Sonsino and 

Kueppers[27] 

tube-to-

flange 
StE460 10 

Bending, 

torsion 
-1 -1 relieved 

Sonsino and 

Łagoda [28] 

tube-to-

tube 
StE460 6 

Tension, 

torsion 
-1 -1 relieved 

Siljander et 

al.[29] 

tube-to-

plate 

ASTM 

A519 
7.95 

Bending, 

torsion 
-1, 0 -1, 0 relieved 

Yousefi et 

al.[30] 

tube-to-

flange 
P 460 8 

Bending, 

torsion 
-1, 0 -1, 0 relieved 

Witt and 

Zenner [31] 

tube-to-

flange 

StE 

460M 
8 

Bending, 

torsion 
-1 -1 relieved 

Razmjoo [32] 
tube-to-

flange 

BS436

0 

Grade 

50E 

3.2 
Tension, 

torsion 
0 0 as-welded 
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Yung and 

Lawrence 

[33] 

tube-to-

plate 

ASTM 

A519 
7.95 

Bending, 

torsion 
-1 -1 as-welded 

Takahashi et 

al. [34,35] 

fillet 

welded 

gusset 

JIS 

SM400

B 

6 
Tension, 

Tension 
0 0 as-welded 

Dahle et al. 

[36] 

butt weld 

box 

structure 

Domex 

350 
10 

Bending, 

torsion 
-1 0 as-welded 

 

4.3.2 Traction Structural Stress Analysis 

For all test data determined fit for the criteria given in the previous section (see 

Table 4.1), traction structural stress analysis is performed for each joint type to extract 

structural stress based SCF. As a calculation example for demonstration purpose, Fig. 4.6 

shows a solid finite element model used for computing traction stress based SCF for the 

tube-to-flange fillet weld specimens tested by Sonsino and Kueppers [27], which is also 

shown in sketches in Fig. 4.1. Nodal forces gathered along weld toe line into tube 

thickness are first transformed to mid-wall thicknesses (see Nie and Dong, 2012 [51]). 

Then simultaneous equations are solved for line forces and line moments along mid-

thickness positions, which enter Eqs. (4.1)-(4.2) for calculating traction structural stress 

based SCFs, as follows:  

 𝐾𝜎𝑠 =
𝜎𝑠

𝜎𝑛
  (4.22) 

 𝐾𝜏𝑠 =
𝜏𝑠

𝜏𝑛
  (4.23) 
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Fig. 4.6 3D solid finite element model for structural stress calculation of tube-to-flange 

joint used by Sonsino and Keuppers [27]  

 

where 𝐾𝜎𝑠  with respect to applied remote bending stress  (𝜎𝑛) and 𝐾𝜏𝑠  with respect to 

applied remote shear stress (𝜏𝑛) are found to be 1.71 and 1.1. These SCF values are 

presented in terms of their membrane and bending parts, as given in Table 4.2. For all 

other test components shown in Fig. 4.4 and Fig. 4.5, their corresponding SCF results are 

also listed for comparison purposes in Table. 4.2. It is important to note that the normal 

structural stress SCF for specimens tested by Siljander et al. [29] (see Fig.4.4(c) and Yung 

and Lawrence [33] (see Fig. 4.5(b)) is significantly less than those from tube-to-flange 

weld specimens by Sonsino and Kueppers [27], Yousefi et al.[30] and Witt and Zenner 

[31]. This is because in the former, the tube section on the backside of the flange is also 

clamped during fatigue loading, carrying a part of applied load. A relatively higher stress 

concentration in tube-to-flange welded specimens tested by Razmjoo [32] can be 

attributed to the fact that there exists a root gap behind the fillet weld between tube and 

flange (see Fig. 4.5 (a)), which only allows load transfer from tube wall through fillet 

weld to flange plate under remote tension conditions.  
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For all specimens examined, it can be observed that shear traction stress SCF 

contributed by 𝜏𝑏 is relatively small comparing with normal traction stress component 𝜎𝑏. 

These computed 𝐾𝜎𝑠 and 𝐾𝜏𝑠 along with time histories in terms of applied nominal stress 

components given by each data source enable the generation of load path descriptions in 

structural stress plane (𝜎𝑠 −√𝛽𝜏𝑠), as illustrated in Fig. 4.2(b).  These results can then be 

used to compute both effective stress range ( ∆𝜎𝑒 ) through Eq. (4.7) and the 

corresponding load path non-proportionality damage factor through Eq. (4.10), as 

described in the next section.  

In addition, hot spot stress based SCFs using surface extrapolation procedures 

given in IIW [41] for test specimens shown in Figs. 4.4 and 4.5 are also listed in Table 

4.2. These values will be used in the next section for evaluating multi-axial fatigue 

evaluation procedures given Eurocode 3 and IIW as a comparison with the new method 

proposed in this study. Note that the majority of hot spot SCFs listed in the last two 

columns of Table 4.2 can are taken from [38] and the rest of them are calculated within 

this study.  

Table. 4.2 Structural stress based SCFs calculated for test specimens/conditions described 

in Table. 4.1  

Multi-axial 

fatigue test 

Structural stress SCF - 

normal stress 

(𝜎𝑚  𝜎𝑏) 𝜎𝑛⁄  

Structural stress SCF - 

shear stress 

(𝜏𝑚  𝜏𝑏) 𝜏𝑛⁄  

Hot spot 

SCF - 

normal 

stress 

𝜎ℎ 𝜎𝑛⁄  

Hot spot 

SCF -  

shear stress 

𝜏ℎ 𝜏𝑛⁄  
Membrane 

part 𝜎𝑚 𝜎𝑛⁄  

Bending 

part 

𝜎𝑏 𝜎𝑛⁄  

Membrane 

part 

𝜏𝑚 𝜏𝑛⁄  

Bending 

part 

𝜏𝑏 𝜏𝑛⁄  

Sonsino and 

Kueppers[27] 
0.925 0.79 0.97 0.13 2.2 1.1 

Sonsino and 

Łagoda [28] 
1.0 0 1.0 0 1.0 1.0 

Siljander et 0.83 0.59 0.95 0.15 1.25 1.1 
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al.[29] 

Yousefi et 

al.[30] 
0.80 0.89 0.97 0.13 1.37* 1.1* 

Witt and 

Zenner [31] 
0.80 0.89 0.97 0.13 1.37* 1.1* 

Razmjoo [32] 0.94 0.96 0.96 0.14 1.4 1.1 

Yung and 

Lawrence [33] 
0.83 0.59 0.95 0.15 1.25 1.1 

Takahashi et. 

al [34,35] 
1.41 0.54 0 0 1.73* 0 

Dahle et al. 

[36] 
1 0 1 0 1.0 1.0 

*: Hot spot SCF is calculated in this study according to IIW [41] 

 

4.3.3 Non-Proportionality Damage Factor Calculation 

The calculation of non-proportionality damage factor 𝑔𝑁𝑃 in Eq. (4.21), defined 

in Eq. (4.10), will be demonstrated using two non-proportional multi-axial load cases 

given in Tables 4.1: One is the test done by Sonsino and Kueppers [27] and the other 

involving a more complex non-proportional loading generated by asynchronous 

sinusoidal wave forms of bending and shear stress components [30].  

Consider the elliptical load path case shown in Fig. 4.2(b). For the calculation of 

the load path non-proportionality damage factor 𝑔𝑁𝑃 , the corresponding reference 

proportional load path (solid line along horizontal axis) and the reference non-

proportional load path giving the maximum non-proportionality (i.e., the circular load 

path shown as dashed lines) is plotted in Fig. 4.7. The load path non-proportionality 

factor 𝑔𝑁𝑃 = 0.6 can be calculated directly from Eq. (4.13) for the actual elliptical load 

path (long dashed lines) used by Sonsino and Kueppers [27]. Geometrically, the 

dimensionless non-proportionality factor (𝑔𝑁𝑃) as a result of the elliptical load path is 
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simply the ratio of the moment of the elliptical load path with respect to its major axis to 

that of the circular load path in the structural stress plane. 

 
Fig. 4.7 Illustration of calculation procedure for non-proportionality factor – elliptical 

load path used by Sonsino and Kueppers [27]. 

 

As a second load case, consider one load path involving asynchronous loading of 

bending and torsion with a frequency ratio of 𝑓𝑏 𝑓𝑡⁄ = 1 5⁄  where 𝑓𝑏 represents the 

frequency of applied sinusoidal bending and 𝑓𝑡  of applied sinusoidal torsion (see solid 

line in Fig. 4.8), as used by Yousefi et al.[30].  Before computing 𝑔𝑁𝑃, fatigue cycles 

involved in the load path need to be determined, which can be done by PDMR method 

[53-55].  As a result, the first counted half cycle can be determined by monotonically 

searching along the path formed by  𝐴𝐶 − 𝐶𝐶∗ − 𝐶∗𝐸 − 𝐸𝐸∗ − 𝐸∗𝐵, which yields the 

largest effective stress range as the distance between Positions A and B. The calculation 

of load path non-proportionality of the counted half cycle with the largest effective stress 

range is illustrated in Fig. 4.9 in which reference proportional path is represented by 𝐴𝐵̅̅ ̅̅  
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and maximum non-proportional damage path denoted by dotted circle. By following Eq. 

(4.10), the numerically calculated load path non-proportionality for this counted half 

cycle is 0.66. All the other PDMR counted load path segments and their load path non-

proportionality damage factors for the whole loading block (Fig.4.8) are listed in Table. 

4.3. More details on the analysis of such an asynchronous load path can be found in [18].  

 

Fig. 4.8 Load path representation in normalized 𝜎𝑠 − √3𝜏𝑠 plane and illustration of 

PDMR based path determination (red dashed lines) for the 1
st
 half cycle exhibiting the 

maximum stress range  
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Fig. 4.9 Illustration of load path non-proportionality (𝑔𝑁𝑃) calculation for load path AC-

CC*-C*E-EE*-E*B, determined by PMDR in Fig. 4.8 

 

Table 4.3 PDMR counted cycles (𝑁𝑖), effective stress ranges (∆𝜎𝑒,𝑖), non-proportionality 

factor 𝑔𝑁𝑃,𝑖 for asynchronous loading case with frequency ratio of 𝑓𝑏 𝑓𝑡⁄ = 1/5 

ID 

(𝑖) 

Counted 

cycles 

(𝑁𝑖) 

Effective stress 

range (∆𝜎𝑒,𝑖) Load path 

 

Non-

proportional 

factor(𝑔𝑁𝑃,𝑖) 
Stress 

range 

Range 

value 

1 1 AB 2.67 
AC-CC*-C*E-

EE*-E*B 
0.66 

2 1 CD 2.04 CD 0.1 

3 1 EF 2.03 EF 0.1 

4 1 DC* 1.8 DC* 0.09 

5 1 FE* 1.45 FE* 0.08 

 

Following the procedures illustrated with the two examples described above, 𝑔𝑁𝑃 

values are calculated for all test conditions. The material sensitivity parameter (𝛼) in Eq. 
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(4.21) for all structural steels involved in this study is assumed to be unity, i.e., = 1 , with 

justifications being given in [18]. 

 
4.3.4 Data Correlation Using Proposed Method 

Since the majority of non-proportional fatigue tests in Table 4.1 are under stress-

relieved conditions, we will examine this group of test data first. By using the proposed 

equivalent structural stress range given in Eq. (4.21), all stress-relieved test data shown in 

Table 4.1 are plotted in Fig. 4.10 (a) in which test data corresponding to proportional 

multi-axial loading are shown as  solid symbols while those corresponding to non-

proportional loading are shown as empty symbols. The overall correlation gives a 

standard deviation of 0.33 and a correlation of coefficient (𝑅2) of 0.825. It should be 

pointed out that among the test data shown, those by Yousefi et al. [30] involving 

asynchronous loading paths and Siljander et al.’s [29] involving triangular load paths, 

require PDMR based cycle counting for breaking down complex load paths into 

individual fatigue cycles in the same manner as shown in Fig. 4.8 and Fig. 4.9, as 

summarized in Table 4.3. Then, Palmgren-Miner rule based equivalent stress range with 

respect to one equivalent cycle for each load block is used for plotting purpose in Fig. 

4.10 (a) (see [18] for further details). 



198 
 

 



199 
 

Fig. 4.10 Correlation of test data among three different multi-axial fatigue methods – 

stress relieved conditions: (a) proposed equivalent structural stress range according to Eq. 

(4.21); (b) Eurocode 3 (using surface extrapolated hot spot stress definition); (c) IIW 

recommendation (using surface extrapolated hot spot stress definition) 

 

In the same manner, Fig. 4.11 (a) shows the equivalent structural stress (Eq. 

(4.21)) based correlation of the test data under as-welded conditions, which contains 

fewer data points than that under stress-relieved condition. Again, the proposed 

equivalent structural stress parameter given in Eq. (4.21) seems to provide an effective 

data correlation among test data from different component geometries and loading 

conditions. Furthermore, the ASME master S-N curve scatter band [47] is also given in 

Fig. 4.11 (a) for comparison purpose, which represent large scale fatigue test data 

obtained mostly under as-welded and dominantly unixial fatigue loading conditions. The 

majority of the mulaxial test data (under either proportional or non-proportional loading 

conditions) analyzed here seem to fall within the ASME scatter band.  This suggests that 

both uniaxial and multiaxial test data can be reasonablly represented by a single scatter 

band once Eq. (4.21) is used. 
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Fig. 4.11 Correlation of test data (as-welded conditions) among three different multi-axial 

fatigue methods: (a) proposed equivalent structural stress range according to Eq. (4.21); 

(b) Eurocode 3 (using surface extrapolated hot spot stress definition); (c) IIW 

recommendation (using surface extrapolated hot spot stress definition) 

 

4.3.5 Data Correlation Using Eurocode 3 and IIW Methods  

In dealing with both multi-axial fatigue (both for proportional and non-

proportional loading), either nominal stress or hot spot stress can be used through an 

interaction equation between normal and shear stress components, according to Eurocode 

3 [46] and IIW [41]. There are no cyclic counting procedures given when dealing with 

complex load paths such as asynchronous sinusoidal load paths by Youselfi et al. [30], as 

illustrated in Fig. 4.8. Therefore, fatigue cycle definitions by the original authors are used 

here for data correlation purposes in using the two methods, which can be questionable 

according to recent developments in multi-axial cycle counting [53-55, 18]. As suggested 

by one of the reviewers of this manuscript, surface extrapolation based hot spot stresses, 

instead of nominal stresses, are used here for examining how the same test data shown in 

Figs. 4.10 (a) and Fig. 4.11 (a) can be correlated using Eurocode 3 and IIW methods. 

According to Eurocode 3 [46], multi-axial fatigue can be assessed using the following 

interaction equation: 

 (
∆𝜎ℎ

∆𝜎𝑓
)
3

 (
∆𝜏ℎ

∆𝜏𝑓
)
5

≤ 𝐷𝐸𝐶   (4.24) 

where ∆𝜎ℎ and ∆𝜏ℎ are normal and shear hot spot stress ranges calculated based on their 

respective nominal stress ranges and hot spot stress SCFs listed in Table 4.2; ∆𝜎𝑓  is 

referred to as fatigue strength under pure axial loading, ∆𝜏𝑓 fatigue strength under pure 
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shear loading, and 𝐷𝐸𝐶 = 1  for both proportional and non-proportional loading 

conditions. Note that the left side of Eq. (4.24) represents a simple linear summation of 

the damage caused by each of two stress components carrying a negative inverse slope of 

3 and 5 in S-N curve in log-log scale, respectively. Eq. (4.24) can be rewritten in an 

effective stress range form for facilitating data plotting in Fig. 4.10 (b) and Fig. 4.11 (b):  

 ∆𝜎𝐸𝐶 = √(∆𝜎ℎ)3  𝑘𝐸𝐶  (∆𝜏ℎ)5
3

  (4.25) 

where 𝑘𝐸𝐶 = ∆𝜎𝑓
3/∆𝜏𝑓

5
.  

The method recommended by IIW [41] has the following form: 

 (
∆𝜎ℎ

∆𝜎𝑓
)
2

 (
∆𝜏ℎ

∆𝜏𝑓
)
2

≤ 𝐷𝐼𝐼𝑊 (4.26) 

where 𝑘𝐼𝐼𝑊 = ∆𝜎𝑓
2/∆𝜏𝑓

2
 in which ∆𝜎𝑓 and ∆𝜏𝑓 are defined in the same way as in Eq. 

(4.24) and the sum of total damage 𝐷𝐼𝐼𝑊 takes on the value of 1 for proportional loading 

conditions and 0.5 for non-proportional loading conditions. Again, for data plotting 

purpose, Eq. (4.26) can be rewritten as:   

 ∆𝜎𝐼𝐼𝑊 =
1

√𝐷𝐼𝐼𝑊
√(∆𝜎ℎ)2  𝑘𝐼𝐼𝑊(∆𝜏ℎ)2
2

  (4.27) 

With the hot spot stress SCF values given in Table 4.2, the same test data shown in Fig. 

4.10 (a) corresponding to stress-relieved conditions can be presented using Eurocode 3 

(Eq. (4.25)) and IIW (Eq. (4.27)) methods, as shown in Fig. 4.10 (b) and Fig. 4.10 (c), 

respectively. As can be seen by comparing the standard deviations among the three 

methods, the newly proposed equivalent stress parameter according to Eq. (4.21) (see 

Fig.4.10 (a)) gives the smallest standard deviation (at 0.33) among the three methods, 
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whereas Eurocode 3 and IIW methods yield a standard deviation of above 0.46.  Under 

as-welded conditions, Fig. 4.11 shows the comparison among the three methods. Again, 

the proposed equivalent structural stress is seen effective in collapsing as-welded test data 

into a narrower band (Fig. 4.11 (a)) than Eurocode 3 and IIW methods (Fig. 4.11 (b) and 

Fig.4.11 (c) respectively). 

4.4 Design S-N Curve Representation  

In addition to its ability to consistently capturing proportional and non-

proportional load path effects on fatigue damage, the equivalent stress parameter in Eq. 

(4.21) shares a similar structure to that used in the master S-N curve method adopted by 

ASME Div 2 [47] and API 579 [48]. It would be useful to examine the equivalent stress 

parameter given by Eq. (4.21) in terms of its ability for fatigue life evaluation under more 

general conditions regardless of stress-relieved or as-welded conditions, uniaxial 

dominated or multi-axial loading conditions with a varying degree of load-path non-

proportionality.  For comparison purposes, both Eurocode 3 and IIW methods will also 

be examined in this context.  

4.4.1 Equivalent Stress Parameter Incorporating Stress Ratio Effects  

As noted in Sec. 3.1, there exist noticeable differences between as-welded and 

stress-relieved conditions in that under stress-relieved conditions, test data tends show a 

noticeable upward shift in S-N plots by comparing Fig. 4.10 (a) and Fig. 4.11 (a). The 

2007 ASME Code [47] provides an applied stress ratio (R) correction scheme for an 

added conservatism, which is derived based on a two-stage crack growth model [40] 

under ideal stress-relieved conditions.  As such, it can be shown that the equivalent 

structural stress parameter in Eq. (4.21) becomes: 
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 ∆𝑆𝑁𝑃
𝑅 =

∆𝜎𝑁𝑃

(1−𝑅)
2
𝑚 𝑡∗

2−𝑚
2𝑚  𝐼(𝑟𝑒)

1
𝑚

 (4.28) 

Note that the term (1 − 𝑅)
2

𝑚 is valid for negative R,  (1 − 𝑅)
1

𝑚 for positive R when dealing 

with stress-relieved test data, and is set as unity for applications under as-welded 

conditions.    Applying Eq. (4.28) to the test data in both Fig. 4.10 (a) and 4.11 (a) leads 

to the results shown in Fig. 4.12, in which ASME design master S-N curve scatter band 

(i.e., mean ± 2 STD) is also shown. The result suggests a rather reasonable comparison 

between all multi-axial test data analyzed in this paper and those (over 1000 tests) under 

uniaxial loading conditions used by 2007 ASME Code. Even though a somewhat poor 

correlation occurs at high cycle regime, say above 10
6
, the use of the ASME design S-N 

curve yields conservative life estimates. 

Another way of assessing fatigue life predictability resulted from using the ASME 

design S-N curve given in Fig. 4.12 is to examine the predicted lives versus actual lives 

from tests for all test data considered in this paper, as shown in Fig. 4.13 containing a 

total of 306 multi-axial fatigue test results. Except for few data points, most of the 

predicted fatigue lives are within a factor of 4 of actual fatigue lives obtained from tests, 

demonstrating the effectiveness and robustness of the equivalent structural stress as a 

multi-axial fatigue damage parameter. 
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Fig. 4.12 Equivalent structural stress range based correlation of all test data including 

stress ratio using Eq. (4.28)  
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Fig. 4.13 Experimental fatigue life vs. predicted fatigue life by the proposed equivalent 

structural stress parameter (Eq. (4.28))  

 

4.4.2 Eurocode 3 and IIW Methods 

Built upon the results discussed in Sec. 3.5 in which as-welded and stress-relieved 

conditions are treated separately, both sets of the results can be combined by introducing 

a correction against applied stress ratio (R) for stress-relieved conditions. To do so in the 

context of Eurocode 3 [46] method, the hot spot stress component ranges given in Eq. 

(4.25) is calculated by its tension part of stress cycle plus 60% of compression part of the 

stress cycle.  Similarly, IIW recommendations [41] is implemented by calculating its 

component hot spot stress range given in Eq. (4.27) and applied stress ratio is considered 

through a f(R) function [41] which is defined according three sets of conditions, e.g., 
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stress relieved, thin structures with short cracks, and complex structures with high 

restraint conditions. The results are shown in Fig. 4.14 and Fig. 4.15 corresponding to 

Eurocode 3 and IIW methods, respectively. By comparing with Fig. 4.12, the test data 

correlated using both methods (Fig. 4.14 and Fig. 4.15), show a rather large scatter band 

in terms of either standard deviations or correlation coefficients R
2
 for fatigue design and 

evaluation purposes, in which IIW method seems to offers somewhat improvement over 

Eurocode 3 method.  

 

Fig. 4.14 S-N curve plot of all multi-axial test data based on Eurocode 3 in terms of hot 

spot stress according to Eq. (4.25) 
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Fig. 4.15 S-N curve plot of all multi-axial test data based on IIW method in terms of hot 

spot stress according to Eq. (4.27) 

 

4.5 Conclusions 

This paper aims at establishing an effective stress parameter that can be used for 

performing fatigue evaluation of welded structures that may be subjected to a varying 

degree of non-proportional multi-axial fatigue loading. In doing so, effects of plate 

thickness (t), stress distribution gradient (r), and applied stress ratio when dealing with 

as-welded versus stress-relieved conditions are also considered by taking advantage of 

some the recent developments.  The feasibility of using some of the existing methods 

such as those stipulated in Eurocode 3 [46] and IIW recommendations [41] is also 

quantitatively evaluated for comparison purposes. 
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As a result, the equivalent (structural) stress parameter as given in Eq. (4.28) is developed 

by building upon some recent developments in traction structural stress procedure, master 

S-N curve formulation, and MLP based non-proportional damage parameter. Its 

effectiveness has been demonstrated in correlating a large amount of test data under both 

uniaxial-dominated and non-proportional multi-axial fatigue loading conditions over 

various component types, joint geometries and loading conditions. Furthermore, the 

developments presented in this paper enables the use of the same master S-N curve 

method adopted by the 2007 ASME and API for applications in fatigue evaluation of 

non-proportional multi-axial fatigue for welded components. This is accomplished 

through the introduction of a MLP-based non-proportional fatigue damage parameter and 

applied stress ratio correction parameter for stress-relieved welded components subjected 

to multi-axial loading. Although ∆𝑆𝑁𝑃
𝑅  in Eq. (4.28) shows its promise in effectively 

correlating the test data studied in this paper (see Fig. 4.12), its generality still requires 

further confirmation once more non-proportional multi-axial test data become available. 

For fatigue design and evaluation purposes, the use of the newly proposed equivalent 

stress parameter without the stress ratio correction parameter ∆𝑆𝑁𝑃 in Eq. (4.21) against 

the 2007 ASME structural stress based design S-N curve should result in a conservative 

estimate of fatigue lives for welded components in general. 
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Chaper 5.  

A Path-Dependent Mixed-Mode Crack Propagation Model for Non-

Proportional Multi-Axial Fatigue Loading 

 

ABSTRACT 

It has been well established that fatigue damage process is load-path dependent 

under non-proportional multi-axial loading conditions. Most of studies to date have been 

focused on interpretation of S-N based test data by constructing a path-dependent fatigue 

damage model. This paper presents a two-parameter fatigue crack growth model for 

taking into account of crack growth dependency on load path traversed in a stress 

intensity factor plane (𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane) and mean stress effect for mixed Mode I and 

Mode III loading. By taking advantage of a path-dependent maximum range (PDMR) 

cycle definition (Dong et al., 2010 and Wei and Dong, 2010), the two parameters are 

formulated by introducing a moment of load path (MLP) based equivalent stress intensity 

factor range (∆𝐾𝑁𝑃) and a maximum effective stress intensity 𝐾𝑀𝑎𝑥, defined with respect 

to K space. Crack growth rate data obtained from 304 stainless steel disk specimens 

under combined non-proportional modes I and III loading conditions (with circular, 

proportional, and inversely proportional loading paths) are then investigated for 

examining the validity of the proposed two-parameter non-proportional fatigue crack 

growth model. Furthermore, non-proportional crack growth test data on 1070 steel under 
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similar three load-path conditions published by Feng et al (2007) are also analyzed using 

the model proposed in this study. The results show that the proposed model is quite 

effective in correlating non-proportional mixed mode fatigue crack growth of both 304 

stainless steel 1070 steel.  

Keywords: Multi-axial fatigue, mixed mode crack, non-proportional loading, fatigue 

damage modeling 

5.1 Introduction 

Mixed mode fatigue crack growth phenomena have been investigated by many 

researchers by formulating an effective stress intensity range definition such as those 

proposed by Tanaka [1], Richard, et al .[2], Pook [3], Forth, et al.[4] for combined Mode 

I, Mode II and Mode III loadings. However, these investigations have been focused upon 

proportional loading conditions in which one loading mode history can be scaled by 

another.  As discussed by Sonsino and Kueppers [5], there exist numerous applications 

such as stir propeller in chemical processing industry, in which mixed mode fatigue crack 

propagation phenomena under non-proportional loading conditions must be considered.  

Their test data obtained under non-proportional Mode I and Mode III sinusoidal loadings 

showed that out-of-phase loading with a phase shift of 90
0
 resulted in significantly more 

fatigue damage than in-phase loading (i.e.., phase shift of 0
0
).  Since then, there have 

been a plenty of experimental evidences [5-7] showing that non-proportional mixed-

mode loading can significantly accelerate fatigue crack growth rate using simple fracture 

mechanics specimens.  For instance, Fremy et al. [6] carried out complex mixed-mode 

fatigue crack growth tests using pre-cracked cruciform specimens that were subjected to 

Mode I, Mode II and Mode III loadings by six independently controlled actuators. By 
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following various load paths (proportional and non-proportional load path, e.g., “cube”, 

“star”, etc.), they reported that crack growth rates measured were significantly different 

among different load paths.  

Along this line, the authors of this paper found the mixed mode crack growth test 

results by Feng et al [7] particularly intriguing, who conducted mixed-mode (Modes I and 

III) crack growth rate tests using 1070 steel disk specimens using three rather simple load 

paths: proportional (0
0
 phase angle), inversely proportional (180

0
 phase angle), and out-

of-phase (90
0
 phase angle).  Their test results clearly show not only that the load path 

with a 90
0
 phase angle yields the highest crack growth rate, but also that inversely 

proportional load path (180
0
 phase angle) produces the lowest crack growth rate.  In 

addition, they pointed out that they were not aware of any existing mixed-mode fatigue 

crack growth models that could be used to correlate their test data at that time. By taking 

advantage of some recent developments on modeling of non-proportional multi-axial 

fatigue damage process, Mei et al [8] recently proposed a two-parameter mixed mode 

crack growth model which incorporates the effects of both load-path non-proportionality 

and maximum effective stress intensity factor computed in K plane (spanned by 𝐾𝐼 and 

𝐾𝐼𝐼𝐼).  The two-parameter model was shown effective for correlating the test data reported 

by Feng et al [7]. However, the multi-axial fatigue damage parameter involved is 

analytically formulated in terms of a parameter 𝐹(𝛿), where 𝛿  is phase shift between 

Modes I and III loading histories (see [9]), which requires phase angle (δ) a known a 

priori. As a result, the model cannot be used for a general treatment of variable amplitude 

non-proportional mixed-mode loading conditions.  
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A more recent development was reported by Mei and Dong [10] who proposed a 

path-dependent fatigue damage model for general non-proportional multi-axial fatigue 

loading conditions, which was shown effective for modeling fatigue damage caused by 

arbitrary load-paths in either stress or strain space. In their model, fatigue damage 

parameter was formulated by integrating a moment of an incremental load path along a 

given load path forming one half fatigue cycle with respect to a reference load path 

defined in either stress or strain space, referred to as moment of load path (MLP) method. 

They showed that a large amount of available test data obtained under various non-

proportional loading conditions can be effectively correlated for both structural steels and 

aluminum alloys [10, 11]. Its applicability for modeling non-proportional multi-axial 

fatigue in welded components was also demonstrated in [12].  

The aim of this study is to examine the applicability of MLP based fatigue 

damage parameter in K space for modeling mixed-mode crack growth phenomena in 

stress intensity based K-space by formulating a MLP based equivalent stress intensity 

factor range (i.e., ∆𝐾𝑁𝑃 with subscript NP representing non-proportional (NP) effect) for 

mixed mode non-proportional fatigue crack growth problems. Then, a two-parameter 

fatigue crack growth model that takes into account of both load path-dependent effects in 

terms of MLP based equivalent stress intensity factor range (∆𝐾𝑁𝑃 ) and mean stress 

effects by a maximum effective stress intensity factor (i.e., 𝐾𝑀𝑎𝑥) in K-space is proposed 

for modeling non-proportional mixed mode fatigue crack growth problems. The validity 

of this proposed mixed mode crack growth model is then demonstrated by examining 

crack growth rate data on stainless steel (Type 304) performed as a part of this study and 

on 1070 steel reported by Feng et al [7].  
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5.2 Path-Dependent Mixed Mode Fatigue Crack Growth Model  

5.2.1 Problem Definition 

Without losing generality, we consider a mixed mode (mode I and mode III) crack 

growth problem for which a plate of width 𝑤 and thickness of 𝐵 with an initial edge 

crack (𝑎) is shown in Fig. 5.1. Mode I crack growth in Fig. 5.1 is operated by time-

varying tension load P(t) which produces a far field normal traction stress (𝜎) and mode 

III crack growth is operated by time-varying out-of-plane force, Q(t) which produces a 

far field out-of-plane shear traction stress 𝜏𝐼𝐼𝐼, both of which may vary independently 

from each other as a function of time. It should be noted that non-proportional multi-axial 

fatigue behaviors of welded joints subjected to such loading conditions have already been 

investigated by introducing an effective multi-axial fatigue damage parameter, referred to 

as MLP concept (see Mei and Dong [10,12]) in terms of far field stresses. In what follows, 

we extend will extend MLP concept to K space defined on a 𝐾𝐼 −√𝛽𝐾 𝐾𝐼𝐼𝐼 plane for 

modeling non-proportional crack propagation problems.  
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Fig. 5.1 Illustration of mixed Mode I and Mode III fatigue crack propagation problem 

under non-proportional loading conditions (remote tension (𝑃(𝑡)) and remote out-of-

plane shear (𝑄(𝑡)). 

5.2.2 Damage Parameter Definition in K Plane 

5.2.2.1 MLP based equivalent stress intensity factor range 

For a mixed mode crack propagation problem shown in Fig. 5.1, the applied 

tensile force 𝑃(𝑡)  and out of plane shear force 𝑄(𝑡)  can be directly related to their 

respective stress intensity factors 𝐾𝐼(𝑡) and 𝐾𝐼𝐼𝐼(𝑡) as:  

 𝐾𝐼(𝑡) =
𝑃(𝑡)

𝐵√𝜋𝑎
𝐹𝐼 (

𝑎

𝑊
) (5.1) 

 𝐾𝐼𝐼𝐼(𝑡) =
𝑄(𝑡)

𝐵√𝜋𝑎
𝐹𝐼𝐼𝐼 (

𝑎

𝑊
) (5.2) 

where 𝐵  is plate thickness, 𝐹𝐼  and 𝐹𝐼𝐼𝐼  can be dimensionless compliance functions of 

relative crack size 𝑎/𝑊  corresponding to Mode I and Mode III loading conditions, 

respectively. For given independent variable loading histories of 𝑃(𝑡) and 𝑄(𝑡) shown in 

Fig. 5.1, their corresponding stress intensity factor histories can be obtained either 

through existing stress intensity factor solutions or by means of finite element 

computation which is case here, as described in Sec. 4.  In order for fatigue damage 

assessment under non-proportional variable amplitude loading, an appropriate multi-axial 

cycle counting procedure must be first carried out to break complex stress intensity factor 

histories (𝐾𝐼(𝑡)  and 𝐾𝐼𝐼𝐼(𝑡) ) into simple fatigue loading events. The path-dependent 

maximum range (PDMR) originally developed [13-15] for treating variable amplitude 

non-proportional multi-axial stress histories (𝜎(𝑡)  and 𝜏(𝑡)) can be adopted here for 

treating variable amplitude load path in 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane for the case shown in Fig. 
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5.1. The basic idea of PDMR cycle counting procedure [13-15] is that it searches 

successively the maximum ranges available in a given multi-axial stress history in a 

stress space, e.g., 𝜎 − √𝛽𝜏  plane and counts their occurrences as half cycles. More 

details of PDMR cycle counting procedure can be found in [13-15].   

 

Fig. 5.2 Moment of Load Path (MLP) based damage parameter definition on 𝐾𝐼 −

√𝛽𝐾𝐾𝐼𝐼𝐼 plane ( 𝐴𝐵̃: non-proportional load path under consideration; 𝐴𝐵̂ : reference 

circular load path; and 𝐴𝐵̅̅ ̅̅ : reference linear path) 

Now consider a mixed mode fatigue loading event at a given crack size a. the 

corresponding 𝐾𝐼(𝑡) and 𝐾𝐼𝐼𝐼(𝑡) given in Eqs. (5.1) and (5.2) form a load path from A to 

B ( 𝐴𝐵̃) in 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane (see Fig. 5.2), which can be shown to constitute one half 

fatigue cycle according PDMR [13-15]. By applying the Moment of Load Path (MLP) 

concept in K-plane in Fig. 5.2, the resulting damage factor contributing to fatigue crack 

growth resulted from non-proportional load path  𝐴𝐵̃  in Fig. 5.2 can assumed to be 

partitioned into two parts: 
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 𝐷 = 𝐷𝑃
𝐾  𝐷𝑁𝑃

𝐾   (5.3) 

in which 𝐷𝑃
𝐾 represents damage caused by a reference proportional loading path from A 

to B (i.e., 𝐴𝐵̅̅ ̅̅  ), which can be directly related to distance from A to B, or the effective 

stress intensity factor range ∆𝐾𝑒: 

    ∆𝐾𝑒 = √∆𝐾𝐼
2  𝛽𝐾∆𝐾𝐼𝐼𝐼

2
  (5.4) 

The second part in Eq. (5.3), i.e., 𝐷𝑁𝑃
𝐾  represents load path non-proportionality 

caused damage due to any excursions of load path 𝐴𝐵̃ deviating from the reference load 

path ( 𝐴𝐵̅̅ ̅̅  ), which can be expressed in an incremental form as:   

 𝑑𝐷𝑁𝑃 ∝ 𝑟
′|𝑠𝑖𝑛 (𝜃)|𝑑𝑠′  (5.5) 

in terms of local coordinate 𝑥′ − 𝑦′ system in Fig. 5.2. Note that Eq. (5.5) is a direct 

implementation of the MLP concept proposed by Mei and Dong [10] but in K space here. 

Then, the total load path non-proportionality induced fatigue damage (𝐷𝑁𝑃) along path 

𝐴𝐵̃ can then be expressed by integrating Eq. (5.3) as: 

 ' sin( ) 'NP

AB

D r ds    (5.6) 

A dimensionless form of load-path non-proportionality damage factor defined on 

𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼  plane for  𝐴𝐵̃  with respect to the non-proportional load path 𝐴𝐵̂  which 

yields the maximum possible damage can then be written as: 
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  2

' sin( ) ' ' sin( ) '

2sin( ) '

K
K NP AB AB
NP K

Max

AB

r ds r ds
D

g
D RR ds

 


  

 


  (5.7) 

where 𝐷𝑀𝑎𝑥
𝐾  represents the maximum possible damage [10] of a non-proportional damage 

load path 𝐴𝐵̂, which is a semi-circular path with a radius of 𝑅 on the 𝐾 plane. 

For any arbitrary loading path  𝐴𝐵̃ on 𝐾 plane, a MLP based equivalent stress 

intensity factor incorporating path-dependent non-proportionality effect can be expressed 

as:  

 ∆𝐾𝑁𝑃 = ∆𝐾𝑒(1  𝑎
𝐾 ∙ 𝑔𝑁𝑃

𝐾 ) (5.8) 

where 𝑎𝐾  is a material sensitivity parameter to non-proportional loading defined in  

𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane and 𝑔𝑁𝑃
𝐾  is a normalized load path non-proportionality damage factor 

given by Eq. (5.7).  

As reported in [10-13], when a similar form of Eq. (5.8) with respect to stress 

plane (i.e., 𝜎 − √𝛽𝜏  plane) or strain plane (i.e., 𝜀 − √𝛽𝜀𝛾  plane) was used, excellent 

correlations have been achieved in correlating a large amount of non-proportional multi-

axial test data for both structural steels and aluminum alloys.  It has been shown that in 

[19, 21], 𝛽 = 3 and 𝑎 = 1 defined on 𝜎 − √𝛽𝜏 stress plane resulted a good correlation in 

multi-axial fatigue test data of both welded and non-welded structural steels from various 

sources. Therefore, it is assumed that the same values, i.e. 𝛽𝐾 = 3  and 𝑎𝐾 = 1  are 

applicable for 𝐾 plane based mixed mode crack growth characterization, at least as a first 
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approximation. Refined estimations of these parameters can be achieved through the data 

analysis procedures described in [11].  

5.2.2.2 Maximum effective stress intensity factor 

In addition to MLP-based equivalent stress intensity factor range ∆𝐾𝑁𝑃 given in 

Eq. (5.8), either a mean or maximum effective stress intensity factor definition in K plane 

should be considered, as suggested by a careful examination of relevant test data reported 

by various authors, particularly those by Jiang et al [7]. They conducted a series of rather 

interesting mixed-mode crack growth tests using non-proportional load histories resulting 

in 𝐾𝐼(𝑡)  and 𝐾𝐼𝐼𝐼(𝑡)  histories as illustrated in Fig. 5.3 with unit amplitude of stress 

intensity factor and R=0, involving proportional loading (0
0 

phase shift), non-proportional 

loading (90
0 

phase shift), and inversely proportional loading (180
0 

phase shift). It was 

found that the load case corresponding to inversely proportional loading yields the 

minimum crack growth rates or least damaging among all cases considered.  It should be 

noted that under inversely proportional loading (Fig. 5.3(b)), 𝐾𝐼  reaches its maximum 

when 𝐾𝐼𝐼𝐼 reaches its minimal, intuitively suggesting a reduced interaction between 𝐾𝐼(𝑡) 

and 𝐾𝐼𝐼𝐼(𝑡)  throughout a fatigue cycle in comparison with other two load cases.  

Therefore, a maximum effective stress intensity factor definition should contain a term in 

the form of 𝐾𝐼𝐾𝐼𝐼𝐼, in addition to the requirements that it must remain valid when either 

one of the two vanishes. As a result, a maximum effective stress intensity factor can be 

postulated as follows: 

 𝐾𝑚𝑎𝑥 = 𝑀𝑎𝑥(√𝐾𝐼
2  𝜂𝐾𝐼(√𝛽𝐾𝐾𝐼𝐼𝐼)  (√𝛽𝐾𝐾𝐼𝐼𝐼)

2
))  (5.9) 
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where 𝛽𝐾 is an equivalency parameter between Mode I and Mode III crack growths as 

described previously and 𝜂  can be treated as material-related parameter measuring 

interaction effects between Mode I and Mode III crack growths.  

 

Fig. 5.3 Representative non-proportional sinusoidal loading histories (with unit amplitude 

of stress intensity factor and R=0) and K-plane based representations: (a) Proportional (0
0 

phase shift); (b) Non-proportional (90
0 

phase shift), (c) Non-proportional (180
0 

phase 

shift); and (d) K-planed based representations  

5.2.3 Two-Parameter Mixed-Mode Crack Growth Model  

With the developments discussed in the previous sections (Secs. 2.2.1 and 2.2.2), 

a two-parameter non-proportional crack growth model is proposed as follows: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(𝐾𝑀𝑎𝑥)

𝑝(∆𝐾𝑁𝑃)
𝑞    (5.10)  
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which can be written in an equivalent form as: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(𝐾∗)𝜆   (5.11) 

where  

 𝐾∗ = (𝐾𝑀𝑎𝑥)
1−𝛾(∆𝐾𝑁𝑃)

𝛾  (5.12) 

In Eq. (5.12), 𝐾∗ represents an equivalent stress intensity factor and the exponent 𝛾 is a 

curve-fitting parameter through analysis of experimental test data. A higher 𝛾  value 

suggests a less sensitivity of crack growth rate to maximum effective stress intensity 

factor 𝐾𝑀𝑎𝑥. As suggested in [16], 𝛾 can also be related to material ductility. Note that 

when 𝛾 = 0.5, Eq. (5.12) is reduced to the form of Smith-Watson-Topper (SWT) fatigue 

damage parameter [17] but in terms of stress intensity factor parameters defined in 𝐾 

space. Furthermore, it has been shown [18] that when crack growth is dominated by 

elastic stress field, 𝛾 = 0.5 leads to rather reasonable correlations of fatigue crack growth 

data containing different stress ratios. For the purpose of demonstrating the general 

applicability of the two parameter model given in Eq. (5.12), 𝛾 = 0.5 is chosen here for 

performing data correlation in this study, recognizing the fact a best fit 𝛾 would certainly 

improve data correlation for a given set of test data.  However, the focus here is to 

demonstrate the effectiveness of the proposed two-parameter model (see Eq. (5.12)) 

through its mechanics structure, without going through any best-fit based data analysis. 
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5.3 Non-Proportional Mixed Mode Fatigue Tests 

5.3.1 Test Procedure 

Two sets of non-proportional mixed mode I and mode III crack growth test data 

are considered here for validating the proposed two parameter crack growth model. One 

set is generated as a part of this study using 304 stainless steel disk plate specimens as 

shown in Fig. 5.4(a) subjected to three combined Mode I and Mode III loading conditions  

or load paths in terms of tension and torsion forces (P and T) described in Fig. 5.5(a). For 

each load path, two load levels were used, as shown in Fig. 5.5(a). The other data set is 

taken from Feng et al [7] who used 1070 steel disk plate specimens shown in Fig. 5.4(b) 

which were subjected to the load paths shown in Fig. 5.5(b).  For 1070 specimens, fatigue 

crack growth rate tests were carried out at one load level.  Note that both 304 steel 

specimens and 1070 steel specimens have the same plate thickness of 3.8mm, even 

though the dimensions of the 1070 specimens are about 1.5 times larger than that of 304 

steel specimens. 

A pre-crack was generated through pure Mode I cyclic loading before combined 

tension and torsion loads are applied independently in subsequent fatigue crack growth 

tests. To avoid potential crack surface contact during fatigue testing, which might 

introduce additional uncertainties in crack growth rate data, a positive R-ratio (R=0.1) for 

the axial load and a zero R-ratio for the torsion load were used. As will be demonstrated 

in a later section, mean stress effects (R-ratio effect) on crack growth rate can be taken 

account through 𝐾𝑚𝑎𝑥 in Eq. (5.9) in the proposed two-parameter crack growth model 

described in Eq. (5.10). For the three load paths used for both types of steels, Load Path I 

yields proportional loading conditions between tension and torsion, while Path II may be 
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referred to as inversely proportional loading condition (see Fig. 5.3(b)), in which 𝐾𝐼𝐼𝐼 

decreases linearly with the increase of 𝐾𝐼. Path III is an out-of-phase load path with 90° 

out-of-phase angle between tension and torsion.  

 

 

Fig. 5.4 Disk type CT crack growth test specimens: (a) 304 stainless steel and (b) 1070 

steel [7] 
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Fig. 5.5 Load paths used in fatigue crack growth testing: (a) 304 stainless steel 

specimens; (b) 1070 steel specimens [7]  

All the above crack growth rate tests were conducted using an Instron 8870 load 

frame and 8800 electronics with computer control and data acquisition systems. The 

testing system can generate and control the axial and torsion loads independently. The 

loading frequencies were ranged from 2 to 5 Hz, dependent on the loading path and crack 

length. An optical reading micrometer with a magnification of 40 was used to measure 

the crack length. 

5.3.2 Test Results 

Similar to those observed in [7], the overall global crack growth direction is 

consistent with pre-crack plane, in spite of some local deviations or crack branching at a 

rather small length scale. The measured crack growth results as a function of load cycle 
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are summarized in Fig. 5.6 for 304 stainless steel specimens and in Fig. 5.7 for 1070 steel 

specimens. Note that the measured instantaneous crack size a includes the length of the 

machined slit before pre-cracking, as shown in Fig. 5.4 (b).  The detailed measurement 

procedure for 304 steel specimens follows the one described in [7] in which mixed-mode 

crack growth behaviors were investigated under non-proportional loading conditions. As 

indicated in Fig. 5.6, the two sets of crack growth rate data subjected to out-of-phase 

loading (Path III) consistently show a more rapid crack growth than the other two load 

paths, i.e., Path I and Path II, while Path II (inversely proportional) results in the slowest 

crack growth among the three load paths.  

 

Fig. 5.6 Measured crack growth results - 304 stainless steel specimens 
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Fig. 5.7 Crack growth test results – 1070 steel (Feng et al, [7]) 

5.4 Analysis  

5.4.1 Stress Intensity Factor Calculations 

Since stress intensity factor solutions for the specimen geometries shown in Fig. 

5.4 are not available from any existing sources, a finite element based energy release rate 

method is used to compute stress intensity factors corresponding to tension (𝑃(𝑡)) and 

torsion (𝑇(𝑡) ) as a function of crack size, which can be implemented as a nodal 

force/displacement based procedure [19, 20]. The procedure used in this study is 

illustrated by considering a simple finite element mesh layout around crack tip in Fig. 5.8 

(a) under Mode I loading conditions. Nodal forces 𝐹1 and 𝐹2 in y direction at crack tip are 

first extracted before crack propagation. Then, releasing node at the crack tip shown in 

Fig. 5.8 (a), results in a crack tip advance by ∆𝑎, shown in Fig. 5.8 (b). The new finite 

element solution corresponding to the current configuration (Fig. 5.8 (b)) yields nodal 
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displacements 𝑢1 and 𝑢2 in y direction. The work done by the nodal force (𝐹1 and 𝐹2) to 

advance the crack  length by ∆𝑎 is equal to the energy released by the system, leading to: 

 
1

2
𝐹1 ∙ 𝑢1  

1

2
𝐹2 ∙ 𝑢2 = 𝐺∆𝑎  (5.13) 

where 𝐺 is energy release rate. For plane stress problems, 𝐺 = 𝐾𝐼
2 𝐸⁄ , where 𝐾𝐼  is the 

Mode I stress intensity factor when crack size is at 𝑎. As long as ∆𝑎 ( i.e element size at 

crack tip) is reasonable small, e.g., ∆𝑎 = 0.2𝑚𝑚 used in the current study, the resulting 

𝐾𝐼 values calculated are verified on simple edge crack specimen for which a closed-form 

solution is available. For Mode III loading, 𝐹1, 𝐹2 and 𝑢1, 𝑢2 in Eq. (5.13) can be simply 

replaced by nodal forces and nodal displacements in z direction. Eq. (5.13) offers a 

simple and reliable method for computing stress intensity factors for the problem 

definition given in Fig. 5.1. With the nodal force/displacement procedures described 

above, the computed dimensionless compliance function results in 𝐾𝐼  and 𝐾𝐼𝐼𝐼 

expressions given in Eq. (5.1) and Eq. (5.2) for 304 stainless steel specimens (Fig. 5.4(a)) 

are plotted as a function of relative crack size in Fig. 5.9(a) and Fig. 5.9(b). In addition, 

the corresponding compliance function results for 1070 steel specimens tested by Feng et 

al [7] are also given in Fig. 5.9 for comparison purpose. Note that crack growth tests on 

304 stainless steel specimens covered a rather small crack growth ranges comparing with 

tests on 1070 steel specimens.   

With these computed function results obtained and applied load path in terms of 

applied loads (P and T) given in Fig. 5.5), the mixed mode load paths on 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 

plane can then generated by using Eq. (5.1) and Eq. (5.2) at each crack size increment on 
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which da/dN versus N data are available.  Then, the corresponding ∆𝐾𝑁𝑃 and 𝐾𝑚𝑎𝑥 can 

be computed through Eq. (5.8) and Eq. (5.9).   

 

Fig. 5.8 Illustration of nodal force based energy release rate calculation method:  (a) 

extract nodal forces at initial crack tip; (b) extract displacements at the same after node 

release resulting in a crack size increment by ∆𝑎  
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Fig. 5.9 Dimensionless compliance functions as a function of relative crack size crack 

size calculated for 304 stainless steel specimen and 1070 steel specimen 

5.4.2 Determination of ∆𝐊𝐍𝐏 and 𝐊𝐌𝐚𝐱 

At each given crack size, the load paths described in Fig. 5.5 in terms of applied 

tension (P) and torsion (Q) can now be mapped onto 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane through Eqs. 

(5.1) and (5.2), as given in Fig. 5.10 for 1070 steel specimens with a crack size of 

𝑎 = 26mm. It should be noted that as crack size changes, the resulting load paths in 
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𝐾𝐼 −√𝛽
𝐾𝐾𝐼𝐼𝐼 plane change as a function of crack size, as described in Eq. (5.1) and Eq. 

(5.2).  The procedure for calculating ∆𝐾𝑁𝑃 can be illustrated as follows. For Path I and 

Path II shown in Fig. 5.10, MLP based non-proportionality factor 𝑔𝐾
𝑁𝑃
= 0 according to 

Eq. (5.7). As a result, straight line load paths (Path I and Path II) result in ∆𝐾𝑁𝑃 = ∆𝐾𝑒. 

Load Path III constitutes two half fatigue cycles represented by two semi-elliptical 

segments, one is the upper half ( 𝐴𝐶𝐵̃ ) and the other is the lower half ( 𝐴′𝐶′𝐵′̃ ), sharing 

a common linear reference load path, which is the long axis 𝐴𝐵̅̅ ̅̅  of the ellipse, as 

illustrated in Fig. 5.10.  By numerically integrating Eq. (5.7) over the two semi-elliptical 

loading paths, the non-proportionality factor 𝑔𝑁𝑃
𝐾  and MLP based equivalent stress 

intensity factor range ∆𝐾𝑁𝑃 corresponding to one full cycle can be calculated through Eq. 

(5.7) and Eq. (5.8) respectively.  

As discussed in Section 2.2, 𝐾𝑀𝑎𝑥  in Eq. (5.9) represents the maximum value 

attained through a quadratic function of 𝐾𝐼 and 𝐾𝐼𝐼𝐼 during one fatigue cycle along each 

of the three load paths. The resulting values (denoted by 𝐾𝑀𝑎𝑥
𝐼 , 𝐾𝑀𝑎𝑥

𝐼𝐼  and 𝐾𝑀𝑎𝑥
𝐼𝐼𝐼  for load 

path I, II and III, respectively) at 𝑎 = 26𝑚𝑚 in 1070 steel specimen are also given in Fig. 

5.10. Note that 𝜂 = 1 in Eq. (5.9) is assumed here for illustration purpose and that an 

estimation procedure for 𝜂 for achieving an improved data correlation will be discussed 

in the next section.  For comparison purpose, all relevant parameters required the two-

parameter crack growth model described by Eq. (5.11) are summarized in Table 5.1 for 

the three load paths shown in Fig. 5.10. It is interesting to note that the relative 

differences in 𝐾∗ among the three load paths seem to provide a consistent ranking in 

trend with fatigue crack growth rates observed in Fig. 5.7.  For instance, the lowest K* is 
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calculated for load Path II which resulted in the slowest crack growth rates (see Fig. 5.7) 

while the highest K* for load Path III which resulted in the highest crack growth rate.  

 

Fig. 5.10 Loading paths in 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 for 1070 steel specimens at a =26mm  

 

Table 5.1 Summary of parameters involved in two-parameter mixed-mode crack growth 

model - 1070 steel specimens at  𝒂 = 𝟐𝟔𝒎𝒎 

𝑔𝑁𝑃
𝐾  and K parameters 

of 1070 steel (𝑎 =
26𝑚𝑚)  

Load path I Load path II Load path III 

𝑔𝐾
𝑁𝑃

  0 0 0.91 

∆𝐾𝑁𝑃(𝑀𝑃𝑎√𝑚𝑚) 2435 2430 3421 

𝐾𝑚𝑎𝑥(𝑀𝑃𝑎√𝑚𝑚)  3155 1976 2730 

𝐾∗(𝑀𝑃𝑎√𝑚𝑚) 2771 2191 3056 

 

5.4.3 Data Correlation  

Before the application of proposed two parameter fatigue crack growth model in 

Eq. (5.10) to all of non-proportional fatigue test data investigated in this paper, the 
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interaction coefficient  𝜂  in Eq. (5.10) ) needs to be determined first. This can be 

achieved by comparing fatigue test data corresponding to Path I and Path II based on Eq. 

(5.11). Since ∆𝐾𝑁𝑃 values for Path I and Path II according to Eq. (5.8) are the same, any 

difference in measured fatigue crack growth rates between two load paths can be 

attributed to the difference in 𝐾𝑚𝑎𝑥. By fitting the crack growth rate data between Path I 

and Path II for 304 stainless steel, 𝜂 ≈ 3 is obtained and used throughout the rest of the 

paper.  

For comparison purpose, conventional definition of effective stress intensity 

factor range Δ𝐾𝑒 given in Eq. (5.4) is first used in the form of Eq. (5.11) with 𝐾∗ being 

replaced by Δ𝐾𝑒 for correlating the crack growth data for stainless steel and 1070 steels. 

As shown in Fig. 5.11, the scatter band is rather large, with a standard deviation of 0.47 

for data from 304 stainless steel specimens. Once the proposed two-parameter non-

proportional mixed mode growth model in the form of Eq. (5.11) in which 𝐾∗  is 

calculated according to Eq. (5.12) is used, a significantly improved data correlation can 

be seen, as shown in Fig. 5.12, with a standard deviation of 0.25. The improvement can 

be attributed to both the use of MLP based equivalent stress intensity factor range (∆𝐾𝑁𝑃) 

relevant to Load Path III and the maximum effective stress intensity factor 𝐾𝑀𝑎𝑥 which 

takes on a different value among the three loading paths involved.  The results for 1070 

steel crack growth data are shown in Fig. 5.13 using the conventional effective stress 

intensity factor range Δ𝐾𝑒 and in Fig. 5.14 using the two parameter fatigue crack growth 

model. Again, the effectiveness of the two-parameter mixed crack growth model in 

correlating the 1070 steel is clearly shown.  It should be pointed out that throughout this 

paper, the same value of coefficient 𝜂 is used for computing  𝐾𝑚𝑎𝑥 for both 304 stainless 
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steel and 1070 structural steel specimens. Furthermore, both material sensitivity 

parameter (i.e. 𝛼𝐾 = 1) and fatigue equivalency parameter (i. e. 𝛽𝐾 = 3) are assumed in 

this study, based on  previous investigations [19-21]. The exponent in Eq. (5.11) is taken 

as 𝛾 = 0.5, as used in SWT model [17]. No attempts have been made in determining all 

these three parameters for achieving a best fit.   

 

Fig. 5.11 Data correlation using conventional ∆𝐾𝑒 for 304 steel specimens 
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Fig. 5.12 Data correlation using MLP based two-parameter crack growth model (Eq. 

5.11) – stainless steel 304 specimens 
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Fig. 5.13 Data correlation using conventional ∆𝐾𝑒 for 1070 steel specimens 

 

Fig. 5.14 Data correlation using MLP based two parameter crack growth model (Eq. 

5.11) - 1070 steel specimens 

5.5 Conclusions  

A two parameter mixed mode crack growth model has been proposed for achieving 

an effective treatment of fatigue damage caused by both proportional and non-

proportional multiaxial fatigue loading conditions. The two parameters defined with a 

respect to K space are: (1) Moment of Load Path (MLP) based effective stress intensity 

factor range which measures load path dependent fatigue damage; (2) maximum effective 

stress intensity factor which measures mean-stress induced fatigue damage. The 

effectiveness of the proposed two-parameter model has been shown in its ability to 

correlate crack growth rate data obtained from both 304 stainless and 1070 steel disk 

specimens tested under both proportional and non-proportional modes I and model III 

loading conditions.     
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Chaper 6.  

Summary and Further Research 

 

6.1 Summary of Proposed of MLP Based Model 

The proposed non-proportional fatigue damage model, referred to as MLP based 

model can be defined with respect to 𝜎 − √𝛽𝜏 plane, 𝜀 − √𝛽𝜀𝛾 plane or even 𝐾 plane 

(e.g. 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane), depending on the problem to be solved. The essential elements 

of the proposed model, by taking its formulation in 𝜎 − √𝛽𝜏 plane as an illustration can 

be summarized as: 

(i) For a PDMR cycle counted non-proportional load path segment defined on 

𝜎 − √𝛽𝜏 plane, one can always find its proportional (reference) path which is a 

straight line connecting start and end point of the path segment. With reference 

path identified, the total fatigue damage (𝐷 ) of the non-proportional path is 

assumed to be linearly decomposed into proportional (reference) damage part (𝐷𝑃) 

and non-proportional damage part (𝐷𝑁𝑃). The proportional (reference) part can be 

simply represented by effective stress range (i.e. path length) of the reference path. 

The non-proportional part (𝐷𝑁𝑃) can be intuitively characterized by the extent of 

load path excursion away from reference path. One way of such a representation 

is the moment of non-proportional path with respect to its reference path. 
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(ii) From a mechanics perspective, the non-proportional damage part (𝐷𝑁𝑃) of a load 

path can be expressed as an integral form of strain energy density contributed by 

both normal and shear stresses, with each being weighted by a path dependent 

function. Therefore, it can be argued that non-proportional damage part is linked 

with the additional strain energy (in a weighted form) needed for following a non-

proportional path. 

(iii) A dimensionless representation of non-proportional damage part (𝐷𝑁𝑃 ) is by 

normalizing it with respect to a non-proportional path that has the maximum non-

proportional damage effect. Based on experimental observations, circular load 

path is usually found to be the most damaging one among all non-proportional 

paths with the same reference path and is thus chosen for normalization purpose. 

The normalized form, termed as load path non-proportionality (𝑔𝑁𝑃) is load path 

dependent and independent of materials tested. For elliptical paths commonly 

employed for non-proportional fatigue test in laboratories, their analytical forms 

of  𝑔𝑁𝑃 are derived.   

(iv) It is experimentally observed that different materials have different sensitivities to 

non-proportional loading in terms of their fatigue life reduction. As a result, 

material sensitivity parameters are needed for different alloys. With both load 

path non-proportionality (𝑔𝑁𝑃) and material sensitivity parameter (𝛼) in place. A 

non-proportional fatigue damage parameter is defined in the following simple 

form:  

 ∆𝜎𝑁𝑃 = ∆𝜎𝑒(1  𝛼 ∙ 𝑔𝑁𝑃) (6.1) 
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With the above MLP based equivalent stress definition, a specific procedure is 

provided for determining material sensitivity by examining two groups of fatigue 

tests results, with one group of proportional loading and another group of non-

proportional loading. The first obvious advantage of MLP based equivalent stress 

definition is its simplicity in both its form and application, especially when 

compared with critical plane methods. Secondly, it characterizes non-

proportionality (𝑔𝑁𝑃) of load path and material responses explicitly and separately.     

(v) The proposed fatigue model in conjunction with PDMR cycle counting 

procedures constitutes an integrated approach to non-proportional multi-axial 

fatigue under variable amplitude loading conditions. This integrated approach is 

demonstrated by correlating a large amount of multi-axial fatigue test data 

obtained using plenty load-path patterns in either stress-plane in high cycle 

fatigue regime or in strain-plane in low-cycle fatigue regime.             

6.2 Summary of MLP Model Applied to Aluminum Alloys 

MLP based modeling of non-proportional multi-axial fatigue of aluminum alloys 

are carried out by examining a total amount of around 3 hundreds tests from eight 

independent research groups. These different types of aluminum alloys ranges from 7000 

series, 6000 series, 5000 series to 2000 series. To the author’s best knowledge, this is the 

most comprehensive analysis of non-proportional fatigue of different aluminum alloys. 

Different from structural steels, for which pretty good correlations are achieved by 

assuming a default value of material sensitivity parameter (i.e. 𝛼 = 𝛼𝜀 = 1) in MLP 

based analysis, material sensitivity parameter is calculated for each group of aluminum 

test data by comparing two sets of test data (one set of proportional test data and the other 
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non-proportional). After that, it is then used consistently in MLP based analysis for all 

different load paths examined within the test group. The major findings of applying MLP 

model to different aluminum alloys include: 

i. Compared with structural steels, all series of aluminum alloys studied show a less 

degree sensitivity to non-proportional cyclic loading. The material sensitivity 

parameters ( 𝛼  defined with respect to stress plane and 𝛼𝜀  to strain plane) 

calculated ranges from 0.35 to 0.5, much smaller than that of structural steels for 

which material sensitivity is generally around unity (i.e. 𝛼 ≈ 𝛼𝜀 ≈ 1). 

ii. It is found that material sensitivity parameters for same series of alloys generally 

remain the same regardless of the planes (𝜎 − √𝛽𝜏  plane or 𝜀 − √𝛽𝜀𝛾  plane) 

with respect to which they are calculated. Also note that for different steels 

examined in Chapter 2, the default value of unit is used for both 𝛼 defined on 

𝜎 − √𝛽𝜏 plane and 𝛼𝜀 defined on 𝜀 − √𝛽𝜀𝛾 plane. It seems that 𝛼 and 𝛼𝜀 can be 

used interchangeably at current stage. 

iii. Besides demonstrating that MLP-based equivalent stress range or equivalent 

strain range are quite effective in correlating a large amount of non-proportional 

multi-axial fatigue test data, an approximately linear relationship between 

material sensitivity parameter and material ductility (in terms of percentage of 

elongation obtained from standard tests) is observed for aluminum alloys for the 

first time.  

iv. The common belief that material sensitivity to non-proportional loading is directly 

related to additional hardening effect is questionable based on our research into 

this subject. Three arguments are given in Chapter3 and the most obvious one is 
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that some materials don’t exhibit noticeable non-proportional hardening but still 

show significant non-proportional fatigue damage effect. As a result, it is 

recommended that the determination of material sensitivity parameter can be done 

by following procedures provided in this chapter or from the relationship 

established between material sensitivity and ductility. 

6.3 Summary of MLP Model Applied to Welded Components 

Based on a detailed assessment of currently available multi-axial fatigue test data 

in literature, the most comprehensive analysis of well-documented test data on welded 

steel joints are done in Chapter 4 by MLP model. These welded components are first 

classified as stress-relieved and as-welded components to examine if residual stress relief 

will have an impact on fatigue lives of examined joints. A new equivalent stress 

parameter is then proposed to take into account of thickness effect, stress gradient effect 

and non-proportional loading effect (by MLP model) based on traction structural stress 

definition. Furthermore, the feasibility of using current existing methods such as those 

stipulated in Eurocode 3 and IIW recommendations based on hot spot stress definition are 

also evaluated for comparison purpose. The main conclusions are: 

(i) when data correlation of stress-relived and as welded test data are examined 

separately, by following a similar form of equivalent stress definition adopted in 

ASME, the following equivalent structural stress definition:  

 ∆𝑆𝑁𝑃 =
∆𝜎𝑁𝑃

𝑡∗
2−𝑚
2𝑚  𝐼(𝑟𝑒)

1
𝑚

  (6.2) 

further takes into account of non-proportional damage effect (by the term ∆𝜎𝑁𝑃 in 

Eq. 6.1 ) besides thickness effect and bending ratio (𝑟𝑒 ) effect. Pretty good 
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collapse of test data are observed for both stress-relieved and as welded test data 

when compared with Eurocode 3 and IIW methods. 

(ii) Residual stress relief has a beneficial effect for current examined multi-axial 

fatigue test data. Further consideration of stress ratio correction is done by  

 ∆𝑆𝑁𝑃
𝑅 =

∆𝜎𝑁𝑃

(1−𝑅)
2
𝑚 𝑡∗

2−𝑚
2𝑚  𝐼(𝑟𝑒)

1
𝑚

  (6.3) 

In this way, both stress-relived and as-welded test data can be examined as a 

whole. Furthermore, the new equivalent stress parameter in Eq. 6.3 enables the 

use of only one master S-N curve that are currently adopted by the 2007 ASME 

and API 579 for fatigue evaluation of non-proportional multi-axial fatigue of 

welded components. 

(iii) Current Eurocode 3 and IIW are less reliable for non-proportional fatigue 

assessment of welded components for several reasons. First of all, hot spot stress 

calculated varies a lot even for similar types of tested welded joints when these 

standards are followed. Secondly, thickness and stress gradient corrections are not 

made for these two methods. Thirdly, non-proportional loading effects are not 

considered in Eurocode 3 while IIW only takes it into account in a qualitatively 

manner. Finally, no multi-axial cycle counting procedures are suggested in 

Eurocode 3 and IIW for treating non-proportional loading histories (e.g. 

asynchronous loading between torsion and bending). All of these above issues are 

resolved by our proposed equivalent stress parameter in Eq. 6.3 when integrated 

with PDMR cycle counting.   
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6.4 Summary of MLP Model Applied to Mixed Mode Fatigue Crack Growth 

Mixed mode fatigue crack growth under non-proportional loading is much more 

challenging than cases examined in Chapter 2 and Chapter 3 for which fatigue damage is 

dominated by crack initiation and a proper definition of stress/strain can be used in MLP 

model. The difficulty of mixed mode fatigue crack growth problem, especially under 

non-proportional loading is twofold: determination of crack growth direction and an 

effective stress intensity factor applicable for both proportional and non-proportional 

loading. For our current examination of mixed mode I and mode III fatigue crack growth 

tests done by Feng et. al, it is generally observed that crack grows along initial pre-crack 

plane. As a result, the prediction of fatigue crack growth direction is avoided in these 

specific cases. Furthermore, since the mixed mode fatigue crack tests are designed with a 

R ratio of 0.1, crack surface interaction are avoided to make life easier. With the above 

considerations and simplifications, our major contributions are: 

(i) MLP model is further extended to 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane for constructing a MLP 

based equivalent stress intensity factor range parameter for non-proportional 

mixed mode I and mode III fatigue crack growth problem. Still, the material 

sensitivity parameters are also assumed to be unity as what we did in Chapter 2 

and Chapter 4. 

(ii) For treatment of mean stress effect, a new definition of 𝐾𝑀𝑎𝑥 defined with respect 

to 𝐾𝐼 −√𝛽𝐾𝐾𝐼𝐼𝐼 plane is proposed. The advantage of the proposed 𝐾𝑀𝑎𝑥 in Eq. 

4.9 is that it not only can be reduced to conventional definition of maximum stress 

intensity factor for single mode fatigue crack growth problem, but also the 

coupling between 𝐾𝐼 and 𝐾𝐼𝐼𝐼 is captured. 
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(iii) With MLP based equivalent stress intensity factor as a range parameter and 𝐾𝑀𝑎𝑥 

to take into account of mean stress effect, two-parameter crack growth model in 

Eq. 4.10 is used for crack growth rate correlation among proportional, inversely 

proportional and 90° out-of-phase mixed mode fatigue crack growth test data. Its 

effectiveness further demonstrates that MLP based fatigue damage model can be 

extended to 𝐾 plane as long as other factors such as crack growth direction, crack 

surface interaction and mean stress effect are treated in a reasonable manner.   

6.5 Further Work and Recommendations 

(i) The rotation of reference path. 

It is important to bear in mind that non-proportional loading effect for each 

PDMR counted load path segment is defined with respect to its reference load path. 

However, for different counted load path, their respective reference paths for complex 

variable amplitude loading are likely to be all over the space in stress/strain planes. One 

such example is illustrated in Fig. 6.1. For the whole load paths A-B-C-D, PDMR cycle 

counting will leads to three load path segments:𝐴𝐵̂ ,𝐶𝐷̂ and 𝐵𝐶̂. The reference path for 

𝐴𝐵̂ and 𝐶𝐷̂ is the straight lines connecting A to B (𝐴𝐵̅̅ ̅̅ ), C to D (𝐶𝐷̅̅ ̅̅ ) respectively. One 

would notice that there is a rotation of reference path 𝐶𝐷̅̅ ̅̅  with respect to 𝐴𝐵̅̅ ̅̅ . As a result 

of the rotation in stress plane, non-proportional fatigue loading effect is created. Our 

current consideration of non-proportional loading effect does not take reference path 

rotation into account. One extreme case done by Shamsaei et. al. [1] is shown in Fig. 6.2. 

Proportionally fully reversed loading with 1° of increments gradually within a circular 

boundary in 𝜀 − √𝛽𝜀 plane is applied until a total of 360° are swept. As described in [1], 

even though this strain blocks includes 360 proportional cycles based PDMR, it also 
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activates the rotation of principal axes and non-proportional damage is introduced as 

demonstrated by fatigue test results. For this special case, each proportional path (also 

reference path) rotates gradually and the non-proportional damaging effect is solely 

caused by the rotation of reference path. As a result, the rotation of reference paths can be 

considered in the further.         

 

Fig. 6.1 illustration of reference path rotation between two load path segments between 

𝐴𝐵̂ and 𝐶𝐷̂  

 

Fig. 6.2 Fully reversed with 1° increments load blocks used by Shamsaei et. al. [1] 
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(ii) Systematic examination of the relationship between material sensitivity and 

ductility 

One of the most important observations throughout this dissertation is that 

material sensitivities for different materials tend to be related to their ductility in terms of 

elongations based on our examination of different types of metallic alloys. This finding is 

vital for non-proportional fatigue assessment of metallic alloys since once the linkage 

between them is established, proportional and non-proportional fatigue experiments can 

be avoided for material sensitivity determination. Therefore, it is necessary for 

researchers to further look into the connection between the two material properties by 

carrying out well-controlled proportional and non-proportional fatigue tests on different 

materials with different levels of ductility. We would suggest that materials with low 

ductility, medium ductility and all the way to high ductility (i.e. stainless steel) are tested. 

Once such a relationship is firmly established, the mechanisms leading to such a 

conclusion can be investigated further at a micro-scale from material’s point of view.    

(iii) Application of MLP model in frequency domain 

This is a topic that has not been explored yet and it is of both academic and 

practical significance in the near future. Frequency domain (PSD) based fatigue life 

estimation has already been generally established and used as an important way of fatigue 

damage assessment. It seems that one way of characterizing load path non-proportionality 

may be related with covariance between different loading components. However, a 

probabilistic distribution of loading cycles for different stress ranges is a challenging 

issue to be solved. Derivation of such an analytical/empirical form of distribution would 

require a strong background of stochastic process. 
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(iv) Real and more complex variable amplitude loading history for engineering 

application 

We have examined a large variety of non-proportional load paths including 

asynchronous loading paths (i.e. different loading frequency ratios between axil loading 

and torsion loading). These are the majority of complex non-proportional loading paths 

available in the literature. Unfortunately, more complex variable amplitude loading 

histories test data such as those non-proportional service loading histories can’t be easily 

obtained from literature. The next leve of validation and application of MLP model can 

be done by examining non-proportional fatigue damage of engineering structures under 

real and complex non-proportional variable amplitude loading histories.  

Reference  

[1] Shamsaei N, Fatemi A, Socie D F. Multiaxial fatigue evaluation using discriminating 

strain paths. Int J Fatigue 2011;33:597–609. 

 


