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ABSTRACT

Control of Lithium-Ion Battery Warm-up from Sub-zero Temperatures

by

Shankar Mohan

Chair: Anna G. Stefanopoulou

The archetype of rechargeable technology, Li-ion batteries have over the last decade benefited

from improvements in material science through increased energy and power density. Although

widely adopted, these batteries suffer from significant performance degradation at low

temperatures, posing a challenge for automotive applications, especially during vehicle

start-up.

This begs the question: if one was to seek an energy optimal warm-up strategy, how

would it look? Moreover, if as much as 22% of reduction in range of electric vehicles is

attributable to onboard battery heating systems, would an optimal heating strategy alleviate

this energy drain and at what drawback? This thesis addresses these questions. To that

end, we pose and solve two energy-optimal warm-up strategies in addition to developing

tools that will enable one to make prudent decisions on whether warm-up is feasible if the

battery energy state falls too low.

In this dissertation, we address the four main aspects of control design modeling, control,

verification and adaptation. There are two primary control strategies that are designed

in this dissertation and tools to analyze them are developed. The first warm-up scenario

involves a receding horizon optimal control problem whose objective trades-offs increase in

battery’s temperature by self-heating against energy expended. The shape of battery current

is restricted to be bi-directional pulses that charge and discharge the cell at relatively high

frequencies via an external capacitor. The optimal control problem solves for the amplitude

of the pulse train and the results clarify issues associated with capacitor size, time and lost

energy stored. The second control policy is deduced by solving an optimal discharge control

problem for the trajectory of power that could self-heat the cell and at the same time feed

an external heater whilst minimizing the loss in state of charge.

Batteries inevitably age as they are used and consequently their dynamics also change.

Since both proposed methods are model based, the last of part of this dissertation proposes

xi



a novel augmented-state-space partitioning technique which can be used to design cascaded

nonlinear estimators. Using this partitioning technique, the relative average estimability

of the different states of the electrical and thermal model is studied and Dual Extended

Kalman Filters are built and validated in simulations.

All the methods developed are demonstrated via a combination of simulation and

experiments on Iron Phosphate or Nickel Manganese Cobalt Li-ion battery cell which have

high power capability and could be used in replacement of 12V starter batteries or 48V

start-stop applications.
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CHAPTER I

Introduction

Access to energy, it might as well be a fundamental human right. There is no downplaying

the importance and influence of energy in shaping the landscape of society and technology.

In the developed and fast developing countries, this tremendous transformation has been

fueled by derivatives of fossilised bio-material for the better part of the last century. Since

not-too-long in the past, we have recognized that the over-reliance on these non-renewable

energy sources can have two main impacts: supply uncertainty and, more importantly,

long-term climatic and ecological damage. The world has started to make a move towards

alternative energy and efficient systems.

There are two perspectives to the energy market – supply and demand. On the supply

side, alternates to fossil fuels such as nuclear, hydro and renewable power sources have

attracted notable attention. The most promising class of energy sources in the category of

alternate energy sources is renewables. In fact, it has been suggested that Africa could meet

all its energy needs using a combination of wind and solar power [4].

The power output of renewables is not consistent; they in general cannot serve base

loads. However, they can benefit from being paired with Energy Storage Systems (ESS) to

smoothen their power output [5]. Energy storage systems can serve other purposes in the

grid because of their fast dynamics; for example, they can be used in frequency regulation

and load shifting. Lithium-ion batteries are one of the more recent entrants to the ESS

space and are showing much promise [6].

From the demand-side, stringent regulations on emissions, and optimistic goals for fuel

economy, have brought vehicular electrification to the head-of-the-line of problems to be

addressed in the automotive sector. The basket of electrified vehicles is constituted by

various classifications based on the proportion of contribution of battery towards propulsion,

and the many topologies of hybrid electric vehicles. Common to every class is the need for

an energy storage element. Presently, Lithium-ion battery technology is the darling child of

a few industrial sectors.

It is not hard to spot a device that utilizes a Li-ion battery. Most portable personal

computing resources and communication systems are powered by Lithium-ion batteries. On
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a slightly larger scale — nudged by stringent fuel economy standards — more automotive

manufacturers are embracing the idea hybrid drive-trains and battery electric vehicles. On

a larger scale, the growth of distributed generation sources has seen the genesis of the

household energy-reservoir market (ex. Tesla Powerwall). Even the armed forces and the

naval fleets are looking favourably at Li-ion batteries as a drop-in replacement for existing

Lead acid 6T starter batteries.

With its increasing prevalence, some of the shortcomings of Li-ion batteries are surfacing.

Sometimes in rather unpleasant ways. Reports of self-combusting E-Cigarettes, phones,

personal transportation devices (hoverboards) and cars, have raised concerns about the

quality control of manufacturing processes, and safety and reliability of Li-ion batteries.

Battery/device immolation aside, there is the issue of extreme weather performance. It

has been reported that Li-ion batteries are less functional in cold weather. Mobile phones

discharge quicker and or turn off unexpectedly. Electrified vehicles suffer from reduced

effective range, by as much as 40% [7].

1.1 Background of Lithium-ion Batteries

Lithium-ion batteries (Li-ion), first developed at Sony Corporation in 1991, offer supe-

rior performance in terms of their energy and power densities than conventional battery

technology; and they do so at higher output voltage levels [8–11].

A typical Li-ion cell consists of two electrodes that are separated by a separator; this

sandwich is held between current collectors, and the entire layered structure is immersed in

an electrolyte bath; Figure 1.1 presents a schematic of a Li-ion battery. The electrodes that

constitute a cell are usually graphitic carbon and some other oxide (such as Iron Phosphate).

When an electrostatic potential is applied across the terminals, a current flows through

the external leads and Li� ions flow through the electrolyte. As the battery is charged,

this ion flow is towards the anode (graphite); ions intercalate into the graphite lattice;

during discharge, the Li� ions de-intercalate from the anode and flow to the cathode, where

they intercalate. Concomitant with the chemical reactions that occur at each electrode,

heat is generated; this generated heat plays a critical role in the material discussed in this

dissertation.

The behavior of the Li-ion cell and its life is impacted by the temperature at which

it operates. At temperatures above 40 XC, the rate of adverse side-reactions increases;

these reactions could result in the break-down of the electrolyte and eventually in thermal

run-away, or increase the rate of degradation of battery life [12]. At low temperatures (below

0 XC), the battery operational mechanism encounters a slightly different problem. At low

temperatures, the following reasons are believed to be the primary limiting factors: (1)

electrolyte conductivity; (2) solid phase diffusion; (3) electrode thickness; (4) and separator

porosity. The afore stated reasons all manifest themselves as increased battery resistance.

Recall that inside the Li-ion battery, ion transport is facilitated by the electrolyte. At
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enable ion transfer between the two electrodes.
Once these electrodes are connected externally,
the chemical reactions proceed in tandem at both
electrodes, liberating electrons and providing the
current to be tapped by the user (9, 10). The en-
ergy storage properties for most of the common
rechargeable batteries are shown in Fig. 2, with
additional details provided in table S1.

Lithium Ion Batteries
The Li-ion battery (LIB) technology commer-
cially introduced by Sony in the early 1990s is
based on the use of Li-intercalation compounds.
Li ions migrate across the electrolyte located
between the two host structures, which serve as
the positive and negative electrodes (Fig. 3). Li-
ion batteries outperform, by at least a factor of
2.5, competing technologies [nickel (Ni)–metal
hydride, Ni-cadmium (Cd), and lead (Pb)–acid)]
in terms of delivered energy while providing high
specific power (Fig. 2). The overwhelming ap-
peal of Li-electrochemistry lies in its low molec-
ular weight; small ionic radius, which is beneficial
for diffusion; and low redox potential [E°(Li+/Li) =
−3.04 V vs standard hydrogen electrode (SHE)]
(11). The latter enables high-output voltages and
therefore high-energy densities. Such attractive
properties, coupled with its long cycle life and
rate capability, have enabled Li-ion technology to
capture the portable electronics market and make
in-roads in the power tools equipment field. LIBs
are also regarded as the battery of choice for pow-
ering the next generation of hybrid electric vehi-
cles (HEVs) as well as plug-in hybrids (PHEVs),
provided that improvements can be achieved in
terms of performance, cost, and safety (12). Be-
cause long-term stability, high-energy density,
safety, and low cost are common to developing
batteries for both automotive and grid applica-
tions, considerable synergy should exist between
the two areas, although there will be certain dif-
ferences. Figures of merit for electric vehicle ap-
plications call for a reduction in the price per
kilowatt-hour by a factor of 2 and a doubling of
the present energy density. The realization of
such goals will be beneficial for grid storage
systems, although with probably more emphasis
on cost and less on energy density. Other dif-
ferences between the two technologies include
safety, which is easier to achieve in stationary sit-
uations than in mobile ones, whereas long cycle
life is a key factor for grid applications. LIBs for
vehicles require versatility in their energy and
power capabilities in order to meet the needs of
the various types of electric vehicles and the as-
sociated performance requirements, whereas LIBs
for the grid are likely to be modular.

A number of advances have been made in
the LIB field by controlling particle size in ad-
dition to composition, structure, and morphology
in order to design better electrodes and electrolyte
components (13). Decreasing electrochemically
active materials to sub-micrometer and smaller
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Figure 1.1:
Schematic of a Lithium-ion battery. The anode is typically graphitic carbon
while the cathode is some oxide (ex. Iron Phosphate, Manganese Oxide). The
electrode are separated by a porous medium – the separator. A non-aqueous
electrolyte helps transport Li� ions between the electrodes. Graphic adopted
from [1].

room temperatures, it is often assumed, for simplicity, that the electrolyte has infinite

conductivity; i.e. if an ion enters the electrolyte at one electrode, an ion is immediately

available for intercalation into the other electrode. The electrolyte’s conductivity increases

with temperature. At low temperatures, ion mobility is impaired and this is perceived as

increased internal resistance.

The contribution of decreased electrolyte conductivity to the total decreased performance

of Li-ion batteries is still being debated. At the electrode, electrolyte boundary, the

concentrations reach an equilibrium, there is ion exchange between the two mediums. For

example, when the battery is being charged, ions move from the electrolyte into the lattice

structure of the anode (intercalation). Associated with this ion transfer is a certain potential

drop; this is attributed to a charge-transfer resistance. The authors in [13–15] suggest that

high charge-transfer resistance is more influential.

The rate at which ions can intercalate into the lattice is related to the diffusion constant of

the solid-phase. It has been suggested that the solid-phase diffusion coefficient is temperature

dependent, and that the anode is more adverse affected by low temperature operation [16].

At low temperatures, the anode would rather provide than accept Li� ions. The decreased

ion mobility inside the anode can result in a decrease of local potential at the anode-

electrolyte interface. When this happens, solid lithium is deposited on the electrode surface.
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Vlahinos and Pesaran7 computationally showed that battery core 
heating based on the cell’s internal resistance is more effective than 
external heating methods. Stuart and Handeb8 argued that direct- 
current internal heating is ineffective and instead implemented expen-
sive, heavy alternating-current generators for heating. More recently, 
Ji and Wang9 thoroughly reviewed a wide range of heating strategies 
for Li-ion batteries and demonstrated that self-resistive heating from 
−20 °C to 20 °C takes ~120 s and consumes ~15% battery energy. For 
heating from −20 °C to 0 °C as in the present context, their cell would 
require a 60-s heating time and 7.5% energy consumption, much less 
efficient than the present ACB cell.

Another important feature of the ACB cell is high power, imme-
diately available after ultrafast activation just as the battery materi-
als and electrochemical interfaces reach 0 °C. In Fig. 2a, for −20 °C, 
−30 °C and −40 °C, a 10-s hybrid pulse power characterization 
(HPPC) power in watts per kilogram, for both discharge and regen-
eration (charge), as a function of depth of discharge is compared 
to that of a conventional Li-ion cell without Ni foil. At 50% state- 
of-charge (SOC) or depth of discharge, the power boost over the 
conventional Li-ion cell is 2.7, 6.4 and 25.1 for −20 °C, −30 °C 
and −40 °C, respectively, for discharge, and 5.1, 12.3 and 55 for 
regeneration. Figure 2b plots the specific power versus ambient 
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Figure 1 | The ACB. a, Schematic in which a metal foil is inserted to 
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The battery temperature rises from −20 °C to 0 °C in ~20 s and the 1C 
discharge thereafter occurs at the ~0 °C battery core temperature rather 
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0

500

1,000

1,500

2,000

0

500

1,000

1,500

0 20 40 60 80 100
0

500

1,000

1,500

S
p

ec
i�

c 
p

ow
er

 (W
 k

g–1
)

Tamb = –40 °C

Tamb = –30 °C

Tamb = –20 °C

Depth of discharge (%)

ACB discharge

ACB regeneration

Baseline discharge

Baseline regeneration

0

500

1,000

1,500

2,000

2,500

3,000

–40 –30 –20 –10 0 10 20 30
0

500

1,000

1,500

2,000

2,500

3,000
80% SOC

50% SOCACB discharge
ACB regeneration
Baseline discharge
Baseline regeneration

S
p

ec
i�

c 
p

ow
er

 (W
 k

g–1
)

Ambient temperature (°C)

a b

Figure 2 | Power performance of the ACB cell. a, 10-s HPPC specific 
power versus depth of discharge, compared to the baseline cell for  
−20 °C, −30 °C and −40 °C. At 50% SOC, the ACB cell delivers 2.7 times, 
6.4 times and 25.1 times the discharge power and 5.1 times, 12.3 times  

and 55 times the regeneration power of a baseline cell at −20 °C, −30 °C 
and −40 °C, respectively. b, 10-s HPPC specific power after activation 
versus the baseline as function of ambient temperature for 50% and 80% 
SOC.

© 2016 Macmillan Publishers Limited. All rights reserved

Figure 1.2:
Schematic of the novel self-heating battery proposed in [2]. Graphic adopted
from [2].

This reduces the amount of available Li� in the system and reduces the cell capacity;

additionally, it reduces the surface area between the electrode and electrolyte making ion

transfer harder [12,17].

The reduced diffusion rates of the electrodes has another effect; this one is easily

observable. Suppose the electrode of the battery are of thickness in excess of the diffusion

length at low temperatures. During fast discharge, Li� ions will be withdrawn from the

regions adjacent to the anode-electrolyte interface at rates quicker than ions get transferred

inside the anode. Thus, the interface/surface of the electrode particles can get depleted; this

results in a perceived increase in total cell resistance as the voltage drops very quickly.

If one was to use the battery within safe operational voltage limits, the above factors

result in a decrease in the maximum current that can be drawn; and hence power output of

the battery. As a consequence of this reduction in performance at low temperatures, it is

suggested that the range of electric vehicles can be reduced by somewhere between 40% and

60% in cold weather [7, 18]. It should be noted that the increased resistance inside the cell,

whilst decreasing the cell’s power capability, also helps generate heat.

1.2 Countering the Influence of Cold-temperatures

Earlier methods to improve the low temperature performance of electrochemical energy

systems can be categorised as follows: (1) those that alter the energy storage element; (2)

those that make it possible for existing elements to perform better. In the former category,

[13, 19–21] have explored the development of electrolytes that have high conductivities and

are less prone to freezing at low temperatures. In works such as [22–24], the impact of

electrode geometry on low temperature behavior of Li-ion cell has been studied.
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In the latter category, the primary approach has been to warm-up batteries and electro-

chemical systems [2,11,25–30]. In [11], various methods that convectively heat cells/packs

using air and Phase Change Materials (PCM) is surveyed. The use of PCM as a heat source

that releases energy when the cell’s temperature drops below its melting point was suggested

in [31]. The authors of [25] compute and compare the energy requirement to warm NiMH

battery packs using both internal and external heating techniques. The authors in [30] use

power electronics to place air heaters in parallel (power) to the motors in Electric Vehicles

(EVs) to warm the battery pack.

Stuart et. al. in [26] present a method of battery warm-up that uses AC currents to

effect internal heating. Using high frequency currents has the following advantage: it does

not excite the slower dynamics associated with charge-transfer and diffusion, and hence can

effect Joule heating without having a detrimental effect of the battery. Muller et. al. in [27]

present an optimal method to simultaneously warm-up a fuel cell whilst meeting power-flow

constraints. The authors in [28] compare a variety of warm-up techniques and conclude that

internal warm-up is the most efficient.

More recently, Wang et. al. in [2] present a novel battery design that incorporates a

Nickel foil of a measured resistance inside a Li-ion cell for accelerated warm-up (shown in

Fig. 1.2). With this battery, before providing power to external loads, the incorporated foil

is connected across the terminals and driven as a low resistance load; this effects internal

heating. While this battery structure is decidedly more energy efficient than any others

presented before, there are questions about its use in packs that remain unanswered. In this

dissertation, we restrict ourselves to batteries that are now commercially available; however,

it is an exciting time to be working on means to counter the impact of cold weather using

futuristic batteries.

Common to every work described above that seeks to heat batteries-up is the nature of

the specification that determines when the battery is warmed-up. Specifically, they all seek

to warm batteries until they reach a pre-specified temperature. Now, recognize that batteries

are energy storage elements that serve as power sources. Unless there is a direct correlation

between power capability and temperature, a more natural specification for warm-up is its

power capability – the maximum power that the battery can provide without self-inflicting

damage. To determine the power capability of batteries, and hence to assess its dependence

on temperature, we need a model of the battery’s behavior.

1.3 Battery Models

Every Li-ion battery can be thought of as being constituted by three sub-systems: (1)

electrical sub-system, (2) thermal sub-system, (3) aging mechanism; all these sub-systems

are coupled and each has been studied in detail in literature.

Models of batteries presented in literature vary in their complexity and fidelity. On the

more complex end of the spectrum are electrochemical models that are based on concentration
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flow; introduced by the pioneering work by Fuller et. al. in [32]; arguably the most accurate,

albeit hard to parameterize description of the internal workings of Li-ion batteries [33]. This

model, and the many derived from the same, assume that each electrode is constituted

by numerous identical microscopic particles [34]. The dynamics is described by a family

of coupled linear, parabolic and elliptic PDEs, and hence these models are relegated to

design optimization and offline studies. Recently, the authors in [23] presented a version

of the electrochemical model that is capable of predicting the battery’s output at sub-zero

temperatures in which the parameters were adapted based on temperature. Despite adopting

this adaptation scheme, the performance of the proposed method at current rates above 2C

was less than spectacular.

For control applications, the electrochemical model was reduced to a family of ODEs

by making simplifying assumptions in [35,36] to produce the single particle model (SPM),

a model assumes that each electrode is a single particle. These models usually have more

than 10 states that represent the concentration in different slices of the particle and strike

a delicate balance between accuracy and complexity. In [37], the SPM as expanded to

include temperature and electrolyte effects. Using this model, it was noted that sub-zero

temperatures, the error in predicting the terminal voltage of the battery can be expected to

be in excess of 10%.

Towards the lower, and more phenomenological, end of the complexity scale, we find

coupled electro-thermal linear parameter varying and equivalent circuit models [38–41].

These models are, at room temperatures, reasonably accurate in capturing the dynamics of

the battery. At low temperatures, their performance can be tuned for specific drive-cycles

or adapted using online schemes.

1.4 Contributions and Organization

As described above, a viable strategy to improve the low temperature performance

of Li-ion batteries is to heat them. According to information collected by fleetcarma, a

Canadian fleet management company, about 22% of the reduction in reduction in range

of electric vehicles is attributable to onboard battery heating systems [42]. This begs the

question: if one was to seek an energy optimal warm-up strategy, how would it look? We

seek to answer this question; and to that end, we pose and solve two energy-optimal warm-up

strategies.

Suppose you live in a frigid place, drive a Battery Electric Vehicle (BEV), and that your

vehicle is parked away from a charging station and home. You seek to estimate the effective

range of the long-parked car. To be able to drive the car, the battery has to be warm-ed up;

battery warm-up will result in a loss of energy, and by extension, range. Is is possible to

assess a priori, how much energy would be required for battery warm-up. Alternatively, if

you knew the amount of energy required for the trip, how much would you have to have

remaining before warm-up to be able to reach the destination?
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In this dissertation, we address the four main aspects of control design – modeling,

control, verification and adaptation. There are two primary control strategies that are

designed in this dissertation and tools to analyze them are developed. For completeness,

each chapter is designed to be self-sufficient.

The methodologies adopted and developed in this dissertation are model based. Usually,

when representing a battery in an electric circuit, the go-to model consists of a constant

voltage source and a series resistor. While this idealization of the battery may be passable

when the battery is not used for high-power applications over prolonged periods at room

temperatures, it is inadmissable at sub-zero temperatures. In Chapter V, a simplified

control oriented model of the electrical and thermal dynamics of a Lithium-ion (Li-ion) Iron

Phosphate (LiFePO4) is presented, parameterized and validated. This model is used in the

subsequent chapters, where appropriate.

The second part of Chapter V, and Chapter II are dedicated to addressing the problem

of energy-optimal battery warm-up from deep-in-the-cold. The methods described therein

differ in terms of the hardware that they assume is available and the constraints that are

enforced on the control trajectory. On the flip-side they are similar in that they both ensure

that the battery operation strictly adheres to the manufacturer’s definition of safe-operation.

In Chapter II, the notion of productive warm-up – warming-up such that the battery

is capable of doing work after warm-up, is introduced. Unlike Chapter V, Chapter II

uses a battery-powered external heater to warm the battery. A temperature terminated

energy-optimal warm-up problem is formulated, analysed and numerically solved using

pseudospectral collocation. In the interest of practical implementation, feedback, approximate

solutions to the optimal control problem are synthesized using newly generated results in

reachability verification. The closeness of the approximate solution to the true global optimal

solution is evaluated.

The condition utilised to terminate battery warm-up in Chapters V and II were different.

In literature, problems on battery warm-up have almost exclusively utilize temperature

as the indicator for warm-up. In Chapter III, we seek to answer the question of whether

using power as terminal constraint is indeed better than temperature. This comparison is

performed by assessing the sensitivity of the energy consumed by the approximate solutions

(as deduced in Chapter II) to uncertainties in the parameter values of the electrical sub-

dynamics. It is found that with a power capability target specification the cost is more

sensitive to parameter uncertainty. Moreover, it is established that under some assumptions,

the minimum-time warm-up problem, and problems that use either power or temperature as

stopping conditions are equivalent.

The methodology presented in Chapters V–III rely on knowledge of the behavior of

the battery; the result in Chapter III alerts for the need for better parameter estimates.

Chapter IV presents the derivation of an expression for the power capability of Lithium-ion

batteries. In addition, a novel method to partition the augmented-state-space consisting
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of states and parameters to be estimated is presented. The partitioning is performed by

assigning to each dimension of the augmented state-space, a relative significance metric

inspired by Principal Component Analysis. Subsequently, each partition is endowed with

an estimator, and the estimators are updated in sequence (cascaded arrangement). The

proposed cascaded estimator structure is tested through simulations.

In Chapter V, a second power capability is proposed as a more reasonable choice for

terminating battery warm-up. Subsequently, a receding horizon optimal control problem

whose objective trades-off increase in battery’s temperature against energy expended if

formulated and solved. The shape of battery current is restricted to be bi-directional pulses at

relatively high frequencies to avoid irreparable damage to the battery due to electrochemical

side-reactions, and the optimal control problem solves for the amplitude of the pulse train. A

bi-directional current mandates the presence of a external power source/sink; it is assumed

that an ultra-capacitor serves this role. Through simulations, it is noted that it is possible to

reduce the energy consumed during warm-up by � 10% as compared to when one draws the

maximum admissible voltage limited current until the desired power capability is reached;

however, this comes at the expense of increased warm-up time (doubling).

The material presented in this dissertation have been wholly or in-part presented in the

following publications:

Journals:

[J1] Kim, Y.; Mohan, S.; Siegel, J.B.; Stefanopoulou, AG.; Ding, Y., The Estimation
of Temperature Distribution in Cylindrical Battery Cells Under Unknown Cooling
Conditions, IEEE Transactions on Control Systems Technology, 2014

[J2] Mohan, S.; Kim, Y.; Siegel, J.B.; Samad, N.A., Stefanopoulou, A.G., A Phenomeno-
logical Model of Bulk Force in a Li-ion battery pack and its Application to State of
Charge Estimation, Journal of The Electrochemical Society, 2014

[J3] Mohan, S.; Kim, Y.; Stefanopoulou, A.G., Energy-conscious warm-up of Li-ion cells
from Sub-zero Temperatures, IEEE Transactions on Industrial Electronics, 2016

[J4] —, A.G., Estimating the Power Capability of Li-ion Batteries using Informationally
Partitioned Estimators, IEEE Transactions on Control Systems Technology, 2016

[J5] Mohan, S.; Shia, V.; Vasudevan, R. A Convex Technique to Compute the Reachable
Set of Uncertain Polynomial Hybrid Systems, Under review

[J6] Mohan, S; Siegel, J.B.; Stefanopoulou, A.G., Ancillary Results on Energy-Optimal
Battery Warm-up, In preparation

[J7] Mohan, S.; Siegel, J.B.; Stefanopoulou, A.G.; Vasudevan, R., An Energy-Optimal
Warm-up Strategy for Li-ion Batteries and its Approximations, Under review
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CHAPTER II

Optimal Warm-Up Using an External Heater that is

Battery-Powered

Chapter V introduced the idea of energy-efficient and used a receding horizon controller

to shuttle energy between the battery pack and ultracapacitor pack, with an aim of improving

the power capability of Li-ion cells until a pre-specified power threshold was reached using

internal heating.

In this chapter, the warm-up of Li-ion batteries in the presence of an integrated (external

to the battery) heater until the batteries’ temperature reaches a preassigned value is studied.

Particularly, the feasibility of energy-optimal warm-up of batteries (energy measured in

State of Charge) is investigated. The external heater is powered by the battery pack and

transfers heat energy to the battery via a medium such as air; that is, the battery is heated

from inside by Joule heating and from outside via convection. This process is assisted by a

fan that maintains circulation inside the battery chamber. Figure 2.1 presents a schematic

of a 6-cell pack with an internal heater, similar to commercially available packs [53]. It is

one such system that is under consideration in this chapter.

1

An Energy-Optimal Warm-Up Strategy for Li-ion
Batteries and its Approximations

Shankar Mohan, Anna G. Stefanopoulou and Ram Vasudevan

Abstract—The resistance of Lithium-ion cells increases at
sub-zero temperatures reducing the cells’ power availability.
One way to improve the cells’ performance in these adverse
operation conditions is to proactively heat them. In this paper,
we consider the scenario in which a cell is heated from both
inside and outside; a current is drawn from the cell to power
a convective heater and Joule heating warms the cell from
inside. A problem formulation to derive the time-limited energy-
optimal current policy is presented, analyzed and numerically
solved. It is observed that the optimal current policy resembles
a sequence of constant voltage, constant current and phases,
mirroring conventional wisdom. Using this information, two rule-
based approximations of the optimal solution are presented and
their relative performance is compared in terms of the size of the
domains in which the approximations are feasible solutions to the
optimal control problem. To built these approximations and to
compare their quality, new tools related to the estimation of the
time limited backwards reachable set of nonlinear systems are
presented. Finally, the developed techniques are demonstrated on
recurring examples.

I. INTRODUCTION

The importance of energy storage does not need introduc-
tion. Lithium-ion (Li-ion) batteries, having been in commercial
production for about 25 years, have come to the forefront
as primary energy-storage medium in automotive applications
owing to their energy and power density.

In domains such as electrified vehicles, Li-ion batteries
serve as a power source. In practice, these batteries suffer
from limitations in their ability to provide adequate power, and
decreased efficiency when operating in cold weather (below
zero degree Celsius). Consequently, the range of electric
vehicles can be reduced by 40% in cold weather [1]. In this
paper, we seek to address this problem.

A. Problem overview

Earlier methods to improve the low temperature perfor-
mance of electrochemical energy systems have relied on en-
gineering the materials that constitute the cell, to suppress the
limiting processes [2], and on the design of heating methods
that raise the operating temperature of the cell to favorable
levels [3]–[8]. The authors of [3] compute and compare the
energy requirement to warm NiMH battery packs using both
internal and external heating techniques. Stuart et. al. in [4]
present a method of battery warm-up that uses AC currents to

S. Mohan is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109 elemsn@umich.edu

A.G. Stefanopoulou and R. Vasudevan are with the Department of
Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
{annastef,ramv}@umich.edu

effect internal heating. Muller et. al. in [5] present an optimal
method to simultaneously warm-up a fuel cell whilst meeting
power requirements. The authors in [6] compare a variety of
warm-up techniques and conclude that internal warm-up is the
most efficient. Wang et. al. in [7] present a novel battery design
that incorporates a Nickel foil of a measured resistance inside
a Li-ion cell for accelerated warm-up; before providing power
to external loads, this foil is connected across the terminals and
serves as a low resistance load. In [8], the notion of energy-
efficient warm-up was introduced, a receding horizon based
controller was designed to shuttle energy between the battery
pack and ultracapacitor pack, and aimed to improve the power
capability of Li-ion cells until a pre-specified power threshold
was reached using internal heating.

In this paper, the warm-up of Li-ion batteries in the presence
of an external heater until the batteries’ temperature reaches
a preassigned value is studied. Particularly, this paper inves-
tigates the feasibility of energy-optimal warm-up of batteries
(energy measured in State of Charge). The external heater is
powered by the battery pack and transfers heat energy to the
battery via a medium such as air; that is, the battery is heated
from inside by Joule heating and from outside via convection.
This process is assisted by a fan that maintains circulation
inside the battery chamber. Figure 1 presents an exploded
schematic of a 6T cell with an internal heater [9]. It is one
such system that is under consideration in this paper.

With practical application in mind, there are a few aspects
of the problem that deserve emphasis. The dynamics of the
battery system is nonlinear because of the strong dependence

Heater
(Th)

(Tc)
Cell

Enclosure

Ta

Ambient
(T∞)

Fig. 1. An expanded view of a 6 cell pack with a heater and an enclosure.Figure 2.1: An expanded view of a 6-cell pack with a heater and enclosure.
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With practical application in mind, there are a few aspects of the problem that deserve

emphasis. The dynamics of the battery system is nonlinear because of the strong dependence

of the model parameters on states of the system; this is true regardless of the complexity

of the model. For example, the ohmic resistance, diffusivity and conductivity of the solid

and electrolyte phases depend nonlinearly on temperature [37, 45, 54, 55]. Solving for a

global feedback optimal policy involving a high-dimensional nonlinear system is non-trivial.

Additionally, because of the lack of a high degree of confidence in available models, and

the proclivity of batteries, it is a robust/adaptable strategy is sought. In this chapter, two

rule-based feedback laws that are approximations of the optimal policy as synthesized.

To derive the approximations of the optimal solutions, we numerically solve the optimal

control problem and justify the observations by way of the first order sufficiency conditions.

It is observed that optimal solution, simplistically, consists of three distinct phases namely

constant current (CC), constant voltage (CV) and rest, and the optimal policy is to switch

between them. These phases are stitched to construct approximations of the optimal solution;

this is performed by identifying the switching conditions between operation phases.

The switching conditions that dictate transition between solution phases is related to the

backwards reachable set. The backwards reachable set is the set of initial configurations from

which the system, under its dynamics, can reach a prescribed terminal set, by a specified

time [56,57]. The backwards reachable can additionally be used to ascertain the proximity of

the approximate solution to the true global optimal solution. In this chapter, using new tools

in algebraic geometry, techniques to estimate the backwards reachable set are developed;

details can be found in Appendix A.

This chapter is organized as follows: Section 2.1 presents the models used in this study.

Section 2.2 presents the formulation of the optimal control problem, and its analysis to

identify a characteristic of the optimal solution. In addition, a methodology to numerically

solve the OCP is presented; an example is solved and its solution is interpreted. Section 2.3

uses the derived and observed characteristics of the optimal solution to present two rule

based approximations of the optimal policy. In Section 2.4, the quality of the approximate

solutions is assessed in terms of the relative size of the domain of initial conditions from which

the optimal warm-up problem is feasible. Lastly, Section 2.5 summarizes observations/results

and presents directions for future extensions alongside conclusions.

Proofs to the statements that appear in the body of the chapter are presented in

Appendix 1.1; and Appendix 1.2 develops the BRS estimation methodologies employed.

2.1 Modelling

In this section, the dynamics of an Iron Phosphate (LiFePO4) cell produced by A123

and classified by size 26650 is modeled by a coupled electro-thermal and is described.
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2.1.1 Electrical dynamics

The representation of the electrical sub-system of the battery is constituted by a two-state

model, one that corresponds to the State of Charge (z) and the other corresponding to bulk

polarization voltage (v1).

ż � �
I

3600 �Q

v̇1 � �
v1

τ�Tc� � I

C1�Tc�
vt � voc�z� � v1 � I �Rs�Tc�,

(2.1)

where I is the current in Amperes, Q is the capacity of the battery in Ampere-hours, temper-

ature dependent real functions τ,C1,Rs represent the time constant of the overpotential and

ohmic drop respectively, and Tc is the battery’s temperature. Polynomial approximations of

these functions, derived from the data in [58], is presented in Eqn. (2.2).

2.1.2 Thermal dynamics

In this work, we assume that the battery is placed inside an enclosure that has an air

re-circulation system built-in (refer Fig. 2.1). Further, a heater is located in the return path

of circulated air; this heater is powered by the battery through a power electronic converter.

The thermal dynamics of the cylindrical cell is modeled by a single state representing

the linear average temperature across the radius of the cell. This model was derived by

reducing the two-state model presented in [41,59,60].

The coupled dynamics of all elements in the thermal loop is given by the following:

Ṫc � α1 � PJoule � α2 � Ta � α3 � Tc,

Ṫh � β1 � Pheater � β2 � �Ta � Th�,
Ṫa � γ1 � �Tc � Ta� � γ2 � �Th � Ta� � γ3 � �Tª � Ta�,

(2.3)

where Tª, Ta, Tc, Th are the temperatures of the atmosphere, air inside the enclosure, cell,

and the heater respectively. The values of the different parameters in the dynamics are as

Rs�Tc� � � 6.833 � 10�7T 3
c � 5.477 � 10�5T 2

c � 1.468 � 10�3Tc � 0.02421

τ�Tc� �1.088 � 10�5T 4
c � 6.002 � 10�4T 3

c � 1.961 � 10�3T 2
c � 0.116Tc � 47.57

C1�Tc� � � 1.186 � 10�3T 3
c � 0.144T 2

c � 45.63Tc � 1360

voc�z� �1.528z3 � 2.264z2 � 1.193 � 3.091

vmin �2 V,Q � 2.3 Ahrs, T c
max � 35 XC, T c

min � Tmin � �20 XC, Tmax � 150 XC

Imax �25 A, vmax � 3.6 V

(2.2)
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Parameter α1 α2 α3 β1

Value 0.0214 0.0035 �0.0029 0.2331

Parameter β2 γ1 γ2 γ3

Value -0.1166 -4.6913 -7.1073 variable

Table 2.1: Parameters of the thermal model

listed in Tab. 2.1. Lastly, the power terms in the dynamics are defined as:

PJoule � I
2
�Rs�Tc� � v2

1

C1�Tc�
τ�Tc� , (2.4a)

Pheater � vt � I. (2.4b)

Note that the equation of PJoule consists of two terms – Ohmic heating (I2Rs) and heating

because of built-in polarization (v2
1C1~τ). At low temperatures, based on the parameters

in Eqn. 2.2, the time constant of the bulk polarization dynamics and the its maximum

achievable voltage are larger. In a physics based model, this bulk polarization reflects the

impact of electrolyte and solid-phase over-potentials, and these build-up significantly at

low temperatures [55]. Thus, low temperature operation results in the build-up of bulk

polarization which in turn generates significant heat.

We ignore the impact of entropic heating from the expression for the following two

reasons: (1) for large currents, the contribution of Ohmic and polarization based heating

eclipses that of based on entropy; (2) the functional representation of entropic heating is

nonlinear and adds to the complexity of the problem without being significant.

Observe that in the model under consideration, the ambient/atmospheric temperature

affects the dynamics of only the air inside the enclosure. The material of the encasement

affects the conductive losses between Ta and Tª, and is a parameter whose influence on

solutions will be studied in the ensuing presentation. It should be noted that despite

assuming that a fan is present in the thermal loop—to enable better convective transfer of

heat—the power delivered to the same is not explicitly modeled.

2.2 Problem, Analysis and Numerical Solution

In this section, the optimal control problem is formulated and analyzed to identify

characteristics of the optimal policy. Subsequently, the problem is numerically solved for an

example and the results are interpreted.

2.2.1 The optimal control problem

The objective of this chapter is to determine an energy-optimal warm-up (to a pre-

specified temperature) strategy for batteries from sub-zero temperatures, without violating

operating constraints. In the ensuing presentation, the mathematical formulation of the
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problem considered in the remainder of this paper is presented.

min
I>L2��0,tf ��

z�t0� � z�tf� �OCP � (2.5a)

st.Eqns. �2.1� � �2.4�, (2.5b)

I�t� > �0, Imax�, ¦t > �0, tf � (2.5c)

vt�t� > �vmin, vmax�, ¦t > �0, tf � (2.5d)

Tc�t� > �T cmin, T cmax�, ¦t > �0, tf � (2.5e)

Th�t�, Ta�t� > �Tmin, Tmax�, ¦t > �0, tf � (2.5f)

x�t0� � x0, (2.5g)

Tc�tf� � Tdes, (2.5h)

tf � tmax, (2.5i)

z�tf� C zlimit, (2.5j)

where I � �0, tf � � �0, Imax�, x � �z, v1, Tc, Th, Ta��; Tdes is the desired cell temperature

set-point; Imax is the maximum discharge current; and vmin and vmax are the minimum and

maximum terminal voltages of the battery.

Herein, energy is measured in terms of SOC, and hence the objective function in

Eqn. (2.5a) represents the energy expended over the period �0, tf �, where tf is the maximum

time for warm-up as defined by the constraint in Eqn. (3.14). Equations (2.5c) & (2.5d)

enforce constraints on the current and terminal voltage as specified by the manufacturer’s

specifications. Observe that in this case, the current is stipulated to be discharging in nature

due to the lack of an external energy source (Eqn. (2.5c)). Additionally, the temperatures of

the battery, heater and the air inside the enclosure are restricted in the interest of safety

as depicted in Eqns. (2.5f). Finally, the constraint in Eqn. (2.5h) enforces, as required, a

terminal state constraint on the battery temperature.

Serving as a power source, the battery is an energy storage device; and battery warm-up

consumes energy (measured in SOC). If the battery is able to perform work after warm-

up; i.e. if there is adequate energy remaining, the warm-up is deemed as having been

productive. Suppose the minimum energy required at the end of warm-up is zlimit and

that I� � �0, tf �� �0, Imax� is an optimal solution to �OCP �, and z� � �0, tf �� �0,1� is the

resulting optimal SOC trajectory; then determining the feasibility of productive warm-up is

equivalent to checking the condition z��tf� C zlimit. In �OCP �, the constraint enforced in

Eqn. (2.5j) serves this purpose. Problem �OCP � returns infeasible when productive warm-up

is infeasible, otherwise returning the optimal warm-up policy.
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2.2.2 Numerical solution

In this section, the optimal control problem (OCP) presented in Sec. 2.2.1 is numerically

solved for some feasible initial system configuration. The OCP under consideration is

nonlinear in dynamics (parameters are non-linear functions of temperature) and constraints

(terminal voltage is a nonlinear function of SOC) and are not amenable to solve analytically.

Additionally, since the dynamics has five states and one control, the use of Dynamic

Programming approach is not computationally tractable. Alternatively, one could employ

the technique developed in [61] to derive a polynomial approximation of the global optimal

solution.

In this section, we use pseudospectral collocation1 to solve the OCPs (non-hybridized)

using an off-the-shelf solver (IPOPT) using GPOPS2 as the problem parser [63].

To investigate the performance of the pseudospectral method, the following example is

solved using both Dynamic Programming (DP) and pseudospectral methods.

Example II.1. Warm-up the battery in Sec. 2.1 when it is initially in thermal (with the

atmosphere) and electric equilibrium, in an un-insulated enclosure with the atmosphere at

-20 XC. The desired terminal temperature is 5 XC, and the battery initial SOC is 0.6.

To solve the DP version of �OCP � in Sec. 2.1, in the interest of computation time and

memory, the model of the system is simplified. As the battery under consideration is a Iron

Phosphate cell which has a flat OCV curve, the change in terminal voltage with SOC is

insignificant in the middling SOCs; for this problem, as along as the SOC-state remains in

[0.4,0.6], it is fair to assume that the OCV is constant. In the model of the battery, the

SOC-state impacts only the OCV; with the above assumption, the SOC-state is dropped.

In addition, it is assumed that since the enclosure is un-insulated, the air temperature

is identical to that of the atmosphere; i.e. the states corresponding to Ta and Th can be

dropped. The final model employed only has two states: v1 and Tc. Using a 1001�1001

uniform grid of �0,1� � ��20,5�, and a discreteized grid with 151 points for the space of

controls (�0,25�), the optimal solution was computed on a computer with four Intel Xeon

E7-8867V4 processors and 1TB of RAM, and is depicted in Fig. 2.2.

The solution using the pseudospectral method was computed without making reductions

to the size of the problem (i.e. with five states) on a computer with an Intel Xeon E5-2660v3

processor and 48GB of RAM.

Comparing the ‘optimal ’ policy and state trajectories three things are evident: (1)

The shape of the optimal solutions are almost identical; (2) the DP is marginally more

efficient—as is to be expected—than the pseudospectral method with the energy consumed

1Pseudospectral optimal control is an approximate method for solving optimal control problems in which
the state trajectory is approximated by polynomials. Typically, Lagrange polynomials. The decision variables
in this approach is the value of states and control at discrete node points (in the time domain). Under certain
assumptions on the dynamics of the system and the problem description, these approximations converge to
the true solution. See [62] for a concise introduction to this approach.
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Figure 2.2:
A comparison of the solutions to the warm-up problem as obtained by using
pseudospectral collocation and dynamic programming.

being 0.004 less; (3) the pseudospectral method is more computationally efficient. Using a

time horizon of 100 seconds with 10 Hz temporal discretization2, it took about eight hours

to produce the result. The pseudospectral method took �10 mins to produce the result.

Given that the pseudospectral method retains the key characteristics of the solution, in

the remainder of this chapter, we utilize this method to approximate the optimal solution.

Example II.2. Determine the optimal trajectory of current that consumes the least energy

(in SOC) and is capable of increasing the battery’s temperature (in thermal equilibrium

with the air/heater/atmosphere and initial SOC, 0.6) from �20 XC to 20 XC within 150 s

such that the SOC after warm-up is greater than 0.35.

Figures 2.3 and 2.4 provide the results of solving and simulating the model for this

example when the values of γ3 > �0,30�. Recall that when γ3 increases, the losses to

the atmosphere increases; i.e. when γ3 � 0, the battery enclosure is insulated from the

atmosphere and when γ3 � 30, the enclosure is a medium through which heat is lost to the

atmosphere. Other constraints are set as provided in Eqn. (2.2). From Fig. 2.3, it is noted

that the optimal current attains, at each instant, one of either the maximum or minimum

2Note that the trajectory of SOC as resulting from DP, as shown in Fig. 2.2, was deduced using Coulomb
Counting assuming that the initial SOC was as provided in the given data.
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Fig. 2. Trajectories of states and output of the electrical subsystem as a
consequence of applying the optimal policy; insulated (γ3 = 0), lossy (γ3 =
30). Observe that the optimal policy has three distinct phases – constant
voltage, constant current and rest.

The observed rest phase can be justified as follows. Working
backwards from the terminal time, the rest phase that is
observed is thought to be in place to exploit the built-up
polarization inside the battery. Recall that the expression for
heat generation in Eqn. (5a) includes the term v2

1/R1; when
the value of heat generated in the R-C pair exceeds that of the
heat lost to air, the optimal decision is to set I = 0.

The switching pattern observed in the optimal current can
be explained in three ways – (1) the high frequency switching
serves as a PWM sequence that essentially regulates the root-
mean-square current to a certain value that is not an extreme
point of the set of admissible control values without taking
that value explicitly; (2) the size of mesh intervals and/or the
tolerance of the solver is not adequately tight; (3) some state
constraint is being violated. Based on the analysis presented
earlier in this section, it is suggested that possibility (1) can be
ruled-out. In Fig. 2, when the γ3 = 0, the heater’s temperature
Th reaches a maximum of ∼ 150◦ C, the boundary of the
state constraint; by comparing Figs. 2 and 3 around the time
when the heater temperature hits its constraint, it is indeed
noted that the switching behavior is pronounced. Thus, it is
suggested that the switching observed in the trajectory of
current corresponding to the case when γ3 = 30 (lossy) is
not because of any state constraint being violated, and could
be an artifice of the numerical method employed.

Figures 2 and 3 also highlight the influence of losses to
the atmosphere through conduction losses. If the air-path
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Fig. 3. Trajectories of states and output of the thermal subsystem as a
consequence of applying the optimal policy; insulated (γ3 = 0), lossy (γ3 =
30)

is perfectly insulated (γ3 = 0), then the optimal solution
includes a rest phase following what appears to be CV-CC
phases until the polarization voltage reduces to zero and the
heater, air and cell are at thermal equilibrium at the desired
temperature. On the other hand, if the air return path is made of
a relatively highly conductive material such as aluminium, then
the heat generated in the heater and transferred to air is wicked
by the cold-air outside and the heating mechanism becomes
ineffective. This particular case devolves into the standalone
warm-up case discussed in [8].

In Fig. 2, the duration of warm-up, tγ3warm—defined as the
time duration between the first instance when current is drawn
and 150 s—when the loss coefficient is γ3, is shown for the
two values of γ3. Comparing the resultant trajectories for the
two values of γ3, observe that t30

warm is shorter than t0warm,
and that the rest phases following the CC phase is shorter
when γ3 = 30. The observation about the rest phase can be
explained by recalling the previous discussion on the net heat
generation in the cell being zero at t = 150 s; this can also
be used to explain the rest before the CV phase. Secondly,
observe that as a consequence of an increase in the value of
γ3, the SOC lost during warm-up increases by 11% (true),
and the terminal SOC now is 39%; i.e. increased conduction
losses increases the energy consumed during warm-up, as is
to be expected.

To highlight the influence of conductive losses, Fig. 4
collates key metrics that can be used to study their influence on
loss in SOC during warm-up and warm-up time tγ3warm. Note
that as γ3 increases, the total loss in SOC (read as energy)
during warm-up increases to reach an asymptote. Associated
with this increasing value of γ3, the duration of warm-up
decreases; this observation is in line with our expectation as
elucidated in the preceding discussion on the rest phase.

To summarize, the fundamental characteristic that is shared
by the optimal solutions to (OCP ) is the following: (1) the op-

Figure 2.3:
Trajectories of states and output of the electrical subsystem as a consequence of
applying the optimal policy; insulated (γ3 � 0), lossy (γ3 � 30). Observe that
the optimal policy has three distinct phases – constant voltage, constant current
and rest.

admissible current. This results in the solution resembling a sequence of constant voltage

(CV), constant current (CC) and rest phases.

The observed rest phase can be justified as follows. Working backwards from the

terminal time, the rest phase that is observed is thought to be in place to exploit the built-up

polarization inside the battery. Recall that the expression for heat generation in Eqn. (2.4a)

includes the term v2
1~R1; when the value of heat generated in the R-C pair exceeds that of

the heat lost to air, the optimal decision is to set I � 0.

The switching pattern observed in the optimal current can be explained in three ways

– (1) the high frequency switching serves as a PWM sequence that essentially regulates

the root-mean-square current to a certain value that is not an extreme point of the set of

admissible control values without taking that value explicitly; (2) the size of mesh intervals

and/or the tolerance of the solver is not adequately tight; (3) some state constraint is

being violated. Based on the analysis presented earlier in this section, it is suggested that

possibility (1) can be ruled-out. In Fig. 2.3, when the γ3 � 0, the heater’s temperature Th

reaches a maximum of � 150X C, the boundary of the state constraint; by comparing Figs. 2.3
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Fig. 2. Trajectories of states and output of the electrical subsystem as a
consequence of applying the optimal policy; insulated (γ3 = 0), lossy (γ3 =
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The observed rest phase can be justified as follows. Working
backwards from the terminal time, the rest phase that is
observed is thought to be in place to exploit the built-up
polarization inside the battery. Recall that the expression for
heat generation in Eqn. (5a) includes the term v2

1/R1; when
the value of heat generated in the R-C pair exceeds that of the
heat lost to air, the optimal decision is to set I = 0.

The switching pattern observed in the optimal current can
be explained in three ways – (1) the high frequency switching
serves as a PWM sequence that essentially regulates the root-
mean-square current to a certain value that is not an extreme
point of the set of admissible control values without taking
that value explicitly; (2) the size of mesh intervals and/or the
tolerance of the solver is not adequately tight; (3) some state
constraint is being violated. Based on the analysis presented
earlier in this section, it is suggested that possibility (1) can be
ruled-out. In Fig. 2, when the γ3 = 0, the heater’s temperature
Th reaches a maximum of ∼ 150◦ C, the boundary of the
state constraint; by comparing Figs. 2 and 3 around the time
when the heater temperature hits its constraint, it is indeed
noted that the switching behavior is pronounced. Thus, it is
suggested that the switching observed in the trajectory of
current corresponding to the case when γ3 = 30 (lossy) is
not because of any state constraint being violated, and could
be an artifice of the numerical method employed.

Figures 2 and 3 also highlight the influence of losses to
the atmosphere through conduction losses. If the air-path
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Fig. 3. Trajectories of states and output of the thermal subsystem as a
consequence of applying the optimal policy; insulated (γ3 = 0), lossy (γ3 =
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is perfectly insulated (γ3 = 0), then the optimal solution
includes a rest phase following what appears to be CV-CC
phases until the polarization voltage reduces to zero and the
heater, air and cell are at thermal equilibrium at the desired
temperature. On the other hand, if the air return path is made of
a relatively highly conductive material such as aluminium, then
the heat generated in the heater and transferred to air is wicked
by the cold-air outside and the heating mechanism becomes
ineffective. This particular case devolves into the standalone
warm-up case discussed in [8].

In Fig. 2, the duration of warm-up, tγ3warm—defined as the
time duration between the first instance when current is drawn
and 150 s—when the loss coefficient is γ3, is shown for the
two values of γ3. Comparing the resultant trajectories for the
two values of γ3, observe that t30

warm is shorter than t0warm,
and that the rest phases following the CC phase is shorter
when γ3 = 30. The observation about the rest phase can be
explained by recalling the previous discussion on the net heat
generation in the cell being zero at t = 150 s; this can also
be used to explain the rest before the CV phase. Secondly,
observe that as a consequence of an increase in the value of
γ3, the SOC lost during warm-up increases by 11% (true),
and the terminal SOC now is 39%; i.e. increased conduction
losses increases the energy consumed during warm-up, as is
to be expected.

To highlight the influence of conductive losses, Fig. 4
collates key metrics that can be used to study their influence on
loss in SOC during warm-up and warm-up time tγ3warm. Note
that as γ3 increases, the total loss in SOC (read as energy)
during warm-up increases to reach an asymptote. Associated
with this increasing value of γ3, the duration of warm-up
decreases; this observation is in line with our expectation as
elucidated in the preceding discussion on the rest phase.

To summarize, the fundamental characteristic that is shared
by the optimal solutions to (OCP ) is the following: (1) the op-

Figure 2.4:
Trajectories of states and output of the thermal subsystem as a consequence of
applying the optimal policy; insulated (γ3 � 0), lossy (γ3 � 30)

and 2.4 around the time when the heater temperature hits its constraint, it is indeed noted

that the switching behavior is pronounced. Thus, it is suggested that the switching observed

in the trajectory of current corresponding to the case when γ3 � 30 (lossy) is not because

of any state constraint being violated, and could be an artifice of the numerical method

employed.

Figures 2.3 and 2.4 also highlight the influence of losses to the atmosphere through

conduction losses. If the air-path is perfectly insulated (γ3 � 0), then the optimal solution

includes a rest phase following what appears to be CV-CC phases until the polarization

voltage reduces to zero and the heater, air and cell are at thermal equilibrium at the

desired temperature. On the other hand, if the air return path is made of a relatively

highly conductive material such as aluminium, then the heat generated in the heater and

transferred to air is wicked by the cold-air outside and the heating mechanism becomes

ineffective. This particular case devolves into the standalone warm-up case discussed in [58].

In Fig. 2.3, the duration of warm-up, tγ3
warm—defined as the time duration between the

first instance when current is drawn and 150 s—when the loss coefficient is γ3, is shown for

the two values of γ3. Comparing the resultant trajectories for the two values of γ3, observe

that t30
warm is shorter than t0warm, and that the rest phases following the CC phase is shorter

when γ3 � 30. The observation about the rest phase can be explained by recalling the

previous discussion on the net heat generation in the cell being zero at t � 150 s; this can also

be used to explain the rest before the CV phase. Secondly, observe that as a consequence

of an increase in the value of γ3, the SOC lost during warm-up increases by 11% (true),
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Fig. 4. Impact of changes to the value of γ3 on the total SOC lost and
the time for warm-up, Twarm. As the value of the loss coefficient increases,
observe that the energy expended increases and the warm-up time decreases.

timal current attains only extreme values from the admissible
set at any instance; (2) the optimal solution transitions through
what could be approximated by a Constant Voltage (CV)
and Constant Current (CC) phases; (3) the optimal solution
includes a period of rest—the duration of which depends
on the loss coefficient—towards the end of warm-up. These
observations will be leveraged in the subsequent section to
derive approximate solutions to optimal warm-up problem
which can be implemented without the need for extensive
computation.

Remark 3. Recall that in the mathematical formulation of
(OCP ), the explicit constraints on I are independent of tem-
perature. Relaxing this constraint to allow for a temperature
dependent current constraint is not expected to change the
primary deductions about the optimal solution.

IV. SYNTHESIZING APPROXIMATE SOLUTIONS

In Sec. III, the optimal control problem (OCP ) was solved
numerically and it was noted that the energy-optimal policy
resembles a sequence of phases, although not perfectly. To be
able to apply the exact optimal solution in practice, one would
need to solve (OCP ) first to determine the exact policy, an
action that is computationally intensive. To solve Example 2,
it takes ∼ 9 mins on a computer with an Intel Xeon E5-1620
processor and 48GB of RAM. Alternatively, one could employ
a receding horizon controller similar to that employed in [8],
or use a rule-based feedback control. In this section, we first
present two rule-based approximations of the optimal solution
by leveraging our observations in Sec. III. Subsequently, the
performance of these approximations will be compared using
an example.

A. Approximation one: CV-CC

The optimal solution to (OCP ), as deduced in Sec. III ap-
pears to be comprised of three phases: constant voltage (CV),

constant current (CC) and rest. As a recap, the fundamental
reason for the optimal solution to exhibit the CV-CC is that
the optimal current at each instance takes only extreme values
(Theorem 1). The extreme values of current correspond to the
define the different operational phases. The CV phase occurs
when the maximum admissible current Iadmit defined

Iadmit = min

{
voc(z)− v1 − vmin

Rc(Tc)
, Imax

}
(8)

is less than Imax. During the CC portion, Iadmit = Imax. We
term the period of prolonged rest that occur almost exclusively
at the end of the warm-up phase and is in place to make use
of the heat-generating built-up internal polarization, as the rest
phase.

Determining if the solution should switch between CV and
CC is easy since it involves the computation of Iadmit using
an algebraic equation; it can be done instantaneously. Thus
a rule for the CV and CC phases is established. Thus, a first
approximation of the exact optimal solution is one that consists
of the CV and CC phases.

B. Approximation two: CV-CC-rest

The second approximation differs from the first in that
it includes the rest phase. Without a self-evident means to
analytically compute the condition to switch into the rest phase
(henceforth termed the rest condition), this section approxi-
mates the rest condition by solving an auxiliary optimization
problem.

The rest condition is an expression that is satisfied at the
instant after which the optimal current is identically zero.
Stated differently, the rest condition can be interpreted as being
related to the boundary of the set of state initial-conditions
from which the system dynamics will be self-driven to reach
the desired terminal battery temperature. Thus, the problem
of identifying the rest condition is equivalent to a backwards
reachable set (BRS) identification problem as shown in the
following result.

Lemma 4. The description of the boundary of the time-limited
free-time backwards reachable set defined as below can serve
as the rest condition.

Definition 5 (The tBRS). The time-limited, free-time back-
wards reachable set of XT satisfies

Xr
0 = {x0 ∈ X | ∃ζ : [0, tf ]

dynamics−−−−−→ X, γ(0) = x0,

∃τ ∈ [0, tf ], ζ(τ) ∈ XT },
(9)

where x = [z, v1, Tc, Ta, Th]′, X is the state-space and ζ is a
state trajectory that satisfies the dynamics almost everywhere.

The best rest condition is the one that defines the boundary
of the largest such Xr

0 .

Proof: Follows from definition.
To better understand the definition of Xr

0 , refer to Fig. 5 for
a an illustration. Suppose we are given a dynamical system and
a set XT . The tBRS is the set of initial conditions of the system
from which all resulting trajectories pass through XT at some
time τ(x0) before t = tf . In Fig. 5, the set Xr

0 is the tBRS and
the dot-dashed lines are state trajectories. Recognize that not

Figure 2.5:
Impact of changes to the value of γ3 on the total SOC lost and the time for
warm-up, Twarm. As the value of the loss coefficient increases, observe that the
energy expended increases and the warm-up time decreases.

and the terminal SOC now is 39%; i.e. increased conduction losses increases the energy

consumed during warm-up, as is to be expected.

To highlight the influence of conductive losses, Fig. 2.5 collates key metrics that can

be used to study their influence on loss in SOC during warm-up and warm-up time tγ3
warm.

Note that as γ3 increases, the total loss in SOC (read as energy) during warm-up increases

to reach an asymptote. Associated with this increasing value of γ3, the duration of warm-up

decreases; this observation is in line with our expectation as elucidated in the preceding

discussion on the rest phase.

2.2.3 Generalization

In the previous section, it was noted that the trajectory of the optimal policy has a

distinct shape regardless of the value of the loss coefficient. This characteristic is not unique

to the chosen initial condition. The following result establishes that the optimal policy

involves either drawing the maximum or minimum admissible current at every instant.

Theorem II.3. The current trajectory that is optimal with respect to �OCP � takes an

extreme value of the admissible set at every instant. That is,

I��t� > �0,min�Imax, voc�z� � v1 � vmin
Rs�Tc� ¡¡ (2.6)

To summarize, the fundamental characteristic that is shared by the optimal solutions

to �OCP � is the following: (1) the optimal current attains only extreme values from the
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admissible set at any instance; (2) the optimal solution transitions through what could

be approximated by a Constant Voltage (CV) and Constant Current (CC) phases; (3)

the optimal solution includes a period of rest—the duration of which depends on the loss

coefficient—towards the end of warm-up. These observations will be leveraged in the

subsequent section to derive approximate solutions to optimal warm-up problem which can

be implemented without the need for extensive computation.

Remark II.4. Recall that in the mathematical formulation of �OCP �, the explicit con-

straints on I are independent of temperature. Relaxing this constraint to allow for a

temperature dependent current constraint is not expected to change the primary deductions

about the optimal solution.

2.3 Synthesizing Approximate Solutions

In Sec. 2.2, the optimal control problem �OCP � was solved numerically and it was noted

that the energy-optimal policy resembles a sequence of phases, although not perfectly. To

be able to apply the exact optimal solution in practice, one would need to solve �OCP �
first to determine the exact policy, an action that is computationally intensive. To solve

Example II.2, it takes � 9 mins on a computer with an Intel Xeon E5-1620 processor and

48GB of RAM. Alternatively, one could employ a receding horizon controller similar to that

employed in [58], or use a rule-based feedback control. In this section, we first present two

rule-based approximations of the optimal solution by leveraging our observations in Sec. 2.2.

Subsequently, the performance of these approximations will be compared using an example.

2.3.1 Approximation one: CV-CC

The optimal solution to �OCP �, as deduced in Sec. 2.2 appears to be comprised of three

phases: constant voltage (CV), constant current (CC) and rest. As a recap, the fundamental

reason for the optimal solution to exhibit the CV-CC is that the optimal current at each

instance takes only extreme values (Theorem II.3). The extreme values of current correspond

to the define the different operational phases. The CV phase occurs when the maximum

admissible current Iadmit defined

Iadmit � min�voc�z� � v1 � vmin
Rc�Tc� , Imax¡ (2.7)

is less than Imax. During the CC portion, Iadmit � Imax. We term the period of prolonged

rest that occur almost exclusively at the end of the warm-up phase and is in place to make

use of the heat-generating built-up internal polarization, as the rest phase.

Determining if the solution should switch between CV and CC is easy since it involves

the computation of Iadmit using an algebraic equation; it can be done instantaneously. Thus
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Fig. 5. An illustration of the concept of backwards reachable set.

all trajectories that begin in Xr
0 are within XT at t = tf ; there

is at least one trajectory that leaves XT and that is admissible
by definition. The tBRS is time-limited because τ ≤ tf , but
is also free-time because τ is free to take any value less than
tf . In addition, note that if XT is compact in the standard
topology, then so is Xr

0 .
Let us define XT as the set with Tc ≥ Tdes and the other

states taking all admissible values. Under the drift dynamics
(with no current), Xr

0 is the set of system configurations that
are guaranteed to reach the desired temperature during the
rest phase. Lemma 4 asserts that the rest condition is the
description of ∂Xr

0 .
In the following section, the intuition behind the method

employed to estimate the rest-condition is presented; for more
details, refer to Appendix B.

1) Identifying the rest condition: Consider the following
feasibility optimization problem

v(0, x0) = min{0 | ∃ζ : [0, tf ]
dynamics a.e.−−−−−−−→ [0, tf ]×X

st. ζ(0) = [0;x0] and ∃τ ∈ [0, tf ]

st. ζ(τ) ∈ [0, tf ]×XT }
(10)

The above problem checks if an initial condition x0 belongs
to Xr

0 . Let us set the value for when the problem is infeasible
as follows v(x0) = −1. The function v is the value function
of the reachability problem and hence satisfies the Hamilton-
Jacobi-Bellman equation with

∂v

∂t
+
∂v

∂x
f = 0, ∀(t, x) ∈ [0, tf ]×X (11)

where f is the dynamics of the system. Vacuously, the problem
in Eqn. (10) is feasible for all x ∈ XT ; thus

v(t, x) = 0 ∀(t, x) ∈ [0, tf ]×XT . (12)

Further, for any x ∈ X0, the problem in Eqn. (10) is feasible
and hence

v(0, x) = 0 ∀x ∈ Xr
0 . (13)

Similarly,

v(0, x) = −1 ∀x ∈ X\Xr
0 . (14)
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Fig. 6. An example of the switching surface into the rest phase. The blue
curve partitions the space such that on the right of the curve is the rest phase,
for when Tset = 20 ◦C, Tc(0) = −10 ◦C and γ3 = 30.

Notice that to be able to assign a value to v at any x, we need
to know Xr

0 , the object of our interest. Now, let the function
w be defined as

w(x) = 1Xr
0
(x) :=

{
1 x ∈ Xr

0

0 x 6∈ Xr
0

. (15)

With w as defined, w and v satisfy the relation

w(x)− v(0, x)− 1 = 0 ∀x ∈ X (16)

Observe again, that the above equation holds for every x ∈ X .
Thus, should one have function w and v that satisfy Eqns. (11),
(15) & (16), then it is possible to find Xr

0 .
Finally, since we seek to find the largest backwards reach-

able set; it is easy to see that we want the w with largest
support and hence the largest volume encompassed. Thus,
the problem of finding the tBRS can be re-cast as one that
solves for functions v, w subject to the above constraints and
objective. If v and w are identified, then the rest condition is
identified as the mapping that describes the boundary of Xr

0 .
Refer to Appendix B for more details.

2) An example: In the previous section, an overview of the
technique employed to estimate Xr

0 and the rest condition was
presented. We now present an example that will serve as the
platform on which the approximations will be compared.

Example 6. Suppose a battery that is in thermal equilibrium
with the atmosphere which is at T∞ = −10 ◦C, that γ3 =
30, and the desired terminal temperature Tdes = 20 ◦C. Let
the initial SOC be z = 0.6, the total warm-up time tf =
150 s, and the maximum duration of the rest-phase be 90
seconds (roughly the average time constant of the R-C pair).
Additionally, it is required that the battery retain 20% SOC
after warm-up.

With the provided specifications, the problem to identify
Xr

0 and the rest condition were solved-for using degree 20
approximations for the functions v and w introduced above.

Figure 2.6: An illustration of the concept of backwards reachable set.

a rule for the CV and CC phases is established. Thus, a first approximation of the exact

optimal solution is one that consists of the CV and CC phases.

2.3.2 Approximation two: CV-CC-rest

The second approximation differs from the first in that it includes the rest phase. Without

a self-evident means to analytically compute the condition to switch into the rest phase

(henceforth termed the rest condition), this section approximates the rest condition by

solving an auxiliary optimization problem.

The rest condition is an expression that is satisfied at the instant after which the optimal

current is identically zero. Stated differently, the rest condition can be interpreted as being

related to the boundary of the set of state initial-conditions from which the system dynamics

will be self-driven to reach the desired terminal battery temperature. Thus, the problem of

identifying the rest condition is equivalent to a backwards reachable set (BRS) identification

problem as shown in the following result.

Lemma II.5. The description of the boundary of the time-limited free-time backwards

reachable set defined as below can serve as the rest condition.

Definition II.6 (The tBRS ). The time-limited, free-time backwards reachable set of XT

satisfies

Xr
0 � �x0 >X S§ζ � �0, tf � dynamics

ÐÐÐÐÐ�X, ζ�0� � x0,

§τ > �0, tf �, ζ�τ� >XT �, (2.8)

where x � �z, v1, Tc, Ta, Th��, X is the state-space and ζ is a state trajectory that satisfies

the dynamics almost everywhere.

The best rest condition is the one that defines the boundary of the largest such Xr
0 .

Proof. Follows from definition.
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To better understand the definition of Xr
0 , refer to Fig. 2.6 for an illustration. Suppose

we are given a dynamical system and a set XT . The tBRS is the set of initial conditions of

the system from which all resulting trajectories pass through XT at some time τ�x0� before

t � tf . In Fig. 2.6, the set Xr
0 is the tBRS and the dot-dashed lines are state trajectories.

Recognize that not all trajectories that begin in Xr
0 are within XT at t � tf ; there is at least

one trajectory that leaves XT and that is admissible by definition. The tBRS is time-limited

because τ B tf , but is also free-time because τ is free to take any value less than tf .

Let us define XT as the set with Tc C Tdes and the other states taking all admissible

values. Under the drift dynamics (with no current), Xr
0 is the set of system configurations

that are guaranteed to reach the desired temperature during the rest phase. Lemma II.5

asserts that the rest condition is the description of ∂Xr
0 .

In the following section, the intuition behind the method employed to estimate the

rest-condition is presented; for more details, refer to Appendix 1.2.

2.3.2.1 Identifying the rest condition

Estimating the backwards reachable set (BRS) is a well studied problem. The more

common implementations use level-set methods [64], viability theory [65], and Zubov’s

approach [66] amongst others. These techniques usually require either discretizing the

state space to use Hamilton-Jacobi equations (curse of dimensionality), solving Bilinear

Matrix Inequalities (BMIs) (hard to solve) or making conservative approximations (quality

of estimate not guaranteed). More recently, a new approach to solve such problems was

proposed in [57]. This method leverages recent results in algebraic geometry and measure

theory to generate a sequence of Semi-Definite Programs whose solutions converge, and

approximate the BRS. Since such problems are convex, global optimality can be guaranteed.

In this chapter, this latter approach is built-upon to estimate the tBRS.

The key idea in the adopted estimation methodology is the following. We seek to find

functions v and w that satisfy:

1. ∂v
∂t �

∂v
∂xf B 0, ¦�t, x� > �0, tf � �X

2. v�t, x� C 0, ¦�t, x� > �0, tf � �XT

3. v�0, x� �w�x� � 1 C 0, ¦�t, x� > �0, tf � �X
4. w C 0, ¦x >X

where v > C1��0, tf ��X�, w > C��0, tf �� and f is the dynamics of the system. Note that a v

that satisfies the above conditions is like a Lyapunov function. Say x0 > X
r
0 , then by the
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fundamental theorem of calculus

0 B v�τ, x�τ�� � v�0, x0� � τ

S
0

∂v

∂t
�
∂v

∂x
f dt (2.9)

B v�0, x0� B w�x0� � 1. (2.10)

Since the above inequality is true for all x0 > X
r
0 , one could use w to estimate Xr

0 . More

more information on how to arrive at these requirements and additional constraints, refer to

Appendix A.

2.3.2.2 An example

In the previous section, an overview of the technique employed to estimate Xr
0 and the

rest condition was presented. We now present an example that will serve as the platform on

which the approximations will be compared.

Example II.7. Suppose a battery that is in thermal equilibrium with the atmosphere which

is at Tª � �10 XC, that γ3 � 30, and the desired terminal temperature Tdes � 20 XC. Let the

initial SOC be z � 0.6, the total warm-up time tf � 150 s, and the maximum duration of the

rest-phase be 90 seconds (roughly the average time constant of the R-C pair). Additionally,

it is required that the battery retain 20% SOC after warm-up.

Figure 2.7 depicts the state trajectories that result from applying the two approximations

delineated in this section. Observe that as a result of adding the terminal rest-phase, the

energy consumed during warm-up decreases by � 9% 3; however, the time for warm-up

increases by � 10 s. That is, including the rest phase can drive the cost of the problem lower,

and hence is closer to the true optimal solution.

The rest condition that was used to characterize the second approximate solution was

derived by using degree 20 approximations for the functions v and w introduced above.

The problem was parsed using the SPOTLESS toolbox and was solved using MOSEK on

a computer that with an Intel® Xeon® E5-2660 v3 processor and 128 GB of RAM. The

computation time using MOSEK 8 (beta) was � 200 s.

In this example, since the value of γ3 is large, the impact of the heater on the battery’s

thermal dynamics is negligible; thus, the projection of the set X̂r
0 onto the Tc � v1 space is

depicted as being filled in gray in Fig. 2.8. The rest condition is shown in blue.

To demonstrate that X̂r
0 is a subset of the tBRS, a few initial conditions are selected

from X̂r
0 and forward simulated. The inset in Fig. 2.8 traces the trajectory of the state

3 Savings are computed according to

saving % � 100 �
Sz1�τ� � z2�τ�S

z1�0� � z1�τ�
, (2.11)

where z1 and z2 are the SOC trajectories resulting from applying the CV-CC and CV-CC-rest approximations.
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Fig. 7. Simulated trajectories of the battery states using the two approxima-
tions of the optimal solution when Tc(0) = −10 ◦C, z(0) = 0.6, γ3 = 30:
CV-CC (red dashed), CV-CC-rest (solid black). Notice that while the trajectory
corresponding to CV-CC reaches the desired temperature earlier, it consumes
∼ 9% more energy than that associated with CV-CC-rest.

The problem was parsed using the SPOTLESS toolbox and
was solved using MOSEK on a computer that with an Intel R©

Xeon R© E5-2660 v3 processor and 128 GB of RAM. The
computation time using MOSEK 8 (beta) was ∼ 200 s.

Recall that the function w was defined as an indicator
function on Xr

0 and v as a differentiable value function in
Sec. IV-B1. An indicator is by definition non-differentiable.
Notice however that, when we solved for Xr

0 and the rest
condition, we approximated both functions by finite degree
polynomial. A consequence of this approximation is that,
we derive an approximation of Xr

0 , X̂r
0 . Additionally, using

Lemma 4 it can be shown that the zeros of ŵ − 1 define and
satisfy the rest condition (refer to Appendix B-D for details).

In this example, since the value of γ3 is large, the impact
of the heater on the battery’s thermal dynamics is negligible;
thus, the projection of the set X̂r

0 onto the Tc − v1 space is
depicted as being filled in gray in Fig. 6. The rest condition
is shown in blue.

To demonstrate that X̂r
0 is a subset of the tBRS, a few initial

conditions are selected from X̂r
0 and forward simulated. The

inset in Fig. 6 traces the trajectory of the state trajectories on
the phase-plane with the blue • s denoting the initial condition
and the green × s, the terminal state. Notice that all trajectories
that begin in X̂r

0 , be they in the interior or on the boundary,
reach the desired terminal temperature Tdes = 20 ◦C; in fact,
the boundary of X̂r

0 that is in the interior of X is the state
trajectory of an initial condition.

With the rest condition identified, we assess the relative
performance of the two approximations of the optimal solution
by comparing the energy consumed during warm-up (if warm-
up is feasible); Fig. 7 presents one such comparison. Observe

that as a result of adding the terminal rest-phase, the energy
consumed during warm-up decreases by ∼ 9% 1; however, the
time for warm-up increases by ∼ 10 s. That is, including the
rest phase can drive the cost of the problem lower, and hence
is closer to the true optimal solution.

In the next section, the proximity of each of the above ap-
proximations to the true optimal will be qualitatively assessed
by comparing the sizes of the respective domains where the
(OCP ) is feasible.

Remark 7. In the rest phase, as the current is identically equal
to zero; i.e. SOC of the battery does not change. That is, it is
not necessary to consider this state as a part of the problem
of identifying Xr

0 ; this saves computation time.

Remark 8. Recall that while the CV-CC method can be
applied without any off-line computation, the CV-CC-rest
approximation may require offline computation (to compute
the rest condition). Additionally, an accurate description of the
dynamics of the system is required for the computed the rest
condition to be truly closer to the optimal solution. However,
if some information about the uncertainty is known, then a
probabilistically robust rest condition can be computed by
extending the techniques employed in [26]–[28].

V. CERTIFYING (IN)FEASIBILITY

In the previous section, two approximations of the optimal
solution to (OCP ) were presented; one of which appeared to
be better that the other in an example. In this section, the
relative proximity of the approximate solutions to the true
optimal is studied by comparing the size of the respective
feasible domains. Such a comparison would help highlight the
impact of the rest phase in the approximation of the optimal
solution; this time, for a wider range of operating conditions.

Computing the domains where (OCP ) is feasible when
using either CV −CC or CV −CC − rest is accomplished
with relative ease: by discretizing the state-space and for-
ward simulating. On the other hand, identifying the set of
initial conditions from which (OCP ) is feasible (with the
true optimal solution) is challenging; solving the optimization
problem for each initial condition as in Sec. III takes ∼ 8
mins, and there is no guarantee that the obtained solution is
the global optimal. With 10 nodes per dimension in the grid, a
conservative estimate of the time to approximate X\X0 would
take in excess of 10 days when executed in parallel across 20
cores. We seek a better alternative.

The problem of identifying the set of initial battery states
from which (OCP ) (introduced in Sec. III) is (in)feasible, is
related the time-limited backwards reachable-set identification
problem. Before formalizing this relation, we first define the
controlled, time-limited free-time backwards reachable set as
follows.

1 Savings are computed according to

saving % = 100× |z
1(τ)− z2(τ)|
z1(0)− z1(τ) , (17)

where z1 and z2 are the SOC trajectories resulting from applying the CV-CC
and CV-CC-rest approximations.

Figure 2.7:
Simulated trajectories of the battery states using the two approximations of the
optimal solution when Tc�0� � �10 XC, z�0� � 0.6, γ3 � 30: CV-CC (red dashed),
CV-CC-rest (solid black). Notice that while the trajectory corresponding to
CV-CC reaches the desired temperature earlier, it consumes � 9% more energy
than that associated with CV-CC-rest.

trajectories on the phase-plane with the blue Y s denoting the initial condition and the

green � s, the terminal state. Notice that all trajectories that begin in X̂r
0 , be they in the

interior or on the boundary, reach the desired terminal temperature Tdes � 20 XC; in fact, the

boundary of X̂r
0 that is in the interior of X is the state trajectory of an initial condition.

In the next section, the proximity of each of the above approximations to the true optimal

will be qualitatively assessed by comparing the sizes of the respective domains where the�OCP � is feasible.

Remark II.8. In the rest phase, as the current is identically equal to zero; i.e. SOC of the

battery does not change. That is, it is not necessary to consider this state as a part of the

problem of identifying Xr
0 ; this saves computation time.

Remark II.9. Recall that while the CV-CC method can be applied without any off-line

computation, the CV-CC-rest approximation may require offline computation (to compute

the rest condition). Additionally, an accurate description of the dynamics of the system

is required for the computed the rest condition to be truly closer to the optimal solution.

However, if some information about the uncertainty is known, then a probabilistically robust

rest condition can be computed by extending the techniques employed in [49,52,67].
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t0

t0

t0

t0

tf

tf

tftf

t0

tf

Fig. 5. An illustration of the concept of backwards reachable set.

all trajectories that begin in Xr
0 are within XT at t = tf ; there

is at least one trajectory that leaves XT and that is admissible
by definition. The tBRS is time-limited because τ ≤ tf , but
is also free-time because τ is free to take any value less than
tf . In addition, note that if XT is compact in the standard
topology, then so is Xr

0 .
Let us define XT as the set with Tc ≥ Tdes and the other

states taking all admissible values. Under the drift dynamics
(with no current), Xr

0 is the set of system configurations that
are guaranteed to reach the desired temperature during the
rest phase. Lemma 4 asserts that the rest condition is the
description of ∂Xr

0 .
In the following section, the intuition behind the method

employed to estimate the rest-condition is presented; for more
details, refer to Appendix B.

1) Identifying the rest condition: Consider the following
feasibility optimization problem

v(0, x0) = min{0 | ∃ζ : [0, tf ]
dynamics a.e.−−−−−−−→ [0, tf ]×X

st. ζ(0) = [0;x0] and ∃τ ∈ [0, tf ]

st. ζ(τ) ∈ [0, tf ]×XT }
(10)

The above problem checks if an initial condition x0 belongs
to Xr

0 . Let us set the value for when the problem is infeasible
as follows v(x0) = −1. The function v is the value function
of the reachability problem and hence satisfies the Hamilton-
Jacobi-Bellman equation with

∂v

∂t
+
∂v

∂x
f = 0, ∀(t, x) ∈ [0, tf ]×X (11)

where f is the dynamics of the system. Vacuously, the problem
in Eqn. (10) is feasible for all x ∈ XT ; thus

v(t, x) = 0 ∀(t, x) ∈ [0, tf ]×XT . (12)

Further, for any x ∈ X0, the problem in Eqn. (10) is feasible
and hence

v(0, x) = 0 ∀x ∈ Xr
0 . (13)

Similarly,

v(0, x) = −1 ∀x ∈ X\Xr
0 . (14)

Tc (/C)
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v 1
(V

)
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Fig. 6. An example of the switching surface into the rest phase. The blue
curve partitions the space such that on the right of the curve is the rest phase,
for when Tset = 20 ◦C, Tc(0) = −10 ◦C and γ3 = 30.

Notice that to be able to assign a value to v at any x, we need
to know Xr

0 , the object of our interest. Now, let the function
w be defined as

w(x) = 1Xr
0
(x) :=

{
1 x ∈ Xr

0

0 x 6∈ Xr
0

. (15)

With w as defined, w and v satisfy the relation

w(x)− v(0, x)− 1 = 0 ∀x ∈ X (16)

Observe again, that the above equation holds for every x ∈ X .
Thus, should one have function w and v that satisfy Eqns. (11),
(15) & (16), then it is possible to find Xr

0 .
Finally, since we seek to find the largest backwards reach-

able set; it is easy to see that we want the w with largest
support and hence the largest volume encompassed. Thus,
the problem of finding the tBRS can be re-cast as one that
solves for functions v, w subject to the above constraints and
objective. If v and w are identified, then the rest condition is
identified as the mapping that describes the boundary of Xr

0 .
Refer to Appendix B for more details.

2) An example: In the previous section, an overview of the
technique employed to estimate Xr

0 and the rest condition was
presented. We now present an example that will serve as the
platform on which the approximations will be compared.

Example 6. Suppose a battery that is in thermal equilibrium
with the atmosphere which is at T∞ = −10 ◦C, that γ3 =
30, and the desired terminal temperature Tdes = 20 ◦C. Let
the initial SOC be z = 0.6, the total warm-up time tf =
150 s, and the maximum duration of the rest-phase be 90
seconds (roughly the average time constant of the R-C pair).
Additionally, it is required that the battery retain 20% SOC
after warm-up.

With the provided specifications, the problem to identify
Xr

0 and the rest condition were solved-for using degree 20
approximations for the functions v and w introduced above.

Figure 2.8:
An example of the switching surface into the rest phase. The blue curve
partitions the space such that on the right of the curve is the rest phase, for
when Tset � 20 XC, Tc�0� � �10 XC and γ3 � 30.

2.4 Certifying (in)feasibility

In the previous section, two approximations of the optimal solution to �OCP � were

presented; one of which appeared to be better that the other in an example. In this

section, the relative proximity of the approximate solutions to the true optimal is studied

by comparing the size of the respective feasible domains. Such a comparison would help

highlight the impact of the rest phase in the approximation of the optimal solution; this

time, for a wider range of operating conditions.

Computing the domains where �OCP � is feasible when using either CV �CC or CV �

CC � rest is accomplished with relative ease: by discretizing the state-space and forward

simulating. On the other hand, identifying the set of initial conditions from which �OCP �
is feasible (with the true optimal solution) is challenging; solving the optimization problem

for each initial condition as in Sec. 2.2 takes � 8 mins, and there is no guarantee that

the obtained solution is the global optimal. With 10 nodes per dimension in the grid, a

conservative estimate of the time to approximate X�X0 would take in excess of 10 days

when executed in parallel across 20 cores. We seek a better alternative.

The problem of identifying the set of initial battery states from which �OCP � (introduced

in Sec. 2.2) is (in)feasible, is related the time-limited backwards reachable-set identification

problem. Before formalizing this relation, we first define the controlled, time-limited free-time

backwards reachable set as follows.

Definition II.10 (The ctBRS). The controlled time-limited backwards-reachable-set of XT
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satisfies

Xf
0 � �x0 >X S§I � �0, tf � �X � �0, Imax�,

st. § ζ � �0, tf � dynamics
ÐÐÐÐÐ�X, ζ�0� � x0,

vt� ζ�t�, I�t, ζ�t�� � > Y, ¦t > �0, tf �,
and §τ > �0, tf �, ζ�τ� >XT �,

where x � �z, v1, Tc, Ta, Th��, X is the state-space, Y �� �vmin, vmax� is the admissible output

space, and ζ is a state trajectory that satisfies the dynamics almost everywhere.

Recall that the time-limited free-time backwards reachable set was defined in Sec. 2.3

(Defn. II.6). The ctBRS differs from the tBRS in that the former considers all possibly

current trajectories; the latter assumes that the current is identically zero (rest phase). That

is, the ctBRS is the set of initial conditions from which there exists a control policy that

can drive the system-states to the desired terminal configuration.

With ctBRS defined as above, the following Lemma relates this set to the set of feasible

initial conditions for �OCP �.
Lemma II.11. The maximal feasible set of initial conditions of �OCP � is the largest

controlled, time-limited backwards reachable set.

In this section, we estimate the ctBRS employing the same principle as introduced in

Sec. 2.3.2.1 and use approximations as described in Sec. 2.3.2.2.

Recall that the objective in Example II.7 was to increase the battery’s temperature to

Tdes � 20 XC within 150 s when the the atmosphere’s temperature Tª � �10 XC and γ3 � 30.

The particular problem solved in this section maintains the temperature of the temperature

of Tª constant whilst varying the initial battery temperature and SOC. Solving for degree 10

representations of functions v and w on a workstation with an Intel Xeon E5-2660 processor

and 128GB of RAM and took 19 minutes to solve, and the resulting solution can be stored

in 360 bytes, and evaluated onboard almost instantaneously 4.

Figure 2.9 documents the key aspects of the solution. The boundary of the approximation

of the ctBRS is traced in solid blue. The boundaries of the feasible region as derived by

using the CV-CC and CV-CC-rest approximations are traced in black dot-dashed and solid

red with x markers respectively. These boundaries are under-approximations since they were

derived by gridding the state-space and forward simulating the dynamics.

The region of the space that is colored in gradients quantifies the impact that the rest

phase has on the approximate solution as computed using Eqn. (2.11).

There are a few major takeaways from Fig. 2.9:

4An implementation of this problem can be found at http://www.umich.edu/~elemsn
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9

Definition 9 (The ctBRS). The controlled time-limited
backwards-reachable-set of XT satisfies

Xf
0 = {x0 ∈ X | ∃I : [0, tf ]×X → [0, Imax],

st. ∃ ζ : [0, tf ]
dynamics−−−−−→ X, ζ(0) = x0,

vt( ζ(t), I(t, ζ(t)) ) ∈ Y, ∀t ∈ [0, tf ],

and ∃τ ∈ [0, tf ], ζ(τ) ∈ XT },

where x = [z, v1, Tc, Ta, Th]′, X is the state-space, Y (:=
[vmin, vmax]) is the admissible output space, and γ is a state
trajectory that satisfies the dynamics.

Recall that the time-limited free-time backwards reachable
set was defined in Sec. IV (Defn. 5). The ctBRS differs from
the tBRS in that the former considers all possibly current
trajectories; the latter assumes that the current is identically
zero (rest phase). That is, the ctBRS is the set of initial
conditions from which there exists a control policy that can
drive the system-states to the desired terminal configuration.

With ctBRS defined as above, the following Lemma relates
this set to the set of feasible initial conditions for (OCP ).

Lemma 10. The maximal feasible set of initial conditions
of (OCP ) is the largest controlled, time-limited backwards
reachable set.

In this paper, we estimate the ctBRS employing the same
principle as introduced in Sec. IV-B1 and use approximations
as described in Sec. IV-B2. This time however, polynomial
approximations of the functions v and w yield satisfy the
following relation

ŵ ≥ w(x) ∀x ∈ X. (18)

In addition, the boundary of X̂f
0 , the approximation of Xf

0

carved-out by ŵ is given by the zero-set of ŵ − 1. Thus, X̂f
0

is an over-approximation of Xf
0 . For more details, refer to

Appendix B-B. With this framework established, we return to
Example 6.

Recall that the objective in Example 6 was to increase the
battery’s temperature to Tdes = 20 ◦C within 150 s when the
the atmosphere’s temperature T∞ = −10 ◦C and γ3 = 30.
The particular problem solved in this section maintains the
temperature of the temperature of T∞ constant whilst varying
the initial battery temperature and SOC. Solving for degree 10
representations of functions v and w on a workstation with an
Intel Xeon E5-2660 processor and 128GB of RAM and took
19 minutes to solve, and the resulting solution can be stored
in 360 bytes, and evaluated onboard almost instantaneously 2.

Figure 8 documents the key aspects of the solution. The
boundary of the approximation of the ctBRS is traced in solid
blue. The boundaries of the feasible region as derived by
using the CV-CC and CV-CC-rest approximations are traced
in black dot-dashed and solid red with x markers respectively.
These boundaries are under-approximations since they were
derived by gridding the state-space and forward simulating
the dynamics.

2An implementation of this problem can be found at http://www.umich.
edu/~elemsn
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Fig. 8. This figure demonstrates the influence of the shape of the control on
the size of the region from which (OCP ) is feasible; the shaded region is
the feasible set. Amongst the two approximate trajectories, CV-CC-rest yields
a bigger feasible set that is close to the theoretical outer approximation. The
gradation in the shaded region is indicative of the impact of the rest condition.

The region of the space that is colored in gradients quantifies
the impact that the rest phase has on the approximate solution
as computed using Eqn. (17).

There are a few major takeaways from Fig. 8:
1) The outer approximation of the theoretical region of the

state-space from which (OCP ) is feasible, contains the
sets deemed feasible by both CV-CC and CV-CC-rest,
and serves as a sanity check.

2) CV-CC-rest carves-out a larger portion of the space as
being feasible.

3) The impact of rest diminishes as the temperature in-
creases. This can be explained by realizing that as the
temperature of the battery increases, the time constant
decreases; i.e. the value of v1 is typically smaller and
hence the rest condition is not necessarily satisfied at
any point along the trajectory (refer to Fig. 6).

4) The gap between the theoretical outer and the CV-CC-
rest’s curve is not significant. This reinforces the belief
that for the situation described in Example 6, the true
optimal solution is likely to be similar to CV-CC-rest.

Remark 11. The ctBRS, besides being useful to gauge the
closeness to optimality of the approximations, can serve an
additional purpose. If it were possible to store information
about the ctBRS, an onboard supervisory controller can use
this information to steer the system states towards a feasible
portion. For example, on a cold winter day, prior to coming to a
halt, the supervisory controller in a Hybrid Electric Vehicle can
ensure that there is adequate remaining energy in the battery
such that warm-up is possible.

VI. CONCLUSIONS

A. Summary

A warm-up policy is deemed productive if it is capable of
increasing the battery’s temperature whilst ensuring that there

Figure 2.9:
This figure demonstrates the influence of the shape of the control on the size of
the region from which �OCP � is feasible; the shaded region is the feasible set.
Amongst the two approximate trajectories, CV-CC-rest yields a bigger feasible
set that is close to the theoretical outer approximation. The gradation in the
shaded region is indicative of the impact of the rest condition.

1. The outer approximation of the theoretical region of the state-space from which �OCP �
is feasible, contains the sets deemed feasible by both CV-CC and CV-CC-rest, and

serves as a sanity check.

2. CV-CC-rest carves-out a larger portion of the space as being feasible.

3. The impact of rest diminishes as the temperature increases. This can be explained by

realizing that as the temperature of the battery increases, the time constant decreases;

i.e. the value of v1 is typically smaller and hence the rest condition is not necessarily

satisfied at any point along the trajectory (refer to Fig. 2.8).

4. The gap between the theoretical outer and the CV-CC-rest’s curve is not significant.

This reinforces the belief that for the situation described in Example II.7, the true

optimal solution is likely to be similar to CV-CC-rest.

Remark II.12. The ctBRS, besides being useful to gauge the closeness to optimality of

the approximations, can serve an additional purpose. If it were possible to store information

about the ctBRS, an onboard supervisory controller can use this information to steer the

system states towards a feasible portion. For example, on a cold winter day, prior to coming

to a halt, the supervisory controller in a Hybrid Electric Vehicle can ensure that there is

adequate remaining energy in the battery such that warm-up is possible.
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2.5 Conclusions

2.5.1 Summary

A warm-up policy is deemed productive if it is capable of increasing the battery’s

temperature whilst ensuring that there is adequate energy stored to perform work after

warm-up. In this chapter, the problem of time-limited energy-optimal productive warm-up

of Li-ion batteries from sub-zero temperatures when using a battery powered heater and

convective heating is presented and solved.

It is identified that the optimal solution, at every instant, attains only extreme values.

Numerical solutions are observed to resemble a sequence of constant voltage (CV), constant

current (CC) and rest phases. The influence of losses to the atmosphere is parametrically

investigated and it is noted that the system has to be reasonably well-insulated for the

heater to be of any assistance in warm-up. Lastly, by approximating the optimal policy

by either a CV-CC sequence or a CV-CC-rest sequence, the problem of ascertaining the

feasibility of productive warm-up is addressed.

2.5.2 Deductions

Observations from numerical simulations suggest that a CV-CC-rest approximation of

the optimal policy is close to the true optimal solution. That is, it is good to draw the

maximum current possible at every instant, until the rest condition is satisfied. The impact

of the rest phase is more pronounced only when warming from deep in the cold. The rest

phase aside, this approximation is expected to be optimal with respect to the minimum time

optimal control problem prompting the question, ‘Are the energy-optimal and time-optimal

warm-up problems equivalent in the sense of inverse optimal control problems?’.

In this chapter, it was assumed that the heater could sink any power that was provided

by the battery. The rule to draw the maximum admissible current when needed, is not

expected to change when the heater has power constraints. That is, the optimally-sized

heater (cost and energy-optimal) is the smallest heater that can sink the maximum power

output from the battery.
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CHAPTER III

Comparison of Optimality Metric and Robustness to

Parameters

This chapter builds on the results in Chapter II with the primary objective of answering

the following questions:

1. How does the power capability based terminated energy-optimal solution look?

2. Are there instances when the temperature and power capability based problems have

identical solutions?

3. Is there is a relation between the minimum time warm-up problems and the other

formulations states above?

4. In terms of robustness to parametric uncertainty, is a power capability based terminal

constraint better than one that is temperature based?

This chapter is organized as follows: Section 3.1. Section 3.3 demonstrates that the energy-

optimal warm-up problems with temperature and power capability based constraints, and

the minimize time warm-up problem are equivalent when the influence of polarization

is ignored. To compare between problems that have temperature and power capability

as terminating conditions, the sensitivity of their corresponding costs is studied through

numerical simulations. Finally, conclusions are drawn in Section 3.5.

3.1 Battery Model

In this section, the couple electro-thermal dynamics of the LiFePO4 (A123 26650) battery

considered in this chapter is described.

The representation of the electrical sub-system of the battery whose capacity is Q Ahrs,

is constituted by two states — one that corresponds to the State of Charge (z) and the other

corresponding to bulk polarization voltage (v1) across a virtual capacitor with capacitance
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Parameter α1 α2

Value 0.0214 0.0035

Table 3.1: Parameters of the thermal model

C F.

ż � �
I

3600 �Q

v̇1 � �
v

τ�Tc� � I

C�Tc�
vt � voc�z� � v1 � I �Rs�Tc�,

(3.1)

where I is the current in Amperes (positive when discharging), temperature dependent

real functions τ,C,Rs represent the time constant of the overpotential and ohmic drop

respectively, and Tc is the battery’s temperature. A polynomial approximation of these

functions, derived from the data presented in [58], is presented in Eqns. (3.2).

The thermal dynamics of the cylindrical cell is modeled by a single state representing

the bulk temperature (Tc) of the cell [68].

Ṫc � α1 � PJoule � α2 � �Tª � Tc�, (3.3)

where Tª, Tc are the temperatures of the atmosphere, and cell respectively; the values of

the different parameters are as listed in Tab. 3.1; and

PJoule � I
2
�Rs�Tc� � v2

c

C�Tc�
τ�Tc� (3.4)

3.2 Energy-Optimal Warm-Up

In this section, we introduce two optimal control problems that minimize the energy

consumed during warm-up, subject to operating constraints on terminal voltage and battery

current. The two problems considered herein differ in their definition of what constitutes a

Rs�Tc� � � 6.833 � 10�7T 3
c � 5.477 � 10�5T 2

c � 1.468 � 10�3Tc � 0.02421

τ�Tc� �1.088 � 10�5T 4
c � 6.002 � 10�4T 3

c � 1.961 � 10�3T 2
c � 0.116Tc � 47.57

C�Tc� � � 1.186 � 10�3T 3
c � 0.144T 2

c � 45.63Tc � 1360

voc�z� �1.528z3
� 2.264z2

� 1.193 � 3.091

vmin �2 V,Q � 2.3 Ah, Imax � 25 A, vmax � 3.6 V

(3.2)
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warm-up battery – the first uses heats the battery until the battery’s temperature reaches a

pre-specified level; the second formulation uses the power capability of the battery as an

indicator of when the battery is ready for use in discharge mode, instead of temperature.

Both optimal control problems are numerically solved and solutions are presented and

discussed.

For notational convenience, we define the following placeholders for constraints that will

appears in the optimal control problems described in this chapter.

V ���voc�z�t�� � v1 � I�t�Rs�Tc�t�� > �vmin, vmax�� (3.5)

I ���I�t� > �0, Imax�� (3.6)

FtfP ���Pcap�tf� � Pdes� (3.7)

FtfT ���Tc�tf� � Tdes� (3.8)

The above constraints, in order, enforce that the terminal voltage and current are bounded;

that the terminal power capability (at time t � tf ) and terminal temperature meet specifica-

tions. Further, the states of the systems are represented in vector form as x � �z, v1, Tc� and

the dynamics of the coupled electro-thermal system is written as ẋ � f�x, I, Tª�.
3.2.1 Temperature as terminal constraint

The temperature limited warm-up problem was reported in [3] and is presented below.

�P T � min
I>L2��0,tf �;�0,Imax��

¢̈̈̈¦̈̈̈¤
tf

S
0

I�t�dt RRRRRRRRRRR
ẋ � f�x, I, Tª�
V , I ,FtfT

£̈̈̈§̈̈̈¥ (3.9)

The problem �P T � seeks to find the trajectory of current that results in the least drop

in battery SOC whilst increasing its temperature to the set-point Tdes. Additionally, the

optimal current is to be chosen that the resulting terminal voltage and current trajectories

are within the manufacturer’s stipulated safe operating range.

It was shown in Chapter II that the optimal policy to �P T � attains only the maximum

or minimum value at every instance. Figure 3.1 depicts the control, state, and output

trajectories that result from solving �P T � with z�0� � 0.6, Tdes � 10 XC, Tc�0� � Tª � �20 XC.

To obtain the above solution, the problem was solved using pseudo-spectral collocation with

GPOPS2 as the problem parser and IPOPT as the back-end solver [63].

Note that in Fig. 3.1, the optimal current consists of three distinct phases namely

constant voltage (CV), constant current (CC) and rest. The ‘ON’ phase depicted in Fig. 3.1

subsumes the CV and CC phases. Despite the appearance of switching-like behavior closer

to the start and end of the ‘ON’ phase, in Chapter II, it was shown that the optimal solution

can be approximated without this switching pattern, without a significant change in cost.
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Figure 3.1:
Trajectories of control, state and terminal voltage resulting from applying the
optimal solution to �P T � with tf � 150 s, Tdes � 10 XC, z�0� � 0.6, Tc�0� �

Tª � �20 XC. Subplot (L) presents the evolution of cell temperature (Tc) and
bulk polarization (v1); subplots (R1) & (R2) depict the energy-optimal current
trajectory and the resulting terminal voltage. In the subplots on the right, the
dashed gray lines identify the boundary of the corresponding constraints. Notice
that the optimal current consists of distinct operating phases. In [3], it is shown
that the optimal policy can be approximated by such a staged current.

3.2.2 Power capability as terminal constraint

The energy-optimal warm-up problem with power constraints is presented, using �P T �
as a template, below.

�PP � min
I>L2��0,tf �;�0,Imax��

¢̈̈̈¦̈̈̈¤
tf

S
0

I�t�dt RRRRRRRRRRR
ẋ � f�x, I, Tª�
V , I ,FtfP

£̈̈̈§̈̈̈¥ (3.10)

Problem �PP �, similar to �P T �, aims to increase the battery temperature; however, the

decision to terminate warm-up is dictated by the instantaneous power that can be delivered

that is defined as

Pcap � vmin
voc�z� � v1 � vmin

Rs�Tc� . (3.11)

Since problems �P T � and �P T � differ only in the terminating condition, one would expect

that the optimal solution will share characteristics. Indeed, the optimal policy to �PP �,
much like that of �P T �, attains only extreme values at each instant as shown in the following

result.
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Figure 3.2:
Power capability contour as a function of battery temperature, polarization
and SOC (the dashed, dotted and solid lines correspond to z � 0.2,0.5,0.7 re-
spectively). Notice that at any given temperature, as v1 increases, the power
capability decreases. For a fixed polarization level, increasing battery tempera-
tures increase the power capability. Importantly, note that the power capability
is more sensitive to changes in v1.

Theorem III.1. The optimal policy to �P T �, I� > L2��0, tf �; �0, Imax��, satisfies

I��t� > �0,min�voc�z� � v1 � vmin
Rs�Tc� , Imax¡¡ . ¦t > �0, tf � (3.12)

Proof. The proof follows directly from that of [3, Theorem 1] with one minor change: in the

proof of [3, Lemma 12], employ the fact that as the battery temperature increases, the Pcap

increases (refer to Fig. 3.2) to establish the sign of the co-state.

The optimal policy to �P T � generally is not found to have prolonged periods of rest during

the ‘ON’ portion of the trajectory; a similar statement cannot be made of the minimizer

of �PP �. The value of instantaneous power capability is influenced by the build-up of

bulk polarization (recall that Pcap depends linearly on v1). Figure 3.2 presents contours of

the instantaneous power capability for varying levels of polarization, SOC levels and cell

temperature. Observe that Pcap is more sensitive to changes in v1 than to those in Tc; the

sensitivity has a negative correlation with the former and a positive correlation with the

latter.

The minimizer of �PP � will likely have periods of rest in the ‘ON’ phase, for they can

be beneficial to raise Pcap. During a period of rest, since the dynamics of v1 and Tc are

asymptotically stable, the values of v1 and Tc tend to decrease. The time constant of the

dynamics of Tc is larger than that of v1. Consequently, as Pcap is more sensitive to v1, a
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Solutions to �PP � when tmax � 150 s,Pdmd � 100 W, z�0� � 0.6, Tª � �20 XC
and the battery is in thermal equilibrium with the atmosphere at time t � 0.
Subplot (L) presents the evolution of cell temperature (Tc), bulk polarization
(v1) and the contour corresponding to Pcap � 100 W; subplots (R1) & (R2) trace
the optimal policy and the resulting terminal voltage trajectory.

carefully chosen rest can help increase Pcap by reducing v1. Thus, it is to be expected that

the optimal solution to �PP � will include notable rest periods.

Figure 3.3 presents the optimal state, control and output trajectories when �PP � is

solved with Pdes � 100 W, Tc�0� � Tª � �20 XC and z�0� � 0.6. The numerical solution

was derived in a manner similar to that in the example in Sec. 3.2.1. Again, note that the

optimal current trajectory can be partitioned into an ‘ON’ phase and a rest phase.

During the ‘ON’ phase, the solution trajectory is such that either the voltage or current

constraint is active; this is in line with Theorem III.1. Moreover, as expected, periods of rest

are noted during the ‘ON’ phase. Subplot (L) traces the trajectory of v1 plotted against Tc

along with some contours of power capability. During the ‘ON’ phase, Pcap increases almost

monotonically; including during the periods when of intermittent rest. During intermittent

rests, the kink that appears in the curve in subplot (L) occurs to the right of the curve; Pcap

has increased during these rests.

The other way in which this solution differs from that of �P T � is that the duration of

the ‘Rest’ phase is longer. During the ‘Rest’ phase, the Pcap almost doubles as depicted in

subplot (L); and is this because of the drop in v1. Notice how the curve bows during the

‘Rest’ phase in subplot (L); the battery’s temperature starts to decrease after a while, and

yet Pcap continues to increase. This is because Pcap is relatively more sensitive to v1.

In this section, two problem formulations for energy-optimal warm-up were presented;

both of which exhibit somewhat similar characteristics. In the next section, it is shows that
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these two problems are equivalent under certain conditions; in Sec. 3.4, the sensitivity of

these problems to parameter uncertainty is studied.

3.3 Equivalence of optimal control problems

The simulation results presented in Sec. 3.2 suggest that the energy-optimal solution

has three discernable phases – constant current, constant voltage, and rest. If we ignore

any terminal rest period (i.e. ignoring the contribution of bulk polarization from all aspects

of the problem), then the solution resembles the action that any engineer would employ

without having solved the optimal control problem.

In addition, it was noted that the optimal solution to �P T � and �PP � are similar, but

not the same. This prompts the question of when they are the same; in this section we

address this question in addition to whether the solution to �P T � is similar to that of the

minimum-time problem warm-up problem.

The examples in the previous section suggest that the optimal control problems are not

equivalent when the model includes a polarization term (the state v1 corresponds to the

diffusion dynamics in the battery). Thus, in this section, we drop the polarization term

from the electrical dynamics of the battery; this reduced battery dynamics is denoted as fR

in the ensuing presentation.

First, in the spirit of the problems defined in Sec. 3.2, we define the following constraints.

V̄ ���voc�z�t�� � I�t�Rs�Tc�t�� > �vmin, vmax�� (3.13)

T ���τ > �0, tf �� (3.14)

FT ���Tc�1� � Tdes� (3.15)

FP ���Pcap�1� � Pdes� (3.16)

FτT ���Tc�τ� � Tdes� (3.17)

FτP ���Pcap�τ� � Pdes� (3.18)

With the above notation, the free terminal-time minimum energy problem can be defined as

below.

�PRT � min
I>L2��0,1��,τ

¢̈̈̈¦̈̈̈¤
1

S
0

I�t�dt RRRRRRRRRRR
ẋ � τfR�x, I, Tª�
V̄ , I , T ,FT

£̈̈̈§̈̈̈¥ (3.19)

In the above, τ is the total warm-up time and the minimization is over all square integrable

functions. The objective is to minimize the total loss in SOC subject to constraints on

terminal voltage current, and with terminal temperature constraint.
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Next, analogous problem with power as terminal constraint is introduced.

�PRP � min
I>L2��0,1��,τ

¢̈̈̈¦̈̈̈¤
1

S
0

I�t�dt RRRRRRRRRRR
ẋ � τfR�x, I, Tª�
V̄ , I , T ,FP

£̈̈̈§̈̈̈¥ (3.20)

The minimum time optimal warm-up problems with terminal temperature and power

constraints are defined in the following.

�PRtT � min
I>L2��0,1��,τ

¢̈̈¦̈̈¤
τ

S
0

1dt
RRRRRRRRRRR
ẋ � fR�x, I, Tª�
V̄ , I , T ,FτT

£̈̈§̈̈¥ (3.21)

�PRtP � min
I>L2��0,1��,τ

¢̈̈¦̈̈¤
τ

S
0

1dt
RRRRRRRRRRR
ẋ � fR�x, I, Tª�
V̄ , I , T ,FτP

£̈̈§̈̈¥ (3.22)

With the above problems defined, we present the main result of this section that states that

the above problems are equivalent in the sense that they result in the same optimal control

policy and state trajectories.

Theorem III.2. The problems �PRT �, �PRP �, �PRtT �, �PRtP � are equivalent.

Proof. To prove this theorem, we consider establishing pairwise equivalence between problems.

For ease of presentation, this is broken into the following Lemmas.

Lemma III.3. The optimal policy to �PRtT � is to draw the maximum admissible current at

every instant.

Proof. We prove this proposition via contradiction. The optimal current takes only extreme

values at every time instant [68]. Suppose there is an interval �t1, t2� during which the

optimal current, I�, is identically zero and the maximum admissible current is not zero.

Let the optimal value associated with this solution be J� and the associated temperature

trajectory be T �

c ; clearly t1, t2 x J
�. Now consider a new policy, I� such that

I��t� � ¢̈̈̈¦̈̈̈¤
I��t� t > �0, t1�,
Icap�t� t > �t1, t2�, (3.23)

where Icap�t� is the maximum admissible current at time t. It is easy to see that the

resulting cell temperature trajectory because of I�, Tc�, satisfies T �

c �t2� @ Tc��t2�. Suppose

Tc��t2� B Tset, and let

τ �� min�x S T �

c �x� � Tc��t2�, x A t2�; (3.24)

the existence of τ is trivial. Let us complete the characterization of I� as follows: I��t� �
I��t��τ �t2��,¦t > �t2, J� � �τ � t2�� (this completion is admissible because bulk polarization
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is not considered). It is easy to see that Tc��J� � �τ � t2�� � Tdes and hence J� � J
�
� �τ � t2�;

the statement in the proposition follows. If Tc��t2� C Tdes, then §τ > �t1, t2� st. Tc��t� � Tdes;
terminate the warm-up at τ to obtain J� � τ @ J

�; and the hypothesis follows.

Lemma III.4. Problems �PRT � and �PRtT � are equivalent.

Proof. Follows trivially from noting that the optimal solutions only takes extreme values

and using arguments similar to that in the proof to Lemma III.3.

Lemma III.5. The optimal policy to �PRP � and �PRtP � is to draw the maximum admissible

current at every instant.

Proof. The power capability of the battery is defined by

Pcap � min�vmin voc�z� � vmin
Rs�Tc� , vminImax¡ . (3.25)

At the terminal time, the following relations hold

Pdes B Pcap B vmin
voc�z� � vmin
Rs�Tc� (3.26)

� Rs�Tc� B vmin
Pdes

� �voc�z� � vmin� (3.27)

Pdes B Pcap B vminImax (3.28)

�
Pdes
vmin

B Imax (3.29)

If Eqn. (3.29) is not satisfied the problem is not feasible and hence this option is not

entertained. Now, note that by definition, Rs�Tc� is monotone decreasing in Tc. Thus, the

constraint in Eqn. (3.27) can be re-written in the following form

Tc C α, (3.30)

for some α, a function of Pdes and voc�z�. Since increasing the battery’s discharging power

capability consumes energy, and problem �PRP � is minimizing energy consumed, the optimal

solution satisfies Eqn. (3.30) with an equality. Thus, �PRP � can be translated into an

equivalent problem with terminal temperature constraints. Thus, this problem is equivalent

to �PRT �.
Using similar arguments, it is can be shown that �PRtP � is equivalent to �PRtT �.
The above Lemmas prove that �PRtT � � �PRT � � �PRT � � �PRtP �
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3.4 Sensitivity to parameter uncertainty

Problems �P T � and �PP � introduced in Sec. ?? differ only in that the terminal constraints

are specified differently – (former) the more conventional temperature constraint; (latter)

power capability constraint. Batteries typically serve as energy storage elements that can

be used to power loads. Thus a more natural specification for battery warm-up is power

capability; i.e. warming the battery until it can provide the desired power (problem �PP �).
However, such a formulation does not often feature in literature; temperature as terminal

constraint is more prevalent (problem �P T �).
In Sec. ?? it was shown that under certain assumptions, the terminal temperature and

terminal power constraint specifications are equivalent. In practice, these assumptions are

not necessarily met—since the influence of diffusion dynamics is not ignorable—and hence

the designer/practioner is likely faced with having to choose between formulations. To aid

making this decision, in this section we compare the two problem formulations.

Comparing the two problems is equivalent to studying the impact of the terminal

constraint. In this section, we study the sensitivity of the terminating constraints to

parametric uncertainty; specifically, the sensitivity to multiplicative uncertainty of the

following form

C̃�Tc,∆C1� � �1 �∆C1�C�Tc�, (3.31)

τ̃�Tc, ,∆τ� � �1 �∆τ�τ�Tc�, (3.32)

R̃s�Tc,∆Rs� � �1 �∆Rs�Rs�Tc�. (3.33)
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To accommodate these uncertain parameters, the dynamics is re-written in the discrete

domain as follows:

zk�1 � zk �
δt

3600Q
Ik (3.34)

v1,k�1 � �1 �
δt

τ̃�Tc,k,∆Rs,k�� vk � δt

C̃1�Tc,k,∆C1,k�Ik (3.35)

vt,k � voc�zk� � v1,k � R̃s,k�Tc,∆Rs,k�Ik (3.36)

Tc,k�1 �α2δt � Tª � �1 � α1δt�Tc,k � δt � PJoule,k (3.37)

with ∆C1,k � N�0,0.01~9�,∆Rs,k � N�0,0.01~9�,∆τk � N�0,0.01~9� are independent and

identically distributed.

With the above description, it is easy to see that at each temperature, parameters are

distributed normally with the mean given by the expression in Eqn. (2.2); the variance

changes to ensure that with 0.99 probability, the values are within 10% of the mean. Figure 3.4

presents the key features of the parameter distribution against battery temperature.

An analytic comparison of the sensitivity of problems �P T � and �PP � with these uncertain

parameters is beyond the scope of the present discussion; it will be studied in a future study.

Instead, in this chapter, the robustness of the problems is assessed by way of studying the

impact of parameter uncertainties on the terminal constraints.

With this description of the dynamics, the terminating conditions are compared as

described hereafter. First, it is assumed that the current trajectory is constituted only by

the ‘ON’ phase that was identified in Sec. 3.2. The discrete dynamic is simulated at rates

faster than 10 Hz, drawing a new value for the random variables at each sample. When

the terminal conditions are satisfied, the simulation is terminated and the energy consumed

during warm-up is computed. Five thousand such trials were performed and the resulting

distribution of energy consumed is studied. Figure 3.5 presents the resulting distribution

obtained by performing one-factor-at-a-time randomization.

Remark III.6. In Chapter II, a method to approximate the optimal solution to �P T �
was described; an approximation that included both the ‘ON’ phase and the rest phase.

Employing the techniques therein, it is possible to generate an approximate solution for�PP �. Such approximations cannot however be used to study the impact of parameter

uncertainty on the terminating condition, for feasibility of the problem cannot be guaranteed.

The presented data was collected by solving the problems with the following specifications:

z�0� � 0.6, Tc�0� � Tª � �20 XC, Pdes � 100 W and tf � 150 s. The value of Tdes for �P T �
was set based on the solution to �PP � as follows:

Tdes C max�T �

c �t�, ¦t > �0, tf ��
where T �

c is the temperature trajectory resulting from applying the optimal solution to �PP �
38



"z
0.1374 0.1377

D
en

si
ty

0

2000

4000

6000

8000

Tdes = 5 /C, "C1;k 9 N (0; :01=9)

(a)

"z
0.1374 0.1378

D
en

si
ty

0

2000

4000

6000

8000

Tdes = 5 /C, "Rs;k 9 N (0; :01=9)

(b)

"z
0.1374 0.1377

D
en

si
ty

0

2000

4000

6000

8000

10000

Tdes = 5 /C, "=k 9 N (0; :01=9)

(c)

"z
0.1898 0.191 

D
en

si
ty

0

500

1000

1500

2000

Pdes = 100 W, "C1;k 9 N (0; :01=9)

(d)

"z
0.17 0.19

D
en

si
ty

0

50

100

150

Pdes = 100 W, "Rs;k 9 N (0; :01=9)

(e)

"z
0.1894 0.191

D
en

si
ty

0

500

1000

1500

2000

Pdes = 100 W, "=k 9 N (0; :01=9)

(f)

Figure 3.5:
Comparison of one-factor-at-a-time sensitivity of optimal cost with power and
temperature constraints

in the case where there is no randomness in parameters. The termination temperature is set

as Tdes � 5 XC.

In Fig. 3.4 each subplot presents the histogram of energy consumed and a fit of the

distribution; in all but subplot (e), the fitted distribution is Beta; it is a Weibull distribution

in subplot (e). Subplots (a)–(c) present data corresponding to �P T � and the remaining

subplots depict information pertinent to �PP �.
Let the distribution of ∆z be denoted by ν. We define1 a metric for the impact that

uncertainties have on the cost, as follows:

η�ν� �� infA`�0,1��λ�A� S ν�A� C 0.99�
R 1dν

, (3.38)

where λ is the Lebesgue measure on the real line. For convenience, let us refer to this metric

as impact. The impact of ν is the normalized spread of the distribution (as measured by the

size of the smallest set from which events occur 99% of the time) and can be interpreted as

the cautiously worst-case impact of uncertainty on the cost. Recognize that for distributions

with long tails, this metric might ignore much of the tail; also, the shape of the distribution

is immaterial.

From Fig. 3.4, the impacts of the different distributions are computed and tabulated in

1In this case, the more intuitive metric of ratio of variance to mean is not quite applicable since one of the
distributions in consideration is not like the others; and because they are not all normally distributed.
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Uncertain parameter

i Constraint Resistance Capacitance Time constant

Temperature 0.0028 0.0025 0.0024
Power 0.1294 0.0075 0.0087

Table 3.2:
The computed impact of distributions of SOC lost in warm-up because of uncer-
tainty in different parameters. The impacts are computed for each of the two
terminal constraints under study–temperature and power.

Table 3.2. Notice that, under this metric, uncertainties in the different parameters coupled

with the temperature constraint have almost identical influence on the energy consumed

during warm-up. This coincides with the inference one would derive by visual inspection.

This can be reasoned by recalling that temperature is a state of the system whose evolution is

affected by the uncertain parameters only via the heat generation term. Any noise/variation

in the input to the thermal dynamics gets filtered-out by the slow dynamics. A detailed

investigation of the mechanics of this process is deferred until a subsequent work.

Power as a terminal constraint is generally more sensitive to uncertainties. This is

surmised by comparing the entries in Tab. 3.2. In particular, uncertainties in the series

resistance have the most influence on the total energy consumed. The impact that uncer-

tainties in the series resistance have on the terminal constraint is immediately apparent

upon inspecting the expression of Pcap.

Pcap � vmin
voc�z� � v1 � vmin
Rs�Tc,∆Rs� (3.39)

This uncertain parameter manifests directly in the denominator of the expression in the

constraint description, unlike in the temperature based constraint where the influence is

filtered.

Based on the above discussion, it appears that using temperature as a terminal constraint

can serve one better when the model of the system is not accurately known. It is absolutely

essential to note that this discrepancy is not of relevance when working on a physical

test-bench/hardware, for in that case a feedback policy would be driven by a particular

instantiation of the parameters (no randomness). This result however can help in the

planning stage; when the battery’s parameters are still not known exactly.

Remark III.7. The discussion and comparison in this section is based on some feasible

solution (the ‘ON’ phase current). That the observed impact is small when using this feasible

solution is not indicative of the variation in the true optimal cost. The authors conjecture

that there is a relation between the variance when the parameter variation is bounded, and

the value functions satisfy certain regularity conditions.

40



3.5 Conclusions

In this chapter, the power counterpart to energy-optimal warm-up with terminal temper-

ature constraint is presented and solved. In addition, it is shown that when the influence of

polarization voltage is not significant, then some warm-up problems are equivalent. Lastly,

it is shown, via simulations, that there is reason to believe that problems with temperature

as terminal constraints are less sensitive to parameter uncertainties.
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CHAPTER IV

State, Parameter and Power Capability Estimation and its

Applications

The performance and longevity of these batteries hinges on constraining their operation

such that their terminal voltage, and internal and surface temperatures are regulated within

prescribed ranges [69, 70]. With these batteries acting as power sources, an effective way to

respect operating constraints is through active regulation of power-flow – a task performed

by a supervisory controller in electrified vehicles (refer Fig. 4.1).

The power capability of a battery is the constant power that can be provided by or

drawn over a finite window of time without violating operating constraints [71]. Methods to

estimate power capability have been widely explored in literature. In [71–74] the authors,

using a representative equivalent circuit model, compute the maximum admissible battery

charge and discharge power ensuring that the battery’s terminal voltage and SOC remain

constrained. The authors of [75] and [76] use a more physics-based electrochemical model to

impose direct constraints on SOC and Li-ion concentration.

There is another constraint that significantly influences the rate of battery degradation

of Li-ion batteries: temperature. It is well understood that operating batteries in elevated

temperatures increases the potential for adverse side reactions and results in accelerated

degradation [69]; however, it has not been factored-in when computing the power capability.

This work aims to address this lacuna by using reduced-order models to represent the

electrical and thermal dynamics of the battery.

The electrical and thermal behavior of Li-ion batteries depends on their current state

and operating conditions. Since most power capability estimation techniques rely on model

inversion, accurate information of the local dynamic behavior and estimates of internal

states are desired. Thus, state-parameter estimation has been considered as an important

aspect in the problem of power capability estimation [72–74,77]. Broadly, the most common

methods employed can be classified as being based on dual [77] or joint estimation [73,74].

Dual estimation is often preferred for it promises to minimize the influence of poor a priori

knowledge of the values of parameters and poor quality of measurements on state estimates.

In this chapter we propose another augmented-state-parameter-space (aSPs) partitioning
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Figure 4.1:
A schematic of power and battery management systems in an SHEV simulation
framework. The focus of the chapter is on the battery management system, the
gray shaded box.

technique based on a notion of relative estimability. A significance metric computed from

Principal Component Analysis (PCA) on the Fisher Information Matrix (FIM), similar to

the ones defined in [78–81] for off-line parameter identification, is used to measure relative

estimability. The aSPs is partitioned based on these significance metrics to aggregate

elements which have a similar influence on the system output. Finally, each partition is

endowed with an estimator, in this instance an Extended Kalman Filter (EKF).

The contribution of this chapter is three-fold: 1) a simple and effective method to

determine thermally and electrically constrained power capability of Li-ion batteries; 2) a

quantitative metric—termed significance metric—is introduced to assess the estimability

of states and parameters of the electro-thermal battery model based on the FIM; and 3)

partitioned estimators for on-line state-parameter identification are designed based on the

significance metrics.

This chapter is organized as follows: Section 4.1 describes the electrical and thermal

dynamic models of the battery used in this study. Section 4.2 details a method to estimate the

power capability of a battery accounting for electrical and thermal constraints. Section 4.3

proposes a quantitative metric based on PCA to partition the augmented-state-space in

designing estimators, and Section 4.4 presents the control of a Series Hybrid Electric Vehicle

(SHEV) as an example application of the presented techniques. Finally, Section 4.6 concludes

the chapter with a summary of contributions and with a discussion on possible extensions.

4.1 Control-Oriented Battery Model

One of the objectives of this work is to develop on-line estimation and control algorithms.

To that end, simple control-oriented models are employed to capture the electrical and

thermal behavior of Li-ion batteries. Specifically, an equivalent-circuit model for the electrical
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Schematic of an electro-thermal model for cylindrical batteries consisting of an
equivalent-circuit model and 1-D thermal model

dynamics [82], and the reduced order model developed in [83] for the thermal dynamics are

adopted.

4.1.1 Electrical dynamics

A two-state equivalent-circuit model is considered to predict terminal voltage as shown

in Fig. 4.2. The electrical dynamic behavior of the battery with the total capacity Qb in

discrete-time domain is described by

<@@@@>
zk�1

v1,k�1

=AAAA? �Ae
<@@@@>
zk

v1,k

=AAAA? �BeIk, (4.1a)

vt,k � voc�zk� � v1,k �Rs,kIk, (4.1b)

where system matrices Ae and Be are expressed by

Ae �

<@@@@>
1 0

0 e
�∆t

R1,kC1,k

=AAAA? ,
Be �

<@@@@@>
�

∆t
Qb

R1,k �1 � e
�∆t

R1,kC1,k �
=AAAAA? .

The battery SOC, z, and polarization voltage, v1, are states, i.e. xe � �z, v1��; I is the current;

vt and voc are the terminal voltage and open circuit voltage of the battery, respectively.

The series resistance, Rs, and polarization resistance/capacitance, �R1,C1�, are parameters

to be estimated, i.e., θe � �Rs,R1,C1��. The subscript e denotes the electrical system to

differentiate from the thermal system later. The sampling period in battery management
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system is denoted by ∆t. Refer to Chapter V for a list of nominal values of the parameters

of the model when the cell under consideration is an A123 26650 LFP cell.

4.1.2 Thermal dynamics

To predict core and surface temperatures of the battery, Tc and Ts, respectively, a

reduced-order model developed in [83] is adopted and reproduced below for convenience:

<@@@@>
T̄k�1

γ̄k�1

=AAAA? �At
<@@@@>
T̄k

γ̄k

=AAAA? �Bt
<@@@@>
q̇k

Tª,k

=AAAA? , (4.2a)

<@@@@>
Tc,k

Ts,k

=AAAA? �Ct
<@@@@>
T̄k

γ̄k

=AAAA? �DtTª,k, (4.2b)

where T̄ is the averaged temperature and γ̄ is the averaged temperature-gradient. The above

model was derived from the simple 1D heat equation assuming uniform heat generation

across the radius of the cylindrical cell and a quadratic form for the temperature distribution

along the radial direction. Ambient temperature and the rate of heat generation are denoted

by Tª and q̇, respectively. The subscript T denotes the thermal system. Matrices of the

thermal system are given by

At �

<@@@@>
hr2

�24ktr�48αh∆t
r�24kt�rh�

�15αh∆t
24kt�rh

�320αh∆t
r2�24kt�rh�

hr3
�24ktr2

�120α∆t�rh�4kt�
r2�24kt�rh�

=AAAA? ,
Bt � �Bt1 Bt2� � <@@@@>

α∆t
ktVb

48αh∆t
r�24kt�rh�

0 320αh∆t
r2�24kt�rh�

=AAAA? ,
Ct �

<@@@@>
Ct1

Ct2

=AAAA? �
<@@@@>

24kt�3rh
24kt�rh

�
120rkt�15r2h
8�24kt�rh�

24kt
24kt�rh

15rkt
48kt�2rh

=AAAA? ,
Dt �

<@@@@>
Dt1

Dt2

=AAAA? �
<@@@@>

4rh
24kt�rh
rh

24kt�rh

=AAAA? ,

Izminmax,k � �N�1

Q
i�0

Ce1A
i
eBe �De1��1 �zmin �Ce1ANe � zk

v1,k
	 �Ee1� , (4.3a)

Izmaxmin,k � �N�1

Q
i�0

Ce1A
i
eBe �De1��1 �zmax �Ce1ANe � zk

v1,k
	 �Ee1� , (4.3b)

Ivminmax,k � �N�1

Q
i�0

Ce2A
i
eBe �De2��1 �vmin �Ce2ANe � zk

v1,k
	 �Ee2� , (4.3c)

Ivmaxmin,k � �N�1

Q
i�0

Ce2A
i
eBe �De2��1 �vmax �Ce2ANe � zk

v1,k
	 �Ee2� . (4.3d)
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where r, kt and α are the radius, thermal conductivity, and thermal diffusivity of the

battery, respectively; typically, these parameters are not significantly affected by operating

temperature. However, the convection coefficient, h, is highly influenced by cooling or

heating condition and hence it is chosen to be a parameter to be estimated. States and

parameter of the thermal dynamics for the on-line estimation are xT � �T̄ , γ̄�� and θT � h,

respectively. Refer to Chapter V for a list of nominal values of the parameters of the model

when the cell under consideration is an A123 26650 LFP cell.

The heat generation rate, q̇, is determined by the electrical dynamics as

q̇k � I
2
kRs,k �

v2
1,k

R1,k
� IkT̄k

∆Sk
F

, (4.4)

where F is Faraday’s constant, 96485.3365 C/mol; ∆S denotes the entropy change of the

battery and is related to a certain amount of energy that needs to be reversibly absorbed or

released to balance the whole reaction inside the battery.

4.2 Power Capability Estimation

In determining power capability, the following factors are considered

1. The thermal and electrical dynamics of a Li-ion battery are intrinsically coupled.

2. The internal resistance and the rate of change of internal resistance with respect to

temperature decrease with increasing temperature.

3. For a galvanostatic operation, any arbitrary increase in battery temperature causes

reduced internal losses, and subsequently generates less heat.

4. Over a short time horizon, changes in temperature and SOC are assumed to be

bounded.

The above statements are valid insofar as the battery temperature does not exceed the

threshold temperature at which thermal runaway is initiated. Since thermal dynamics are

much slower than electrical dynamics, in determining the power capability, the thermal and

electrical constraint problems are addressed separately.

To calculate the power capability of the battery, an Algebraic Propagation (AP) method

is applied with information about states and parameters from the state-parameter estimators

developed in the following section. The AP method computes a constant input which leads

to that none of constraints are violated in N future steps. To apply the AP method to the
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electrical system, the output of the system (4.1) needs to be linearized and is expressed as:

<@@@@>
zk�1

v1,k�1

=AAAA? �Ae�R1,k,C1,k� <@@@@>
zk

v1,k

=AAAA?�Be�R1,k,C1,k�Ik, (4.5a)

<@@@@>
zk

vt,k

=AAAA? �Ce
<@@@@>
zk

v1,k

=AAAA?�DeIk �Ee, (4.5b)

where matrices Ce, De and Ee are defined as

Ce �

<@@@@>
Ce1

Ce2

=AAAA? �
<@@@@>

1 0
∂voc�z�
∂z U

z�zk
�1

=AAAA? , (4.6)

De �

<@@@@>
De1
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=AAAA? �
<@@@@>

0

�Rs,k

=AAAA? , (4.7)

Ee �

<@@@@>
Ee1

Ee2

=AAAA? �
<@@@@>

0

voc�zk� � ∂voc�z�
∂z U

z�zk
zk

=AAAA? . (4.8)

The maximum permissible currents accounting for electrical constraints such as SOC

and voltage limits, zmin, zmax, vmin, and vmax, are determined respectively as in Eqn. (4.3).

Each of those equations, in sequence, help compute the value of constant current that will

drive (a) SOC to lower limit (b) SOC to upper limit (c) terminal voltage to lower limit (d)

terminal voltage to upper limit; at the end of a N step prediction window. The derivation of

each sub-equation in Eqn. (4.3) follows the same steps; thus for simplicity, the derivation of

Eqn. (4.3a) is provided below. At any instant k, the N -step ahead prediction of the various

states assuming a constant current, I, is given by

<@@@@>
zk�N

v1,k�N

=AAAA? � ANe
<@@@@>
zk

v1,k

=AAAA? � �N�1

Q
i�1

AieBe� I. (4.9)

If the value of SOC at the end of N samples is equal to zmin, then the value of continuous

discharge charge current (Izmin

max,k) that drives the SOC to lower boundary is computed by

enforcing the terminal constraint on Eqn. (4.9); i.e.

zmin � Ce1

<@@@@>
zk�N

v1,k�N

=AAAA? � Izminmax,kDe1 �Ee1 . (4.10)

Now substituting Eqn. (4.9) into the above and collecting terms, Eqn. (4.3a) is derived.
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For the battery thermal system, the representation in Eqn. (4.2) is re-written as the

following equations:

<@@@@>
T̄k�1

γk�1

=AAAA? �At�hk�
<@@@@>
T̄k

γk

=AAAA? �Bt1�hk�µk � ξ1,k, (4.11a)

Tc,k �Ct1�hk� <@@@@>
T̄k

γk

=AAAA? � ξ2,k, (4.11b)

where

µk � I
2
kRs,k � IkT̄k

∆Sk
F

, (4.12a)

ξ1,k �BT1�hk� <@@@@>
v2
1,k

R1,k

Tª,k

=AAAA? , (4.12b)

ξ2,k �DT1�hk�Tª,k. (4.12c)

When the prediction period is short, the battery SOC and temperature do not change

significantly over the prediction horizon. Thus, it is reasonable to assume that the entropy

change and internal resistance are constant over the prediction horizon; i.e. Rs,jSk � Rs,k

and ∆SjSk � ∆Sk for j � k, k � 1, . . . , k � N . In addition, the ambient temperature and

convection coefficient do not change rapidly and hence are assumed to be constant, i.e.

T
ª,jSk � Tª,k and hjSk � hk for j � k, k � 1, . . . , k �N . Lastly, an estimate of heat generation

by the polarization voltage over the prediction horizon is obtained through model iteration

using the maximum permissible current at previous sampling time,

ξ̄1,k � max�ξ1,k, ξ1,k�N�. (4.13)

These approximations make it easy to handle the nonlinearity in the expression of heat

generation rate using a quadratic term I2
k and a bilinear term IkT̄k.

Then, the maximum of the input µqmax,k, q > �dch, chg�, which is described by considering

the maximum core temperature Tc,max, is determined as follows:

µdchmax,k � �N�1

Q
i�0

CTA
i
TBT��1�Tc,max �CTANT <@@@@>

T̄k

γk

=AAAA? �
N�1

Q
i�0

CTA
i
T ξ̄

dch
1,k � ξ2,k�, (4.14a)

µchgmax,k � �N�1

Q
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i
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N�1

Q
i�0

CTA
i
T ξ̄

chg
1,k � ξ2,k�, (4.14b)

where superscripts dch and chg represent battery discharge and charge, respectively. By

substituting Eqns. (4.14) into Eqn. (4.12a), the maximum permissible currents during battery
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discharge and charge are determined respectively by the following equations

ITmaxmax,k �

T̄k∆Sk
F �

½� T̄k∆Sk
F �2

� 4Rs,kµ
dch
max,k

2Rs,k
, (4.15a)

ITmaxmin,k �

T̄k∆Sk
F �

½� T̄k∆Sk
F �2

� 4Rs,kµ
chg
max,k

2Rs,k
. (4.15b)

Maximum discharge and charge currents accounting for all constraints are calculated

with

Imax,k � min�Izminmax,k, I
vmin
max,k, I

Tmax
max,k�, (4.16a)

Imin,k � max�Izmaxmin,k, I
vmax
min,k, I

Tmax
min,k�. (4.16b)

Finally, the power capability �Pmax,k, Pmin,k� is computed by the product of the maximum

allowable current and terminal voltage after N future sample steps expressed as

Pmax,k � Imax,k � v
dch
t,k�N Sk, (4.17a)

Pmin,k � Imin,k � v
chg
t,k�N Sk

, (4.17b)

where the predicted terminal voltage vq
t,k�N Sk

, q > �dch, chg� is calculated with

vdcht,k�N Sk � voc �zk � Imax,kN∆t

Qb
� � Imax,kRs,k

� e
�N∆t

R1,kC1,k v1,k � Imax,kR1,k �1 � e
�N∆t

R1,kC1,k � ,
vchg
t,k�N Sk

� voc �zk � Imin,kN∆t

Qb
� � Imin,kRs,k

� e
�N∆t

R1,kC1,k v1,k � Imin,kR1,k �1 � e
�N∆t

R1,kC1,k � .
4.3 State and Parameter Estimation

The power capability of a battery as described in Section 4.2 relies on the accurate

description of the battery’s electro-thermal dynamics. The challenge of estimating model

states and parameters in the context of power capability estimation has been extensively

studied; broadly, the most common methods employed can be classified as being based on

dual [77] or joint estimation [73,74].

In this section, the problem of state-parameter estimation is addressed by describing

a method to partition the augmented-state-parameter-space (aSPs) for dual estimation;

the partitioning is inspired by spectral techniques that have thus far been used for off-line

parametrization of models; and the resulting partitions are worked upon by a cascading
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estimator. To that end, this section is structured as follows – Section 4.3.1 describes the

partitioning technique in general. Section 4.3.2 specializes the method to the problem of

state-parameter estimation for the electro-thermal model and describes the overall structure

of the estimator.

4.3.1 Partitioning of the augmented-state-space

Joint estimation in the aSPs is generally computationally intensive and is less preferred

to dual estimation because the latter is believed to reduce the influence of poor a priori

knowledge of initial parameters, and poor measurements on state estimates [77, 84, 85].

In a typical implementation of a dual estimator, the aSPs is partitioned into two groups

consisting of states and parameters respectively. In this chapter, based on the notion of

observability/estimability, an alternate criterion to partition the augmented-state-parameter-

space (aSPs) is suggested. The proposed partitioning technique is a direct extension of

standard off-line parameter estimation techniques [78,86].

Consider a general dynamic system whose evolution is described by the following equations

xk�1 � f�xk, θk, uk�, (4.18a)

yk � g�xk, θk, uk�, (4.18b)

where f, g > C1�Rnx �Rnp �Rnu�. Suppose it is of interest to estimate the states, x, and the

parameters, θ, in the presence of exogenous inputs, u; the aSPs description for the estimator

is defined as following:

x̃k�1 � f�x̃k, uk�, (4.19a)

yk � g�x̃k, uk�, (4.19b)

where x̃ � �x, θ�� > Rnx�np . The parameters, θ, are assumed time-invariant or slow-varying,

over a short window of data of length N samples. State-parameter estimation problems can

in general be re-cast as one of finding the initial condition of states and parameters in the

form of a least squares estimation (LSE) problem [87],

θ̃ � arg min
θ̃

YY � Ŷ �θ̃, U�Y2, (4.20)

where θ̃ � �x0, θ��; x0 are the initial conditions of states, and θ are parameters of the dynamical

system, U is the vector of inputs U � �u1, . . . , uN ��, Y is the vector of measurements

Y � �y1, . . . , yN �� and Ŷ is the output of the model Ŷ �θ̃� � �ŷ1�θ̃�, . . . , ŷN�θ̃���. In the

following discussion, the Fisher Information Matrix (FIM) is used as a tool to asses the
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estimability of parameters θ̃1.

The FIM, F , is typically constructed by stacking a sequence of sensitivity coefficients.

In the context of the LSE problem in Eqn. (4.20), F �H �H where

H� ˆ̃
θ, Y,U� � �diag�Y ���1

<@@@@@@@@>

∂y1�θ̃,U�

∂θ̃1
. . .

∂y1�θ̃,U�

∂θ̃nx�np

� � �

∂yN �θ̃,U�

∂θ̃1
. . .

∂yN �θ̃,U�

∂θ̃nx�np

=AAAAAAAA?
RRRRRRRRRRRθ̃� ˆ̃

θ

� diag(
ˆ̃
θ)�,

ˆ̃
θ is the best a priori estimate of θ̃, and it has been assumed that measurement uncertainty,

if any, is additive white gaussian with unit variance. Observe that the Jacobian is left

multiplied by a diagonal matrix of measurements from the model, and is multiplied from

the right by a diagonal matrix of the values of the various parameters. The Jacobian matrix

is thus ‘scaled ’ to normalize entries and remove any units associated with entries2.

The FIM provides useful information about the estimation problem – the rank of F

presents the number of estimable parameters; an ill-conditioned F indicates that some

parameters are not robustly estimable; the inverse of F is termed the covariance matrix

and is related to the variance of estimates as derived by the best unbiased estimator (the

Cramér-rao bound). The information matrix has been used for yet another purpose – to

infer the relative significance of estimating parameters from the provided data. This form

of analysis, typically reserved for off-line parametrization, has been discussed in literature

(refer to [78–81] and references therein); studies on off-line estimability typically culminate

in a method to partition the set of parameters to be estimated, θ̃, into groups. Herein, a

similar partitioning technique is utilized to design the on-line estimator.

A quantitative metric to assist in ranking parameters based on their relative significance

on the measurement and hence their estimability from the measurement can be defined by

using Principal Component Analysis (PCA) [86, 89] on FIM. In the following discussion, for

simplicity of expressions, it is assumed that the F has distinct eigenvalues. Let r � nx � np and

Λ � �λ1, . . . , λr� be the ordered set (increasing) of eigenvalues of the F , and �E1, . . . , Er�
be the set of eigenvectors arranged to match the corresponding eigenvalue. The principal

components of H, the eigenvectors of F , are ordered as follows – ¦ i, j > Nr, if i @ j, Ej

explains the variation in the data better than Ei. The relative significance of principal

components is a reflection of the corresponding directions along which there is a larger

variation. A measure of the significance of the ith parameter, θ̃i, is given by

ηi �
Prk�1 Sλk � �Ek�iS

Prk�1 SλkS , (4.21)

1For the relation between FIM and local nonlinear observability, refer [88].
2Viewed differently, one could say that the various parameters—each a random variable—are scaled to

create new random variables and the Jacobian is with respect to the new random variables.
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Algorithm 1: Cascading estimation algorithm (SISO)

Data: Y , U and θ̃k�1

Initialize θ̃k;
Build G1 and G2;
Set i � 1;
while i B 2 do

val�Gi� � ψi�G1,G2, Y,U�;
i � i � 1;

end
Update θk from G1 and G2.
where ψi is an estimator designed for group Gi.

where �Ek�i denotes the ith row of Ek. Note that 0 B ηi B 1 and reflects the difficulty of

estimating the ith parameter by itself; if ηi A ηj , the ith parameter is more estimable than

the jth parameter.

Based on the significance metrics, the overall estimator can be described as follows. Let

Θ be the set of parameters θ̃, elements of the aSPs and suppose ζ is the critical threshold

about which the parameters are partitioned. For notational convenience it is assumed that

ζ > �0,1�. Then two vectorized groups G1 and G2 can be defined as follows

G1 � vec��θi > Θ S ζ B ηi B 1��, (4.22a)

G2 � vec�Θ�G1�. (4.22b)

The on-line estimation problem at every update instant k is depicted in Alg. 1. At

each update instance, estimates of the value taken by elements in the aSP are updated in

sequence with groups consisting of more significant elements being updated earlier than

groups with less significant elements. In Alg. 1, θ̃k�1 is the estimate of every element of

aSP using the information available until instance k � 1; a priori estimates of θ̃k are derived

from θ̃k�1 using the dynamics in Eqn. (4.19). This is followed by initializing the values of

elements in Gj using the a priori estimates of θ̃k. The value of members of each group are

subsequently updated using measurement information of inputs and outputs (U and Y ) and

a priori estimates; this is achieved by using estimator ψi associated with group Gi. The

ψis in the algorithm are estimators designed specific to group Gis and are chosen such that

the extent to which measurements influence the updates decreases as the group number

increases. At each instant k, as such, the following equality holds

e2
k B e

1
k,

where e1
k is the output prediction error having updated G1 and G2 is the total output

prediction error after all states and parameters have been updated. The availability of

individually tunable parameters for each group is an additional degree of freedom that the
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Algorithm 2: Ranking states/parameters

Data: Current, output and state trajectories associated with a drive-cycle
Result: η̄, the average significance vector
Let X be the states of interest;
Set L �� length of drive-cycle;
Set nθ̃ � dim�θ�;
Set nh �� 2nθ̃ � 1;
Set i � 1;
while i B L � nh � 1 do

H �H�X�i�, Y i�nh�1
i , Unh�1

i �;
F �H �H;
¦j > N 9 �1, nθ�, Υi,j � ηj ;

end
η̄ �� Ῡ�;
where Ῡ is the row average of the columns of Υ and Y i�a

i represents a vector
consisting of elements i through i � a of Y .

designer can utilize to address the problem that typically attributed to joint estimation; by

de-tuning the estimators associated with G2, the impact of measurement noise on the less

observable states/parameters can be reduced.

Remark IV.1. As elements in each group have comparable influence on the measured

output, in our experience, tuning individual estimators is simpler than when the cascading

structure was not adopted.

4.3.2 State-parameter estimation of the electro-thermal model

The previous subsection presented the architecture of the estimator considered in this

study — the aSPs was partitioned based on metrics derived from the FIM of the initial

condition estimation problem. This subsection addresses the problem of state-parameter

estimation of the electro-thermal model.

Table 4.1:
Significance of States and Parameter to Outputs over Different Input Profiles
based on Principal Component Analysis

Cycle
Electrical Thermal

η̄z η̄v1 η̄Rs η̄C1 η̄R1 η̄T̄ η̄γ̄ η̄h

UAC 0.485 0.170 0.682 0.008 0.002 0.996 0.027 0.078

ECC 0.455 0.189 0.560 0.007 0.002 0.996 0.016 0.081

HD-UDDS 0.364 0.199 0.456 0.005 0.003 0.996 0.016 0.081

η̄� is the average significance metric corresponding to state/parameter �, over the entire
drive-cycle. Refer to Section 4.1 for a list of all parameters.
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Fundamental to the application of the cascading algorithm in Alg. 1, is the availability

of the significance metric η. In off-line parametrization problems, the entire trajectory of

the inputs and outputs are completely known and the ranking algorithm can be set-up as

described in the previous section; however, for on-line estimation problems, particularly

for nonlinear estimation, when the employed estimator works with a limited data-set, the

parameter significance ranking has to be performed dynamically using a window of data.

However, since a BMS platform, in general, does not have sufficient computational power,

the expected influence of parameters is computed off-line by generating a meaningful set of

data as described below.

The average significance of each element in the aSPs over which the estimator operates is

computed by utilizing standard drive-cycles. For each drive-cycle, the model of the integrated

SHEV presented in [90] is used to generate the trajectory of battery currents. The generated

current profile is in-turn fed to the battery pack model and the resulting output voltage and

the trajectories of the internal states and parameters are recorded similarly to [41]. Taking

into account the minimum number of samples required to estimate n parameters from data,

2n � 1, as suggested in [91], the information matrix is computed along the trajectory of the

states and the associated significance of each element of aSPs is computed as described in

Alg. 2. The significance metrics, computed at each instance based on a receding history, are

then averaged to compute the significance metric over the entire drive-cycle.

Figures 4.3(a) and 4.3(b) present the evolution of the significance metric associated with

each element of the aSPs, for both the thermal and electrical sub-systems. The metrics are

evaluated over a rolling data-set obtained from driving the heavy-duty vehicle model to

follow the Urban Assault Cycle (UAC) [90]. The first sub-plot of both figures traces the

values of the significance metrics, while the second subplot provides an indication of the

relative ranking of the significance metrics at every time instant; it should be noted that in

the second plot, higher the relative rank, the more significant the parameter.

From Fig. 4.3(a), it is observed that the average temperature gradient, γ̄, has the least

influence on the surface temperature Ts. The surface temperature is structurally more

influenced by the averaged temperature than by the thermal gradient as can be observed

from system matrix CT2 (Eqn. (4.2)). In addition, the influence of perturbation of h on

the surface temperature is dominated by the ratio of thermal conductivity to radius; that

is, when the battery with low thermal conductivity has small radius, it is expected that

a change in convection coefficient does not lead to any discernable change in the surface

temperature.

Unlike Fig. 4.3(a), Fig. 4.3(b) exhibits a slightly erratic pattern; however, the key traits

are fairly predictable. As the influence of the parameters of the single R-C pair manifest

themselves through the trajectory of the polarization voltage, it is expected that these

parameters are not any more estimable than V1. The contribution of V1 to the terminal

voltage is usually smaller than that of the series resistance and the open circuit voltage in
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Figure 4.3:
Measuring the significance of each state in the (a) thermal aSPs while measure
the surface temperature alone (b) electrical aSPs, along the UAC.

terms of magnitude. This behavior arises from the current in hybrid vehicles being typically

charge sustaining. Thus, on an average, Rs—the most significant parameter to compute

the power capability [92]—is the most estimable parameter and the average significance
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Figure 4.4: Schematic of state-parameter estimators with cascading structure

metric mirrors our expectations of estimability of states and parameters. Note that when the

current is identically zero, the series resistance is not estimable; in producing the Fig. 4.3, it

was assumed that the pack is always excited with some current.

Remark IV.2. It is worth re-iterating that the aSP of the electrical and thermal models of

the battery are, in this study, partitioned based on average significance metrics. This choice

was made by observing that the relative ranking of the various states/parameters—computed

using Alg. 2—remains fairly constant. This is to be expected when the battery operates at

or above room temperature, and in an HEV application wherein the SOC deviates about a

nominal (not by much). However, for a generic non-linear system, if the solution trajectory

was such that the local behavior at any two instances were sufficiently different, then the

number of partitions and their members will have to be dynamically adjusted.

Remark IV.3. The parameters of the equivalent circuit model that are considered for

online estimation has one glaring omission–battery capacity; an accurate estimate of the

cell’s capacity is assumed. The cell’s measurable capacity is a function of temperature

and the magnitude of power fed/drawn; an inaccurate estimate constitutes a structural

uncertainty in the dynamics of the electrical sub-system. A discussion on the impact of this

uncertainty on the quality of estimates and the structure of the estimator is deferred until a

subsequent work.

4.4 Power Management in a Hybrid Electric Vehicle

This section investigates the performance of the proposed power capability estimator

and its influence on the power management in a heavy-duty SHEV. The SHEV is simulated

in the co-simulation framework in which the battery electro-thermal model and the on-line

adaptive estimators are fully integrated to the vehicle model.
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The HEV simulator is developed using a forward-looking approach as shown in Fig. 4.1.

The driver, which takes the desired and actual vehicle velocities as inputs and provides

propulsion or braking power demands, is modeled as a PI controller. Powertrain components

such as the engine/generator, motor and battery are modeled with quasi-static maps.

In the simulator, power distribution is managed using a receding horizon controller whose

instantaneous objective is to optimally minimize a weighted cost function: fuel consumption,

SOC deviation, and power rate of the engine/generator. Details of the controller and its

implementation are not of immediate relevance to the contents of this chapter and hence

have not been included; they can be found in [90].

Extending the presentation in Section 4.3, Alg. 2 is iterated over three different standard

heavy-duty vehicles’ drive-cycles. Table 4.1 tabulates the computed expected relative

influence for the thermal and electrical sub-systems over these drive-cycles. The mean

significance of each state/parameter � is denoted as η̄�. From a cursory glance at the

numerical estimates of expected significance, one notes a self-evident partitioning of the aSPs

and Table 4.2 collates the relevant groups for both sub-systems (using ζ � 0.1 in Eqn. (4.22)

for both the electrical and thermal sub-systems). With these partitions, independent

estimators are designed for each group as shown in Fig. 4.4. Note that states/parameters

of the electrical systems are estimated solely based on terminal voltage but those of the

thermal systems are influenced by estimates of the electrical systems through Eqn. (4.4). To

reflect this dependency, estimates of the electrical sub-system are updated prior to those

of the thermal sub-system. The estimator of choice is the Extended Kalman Filter (EKF)

summarized briefly in Appendix 2.2.

4.4.1 Estimator tuning

The average significance metric as presented in Section 4.3 enables one to determine

quantitatively the relative extent to which variation in the measured data can be explained by

each element of the augmented-state-space. Viewed differently, the inverse of the significance

metric is roughly indicative of the relative variance of the estimates of the states and

parameters obtained from the provided data; the EKFs used in this study are tuned with

Table 4.2:
State, parameter, input and output of electrical and thermal systems for state-
parameter estimation

Electrical Thermal

G1 x̃E1,k � �zk, v1,k, Rs,k �� x̃T1,k � T̄k

G2 x̃E2,k � �R1,k, C1,k�� x̃T2,k � �γ̄k, hk��
Input uE,k � Ik uT,k � �q̇k, Tª,k��

Output yE,k � vt,k yT,k � Ts,k
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this information. Matrices Q and R which correspond to the process and measurement noise

covariance matrices respectively are set as follows.

Recall that the average significance metric of parameter �, η̄�, was computed from the

eigenvalues of the FIM and that the FIM matrix was computed from the ‘scaled ’ Jacobian.

Scaling the Jacobian can be interpreted as scaling the parameters. To compute the expected

variance of each parameter, the inverse of the significance metric has to be multiplied by the

square of the scaling factor – the nominal value of the parameter.

Thus, the Q matrix for every estimator employed is defined as follows

Qe1 �diag��1~η̄z,1~η̄v1 ,1~η̄Rs���Ne1 ,

Qe2 �diag��1~η̄C1 ,1~η̄R1���Ne2 ,

Qt1 �diag��1~η̄T̄ ���Nt1 ,

Qt2 �diag��1~η̄γ̄ ,1~η̄h���Nt2 ,

where η̄� is the mean significance metric of state � presented in Table 4.1 and the matrix on

the right of each expression, N , is a diagonal matrix comprised of the square of the nominal

value of the corresponding parameter �nom. Table 4.3 collates the nominal values of various

parameters and the derived nominal matrices.

The values of η̄�’s are computed from the scaled version of the Jacobian, H (refer to

Eqn. (4.21))3. The listed Q matrices correspond to the electrical (subscript E) and thermal

(subscript T ) subsystems respectively, and the numeral subscript corresponds to the group

number. With the Q matrices defined as above, the values of the corresponding R matrices

are tuned to minimize the mean error in individual estimates of state and parameters. The

matrix R is tuned by scaling appropriately sized identity matrices and the mean error

threshold is chosen to be 5%. In this particular application, the values of the corresponding

R matrices are the following

Re1 �104 , Re2 � 104,

Rt1 �10�4 , Rt2 � 103.

3When a random variable is scaled, its variance is also quadratically scaled; the right diagonal matrices
for Q are in place to normalize the entries of the corresponding states

Table 4.3: Nominal values and derivative matrices
Parameter z V1 Rs C1 R1 T̄ γ̄ h

Value 0.5 0.1 10�3 1.5�103 10�3 30 30 15

Ne1 � diag��z2
nom, v1

2
nom,Rs

2
nom��

Ne2 � diag��C1
2
nom,R1

2
nom��

Nt1 � diag��T̄ 2
nom��

Nt2 � diag��γ̄2
nom, h

2
nom��

58



0 200 400 600 800 1000 1200
-40

-20

0

20

40

I
(A

)

0 200 400 600 800 1000 1200
2.8

3

3.2

3.4

3.6

3.8

V
t
(V

)

Time (sec)

(a)

(b)

Figure 4.5:
Input data to the estimators ψE� over the UAC: (a) current, (b) terminal Voltage

4.4.2 Results & discussion

The battery current and terminal voltage, which are inputs to the EKF-based estimator

for the electrical system ψE�, are shown in Fig. 4.5. To simulate realistic noise conditions,

the current and voltage are contaminated with artificial Gaussian noises, i.e. σI � 3 � 10�3

and σV � 1 � 10�3. The results of state-parameter estimation for the electrical system are

shown in Fig. 4.6(a)–(e), indicating that the estimator ψE� can simultaneously estimate

SOC4, polarization voltage, series resistance, polarization resistance and capacitance. It is

observed that states and parameter in G1 are estimated accurately and their convergence

rates are relatively fast compared to those in G2. Specifically, polarization resistance R1

has the lowest estimation quality, which corresponds to the result that R1 has the smallest

significance metric among states and parameters.

Figure 4.7 shows the battery surface temperature and ambient temperature which are

used as inputs to the EKF-based estimator for the thermal system ψT �; similar to electrical

system, Gaussian noises are artificially added to the surface and ambient temperatures,

i.e. σTs � σTª � 1.57 � 10�3. To simulate malfunction of the cooling system, the convection

coefficient is deliberately changed from 20 to 3 W/m2-K at t � 600 second. This malfunction

condition is simulated to assess not only the performance of the estimator ψT , but also the

effectiveness of the power capability estimation. As seen from Fig. 4.8, the estimator is

capable of providing accurate estimates of the states and parameter of the thermal system.

Remark IV.4. The controller employed by the simulator aims to minimize fuel consumption

4The battery SOC from the plant model is measured by using Coulomb Counting.
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Figure 4.6:
Performance of the estimator for the electrical system ψE : (a) SOC, (b) polar-
ization voltage, (c) series resistance, (d) polarization resistance, (e) polarization
capacitance

while also regulating battery SOC; the objective function of the controller is formulated

as the weighted sum of fuel consumption and SOC deviation about the 0.5. Since the

optimization problem is solved in receding horizon fashion without any terminal or invariant

set constraints, the SOC at the end of the simulation should not be expected to be identical

to 0.5 despite the general formulation being labeled charge sustaining. Additionally, if the

thermal constraints are active, then the power that can be drawn and or deposited into the

pack decreases, making SOC regulation more challenging.

The results of power capability estimation are shown in Figs. 4.9 and 4.10, which depict

the battery power, SOC, terminal voltage and core temperature. Each subplot has the

trajectory of the variable in blue and the bounds on its value in red. As shown in Fig. 4.9(a),

the maximum battery power is limited by electrical-constrained power capability when the

battery core temperature is lower than the target value of Tc,max � 45XC. It is observed

that the battery SOC and terminal voltage do not violate constraints (Fig. 4.9(b) and (c)).
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Figure 4.7:
Input data to the estimator ψT over the UAC: (a) surface temperature; (b)
ambient temperature

However, as the core temperature increases, thermal-constrained power capability becomes

active and hence the battery power are effectively regulated between the maximum and

minimum power limits. To highlight this performance, specific time periods from 1000 to

1100 seconds are shown in Fig. 4.10. Consequently, the core temperature is well regulated

around the maximum temperature as illustrated in Fig. 4.10(d); max�T̂c � Tc,0� = 0.02.

Considering that the accuracy of a thermocouple is usually less than 0.5XC and that the

convection coefficient h is estimated from noisy measurements, it can be said that the

performance of the proposed method is reasonably satisfactory.

Evidenced by the results from the model-in-the-loop simulation, it can be concluded that

the developed estimation algorithms including states, parameters, and power capability are

capable of providing accurate information about the battery. Thus, the safe and reliable

operation of the power management system as well as the battery can be achieved.
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Performance of the estimator for the thermal system ψT �: (a) averaged tempera-
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4.5 Experimental Estimator Performance Validation (Cold start)

In this section, we study the performance of the estimator design method on experimental

data. To that end, a Sanyo NMC cell whose open circuit voltage is depicted in Fig. 4.11 is

excited with eight back-to-back cold FTP cycles. The cell was initially in thermal equilibrium

with the atmosphere at �5 XC; and the resulting terminal voltage and surface temperature

were recorded at 10 Hz. It should be noted that the current profile was not generated

using the SHEV simulator as the profile in Section 4.4; it was derived using the proprietary

supervisory controller employed in a Ford C-max, and applied to the battery using a Bitrode

FTV cycler. Consequently, the complete trajectories of current and voltage are not presented;

instead, down-sampled versions are shown in Fig. 4.12.

0 2000 4000 6000 8000 10000 12000

I
(A

)

-100

0

100

0 2000 4000 6000 8000 10000 12000

V
t
(V

)

3

3.5

4

Time (s)
0 2000 4000 6000 8000 10000 12000

T
s
(/

C
)

-10

-5

0

5

Figure 4.12:
Down-sampled current excitation as derived from a cold FTP cycle, and resulting
terminal voltage and surface temperature that resulted by the application of
the current to a Sanyo 5 Ahrs NMC cell.
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The Sanyo NMC cell is a prismatic cell (with a wound interior), unlike the cylindrical

Iron Phosphate battery utilized in the sections afore. Since the Sanyo NMC does not admit

the instrumentation of with a thermocouple in its interior with ease, developing a reliable

model of its 3D spatial temperature distribution is hard; in [93], the authors develop one

such model. It was observed that the temperature difference between any two position on

the surface and on the interior was not significant, unless the excitation was persistent.

Given the excitation presented in Fig. 4.12, it is surmised that the temperature in the cell

will be almost uniform; thus it is adequate to model the thermal dynamics by a one-state

model. Further, since the surface temperature is measured, there is no need to build an

estimator for the battery’s temperature. The derived thermal model is utilized to predict

the surface temperature in open-loop. Figure 4.13 shows a modified version of the estimator

schematic introduced in Sec. 4.3, tailored to this problem with a temperature predictor.

Using the methods described in Sec. 4.3, the values of the significance metrics for each of

the state and parameters is derived. To derive the values of the significance metrics, it the

spirit of keeping the estimator blind to the experiment and the data collected, a different
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Computed relative sensitivities along the a current trajectory (using the ex-
pression in Eqn. (2.9))
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ηSOC ηv1 ηRs ηR1 ηC1

0.746 0.201 0.500 0.0048 0.011

Table 4.4:
Average significance metric for all states and parameters of the electrical sub-
system

drive cycle (ECC) was employed. Figure 4.14 presents a snap-shot of the trajectories of the

computed values and Tab. 4.4 lists the average significance metric.

The values in Tab. 4.4 suggest the following partitioning of the aSP:

G1 �� �Rs, SOC,V1�, G2 �� �C1,R1�,
similar to the structure noted in Sec. 4.4. Using these values, Extended Kalman Filters for

each group are designed as described in Appendix 2.1.2, and the state and parameters are

estimated. The results are presented in Figs. 4.15 & 4.16.

The first subplot in Fig. 4.15 compares the estimated SOC against the true (Coulomb

counting) SOC trajectory; the second subplot traces the error in SOC estimation, and the

third subplot presents the relative estimation error. Estimates of the states and parameters

of the electrical sub-system are used to compute the heat generated and are subsequently

used to compute the evolution of the surface temperature of the cell; as depicted in Fig. 4.13.
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Figure 4.16:
Measured and predicted surface temperature of the battery as resulting from
applying the coldFTP cycle

The evolution of surface temperature and the open-loop estimated surface temperature are

compared in Fig. 4.16, and the corresponding prediction error is also traced.

As evidenced by the error trajectories, the estimator performs satisfactorily by keeping

the SOC error bounded to within 5% relative error after the initial transient. Estimates of

surface temperature, a representative of the quality of estimates of the electrical parameters

(because these parameters dictate how much heat is generated), converges to within 1 XC of

the true temperature. That the temperature estimate converges could mean one or both of

two things: (1) the DC-gain of the thermal dynamics model matches that of the battery, (2)

the estimated parameters are indeed accurate. To assess if both of the above choices are

true, then it would be worth comparing the estimated parameters with the parameters in

the model of the battery derived in [93].

Remark IV.5. As tuned, the convergence rate of the thermal dynamics about 30 mins;

it is possible that the dynamics of the parameter estimation is fairly slow. This time is

much longer than the time it takes to warm the battery pack. Consequently, the parameter

estimates might not be immediately employable for any warm-up strategy; however, the

information so derived is still valuable. In [94] the authors assert that the parameters of the

equivalent circuit model retain the same functional dependence on temperature at different

battery ages. Thus, parameter estimates derived as the estimator settles is usable to predict

the impact of aging and on the value of the model parameters at sub-zero temperatures.
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4.6 Conclusion

This chapter presents a method to estimate the thermally and electrically constrained

power capability of battery systems and demonstrates its application to the power manage-

ment problem in an SHEV. The dynamics of the electrical and thermal sub-systems are not

invariant and hence are adapted. To design estimators/adaptors, the relative estimability of

the states and parameters of the electrical and thermal models was studied using Principal

Component Analysis (PCA). Based on a ranking table derived from their relative estima-

bility, the elements of the augmented-state-space model were grouped based on an average

significance metric and individual estimators were designed for each group. The results of

the model-in-the-loop simulation show that the proposed estimation algorithms can provide

accurate information about the battery to the power management system and hence safe

and reliable operation of the series hybrid electric vehicle can be achieved. A future work

will explore the possibility of allowing for dynamically altering the number of groups and

their membership based on the local significance of the various states and parameters.
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CHAPTER V

Battery Warm-Up Using Bi-directional Pulses

In this chapter, the warm-up of Li-ion batteries from sub-zero temperatures, in the

absence of an external energy source/heating system, is considered. Such a scenario is

termed standalone operation.

Most techniques discussed in literature strive to warm the cell until a certain pre-specified

cell temperature is reached. Since in most applications, the cell serves as a source of power,

we use the cell’s pulse power capability, instead of the temperature, as a condition to

terminate the warm-up operation. In addition, we seek to investigate the feasibility of

reaching the necessary power capability in an energy efficient manner.

Pulse power capability or state-of-power (SOP) is an estimated quantity whose accuracy

is determined by the fidelity of the model that captures the electrical dynamics of the cell [95].

Modeling the electrical behavior of Li-ion cells at sub-zero temperatures, particularly at

high current rates, is more challenging than emulating its thermal dynamics [28]. Thus,

owing to the inherent relation between operating temperature and power capability, in this

chapter, temperature rise is taken as a measurable surrogate. Then, the stated objective

of increasing power capability can be re-written as one of effecting temperature rise in an

energy conscious manner until the desired power can be delivered.

Maximizing temperature rise while regulating energy loss provides for certain desirable

characteristics of the battery current. With heat generated being proportional to the input

current, it follows that the candidate current profile be bi-directional to minimize cumulative

discharge and achieve fast warm-up. Drawing bi-directional currents necessitates that a

temporary energy reservoir for energy shuttling, such as an ultra-capacitor or another battery,

be available (refer to 5.1). Since the bi-directional current includes a charging phase, it is

important to note that charging the cell at low temperatures is challenging and imposes

stringent charging current constraints (see [96,97] for challenges at room temperature).

Charging Li-ion cells at sub-zero temperatures is difficult because of the reduced diffusivity

in the anode that results in increased polarization and a drop in electrode overpotential [98,99].

From a control perspective, the propensity of charging currents to cause plating can be

minimized by actively regulating the electrode overpotential. Pulsed charging is one of
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Figure 5.1: Schematic of the overall power circuit

the most widely adopted technique to slow down polarization and allow for more even

ion distribution [100]. In this chapter, in addition to using bi-directional pulses, anode

polarization is indirectly controlled by enforcing the magnitude of charging currents to be

less than the discharging portion of the pulse.

This chapter attempts to study the feasibility of using computationally efficient models

to improve the power capability of Li-ion cells in an energy efficient manner. This chapter is

organized as follows. The models that are used to mimic the cell’s electrical and thermal

behavior are detailed in Section 5.1 and their parametrization is discussed in Section 5.2.

The control problem is formulated in Section 5.3 and an example simulation is studied in

Section 5.4. Conclusions and final remarks are made in Section 5.5.

5.1 Modeling

This section introduces the models of electrical and thermal dynamics adopted in this

study. The dynamic behavior of a cylindrical (26650) LFP cell is captured using simple

reduced order models. The validity of the chosen models for the application at hand is

ascertained through experimental validation.

5.1.1 Electrical model

Over the decades, much effort has been expended in developing phenomenological models

of the electrical dynamics. The more complex models are based on concentration theory,

first proposed by Doyle, Fuller and Newman in [101]. Models so derived are hard to

parameterize [80], have notable memory requirements and, are computationally intensive.

On the other hand, equivalent circuit models have been widely adopted in literature and in

practice, eg. [41] and references therein.
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Small signal and local approximations of the dynamic behavior of electrochemical

studies can be obtained by using impedance measurements [102]. Results of the impedance

spectroscopy study conducted in [39] suggest that at low operating temperatures, for high

frequencies of current, the Li-ion cell’s electrical dynamics exhibits a first order characteristic.

Thus, in this chapter, an equivalent circuit model whose dynamics is governed by Eqn. (5.1) is

utilized to capture the electrical dynamics of the Li-ion cell. Note that the system Eqn. (5.1)

describes is one of a Linear Parameter Varying system wherein the parameters are scheduled

based on the state of charge (SOC), z, and the cell temperature T
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Bel

vel,

vt � voc�z, T � � V1 �Rs���vel. (5.1)

where vel � I (sign convention – charge : negative; discharge : positive), Qb is the

temperature dependent capacity of the cell; vt is the terminal voltage of the cell; vov is the

Open Circuit Voltage (OCV), a function of SOC and cell temperature; and Rs��� is the series

resistance. Figure 5.2 presents an electric equivalent of the dynamical system in Eqn (5.1)

and the dependence of Cb on temperature. State V1 can be interpreted as being indicative

of the bulk polarization in the cell; its time constant is determined by the pair �R1,C1�
which is assumed to be a function of SOC, cell temperature and current direction. In the

interest of notational simplicity, in the remainder of the chapter, the dependence of model

parameters on dynamic states and input is not explicitly stated when there is little room for

confusion.

The power capability of a cell is defined as the product of the maximum continuous

current that can be drawn over a fixed time interval without violating current and or voltage

constraints. In this chapter, estimates of power capability for a pulse duration of N samples
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are computed in discrete-time using expressions provided in [92]. In discrete-time domain,

denoting the linearized system matrices of the electrical model as Adel, B
d
el, C

d
el, D

d
el,

Pcap,k � Vmin �Vmin � VOCV �zk� �CdelLzk �Cdel�Adel�Nxel,k
CdelM

d
el �D

d
el

¡ , (5.2)

where Vmin is the minimum permissable terminal voltage, L � �1, 0, 0��, M � PN�1
i�0 �Adel�jBd

el

and N is the number of samples in the constant discharge pulse.

5.1.2 Thermal model

The thermal model of a cylindrical battery developed in [43] is taken to represent the

thermal dynamics in this study. The model of the thermal dynamics when expressed in

terms of the core (Tc), surface (Ts), ambient (Tamb) temperatures and rate of heat generation

(q) is represented as

ẋth �Athxth �Bthvth,

yth �Cthxth �Dthvth, (5.3)

where the states represent temperature gradient across the radius (γ̄) and average temperature

(T̄ ); xth � �T̄ γ̄�T , vth � �q Tamb�T and yth � �Tc Ts�T . System matrices Ath, Bth, Cth, and

Dth are defined as follows:

Ath �

<@@@@>
�48αh

r�24kth�rh�
�15αh

24kth�rh
�320αh

r2�24kth�rh�
�120α�4kth�rh�
r2�24kth�rh�

=AAAA?,
Bth �

<@@@@>
α

kthVb
48αh

r�24kth�rh�

0 320αh
r2�24kth�rh�

=AAAA?,
Cth �

<@@@@>
24kth�3rh
24kth�rh

�
120rkth�15r2h
8�24kth�rh�

24kth
24kth�rh

15rkth
48kth�2rh

=AAAA?,
Dth �

<@@@@>
0 4rh

24kth�rh

0 rh
24kth�rh

=AAAA?, (5.4)

Table 5.1: Thermal model parameters

Parameter Symbol Value Unit
Density ρ 2047 kg/m3

Specific heat coeff. cp 1109 J/kgK
Thermal conductivity kt 0.610 W/mK

Radius r 12.9�10-3 m
Height L 65.15 � 10-3 m
Volume vb 3.421 � 10-5 m3
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where kth, h and ρ are the thermal conductivity, convection coefficient and bulk density,

α, the thermal diffusivity is defined as the ratio of kth to the heat capacity, cp. These

parameters are assumed to independent of the cell and ambient temperatures.

The bulk of heat generation in electrochemical cells can be attributed to three components

– Joule, entropic and heating due to polarization. Since the current in this application is

bidirectional and is large in magnitude, Joule heating dominates entropic heating. Further,

the heat generated by polarization is affected by the time constant of the R-C pair and the

voltage across them.

q �
v2

1

R1
� I2Rs (5.5)

5.2 Model Parametrization & Validation

The parameters of the thermal model, thermal properties of the cell and the environment,

are not significantly influenced by temperature variations. This affords us the option of

adopting values presented in [43] (reproduced in Table 5.1) without change. However, a

similar argument cannot be made for the electrical model.

Modeling the electrical dynamics of Li-ion cells as a linear parameter varying system has

been extensively pursued in literature eg. [41] and references therein. In this chapter, the

standard method utilized to parameterize equivalent circuit models and which is described

in [41] is extended to sub-zero temperatures.

Figure 5.3 presents some of the key characteristics of the representative sub-model; each

line in every subplot corresponds to the trajectory of the variable as a temperature changes

for a particular SOC.

Based on the estimated values for model parameters, for large currents, it can be shown

that the heat generated can be approximated by Joule heating. Hence in the remainder of

the chapter, the generated heat is computed as

q � I2Rs. (5.6)

To validate the models described in the sections afore, a 26650 LFP cell was instru-

mented with a thermocouple in its center cavity and placed in a Cincinnati Sub-Zero

ZPHS16-3.5-SCT/AC temperature controlled chamber. The chamber temperature was set

to -20 XC and the air-flow was regulated to mimic natural convection (h � 5 W ~m2K). This

cell was excited with square current pulse-train provided by a Bitrode FTV1-200/50/2-60

cycler. Each pulse in current was set to have a duty-cycle of 50% and the magnitude

of charging and discharging currents were set at five and 10 amperes. The frequency of

pulse-train was set to 1 Hz and measurements of terminal voltage, current, surface and core

temperature were collected at the rate of 100 Hz. The measured current was fed to both

the electrical (single R-C model) and thermal models and the estimated terminal voltage,
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Figure 5.3:
Estimated SOC and temperature dependent parameters at different SOCs during
charge (chg) discharge (dischg)

surface and core temperatures are plotted in Figs. 5.4 – 5.5.

From Fig. 5.4 it is noted that the root mean squared (rms) error in estimating the

terminal voltage is less than 50 mV. Much of the large errors in estimation of terminal

voltage is incident with changes in current direction. The most likely reason is that while

the model is able to capture the steady state values, it has deficiencies in capturing the very

fast transients. The relatively slower transients are captured by the R-C pair in the model

and the first subplot in Figure 5.4 traces the trajectory of the estimated bulk polarization.

Observe that the polarization voltage is at-times almost 10% of the total voltage swing

across the entire SOC range and can can significantly the measured terminal voltage.

In this work, we are interested in warming the cell. Since most of the heat is generated

through Joule heating and given that the parameterized model is able to capture the steady-

state voltage fairly accurately, the developed model is assumed adequate and is used in the

remainder of the chapter.

Figure 5.5 presents the outcome of simulating the thermal model. The input to the

thermal model, namely Joule heating, was computed using the electrical model parameters

and states. Upon inspection, it is possible to conclude that the thermal model is able

to predict the surface and core temperatures to within the accuracy of the T-junction

thermocouples, 0.5XC, for the critical range of cold conditions

5.3 Automated Optimal Warm-Up Formulation

The primary focus of this work is on warming the cell in an energy efficient manner

until the desired power can be drawn from the cell. To this end, based on electrochemical
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Figure 1: Model validation – Predicting Terminal Voltage

1

Figure 5.4: Model validation – Predicting Terminal Voltage

considerations, the profile of input current is chosen as a sequence of bi-directional pulses

recurring at a certain frequency. To keep the problem formulation simple, each period is

stipulated to have just one sign change in current as shown in Figure 5.6. To completely

characterize the current profile, one would require four control variables – frequency, duty-

cycle, peaks of charge and discharge pulses. The frequency of the pulse train influences the

rate of heat generation – from EIS tests, increasing frequencies decreases the effective series

resistance while decreasing the reactive component of the total impedance [103]. In this

study, the optimal frequency at which the resistance is large yet the reactive component

is small is assumed to be known. Since the frequency is pre-determined, the values of the

remaining variables – duty-cycle and magnitudes, need to be determined.

The dynamic behavior of the electrical and thermal sub-systems of the cell are functions

of its operating conditions and internal states. Specifically, the optimal decision at the

kth instance is influenced by the trajectory of states until then. As the model dynamics is

affected by the value of its states, the problem of deciding the values of the control variables
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is formulated as a linearized receding finite horizon optimization problem and described in

this section.

The objective of the problem under consideration is to increase the temperature of the

cell while penalizing the effective energy discharged (measured in terms of loss in SOC) from

the cell. This objective can, in the general case, be mathematically formulated as

min
U ,D

��T̄k�1�ns�N � T̄k�1� � β̃ N

Q
j�1

�uc,j � dc,j � ud,j � dd,j�, (5.7)

where N is the number of periods in prediction horizon, β̃ is the relative penalty on energy

loss, ns is the number of samples per period of the pulse; in the jth period of the horizon,

C
u
rr
en
t
/A

k
k + dd

k + dd + dc

I = ud

I = uc

0

1

Figure 5.6: Pulse current profile
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dc,j and dd,j are the durations of charge and discharge portion of the period as multiples of

sampling period ∆T , and uc,j and ud,j are the the charge and discharge currents. Then,

D ���dc,j , dd,j� S ¦j > �1,N� 9Z, dc,j � dd,j B ns�,
U ���uc,j , ud,j� S ¦j > �1,N� 9Z, Suc,j S B Sud,j S�.

Note that Eqn. (5.7) is, by virtue of the fact that the second term is non-convex and that the

first and second terms do not have terms in common, non-convex. The variables over which

the problem is optimized takes a mixture of integer and continuous values; the problem

under consideration is a non-convex Mixed Nonlinear Integer Programming problem (MNIP).

Non-convex MNIPs are NP-hard [104] and are not suitable for online control. In the interest

of making the problem more tractable, in this chapter, the duty-cycle of both charge and

discharge pulses are set to be equal; i.e. 50% duty-cycle; in so doing, the problem devolves

into a regular nonlinear programming problem (NLP) that could be solved online.

Having fixed the duty-cycle to be 50%, for simplicity of expressions, without loss of

generality it is assumed that each period of the current is spread over only two samples. A

more general case is easily derived by scaling the appropriate variables.

5.3.1 Characterizing the current profile

At each instant l, for a prediction horizon of length 2N samples, the problem of deciding

the magnitude of pulses to increase cell temperature in an energy conscious manner is

computed by solving the following problem P1:

min
u

� �T̄l�2N�1 � T̄l�1� � β̃Szl�2N�1 � zl�1S
s.t. : ¦k > �l � 0, . . . , l � 2N�

xth,k�1 � A
d
thxth,k �B

d
thvth,k

yth,k � C
d
thxk �D

d
thvth,k

vth,k � �u2
kRs,k;Tamb,k�

£̈̈̈̈̈̈
§̈̈̈̈̈
¥̈

(5.8a)

xel,k�1 � A
d
elxel,k �B

d
eluk

yel,k � C
d
elxel,k �D

d
eluk �G

d
el

£̈̈§̈̈¥ (5.8b)

SuiS B SId�T̄i�S, ¦i > �l � 1, l � 3, . . . , l � 2N � 1�SuiS B SIc�T̄i�S, ¦i > �l � 2, l � 4, . . . , l � 2N�SuiS C Sui�1S, ¦i > �l � 1, l � 3, . . . , l � 2N � 1�
£̈̈̈̈̈̈
§̈̈̈̈̈
¥̈

(5.8c)

vt,i B vmax, ¦i > �l � 1, . . . , l � 2N�
�vt,i B �vmin, ¦i > �l � 1, . . . , l � 2N�

£̈̈§̈̈¥ (5.8d)

xel,k � xel,l, xth,k � xth,l
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where zk � xel,k�1�, T̄k � xth,k�1�, Gdel � voc�zk�1�Cdel�1�zk�1, u � �u1, . . . , u2N ��, and β̃ is a

relative weight that penalizes changes in SOC. In the above, the vector of control variables,

u, is arranged such that odd and even elements correspond to discharging and charging

current magnitudes respectively.

The cost function of P1 strikes a compromise between total increase in the cell’s average

temperature and penalized loss in state of charge over the entire prediction horizon. Eqns.

(5.8a) and (5.8b) describe the equality constraints on the temperature and electrical model

dynamics in which a superscript ‘d’ indicates the discrete version of the variable. Cell

manufacturers typically specify the voltage operating limit �vmin, vmax�, and the maximum

charge and discharge current limits as a function of temperature; Eqns. (5.8c) and (5.8d)

enforce these constraints.

For ease of implementation, the optimal control problem in Eqn. (5.8) is re-written as

an optimization problem by recursive substitution of the dynamics as follows. Expressing

the thermal dynamics, in discrete-time as

xth,k�1 �A
d
thxth,k �B

d
th

<@@@@>
qk

Tamb,k

=AAAA? ,
with qk � u

2
kRs, it can be seen that,

xth,k�2N�1 � xth,k�1 �

��Adth�2N
� In�xth,k�1 �

2N

Q
j�1

�Adth�j�1Bd
th

<@@@@>
Rsu

2
p

Tamb,p

=AAAA?
where p � 2N � j � k � 1.

Then,

T̄k�2N�1 � T̄k�1 � �1 0�´¹¹¹¹¹¸¹¹¹¹¹¹¶
C̃

�xth,k�2N�1 � xth,k�1�,

� C̃��Adth�2N
� I�xth,k � C̃ 2N

Q
j�1

�Adth�j�1Bd
th

<@@@@>
Rsu

2
p

Tamb,p

=AAAA? ,
�u�Wu � const., (5.9)

where, defining ϑj �� C̃�Adth�2N�k�jBd
thC̃

�Rs, W � diag��ϑ1, . . . , ϑ2N ��. The constant term

in Eqn. (5.9) can be expressed as C̃��Adth�2N
� I�xth,k � C̄P2N

j�1�Adth�j�1Bd
thC̄Tamb,2N�j�k�1

where C̄ � �0 1�. As constant terms in the cost are immaterial to minimization problems,

the above constant is dropped in the following expressions.

Since the evolution of SOC is related to the summation of the control variables, the
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original problem in Eqn. (5.8) can be re-written in the following form

min
u

� YuY2
W � βQ

j

uj

subject to : Ψu B ΥSuiS B SId�T̄ �S, ¦i > �1,3, . . . ,2N � 1�SuiS B SIc�T̄ �S, ¦i > �2,4, . . . ,2N�SuiS C Sui�1S, ¦i > �1,3, . . . ,2N � 1�
(5.10)

where Ψ and Υ are as defined in Eqn. (5.11).

Ψ �

<@@@@@@@@@@@@>

�Dd
el 0 0 � 0

CdelB
d
el Dd

el 0 � 0

�CdelA
d
elB

d
el �CdelB

d
el �Dd

el � 0

� � � � �

Cdel�Adel��2N�2�Bd
el Cdel�Adel��2N�3�Bd

el Cdel�Adel��2N�4�Bd
el � Dd

el

=AAAAAAAAAAAA?
(5.11a)

Υ �

<@@@@@@@@@@@@>

�vmin

vmax

�vmin

�

Vmax

=AAAAAAAAAAAA?
�

<@@@@@@@@@@@@>

�CdelA
d
el

Cdel�Adel�2

�Cdel�Adel�3

�

Cdel�Adel�2N

=AAAAAAAAAAAA?
xk �

<@@@@@@@@@@@@>

�CdelB
d
el

CdAdBd
el

�Cdel�Adel�2Bd
el

�

Cdel�Adel�2N�1Bd
el

=AAAAAAAAAAAA?
uk �

<@@@@@@@@@@@@>

��voc�zk� �Cdel�1�zk�
voc�zk� �Cdel�1�zk

��voc�zk� �Cdel�1�zk�
�

voc�zk� �Cdel�1�zk

=AAAAAAAAAAAA?
(5.11b)

W �diag��ϑ1, . . . , ϑ2N ��, ϑi A 0, ϑi are functions of thermal system matrices. (5.11c)

The above optimization problem belongs to the class of problems where a concave

function is minimized over a convex set; such problems have been studied extensively in

literature. Solvers of concave optimization problems can be broadly classified as being either

approximate or global; global methods generally employ cutting-plane and or branch and

bound techniques [105, 106]. In general global solvers are computationally expensive and

thus their use may be limited to small-scale problems.

To gain better insight into the nature of the optimization problem under investigation,

consider the simple case when the prediction horizon is of length one. Figure 5.7 presents

the characteristic shape of the constraint polytope in R2 wherein coordinates of the vertices

represent, in sequence, the magnitude of discharge and charge pulses. While edge e1 enforces

the trivial condition that charging and discharging pulses cannot have the same polarity,

edge e2 ensures that the magnitude of the charge current is never greater than that of the

discharge current. Edges e3 and e4 complete the polytope and enforce adherence to voltage

and current constraints.

The bounded polytope defined by constraints in the problem under consideration is

convex. The solution to concave minimization problems, when restricted to a convex polytope
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Figure 5.7:
Region of the constrained optimization problem when the prediction length is
one.

Algorithm 3: Control Algorithm (open-loop)

set flag=0;
set �ud, uc�� � ��1,1��;
set number of samples in block;
while !flag do

Compute Pcap;
if Pcap @� Pdmd then

Solve optimization problem;
set �ud, uc�� � ��u�d, u�c ��;
wait(ts � number of samples in block) seconds

else
set flag=1;

end

end
� Variables with an ‘*’ superscript are optimal solutions.

lies, at one of the vertices of the polytope [107]. For the simple case depicted in Fig. 5.7, it

can be shown that the solution lies at either ν3 or ν4. As this work is a feasibility study

in a simulation framework, the concave minimization problem is solved using a vertex

enumeration strategy to find the global minimizer.

5.3.2 Control scheme

In the preceding sub-section, the problem of determining the magnitude of input current

of the cell was formulated as an optimization problem in a receding horizon framework.

Incorporating the termination condition based on power capability, the overall process can

be cast into the control scheme depicted in Alg. 3.

The time constant of the thermal dynamics of the cell under consideration is in the order

of tens of minutes. Thus, the increase in temperature as a result of applying one period of

current (at 10Hz) may not be significant. For this reason the problem of current magnitude
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determination is solved in blocks. Periods in the prediction horizon are binned into blocks,

with each block consisting of a pre-set number of pulse periods; the prediction horizon is then

described by the number of blocks (refer Fig. 5.8). The optimization problem as formulated

earlier is modified to enforce the constraint that every period in each block is identical.

In the overall scheme, at each control instant, the power capability, Pcap, is first estimated

and compared to the desired set-point, Pdmd. If the required power cannot be provided, the

optimization problem to compute the magnitudes of the pulses is solved and the optimal

solution to the first block is applied. After waiting a duration that is equal to the duration

of the block, the process is repeated and the power capability is re-computed. Once the

desired power can be delivered, the warm-up operation is terminated.

Remark : Operation of this kind can be interpreted as intentionally allowing the states

of the thermal model to grow. The thermal dynamics of a Li-ion cell is inherently stable,

unless the temperature is increased to levels that may trigger thermal run-away. It can be

argued that given the coupling between the thermal and electrical sub-models, as long as the

maximum temperature is bounded away from (from above) a critical temperature �� 80XC�,
the thermal model remains stable and controllable. As for the electrical dynamics, SOC is a

constrained state and the value of V1 is implicitly bounded as a function of constraints on

the terminal voltage and input current.

5.4 Simulation and Discussion

In this section, the proposed Pulsed Current Method (PCM) is simulated with both the

plant and model dynamics dictated by the equations in Section 5.1.

5.4.1 Simulation setup

The augmented electro-thermal model (Eqn. (5.13)) is nonlinear in input and output;

the proposed algorithm is implemented using discrete local linear models and is simulated
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Table 5.2: Manufacturers specifications for A123 26650 cells for constant operation.

Direction Temperature Continuous Current

Charge 0–20oC 3A
Charge 20–50oC 10A

Discharge -30–60oC 60A

in the MATLAB/Simulink environment using a custom vertex enumerator.

<@@@@>
ẋel

ẋth

=AAAA? �
<@@@@>
Aelxel

Athxth

=AAAA? �
<@@@@>
Bel 0

0 Bth

=AAAA?
<@@@@@@>
u

u2

Tamb

=AAAAAA?
Vt �VOCV �xel� �Celxel �Delu, (5.13)

where u is the current drawn from the cell.

In implementing PCM variable values were chosen as follows – the cell operating voltage

bounds were set at �2,3.6�; the frequency of the pulse train was set to 10Hz based on

electrochemical considerations [39] and the model was simulated at Nyquist frequency. The

energy that is removed from the cell is assumed to be stored in an external storage system

such as an ultracapacitor bank.

The simulated LFP cell is assumed to be a part of a pack that consists of 60 cells in series

and four cells in parallel with a rated nominal continuous power at 25XC of 45 kW. Limits on

the maximum deliverable current were set by factoring in manufacturers specifications (Table

5.2) and the standards proposed by USABC [108]. Note that the specifications provided in

Table 5.2 are for continuous discharge. For pulsed currents, a multiplicative factor of 1.5 is

used to amplify the current ratings for constant operation. The value of charge current limit

below freezing was not provided explicitly in specification sheets. In practice, this limit may

have to be empirically estimated if it is not provided. The value of the limit can be taken at

the maximum magnitude of current that does not increase the effective resistance of the cell

after a pre-determined number of energy cycles (using pulsed currents). In this study this

limit is set at 1C. In addition, we assume a Arrhenius relation for the increase in charge

current limit above 0XC.

The control scheme proposed in Section 5.3 relies on a receding horizon controller. In

receding horizon controllers, the length of the prediction horizon is a tuning parameter

that takes integer values. However, for large problems and problem with fast dynamics,

shorter control and prediction horizons are preferred; in [109], the authors provide necessary

conditions for when the prediction horizon of length one is near optimal. In this section,

unless stated otherwise, it assumed that the prediction and control lengths are of length one;

the impact of this assumption is studied numerically in Section 5.4.4.
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Figure 5.9:
Down-sampled simulated trajectory of (down-sampled by 19) voltage and current
using Pulse Current Method (β � 0)

5.4.2 Simulation, results & discussion

This section documents result of simulating the electro-thermal model of the battery

developed in Sections 5.1 and 5.2 using the algorithm described in Section 5.3. Simulations

are run with the following parameters – SOC0 � 0.6, ambient temperature set to �20oC and

under natural cooling condition (h � 5W ~m2K).

5.4.3 Baseline

To study the performance of the proposed method and to establish a baseline, we compare

the trajectories of battery temperature, power capability and SOC from the following two

cases:

1. the limiting case when β � 0

2. the case of maximum permissable continuous discharge.

The second case, when the maximum permissable continuous discharging current is drawn,

generates the maximum possible heat at every sample and hence is an approximate solution

to the minimum warm-up time problem. In this mode of operation, to satisfy constraints,

the terminal voltage is held at Vmin (that is as long as the discharge current constraint is

satisfied); thus, this mode is labeled Constant Voltage Method (CVM).

Figures 5.9 and 5.10 present trajectories resulting from simulating the electro-thermal

model using the proposed reference current generation algorithm, PCM, and CVM using
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Figure 5.10:
Simulated trajectories of average temperature, power capability and polarization
using Pulse Current Method (PCM) and Constant Voltage (CVM) Method. The
simulation was performed with the pack initialized with SOC0 � 0.6 operating
from �20XC with a terminal power demand, Pdmd � 100W under natural cooling
conditions (h � 5 W ~m2K).

power demand, (Pdmd � 100 W) as terminal constraint. Table 5.3 tabulates some of the key

indices from having applied CVM and PCM.

The value of penalty on SOC lost in each period, β, influences the duration of the

warm-up operation. Larger penalties will tend to increase the duration of the warm-up phase;

this follows by observing that when operating from sub-zero temperatures, the current limits

are not symmetric. That is, the minimum warm-up time that can be achieved using PCM

is when β � 0. From Fig. 5.9 and Table 5.3, it is noted that the warm-up time when using

CVM is shorter than when using PCM with β � 0. Thus, the warm-up time using PCM, for

any value of β, will be longer than when using CVM.

Energy storage elements such as ultra-capacitors do not have very high energy densities,

i.e., it is desirable to transfer as little energy as possible to the external energy storage

element. From Table 5.3, note that the equivalent SOC stored in external storage using

Table 5.3: Comparison between PCM� and CVM, key indices
Method Oper. Time SOCstore T̄final SOCloss

PCM (β � 0) 172s 0.13 17.5oC 0.11
PCM (β � 0.58) 278s 0.12 12.25oC 0.10

CVM 143s 0.23 24.3oC 0.15
�1 block with 5 periods
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Figure 5.11:
Results on increasing penalty on energy loss as percent of when no penalty
is applied. The simulation was performed with the pack initialized with
SOC0 � 0.6 operating from �20XC with a terminal power demand, Pdmd � 100
W under natural cooling conditions (h � 5 W ~m2K).

CVM is almost twice that of PCM.

Lastly, in comparing the effective energy lost using both methods — PCM and CVM

— it is noted that CVM is more lossy. More specifically, comparing the CVM with PCM

(β � 0), we observe that the total energy lost increases by nearly 35%; this increased loss

manifests itself as increased terminal temperature of the cell.

The above results bear evidence to the fact that terminating warm-up based on terminal

temperature is not the same as when using power as terminal constraint. While CVM enjoys

shorter operating times, it is more lossy and requires larger storage elements as compared to

PCM.

5.4.3.1 Penalizing energy loss

As formulated, the value of penalty β in the cost can be used to regulate the amount of

energy dissipated as heat. Figure 5.11 documents the total energy lost and the reduction

in size of external storage elements in equivalent battery SOC, for different values of β.

Inspecting Fig. 5.11, it it evident that increasing the value of β can reduce energy expenditure

and external sizing. By computing the percent change with respect to when β � 0, the energy

lost and external storage size can be reduced by as much as 20%. This increased efficiency

of operation does however come at the expense of operation time. Figure 5.12 presents a

comparison between the increase in warm-up efficiency and time taken to be able to deliver

the desired power; increased energy efficiencies result in increasing warm-up times.

The observations from Figs. 5.11 and 5.12 can be explained by studying the trajectories

of terminal and polarization voltages, when β � 0 and β � 0.58; Figs. 5.10 and 5.13 depict

these trajectories. The first observation from comparing these figures is that unlike the case

when β � 0, the trajectory of terminal voltage when β � 0.58, does not always hit the lower

limit of 2V; however, it does on occasion. Further, the trajectory of polarization is different

after 40 s; these observations can be interpreted as follows.

From the problem formulation in Eqn. (5.10), it is possible to show that the value of
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polarization and the cell’s operating temperature result in the solution migrating between

vertices of the constraint polytope (as an example cf. Fig. 5.7 and vertices ν3 and ν4). The

vertices between which the solution switches are dictated by the temperature of the cell,

penalty β and the polarization. As the penalty, β, increases, SOC lost over the control

horizon becomes important; therefore, the optimal solution tends to be ud � uc, i.e. the

amplitudes of current during charge and discharge are the same, which can be clearly

observed in Fig. 11 when β � 0.58 compared to the case of β � 0 in Fig. 9. The preference

of charging and discharging at the same current rate has to consequences:

1. the average current during the control horizon decreases to zero and hence polarization

voltage drops as well.

2. the heat generated during each period reduces and correspondingly the increasing rate

of temperature diminishes.

As seen from Fig. 8, the increasing rate of temperature becomes lower when β � 0.58 than

when no penalty on SOC loss is imposed. It is also observed that polarization voltage

decreases from 50 second to 230 second. The polarization state is inherently stable; as

the average current during each block in the control horizon tends to zero, the value of

polarization decreases. The reduced polarization and rate of heat generation may result

in the solution switching back to the vertex that extracts maximum current from the cell

(vertex ν3 in Fig. 5.7). This results in the switching behavior observed in Fig. 5.13.

Figure 5.12 also highlights another important characteristic of the solution – as the value

of β is increased, the operation time reaches an asymptote, i.e. it becomes impossible to

reach the desired terminal power capability. This is an extension of the behavior described

above wherein the solution migrates; as β increases, the solution migrates and remains at the

vertex that favors charging and discharging currents being of the same magnitude (vertex ν4

in Fig. 5.7). In addition, for βs sufficiently large, the solution will remain at the vertex that

favours negligible SOC loss and hence the power demand can never be achieved. Thus, for

the above algorithm to be implemented, the value of β needs to be chosen appropriately to

ensure feasibility of the overall problem.
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Figure 5.12: Comparison between increased efficiency and warm-up operation time
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Figure 5.13:
Simulated trajectory of voltage, polarization and current using Pulse Current
Method, β � 0.58. The simulation was performed with the pack initialized with
SOC0 � 0.6 operating from �20XC with a terminal power demand, Pdmd � 100W
under natural cooling conditions (h � 5 W ~m2K).

Table 5.4: Impact of prediction horizon based on key indices�

aaaaaaaaaa
Index

Prediction
Length 1 2 3

SOCloss 1 0.99 0.98
External Storage 1 0.99 0.97
Terminal Time 1 1.01 1.03

Computational Time 1 35 107
� Entries normalized wrt. results when prediction length is one block

5.4.4 Effect of longer prediction horizons

In simulating the results presented thus far, the prediction horizon was set to be a

single block consisting of five pulses. In the context of predictive control, longer prediction

horizons are known to produce better approximations of the global optimal solution. In this

application, owing to the linearized MPC implementation, the prediction horizon cannot be

taken to be arbitrarily large without incurring errors resulting from model linearization.

To investigate the influence of prediction horizon on the optimal solution trajectory, an

iterative test was performed1 wherein the length of the prediction horizon was increased

incrementally; results of which are presented in Table 5.4. The other parameters of the

simulation were : Pdmd � 50W , h � 5W ~m2K and β � 0.57 (the power demand is set at 50

1Simulations were performed on a computer powered by an Intel i5-2500 quad-core processor with 16GB
of ram and running Windows 7 with parallelization enabled.
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W in the interest of computational time).

The data presented in Table 5.4, as expected, indicates that given the same penalty on

loss in energy, increasing the length of the prediction horizon decreases the total energy lost;

this however does come at the expense of computational time. In fact, there appears to

be a quadratic relation between decrease in loss and total operation-time. Comparing the

effective increase in savings and the increase in computational and operation time, a case

for the use of prediction horizon of length one block can be made.

5.5 Conclusion

In this work, a Li-ion battery warm-up strategy that increases the cell temperature to

meet power demand in an energy efficient method is described. The shape of current used

to shuttle energy between the cell and an external energy storage system was set to be

bi-directional pulses to minimize polarization and reduce damage to electrodes. Magnitude of

the pulses were determined by solving a constrained optimization problem. From simulations

based on models of a 26650 LFP cell, it is noted that it is possible to reduce energy lost as

heat and the size of external storage, by as much as 10% when compared against using just

constant voltage discharge. There is however, a compromise to be made between reduction

in size of storage, energy lost and time taken to warm-up.
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CHAPTER VI

Concluding Remarks

6.1 Summary of Contributions

This dissertation is concerned with the energy-conscious control of battery warm-up

from sub-zero temperatures and is of critical importance to the growing fleets of electrified

vehicles that traverse a variety of terrains in cold weather conditions.

First, a warm-up method is developed as a solution of an energy-optimal warm-up problem

that aims to increase the battery’s temperature until it reaches a desired temperature set-

point, whilst powering an assisting external heater. This solution is shown to resemble a

sequence of constant voltage, constant current and rest phases. In addition, approximate

feedback laws for warm-up are synthesized by using novel tools to address reachability

problems. Using an approximate solution, it is noted that in temperature terminated

problems, the impact of the rest condition can be as much as 8%. In addition, the notion

of productive warm-up is introduced as the warm-up operation that would ensure that the

battery is capable of performing work upon warm-up. The task of identifying the set of

initial battery states from which productive warm-up is feasible is undertaken by interpreting

it as a reachability verification problem.

Secondly, it is suggested that the power capability of the battery can be considered as

a possible means to specify terminating conditions for battery warm-up. A model of the

electro-thermal dynamics of the battery at sub-zero temperatures is characterized and is

utilized to design two battery warm-up strategies. The first strategy draws bi-directional

currents to effect an increase in the battery’s temperature until the battery is able to deliver

the desired power. This strategy assumes the presence of an external energy storage element

such an ultracapacitor which can serve as a temporary reserve.

Since the two warm-up strategies devised use terminating conditions that are specified

differently – (former) power capability set-point, (latter) temperature set-point; the question

of whether one formulation is better than the other is answered. It is shown that under

certain assumptions on the dynamics of the system, the two formulations are equivalent.

However, more generally, specifying the terminating constraint in terms of power capability

is seen to be more sensitive to uncertainties in the parameters of the system.
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It should be noted that the baseline in the discussions on pulsed current method—constant

voltage method—is a particular specialization of the optimal solution to the warm-up problem

discussed in Chapter II. It is seen that the pulsed current method can be about 10% more

efficient than the uni-directional current that is the solution to the problem in Chapter II.

However, the cost of ultracapacitor banks needed to eke out the improvements in performance

may serve as an inhibiting factor.

Finally, to help reduce the uncertainty in the model parameters, an estimator is designed.

To do so, a novel method to partition the augmented state-space consisting of states and

parameters to be estimated is proposed. This partitioning technique differs from standard

dual filters in that the partitioning is based on the averaged local observability of all elements

in the augmented state-space. The performance of the partitioning technique is demonstrated

by designing a cascading sequence of Extended Kalman Filters that estimate the states and

parameters of the coupled electro-thermal model of a battery in a HEV.

6.2 Future Directions

This dissertation explored the prospect of energy-efficient warm-up of Li-ion batteries

using a reduced order electro-thermal model. The resulting optimal solution using this model

was noted and shown, in some cases, to be similar to the obvious strategy. This deduction

presents the following directions for future research.

6.2.1 A more physics based approach

In this dissertation, it was noted that the polarization voltage plays an important role in

determining the power capability, and the battery’s ability to self-warm to meet specifications

after the circuit has been opened. Given that the polarization term in the equivalent circuit

model is a representation of the cumulative impact of all local polarizations, it is would

be interesting to undertake a study that aims to derive energy-optimal rules for warm-up

when using a Single Particle Model (SPM). In this case, the manufacturer’s constraints do

not have to necessarily be adhered to; instead constraints on over-potential can be directly

imposed.

The use of a SPM will present yet another research direction: parameterization and state

estimation at sub-zero temperatures of the SPM.

6.2.2 Stochastically planned warm-up

In this dissertation, the only problem that was considered was of battery pre-warm-up.

That is, suppose the ambient temperature was Tª
XC and the desired power capability was

Pdes; we sought a policy that can drive the battery’s states with Tc�0� � Tª and no built-up

initial polarization. Let the energy consumed to achieve warm-up be z�.
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Now, consider the instance when Tc�0� � T̄ A Tª and the initial internal polarization was

close to zero. In this case, arguably, the energy required to drive the power capability to

Pdes is less than z�. Such a situation can arise when the battery temperature is constantly

maintained around T̄ using some control strategy, say thermostatically.

However, maintaining the battery temperature at T̄ A Tª is a drain on the batteries’

stored energy. If it was known that at sometime in the near future a request for warm-up

was to arrive, then it might be worthwhile to maintain the temperature above the ambient.

The question then is, given a distribution of possible arrival times of the next warm-up

command, if one such exists, what is the optimal value of T̄ ?; and how does this change as a

function of time? Can such a planned warm-up be more energy efficient than the case of

complete warm-up (beginning warm-up only after a command has arrived) considered in

this dissertation?

6.2.3 Warm-up of a pack of self-heating batteries

In [2], the authors present a novel Li-ion battery that has a built in metal foil that serves

as a low-resistance load. To warm the battery, a switch is closed that completes the circuit

around this small load. The design of the resistance of this foil can be undertaken based on

models of the dynamics of the cell.

Now, consider a pack of such cells, with cells connected in series and in parallel. How

many of these batteries should be warmed-up to warm the entire pack (in an effort to

conserve energy)? Where would these batteries be located in the pack in relation to the

pack geometry? Answer to these questions will enable the design of smaller, more efficient

battery packs, and better control algorithms.
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Appendix A

Appendix to Chapter II

1.1 Proofs

Proof of Theorem II.3. To assist in providing a proof, we need the following result about a

feature of the optimal solution:

Lemma A.1. The co-state trajectory associated with the optimal trajectory of Tc is positive

almost everywhere in time.

Proof. This proof follows by directly applying standard results in optimal control relating

to the sensitivity interpretation of co-states.

Stated simply, if the value function of �OCP � is V , and if it were differentiable,

ψ3 � �
∂V

∂Tc
. (1.1)

Now, recall that the V is the cost-to-go; i.e. it is the smallest amount of SOC that will be

required to reach Tc � Tdes. With all other states remaining constant, increasing the battery’s

temperature decreases the cost-to-go. Hence ∂V ~∂Tc is negative, and ψ3 is positive.

In the event that V is not differentiable, one can use subgradients to establish similar

results [110] [111].

By the definition of SOC, it follows that the objective function of �OCP � is equivalent

to the following by the Fundamental Theorem of Calculus:

J �
1

3600 �Q

tf

S
t0

I�τ�dτ. (1.2)

Since the associated incremental cost is linear and the dynamics is quadratic in control, it

follows that singular arcs do not exist.

We prove this proposition by showing that the Hamiltonian of the optimal control

problem is convex in control. Then, by virtue of the fact that the control is constrained to a
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convex set, it follows that the optimal solution at each instant is an extreme value of the

admissible set. To establish the first statement, we relax the air temperature dynamics in

the following manner

Ṫa �γ1 � �Tc � Ta� � γ2 � �w�t� � Ta� � γ3 � �Tª � Ta�, (1.3)

where w�t� is an exogenous input to the system; this relaxation allows us to consider all

possible admissible heater temperature trajectories. Note that when w�t� � Th�t� a.e, the

dynamics reverts back to the original description. Next, observe that the with this re-written

Ta dynamics, the heater’s temperature as a state does not affect the optimal control problem;

it is dropped from further consideration in the optimal control problem1.

The Hamiltonian of �OCP �, with the reduced set of equations, HT , is of the following

form:

HT �

4

Q
i�1

ψifi�x� � 4

Q
i�1

ψigi�x�I � 4

Q
i�1

ψihi�x�I2 (1.4)

where ψi are co-states and functions fi, hi are representations of the coefficients of the

different monomials in I derived by simplifying the dynamics of the system whose dynamics

is described by Eqns. (2.1) & (2.3); their values are presented in Tab. 1.1.

Functions f, h and ψ are indexed to match the definition of x �� �z, v1, Tc, Ta��; that is,

ψ1 is the co-state corresponding to z and ψ3 corresponds to Tc. Since HT is quadratic in I,

and if Piψihi is strictly positive or strictly negative, it would imply that HT is convex or

concave in I respectively.

Next, we show that HT is convex in I. By definition of HT and using the definitions in

Tab. 1.1,

κ ��Q
i

ψihi � ψ3α1Rs�Tc�. (1.5)

Now, from Lemma A.1, it follows that ψ3 is positive and so is κ. That is, HT is convex in I.

The set of admissible current values at any time instant is governed by the constraints

on current and terminal voltage. The from these constraints, the admissible control set is

1The dynamics in Eqn. (1.3) renders the system dynamics lower triangular with Th being an absorbing
node in its graph structure.

Table 1.1: List of placeholders in Eqn. (1.4) and the values/expressions they represent.
Variable Expression/Value Variable Expression/Value Variable Expression/Value

f1 0 g1
�1

Q�3600
h1 0

f2
�v1
τ�Tc�

g2
1

C1�Tc�
h2 0

f3 α1v
2
1
C1�Tc�

τ�Tc�
�α2Ta �α3Tc g3 0 h3 α1Rs�Tc�

f4 γ1�Tc � Ta� � γ2�w�t� � Ta� � γ3�Tª � Ta� g4 0 h4 0
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derived with ease to be

I � �0,min�Imax, voc�z� � v1 � vmin
Rs�Tc�� ¡	 . (1.6)

To maximize HT , given that I is compact, the optimal control at any instant takes an

extreme value.

Notice that in the above presentation, the actual trajectory of the exogenous input,

w�t�, has not been of significance. Given that one is free to choose w�t� as needed without

changing the result, let w�t� � Th�t� everywhere to get the final step.

Proof of Lemma II.11. Let the set of feasible initial conditions of �OCP � be denoted by F

and X0 is the largest such set that satisfies Defn. II.10. By definition, for any x0 >X0, there

exists a control sequence that is feasible with respect to �OCP �; i.e. X0 ` F .

For any x̃0 > F , there exists an optimal solution that can drive the battery temperature

to Tdes by tf without violating state and control trajectories. This by virtue of the fact

that X0 is the largest set of initial conditions such that for each initial condition, there

exists a control policy that can drive the temperature to at least Tdes without violating state

constraints, x̃0 `X0. Thus F `X0 and the result follows.

1.2 Backwards Reachable Set Approximation

In this appendix, a methodology to estimate the ctBRS and tBRS are developed. The

techniques presented herein are extensions of the methods presented in [57, 112,113] in the

following two ways: (1) all estimates account for output constraints; (2) the formulation for

the inner approximation of the time-limited, free-terminal-time backwards reachable set is a

first to our knowledge. The presentation herein attempts to be strike a compromise between

being though and concise; only relevant assumptions and results are presented.

This appendix is organized as follows: in Section 1.2.1 some preliminaries are defined

and occupation measures and their relation to the flow of system trajectories is introduced.

Subsequently, a formulation of a problem to solve for the ctBRS is presented in Section 1.2.2.

In Section 1.2.3, the numerical implementation technique employed to estimate the ctBRS

is detailed. Finally, the problem of estimating the rest condition via the tBRS is discussed

in Section 1.2.4.

1.2.1 Preliminaries

In this section, we introduce the notations adopted in the remainder of this appendix,

re-introduce the formulation of the ctBRS estimation problem and present the important

concept of occupations measures.
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1.2.1.1 Notations

In the remainder of this text the following notation is adopted: sets are italicized and

capitalized (ex. K). The boundary of a set K is denoted by ∂K. Finite truncations of the

set of natural numbers are expressed as Nn �� �1, . . . , n�. The set of continuous functions on

a compact set K are denoted by C�K�. The ring of polynomials in x is denoted by R�x�,
and the degree of a polynomial is equal to the degree its largest multinomial; the degree

of the multinomial xα, α > Nn is SαS � YαY1; and Rd�x� is the set of polynomials in x with

maximum degree d. The dual to C�K� is the set of Radon measures on K, denoted as

M�K�, and the pairing of µ >M�K� and v > C�K� is:

`µ, ve � S
K

v�x�dµ�x�. (1.7)

We denote the cone of nonnegative Radon measures by M��K�. The Lebesgue measure is

denoted by λ and the support of a measure, say µ, is identified as spt�µ�. When considering

subsets of a set, we blanketed-ly consider only sets as defined by the Borel σ-algebra.

1.2.1.2 Summarizing the flow of trajectories

Consider a dynamical system whose behaviour can be described by the following ODE:

ẋ � f�t, x, u�, (1.8a)

y �h�t, x� (1.8b)

with the following assumption on the vector-field such as to guarantee uniqueness of solutions

and to simplify some of the forgoing developments.

Assumption A.2. The dynamics of the system is piecewise continuous in t and Lipschitz

continuous in x and u.

This appendix is devoted to the estimation of the backwards reachable set; to do so,

we need a tool to describe the flow of solution trajectories that begin in a set. In this

dissertation, we relate it to on the viscosity solution of the Liouville equation. In the ensuing

presentation, we present the Liouville equation using the notion of occupation measures.

The occupation measure µ�� S x0� >M��T �X �U S x0� is formally defined as:

µ�A �B �C S x0� � tf

S
0

1A�B�C�t, x�t S x0�, u�t S x0��dt, (1.9)

where 1K�y� is the indicator function on the set K that returns one if y > K and zero

otherwise. That is, given an initial condition, x0, for the system, the occupation measure

quantifies the amount of time spent by solution trajectories in any subset of the space. With
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the above definition of the occupation measure, it can be shown that:

`µ�� S x0�, ve � `λt, v�t, x�t S x0�, u�t S x0��e , (1.10)

for all v > C�T �X �U� where λt is the Lebesgue measure on T [57].

Since we are interested in the collective behavior of a set of initial conditions, we define

the average occupation measure as:

µ�A �B �C� � S
T �X�U

µ�A �B �C S x�dµ0, (1.11)

where µ0 is the un-normalized distribution of initial conditions. The value to which the

average occupation measure evaluates over a given set in T �X �U is the cumulative time

spent by all solution trajectories which begin from spt�µ0�.
Suppose we were given an x0 > X0 where X0 is an initial set; then we define the first

hitting time of a solution to the dynamical system in Eqn. (1.8), γ, of the target with initial

condition x0 as follows:

τ�x0� � inf�t > T S γ�t� >XT �. (1.12)

By the Fundamental Theorem of Calculus, one can evaluate a test function v > C1�T �X�
at time t � τ along a solution to Eqn. (1.8) as:

v�τ, x�τ S x0�� � v�0, x0� �τ�x0�

S
0

Lfv�t, x�t S x0�, u�t S x0��dt (1.13)

where the linear operator Lf � C
1�T �X�� C�T �X �U� is defined as:

Lfv�t, x� � �∂v
∂x

� f �
∂v

∂t
� �t, x, u�, (1.14)

Integrating Eqn. (1.13) with respect to µ0, the distribution of initial conditions, and defining

a new measure µT >M��T �XT �, as:

µT �A �B� � S
T �X

1A�B�τ, x�τ S x0��dµ0, (1.15)

produces the following equality

`δT a µT , ve � `δ0 a µ0, ve � aµ,Lfvf , (1.16)

where, with a slight abuse of notations, δt is used to denote a Dirac measure situated at
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time t. Using adjoint notations, Eqn. (1.16) can be written as:

δT a µT � δ0 a µ0 �L
�

fµ. (1.17)

Eqn. (1.17) is a version of Liouville’s Equation and holds for all test functions v > C1�T �X�;
thus it summarizes the visitation information of all trajectories that emanate from spt�µ0�.
Several recent papers provide a more detailed discussion on Liouville’s Equation [57, 58].

One of the salient features of this equation is highlighted in the following Lemma.

Lemma A.3. Given measures �µ0, µ, µT � that satisfy the Liouville equation in Eqn. (1.17),

there exists a family of solution trajectories that begin in spt�µ0� and terminates in spt�µT �.

Proof. To prove this Lemma, we hybridize the system. Using notions from [114], create

an autonomous hybrid system with two modes – mode 1 with dynamics as in Eqn. (1.8);

and mode 2 with dynamics ẋ � 0. Define the guard G�1,2�, the condition to transition from

mode 1 to mode 2 as G�1,2� �� ∂XT , and associate with it the identity reset map. Now the

remainder of the proof follows by applying Lemma 19 in [114] with the specification that

Θ � �0�. Note that whilst [114, Lemma 19] does not consider controlled dynamical systems,

that result follows with very little change.

1.2.2 Identifying the feasible set

In this section, we address the problem of identifying the controlled time-limited free-

terminal-time backwards reachable set. For completeness, the definition of this set is re-stated

below.

Xf
0 � �x0 >X S §u � T � U, st. §ζ � T

dynamics,a.e.
ÐÐÐÐÐÐÐ�X,

with ζ�0� � x0, ¦t > T , h�t, ζ�t�� > Y,
§τ > T st. ζ�τ� >XT �,

(1.18)

where X,Y are respectively the state and output manifolds respectively, and U is the set

of admissible control values. That is, for any x >Xf
0 , there exists a control policy that can

drive the state trajectory to the target set (XT ) before time elapses, and without violating

any output constraints.

Made specific to the problem considered in Sec. 2.4, the respective sets are defined as
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follows.

X � ��z, v1, Tc, Th, Ta� STmin B Th, Ta B Tmax,
T cmin B Tc B T

c
max,

vmin B vt B vmax,

zmin B z B zmax�,
XT � ��z, v1, Tc, Th, Ta� STmin B Th, Ta B Tmax,

Tdes B Tc B T
c
max,

vmin B vt B vmax,

zlimit B z B zmax�.
Consider the following infinite dimensional optimization problem on measures

sup
Λ

`µ0,1e �P � (1.19a)

st. µ0 �L
�

fµ � µT (1.19b)

µ0 � µ̂0 � λx (1.19c)

spt�h�µ� ` Y (1.19d)

where λx is the Lebesgue measure supported on X,

Λ �� �µ0, µ̂0, µ, µT � > �M��X��2
�M��T �X �U��M��T �XT � and 1 denotes the function

that takes value 1 everywhere. Problem �P � aims to find the biggest X0 (wrt. to the

Lebesgue measure) as defined in Eqn. (1.18) subject to certain constraints. The constraint in

Eqn. (1.19b) enforces that the solution trajectories that emanate from spt�µ0� reach XT (refer

Lemma A.3). The requirement in Eqn. (1.19c) is in place to standardize the measurement

frame of reference, the Lebesgue measure. Finally, the constraint in Eqn. (1.19d) requires

that output constraints be respected, always.

The following result establishes an important property of problem �P � – that the support

Lemma A.4. The µ0 component of the optimal solution of �P � is the restriction of λx to

Xf
0 .

Proof. The proof of this Lemma follows from [57, Theorem 1] without significant modification.

Remark A.5. Note that the constraint in Eqn. (1.19d) can be transformed into a constraint

on the support of µ via the pullback operation. That is, Eqn. (1.19d) can be removed from�P � by modifying the support constraint on µ; the new constraint reads as

spt�µ� ` h�1�Y � 9 T �X �U (1.20)
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Using Remark A.5 it can be shown that the support of µ can be altered as follows:

µ >M��T � Γ� where Γ is defined as:

Γ � ��z, v1, Tc, Th, Ta, I� S vmin B vt B vmax,
0 B I B Imax,

Tmin B Th, Ta B Tmax,

T cmin B Tc B T
c
max

zmin B z B zmax�.
In Lemma A.4, it is shown that spt�µ0� is λx-identical to X0; however, identifying the

support of measures is nontrivial [115]. Fortunately, there is an alternative and this involves

solving the dual problem to �P �. The dual problem to �P �, on continuous functions, is

formulated using standard Infinite-dimensional Linear Program theory [116] and is presented

as �D� below.

inf
w,v
S
X

wdx �D� (1.21a)

st. Lfv�t, x, I� B 0 ¦�t, x, I� > T � Γ (1.21b)

w�x� C 0 ¦x >X (1.21c)

w�x� � v�0, x� � 1 C 0 ¦x >X (1.21d)

v�t, x� C 0 ¦�t, x� > T �XT (1.21e)

v > C1�T �X� (1.21f)

0 B w > C�X� (1.21g)

A solution to �D� has the following key characteristics: (a) it is equivalent to �P � in that

the optimal costs are the same (b) the w component of the optimal solution can be used to

identify Xf
0 ; as asserted in the following results.

Lemma A.6. There is no duality gap between problems �P � and �D�.

Proof. The proof is a direct result from duality theory; refer to [116, Theorem 3.10] and [57,

Theorem 2].

Lemma A.7. Let �v,w� be a feasible solution to �D�. The 1-super-level set of w contains

Xf
0 .

Proof. By definition, for any x0 >X0, there exists u�t� > U such that there exists τ > T such
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that x�τ� >XT . Since v�t, x� C 0 on T �XT , using the constraints of �D�, it follows that

0 B v�τ, x�τ�� � v�0, x0� � τ

S
0

Lfv, (1.22)

� v�0, x0� B w�x0� � 1. (1.23)

Thus, the set �x S w�x� C 1� contains Xf
0 .

The above result states that the 1-super-level-set of the w-component of the optimal

solution to �D� contains Xf
0 ; i.e. it is an over approximation of Xf

0 . In fact, it is possible to

show a stronger result: that w is the indicator function on Xf
0 (refer to [57]). Note that while

the above result presents a direct means to get an approximation of Xf
0 , it is contingent

on us being to solve �D�. Since �D� is infinite dimensional, in the next section, we use the

Lasserre hierarchy to present a sequence of problems that generate a converging sequence of

outer approximation of Xf
0 .

1.2.3 Numerical implementation

In this section, a sequence of Semidefinite Programs (SDP)s that approximate the

solution to the infinite dimensional primal and dual defined in Sec. 1.2.2 are introduced.

This sequence of relaxations is constructed by characterizing each measure using a sequence

of moments2 and assuming the following about the description of the system’s behavior and

of the different sets in the problem.

Assumption A.8. The dynamical system in Eqn. (1.8) is a polynomial. Moreover the

domain and the target set are semi-algebraic sets.

Note that these assumptions are satisfied by the system under considered in this disser-

tation.

Under this assumption, given any finite d-degree truncation of the moment sequence

of all measures in the primal �P �, a primal relaxation, �Pd�, can be formulated over the

moments of measures to construct an SDP. The dual to �Pd�, �Dd�, can be expressed

as a sums-of-squares (SOS) program by considering d-degree polynomials in place of the

continuous variables in �D�.
To formalize this dual program, first note that a polynomial p > R�x� is SOS or p > SOS

if it can be written as p�x� � Pmi�1 q
2
i �x� for a set of polynomials �qi�mi�1 ` R�x�. Note that

efficient tools exist to check whether a finite dimensional polynomial is a sum-of-squares

(SOS) using SDPs [117]. Next, suppose we are given a semi-algebraic set A � �x > Rn S
2The nth moment of a measure (µ) is yµ,n � `µ,xne .
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Note that these assumptions are satisfied in the system under
considered in this paper.

Under this assumption, given any finite d-degree truncation
of the moment sequence of all measures in the primal (P ), a
primal relaxation, (Pd), can be formulated over the moments
of measures to construct an SDP. The dual to (Pd), (Dd),
can be expressed as a sums-of-squares (SOS) program by
considering d-degree polynomials in place of the continuous
variables in (D).

To formalize this dual program, first note that a polynomial
p ∈ R[x] is SOS or p ∈ SOS if it can be written as p(x) =∑m
i=1 q

2
i (x) for a set of polynomials {qi}mi=1 ⊂ R[x]. Note

that efficient tools exist to check whether a finite dimensional
polynomial is a sum-of-squares (SOS) using SDPs [37]. Next,
suppose we are given a semi-algebraic set A = {x ∈ Rn |
hi(x) ≥ 0, hi ∈ R[x],∀i ∈ Nm}. We define the d-degree
quadratic module of A as:

Qd(A) =

{
q ∈ Rd[x]

∣∣∣∣∃{sk}k∈{0,1,...,m}∪{0} ⊂ SOS s.t.

q = s0 +
∑

k∈{1,...,m}
hksk

}

(42)

The d-degree relaxation of the dual, (Dd), can be written as:

inf
Ξd

∫

X

wd(x) dλx (Dd) (43a)

st. − Lfvd(t, x, θ) ∈ Qd(T × Γ) (43b)
wd − vd(0, x)− 1 ∈ Qd(X) (43c)
wd ∈ Qd(X) (43d)
vd(t, x) ∈ Qd(T ×XT ) (43e)

where Ξd =
{(
vd, wd

)
∈ Rd[t, x]×Rd[x]

}
. A primal problem

can similarly be constructed, but the solution to the dual can be
used to directly generate a sequence of outer approximations
to the ctBRS. The forthcoming Lemma follows as a direct
extension of [16, Theorem 6] and states that as the degree d
increases, then wd converges to w and that we can identify
Xf

0 , in the limit.

Lemma 20. Let wd denote the w-component of the solution
to (Dd). Then Xc

(0,d) = {x ∈ X | wd(x) ≥ 1} is an outer
approximation of Xc

0 and limd→∞ λx(Xc
(0,d)\X

f
0 )↘ 0.

Figure 9 presents a diagrammatic representation of the
convergence of estimates of Xf

0 . Lemma 20 states that as the
degree of the polynomial approximation of functions v and w
increases, the difference between the volumes of the approx-
imated set X̂f

0 and Xf
0 decreases by becoming less positive.

In Fig. 9, this is represented by the dot-dashed contours that
enclose Xf

0 , the true ctBRS in blue. The progression in degree
relaxations is depicted as labels on the contours.

Thus, using a finite-degree truncation of the infinite dimen-
sional problem presented above, one can solve for a sequence
of convergent outer approximations of Xf

0 .

Xf
0

XT

t0

t0

t0

t0

tf

tf

tf

tf

t0

tf

d = d1

d = d2

d = d3

(d1, d2, d3) ∈ N3, d1 < d2 < d3

Fig. 9. A visual depiction of the convergent sequence of outer approximations
of the BRS. The set that is shaded in blue is the true BRS. As the degree
relaxation of the approximation problem is increased, the approximations of
Xf

0 get tighter; they do so only from the outside.

D. Identifying the rest condition

In the previous sections, we presented a formulation of an
optimization problem that be used to generate outer approxi-
mations of the ctBRS. In this section, we address the problem
of approximating the rest condition, and the associated set, the
tBRS.

Recall the definition of Xr
0 , the time-limited free-terminal-

time backwards reachable set, from Sec. IV (re-produced
below for convenience)

Xr
0 = {x0 ∈ X | ∃ζ : [0, tf ]

dynamics a.e.−−−−−−−→ X, ζ(0) = x0,

∃τ ∈ [0, tf ], ζ(τ) ∈ XT },
(44)

where ζ is a solution trajectory, X is the state-space and XT

is the target set through which we require solutions pass.
While one might be tempted to solve for Xr

0 by making
requisite changes to the definition of problem (P ) introduced
in Appendix B-B, and using the methodology described in
Appendix B-C, this will not generate the desired result. In
fact, as an extension to Lemma 4, an outer approximate of
Xr

0 can be shown to not generate a control trajectory that is
feasible with respect to the optimal control problem (OCP )
introduced in Sec. III. To ensure that the approximate solution
remain feasible (wrt. (OCP )), it is necessary that we derive
an inner-approximation of Xr

0 , the tBRS.
The key observation that we leverage in this section is the

following: an inner approximation of the Xr
0 is the outer

approximation of X\Xr
0 , its relative complement. That is, if

we could negate all the requirements in Section B-A and B-B,
we would get the inner approximation.

Let the relative complement of Xr
0 in Eqn. (44), be defined

as

Xu
0 = {x0 ∈ X | ∃ζ : T dynamics,a.e.−−−−−−−−−→ X, with ζ(0) = x0,

6 ∃τ ∈ T st. ζ(τ) ∈ XT }.
(45)

That is, Xu
0 is the set of initial conditions of the system from

which the state trajectory during natural relaxation, does not,
at any time, enter XT , but remain in X for all t ∈ T . Note

Figure 1.1:
A visual depiction of the convergent sequence of outer approximations of the
BRS. The set that is shaded in blue is the true BRS. As the degree relaxation of
the approximation problem is increased, the approximations of Xf

0 get tighter;
they do so only from the outside.

hi�x� C 0, hi > R�x�,¦i > Nm�. We define the d-degree quadratic module of A as:

Qd�A� � �q > Rd�x� W§�sk�k>�0,1,...,m�8�0� ` SOS s.t.

q � s0 � Q
k>�1,...,m�

hksk¡ (1.24)

The d-degree relaxation of the dual, �Dd�, can be written as:

inf
Ξd
S
X

wd�x�dλx �Dd� (1.25a)

st. �Lfvd�t, x, θ� > Qd�T � Γ� (1.25b)

wd � vd�0, x� � 1 > Qd�X� (1.25c)

wd > Qd�X� (1.25d)

vd�t, x� > Qd�T �XT � (1.25e)

where Ξd � ��vd,wd� > Rd�t, x��Rd�x��. A primal problem can similarly be constructed, but

the solution to the dual can be used to directly generate a sequence of outer approximations

to the ctBRS. The forthcoming Lemma follows as a direct extension of [57, Theorem 6] and

states that as the degree d increases, then wd converges to w and that we can identify Xf
0 ,

in the limit.

Lemma A.9. Let wd denote the w-component of the solution to �Dd�. Then Xc
�0,d� � �x >

X S wd�x� C 1� is an outer approximation of Xc
0 and limd�ª λx�Xc

�0,d��Xf
0 �� 0.

103



Figure 1.1 presents a diagrammatic representation of the convergence of estimates of Xf
0 .

Lemma A.9 states that as the degree of the polynomial approximation of functions v and w

increases, the difference between the volumes of the approximated set X̂f
0 and Xf

0 decreases

by becoming less positive. In Fig. 1.1, this is represented by the dot-dashed contours that

enclose Xf
0 , the true ctBRS in blue. The progression in degree relaxations is depicted as

labels on the contours.

Thus, using a finite-degree truncation of the infinite dimensional problem presented

above, one can solve for a sequence of convergent outer approximations of Xf
0 .

1.2.4 Identifying the rest condition

In the previous sections, we presented a formulation of an optimization problem that be

used to generate outer approximations of the ctBRS. In this section, we address the problem

of approximating the rest condition, and the associated set, the tBRS.

Recall the definition of Xr
0 , the time-limited free-terminal-time backwards reachable set,

from Sec. 2.3 (re-produced below for convenience)

Xr
0 � �x0 >X S§ζ � �0, tf � dynamics a.e.

ÐÐÐÐÐÐÐ�X, ζ�0� � x0,

§τ > �0, tf �, ζ�τ� >XT �, (1.26)

where ζ is a solution trajectory, X is the state-space and XT is the target set through which

we require solutions pass.

While one might be tempted to solve for Xr
0 by making requisite changes to the definition

of problem �P � introduced in Appendix 1.2.2, and using the methodology described in

Appendix 1.2.3, this will not generate the desired result. In fact, as an extension to

Lemma II.5, an outer approximate of Xr
0 can be shown to not generate a control trajectory

that is feasible with respect to the optimal control problem �OCP � introduced in Sec. 2.2.

To ensure that the approximate solution remain feasible (wrt. �OCP �), it is necessary that

we derive an inner-approximation of Xr
0 , the tBRS.

The key observation that we leverage in this section is the following: an inner approx-

imation of the Xr
0 is the outer approximation of X�Xr

0 , its relative complement. That is,

if we could negate all the requirements in Section 1.2.1 and 1.2.2, we would get the inner

approximation.

Let the relative complement of Xr
0 in Eqn. (1.26), be defined as

Xu
0 � �x0 >X S§ζ � T dynamics,a.e.

ÐÐÐÐÐÐÐ�X, with ζ�0� � x0,~§ τ > T st. ζ�τ� >XT �. (1.27)

That is, Xu
0 is the set of initial conditions of the system from which the state trajectory

during natural relaxation, does not, at any time, enter XT , but remain in X for all t > T .

Note that Xr
0 is not the exact relative complement of Xr

0 since it does not include initial
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conditions that can leave the space X, at some time τ @ tf . The decision to define Xu
0 like

so was made in view of issues related to numerics. To ensure that trajectories do not ‘escape’

the space at some time, we need the following assumption:

Assumption A.10. The set X�Xr
0 is tf -invariant.

Now, similar to problem �P �, the problem to estimate X̄r
0 is formulated as follows:

sup
Λ

`µ0,1e �P rest� (1.28a)

st. µ0 �L
�

fµ � µT (1.28b)

µ0 � µ̂0 � λx (1.28c)

spt�h�µ� ` Y (1.28d)

where λx is the Lebesgue measure supported on X,

Λ �� �µ0, µ̂0, µ, µT � > �M��X��2
�M��T �X�XT � �M��T �X�XT � and 1 denotes the

function that takes value 1 everywhere. The sets X and XT to identify Xr
0 such as to extract

the rest condition are defined as

X � ��z, v1, Tc, Th, Ta� STmin B Th, Ta B Tmax,
Tmin B Tc B T

c
max,

zmin B z B zmax�,
XT � ��z, v1, Tc, Th, Ta� STmin B Th, Ta B Tmax,

Tdes B Tc B T
c
max,

zlimit B z B zmax�.
Problem �P rest� aims to find the biggest Xu

0 (wrt. to the Lebesgue measure) as defined in

Eqn. (1.27) subject to the usual constraints. The constraint in Eqn. (1.28b) enforces that

the solution trajectories that emanate from spt�µ0� remain in X�XT for all time t > T . The

requirement in Eqn. (1.28c) is in place to standardize the measurement frame of reference, the

Lebesgue measure. Finally, the constraint in Eqn. (1.28d) requires that output constraints

be respected, always. Note that Remark A.5 is still relevant.
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The dual to �P rest�, is derived using standard techniques and is presented below.

inf
w,v
S
X

wdx �Drest� (1.29a)

st. Lfv�t, x� B 0 ¦�t, x� > T �X�XT (1.29b)

w�x� C 0 ¦x >X (1.29c)

w � v�0, �� � 1 C 0 ¦x >X (1.29d)

v�t, x� C 0 ¦�t, x� > T �X�XT (1.29e)

v > C1�T �X� (1.29f)

0 B w > C�X� (1.29g)

where x � �z, v1, Tc, Ta, Th��.
A solution to �Drest� has the following characteristics: (a) the optimal cost is the volume

of the complement of the largest tBRS ; (b) w � 0 on the tBRS and 1 elsewhere. That is,

given the optimal solution to �Drest�, its w-component, w�, defines the tBRS of XT as

follows:

Xr
0 � �x S w�x�� @ 1�. (1.30)

Recall that Xr
0 is the set of initial conditions from which the self-driven system reaches the

desired cell temperature by the specified time. Thus, the boundary of Xu
0 serves as the

switching surface.

Results analogous to Lemmas A.4—A.7 still hold in this case; with the primary difference

being that the support of µ0 is now X̄u
0 and that the 1-super-level-set of the w component

of �Drest� is an outer approximation of X̄u
0 and hence an inner approximation of Xr

0 .

Lemma A.11. Under Assumption A.10, the µ0 component of the optimal solution to �P rest�
is the restriction of λx to Xu

0 .

Lemma A.12. The electro-thermal model described in Sec. 2.1 satisfies Assumption A.10.

Numerical approximations of the solution to w are derived as discussed in Section 1.2.3,

and the similar results exist for this problem formulation as well; these are omitted for

brevity. Figure 1.2 presents a summary of the numerical estimation strategy employed to

identify Xr
0 . Using the estimate of Xr

0 , the rest condition is identified as the zero set of w�1.
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X0 X0

XT XT

A ⇒
A ⊂ XT

B 6⊂ XT

B B

(b)(a)

t0

tf

Fig. 10. How to generate inner approximations of the BRS. Subplot (a) presents the complement problem – where the pattern-ed set, which once was the
target set, is to be avoided at all times, and the new target set is the set in blue and white. This formulation is equivalent to finding the largest set of initial
conditions such that the safe set is invariant. The set A is such that trajectories that begin in it reach the avoid set at some before t = tf ; it is not a part of
the solution to the complement problem. The solution to the complement problem is XT \A. Thus, using a version of Lemma 20, the solution to (P rest) is
approximated from outside; i.e. inside of A. This produces an inner approximation of A.

that Xr
0 is not the exact relative complement of Xr

0 since it
does not include initial conditions that can leave the space X ,
at some time τ < tf . The decision to define Xu

0 like so was
made in view of issues related to numerics. To ensure that
trajectories do not ‘escape’ the space at some time, we need
the following assumption:

Assumption 21. The set X\Xr
0 is tf -invariant.

Now, similar to problem (P ), the problem to estimate X̄r
0

is formulated as follows:

sup
Λ

〈µ0,1〉 (P rest) (46a)

st. µ0 + L′fµ = µT (46b)

µ0 + µ̂0 = λx (46c)
spt(h?µ) ⊂ Y (46d)

where λx is the Lebesgue measure supported on X ,
Λ := (µ0, µ̂0, µ, µT ) ∈ (M+(X))2 ×M+(T × X\XT ) ×
M+(T ×X\XT ) and 1 denotes the function that takes value
1 everywhere. The sets X and XT to identify Xr

0 such as to
extract the rest condition are defined as

X = {(z, v1, Tc, Th, Ta) |Tmin ≤ Th, Ta ≤ Tmax,
Tmin ≤ Tc ≤ T cmax,
zmin ≤ z ≤ zmax},

XT = {(z, v1, Tc, Th, Ta) |Tmin ≤ Th, Ta ≤ Tmax,
Tdes ≤ Tc ≤ T cmax,
zlimit ≤ z ≤ zmax}.

Problem (P rest) aims to find the biggest Xu
0 (wrt. to the

Lebesgue measure) as defined in Eqn. (45) subject to the
usual constraints. The constraint in Eqn. (46b) enforces that
the solution trajectories that emanate from spt(µ0) remain in
X\XT for all time t ∈ T . The requirement in Eqn. (46c) is
in place to standardize the measurement frame of reference,

the Lebesgue measure. Finally, the constraint in Eqn. (46d)
requires that output constraints be respected, always. Note that
Remark 16 is still relevant.

The dual to (P rest), is derived using standard techniques
and is presented below.

inf
w,v

∫

X

w dx (Drest) (47a)

st. Lfv(t, x) ≤ 0 ∀(t, x) ∈ T ×X\XT (47b)
w(x) ≥ 0 ∀x ∈ X (47c)
w − v(0, ·)− 1 ≥ 0 ∀x ∈ X (47d)
v(t, x) ≥ 0 ∀(t, x) ∈ T ×X\XT (47e)

v ∈ C1(T ×X) (47f)
0 ≤ w ∈ C(X) (47g)

where x = [z, v1, Tc, Ta, Th]′.
A solution to (Drest) has the following characteristics: (a)

the optimal cost is the volume of the complement of the largest
tBRS; (b) w = 0 on the tBRS and 1 elsewhere. That is, given
the optimal solution to (Drest), its w-component, w∗, defines
the tBRS of XT as follows:

Xr
0 = {x | w(x)∗ < 1}. (48)

Recall that Xr
0 is the set of initial conditions from which

the self-driven system reaches the desired cell temperature by
the specified time. Thus, the boundary of Xu

0 serves as the
switching surface.

Results analogous to Lemmas 15—18 still hold in this case;
with the primary difference being that the support of µ0 is
now X̄u

0 and that the 1-super-level-set of the w component of
(Drest) is an outer approximation of X̄u

0 and hence an inner
approximation of Xr

0 .

Lemma 22. Under Assumption 21, the µ0 component of the
optimal solution to (P rest) is the restriction of λx to Xu

0 .

Figure 1.2:
How to generate inner approximations of the BRS. Subplot (a) presents the
complement problem – where the pattern-ed set, which once was the target set,
is to be avoided at all times, and the new target set is the set in blue and white.
This formulation is equivalent to finding the largest set of initial conditions such
that the safe set is invariant. The set A is such that trajectories that begin in
it reach the avoid set at some before t � tf ; it is not a part of the solution to
the complement problem. The solution to the complement problem is XT �A.
Thus, using a version of Lemma A.9, the solution to �P rest� is approximated
from outside; i.e. inside of A. This produces an inner approximation of A.
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Appendix B

Appendix to Chapter IV

2.1 The Significance Metric

In this section, a basis for defining the significance metric as was done in Sec. 4.3 is

provided.

2.1.1 Metric definition

The significance metric used in this study to the partition the aSP is based on the notion

of relative estimability. Consider N � 1 sequential measurements of the terminal voltage

stacked into a vector Y defined without loss of generality as

Y � �Vt,k, . . . , Vt,k�N ��. (2.1)

The relative estimability of the states and parameters of the electrical model — SOC,Rs, v,R1,C1

— can be measured by the quantitatively comparing the significance of perturbations to each

member of the aSP on the output. If the initial conditions (values of states and parameters

at instant k) are denoted as θ > R5, then the sensitivity matrix—which satisfies the relation

δY � Sδθ, (2.2)

where δY is the resulting perturbation in output from a δθ perturbation in initial conditions—

is given by

S �

<@@@@@@>
∂Vt,k
∂θ1

�
∂Vt,1
∂θk

� � �

∂Vt,k�N
∂θ1

�
∂Vt,k�N
∂θk

=AAAAAA?
. (2.3)

Since the states and parameters are not all of the same units and magnitudes, we first

normalize the sensitivity matrix, S, about a nominal value of initial conditions (θnom) and

the resulting voltages (Ynom). Further, define the unit normalized sensitivity matrix H as
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follows.

H � �diag�Ynom���1 S�diag�θnom�� (2.4)

We define the influence of each parameter θi on the output as the amplification of the

natural basis in the perturbed aSP through the linear operator H. That is, the influence of

parameter i, ¯̄ζi, on the output is measured as

¯̄ζi � YHeiY2
2 (2.5)

where ei is the ithe natural basis of the perturbed parameter space. This expression can be

reduced as follows:

¯̄ζi � YHeiY2
2 (2.6a)

� SSUΣVT eiSS22 (2.6b)

� SSΣVT eiSS22 (2.6c)

�

N

Q
j�1

�σ2
j cj,i�2

(2.6d)

where

H � UΣVT
� U

<@@@@@@@@@@@@@@@>

σ2
1 � 0

� � �

0 � σ2
5

0 � 0

� � �

0 � 0

=AAAAAAAAAAAAAAA?

<@@@@@@>
S S S
c1 � c5S S S

=AAAAAA?
T

(2.7)

is the Singular Value Decomposition (SVD) of H with ci being columns in V. For ease of

comparison, the values of the significance metrics are normalized to arrive at the following

expression for the normalized significance metric:

ζ̄i �

N

P
j�1

�σ2
j cj,i�2

N

P
j�1

�σ2
j �2

. (2.8)

Another variant of the above expression can be derived by loosely using the equivalence of

norms in finite dimensional spaces to convert expression form the 2-norm to 1-norm; this
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expression of the normalized significance metric is given by

η̄i �

N

P
j�1

Sσ2
j cj,iS

N

P
j�1

σ2
j

. (2.9)

For any two distinct parameters, θi and θj , based on the above definition of the significance

metric, θi is a more significant parameter on the output and hence is more estimable than

θj if ζ̄i A ζ̄j or η̄i A η̄j .

2.1.2 A heuristic EKF tuning technique

The EKF is arguably one order of complexity higher than the Linear Quadratic Estimator

(LQE) and consists of a sequence of update laws that are executed at every sampling instant.

The update laws are based on the idea that a nonlinear dynamical system can be locally

approximated by a linear system, and hence designing a LQE for the local linear system is

usually adequate to guarantee boundedness of estimation errors. The general presentation

of the update laws of the EKF are delineated in Sec. 2.2.

The EKF has two tunable parameters: Q and R representing the ‘covariance’ of the

process and measurement uncertainties respectively. These parameters require tuning owing

to modeling uncertainty introduced in having assumed that the dynamics of a nonlinear

system by linear equations, and because the true process noise’s characteristic is seldom

known. It is standard practice to fix on the these matrices and tune the other, often

preferring diagonal matrices. In the following discussion we suggest that the value of Q be

fixed and present a method to compute this value.

The tuning parameters Q and R can be interpreted as weighting matrices that express

the relative confidence in either the systems dynamics and on the measurements. In this

section, we suggest that Q be chosen with entries to reflect the relative confidence in each

model state/parameter. Suppose parameter i is more estimable from output measurements

than parameter j, then to reflect this expectation, we set Qj,j A Qi,i A 0. The actual values

of each diagonal entry and their relative difference is chosen to be dictated by the Cramér-rao

bound.

The Cramér-rao bound (CRB) provides a lower bound on the variance that any unbiased

estimator can achieve from a given data. This matrix can be computed from the sensitivity

matrix [88]; in this paper, we use the normalized sensitivity matrix H.

ΣCRB � �HTH��1 (2.10)
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Using the SVD decomposition of H as presented in Eqn.(2.7), ΣCRB can be expressed as

ΣCRB � �VΣTUTUΣVT ��1 (2.11a)

� �VΣTΣVT ��1 (2.11b)

�V�ΣTΣ��1VT (2.11c)

Suppose now that ΣCRB was diagonal, i.e. estimates of every state did not affect the other

states, then the lower bound on achievable variance corresponding to each parameter i is

given by

σ̂2
i � e

T
i ΣCRB ei (2.12a)

� eTi V�ΣTΣ��1VT ei (2.12b)

� �YVΣeiY2
2��1 (2.12c)

�
1
¯̄ζi

(2.12d)

Thus, we set each diaginal entry in Q according to the relative significance metric (since the

absolute value is not important).

qi,i �
1

ζ̄i
(2.13)

In the case of the 2ECM, since the relative significance does not change considerably, the

averaged significance metric is used to build Q. With Q defined thus, R is tuned with the

following form

R � γ I5 (2.14)

where γ A 0 is the tuning parameter and I5 is the dimension 5 identity matrix.

As a review, ζi,¦i > �1, . . . ,5� were computed from H, a normalized version of S. To

be able to use Q in the original system, the effect of normalizing S has to be undone. For

example, the EKF on group 1, Q is defined as

Q1 �

<@@@@@@>
ζSOC � SOC2

nom 0 0

0 ζnom � v2
nom 0

0 0 ζRs �R
2
s,nom

=AAAAAA?
. (2.15)
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2.2 Overview of the Extended Kalman Filter

A brief summary of the EKF methodology used in Section 4.4 is provided in this appendix.

Considering a dynamical system described by

x̃k�1 � f�x̃k, uk� � vk,
yk � g�x̃k, uk� �wk,

with the process and measurement noises, vk and wk respectively, define the following

Ak�1 �
∂f

∂x̃
U¢̈̈¦̈̈¤

x̃ � ˆ̃x�k�1

u � uk�1

£̈̈§̈̈¥
,Ck �

dg

dx̃
U¢̈̈¦̈̈¤

x̃ � ˆ̃x�k
u � uk

£̈̈§̈̈¥
.

The design of each EKF estimator is given as the following update processes assuming that

the covariances of the process and measurements noises are defined as Q �� E�v�kvk� and

R �� E�w�

kwk� respectively.

Time update for the state filter:

ˆ̃x�k �Ak�1
ˆ̃x�k�1 �Bk�1uk�1,

P�

k �Ak�1P
�

k�1A
T
k�1 �Q.

Measurement update for the state filter:

Kk �P�

kCk
T �CkP

�

kCk
T
�R��1

,

ˆ̃x�k � ˆ̃x�k �Kk �yk � fuk�ˆ̃x�k�� ,
P�

k � �I �KkCk�P�

k .
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proximation,” Journal of The Electrochemical Society, vol. 158, no. 2, pp. A93–A101,
2011.

[34] L. Song and J. W. Evans, “Electrochemical-thermal model of lithium polymer batteries,”
Journal of The Electrochemical Society, vol. 147, no. 6, pp. 2086–2095, 2000.

[35] B. S. Haran, B. N. Popov, and R. E. White, “Determination of the hydrogen diffusion
coefficient in metal hydrides by impedance spectroscopy,” Journal of Power Sources,
vol. 75, no. 1, pp. 56–63, 1998.

[36] G. Ning and B. N. Popov, “Cycle life modeling of lithium-ion batteries,” Journal of
The Electrochemical Society, vol. 151, no. 10, pp. A1584–A1591, 2004.

[37] T. R. Tanim, C. D. Rahn, and C.-Y. Wang, “A temperature dependent, single particle,
lithium ion cell model including electrolyte diffusion,” Journal of Dynamic Systems,
Measurement, and Control, vol. 137, no. 1, p. 011005, 2015.

[38] Y. Hu and S. Yurkovich, “Linear parameter varying battery model identification using
subspace methods,” Journal of Power Sources, vol. 196, no. 5, pp. 2913–2923, 2011.

[39] S. Tippmann, D. Walper, L. Balboa, B. Spier, and W. G. Bessler, “Low-temperature
charging of lithium-ion cells part I: Electrochemical modeling and experimental inves-
tigation of degradation behavior,” Journal of Power Sources, vol. 252, pp. 305 – 316,
2014.

[40] S. Mohan, Y. Kim, A. Stefanopoulou, and Y. Ding, “On the warmup of li-ion cells
from sub-zero temperatures,” in American Control Conference (ACC), 2014, June
2014, pp. 1547–1552.

[41] X. Lin, H. E. Perez, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, Y. Ding, and
M. P. Castanier, “A lumped-parameter electro-thermal model for cylindrical batteries,”
Journal of Power Sources, vol. 257, no. 0, pp. 1 – 11, 2014.

116



[42] M. Allen. (2014, Jan.) Cold Weather Fuel Efficiency : Electric Versus
Gasoline Showdown. Online. Accessed on 11/12/2016. [Online]. Available:
http://www.fleetcarma.com/cold-weather-fuel-efficiency/

[43] Y. Kim, S. Mohan, N. A. Samad, J. B. Siegel, and A. G. Stefanopoulou, “Optimal
power management for a series hybrid electric vehicle cognizant of battery mechanical
effects,” in American Control Conference (ACC), 2014, June 2014, pp. 3832–3837.

[44] S. Mohan, Y. Kim, J. B. Siegel, N. A. Samad, and A. G. Stefanopoulou, “A phe-
nomenological model of bulk force in a li-ion battery pack and its application to state
of charge estimation,” Journal of the Electrochemical Society, vol. 161, no. 14, pp.
A2222–A2231, 2014.

[45] S. Mohan, Y. Kim, and A. G. Stefanopoulou, “Energy-conscious warm-up of li-ion
cells from subzero temperatures,” IEEE Transactions on Industrial Electronics, vol. 63,
no. 5, pp. 2954–2964, May 2016.

[46] ——, “Estimating the Power Capability of Li-ion Batteries Using Informationally
Partitioned Estimators,” IEEE Transactions on Control Systems Technology, vol. 24,
no. 5, pp. 1643–1654, Sept 2016.

[47] S. Mohan, V. Shia, and R. Vasudevan. (2016, January) Convex computation of
the reachable set for hybrid systems with parametric uncertainty. Online, arxiv.
ArXiv:1601.01019.

[48] S. M. J. B. Siegel and A. G. Stefanopoulou, “Comparing optimal warm-up strategies
of li-ion batteries,” 2017, in Preparation.

[49] P. Holmes, S. Kousik, S. Mohan, and R. Vasudevan, “Convex Estimation of the α-level
Reachable Sets of Systems with Parametric Uncertainty,” in 2016 IEEE 55nd Annual
Conference on Decision and Control (CDC), 2016.

[50] S. Mohan, J. B. Siegel, A. G. Stefanopoulou, M. Castanier, and Y. Ding, “Synthesis
of an energy-optimal self-heating strategy for li-ion batteries,” in 2016 IEEE 55nd
Annual Conference on Decision and Control (CDC). IEEE, 2016.

[51] S. Mohan, Y. Kim, J. B. Siegel, and A. G. Stefanopoulou, “On improving battery state
of charge estimation using bulk force measurements,” in ASME Dynamic Systems and
Control Conference, 2015.

[52] S. Mohan and R. Vasudevan, “Convex computation of the reachable set for hybrid
systems with parametric uncertainty,” in 2016 American Control Conference (ACC),
July 2016, pp. 5141–5147.

[53] Military Batteries & Systems. http://www.navitassys.com/products-systems/
military-batteries-systems/. Navitas Systems. Online. Accessed on 11/9/2016.

[54] W. B. Gu and C. Y. Wang, “Thermal-electrochemical modeling of battery systems,”
Journal of The Electrochemical Society, vol. 147, no. 8, pp. 2910–2922, 2000.

[55] Y. Ji and C. Y. Wang, “Heating strategies for Li-ion batteries operated from subzero
temperatures,” Electrochimica Acta, vol. 107, no. 0, pp. 664–674, 2013.

117

http://www.fleetcarma.com/cold-weather-fuel-efficiency/
http://www.navitassys.com/products-systems/military-batteries-systems/
http://www.navitassys.com/products-systems/military-batteries-systems/


[56] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi
formulation of reachable sets for continuous dynamic games,” IEEE Transactions on
automatic control, vol. 50, no. 7, pp. 947–957, 2005.

[57] D. Henrion and M. Korda, “Convex computation of the region of attraction of polyno-
mial control systems,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp.
297–312, 2014.

[58] S. Mohan, Y. Kim, and A. G. Stefanopoulou, “Energy-conscious warm-up of li-ion
cells from subzero temperatures,” IEEE Transactions on Industrial Electronics, vol. 63,
no. 5, pp. 2954–2964, May 2016.

[59] C. Forgez, D. Vinh Do, G. Friedrich, M. Morcrette, and C. Delacourt, “Thermal
modeling of a cylindrical LiFePO4/graphite lithium-ion battery,” Journal of Power
Sources, vol. 195, no. 9, pp. 2961–2968, 2010.

[60] Y. Kim, J. B. Siegel, and A. G. Stefanopoulou, “A computationally efficient thermal
model of cylindrical battery cells for the estimation of radially distributed temperatures,”
in Proceedings of the American Control Conference, Jun 17-19 2013, pp. 698–703.

[61] P. Zhao, S. Mohan, and R. Vasudevan. (2016) Convex synthesis of solutions to hybrid
nonlinear optimal control problems. In preparation.

[62] I. M. Ross and M. Karpenko, “A review of pseudospectral optimal control: from theory
to flight,” Annual Reviews in Control, vol. 36, no. 2, pp. 182–197, 2012.

[63] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for solving multiple-
phase optimal control problems using hp-adaptive gaussian quadrature collocation
methods and sparse nonlinear programming,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 1, p. 1, 2014.

[64] I. M. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by hamilton-jacobi
projections,” journal of Scientific Computing, vol. 19, no. 1-3, pp. 323–346, 2003.

[65] J.-P. Aubin and A. Cellina, Differential inclusions: set-valued maps and viability theory.
Springer Science & Business Media, 2012, vol. 264.

[66] S. Margolis and W. Vogt, “Control engineering applications of v. i. zubov’s construction
procedure for lyapunov functions,” IEEE Transactions on Automatic Control, vol. 8,
no. 2, pp. 104–113, Apr 1963.

[67] S. Mohan, A. G. Stefanopoulou, and R. Vasudevan, “Feedback synthesis and reachabil-
ity verification of controlled polynomial stochastic differential systems,” in preparation.

[68] S. Mohan, J. B. Siegel, A. G. Stefanopoulou, M. Castanier, and Y. Ding, “Synthesis
of an energy-optimal self-heating strategy for li-ion batteries,” in 2016 IEEE 55nd
Annual Conference on Decision and Control (CDC). IEEE, 2016.

[69] J. Shim, R. Kostecki, T. Richardson, X. Song, and K. Striebel, “Electrochemical
analysis for cycle performance and capacity fading of a lithium-ion battery cycled at
elevated temperature,” Journal of Power Sources, vol. 112, no. 1, pp. 222–230, 2002.

118



[70] R. Spotnitz and J. Franklin, “Abuse behavior of high-power, lithium-ion cells,” Journal
of Power Sources, vol. 113, no. 1, pp. 81–100, 2003.

[71] G. Plett, “High-performance battery-pack power estimation using a dynamic cell
model,” Vehicular Technology, IEEE Transactions on, vol. 53, no. 5, pp. 1586–1593,
2004.

[72] M. Verbrugge and B. Koch, “Generalized recursive algorithm for adaptive multipa-
rameter regression: Application to lead acid, nickel metal hydride, and lithium-ion
batteries,” Journal of The Electrochemical Society, vol. 153, no. 1, pp. A187–A201,
2006.

[73] R. D. Anderson, Y. Zhao, X. Wang, X. G. Yang, and Y. Li, “Real time battery power
capability estimation,” in Proceedings of the American Control Conference, June 2012,
pp. 592–597.

[74] R. Xiong, H. He, F. Sun, X. Liu, and Z. Liu, “Model-based state of charge and peak
power capability joint estimation of lithium-ion battery in plug-in hybrid electric
vehicles,” Journal of Power Sources, vol. 229, no. 0, pp. 159–169, 2013.

[75] K. Smith, C. Rahn, and C.-Y. Wang, “Model-based electrochemical estimation and
constraint management for pulse operation of lithium ion batteries,” Control Systems
Technology, IEEE Transactions on, vol. 18, no. 3, pp. 654–663, 2010.

[76] H. Perez, N. Shahmohammadhamedani, and S. Moura, “Enhanced performance of
Li-Ion batteries via modified reference governors and electrochemical models,” Mecha-
tronics, IEEE/ASME Transactions on, vol. PP, no. 99, pp. 1–10, 2015.

[77] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-
based HEV battery packs: Part 3. state and parameter estimation,” Journal of Power
Sources, vol. 134, no. 2, pp. 277–292, 2004.

[78] K. Schittkowski, “Experimental design tools for ordinary and algebraic differential
equations,” Industrial & Engineering Chemistry Research, vol. 46, no. 26, pp. 9137–
9147, 2007.

[79] B. R. Jayasankar, A. Ben-Zvi, and B. Huang, “Identifiability and estimability study
for a dynamic solid oxide fuel cell model,” Computers & Chemical Engineering, vol. 33,
no. 2, pp. 484–492, 2009.
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