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ABSTRACT

The strong interactions between Rydberg excitations can result in spatial correla-

tions between the excitations. The ability to control the interaction strength and the

correlations between Rydberg atoms is applicable in future technological implemen-

tations of quantum computation. In this thesis, I investigates how both the character

of the Rydberg-Rydberg interactions and the details of the excitation process affect

the nature of the spatial correlations and the evolution of those correlations in time.

I first describes the experimental apparatus and methods used to perform high-

magnification Rydberg-atom imaging, as well as three experiments in which these

methods play an important role. The obtained Rydberg-atom positions reveal the

correlations in the many-body Rydberg-atom system and their time dependence with

sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg

state that experiences a repulsive van der Waals interaction. The Rydberg excitations

are prepared with a well-defined initial separation, and the effect of van der Waals

forces is observed by tracking the interatomic distance between the Rydberg atoms.

The atom trajectories and thereby the interaction coefficient C6 are extracted from

the pair correlation functions of the Rydberg atom positions. In the second experi-

ment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic

state transformation. The atom-pair kinetics that follow from the strong dipole-dipole

interactions are observed. The pair correlation results provide the first direct visu-

alization of the electric-dipole interaction and clearly exhibit its anisotropic nature.
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In both the first and the second experiment, results of semi-classical simulations of

the atom-pair trajectories agree well with the experimental data. In the analysis, I

use energy conservation and measurements of the initial positions and the terminal

velocities of the atom pairs to extract the C6 and C3 interaction coefficients. The

final experiment demonstrates the ability to enhance or suppress the degree of spatial

correlation in a system of Rydberg excitations, using a rotary-echo excitation pro-

cess in concert with particular excitation laser detunings. The work in this thesis

demonstrates an ability to control long-range interactions between Rydberg atoms,

which paves the way towards preparing and studying increasingly complex many-body

systems.
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CHAPTER I

Introduction

Dipolar and van der Waals interactions between atoms and molecules affect the

properties of matter on microscopic and macroscopic scales. Highly excited Ryd-

berg atoms present an ideal platform to study these interactions in pair and few-

body quantum systems because Rydberg-atom interactions are generally strong and

widely tunable between dipole-dipole, van der Waals and other types. The interac-

tion between individual Rydberg atoms is important in the description and control of

interactions in few- and many-body dynamics studies, which have been of consider-

able interest in recent years. On the quantum level, the distinctions between van der

Waals and electric dipole-dipole interactions are in the overall interaction strength,

the scaling with the internuclear separation (R´6 for the van der Waals and R´3 for

the electric-dipole interactions), and the isotropic and the anisotropic behaviors. In

several previous experiments, internal-state changes due to electric dipole-dipole [1–4]

and van der Waals [5, 6] interactions between Rydberg atoms have been studied using

spectroscopic measurements of level shifts.

An important consequence of strong interactions is that the energy of a Rydberg

state is shifted out of resonance due to the presence of other Rydberg atoms nearby,

causing neighboring atoms to be blocked from excitation. The excitation blockade
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results in suppression of Rydberg detections [7–11], collective excitations [12, 13],

and spatial correlations between Rydberg atoms [14–17]. Evidence for the excitation

blockade has been obtained using atom counting statistics, including the Mandel

Q-parameter, which is defined as

Q “
⟨N2⟩ ´ ⟨N⟩2

⟨N⟩
´ 1 , (1.1)

where N is a number of detected Rydberg atoms. Values of Q “ 1, ă1, and ą1 indi-

cate Poissonian, sub-Poissonian, and super-Poissonian statistics of the Rydberg-atom

system, respectively. While non-interacting atom samples follow Poissonian statistics,

blockaded Rydberg-atom samples exhibit sub-Poissonian counting statistics [18–23].

The correlations between Rydberg atoms have been enhanced by detuning the

excitation laser to match the van der Waals energy level shift [24, 25]. This enhance-

ment leads to facilitated excitations at a well-defined pair separation [22, 26–30]. The

counting statistics of this system have been studied using statistical moments up

to third order [22] as well as bimodal distributions [21]. In contrast to the excita-

tion blockade, ensembles of correlated Rydberg-atom pairs result in super-Poissonian

counting statistics [31, 32]. Another method to control Rydberg-atom correlations is

based on a rotary excitation echo [33–36], which occurs when the sign of the Rabi

frequency is flipped in the middle of the excitation pulse.

The ability to control many-body interactions in Rydberg-atom systems allows

for the study of quantum phase transitions of Rydberg atoms [37]. To understand

the underlying mechanisms, several calculations have been performed to simulate

the initialization of the Rydberg-atom sample using rate equations [30, 38], a hybrid

model [39], a mean-field approximation [8], and the exact Hamiltonian [40]. The

study of phase transitions by implementing an adiabatic frequency sweep has led to

an observation of crystalline phases of Rydberg excitations [16, 41–44]. In addition,
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number statistics of the Rydberg atoms [12, 30] and thermodynamic properties [45]

have been used to explain the steady state of Rydberg-atom systems.

The exaggerated properties of Rydberg atoms are useful for a variety of applica-

tions. The strong, long-range interactions, as well as the collective properties of Ryd-

berg atoms are beneficial for implementing quantum information processing, includ-

ing quantum entanglement [46], quantum gate [7, 47–49], and quantum memory [50].

The correlations between Rydberg atoms have been used to realize non-classical light

sources, such as single-photon as well as correlated-photon sources [51]. Furthermore,

the large polarizabilities of Rydberg atoms make them good tools for electric-field

sensing [52–55].

1.1 Spatial detection of Rydberg atoms

In addition to energy level shifts, interactions between Rydberg atoms can result in

spatial correlation between excitations. When the excitation lasers are tuned to match

a Rydberg transition frequency, atoms are expected to have a separation larger than

the blockade radius, due to the blockade effect. In contrast, when the laser frequency

is tuned to match an interaction-induced energy level shift, atoms are excited at a

well-defined separation. Many experiments have been performed by having two atoms

separated by a controlled distance using double optical dipole traps [4, 6, 47, 56, 57],

to ensure that atoms are in certain desired excitation regions. Optical lattices are

also utilized to provide spatial constraint to Rydberg-atom positions [50, 58–60].

However, not many experiments have high enough resolution to detect Rydberg-

atom positions, which is important to study Rydberg-atom kinetics and internal dy-

namics resulting from interatomic interactions. Fluorescence imaging has been uti-

lized to observe the spatial distribution of Rydberg excitations in two-dimensional
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optical lattices [16, 43]. Spatially-resolved ionization using a focused scanning elec-

tron beam has also been used to detect Rydberg-atom correlations with high spatial

resolution [61, 62]. Another area of somewhat related work is to perform direct

Rydberg-wavefunction imaging. There, the objective is to map electronic Rydberg

wavefunctions [63] (not center-of-mass Rydberg-atom positions).

In my group, a modified field ion microscope [64–66] is employed to measure the

Rydberg atom positions. The experimental apparatus and methods achieve high-

magnification Rydberg-atom imaging with sub-micron resolution. The center-of-mass

positions of individual Rydberg atoms are detected and the spatial pair correlation

functions [24] are extracted to study interactions between Rydberg atoms. The ap-

paratus is less complicated than other high-resolution experiments; yet it is very

powerful. It is the first apparatus that revealed blockade radii in Rydberg-atom

systems [15] by a direct spatial imaging.

1.2 Thesis framework

The thesis starts with an introduction to Rydberg atoms and relevant backgrounds,

including long-range interactions and collective excitations, in Chapter II. Next, the

experimental setup for Rydberg excitation and detection is described in Chapter III.

The image processing as well as pair-correlation calculations are also provided in this

chapter.

Chapters IV-VI explain the experiments that have been performed on this setup.

Specifically in Chapter IV, pairs of Rydberg atoms are prepared with a well-defined

initial separation by detuning an excitation laser and utilizing the R´6 dependence of

the van der Waals interaction. After preparation, the atoms are subject to repulsive

van der Waals forces. The effect of the forces is observed by tracking the interatomic
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distance between the Rydberg atoms, probing them after they have been allowed

to move for selected wait times. The atom trajectories and thereby the van der

Waals interaction coefficient C6 are extracted from the pair correlation functions of

the Rydberg atom positions. This experiment also shows that van-der-Waals-induced

motion causes dephasing in coherently shared Rydberg excitations (superatoms) [67,

68].

Chapter V explains a study of anisotropic electric-dipole interactions between Ryd-

berg atoms. Rydberg atoms are prepared with a well-defined initial separation in

a weak-interaction regime to generate samples with high density. Then, the Ryd-

berg atoms are adiabatically transferred to highly dipolar states by application of

an electric-field ramp, where their dipole moments are fixed to the direction of the

electric field. In this chapter, I provide the first direct visualization of the electric-

dipole interaction, where the pair correlation functions exhibit anisotropic patterns

that follows from the anisotropy of the electric-dipole force.

In Chapter VI, I study the correlation between Rydberg atoms when the excita-

tion laser follows a rotary-echo sequence according to Reference [36]. I observe that

this method can substantially enhance spatial correlations between the Rydberg ex-

citations, and it strongly affects the counting statistics of Rydberg excitations in the

samples. In addition, the rotary echo gives rise to strong spatial correlations when the

excitation lasers are on-resonant, while in certain off-resonant cases the echo causes

destruction of spatial correlations.

Finally, Chapter VII concludes this thesis and possible future experiments based

on the imaging technique are described.
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1.3 List of publications

The works explained in or closely related to this thesis are published in the follow-

ing articles:

Control of spatial correlations between Rydberg excitations using rotary echo
N. Thaicharoen, A. Schwarzkopf, and G. Raithel
Phys. Rev. Lett. 118, 133401 (2017)

Motion of Rydberg atoms with strong permanent-electric-dipole interactions
L.F. Gonçalves, N. Thaicharoen, G. Raithel
J. Phys. B: At. Mol. Opt. Phys. 49 154005 (2016)

Atom-pair kinetics with strong electric-dipole interactions
N. Thaicharoen, L.F. Gonçalves, G. Raithel
Phys. Rev. Lett. 116, 213002 (2016)

Measurement of van-der-Waals interaction by atom trajectory imaging
N. Thaicharoen, A. Schwarzkopf, and G. Raithel
Phys. Rev. A 92, 040701 (Rapid Communication) (2015)
Editors’ Suggestion

Spatial correlations between Rydberg atoms in an optical dipole trap
A. Schwarzkopf, D. A. Anderson, N. Thaicharoen, and G. Raithel
Phys. Rev. A 88, 061406 (Rapid Communication) (2013)
Editors’ Suggestion

In addition, I have also worked on Rydberg electromagnetically induced trans-

parency (EIT) RF-electric field sensing. While this work is not directly related to

this thesis, it has resulted in a number of peer-reviewed publications [54, 69–72].
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CHAPTER II

Background Theory

2.1 Properties of Rydberg atoms

Rydberg atoms are atoms in highly excited states with large principal quantum

number n. A valence electron orbital radius of a Rydberg atom is 100-100,000 larger

than a ground state atom, leading to a large electric dipole moment and a strong

polarizability. This makes Rydberg atoms very sensitive to external electric fields and

can lead to strong interatomic interactions.

2.1.1 Quantum defect theory

Alkali Rydberg atoms have one valence Rydberg electron and a hydrogen-like

structure. Instead of having a core that contains one proton as in hydrogen, the alkali

atoms have inner-shell electrons orbiting around a larger ion core. If a Rydberg elec-

tron is in a low angular momentum state (ℓ ď 2), the Rydberg electron wavefunction

overlaps with the core and the distribution of inner-shell electrons becomes signifi-

cant. Due to core penetration, the Rydberg electron experiences a potential well that

is deeper than ´1{r because of the decreased shielding of the nuclear charge. For

Rydberg states with high orbital angular momentum (ℓ ą 2) , the overlap of Ryd-

berg electron wavefunction with the core is small and the electron spends most of its

time far from the core, leading to an interaction that mostly resembles the Coulomb
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interaction from a proton core in hydrogen. However, the outer electron slightly po-

larizes the electron-ion core. This core polarization also affects the Rydberg electron

energy [73, 74].

The core penetration has a stronger effect on the Rydberg energy than the core

polarization, and both contribute to an increase of the Rydberg atom binding energy,

given by [75]

W “
´Ry

pn˚q2
. (2.1)

Here, Ry “ R8{p1`me{matomq is the Rydberg constant for a finite nuclear mass [81],

where R8 is the Rydberg constant [82] and n˚ “ n ´ δn,ℓ is the effective principal

quantum number, where δn,ℓ is the n´ and ℓ´dependent quantum defect defined by

the Ritz expansion [75, 83],

δn,ℓ “ δ0 `
δ2

pn ´ δ0q2
`

δ4
pn ´ δ0q4

` ... , (2.2)

where the parameters δ0, δ2, δ4, ... are empirically obtained from experiments and de-

pend on the atomic species. The quantum defects for rubidium Rydberg atoms are

provided in References [84, 85] for nS, nP , and nD states, as well as in Reference [86]

Table 2.1: Properties of Rydberg atoms and scaling with n˚ [75–77].

Property Scaling Expression References

Orbital radius, xry pn˚q2 r3pn˚q2 ´ ℓpℓ ` 1qs{2

Dipole moment matrix element, µ pn˚q2 xn˚1ℓ1 “ ℓ ˘ 1|er|n˚ℓy

Binding energy, En˚ pn˚q´2 ´Ry{pn˚q2

Energy level spacing, ∆E pn˚q´3 En˚`1 ´ En˚

Polarizability, α pn˚q7 p{F 9 µ2{∆E

Radiative lifetime (0 K), τnℓ pn˚q3 to 5 τ0pn˚qαℓ [78]

BBR lifetime (300K), τ bbnℓ pn˚q2
3~pn˚q2

4α3kBT [79, 80]

Note: p is a dipole moment and F is an electric field strength.
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Figure 2.1: (a) Stark map of 85Rb in the range between a 66H state and a 67H state. The thick
colored lines for 70S and 68D states are shown in (b) and (c), respectively.

for nF states. Some general properties of Rydberg atoms and their scaling with n˚

are shown in Table 2.1.

2.1.2 Rydberg atoms in electric fields

Rydberg atoms are sensitive to external electric fields due to their high polariz-

abilities. The presence of the electric field allows one to observe energy level shift of

different states in Rydberg atoms in a similar way of the splitting in a hydrogen atom.

Figure 2.1 shows a calculated Stark map for 85Rb in the vicinity of 68D state. The

energy shifts of Rydberg atoms due to the Stark effect have been calculated using

diagonalization of the energy matrix [87]. Due to their large quantum defects, low-ℓ

Rydberg states in rubidium (ℓ “ 0, 1, 2) are non-degenerate and separated from the

hydrogenic manifold. At low electric field, the level energies quadratically shift as

pαE2q{2, where α is the DC electric polarizability of the Rydberg state. For ℓ ě 4,
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Figure 2.2: Two atoms whose center-of-mass positions are separated by R. The position vector of
the the valence electron with respect to the ion core is represented by r1,2. The direction electric
dipole p1,2 follows the direction of r1,2

the level energies shift linearly, largely resembling the hydrogen Stark spectrum.

Stark maps like the ones shown in Figure 2.1 are used to measure the electric

field and calibrate voltages on electrodes that produce the electric field in the exper-

iments. More details about electric-field measurement and calibration are discussed

in Section 3.5.

2.2 Rydberg-Rydberg interactions

As seen in Section 2.1.2, Rydberg atoms are sensitive to externally-applied electric

fields. This also applies when the electric field is generated by the charge distribution

of other Rydberg atoms. This can lead to strong long range interactions between

Rydberg atoms, compared to the relatively weak interaction between ground state

atoms. For the interactions that are relevant to this thesis, the separation between

atoms is much larger than the size of interacting Rydberg atoms (Le Roy radius)

and the electron wave functions of the individual atoms do not overlap. The Le Roy

radius, RLR, is defined as [88]

RLR “ 2
`

xr21y1{2 ` xr22y1{2
˘

, (2.3)

where xr2i y is an expectation value of square of radius of the outermost electrons of

atom i (atomic radius).

Consider a classical model that describes a Rydberg atom as an ion core with a
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single valence electron orbiting around the core (see Figure 2.2). The Hamiltonian of

two interacting Rydberg atoms with a separation between ion cores, R, is

Ĥdd “ Ĥ1 ` Ĥ2 ` V̂ pRq ´ V̂ pR ´ r1q ´ V̂ pR ´ r2q ` V̂ pR ´ pr1´r2qq , (2.4)

where Ĥ1,2 is the Hamiltonian of an isolated atom, r1,2 is the position vector of the the

valence electron with respect to the ion core, and V̂ prq “ 1{p4πϵ0rq is the Coulomb

potential.

2.2.1 First- and second-order interactions

By applying a multipole expansion [89] to Equation 2.4 and assuming |R| " |r|1,2,

the first relevant term is the dipole-dipole interaction given by

V̂dd “
e2

4πϵ0

r1 ¨ r2 ´ 3pn̂ ¨ r1qpn̂ ¨ r2q

|R|3
(2.5)

where n̂ is a unit vector pointing along the internuclear coordinate R.

The dipole-dipole interaction leads to an energy-level shift of the initial Rydberg

state. One can calculate the energy shift caused by this interaction using perturbation

theory, as explained in Reference [90]. Consider atoms in a Rydberg state |Ay. The

presence of an external electric field induces a permanent electric dipole moment along

the same direction as the field. The interaction between two Rydberg atoms that are

in an initial two-body state, |Ay b |Ay, is given to first-order by,

∆W p1q “ xA| b xA|V̂dd|Ay b |Ay . (2.6)

A dipole dispersion coefficient is C3 “ p1p2{p4πϵ0q, where p1,2 is the dipole moment of

atom 1 and 2. The dipole-dipole interaction is expressed as C3{R
3 and the interaction

strength scales as pn˚q4{R3.
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When there is no electric field, the first-order shift vanishes. The energy shift is

then obtained in second-order,

∆W p2q “ ´
ÿ

B,C;∆‰0

|xC| b xB|V̂dd|Ay b |Ay|2

∆
, (2.7)

where ∆ is the energy difference between a virtual two-body state, |By b |Cy, and the

initial state, |Ay b |Ay, and is sometimes called Förster defect [77]. A van der Waals

dispersion coefficient is C6 “ ´pC3q
2{∆ and the sign of the van der Waals interaction

is determined by the sign of ∆. The van der Waals interaction is then expressed as

C6{R
6 and scales as pn˚q11{R6.

For ground state atoms, the Förster defect is positive because all virtual states

have higher energies. For rubidium, the van der Waals interactions are attractive

for atoms in the ground state, repulsive for atoms in Rydberg S states, and mostly

attractive for atoms in Rydberg P and D states [90].

2.2.2 Higher-order interactions

In order to obtain higher precision in the energy determination, ones need to

include higher order interactions in the calculation. Letting the center-of-mass of two

atoms be located along the z axis (so that the internuclear axis aligns along the z

axis), the multipole expansion of the interaction terms in Equation 2.4 is given by

(atomic unit) [91]

V̂ “

8
ÿ

L1,2“1

`Lă
ÿ

M“´Lă

p´1qL2fL1L2M

RL1`L2`1
Q̂L1Mpr1qQ̂L2´Mpr2q . (2.8)

Q̂ is a multipole operator for each atom, defined as

Q̂LMprq “

ˆ

4π

2L ` 1

˙1{2

rLYLMpr̂q , (2.9)

where rL is a radial matrix element, YLM is a spherical harmonic, and L is a quantum

number that characterize the type of interaction (e.g., L “ 1 and 2 represents dipole
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Figure 2.3: Energy level for two atoms as a function of interatomic separation, R. The frequency
to excite one Rydberg atom without interactions is f0. The energy shift due to Rydberg-Rydberg
interactions blocks an excitation to the |rry state at a separation R ă Rb.

and quadrupole interactions, respectively). f is a constant given by

fL1L2M “
pL1 ` L2q!

rpL1 ` Mq!pL1 ´ Mq!pL2 ` Mq!pL2 ´ Mq!s1{2
. (2.10)

By using Equation 2.8, the interaction coefficient up to C10 has been calculated [92].

The observation of the direct excitation to molecular states originating from the

dipole-quadrupole interaction has been reported in Reference [93].

2.2.3 Rydberg blockade

The dipole-dipole or van der Waals interaction cause the energy of a Rydberg state

to be shifted out of resonance with respect to the excitation laser by a neighboring

Rydberg atom, as seen in Figure 2.3. If the energy shift is larger than the excitation

bandwidth, the excitation to the Rydberg state of this second atom is “blocked”.

This is called excitation blockade or dipole blockade and has been observed in several

experiments [1, 8–10, 12, 18, 94–96].

The distance where the excitation bandwidth equals to the van der Waals energy

shift is defined as the blockade radius Rb which is

Rb “

ˆ

C6

~δνL

˙1{6

, (2.11)
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where δνL is a laser linewidth, which dominates the excitation bandwidth in the

experiments described in this thesis.

2.2.4 Excitation enhancement and long-range correlations

According to Figure 2.3, atom pairs with a specific interatomic separation can be

excited if the excitation laser frequency is tuned to the appropriate frequency or if the

energy levels of the Rydberg atoms are modified (e.g., by AC Stark shift due to far off-

resonant light field [15]) to match the energy shift due to the interaction. The method

of tuning the excitation laser frequency is used to initialize Rydberg atoms throughout

this thesis. Using this method, one can selectively excite atoms that are subject to

specific van der Waals interaction, which relates to the separations between atoms.

The spatial correlation between atoms that are located at this well-defined separation

is enhanced through this pair excitation.

In addition to the pair-correlation enhancement, long-range correlations can build

up due to off-resonant excitation, leading to Rydberg aggregate formation [22, 27, 29].

2.3 Collective excitation

In a fully blockaded system that contains a sample of N atoms located inside a

blockade radius, only one atom is excited to a Rydberg state while all other atoms

remain in the ground state. The combination of a single Rydberg atom and ground

state atoms is sometimes called “superatom”. The state used to explain the system

is fully symmetric, where the excitation is coherently shared between all atoms,

|W y “
1

?
N

N
ÿ

i“1

|g1, g2, g3, ..., ri, ..., gNy . (2.12)
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The collective Rabi frequency is obtained from

Ωcollective “ xg1, g2, g3, ..., gN |Ĥ|W y

“ xg1, g2, g3, ..., gN |Ĥ
1

?
N

N
ÿ

i“1

|g1, g2, g3, ..., ri, ..., gNy

“
?
NΩsingle

(2.13)

The decoherence of Rydberg atoms can come from decay, interaction between

Rydberg atoms, and atomic motion during excitation. It has been predicted in Ref-

erence [67] that the dipole-dipole interaction is acting on individual atoms, not su-

peratoms. This behavior is observed and explained in Chapters IV and V.
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CHAPTER III

Experimental Setup

In this chapter, I present experimental details including Rydberg-atom preparation

and detection, magnification calibration, and electric field control. Using a typical

set of experimental ion images, I describe the image processing and pair correlation

analysis.

3.1 Experimental setup

16 cm

MCP

Guide tube

Electrodes

TIP

z

y

(b)(a)

CCD camera

( atom imaging)

Electric field

controller

Rb source

CCD camera 

(ion imaging)

Ion pump

z

x

y

Figure 3.1: Experimental setup. (a) Experimental chamber. (b) Electrode package inside the chamber
and ion detection assembly.
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The experimental setup is illustrated in Figure 3.1(a). The experimental chamber

maintains a pressure of 1.1 ˆ 10´8 Torr with the use of an ion pump. The rubidium

source is a small reservoir containing a rubidium ampoule. I control the amount of

rubidium vapor by adjusting an input voltage to heat tape that wraps around the

reservoir and leave the voltage on while the experiment is running. I use two CCD

cameras for atom imaging and ion imaging.

The electrode package and ion detection assembly inside the chamber are illus-

trated in Figure 3.1(b). I apply DC voltages to electrode plates and a beryllium-

copper needle (Signatone SE-BCB) to control the electric field in three orthogonal

directions. The electrode package and the needle connect to external electric field

controllers through two 9-pin D-type feedthroughs and a MHV feedthrough. The

needle is also called tip imaging probe (TIP) because it plays the role of an ionization

electrode. This configuration is similar to a field-ion microscope in which a radially

divergent electric field is produced when the TIP is switched to a high voltage. Ions

travel along the divergent field lines and produce magnified ion images. The guide

tube is grounded and used to extend a time it takes for ions (time of flight) to travel

to the microchannel-plate assembly (MCP) to obtain high magnification.

3.2 Experimental timing sequence

Atoms are prepared in a magneto-optical trap (MOT) before excitation into a

Rydberg state and subsequent detection. In general, the experimental cycle is 20 Hz

for shadow imaging and 60 Hz for fluorescence and Rydberg atom imaging (the fre-

quency is limited by the speed of the cameras). The experimental timing used in

different experiments is described in the corresponding chapters.
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(a) (b)

500 μm

Figure 3.2: (a) Fluorescence and (b) shadow images of the MOT above the TIP.

3.2.1 Magneto-optical trap

85Rb atoms in the 5S1{2 state are trapped and cooled to „ 100 µK in a magneto-

optical trap (MOT) [97, 98] at a density of Á 1010 cm´3 for 17 ms. The MOT is located

at 100´ 500 µm above the TIP. The MOT laser (5S1{2, F “ 3 Ñ 5P3{2, F
1 “ 4) has a

power of 60 mW and the repumper laser (5S1{2, F “ 2 Ñ 5P3{2, F
1 “ 3) has a power

of 5-10 mW before they are split into 6 beams with a full width at half maximum

(FWHM) of the beam diameter « 1 cm. I use a PixelFly CCD camera to image

the MOT. Fluorescence and shadow images of the MOT are shown in Figure 3.2(a)

and (b), respectively. The MOT and repumper lasers are turned off for 80 µs during

Rydberg excitation and detection.

3.2.2 Rydberg excitation

The preparation and detection of Rydberg atoms are illustrated in Figure 3.3(a).

To excite the atoms to a Rydberg state, I perform a two-photon Rydberg excitation

by simultaneously applying 780- and 480-nm laser pulses with 5 µs duration. The

780-nm laser is locked on the left side of the 87Rb (5S1{2, F “ 2 Ñ 5P3{2, F
1 “ 2 and

F 1 “ 3 crossover) line, which provides «1 GHz red-detuned from the 5P3{2, F
1 “ 4

intermediate state. The 780-nm beam propagates along the x-direction and has a
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Figure 3.3: Preparation and detection of Rydberg atoms. (a) Excitation beams alignment. (b) Ion
image. (c) Rydberg spectrum of the 70S1{2 state, averaged over 100 datasets.

Gaussian beam parameter of w0 « 70 µm. The 480-nm beam propagates in the

xy plane, forming an angle of approximately 70˝ with the 780 nm beam, and has

w0 « 8 µm.

3.2.3 Rydberg detection

3.2.3.1 Ion imaging

After excitation, Rydberg atoms are ionized by the application of 1,600 V to the

TIP. Ions are accelerated by the TIP’s electric field towards the MCP within 2-6 µs.

Every detected ion results in a blip produced by the MCP-phosphor detector assembly.

I capture the ion images [Fig. 3.3(b)] using a CCD camera (CV-M50IR from JAI) with

an exposure time of 1 ms, together with a frame grabber (PCI-1409 from National

Instruments).

The MCP (Beam Imaging Solutions BOS-18 with P-47 phosphor screen) has a

Chevron configuration which yields a gain of about 106. The required detection kinetic

energy is Á 500 eV for an ion and „ 50 eV for an electron. The MCP power supply is

home-built using parts from Ultravolt. The supply voltages to the MCP for different

experimental purposes are shown in Table 3.1.
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A combination of the TIP voltage and the MCP front voltage have to be carefully

selected because the ion impact energy have to be Á 500 eV. At the same time,

the ion image magnification and the field of view need to satisfy the experimental

requirement. High voltage applied to the phosphor screen is important for obtaining

high visibility images. This value is also utilized for Rydberg spectroscopy with a

Rydberg signal less than 20 counts/shot. For Rydberg spectroscopy with a higher

number of counts, the applied voltage must be decreased in order to avoid saturating

the phosphor screen.

For instance, if the ionization voltage is small (e.g., using a high-voltage amplifier

which provides up to 400 V for state-selective field ionization), then I need to increase

the magnitude of the front plate voltage to approximately ´500 V to provide a suffi-

cient impact energy of the ions. This, in turn, will reduce the spatial resolution due

to the ion-lensing effect (the ion beam is refocused before detection). Conversely, if

a high TIP voltage is employed (1,600 V), the ions already acquire a kinetic energy

ą 600 eV in the immediate vicinity of the TIP. In that case, I use a MCP front voltage

of only -200 V, allowing for much larger magnification (but a reduced field of view).

It is noted that the MCP back voltage and the phosphor screen voltage are always

referenced relative to the MCP front voltage.

The initial design phase of the experiment is has to be decided whether ions or

Table 3.1: High-voltage supply to the MCP assembly

MCP part Imaging
Spectroscopy Power supply

(high count rate) from Ultravolt

Front plate -200 V -200 V -2kV: 2A12-N4-F-E

Middle plate - - -

Back plate 1,500 V 1,500 V 2kV: 2A12-P4-F-E

Phosphor screen 4,950 V 3,650 V 6kV: 6A12-P4-F-E

Note: The middle plate has no electrical connection.
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electrons are to be detected. The reason to detect ions instead of electrons is because

ions represent the center-of-mass of position of atoms. Due to spatial extend of the

Rydberg-electron wavefunction, electron detection would incur an additional posi-

tion spread due to the wavefunction size, which exceeds the spatial resolution of the

apparatus in some of the described experiment. Finally, it must be suspected that

electron detections would result in a prohibitive number of photoelectrons from the

surface of the TIP. Electron detections are generally used in experiments that have

a short time of flight from the excitation region to the detection assembly and do

not require knowing the spatial position of the impacted electrons (for example, Ryd-

berg spectroscopy). However, the electron imaging is useful to probe Rydberg-atom

wavefunctions.

I take 10,000 images in each data set. Using a peak-detection algorithm [24], the

images are processed into a data structure in which each record contains the total

number of detected ions and the ion impact positions in an individual image. The

5,000 records with the highest ion numbers are processed into a sample-averaged pair

correlation image.

3.2.3.2 Atom counting

In addition to ion imaging, I also count number of Rydberg atoms in each experi-

mental cycle. Every time an ion hits the MCP and produces a blip on the phosphor

screen, it also sends a negative pulse to the phosphor screen connector (same con-

nector that I use to provide the high voltage supply to the phosphor screen). I use

a homemade high-pass filter to extract this pulse and send it to a fast preamplifier

(Ortec VT120A) to amplify the ion signal. The signal is then sent to a two-channel

gated photon counter (Stanford Research Systems SR400). If the signal strength is

higher than the discriminator level (set to -0.100 V to prevent counting unwanted
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signals that come from impedance mismatch and reflections in the transmission line),

it will be considered as one Rydberg count. I start counting atoms 2 µs after the

application of the field ionization pulse, with a gate time of 20 µs. An example of

a Rydberg spectrum of 85Rb 70S1{2 state obtained from averaging 100 datasets of

the number of Rydberg atoms as a function of the frequency of the 480-nm laser is

shown in Figure 3.3(c). The FWHM of the spectrum is 5 MHz, which is narrow for

a state with high principal quantum number n “ 70, indicating the ability to control

the electric field in the excitation region (see Section 3.5). The width of the spectrum

comes from residual laser linewidth effects (1-2 MHz) as well as van der Waals interac-

tions between Rydberg atoms. The peak position indicates the on-resonant excitation

5S1{5 Ñ 70S1{2. The shoulder to the right of the spectrum reveals excitations where

the laser detunings match repulsive van der Waals interactions (see Section 2.2).

3.3 Ionization electric field from the TIP

The TIP has a round top with a diameter of 125 µm. Once I apply a voltage to

the TIP, it generates a radially divergent electric field. Ionization using the TIP leads

to magnified ion images of the center-of-mass positions of the parent Rydberg atoms

at the time of ionization. A simulation of the voltage and the electric field magnitude

near the TIP surface when the TIP is set to 1,000 V [99] is shown in Figure 3.4.

The vertical position of the excitation region above the TIP affects the magnifi-

cation of ion images. When the excitation region is closer to the TIP surface, ion

trajectories becomes more divergent, resulting in higher magnification. However, it is

difficult to have cold atoms closer than 100 µm to the TIP surface, as seen in Fig-

ure 3.2. The scattered light from the TIP surface prevents atoms from being trapped

in the MOT very close to the TIP. It is possible to observe shadow images of a thin
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Figure 3.4: Simulation of (a,b) the potential and (c) the electric field magnitude near the TIP surface
with 1000 V applied to the TIP. (d) Plot of the potential and the electric field magnitude near the
TIP surface. The TIP surface is at z“ 0 in these plots. Modified with permission from [99].

shell of atoms with a crescent shape locate at „ 50 µm above the TIP surface when

a high voltage is applied to the TIP. The crescent reflects the Stark shift of the MOT

transition close to the TIP, where the electric field is strong. In general, the trapping

region is about 100-500 µm above the TIP, where the plots in Figures 3.4 and 3.6 can

be used.

The electric field and voltage values at the excitation regions for the experiments

in the following chapters are shown in Table 3.2. Note that the ionization electric field

for a Rydberg atom with n = 30 is 616 V/cm and with n = 100 is 4 V/cm, where

n is the principal quantum number. That means the application of this high voltage

ionizes all Rydberg atoms in the excitation region.

3.4 Magnification calibration

I select the magnification of the ion images by considering the separation between

atom pairs and make it match the field of view of the MCP. If the magnification

is too high, the separation between atoms may be bigger than the field of view,
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Table 3.2: Potentials and electric fields at different excitation positions above the TIP.

Position above TIP Potential Electric field Magnification Values used in

Simulation (1000 V at the TIP surface)

473 µm 403 V 3,549 V/cm

330 µm 464 V 5,153 V/cm

Experiment (1,600 V at the TIP surface, scaled from simulation values)

473 µm 645 V 5,679 V/cm 155 Chapter IV, VI

330 µm 742 V 8,245 V/cm 204 Chapter V

or the number of atoms in an image may be too small for further analysis. If the

magnification is too low, the image resolution will be too low and atom positions

inside the Rydberg blockade radius are indistinguishable.

The magnification of the image is determined by the position of the 480-nm beam

above the TIP. To align this beam, I overlap it with an optical dipole trap (ODT)

created by focusing a 1064-nm laser down to w0 “ 23 µm. I first align the ODT beam

to be centered at the TIP point (this can be observed as a straight vertical scattering

at the back of the TIP, which indicates that the beam hits the top surface of the

TIP). During this process, I turn the power of the laser down to 200 mW to avoid

damaging the TIP. Next, I move the beam up vertically and turn the ODT laser power

to 4 W. The position of the ODT can be observed using a shadow image shown in

Figure 3.5(a) (the shadow imaging camera has a calibration factor of 8.93 µm/pixel).

Note that in order to observe the shadow image of the ODT I need to detune the

780-nm laser to match the frequency shift of the ODT potential (about 30-40 MHz).

I use the same method to bring the 480-nm beam to the surface of the TIP. (I adjust

the beam power to about 5-10 mW to avoid saturating the MCP with counts.) At

the touch position, ions that are scattered out of the TIP provide uniform blips all

over the MCP. When I move the 480-nm beam up to spatially overlap with the ODT

beam, a region of substantially enhanced count rate appears on the MCP.
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Figure 3.5: Magnification calibration method. (a) Shadow images of the ODT located at 473 µm
above the TIP. (b) Interference pattern of the excitation beam obtained from summing ion images.
(c) Histogram of (b). Local parabolic fits are used to detect the maxima of the pattern.
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Figure 3.6: Interference patterns and magnification calibration results when the excitation beam
is located at different positions above the TIP. (a) Ion images present interference patterns of the
excitation beam at different magnification values. (b) Excitation beam positions corresponding to
the magnification values in (a).

To obtain the magnification factor of the system, I put a double slit in the 480 nm

beam path before focusing it down into the chamber. The separation between inter-

ference fringe maxima ∆y is

∆y «
λD

d
, (3.1)
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where λ is a wavelength of the laser, D is the focal length of the 480-nm beam

focusing lens, and d is the center-to-center separation between the slits. With the

85Rb 68D5{2 state and the slit used, λ “ 480.128 nm, D = 20 cm, and d = 6 mm, I

obtain ∆y “ 16 µm. The role of the lens is to bring the interference fringes which are

initially located at infinity into the focal plane of the lens.

The interference pattern of the excitation beam is projected onto the excitation

region and atoms are then excited to the Rydberg state following this pattern. I take

1,000-10,000 ion images and sum them in order to see this pattern [Figure 3.5(b)] and

then plot the intensity as a function of position. I use local parabolic fits shown in

Figure 3.5(c) to extract the peak positions and consequently the separation between

adjacent maxima. From the example in Figure 3.5, the average separation between

adjacent maxima is about 60 pixels, which corresponds to ∆y “ 16 µm. The magnifi-

cation calibration factor becomes 3.7 pixels/µm (distance measured in object plane).

The CCD camera for ion imaging has a calibration factor of 40.5 µm/pixel (distance

measured in image plane) so the magnification of the ion images is 3.7 ˆ 40.5 “ 150

with an uncertainty of 2%. Note that the uncertainty also depends on the visibility

of the interference pattern.

The magnification for different positions of the excitation volume above the TIP

is shown in Figure 3.6. Over the experimentally accessible parameter, the largest

magnification is « 350.

3.5 Electric field control

To avoid having atomic energy level shifts due to Stark effect, the electric field

at the excitation region is tuned to zero (with ď 20 mV/cm uncertainties). I control

the electric field in each axis by applying voltages to the corresponding electrodes,
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Figure 3.7: Electrode package and Stark map of the 68D state. (a) Blow up diagram of the electrode
package. (b-e) Stark maps correspond to scanning applied voltages to X, Y, Z, and TIP electrodes.

as shown in Figure 3.7(a). I use Stark spectra of nD5{2 states at high n to determine

the field zero parameters; the zero position is where the states with different total

angular momentum quantum numbers are degenerate. The Stark spectra of the 68D5{2

obtained by scanning the voltage of the electrodes along x, y, z axes and the TIP are

presented in Figure 3.7(b-e).

The DC voltages used for controlling the electrode package are generated using a

USB-3114 digital to analog converter from Measurement Computing. Low-pass filters

are employed to eliminate voltage spikes or high frequency noise that might couple

into the electrodes. For the TIP, which also serves as an ionization electrode, I connect

the high-voltage source (SRS PS325) to a pulse generator (DEI PVX-4140). The high-

voltage part (for ionization) is then combined to the low-voltage part (for electric field

control) using a clamp switch. The clamp switch allows application of a high-voltage

pulse to an electrode while maintaining a low noise during the off-time of the pulse.
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Figure 3.8: Diagram of voltage sources and filters used to control the electric field inside the chamber.

The schematic of the voltage source is shown in Figure 3.8.

3.6 Spatial pair correlation calculation

The pair correlation function has been used to study the spatial correlation be-

tween atoms. This method works under the condition that the magnification is high

enough so that the interatomic separation can be resolved. During the excitation

pulse, Rydberg atoms tend to be excited at a position where the excitation laser

detuning matches the energy shift from interatomic interactions, which eventually

shows up in the pair correlation image. Depending on the nature of the underlying

interactions, the initial correlations in the atom sample can be either isotropic (for

instance, van der Waals interaction between S-type Rydberg atoms) or anisotropic

(for instance, permanent dipole-dipole interactions).

In the analysis, I apply a background noise elimination and a peak-detection al-

gorithm [99] to extract the position of atoms from the image. Then, I calculate a

normalized pair correlation image and an angular integral of the pair correlation

function.
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Figure 3.9: Procedures to obtain a normalized pair correlation image for the 70S1{2 state excited
using laser detuning of `4 MHz. (a) An original image obtained from the experiment. (b) Prepro-
cessed image. The red dots indicate the position of ions obtained from the peak detection algorithm.
(c) Sum of pair correlation function. (d) Spatial distribution of atoms summed over 5000 ion images.
(e) Pair correlation image of (d). (f) Normalized pair correlation image with the coarse-graining
operation. The linear grayscale ranges from 0 (white) to 2 (black), where values of 1, ă 1, and ą 1
indicate no correlation, anticorrelation, and positive correlation, respectively.

An original image obtained from the CCD camera is shown in Figure 3.9(a). I per-

form image preprocessing with background removal to increase the visibility of the

blips and the average filter to remove the intensity spikes that might cause multiple

counting of atoms. In the peak detection algorithm, I determine an ion position by us-

ing the centroid of the blip in binary images of the preprocessed images. The resulting

peak positions on top of the preprocessed image are shown in Figure 3.9(b). I typi-

cally extract the number of blips for 10,000 images and calculate the pair correlation

of the 5,000 images with the highest number of blips.

The pair correlation image is calculated as follows

1) Sum of pair correlation

A pair correlation image is a two-dimensional histogram of the separation vector
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R⃗α
i,j “ pX⃗α

i ´ X⃗α
j q between any two atoms i and j located at X⃗α

i “ pxi, yiq
α and

X⃗α
j “ pxj, yjq

α in the same image α. For the image size N ˆ M , the pair correlation

image has a size of p2N´1qˆp2M´1q. The pair correlation value at a pixel coordinate

pn,mq in the pair correlation image is the number of occurrences that R⃗i,j resides

within the pixel pn,mq,

Aα
n,m “ fpn,m,N,Mq

ÿ

i‰j

δp2qpR⃗α
i,j ´ pn,mqq , (3.2)

where the spatial normalizing factor,

fpn,m,N,Mq “
NM

pN ´ |n|qpM ´ |m|q
, (3.3)

is used in order to avoid finite-array effects; pixels located further from the center of

the pair correlation image have a small overlapping factor in the correlation calcula-

tion. The individual pair correlation images are added to construct an average pair

correlation image, A1, shown in Figure 3.9(c). The A1 is calculated from

A1
n,m “

ÿ

α

Aα
n,m (3.4)

2) Background elimination and coarse-graining operation

The sum of pair correlations, A1
n,m, has a general footprint given by the 480-nm

beam shape in the excitation volume. It is desirable to normalize the pair correlation

image such that any long-range dependence on position is eliminated, so that uncor-

related atoms produce a long-range pair correlation value of one. This normalization

will help increase the visibility of the enhanced pair correlation. I start to calculate

the background by combining atom positions (index k) for all images (index α). The

value at pixel coordinate pi, jq in the summed image is

Bi,j “
ÿ

α

ÿ

k

δp2qpX⃗α
k ´ pi, jqq . (3.5)
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with an atom counter k. The resulting spatial distribution of atoms over 5,000 ion

images is shown in Figure 3.9(d). Then, I calculate the pair correlation image of this

sum shown in Figure 3.9(e),

B1
n,m “ fpn,m,N,Mq

ÿ

i,j

Bi,j Bi´n,j´m . (3.6)

The spatial normalizing factor in Eq. 3.3 is also applied to this pair correlation im-

age, B1
n,m. B

1
n,m represents the pair correlation function of the sum of all images. In

contrast, A1 represents the sum of all individual pair correlation functions. The nor-

malized pair correlation image is obtained from dividing the average pair correlation

image, A1, with the pair correlation image, B1, and number of pictures, Np “ 5, 000.

Cn,m “ A1
n,m{pNpB

1
n,mq . (3.7)

Next, I apply a coarse-graining (and binning) operation to the image in order to reduce

fluctuation within the image. The binning size varies between 2ˆ2 and 5ˆ5, depending

on the experimental requirements. The resulting normalized pair correlation image

with coarse graining is shown in Figure 3.9(f).

The center of the pair correlation image indicates the origin of the separation vec-

tor. A strong correlation enhancement ring (dark ring with a radius of about 10 µm)

indicates that atoms are excited under isotropic interactions and are consequently

located at a well-defined separation. A white region near the center that has approx-

imately the same diameter as the blip indicates that the peak detection algorithm

cannot separate two blips with separation less than the blip diameter. The lighter

region inside the ring indicates the blockade radius.

An enhancement occurs at a specific radius and can be changed based on the

interaction potentials. More details about Rydberg atoms under the isotropic van

der Waals interactions and the anisotropic dipole-dipole interactions are described in
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Figure 3.10: Angular integral of Figure 3.9(f).

Chapter IV and Chapter V, respectively.

Because the pair correlation image is obtained from the 2-dimensional projection of

Rydberg atoms in the 3-dimensional excitation volume, there are cases when detected

ions appear to be close to each other in the image plane. This would reduce the

visibility of the pair correlation enhancement but does not significantly change the

radius of the enhancement ring, as observed in a simulation (see Chapter IV).

3.6.1 Angular integral

To quantitatively explain the spatial correlation between atoms, I integrate the pair

correlation value over the angle around the center of the pair correlation image. While

the actually applied azimuthal averaging procedure is an operation in a discretize

position space, it can be visualized by the following integral:

IpRq “

ű

A1pR, ϕqdϕ

Np

ű

B1pR, ϕqdϕ
. (3.8)

I apply the coarse-graining operation by binning the angular average using a bin size

of 5 pixels in order to smooth out the fluctuation caused by pixelation of the images.

An IpRq that corresponds to Figure 3.9(f) is shown in Figure 3.10. The enhancement
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peak in the IpRq represents the most probable separation, Rp, between two atoms.

This Rp corresponds to the radius of the enhancement ring in the pair correlation

image. The values of Rp are obtained from local parabolic fits centered approximately

at the peak positions of the IpRq.

The pair correlation function between Rydberg atoms versus the interatomic sepa-

ration has been calculated in [14]. The correlation function is zero for small separations

due to the blockade and approaches an asymptotic value of 1 at large distances where

the atoms are uncorrelated. It is shown in the calculation that, when the detuning

has the same sign as the van der Waals shift, atom pairs are preferentially excited at

separations that give a two-photon resonance and the enhancement peak then appears

in the pair correlation function.

The pair-correlation signal at the distance R ă Rp mostly comes from the pro-

jection of 3-dimensional sample onto the 2-dimensional observation plane. Sometimes

there is a small peak (at about 3 µm in Figure 3.10) that is identified to be an artifact

caused by ion feedback from the TIP. Field electrons that impact on the TIP release

a secondary ion that reaches the MCP close to the primary (Rb`) ion.
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CHAPTER IV

Measurement of van der Waals interaction by atom
trajectory imaging
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Figure 4.1: Van der Waals potential versus separation between two Rydberg atoms. The Rydberg
atoms (blue circles) at the initial separation, R0, repel each other due to the repulsive van der Waals
force. The trajectory of the atoms can be observed by imaging the atom positions at various wait
times. The (final) kinetic-energy release equals the initial van der Waals potential, W0.

The van der Waals interaction between individual Rydberg atoms is important in

the description and control of interactions in few- and many-body dynamics studies,

which have been of considerable interest in recent years. In this chapter, I describe the

use of the Rydberg-atom imaging technique to probe the van der Waals interactions

between Rydberg atoms.

Figure 4.1 illustrates rubidium Rydberg atoms in S states that are subject to

isotropic repulsive van der Waals interactions, W “ C6{R6, where C6 is the van der

Waals interaction coefficient and R is the interatomic separation. Two Rydberg atoms
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Figure 4.2: (a) Energy level diagram for an excitation of 85Rb atom from a 5S1{2 state to a 70S1{2

state. (b) Experimental timing.

at an initial separation, R0, repel each other due to the repulsive van der Waals force.

The evolution of the interatomic separation can be observed by imaging the atom

positions as a function of wait time. The final kinetic-energy release equals the initial

van der Waals potential, W0. In addition to observing the interatomic separation

increase with time, one can also extract C6 using this method.

For the described kinematic method to work, it is important to prepare the

Rydberg-atom pairs at a well-defined initial separation. In this work, pairs of 70S1{2

rubidium Rydberg atoms are prepared at such a well-defined separation by detuning

an excitation laser and utilizing the R´6 dependence of the van der Waals inter-

action [24, 100]. After preparation, the atoms are subject to van der Waals forces.

The effect of the forces is observed by tracking the interatomic distance between the

Rydberg atoms and probing them after they have been allowed to move for selected

wait times. The experiment also shows that van-der-Waals-induced motion causes

dephasing in coherently shared Rydberg excitations (superatoms) [67, 68].

4.1 Experimental method

The energy level diagram for the Rydberg atom excitation is shown in Fig-

ure 4.2(a). 85Rb atoms in 5S1{2 states are excited to the 70S1{2 state using 780 nm

and 480 nm laser pulses with 5 µs durations and «1 GHz red-detuning from the
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Figure 4.3: (a) Experimental (top row) and simulated (bottom row) pair correlation images for the
selected wait times. The linear grayscale ranges from 0 (white) to 2 (black). Values of 1, ă1, and ą1
indicate no correlation, anticorrelation, and positive correlation, respectively. (b) Angular integrals
IpRq of (a) at wait times (from top to bottom): 2.5, 10, 20, 30, and 40 µs. The y axis is for the top
curve; for clarity, the other curves are shifted down in equidistant intervals of 0.3.

5P3{2 intermediate state. The excitation of the 70S1{2 Rydberg level is detuned by

∆ “ 4 ˘ 2 MHz with respect to the two-photon resonance. After excitation, the

Rydberg atoms are allowed to move for selected wait times before their positions are

measured by applying a field ionization pulse, as shown in Figure 4.2(b). The excita-

tion volume is 470 µm above the TIP, which results in a measured magnification of

« 155. I select the 5,000 images with the highest number of detections out of 10,000

images taken in each dataset. The atom positions, the pair correlation images, and

the IpRq curves are extracted from these 5,000 images using the procedure explained

in Chapter III.

4.2 Pair correlation images and angular integral

The pair correlation images for various wait times are presented in Figure 4.3(a).

The average interaction time of the Rydberg atoms is the wait time plus half the

excitation pulse length (i.e. wait time + 2.5 µs). The pair correlation image for a wait

time of 2.5 µs exhibits strong correlation enhancement at a fairly well-defined radius.

The initial correlation is critical for the trajectory experiment as it must be sufficient

to track Rydberg-pair trajectories out to long wait time («40 µs in this experiment).
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Figure 4.4: (a) Interatomic separations between Rydberg-atom pairs as a function of interaction
time, obtained from the peak positions in the IpRq curves. The blue dashed line represents a linear
fit at wait times 20-40 µs. The red solid line shows simulation results obtained for ∆ “ 3 MHz. (b)
The visibility of the experimental pair correlation enhancement as defined in Equation (5.4.1).

With increased wait time, the radius of enhanced pair correlation increases, reflecting

an increase of interatomic separation due to the repulsive van der Waals interaction.

At long wait times, the enhancement ring is blurred out mostly due to initial thermal

atom velocities in the MOT (temperature „ 100 µK).

Figure 4.3(b) shows the angular integral, IpRq, of the experimental pair correlation

image in Figure 4.3(a). The most probable separation, Rpptq, between Rydberg-atom

pairs at wait time t is extracted (see Section 3.6.1) from the corresponding IpRq.

The resulting Rpptq are presented in Figure 4.4(a). A cursory inspection of this figure

already shows that the trajectory of the Rydberg-atom pairs is characterized by an

initial acceleration phase, during which the initial van der Waals potential energy, W0,

is converted into kinetic energy and a later phase during which the atoms separate

at a fixed velocity.

The visibility of the pair correlation enhancement, also shown in Figure 4.4(b), is

given by

Visibility “
pImax ´ Iminq

pImax ` Iminq
, (4.1)

where Imax is the peak value of IpRq in the range Á 10 µm and Imin is the minimal

37



value near 7 µm. The drop in visibility is due to the thermally-induced blurring of

the correlation ring at late times.

4.3 Extraction of the van der Waals coefficient C6

To extract the van der Waals C6 coefficient, one may consider an isolated atom

pair excited at an initial separation R0. The initial van der Waals energy is

W0 “
C6

R6
0

“ 2∆ , (4.2)

where ∆ is the laser detuning from the 70S1{2 state.

Over the experimentally investigated wait times, the entire initial van der Waals

energy, W0, becomes converted into kinetic energy. With the reduced mass of the

atom pair, µ, and the terminal relative velocity, Vt, then

W0 “
C6

R6
0

“
1

2
µV 2

t . (4.3)

R0 is obtained from the weighted average of the fit results Rpptq at the earliest times

used in the experiment [the first two points in Figure 4.4(a)]. The averaging is valid

because during the first few microseconds after excitation the Rydberg atoms are

frozen in place due to their inertia. The statistical weights are given by the inverse

squares of the fitting uncertainties of Rp at 250 ns and at 2.5 µs (see Appendix A).

Here, R0 “ 8.78 µm with a net fitting uncertainty of 0.02 µm. To determine Vt, I

perform a linear fit at wait times 20-40 µs [blue dashed line in Figure 4.4(a)] and

obtain Vt “ 0.182 m/s with a fitting uncertainty of 0.008 m/s. Including the 2%

magnification uncertainty, it follows that C6 “ 1
2
µV 2

t R
6
0 “ p5.4 ˘ 1.0q ˆ 10´58 Jm6.

The final relative uncertainty of C6 follows from three statistically independent

contributions: the magnification uncertainty, the fit uncertainty for Vt, and the fit

uncertainty for R0. The respective powers at which these quantities enter into C6
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are 8, 2, and 6. Factoring in these powers, the three quantities contribute respec-

tive independent uncertainties of 16%, 8.9%, and 1.4% to the relative uncertainty

of C6, leading to the total relative uncertainty of 18%. In this method, achieving

a small magnification uncertainty is particularly important. More details about the

uncertainty calculation are provided in Appendix A.

Note that from Equation (4.2), C6 can, in principle, be obtained from spectroscopic

measurement, C6 “ 2∆R6
0 [6]. This method requires a well-defined R0, a narrow laser

linewidth, and accurate knowledge of ∆. In this work, the relative uncertainty in R6
0

is about 12% (because the relative magnification uncertainty is 2%). In comparison,

the uncertainty arising from ∆ “ 4 ˘ 2 MHz is much larger. Taking all uncertainties

into account, Equation (4.2) leads to values of C6 ranging from 7ˆ10´58 Jm6 to

40ˆ10´58 Jm6. Therefore, Equation (4.2) only allows me to perform a crude order

of magnitude prediction of C6. The main weakness of Equation (4.2) is that the C6-

values derived from it directly reflect the large relative uncertainty in ∆. Here, it is

therefore much better to base the determination of C6 on a measurement of the initial

R0 rather than a measurement of the laser detuning ∆.

4.4 Trajectory Simulation

A classical 3D simulation of the dynamics of Rydberg atoms interacting due to an

isotropic van der Waals force has been performed to confirm the interpretation of the

experiment. The simulation volume of (140 µm)3 exceeds the experimentally relevant

volume by about a factor of two in each dimension. The 480 nm excitation beam

propagates along the y direction. The excitation volume in the transverse directions

(x and z) is limited by the size of the excitation beam (w0 “ 8 µm). The number of

simulations is the same as the number of images analyzed in the experiment (5,000).
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Rydberg-atom positions and velocities are initialized and then propagated using a

Runge-Kutta integrator that includes all pair-wise interatomic forces. In the initial-

ization and integration procedures, C6 “ 5.7 ˆ 10´58Jm6 [90] is used. To avoid edge

effects, the xy processing area in the images is cropped to (70 µm)2 before calculating

the average pair-correlation images and the radial functions IpRq.

4.4.1 Rydberg-atom initialization

The number of excited Rydberg atoms nRyd in each simulation is randomly ob-

tained from a Poissonian distribution with an average of 8 atoms and a maximum

limit of 20 atoms to match the number of atoms detected in the experiment. An

initial trial position of each particle is drawn from a Gaussian distribution in x and

z with a w0 “ 8 µm and a uniform distribution in y, in close analogy with the ex-

periment. A Rydberg atom is created if the excitation probability is larger than a

number randomly drawn between 0 and 1. The excitation probability is a Gaussian

centered at ∆ with a FWHM of 4 MHz given by the excitation bandwidth (note that

FWHM“ 2
?
2ln2σ « 2.355σ),

Pex p∆q “ e´pWvdw´∆q2{p2σ2q , (4.4)

where Wvdw is the van der Waals interactions between a trial atom and all other

atoms j which are already excited into the Rydberg state,

Wvdw “
ÿ

j

C6

R6
j

. (4.5)

Rj “ rtrial ´ rj is a separation vector between an atom located at a trial position

rtrial and all other atoms located at rj. This procedure is repeated with new trial

positions until the desired number of nRyd Rydberg atoms has been reached. The

initial center-of-mass velocities of the atoms are assigned using a Maxwell distribution
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at temperature 100 µK. At this temperature, the most probable speed of atoms is

0.14 m/s.

Since the detuning is substantial, the first pair of Rydberg atoms is simultane-

ously excited via off-resonant excitation [24] (because the state in which there is only

one Rydberg atom present is off-resonant). Therefore the value of detuning in Equa-

tion (4.4) for the first Rydberg-atom pair is set to be twice the laser detuning 2∆. For

the excitation of additional atoms, I use ∆ to simulate the facilitated excitation of

those atoms, which can be a near-resonant process with other atoms already present

[29]. Detunings due to the Doppler effect are about 300 kHz and are neglected.

The force on the excited atom is obtained from the gradient of the van der Waals

potential in Equation (4.5), which leads to isotropic dynamics of atom trajectories.

The van der Waals force has only a radial component given by

F “ ´∇Wvdw “
ÿ

j

6C6

|Rj|7
R̂j . (4.6)

The acceleration is a “ F{m where m is a mass of a 85Rb atom.

4.4.2 Runge-Kutta integration

I use the Runge-Kutta integration to propagate the position and the velocity of

atoms based on the initial parameters described in the previous section. The Runge-

Kutta method is a numerical method for solving an ordinary differential equation,

9yptq “ fpt, yq , (4.7)

with known initial conditions,

ypt0q “ y0 , 9ypt0q “ fpt0, y0q . (4.8)

The approximation of yn`1 at time tn`1 “ tn ` ∆t is

yn`1 “ yn `
1

6
∆tpk1 ` 2k2 ` 2k3 ` k4q , (4.9)
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Figure 4.5: Trajectory simulation. The position of atoms are recorded at the wait times 0 (lightest
circle) to 45 µs (darkest circle). (a) Position of atoms in 3 dimensions. (b) Projection of (a) onto the
xy plane.

where the increments k1, k2, k3, and k4 are defined to be

k1 “ f ptn, ynq

k2 “ f

ˆ

tn `
∆t

2
, yn `

∆t

2
k1

˙

k3 “ f

ˆ

tn `
∆t

2
, yn `

∆t

2
k2

˙

k4 “ f ptn ` ∆t, yn ` ∆t k3q

(4.10)

In this trajectory calculation, the differential equations and initial conditions for

position and velocity propagations are given by

position : 9rptq “ vptq, rpt0q “ r0

velocity : 9vptq “ aptq, vpt0q “ v0

(4.11)

The time step used in this simulation is ∆t “ 50 ns. I record the atom positions at

the wait times up to 45 µs (similar to the experiment). Figure 4.5 shows an example

atom trajectories from the simulation. Atoms that are moving closer to each other

due to their initial velocities change their directions over time due to the van der

Waals force.

42



4.4.3 Simulated pair correlation images and angular integrals

The resulting pair correlation images are shown for the case ∆ “ 3 MHz in the

bottom row in Figure 4.3. This case is presented because it provides the best agree-

ment with the experiment among all simulated detuning cases. Black pixels along the

left and right edges of each pair correlation are an artifact due to the normalization

used in the image processing.

From the simulated pair correlation images I calculate the IpRq curves in order

to obtain the most probable separations, Rpptq, between Rydberg-atom pairs at each

interaction time [see solid curve in Figure 4.4(a), which is for ∆ “ 3 MHz]. The

simulated and experimental results for Rpptq are in good agreement. In order to test

how well the experimental procedure reproduces the C6 coefficient that underlies

the atomic interactions, I evaluate the simulated results for Rpptq using the same

method. The results for R, Vt and C6 extracted from the simulated Rpptq curves

are shown in Table 4.1 for four choices of ∆. These C6 values agree, within the

uncertainties, with the value that has been entered as a fixed input into the simulation.

This finding validates the experimentally used procedure; in particular, it is seen that

the method is not very sensitive to ∆, and the fact that I analyze projected rather

Table 4.1: Comparison of calculated, experimental, and simulated results for C6, R, and Vt.

R (µm) Vt (m/s) C6 (ˆ10´58Jm6)

Calculation [90] 5.77˘0.14

Experiment 8.8˘0.2 0.182˘0.009 5.4˘1.0

Simulations

∆ “ 2 MHz 8.85˘0.06 0.17˘0.02 4.9˘1.0

∆ “ 3 MHz 8.14˘0.03 0.233˘0.005 5.5˘0.3

∆ “ 4 MHz 7.76˘0.05 0.278˘0.003 6.0˘0.3

∆ “ 5 MHz 7.51˘0.04 0.28˘0.01 4.9˘0.5
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than three-dimensional trajectories does not alter the extracted C6. The experimental

and calculated [90] C6 values are also included in Table 4.1 for reference.

The experimental, simulated, and expected values for C6 in Table 4.1 are in rea-

sonable agreement. Moreover, I observe that the entire simulated curve of Rpptq with

∆ “ 3 MHz matches the experimental result very well [see Figures. 4.3(a) and 4.4(a)].

Overall, the simulations lend credibility to the experimental method of extracting C6-

values from the measured data.

Note that higher-order quadrupole-dipole and quadrupole-quadrupole interaction

potentials, which scale as R´7 and R´8, are not important at the distances relevant

in this work, at the current level of precision. This has been verified by a molecular-

potential calculation.

4.4.4 Dimensional effect on pair correlation image and angular integrals

There has been question if the analysis of a 2-dimensional (2D) projection of the

atom positions can be used to analyze the kinetic effects in a 3-dimensional (3D)

experiment. To verify that this method works, I calculate the IpRq curves from the

same simulation but taking atom positions in 3D [use all x, y, and z components,
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Figure 4.6: IpRq curves obtained from a simulation using 5 µs excitation pulse with zero wait time
at ∆ “ 4 MHz.
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Figure 4.7: Pair correlation function at wait time 30 µs from (a) experiment and (b) simulation at
∆ “ 3 MHz. The anisotropic expansion of the atom ensemble causes the radius of enhanced pair
correlation along the transverse direction (x) to be larger than along the excitation beam direction
(y).

see Figure 4.5(a)] and in 2D [use only x and y components, see Figure 4.5(b)]. The

resulting IpRq curves are presented in Figure 4.6. It can be seen that, at small R,

the IpRq curve from the 3D calculation becomes zero due to the blockade effect.

The correlation at the same position from the 2D calculation is not zero due to the

detection of smaller (apparent) separation distance between atoms on the projection

plane. In addition, the position of the most probable separation, Rp (peak position

of the pair correlation enhancement), of the 3D curve is about 4% larger than one of

the 2D curve. This means that the dimensionality effect reduces the visibility of the

enhancement peak [Equation (5.4.1)] but it does not significantly affect the position

of the pair correlation enhancement peak.

4.5 Anisotropic expansion

Close inspection of the pair correlation functions from the simulation presented

in Figure 4.3 reveals anisotropic expansion behavior: the radius of enhanced pair

correlation is larger in the x than in the y direction. In several experimental data

sets there is an evidence of anisotropic expansion, such as in the experimental result

shown in Figure 4.7(a). The anisotropic expansion is due to the cylindrical shape

of the excitation volume (not the interatomic interaction, which is isotropic). Since

the blockade radius is close to the transverse size of the excitation region, at most
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two atoms can be excited side-by-side in the x direction, leading to free, unimpeded

expansion along that direction. In contrast, more than two Rydberg atoms can be

created along the y direction. Therefore, along y the expansion is slowed down due

to multiple-atom repulsion. In the experiment, the overall Rydberg-atom density is

high enough to sometimes observe this effect.

4.6 Interaction between individual atoms (not superatoms)

A question of interest is whether the interatomic force is acting on superatoms

(Rydberg excitations shared among a number of ground-state atoms) or on individ-

ual atoms. It can be seen that the simulation agrees well with the experiment when

I assume that the effective mass of the interacting entities is half the rubidium atom

mass. If the interacting entities were superatoms, the mass used to calculate C6 in

Equation (4.3) would have to equal the mass of several tens of atoms that are lo-

cated within the blockade region. The obtained C6 would also be about 10 times

larger than the value obtained from the experiment. The C6 coefficients in Table 4.1

demonstrate that the interacting entities are indeed individual atoms. This finding

implies that, during the course of the van der Waals interaction, excitations within

superatoms become projected onto individual atoms, which are then ejected from the

initial superatom volumes. The phenomenon has been predicted in [67] for superatom

clouds interacting via a dipole-dipole interaction. In this work, I arrive at a similar

conclusion for van-der-Waals interacting Rydberg atoms in a 3D system.

4.7 Summary

In summary, I have studied the trajectory of Rydberg-atom pairs interacting by

repulsive, isotropic van der Waals interactions. The interactions are observed through

an expansion of the pair correlation enhancement and the most probable separation
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between atoms. The C6 coefficient is extracted from a kinematic analysis of the ex-

perimental data. The results agree well with simulations and molecular-potential cal-

culations. I have noticed indications of an anisotropic effect in the expansion, caused

by the excitation geometry.

The work presents the first measurement of a C6-coefficient based on binary atom

kinetics and not on spectroscopic or other data. The kinetic method is advantageous

in cases where laser drifts and bandwidths are a concern, as has been the case in

this work. This method will also be applicable in measurements in which the atom

pairs are initialized via a non-optical process, such as adiabatic quantum-state trans-

formation in Reference [101]. Also, I use a random ensemble of many ground-state

atoms, in which I implant a number of Rydberg excitations that is generally larger

than two (in most realizations). Hence, there is less control needed during the sam-

ple preparation than in Reference [6], which is based on deterministic preparation of

isolated atom pairs. More importantly, this aspect of the measurement implies that,

while the Rydberg excitations initially are superatoms, the kinetic interaction occurs

between individual atoms, not superatoms. The question of how the interaction be-

tween superatoms can cause coherence loss and superatom breakup currently is of

considerable interest.

For instance, in Reference [68] it was found that double-Rydberg excitations lead

to significant interaction-induced dephasing of collective Rabi oscillations. Further,

it was recently observed that the fidelity of pairs of ensemble q-bit states is limited

by Rydberg-Rydberg superatom interactions [102]. In future work, a combination of

shorter pulses and a more intense 480 nm laser might lead to better time resolution,

while maintaining a high signal-to-noise ratio. Improved time resolution can provide

insight into the early dynamics, during which superatoms are likely being projected
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onto individual atoms. Other investigations may also be focused on Rydberg atoms

interacting via different types of interactions, such as the dipole-dipole interactions,

and measurements of their dispersion coefficients and anisotropy behaviors.
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CHAPTER V

Atom-pair kinetics with strong electric-dipole interactions

The method used to measure van der Waals interactions in Chapter IV is extended

to study electric-dipole interactions between atom pairs in this chapter. The distinc-

tions between the van der Waals and the electric-dipole interactions are in the overall

interaction strength, the scaling with the internuclear separation (R´6 for the van

der Waals and R´3 for the electric-dipole interactions), and the (an)isotropic behav-

ior. To study the kinetics due to the dipole-dipole interaction on the atomic scale, a

combination of large interaction strength and high magnification of the atom-imaging

system is required.

It is challenging to directly prepare Rydberg atoms in a highly dipolar state be-

cause the strong interaction leads to density limitation due to a strong excitation

blockade. In this chapter, I describe an adiabatic state-preparation method, which

I then utilize to prepare Rydberg atoms to overcome the density limitation. The

measured pair correlation images demonstrate a first direct visualization of dipolar,

anisotropic atom-pair kinetics, which is similar to the visualization of magnetic-dipole

field lines with iron filings that is a common activity in science education.
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Figure 5.1: (a) Two identical dipoles p whose center-of-mass positions are separate by R. Θ is the
angle between R and the direction of the dipole vectors p. (b) Color map of the dipolar potential
in Equation (5.1) and corresponding force vectors in Equation (5.2) as a function of R for a pair of
dipoles pointing along y.

5.1 Electric-dipole interaction

The interaction potential between two electric dipoles p1 and p2 located at center-

of-mass positions r1 and r2 is described by [89] (in atomic units)

Vdd “
p1 ¨ p2 ´ 3pn̂ ¨ p1qpn̂ ¨ p2q

|r1 ´ r2|3
, (5.1)

where n̂ is the unit vector pointing along the internuclear coordinate, R “ r1 ´ r2. In

this work, the dipole moment of the atoms is pinned to the direction of the external

electric field E. Hence p1 and p2 are identical and point along the same direction, so

p1 “ p2 “ p, as shown in Figure 5.1(a). The potential leads to anisotropic dynamics

of atom-pair trajectories. For two identical dipoles pointing along the same direction,

the dipolar force has radial and polar components given by

FR “
3p2

R4
r1 ´ 3 cos2pΘqs ,

FΘ “
´3p2

R4
r2 cospΘq sinpΘqs ,

(5.2)

where Θ is the angle between the internuclear separation vector R and the dipole

vectors p. The potential in Equation (5.1) and the force vector field in Equation (5.2)

are shown in Figure 5.1(b).
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A critical problem that first had to be solved is that the strong dipole-dipole inter-

action potential leads to a strong laser excitation blockade [7, 9], which prevents the

direct laser excitation of pairs of dipolar Rydberg atoms at small initial separations.

This amounts to a blockade-induced density limitation that is more severe in systems

with stronger interactions, and that can prevent the study of strong dipolar forces

between atom pairs.

5.2 Landau-Zener adiabatic passage

I overcome the density limit imposed by the excitation blockade by initially prepar-

ing Rydberg atoms under conditions where they are only subject to weak van der

Waals interactions. Rydberg atom samples are prepared with relatively small inter-

atomic separations. In order to switch on strong dipole-dipole interactions, the atoms

are subsequently transferred into a highly dipolar state via a Landau-Zener adiabatic

passage through an avoided crossing [101, 103].

The illustration of the adiabatic state transformation is presented in Figure 5.2(a).

Here, the energy of the two-level system is a function of an external electric field. Ini-

tially, an atom pair is subject to weak van der Waals interaction (blue circles). When

the external electric field is swept through the avoided crossing, the final state of
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Figure 5.2: Landau-Zener state transformation. (a) Illustration of the adiabatic state transformation.
(b) Parameters in the Stark map of the avoided crossing that are needed to calculate the probability
of adiabatic state transformation [Equation (5.4)]. The electric dipole moments of the initial and
final states, pi and pf , are given by pi,f “ ´dWi,f{dEi,f .
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the atoms can be either a low-dipolar state (green circles) through a diabatic state

transformation or a highly-dipolar state (pink ovals) through an adiabatic state trans-

formation. The permanent electric dipole moment of the highly-dipolar state is larger

than that of the initial state. The probability of the adiabatic state transformation is

obtained from the Landau-Zener formula, which leads to (in SI units)

Padia “ 1 ´ ep´∆t{τq , (5.3)

with

τ “
~∆E|pf ´ pi|

2πp∆W {2q2
, (5.4)

where ∆E “ Ef ´Ei is the range of the linear electric-field sweep, pi and pf are electric

dipole moments of the initial and final state, ∆W is the minimal gap splitting at the

center of the avoided crossing, and ∆t is the electric field ramp duration. Note that

the electric dipole moment of the atoms is calculated from the slopes of the Stark

states (the potential energyW “ ´p¨E). In addition, if the gap size is small, the ramp

duration needs to be long in order to make Padia close to unity. These parameters are

illustrated in Figure 5.2(b).

For rubidium Rydberg atoms, the avoided crossings between Rb nS1{2 Stark states

and the hydrogenic manifold appear at electric fields that are a fraction of the Inglis-

Teller field, 1{p3n˚5q, where n˚ is an effective principal quantum number [75]. A

preferable state and avoided crossing for conducting the experiment have the following

properties:

1. This state must have an avoided crossing where the gap size is large enough to

be experimentally resolved in the Stark spectra.

2. The passage behavior through this crossing is almost entirely adiabatic for the

utilized duration of the electric-field sweep.
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3. The range of this avoided crossing as a function of applied electric field is small

enough that after adiabatic passage the permanent electric-dipole moment of the

atoms does not significantly depend on the exact value of the applied electric

field.

4. The separations between atoms are resolvable using the ion imaging technique

explained in Chapter III.

This work utilizes the crossing of rubidium 50S1{2 with the manifold of n “ 47

hydrogen-like dipolar states in the applied electric field. The Stark map of the rubid-

ium 50S1{2-like state (with the electric field pointing along the y direction) is shown

in Figure 5.3. The 1st to 4th crossings have small energy gaps. The 5th crossing is

the first one that can be clearly resolved. The experiment is performed at the 6th

crossing, marked by a red square in Figure 5.3. This crossing is located at the electric

field value 2.76 V/cm and has a gap size of 40 MHz.

The 50S1{2-like atoms prepared at 0.1 V/cm below the avoided crossing have a

small electric dipole moment of 1.26ˆ10´27 Cm. This state has an oscillator strength

that is sufficiently large for optical excitation. The number of excitations are presented

using a grayscale in Figure 5.3. The S-like Rydberg state has stronger signal compared

to the hydrogenic state. Also, since atoms in the S-like Rydberg state mostly interact

via a weak isotropic van der Waals potential (see the calculated wavefunction for

2.66 V/cm in Figure 5.4), the Rydberg-atom density limit imposed by the excitation

blockade is quite high („ 109 cm´3). The S-like Rydberg atoms are adiabatically

transferred into a highly-dipolar state by the means of an adiabatic passage through

a level crossing. The dipolar state has a dipole moment of 20.3ˆ 10´27 Cm, resulting

in an enhancement of dipolar interaction between Rydberg atoms Vdd,f{Vdd,i “ ppf{piq
2

by a factor of about 260. The estimate shows that the presented procedure is a highly
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Figure 5.3: Stark map of the rubidium 50S1{2-like state showing the first six avoided crossings with
the manifold of n “ 47 hydrogen-like states. The experiment is performed at the sixth avoided
crossing marked by the red square. The linear grayscale represents the number of detected Rydberg
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Figure 5.4: Adiabatic transformation of the wavefunction, starting at the 50S1{2-like state calculated

at electric field 2.66 V/cm (0.1 V/cm before the 6th crossing). During the electric field ramp along z,
the wavefunction of the atom are transformed to a highly-dipolar state. The final state is calculated
at the electric field 2.86 V/cm (0.1 V/cm after the 6th crossing). All wavefunctions are plotted on
the same scale, ´5000a0 ă x, z ă 5000a0. The colorscale on the right represents the amplitudes of
the wavefunctions.
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effective method to increase the atomic interaction strength.

From Equation (5.4), it follows τ “ 37 ns for this avoided crossing. In this work, I

use ∆t “ 1 µs, yielding Padia “ 1´2.14ˆ10´12; the probability of adiabatic transfer is

close to unity. In comparison, the first avoided crossing has an energy gap of 14 MHz.

For the same electric field ramp of 0.2 V/cm, one finds a Landau-Zener time constant

of τ “ 4.1 µs. To obtain Padia ą 0.99, ∆t ą 20 µs would be required. This is too long

to neglect atomic motion during the electric field ramp.

The calculated wavefunctions of an atom undergoing the adiabatic state trans-

formation are presented in Figure 5.4. For the S-like Stark state at 2.66 V/cm, the

wavefunction closely resembles that of a spherically symmetric S state with a small

admixture of parabolic (hydrogen-like) Stark states. The admixture causes the in-

terference pattern at z ă 0 that is clearly visible. After applying an electric field

ramp to increase the field by 0.2 V/cm, the atom is transferred to the highly dipolar

state at 2.86 V/cm. The final state is a superposition of different parabolic states,

as oppose to a pure parabolic state. This is because for |mJ | “ 0.5 the hydrogenic

manifolds are missing the low angular momentum states, leading to modified spec-

tra. The analysis shows that the final state carries the probabilities of (hydrogenic)

parabolic states shown in Table 5.1. The final state at 2.86 V/cm has about 80% of

|n “ 47, n1 “ 6, n2 “ 40,m “ 0y character.

The direction of the permanent atomic dipoles is fixed and identical with the di-

rection of an externally applied electric field. From this fact, the anisotropic character

of dipolar atom-pair kinetics can be demonstrated by choosing certain electric-field

alignments relative to the experimental observation plane. Since the angular degrees

of freedom of the atomic dipoles are fixed, the dynamics are restricted to the center-

of-mass positions of the atoms. The fact that I have full control over the direction
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Table 5.1: Parabolic states and corresponding probabilities contained in the target state.

|n, n1, n2,my Probability (%)

|47, 0, 46, 0y 0.874

|47, 1, 45, 0y 0.989

|47, 2, 44, 0y 1.188

|47, 3, 43, 0y 1.543

|47, 4, 42, 0y 2.414

|47, 5, 41, 0y 5.953

|47, 6, 40, 0y 79.656

|47, 7, 39, 0y 0.468

|47, 8, 38, 0y 0.004

|47, 9, 37, 0y 0.026

|47, 10, 36, 0y 0.077

of the atomic dipoles is critical in the measurement of the anisotropy of the dipolar

atom-pair kinetics.

To estimate the density advantage afforded by the adiabatic state-switching

method, I calculate the blockade radii for atoms in the selected dipolar state and for

van der Waals-interacting 50S1{2 atoms, for a laser excitation bandwidth of 1 MHz.

The density advantage is then given by the third power of the ratio of these block-

ade radii. For this experiment the adiabatic state transformation allows for a density

increase of up to a factor of 40 over the case of direct laser excitation of the dipo-

lar atoms. Incidentally, the dipolar state also lacks oscillator strength with low-lying

atomic levels; this would make the direct laser excitation of a dense dipolar atom

sample even more difficult. Therefore, the adiabatic preparation method is critical for

the measurement of dipolar atom-pair kinetics.

5.3 Experimental setup

The experimental setup and the timing sequence of the experiment are shown in

Figure 5.5. Cold 85Rb atoms in the 5S1{2 state undergo two-photon Rydberg exci-
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Figure 5.5: Experimental set-up and timing sequence. (a) Experimental set-up. (b) Timing sequence.

tation into the 50S1{2-like state by simultaneously applying 780- and 480-nm laser

pulses, each with a duration of 5 µs. The lasers are «1 GHz red-detuned from the

5P3{2 intermediate state. The 780-nm beam propagates along the x-direction [see Fig-

ure 5.5(a)] and has a Gaussian beam parameter of w0 « 70 µm. The 780-nm beam is

focused to have a smaller size than that is used in Chapter IV in order to reduce the

effect of electric field inhomogeneity. The 480-nm beam propagates in the xy plane,

forms an angle of approximately 70˝ with the 780-nm beam, and has w0 « 8 µm. The

excitation region is about 300 µm above the TIP. For this distance, the magnification

is measured to be 200 ˘ 10%. The number of Rydberg excitations is on the order of

ten per sample.

As mentioned in Section 5.2, after the initial excitation into the 50S1{2-like state at

Ei “ 2.66 V/cm, the atoms are adiabatically transferred into the dipolar target state

by linearly increasing the electric field by 0.2 V/cm within 1 µs. The electric field

sweep is controlled using an arbitrary waveform generator (Agilent 33521A) which

outputs a linear ramp voltage.

The sweep duration is slow enough that the adiabatic transfer from the 50S1{2-like
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into the dipolar state has an efficiency very close to unity. The sweep duration is also

short enough that during the adiabatic transfer the atoms do not move significantly.

Hence, the state switching is practically instantaneous with respect to the center-

of-mass motion of the atoms. After the switch, the electric field is kept constant at

Ef “ 2.86 V/cm for the duration of the interaction time, t. I study the atom kinetics

that follow from the dipolar force in Equation (5.2) as a function of t.

I perform atom imaging and measure the spatial correlation between Rydberg

atoms under two configurations. In the first case, the direction of the atomic dipoles

is transverse to the plane within which the atoms are mainly prepared, showing the

kinetics of dipoles that are initialized side-by-side. In this case, the interactions are

repulsive and azimuthally symmetric about the axis of the ion imaging system. The

pair-correlation functions reveal rapid atom-pair repulsion with an apparent transient

shock front developing during the expansion and disorder-induced heating. In the sec-

ond case, the atomic dipoles are prepared parallel to the observation plane in order to

capture the kinetics of atomic dipoles that are aligned anywhere between side-by-side

and in-line with each other. For this case, the dipolar interatomic force varies between

repulsive and attractive as a function of angle. This leads to dramatic changes of the

measured Rydberg-atom pair-correlation images. The images develop a characteristic

dumbbell-shaped form, which visually demonstrates the angular dependence of the

microscopic dipolar force.

5.4 Electric field perpendicular to the detection plane

When the applied electric field is perpendicular to the detection (xy) plane, the

atomic dipoles point in the z-direction, as shown in Figure 5.6(b). Since the excitation

blockade radius is on the order of the diameter of the 480-nm excitation beam, most
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Figure 5.6: The illustrations on the left show the electric-field and dipolar alignments relative to
the object/image planes for the experimental pair-correlation images on the right for the indicated
selected wait times. The linear gray scale ranges from 0.4 (white) to 1.5 (black), where values of 1, ă1,
and ą1 indicate no correlation, anticorrelation, and positive correlation, respectively. (a) Zero field
where atoms undergo weak van der Waals interaction. (b) Applied electric field in z direction where
the atomic dipoles are aligned along z, perpendicular to the image (xy) plane. Binary interactions
are azimuthally symmetric about z and primarily repulsive, leading to images that are without
angular structure and indicative of strong repulsion. (c) Applied electric field in y direction where
the atomic dipoles are aligned along y, in plane with the image plane. Binary interactions are not
azimuthally symmetric about z and are mixed attractive / repulsive, leading to anisotropic images
indicative of repulsion along x and strong attraction along y.

dipole-dipole-interacting atom pairs are at Θ « π{2 [see Equation (5.2)]. Hence, for

the vast majority of atom pairs the dipole force is repulsive, with FR « 3p2{R4, and

azimuthally symmetric about the line of sight.

The pair correlation images presented in Figure 5.6(b) are azimuthally symmetric

at all times. With increasing interaction time, the (projected) radius of the region

that is largely devoid of pair-correlation events increases, reflecting an increase of the

interatomic separation due to repulsive dipole-dipole interactions. The expansion due

to dipole-dipole interaction is considerably faster than that due to repulsive van der

Waals interactions between 50S1{2 atoms at zero electric field, shown in Figure 5.6(a).

The van der Waals interaction does not cause any significant expansion over timescale

of Figure 5.6. In Chapter IV, it was found that even atoms in the 70S1{2 state,
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Figure 5.7: I(R) curves and trajectory measurement. (a) Angular integrals IpRq of the pair correla-
tion images in Figure 5.6(b) at wait times (from top to bottom): 0 µs, 2 µs, 4 µs, 6 µs, 8 µs, and
10 µs. The y axis is for the 0 µs curve; for clarity, the other curves are shifted down in equidistant
steps of 0.3. The most probable separation Rpptq is obtained from local parabolic fits to the maxima
observed within the shaded region. (b) Interatomic separations Rpptq between Rydberg-atom pairs
as a function of interaction time (left axis), obtained from the peak positions in the IpRq curves, from
experiment (blue circles) and simulation (red line). The blue dashed line shows a linear fit to the
experimental data between 6 µs to 10 µs. The gray squares show the visibility of the experimental
pair correlation enhancement (right axis).

which interact about 50 times more strongly than atoms in the 50S1{2 state (present

case), exhibit significant repulsion effects only after about 30 µs. Hence, a cursory

comparison of the pair correlation data in Figure 5.6(a) and (b) already shows that

the interaction between the dipolar atoms must be 1 to 2 orders of magnitude stronger

than the interaction between the non-polar, van der Waals-interacting atoms.

The angular integrals IpRq of the pair correlation images from Figure 5.6(b) are

shown in Figure 5.7(a). The most probable separation between Rydberg-atom pairs,

Rpptq, is determined by local parabolic fits to IpRq in the vicinity of the peaks found

within the shaded region in Figure 5.7(a). The blue circles in Figure 5.7(b) show the

resulting Rpptq values that represent the most probable radial atom-pair trajectory

projected into the xy plane. The atom pairs are initially prepared at a preferential

separation Rpp0q “ 6.7 ˘ 0.7 µm, controlled by the excitation-laser detuning and the

atomic interaction strength before the adiabatic state transformation. The large posi-

tive acceleration observed subsequent to the state transformation is due to the strong
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repulsive dipole-dipole interaction that occurs for angles Θ « π{2. The acceleration

diminishes and changes sign from positive to negative at an interaction time near

8 µs, where d2Rpptq{dt2 „ 0.

To verify that the observed rapid expansion in the xy plane is consistent with the

known permanent electric dipole moment of the atoms after adiabatic transforma-

tion, the interaction coefficient C3 is extracted using conservation of energy between

interaction times of 0 and t:

C3

Rpp0q3
“

C3

Rpptq3
`

1

2
µV ptq2 , (5.5)

where µ and V ptq are the reduced mass of a pair of 85Rb atoms and the relative

pair velocity, respectively. Here, t “ 8 µs is chosen because the atom pairs have an

approximately constant velocity at that time, which can be extracted well from a

local linear fit within the range 6 ď t ď 10 µs, indicated by the blue dashed line in

Figure 5.7(b). At this interaction time, V p8 µsq “ 0.45 ˘ 0.06 m/s and Rpp8 µsq “

9.3˘ 0.9 µm, where the uncertainties include the statistical fit and the magnification

uncertainties. With Rpp0q “ 6.7˘0.7 µm from above, the resulting C3 value becomes

p3.3 ˘ 1.8q ˆ 10´42 J m3. This value agrees with the calculated C3 value, p2{p4πϵ0q “

3.72ˆ10´42 J m3, implying that the interacting entities are individual atoms and not

superatoms, as has been predicted in Reference [67] and experimentally observed for

van-der-Waals-interacting Rydberg excitations in Chapter IV.

5.4.1 Disorder-induced heating

In Figure 5.7(b) it is evident from the experimental data (circles) and the result

of a semi-classical simulation (red line) that the acceleration is negative for t Á

10 µs. The late-time deceleration appears to be due to repulsion from initially farther-

away atoms, indicating many-body dynamics that involve more than two atoms. A
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related conclusion can be drawn from considering the visibility of the pair-correlation

enhancement as a function of time, calculated from the IpRq curves in Figure 5.7(a)

as

Visibility “
IpRpptqq ´ xIy

xIy
, (5.6)

where the asymptotic values xIy are obtained by averaging IpRq curves over the range

R ą 15 µm. The visibility values are shown as gray squares in Figure 5.7(b). The visi-

bility rapidly increases at early times, t À 4 µs, and passes through a broad maximum

between 4 and 8 µs. Hence, the significance of the pair correlation enhancement at Rp,

equivalent to the degree of short-range order, and the kinetic energy of the sample,

equivalent to the slope in Rpptq, both become maximal approximately at the same

time. These evidences are reminiscent of disorder-induced heating, which has been

observed in the strongly-coupled ion component of an ultracold plasma [104, 105].

In both cases, particles initially repel each other due to dominant nearest-neighbor

forces before encountering repulsive forces from initially more distant particles. At

t Á 10 µs the correlation enhancement disappears, which is in part due to the initial

thermal atom velocity.

5.4.2 Coupling parameter

In an ultracold plasma system, the Coulomb coupling parameter defined as the

ratio between the Coulomb potential energy and the thermal energy is used to de-

termine the coupling condition of the system. The spatial correlation characteristic

starts to appear at Γ ą 1 [105]. In this work, the interaction strength is comparable

to a strong Coulomb interaction. By replacing the Coulomb potential energy with the

initial dipole-dipole potential energy in Equation (5.1), the coupling parameter of the
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dipolar system is given by

Γ “
p2{ p4πϵ0R

3q

pkBT q
, (5.7)

and is equal to 9 in this case at the MOT temperature 100 µK, which is sufficiently

large that the system may indeed develop (transient) short-range order.

Note that apparent analogies between dense dipolar Rydberg-atom ensembles and

strongly-coupled plasmas are limited due to the different nature of the forces involved

(dipole-dipole versus Coulomb), the different radial and angular characteristics of the

forces, and the different system sizes (only about ten particles in this work versus

105 ´ 107 ions in an ultracold plasma system).

5.5 Electric field parallel to the detection plane

To exhibit the anisotropic atom-pair kinetics that follow from Equation (5.2),

the experimental setup must be modified such that the shared azimuthal symmetry

between the microscopic force law and the imaging system is removed. In the setup

this is easily possible by application of an external electric field in the xy plane

[Figure 5.5(a)]. The adiabatic passage of the atoms through the avoided crossing is

performed as before. The measured pair correlation images shown in the following

amount to a first direct observation of dipolar, anisotropic atom-pair kinetics.

When the electric field is applied along the y axis, the atomic permanent electric

dipole moments are oriented along y. The angular dependence of the dipole force

can be observed within the xy plane, encompassing maximally-repulsive interactions

(Θ “ π{2) and maximally-attractive interactions (Θ “ 0), as well as all intermediate

cases. The interaction then leads to the characteristic anisotropic patterns in the pair

correlation images shown in Figure 5.6(c).

The angular force in Equation (5.2) is maximal with FΘ “ 3p2{R4 at Θ “ π{4
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Figure 5.8: Positions of two interacting dipoles from the interaction time t “ 0 (lightest circle) to
t “ 20 µs (darkest circle). The arrows show the trajectory of the dipoles obtained from a simulation.
(a) Two dipoles initially aligned almost perpendicular to the electric field direction. The repulsive
force dominates. The dipoles repel each other and turn around due to the angular dependence of the
force. (b) Two dipoles initially aligned almost parallel to the electric field direction. The attractive
force dominates and the dipoles come closer to each other. Due to the combination of radial and
angular forces, the atom pairs become funneled into narrow conical sections at the poles. This leads
to characteristic pair correlation images as shown in (c) (from the experiment) and (d) (from the
simulation). The images in (c) and (d) are obtained for an interaction time t “ 4 µs.

and 3π{4, and zero at Θ “ 0, π{2 and π. Atom pairs initially positioned at Θ «

π{2 will keep repelling each other, while being diverted towards the poles by the

angular force [Figure 5.8(a)]. Within the experimental uncertainty, the most probable

pair separations Rpptq in Figure 5.6(b) along any direction in the xy plane and in

Figure 5.6(c) along the x direction are the same. This is expected because all these

cases correspond to Θ “ π{2 in Equation (5.2).

The angular force always points towards the “poles” [Θ “ 0 or π, see Figure 5.1(b)],

leading to an accumulation of atom pairs lined approximately along the electric-

field direction (the same direction as p). These atom pairs are then pulled close to

each other due to the radial component of the force which is attractive for Θ ď 55˝

and Θ ě 125˝ [Figure 5.8(b)]. These atom pairs form the prominent vertical dark

strip across the center of the pair correlation images at interaction times Á 4 µs in

Figure 5.6(c). The “funneling effect” pointing towards the poles eventually leads to

dumbbell-shaped pair-correlation images that are void of signal in a volume extending

along x and that possesses an enhanced signal along y. These characteristics are
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seen the experiment [Figure 5.8(c)] and in the simulations [Figure 5.8(d)]. The small

deviation of the enhancement cones in Figure 5.6(c) from the y direction is attributed

to a slight deviation of the electrode arrangement from perfect symmetry.

Atoms pulled close to each other along the polar direction (y) will likely undergo

Penning-ionizing collisions [100], when the interatomic separation R drops below

about 0.5 µm (2.1 ˆ 2 n2
eff a0). This distance is below the image resolution and is

not directly observed in the experiment. It is, however, noticed that the amount of

signal within the enhancement cones near Θ “ 0 and Θ “ π in Figure 5.6(c) plateaus

at t Á 4 µs and eventually drops. This observation is consistent with atom-pair loss

within the polar cones due to Penning ionization.

5.6 Summary

In summary, an adiabatic state transformation method has been employed to pre-

pare samples of Rydberg atoms with large permanent electric dipole moments. This

preparation method circumvents density limitations set by the Rydberg excitation

blockade mechanism, which is frequently encountered in such systems. I have been

able to study the strength and angular properties of the dipole force between pairs of

individual atoms. The results have included a determination of the dipolar dispersion

coefficient, C3. The measured pair correlation images portray the anisotropic charac-

ter of dipolar atom-pair kinetics in a forceful, intuitive manner. Quantitative results of

a model agree well with the experimental observations. I also have observed dynamics

reminiscent of disorder-induced heating, similar to what has been seen elsewhere in

strongly-coupled plasmas.
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CHAPTER VI

Control of spatial correlations between Rydberg excitations
using rotary echo
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Figure 6.1: (a) An optical excitation pulse with a duration T for Rydberg-atom production. The
phase of the pulse is changed by 180˝ at time τp “ T {2. (b) Number of excitations (including
individual and pair excitation) versus time before and after phase inversion of the optical pulse. At
the end of the pulse, the on-resonant, uncorrelated atoms (VvdW “ 0) return to the ground state,
leaving the off-resonant atoms (in this plot I select VvdW “ 4 MHz) in the Rydberg state. Dashed
lines indicate the number of excitations when there is no phase inversion. (c) Sketch of the radial pair
correlation function when τp “ 0 or T (no echo) and τp “ T {2 (echo). The correlation enhancement
peak of the echo case is expected to be stronger than the no-echo case because in the former case
the system contains fewer uncorrelated atoms than in the latter one.

In this chapter, I present a rotary echo technique to control Rydberg-atom corre-

lations, as proposed by Wüster et. al. [36]. The rotary echo is performed by modu-

lating the optical phase of the Rydberg excitation laser to eliminate the uncorrelated

atoms after the excitation. As found previously in simulations [33] and in experi-

ments [34, 35], a rotary Rydberg-atom excitation echo occurs when the sign of the
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Rabi frequency Ω of a Rydberg transition is inverted at the middle of an on-resonant

excitation pulse. This is accomplished by inverting the phase of the optical excitation

pulse, as demonstrated in Figure 6.1(a). At the end of the excitation pulse, the un-

correlated atoms return to ground state while the spatially correlated atoms remain

in the Rydberg state [Figure 6.1(b)]. It was predicted in Reference [36] that a rotary-

echo excitation pulse would lead to an enhancement of the Rydberg pair correlation

function at a separation near the blockade radius, as illustrated in Figure 6.1(c).

I employ a rotary-echo sequence to excite cold 85Rb atoms into Rydberg states. I ex-

plore the effects of the echo on Rydberg-atom spatial correlations and the excitation-

number statistics. This work demonstrates that a rotary-echo sequence substantially

enhances spatial correlations between the Rydberg excitations. In addition, it is ob-

served that the rotary-echo-induced features strongly depend on the laser detuning.

Particularly, it is seen that the rotary echo gives rise to strong spatial correlations

when the excitation lasers are on-resonant, while in certain off-resonant cases the

echo causes a complementary effect, namely the destruction of spatial correlations

that would otherwise be present.

6.1 Experimental Setup

The energy level diagram is presented in Figure 6.2(a). Cold 85Rb atoms in the

5S1{2 state are excited to the 70S1{2 state via two-photon excitation using 780- and

480-nm laser pulses that overlap in time and have a duration T “ 250 ns. The 780-nm

laser has a Gaussian beam parameter w0 “ 750 µm and a power of 600 µW. The 480-

nm laser has a w0 « 8 µm and a power of 30 mW. The detuning from the intermediate

state 5P3{2 is δ “ 2πˆ131 MHz. At the beam center, the Rabi frequencies of the lower

and upper transitions are Ω1 “ 2π ˆ 20 MHz and Ω2 “ 2π ˆ 21 MHz, respectively.
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Figure 6.2: (a) Two-photon excitation of a single 85Rb Rydberg atom (see text for more details).
(b) Echo sequence during excitation. I apply an excitation pulse of duration T “ 250 ns. The two-
photon Rabi frequency is switched from Ω to ´Ω (in the field picture) at time τp. The time labels
1, 2, and 3 above the timing sequence correspond with the diagrams in (c). (c) Internal dynamics of
atoms during the echo sequence. The frequency to excite one Rydberg atom |ry without interactions
is f0 (red arrow). The frequency leading to direct excitation of two Rydberg atoms (state |2ry) is
f0 ` ∆vdW{2 (purple arrow). Because of the excitation bandwidth, in either case I excite a mix of
isolated Rydberg atoms in state |ry and Rydberg-atom pairs in state |2ry. The circle sizes in the
level diagrams illustrate the populations of van-der-Waals-interacting atom pairs (left pair of circles)
and of isolated atoms (right circle) at times 1, 2 and 3 for the cases ∆ “ 0 and ∆ “ 2π ˆ 4 MHz.

This leads to a two-photon (one 780 nm and one 480 nm photon) Rabi frequency

for single-atom excitation at the two-photon resonance (∆ = 0) of Ω “ Ω1Ω2{p2δq “

2π ˆ 1.67 MHz. In the case of substantial detuning ∆ ą 0, Rydberg atoms can

be directly excited in pairs or sequentially excited close to Rydberg atoms that are

already present in the sample (so called facilitated excitation). In any case, the excess

photon energy introduced by the laser detuning matches the van der Waals interaction

potential. When ∆ “ 2π ˆ 4 MHz, as used in Chapter IV, the Rabi frequency for the

simultaneous pair excitation is Ωpair “ Ω2{p2∆q “ 2πˆ0.35 MHz. Note that, in order

to avoid dephasing due to atomic motion, here I use an excitation pulse duration

of only 250 ns. This is very short in comparison with the experiments mentioned in
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Figure 6.3: Diagram of RF phase and pulse controller for echo experiment. See text for details.

Chapters IV and V, where the excitation pulse duration is 5 µs.

To implement the rotary echo, I invert the optical phase of the 480-nm laser pulse

at time τp, as shown in Figure 6.2(b). This can be performed by inverting the phase

of the radio frequency (RF) signal that is applied to the acousto-optic modulator

(AOM) that determines the optical phase of the 480-nm laser pulse. The diagram of

RF phase and pulse controller is shown in Figure 6.3. The RF is generated from a

RF synthesizer (HP-8656B). I use a power splitter (ZFSCJ-2-4+) to provide two RF

signals with 180˝phase difference. I control the time τp and the pulse duration of the

excitation beam by using two high isolation switches (ZASWA-2-50DR+). The RF

signal is then amplified by using a 1 W amplifier (ZHL-3A) before the AOM.

The resulting optical pulses obtained from a photodiode are presented in Fig-

ure. 6.4(a). A notch occurs at τp of each pulse due to an imperfection of RF phase

inversion inside the AOM (at a switching time, rising and falling time of each RF

pulse is not zero so they overlap and cause this interference).

After the excitation pulse, a high voltage is applied to the TIP to ionize the

Rydberg atoms, allowing their positions to be detected using the MCP (as explained
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in Chapter III). The excitation region is 470 µm above the TIP, which provides a

magnification of 150. For each detuning ∆ and flip time τp I take 10,000 images and

choose the 5,000 images with the highest numbers of excitations to calculate pair

correlation images. Angular integrals of the pair correlation images yield the radial

pair correlation functions IpRq. Quantitative information on the echo effect is then

extracted from the IpRq.

6.2 Echo spectra

To verify the presence of a rotary echo in the experiment, I measure Rydberg

excitation spectra when τp is ranging from 0 to 250 nm with a step size of 25 ns, as

shown in Figure 6.4(b). The peak position in the echo-free spectrum (τp “ 0) marks

the on-resonant transition ∆ “ 0. The echo is most effective when τp « 125 ns. In

this case, the spectra are broader and have a depression of detected Rydberg counts

at ∆ “ 0.

In Figure 6.4(b), the signal when τp “ 125 ns does not drop to zero at ∆ “ 0, as

would be the case for a perfect echo, due to the following reasons. First, slightly off-

resonantly excited atom pairs whose pair energies are shifted due to the van der Waals

interactions do not undergo a perfect echo. Second, the spectrum is convolved with

the profile of the shot-to-shot laser-frequency jitter. I have simulated the excitation

spectra of atom pairs in a disordered atomic sample and convolved the results with a

Gaussian profile to represent frequency jitter. Assuming a full-width-at-half-maximum

(FWHM) of 3 to 4 MHz for the Gaussian profile and using the measured pulse shape,

I obtain simulated spectra that are consistent with the experimentally observed ones

(see Section 6.7).
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Figure 6.5: Number of detected Rydberg excitations as a function of phase flip time τp for ∆ “ 0
(red squares) and 2π ˆ 4 MHz (blue circles).

6.3 Echo visibility

The averaged number of detected Rydberg excitations obtained from 10,000 im-

ages is presented in Figure 6.5. The ∆ “ 0 counts have a minimum when τp “ T {2 “

125 ns, as expected for a rotary echo. The ∆ “ 2π ˆ 4 MHz counts show a com-

plementary effect with a maximum near τp “ T {2 “ 125 ns. I calculate the echo

visibility [34, 35] given by

Vecho “
Npτp “ 0q ` Npτp “ T q ´ 2Npτp “ T {2q

Npτp “ 0q ` Npτp “ T q ` 2Npτp “ T {2q
, (6.1)

where Npτpq is the average number of Rydberg excitations detected using a phase-

inversion time τp. The magnitude of the echo visibility |Vecho| ranges from 0 (no echo)

to 1 (perfect echo) and represents a measure for the coherence of the excitation [34].

Here, |Vecho| “ 0.303 ˘ 0.004 for ∆ “ 0 MHz and |Vecho| “ 0.267 ˘ 0.005 for ∆ “

2π ˆ 4 MHz. The value of |Vecho| is lowered by the aforementioned shot-to-shot laser

frequency jitter and phase/shape imperfection of the excitation pulse. Atom-atom

interactions can also lead to a reduction of |Vecho|.
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Figure 6.6: (a) Pair correlation images at selected τp for (top row) ∆ “ 0 MHz and (bottom row)
∆ “ 2π ˆ 4 MHz. The linear grayscale ranges from 0 (white) to 2 (black) where values of 1, ă1, and
ą1 indicate no correlation, anticorrelation, and positive correlation, respectively. The bold borders
indicate pair correlation images obtained from systems that contain many pair-excitations. The 3 to
4 µm pattern near the center of each image is an artifact (see text). (b) Angular integrals IpRq of
the pair correlation images in (a) for ∆ “ 0 MHz for τp “ 0, 50, 100, and 125 ns (top to bottom).
The vertical axis is for the 0 ns curve. The other curves are shifted down in equidistant intervals of
0.3 for clarity. (c) Same as (b), but for ∆ “ 2π ˆ 4 MHz.

6.4 Echo pair correlation images

I now turn to describing the effect of the echo sequence on the spatial pair-

correlation functions. Pair correlation images measured for ∆ “ 0 MHz are shown in

the top row of Figure 6.6(a). When τp is increased from 0 or decreased from T towards

T {2, the pair correlation image clearly develops an enhancement ring with a radius of

about 10 µm. The enhancement ring reaches maximal contrast for τp « T {2 “ 125 ns

as can be seen by visual inspection of the images in Figure 6.6(a). A complemen-

tary effect occurs for the case ∆ “ 2π ˆ 4 MHz [bottom row of Figure 6.6(a)]. The

pair correlation is maximally enhanced at a radius near 10 µm when τp « 0 or T ,
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while it becomes washed out when τp « T {2. The pair-correlation signal at very short

distances (about 3 µm) is an artifact caused by ion feedback from the TIP; field

electrons hitting the TIP release a secondary ion that impinges on the MCP close to

the primary (Rb`) ion [106]. In the quantitative analysis below, I employ the angular

integrals IpRq of the pair correlation images. I show the IpRq curves in Figure 6.6(b)

for the case ∆ “ 0, and in Figure 6.6(c) for the case ∆ “ 2π ˆ 4 MHz.

In the explanation of the pair correlation data and the strength of the correlation

enhancement, I concentrate on the “echo case” τp « T {2 and refer to Fig. 6.2. The

two-photon Rabi frequency (Ω “ 2π ˆ 1.67 MHz) is high enough that many exci-

tation domains within the sample carry one Rydberg excitation (state |ry) after the

first phase of the excitation pulse [i.e., at time τp; isolated atom in Fig. 6.2(c)]. How-

ever, due to the bandwidth of the excitation pulse, some excitation domains become

populated with a Rydberg-excitation pair (state |2ry). The doubly-excited domains

have an energy level shift ∆vdW from the drive field due to the van der Waals inter-

action (atom pairs in Fig. 6.2(c)). The atom populations after flipping the phase and

completing the excitation pulse are illustrated in Fig. 6.2(c), at time labels 3. For the

case ∆ “ 0, domains in the state |ry are de-excited back to the |gy-state. However, the

domains in excited state |2ry are off-resonant, leaving them with some probability in

|2ry after completion of the echo sequence. In essence, after the sequence I expect to

find a relative over-abundance of atoms separated by a distance near the blockade ra-

dius. The experimental data support this scenario. A complementary behavior occurs

in the case ∆ “ 2π ˆ 4 MHz, with the roles of singly- and doubly-excited domains

reversed.
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6.5 Strength of the correlation enhancement

For a more quantitative analysis, I extract from the IpRq curves the enhanced peak

values Imax and radii Rmax of maximal correlation enhancement, determined by local

parabolic fits to the maxima near R “ 10 µm. Close inspection of the IpRq curves in

Figures 6.6(b,c) shows that the FWHM of the enhancement peak decreases when the

Imax increases. I calculate S, the strength of the correlation enhancement of a pair
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correlation function, as:

S “
Imax ´ xIy

xIy
. (6.2)

I determine the asymptotic values xIy by taking the average of IpRq over the range

20 µm ă R ă 60 µm. Figure 6.7 shows the dependence of the pair enhancements S

and the radii Rmax on τp. As anticipated from Figure 6.6, the curves in Figure 6.7(a)

and Figure 6.7(b) exhibit pronounced maxima at the “echo case” τp « T {2, when

∆ “ 0, and at the “no-echo case” τp « 0 and T , when ∆ “ 2π ˆ 4 MHz.

Figures 6.7(c) and (d) reveal a dependence of Rmax on τp. In particular, it is seen in

Figures 6.6(b) and 6.7(c) that Rmax for τp “ T {2 drops to near or slightly below the

blockade radius seen for τp « 0. This is because the Fourier width of the excitation

pulse at the time instant of the phase flip for the τp « T {2 case is twice as large as

the Fourier width for the τp « 0 case at the end of the entire excitation pulse (8 MHz

vs 4 MHz, respectively). Hence, the relevant blockade radius in the τp « T {2 case is

smaller than that in the τp « 0 case. It is therefore plausible for RmaxpT {2q to drop

near or slightly below the blockade radius seen at τp « 0.

Figures 6.7(a-d) demonstrate that the values for Rmax are smaller for larger values

of S both for ∆ “ 0 and 2π ˆ 4 MHz. The relationship between Rmax and S is shown

in Figure 6.7(e). The value of S increases from near zero to „ 0.8 as the radius of

maximal correlation diminishes from „ 13 µm to „ 8 µm. The SpRmaxq dependencies

extracted from the ∆ “ 0 and 2π ˆ 4 MHz measurements agree well within their

overlap region, 9 µm ă Rmax ă 10 µm. The rotary-echo sequence therefore provides

an ability to control the most probable separation between atom pairs. It is noted

that the value of S changes substantially over the range of accessible separation

distances. Figure 6.7(f) shows that S is qualitatively proportional to the van der Waals

interaction strength C6{R6 at Rmax. While this may seem reasonable, an explanation
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Figure 6.8: Q-parameter as a function of τp for (a) ∆ “ 0 MHz and (b) ∆ “ 2π ˆ 4 MHz.

of this behavior will require more investigation.

6.6 Mandel Q-parameters

In addition to a profound effect of the echo excitation sequence on spatial cor-

relations in cold Rydberg-atom samples, a related effect is expected in the Ryd-

berg excitation counting statistics, which should also carry signatures of the corre-

lations in the system. A measure to characterize counting statistics is the Mandel

Q-parameter [18, 20–22] given by,

Q “
⟨Npτpq2⟩ ´ ⟨Npτpq⟩2

⟨Npτpq⟩
´ 1 . (6.3)

Figure 6.8 shows the Q-parameters versus τp. The plotted values do not take the

detection efficiency η into account; the actual Q-parameters in the sample are given by

Q{η. The Q-parameters observed for ∆ “ 0 MHz [Figure 6.8(a)] are mostly negative,

ranging from -0.10 to 0.02, while the ones for ∆ “ 2π ˆ 4 MHz [Figure 6.8(b)] are

positive, ranging from 0.03 to 0.25. This shows that for ∆ “ 0 and τp „ 0 and „ T

the atoms largely follow sub-Poissonian statistics (Q ă 0), while for ∆ “ 2πˆ 4 MHz

and τp „ 0 and T they follow super-Poissonian statistics (Q ą 0).

The trends observed in the Q-parameter measurements can be explained as follows.

For the case of on-resonant excitation without echo, the atom counting statistics are

sub-Poissonian (Qă0) due to a blockade effect [18], as demonstrated in Figure 6.8(a)
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at τp near 0 and 250 ns. In contrast, the Q-parameters for systems containing mostly

pair-excitations are expected to trend toward positive values [36, 39], indicating super-

Poissonian distributions. This effect is demonstrated in Figure 6.8, in which the Q-

parameters reach high values when pair excitations are dominant. This is the case

for τp “ 125 ns at ∆ “ 0 MHz [Figure 6.8(a)], and τp “ 0 and 250 ns at ∆ “

2π ˆ 4 MHz [Figure 6.8(b)]. These cases correspond to the images with bold borders

in Figure 6.6(a).

For a qualitative explanation of why ensembles of correlated Rydberg-atom pairs

lead to super-Poissonian statistics, I consider a Poissonian distribution of atom pairs

(Qpair “ 0). Since every pair contains two atoms, I substitute N “ 2Npair into Equa-

tion (6.3). The relation between Qpair and the Q-parameter for single-atom detections,

Qsingle, is seen to be

Q “ Qsingle “ 2Qpair ` 1 . (6.4)

Hence, a Poissonian distribution of uncorrelated Rydberg-atom pairs (Qpair “ 0) re-

sults in a super-Poissonian distribution of single-atom detections (Qsingle “ 1). Con-

sidering that the detection efficiency is η „ 0.3, I expect a measured Q „ 0.3, which

is close to the value shown in Figure 6.8(b) at τp “ 0 and T .

6.7 Simulation

To understand the rotary echo effect, I solve a 2-body time-dependent Schrödinger

equation using the same parameters used in the experiment. The Hamiltonian for the
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echo sequence in the field-interaction picture is

H “
~
2
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Ωptq 0 ´2∆2 Ωptq

0 Ωptq Ωptq ´2p∆1 ` ∆2q ` 2∆vdW

. (6.5)

where Ωptq is the Rabi frequency for single-atom excitation, defined as

Ω “

$

’

’

’

&

’

’

’

%

Ω0 0 ď t ă τp ,

´Ω0 τp ď t ď T ,

(6.6)

∆i “ ∆`∆Doppler,i is the detuning of an atom i, which consists of the excitation laser

detuning ∆ and an additional shift due to the Doppler effect ∆Doppler (« 300 kHz).

The van der Waals interaction is denoted ∆vdW.

Starting with the ground state |ggy, the final state after excitation is Ψ “ cgg|ggy`

crg|rgy ` cgr|gry ` crr|rry. The number of excitations is calculated from |crg|2 ` |cgr|2 `

2|crr|2 with a maximum excitation number of 2 for the pair excitation. The factor of

two in front of |crr|2 is due to the fact that two Rydberg atoms are observed from the

pair excitation.

6.7.1 Echo dynamics

In order to understand the population dynamics of atoms under the echo effect, I

calculate the number of excitations by applying Ω0 “ 2π ˆ 1.67 MHz, T “ 250 ns,

and neglect ∆Doppler. The number of excitations at three selected values of ∆ when

∆vdW “ 2π ˆ 4 MHz is shown in Figure 6.9. For the on-resonant case (∆ “ 0) shown
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Figure 6.9: Number of excitations when VvdW “ 2π ˆ 4 MHz for (a,b) ∆ “ 0, (c,d) ∆ “ 2 MHz,
and (e,f) ∆ “ 4 MHz obtained from pair (blue dashed lines), single (green dotted lines), and all (red
solid lines) refer to 2|crr|2, |crg|2 ` |cgr|2, and |crg|2 ` |cgr|2 ` 2|crr|2, respectively.

in Figure 6.9(a), the excitation pulse approaches a π-pulse when there is no phase

inversion, so the single-atom excitations almost reach the maximum value with only

a small contribution from pair excitations. At the end of the pulse with phase inver-

sion [Figure 6.9(b)], the contribution of the single-atom excitations become almost

zero while the pair excitations become the main contribution to the total number of

excitations. This calculation supports the pair correlation enhancement that is ex-

perimentally observed in Figure 6.6(a, top row) at 125 ns and the explanation in

Figure 6.2(c).

For off-resonant excitation, the population of the |rry state comes from pair exci-

tations [∆1 “ ∆2 “ ∆vdw{2 “ 2 MHz, see Figures 6.9(c,d)] or facilitated excitations

[∆1 “ ∆2 “ ∆vdw “ 4 MHz, see Figures 6.9(e,f)]. Without phase inversion [Fig-

ures 6.9(c,e)], the main contribution of the total excitations comes from pair excita-

tion. However, with phase inversion as seen in Figures 6.9(d,f), the pair-excitation

undergoes population inversion and the contribution of the single excitations is com-

parable to or larger than the contribution of the pair excitations. This leads to the

pair correlation enhancement reduction, as observed in Figure 6.6(a, bottom row) at
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125 ns. This calculation also supports the interpretation presented in Figure 6.2(c).

6.7.2 Echo spectra

In Figure 6.4(b) at τp “ 125 ns, the experimentally obtained spectrum is not

symmetric and the depression at the middle of the spectrum is not zero. To investigate

the asymmetry of the spectral shape, I perform a calculation using the excitation pulse

shape in Figure 6.4(a) at τp “ 125 ns. I take a square root to turn units of intensity

to units of electric field. Then, the curve is normalized such that the plateau takes an

average value of 1. This curve is then multiplied with the experimental Rabi frequency.

Note that the excitation laser pulse deviates from the perfect shape with a distinct

intensity notch at the time of the phase inversion. I assign a phase of 0˝ to the first

part of the pulse (before the notch minimum) and of 180˝ to the second part of the

pulse (after the notch minimum).

The resulting number of Rydberg excitations when τp “ 125 ns as a function

of van der Waals interaction and laser detuning is shown in Figure 6.10. It can be
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seen that single excitations [Figure 6.10(a)] have excitation peaks at ˘2.5 MHz while

pair excitations [Figure 6.10(b)] have asymmetry excitations trending toward positive

detuning. Inspection of Figures 6.10(a-c) reveals that the shoulder on the right in

Figure 6.4(b) at τp “ 125 ns, the asymmetry of the two main peaks, as well as the

signal at zero detuning are in large part due to the atom-pair contribution (direct

two-photon excitations). The plots of the number of excitations in Figures 6.10(d-

g) show that the peak position of the pair excitations moves to the right (positive

detuning) when the van der Waals interaction increases.

To calculate the excitation spectrum, I apply a weighted average over the nearest-

neighbor distribution in a randomly distributed ground state atom sample. The dis-

tribution P prq in an ideal gas is given by

P prq “
3r2

a3
exp

„

´

´r

a

¯3
ȷ

(6.7)

where a is a Wigner-Seitz radius. By using f “ C6{r
6 and P prqdr “ P̃ pfqdf , the

distribution in the frequency domain becomes

P̃ pfq “
C

1{2
6

2a3f 3{2
exp

«

´
1

a3

ˆ

C6

f

˙1{2
ff

(6.8)

The resulting spectrum when the density of ground-state atom is about 1010 cm´3

is shown in Figure 6.11. Note that in this model the interactions between more than

two atoms are neglected. The spectrum is influenced by the Fourier transform of the

excitation pulse. The sideband at -10 MHz observed in the experimental spectrum

coincides with the first negative side lobe of the Fourier transform of the excitation

pulse.

There may be phase-drift (frequency chirp) effects in the vicinity of τp that cannot

be measured. Such imperfections may come from the RF transmission line, the RF

reception characteristics in the AOM electric circuit, and the transmission of the RF
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Figure 6.11: Experimental Rydberg excitation spectra for τp “ 0125 ns (red diamonds) and simulated
spectrum for τp “ 125 ns (black dashed line). The simulation is scaled to match the experiment.

acoustic wave through the AOM crystal. These effects may explain why the simulated

signal due to the Fourier sideband at -10 MHz in Figure 6.11 is not as strong as the

experimentally observed signal. A full phase-sensitive characterization of the excita-

tion electric-field pulse would require a time-dependent, interferometric analysis of

the optical pulse.

6.8 Summary

In summary I have measured the effect of the rotary echo on spatial pair corre-

lation functions and counting statistics of Rydberg atoms for on- and off-resonant

excitations. The measurements show the connection between spatial correlations and

counting statistics. The result also shows that it is possible to prepare correlated

Rydberg atoms at a well-defined interatomic separation by using this method. This

ability could be useful in atom kinetics experiments [25, 106]. To make the method

attractive for such applications, it is desirable to find conditions in which the pair

correlation enhancement obtained with the echo method exceeds that obtained with

plain off-resonant excitation (see Figure 6.7). This may be achievable, in the future,

by reducing the excitation bandwidth and possibly by elaborate shaping of the ampli-
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tude and phase functions of the excitation pulse. Further, it would be interesting to

explore the effect of the echo sequence in the case of anisotropic interaction potentials.
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CHAPTER VII

Conclusion and Future Work

This chapter includes a summary of accomplishments and discoveries from the

experiments. I have discussed in the preceding chapters that long-range interactions

can be studied using the apparatus and the techniques available to this work. A

possible future experiment that could be performed is to observe novel types of long-

range molecular states in Rydberg atom systems. Preliminary results and calculations

presented in this chapter show that this apparatus is well suited for Rydberg molecule

experiments.

7.1 Conclusion

I have achieved submicron-resolution spatial images of Rydberg atom positions us-

ing a high-magnification ion imaging apparatus. I have demonstrated an ability to pre-

pare Rydberg atoms with a well-defined interatomic separation in the imaging setup.

In addition, I have extracted the C3 and C6 interaction coefficients through atom-pair

kinetics. The experimental values agree well with calculated results, thereby validat-

ing the theoretical models presented in Chapter II. Further, I have used a rotary-echo

technique to control pair correlation enhancements between Rydberg atoms. I have

observed that the rotary echo can give rise to or destroy spatial correlations by tuning

the excitation laser frequency.
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The pair correlation functions demonstrate the first direct visualization of an

isotropic repulsive van der Waals interaction and an anisotropic dipole-dipole in-

teraction. The measurements also imply that the kinetic interaction occurs between

individual atoms, not superatoms. This means that the many-body entanglement

present in the initially prepared state becomes destroyed due to the action of inter-

atomic forces. The observation of repulsive Rydberg-atom dynamics amounts to the

experimental discovery of dissociating van der Waals Rydberg molecules. The agree-

ment between experimental and theoretical C3 and C6 lends credibility to the devel-

oped method of computing Rydberg-Rydberg adiabatic potentials. This is a valuable

discovery because the computational work is not trivial. For instance, the two-body

product Hilbert space needs to be truncated in suitable ways to allow for a numerical

treatment. The work further presents an initial step towards future kinematic studies

of bound Rydberg-Rydberg molecules. It is expected that future work expanding on

this thesis will directly reveal vibrational wave-packet dynamics.

7.2 Rydberg molecules

The long-range Rydberg molecules provide new tools to study ultracold chemistry.

The molecules can be formed between a Rydberg atom and a ground-state atom

(e.g., trilobites molecules [107, 108] and butterfly molecules [109, 110]), two Rydberg

atoms [111–113], or polyatom [114]. Important requirements to observe molecular

states include high enough ground-state atom density, narrow laser linewidth, appro-

priate photoassociation sequence, and good electric field control.

With the sub-micron resolution imaging in the TIP experiment, pair correlation

enhancements that result from the atoms in the same molecule or between neighboring

molecules can be observed. However, the atom density nearby the TIP is low due to
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Figure 7.1: Experimentally obtained spectra centered on nD5{2 Rydberg line. The arrows indicate
the (nD ` 5S1{2) molecular lines.

the scattering of the MOT light out the TIP. To increase the density of the atom

sample, I apply an an optical dipole trap (ODT) produced from a 1064-nm laser with

a power of about 4 W. The ODT has the same timing sequence as the MOT light

and it is off during Rydberg-atom excitation and electric field ionization.

7.2.1 Rydberg-ground molecule

A Rydberg-ground molecule is created from interactions between a Rydberg elec-

tron and a ground state atom [115] through several interaction channels (e.g., S- or

P -wave scattering and finestructure coupling). In the recent work, I study the for-

mation of D-type Rydberg molecules, which have been observed in a magnetic trap

with a peak density „ 1011 cm´3 [116]. Preliminary observations of Rydberg-ground

molecules in the TIP experiment is shown in Figure 7.1. I observe 85Rb(nD ` 5S1{2)

Rydberg molecules, as indicated by black arrows. The positions of the molecular lines

agree well with Reference [116]. Because the nD Rydbeg molecules are formed in

dense atom samples („ 1011 cm´3), the observation of molecular lines indicate that

the low density limitation due to the light scattering from the TIP is overcome. Since

the required atomic density is achieved, it is possible to perform a Rydberg-ground
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Figure 7.2: (a) Calculated energy levels including dipole-dipole, dipole-quadrupole and quadrupole-
quadrupole interactions in the vicinity of 58D5{258D5{2 pair state. The area of the red circles is
proportional to the excitation strength. The arrows indicate location of bound states. (b) Calculated
spectra averaged over ground-state atom density of 109 cm´3. (c) Same as (b) for 1010 cm´3.

imaging experiment in the TIP setup.

7.2.2 Rydberg-Rydberg molecule

Rydberg-Rydberg molecules result from a binding potential that arises from an

avoided crossing between two or more states that are close in energy. With an inter-

atomic separation larger than 1 µm, they are also referred to as macrodimers.

In the Raithel lab, the availability of lasers allows for two configurations of Rydberg

excitation. The first configuration uses 780- and 480-nm laser to perform a two-photon

excitation. Atoms follow the (5S1{2, F “ 3 Ñ 5P3{2, F
1 “ 4 Ñ nS or nD) transition.

The second configuration uses 780-, 776-, and 1260-nm lasers to perform a 3-photon

excitation. Atoms follow the (5S1{2, F “ 3 Ñ 5P3{2, F
1 “ 4 Ñ 5D5{2 Ñ nP or nF )

transition. These two configurations allow Rydberg-Rydberg molecule experiment to

be performed with S, P,D or F states.

Recently, I have been trying to observe the nD ` nD macrodimers in the TIP

experiment. Calculations following Section 2.2.2 have been performed to find pair

states that have strong excitation strength and promising binding energies. Figure 7.2
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shows the results of a calculation of Rydberg-Rydberg interactions in the vicinity

of the 58D5{2 ` 58D5{2 pair state. In Figure 7.2(a), the binding potentials are red

detuned from the 58D5{2 ` 58D5{2 asymptote. The expected Rydberg spectrum is

calculated from averaging over the nearest-neighbor distribution in a randomly dis-

tributed ground state atom sample at different densities shown in Figure 7.2(b,c).

It can be seen that the spectral shape strongly depends on the density of ground

state atoms. It is experimentally challenging to observe the macrodimers because the

broadening of 58D5{2 ` 58D5{2 asymptote to the negative detuning obstructs the ap-

pearance of expected molecular lines. It is important to have a narrow laser linewidth

and an ability to control the atom density, which could reduce the broadening of the

58D5{2 ` 58D5{2 line and help to observe the molecular line. One might also consider

applying a short pulse to make seed atoms before application of a long excitation

pulse to form molecules, as explained in Reference [113].
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APPENDIX A

Uncertainty calculation

A.1 Magnification

Peak positions and local parabolic fit uncertainties obtained from the experiment

in Chapter IV are shown in Table A.1. The total relative uncertainty of magnification

are shown in Table A.2.

Table A.1: Values obtained from local parabolic fits of the interference peaks.

peak position uncertainty peak spacing uncertainty of peak spacing

(pixel) (pixel) (pixel) (pixel)

95.66 0.28

155.06 0.21 (155.06-95.66)=59.40
a

p0.28q2 ` p0.21q2 “ 0.35

217.01 0.11 (217.01-155.06)=61.95
a

p0.21q2 ` p0.11q2 “ 0.24

Weighted average peak spacing 61.16 0.20

Table A.2: Statistical uncertainty for magnification calibration.

Statistical relative uncertainty p0.2{61.16q “ 0.003

Field distortion relative uncertainty p61.95 ´ 59.40q{p2 ˆ 61.16q “ 0.02

Total relative uncertainty
a

p0.003q2 ` p0.02q2 “ 0.02

A.2 R0 calculation

R0 is obtained from weighted averaging of interatomic separations at the two

earliest wait times.
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Table A.3: Interatomic separation at the two earliest wait times.

wait time separation, Ri uncertainty, σi

(µs) (µm) (µm)

0.25 8.83 0.09

2.5 8.78 0.02

Weighted average 8.78 0.02

The weighted average is obtained from [117]

x̄ “

ř

pxi{σ
2
i q

ř

p1{σ2
i q

ùñ R0 “
pR1

σ2
1

` R2

σ2
2

q

p 1
σ2
1

` 1
σ2
2
q

“ 8.78 µm . (A.1)

The weighted uncertainty is obtained from

σ “

d

1
ř

p1{σ2
i q

ùñ σ0 “

d

1

p 1
σ2
1

` 1
σ2
2
q

“ 0.02 µm . (A.2)

A.3 C6 calculation

C6 is obtained from Equation (4.3) in Section 4.3,

C6 “
1

2
µV 2

t R
6
0 . (A.3)

Using R0 “ 8.78 ˘ 0.02 µm (obtained from the local parabolic fit of the IpRq curves)

and Vt “ 0.182 ˘ 0.008 m/s (obtained from the linear fit of the most probable sepa-

rations) leads to C6 “ p5.4 ˘ 0.5q ˆ 10´58 Jm6, where the error propagation is given

by

σC6 “

c

σ2
Vt

p
BC6

BVt

q2 ` σ2
R0

p
BC6

BR0

q2

“

c

σ2
Vt

p2
C6

Vt

q2 ` σ2
R0

p6
C6

R0

q2

σC6

C6

“

c

p2
σVt

Vt

q2 ` p6
σR0

R0

q2

“ 0.09 (relative uncertainty)

(A.4)
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A.4 Additional uncertainty from magnification

The values R0 and Vt used in Section A.3 are obtained by multiplying the measured

values (R0,i and Vt,i; in units of pixel and pixel/s, respectively) with the magnification

calibration factor (M). Equation (A.3) can be written as

C6 “
1

2
µpVt,i ˆ Mq2pR0,i ˆ Mq6

“
1

2
µpVt,iq

2pR0,iq
6pMq8

(A.5)

The relative uncertainty of C6 including the magnification uncertainty becomes

σC1
6

C 1
6

“

c

p2
σVt,i

Vt,i

q2 ` p6
σR0,i

R0,i

q2 ` p8
σM

M
q2

“

c

p
σC6

C6

q2 ` p8
σM

M
q2

“
a

p0.09q2 ` p8 ˆ 0.02q2 (Equation (A.4) and Table A.2)

“ 0.18 (relative uncertainty)

(A.6)

The final relative uncertainty of C6 follows from three statistically independent

contributions: the fit uncertainty for Vt, the fit uncertainty for R0, and the magnifi-

cation uncertainty. The respective powers at which these quantities enter into C6 are

2, 6, and 8. This leads to C6 “ p5.4 ˘ 1.0q ˆ 10´58 Jm6, as presented in Chapter IV.
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[40] Martin Gärttner, Kilian P. Heeg, Thomas Gasenzer, and Jörg Evers. Finite-size ef-
fects in strongly interacting Rydberg gases. Phys. Rev. A, 86(3):033422, September 2012.
doi: 10.1103/PhysRevA.86.033422. URL http://link.aps.org/doi/10.1103/PhysRevA.

86.033422.

[41] T. Pohl, E. Demler, and M. D. Lukin. Dynamical Crystallization in the Dipole Blockade of
Ultracold Atoms. Phys. Rev. Lett., 104(4):043002, January 2010. doi: 10.1103/PhysRevLett.
104.043002. URL http://link.aps.org/doi/10.1103/PhysRevLett.104.043002.

[42] R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt, and S. J. J. M. F.
Kokkelmans. Adiabatic formation of Rydberg crystals with chirped laser pulses. J. Phys. B:
At. Mol. Opt. Phys., 44(18):184008, 2011. ISSN 0953-4075. doi: 10.1088/0953-4075/44/18/
184008. URL http://stacks.iop.org/0953-4075/44/i=18/a=184008.

[43] P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macr̀ı, T. Pohl, I. Bloch,
and C. Gross. Crystallization in Ising quantum magnets. Science, 347(6229):1455–1458,
March 2015. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1258351. URL http:

//www.sciencemag.org/content/347/6229/1455.

[44] David Petrosyan, Klaus Mølmer, and Michael Fleischhauer. On the adiabatic preparation of
spatially-ordered Rydberg excitations of atoms in a one-dimensional optical lattice by laser
frequency sweeps. J. Phys. B: At. Mol. Opt. Phys., 49(8):084003, 2016. ISSN 0953-4075.
doi: 10.1088/0953-4075/49/8/084003. URL http://stacks.iop.org/0953-4075/49/i=8/

a=084003.

98



[45] C. Ates and I. Lesanovsky. Entropic enhancement of spatial correlations in a laser-driven
Rydberg gas. Phys. Rev. A, 86(1):013408, July 2012. doi: 10.1103/PhysRevA.86.013408.
URL http://link.aps.org/doi/10.1103/PhysRevA.86.013408.
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Hans Peter Büchler, and Tilman Pfau. An experimental and theoretical guide to strongly
interacting Rydberg gases. J. Phys. B: At. Mol. Opt. Phys., 45(11):113001, 2012. ISSN 0953-
4075. doi: 10.1088/0953-4075/45/11/113001. URL http://stacks.iop.org/0953-4075/45/

i=11/a=113001.

[77] Peter Schauss. High-resolution imaging of ordering in Rydberg many-body systems. PhD
thesis, Ludwig-Maximilians-Universität München, February 2015. URL https://edoc.ub.

uni-muenchen.de/18152/.

[78] F. Gounand. Calculation of radial matrix elements and radiative lifetimes for highly excited
states of alkali atoms using the Coulomb approximation. J. Phys. France, 40(5):457–460, May
1979. ISSN 0302-0738. doi: 10.1051/jphys:01979004005045700. URL http://dx.doi.org/

10.1051/jphys:01979004005045700.

[79] John W. Farley and William H. Wing. Accurate calculation of dynamic Stark shifts
and depopulation rates of Rydberg energy levels induced by blackbody radiation. Hydro-
gen, helium, and alkali-metal atoms. Phys. Rev. A, 23(5):2397–2424, May 1981. doi:
10.1103/PhysRevA.23.2397. URL http://link.aps.org/doi/10.1103/PhysRevA.23.2397.

101



[80] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin. Quasiclassical calculations
of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP ,
and nD alkali-metal atoms with n ď 80. Phys. Rev. A, 79(5):052504, May 2009. doi: 10.1103/
PhysRevA.79.052504. URL http://link.aps.org/doi/10.1103/PhysRevA.79.052504.

[81] Moody L. Coffman. Correction to the Rydberg Constant for Finite Nuclear Mass. American
Journal of Physics, 33(10):820–823, October 1965. ISSN 0002-9505. doi: 10.1119/1.1970992.
URL http://aapt.scitation.org/doi/10.1119/1.1970992.

[82] Peter J. Mohr, David B. Newell, and Barry N. Taylor. CODATA recommended values of the
fundamental physical constants: 2014. Rev. Mod. Phys., 88(3):035009, September 2016. doi:
10.1103/RevModPhys.88.035009. URL http://link.aps.org/doi/10.1103/RevModPhys.

88.035009.

[83] Gordon W. F. Drake. Springer Handbook of Atomic, Molecular, and Optical Physics. 2006.
ISBN 978-0-387-26308-3. URL http://www.springer.com/us/book/9780387208022.

[84] Wenhui Li, I. Mourachko, M. W. Noel, and T. F. Gallagher. Millimeter-wave spectroscopy
of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and
nd series. Phys. Rev. A, 67(5):052502, May 2003. doi: 10.1103/PhysRevA.67.052502. URL
http://link.aps.org/doi/10.1103/PhysRevA.67.052502.

[85] Markus Mack, Florian Karlewski, Helge Hattermann, Simone Höckh, Florian Jessen, Daniel
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