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ABSTRACT

Bio-inspired Hardware Architectures for Memory, Image Processing, and Control
Applications

by

Yalcin Yilmaz

Chair: Pinaki Mazumder

Emerging technologies are expected to partially replace and enhance CMOS systems

as the end of transistor scaling approaches. A particular type of emerging technology

of interest is the variable resistance devices due to their scalability, non-volatile nature,

and CMOS process compatibility. The goal of this dissertation is to present circuit and

system level applications of CMOS and variable resistance devices with bio-inspired

computation paradigms as the main focus. The summary of the results offered per

chapter is as follows:

In the first chapter of this thesis, an introduction to the work presented in the

rest of this thesis and the model for the variable resistance device is provided.

In the second chapter of this thesis, a crossbar memory architecture that utilizes

a reduced constraint read-monitored-write scheme is presented. Variable resistance

based crossbar memories are prime candidates to succeed the Flash as the main-

stream nonvolatile memory due to their density, scalability, and write endurance.

The proposed scheme supports multi-bit storage per cell and utilizes reduced hard-

ware, aiming to decrease the feedback complexity and latency while still operating
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with CMOS compatible voltages. Additionally, a read technique that can successfully

distinguish resistive states under the existence of resistance drift due to read/write

disturbances in the array is presented. Derivations of analytical relations are provided

to set forth a design methodology in selecting peripheral device parameters.

In the third chapter of this thesis, an analog programmable resistive grid-based

architecture mimicking the cellular connections of a biological retina in the most basic

level, capable of performing various real time image processing tasks such as edge

and line detections, is presented. Real time vision systems require computationally

intensive tasks which often benefit greatly from fast and accurate feature extractions.

Resistive grid-based analog structures have been shown to perform these tasks with

high accuracy and added advantages of compact area, noise immunity, and lower

power consumption compared to their digital counterparts. However, these are static

structures that can only perform one type of image processing task. The proposed

unit cell structure employs 3-D confined resonant tunneling diodes called quantum

dots for signal amplification and latching, and these dots are interconnected between

neighboring cells through non-volatile continuously variable resistive elements. A

method to program connections is introduced and verified through circuit simulations.

Various diffusion characteristics, edge detection, and line detection tasks have been

demonstrated through simulations using a 2-D array of the proposed cell structure,

and analytical models have been provided.

In the fourth chapter of this thesis, a bio-inspired hardware designed to solve

the optimal control problem for general systems is presented. Adaptive Dynamic

Programming algorithms provide means to approximate optimal control actions for

linear and non-linear systems. Action-Critic Networks based approach is an efficient

way to approximately evaluate the cost function and the optimal control actions.

However, due to its computation intensiveness, this approach is usually implemented

in high level programming languages run using general purpose processors. The
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presented hardware design is aimed at approximating the solution to the Bellman

equation to find the optimal control action and to reduce the computation time and

the hardware overhead by using the Heuristic Dynamic Programming algorithm which

is a form of Adaptive Dynamic Programming. The proposed hardware operating

at mere speed of 10 MHz yields 237 times faster learning rate in comparison to

conventional software implementations running on fast processors such as the 1.2

GHz Intel Xeon processor. The proposed system-on-chip (SoC) integrated circuit is

designed using 65 nm CMOS LP technology, and has a dimension of 1950 µm ×

1550 µm while consuming 2.1 mW at 10 MHz operation frequency and 1.2 V supply

voltage.
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CHAPTER I

Introduction

CMOS scaling has been consistently providing increased density for the mod-

ern VLSI chips as predicted by the Moore’s law, which dictates that the number of

transistors in a semiconductor chip doubles approximately every two years. CMOS

technology has facilitated Van Neumann architecture based computation paradigms

to flourish and dominate the digital world for decades. However, as the transis-

tor scaling is reaching its physical limits, and with the emergence of new technologies

that provide interesting physical properties, alternative computation paradigms might

need to be adopted in wide range of applications.

The nervous systems of living organisms perform many complex tasks with much

more energy and computational efficiency than the current VLSI chips. For exam-

ple, human brain can perform 1017 FLOPS while dissipating around merely 15W.

Therefore, bio-inspired neuromorphic computation paradigms have been attracting

significant attention. Especially, mimicking neuron and synapse functionalities with

CMOS circuitry has been the goal of many researchers in order to investigate if the

computational efficiency of the biological systems can be attained on semiconductor

chips.

The emerging technologies provide inherent advantages over the CMOS technol-

ogy in some applications due to the fact that their operation principles are based
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on different physical properties. For example, such devices facilitate the mapping

of certain computations directly to their physical properties which mean that a sin-

gle device can realize a functionality that would otherwise require tens of CMOS

transistors.

Among the emerging technologies, programmable variable resistance devices have

recently attracted significant attention in various applications (bio-inspired and oth-

erwise) after Hewlett-Packard research labs revealed that ”memristance” can be ob-

served in nano-scale thin film devices [1]. The significance of these devices arises

from the fact that they can retain their resistive state even when power is turned

off, displaying non-volatility and they might enable scaling beyond CMOS technol-

ogy limits. The variable resistance characteristics of these devices are proposed to be

utilized in ultra-dense crossbar memories [2], configurable logic applications and as

synaptic connections in neuromorphic architectures [3]. They have also been used for

carrying out image processing tasks which benefit from their non-linearity and adap-

tive characteristics [4]. Most of these applications could benefit from the use of these

devices more if the devices show properties of long term stability of resistive states

and little or no degradation of these states when the values stored in these devices

are read. Fabrication results reported in [5] indicate the observation of diode-like be-

havior in amorphous Silicon (a-Si) devices which are undisturbed when the voltages

across the devices are below a certain threshold and can retain their states more than

4 years at room temperature.

This thesis focuses on the circuit and system level applications of CMOS and

variable resistance devices, bio-inspired computation paradigms being the main fo-

cus. The first application that will be presented is a non-volatile multi-level crossbar

memory, capable of storing two or more bits per cell, facilitating the design of ultra-

dense data storage. This application has the most potential for immediate adoption

for commercialization as it provides increased memory density, reducing storage cost
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per bit. The following applications focus on the bio-inspired computation paradigms,

one being the implementation of a programmable resistive grid acting as an artificial

retina to realize various computer vision tasks such as edge and line detection. In

fact, the structure can be programmed to implement different diffusion characteristics

which can be extended to other image processing tasks. The final application that

will be presented is the most significant contribution of this thesis, which provides

a bio-inspired hardware to solve the optimal control problem for general systems.

Living organisms interact with their environments and learn from their experiences

to optimize their actions to get the best outcome. For example, they try to find the

best food source, find the best path to avoid predators, etc. Inspired by this type

of ‘Reinforcement Learning’, a neuromorphic hardware is proposed, which efficiently

performs the objective minimization/maximization via on-chip learning mechanisms

that is otherwise implemented in high level programming languages and run on gen-

eral purpose processors with much less computation and energy efficiency.

Next subsection will provide information on the physical properties and modeling

of the variable resistance devices (memristors) which comprise the main components

presented in the next two chapters of this work.

1.1 Variable Resistance Device Model

”Memristor” is the fourth fundamental circuit element which relates charge with

magnetic flux as described by Leon Chua in [6]. HP research labs revealed in [1] that

two terminal thin-film based devices can exhibit variable resistance behavior.

As laid out in [1], these devices can be modeled as a combination of two series

variable resistors, with one of the resistors having a high dopant concentration, thus

having low resistance and the other having a low dopant concentration, thus having

high resistance. This model is visualized in Figure 1.1. Application of a voltage across

the terminals of the device triggers dopant drift. Depending on the voltage polarity,
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Figure 1.1: Variable Resistance Device Structure

the width of the doped region can increase or decrease. As the width of the doped

region increases, conductance increases and as it decreases, conductance decreases.

Therefore the total resistance of the device can be expressed as:

R =
w

D
RON + (1− w

D
)ROFF (1.1)

where w is the width of the doped region, D is the total length of the thin film, RON

is the lowest resistance when w = D and ROFF is the highest resistance when w = 0.

When the current is passed through the device, the width of the doped region, w

changes. The rate of change of w with time is:

dw(t)

dt
= µv

RON

D
i(t) (1.2)

where µv is the dopant mobility and i(t) is the current passing through the device.

The above model presented by HP labs is a linear model and does not account for

the nonlinearities that are present in most fabricated devices due to second order

boundary effects seen at thin film edges. The movement of the boundary between
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doped and undoped regions is greatly hindered when the width of the doped region

approaches device limits (i.e., w = 0 or w = D) [7]. After including the boundary

effects, the model expression becomes:

dw(t)

dt
= µv

RON

D
i(t)f(x) (1.3)

where f(x) is the window function modeling the nonlinear dopant drift. This function

is an estimation of nonlinearity and depends on the specific device behavior. A sample

function is provided in [7].

The actual switching characteristics, namely switching delay, of the devices depend

on material properties, device dimensions and biasing voltage.

There have been significant efforts in developing memristor SPICE models [8, 9,

10] and even SPICE-like simulators [11] to facilitate the design of hybrid memristor

and CMOS circuits through conventional simulation tools that are familiar to circuit

designers.

A SPICE model [8] based on this device model is adapted and implemented in

Verilog-A to carry out circuit simulations in the following chapters.
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CHAPTER II

Multi-Level Memory Architecture

2.1 Introduction

Nonvolatile memory technologies led by NAND Flash have been generating in-

creased market revenues due to the increased usage of these devices, especially in

portable consumer electronics and solid state drives (SSDs) [12]. The trend toward

the cloud storage and computing is continually demanding enterprises to invest espe-

cially in SSD-based storages, as these provide higher performance compared to hard

disk drives (HDDs) [13].

Flash memories have been providing solutions to the ever-increasing high- per-

formance storage demands with continued feature scaling. However, flash scaling is

reaching its limits due to the increased reliability problems such as aging of the oxide,

charge leakage, retention problems, and the increased capacitive coupling between

the floating gates of the neighboring cells [14].

The approaching end of the flash scaling has led researchers to look for alterna-

tive nonvolatile memory technologies that can sustain the scaling trend [15]. Many

promising emerging technologies have been proposed, each with its own advantages

and challenges. Magnetoresistive random-access memory (MRAM) [16], spin-transfer

torque random-access memory (STT-RAM) [17], phase-change memory (PCRAM)

[18] and resistive random-access memory (RRAM) [19], which is also commonly re-
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ferred to as memristive crossbar memory, have been the major candidates to supersede

the flash technology.

The successor technology has to be dense, has to be scalable, has to have high

write endurance, and has to support multi-level cell structure as this has been the

trend in flash. Variable resistance devices (memristors) as predicted by Chua in his

1971 paper [6] and realized by Hewlett-Packard Labs in [1] meet all these requirements

with their CMOS compatibility, write endurance, data retention, multilevel storage

capability, and scalability down to molecular dimensions [20].

Ever since the discovery of the missing variable resistance devices [1], they have

attracted great interest not only due to their nonvolatile nature but also due to

their hysteretic variable resistance characteristics which allowed for the realization

of unconventional circuits and systems. They have found their applications in logic

circuits [21, 22], neural computing [23, 24, 25], image processing [26], analog circuits

[27, 28], field-programmable gate arrays (FPGAs) [29, 30] and nonvolatile memory

[31, 32, 33]. However, among these, the most commercially promising application is

the nonvolatile crossbar memory due to existing consumer market.

The crossbar memory has attracted more attention, due to its increased cell den-

sity compared to the other architectures that have been proposed, such as the unfolded

architecture presented in [34], which requires more metal connections to be routed.

In order to further increase the storage density, there has been much research effort in

terms of achieving multi-bit storage per cell [33, 35] rather than single-bit. Multi-bit

provides increased storage per unit area, reducing fabrication costs.

To achieve single or multi-bit storage per cell, various write schemes have been

proposed. These schemes are split into two main categories: Pulse based schemes,

where a predetermined duration and amplitude pulse is applied to the cell vs feedback

based schemes, where the pulse duration depends on the feedback circuit, indicating

if the cell has reached the desired state [36].
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Feedback schemes are shown to have advantages over the pulse-based schemes,

as they limit the resistive distributions of the programmed cells. In [37], it has

been shown that a feedback-based scheme shows narrowing of the resistance distri-

butions compared to a pulse-based scheme. However, the use of DAC, ADC [32, 33],

or multi-stage comparisons [36] in feedback circuitry can introduce significant pe-

ripheral circuitry overhead, and can introduce latency in response time that can be

significant when the memory device is highly non-linear. Thus, a more simplistic

approach is required to reduce the circuit overhead, and to reduce latency to avoid

over-programming.

Aside from the read/write techniques, another important factor that plays a role

in the design of the resistive crossbar memory is the cell structure that is used in

the memory array. There are three major types of cell structures that have been

proposed: 1T1R, where a selection transistor is integrated in series with a resistive

device [38], 1D1R structure, where a series diode is integrated with a resistive device

[39] or the device itself shows diode-like behavior [40] and 1R structure [41], where a

resistive device does not have any series selection device or diode-like behavior. Other

device types are also proposed such as a 3-terminal resistive devices as in [42].

1T1R structure has density problem. With this structure, the memory density is

dictated by the scaling of the series transistor, which has bigger feature size than the

memristor cell itself. 1R structure has so called ”sneak paths” problem which limit the

array size due to the deterioration of sensing margins. In fact, relatively smaller-size

arrays have been shown to provide enough margin for sensing [43]. In these structures,

so called ”half-selected cells” still see VDD/2 voltage levels across them [38] and their

resistances can drift over time due to the read/write disturbances [44]. Although

some methods claim the disturbance is not significant [36], it is more pronounced in

1R architectures as there is no selection device to reduce or eliminate the leakage

through these cells. Some proposed methods such as grounding of unselected rows
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and columns can even cause the half-selected cells to see a higher voltage across them

than the selected cell as shown in [45], significantly disturbing the half-selected cells.

Thus, it is believed that 1D1R structure is the most promising solution as it

does not suffer from density issues like 1T1R and it does not suffer from the sneak

paths problem as much as the 1R structure. Indeed, Crossbar Inc. recently pre-

sented a RRAM structure that utilizes series selector devices that provide program-

ming thresholds [46], strengthening the belief that 1D1R structures will be widely

adopted in RRAM designs. In order to realize these structures, there have been

various approaches. The introduction of series diodes [39] or metal-insulator-metal

(MIM) diodes [47, 48] and the engineering of the devices to integrate diode-like behav-

ior [40, 49] in the device itself is presented in literature. Even with the series diode,

cell-to-cell isolation is not perfect. Most works in literature fail to consider what

happens to unselected or half- selected cells as the other cells are being programmed.

In this work, how the programmed resistance distributions change as all the cells in

the array are programmed is observed, and a read method that compensates for the

expanded and shifted distributions is presented.

A read/write scheme where the voltage references are derived from the interme-

diate node via means of a combination of active and passive devices, such as diodes,

diode-connected transistors, and resistors that generate distinct thresholds is put

forward. The contributions presented in this chapter include a reduced-constraint

read-monitored-write scheme which supports multi-bit storage per cell and utilizes

reduced hardware, aiming to reduce the feedback complexity and latency while still

operating with CMOS-compatible voltages, a read technique that provides enough

margins for state detection while allowing certain amount of resistance drift in the

array cells (thus reducing the need for frequent refresh operations), a relaxed array

biasing scheme that aims to facilitate read/write operations while reducing cell distur-

bances, and derivations of analytical relations to pave the path for a design methodol-
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ogy in selecting peripheral device parameters. The outlined read/write methodology

applies generally to 1D1R structures, but can be generalized to other structures with

minor modifications.

In Section II, the approach adopted for modeling of the memory cells is presented.

Section III details the memory architecture, our read/write methodology, and analyt-

ical expressions that guide the peripheral circuitry design. Section IV and V present

our simulation results for read/write operations as well as the effects of variations on

the programming voltages and the series resistance.

2.2 Multi-State Memory Architecture

2.2.1 Architecture

Proposed multi-level memory architecture is presented in Figure 2.1. The crossbar

memory array is the main storage area that is composed of metal crossbars and

resistive cells located at every intersection of these crossbars.

N-type and p-type access transistors enable the driving of the crossbars with ade-

quate voltage levels. Row and column decoders activate the relevant access transistors

depending on the location of the selected cell in the array. The voltage drivers provide

various voltage levels to adequately bias the selected or unselected cells. The read

interpreter circuitry is serially connected to the selected column through the access

transistors, and is capable of actively monitoring the resistance of the selected cell.

The interpretation results encoded in voltage levels are then fed into the compara-

tors to detect whether the desired resistive state is reached. The memory controller

is responsible for coordinating which memory operation to perform, and generates

relevant control signals to activate peripheral blocks.

In this work we present the multiplexed read and write circuitries as parallel

reads can introduce circuit overhead [50], however, our methodology can be modified
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Figure 2.1: Multi-level RRAM architecture
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to support parallel reading and writing of the cells on the selected row.

2.2.2 Read/Write Circuitry

Figure 2.2 shows the read interpreter circuitry which actively monitors the resis-

tance change in real time during a write operation, and detects the encoded state

during a read operation. The read circuitry is composed of a voltage division stage

employing diodes and resistors to interpret the voltage change across the series resis-

tor, and a comparison state employing fast comparators to detect if a desired state is

reached. Rseries is the series resistor, Vint is the voltage level on the intermediate node

that is the node connecting the read interpreter and the selected column through the

selection circuitry, Interp<2:0>signals are the outputs generated by the voltage divi-

sion stage, and Out<2:0>are the corresponding comparator outputs generated in the

comparison stage.

The series diode in the voltage division stage provides a close-to-constant voltage

reduction in the voltage to be interpreted by the circuitry, providing compaction of

the resistive states. The interpreter circuitry can be expanded depending on the

number of bits to be stored in the memory cell. For n-bit storage, 2n − 1 diodes

and comparators are needed. The resistors connected to the diode outputs have high

resistances (1M Ω) in order to minimize the effect of the interpreter circuitry on the

intermediate node voltage.

The Interp<2:0>signals are unique analog outputs, and their values decrease as

the resistance of the cell increases. The read interpreter circuity ensures that the

Interp<2>signal falls below the comparator threshold before the Interp<1>signal does,

and Interp<1>signal falls below the threshold before the Interp<0>signal. Each Interp

signal falling below the comparator threshold indicates that a particular resistive state

is reached. We have adopted the convention such that the resistive states are ‘00’,

‘01’, ‘10’ and ‘11’; where the states are listed in the order of increasing resistance.
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Figure 2.2: Read interpreter circuitry block

However, the adoption of the reverse convention where the states are in the order of

decreasing resistance is also possible.

2.2.3 Array Voltage Bias Scheme

When performing a write operation, the voltage bias across the selected memory

cell should exceed the cell threshold to achieve a fast write operation, whereas in

order to minimize the resistance change of the unselected or half-selected cells, the

voltage bias across these cells should be kept lower than the threshold of the memory

cells.

To achieve this goal, we bias the array with four different voltage levels as shown

in Figure 2.3. The selected row is applied Vselect−row, the unselected rows are applied

Vunselect−row, the unselected columns are applied Vunselect−col, and the selected column

is applied Vselect−col through the interpreter circuitry which yields an applied voltage

value of Vint on the intermediate node. These conditions are summarized as follows:
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Figure 2.3: Memory array biasing scheme. The cells that lie in white regions see
Vunselect−row − Vunselect−col, the cells that lie in light grey regions see
Vunselect−row − Vint, the cells that lie in dark grey regions see Vselect−row −
Vunselect−col across them. The selected cell represented with a thick line
sees Vselect−row − Vint across it.
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|Vselect−row − Vint| > Vmth (2.1a)

|Vselect−row − Vunselect−col| < Vmth (2.1b)

|Vunselect−row − Vint| < Vmth (2.1c)

|Vunselect−row − Vunselect−col| < Vmth (2.1d)

where Vmth is the memory cell threshold of the 1D1R cell. The above stated conditions

can be satisfied by choosing voltage values that follow the following inequality:

Vselect−row > Vunselect−col > Vunselect−row > Vint > Vselect−col (2.2)

Uneven biasing of the unselected rows and columns are also proposed in [51],

where the array is biased with voltage levels that are VDD/3 apart. However, the

scheme we propose does not have strict rules on the voltage levels, as long as the

difference between the two consecutive voltage values is selected so that it is smaller

than the magnitude of the memory cell threshold.

This biasing scheme yields four groups of cells that observe different voltage levels

at their terminals as shown in Figure 2.3. Since Vint value changes during program-

ming, the voltage difference at the terminals of the unselected cells connected to the

same column as the selected cell is not constant. Therefore, it is important to pick

the voltage levels such that the worst case voltage difference across these cells is below

the cell threshold.

2.2.4 Read/Write Operations Flow

At the beginning of the write operation, it is assumed that the selected cell in

the array is at the erase state, which corresponds to the lowest resistive state (‘00’)
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in our convention. After the controller is prompted to perform a write, it signals

the voltage drivers to apply relevant voltage levels on the array, and enables the row

and column decoders to facilitate the application of the voltages on the selected and

unselected rows and columns. As the voltages are applied, the interpreter circuitry

generates distinct analog voltage levels (Interp) that directly depend on the resistance

of the selected memory cell. As the cell resistance increases, the Interp signal levels

begin to decrease. As soon as one of these signals reaches the comparator threshold,

the corresponding comparator output (Out) signal flips. The controller checks if the

comparator outputs indicate that the desired state is reached. If the state is reached,

the controller immediately terminates application of voltages; if not, the controller

keeps enabling the application of the write voltages on the array. The flow chart

visualizing these steps is shown in Figure 2.4a. The chart also includes the possible

write protection and failed cell detection mechanisms that can be adopted similar to

flash memories.

Figure 2.4b, shows the flow chart for the read operation. The read operation is

similar to a write operation, except the voltage levels and the interpreter circuitry

used can have different characteristics, as will be discussed in the following sections.

When the controller is prompted to perform a read, it signals the voltage drivers

to apply read voltage levels on the array, and enables the row and column decoders to

facilitate the application of the these voltages on the selected and unselected rows and

columns. As the voltages are applied, the interpreter circuitry generates three distinct

Interp signals that are dependent on the resistance of the memory cell. Interp signals

are fed into the comparators. Out signals generated by the comparators indicate

which resistive state the memory is in, and the read operation completes. Unlike the

write operation, the read operation has a fixed duration, and this duration should be

kept as short as possible to reduce the read disturbance which can cause the memory

resistance to drift.
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Figure 2.4: Flow chart explaining memory operations: a) Write Operation, b) Read
Operation
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2.2.5 State Derivations

It is important to characterize the behavior of the read interpreter circuitry to-

gether with the array elements in order to understand how the component parameters

should be selected.

First, we characterize the dependence of the resistive state of the memory cell on

the intermediate node voltage. Then, we characterize the dependence of the inter-

mediate node voltage on the series diode threshold based on the detection threshold

requirements of the comparison stage and the current-voltage (IV) characteristics of

the series diode in the interpreter circuitry.

The analog voltage levels in the intermediate node that correspond to the encoded

resistive states can be characterized by the following equation:

Vint = Vselect−col +
Rseries(Vselect−row − Vselect−col − Vthm)

Rparasitics +Rcell(s) +Rseries

(2.3)

where Rcell(s) is the resistance of the selected cell at a given state and Vthm is the

cell threshold. Parasitic resistance sources represented by lumped Rparasitics term

consist of the effective resistances of the n-type and p-type access transistors and

the crossbar resistance seen by the interpreter circuitry. The read interpreter voltage

division stage outputs meet the following equality when a particular memory state is

being programmed:

VInterp3−k
= Vselect−col +

(Vint − Vdiode1 − Vselect−col)
3

k = Vc−res + Vselect−col (2.4)

where VInterp3−k
represents the voltage level at the corresponding voltage division

stage output (Interp), and k is the index of the corresponding voltage division stage

output, Vdiode1 is the threshold of the series diode in the interpreter circuitry and

Vc−res is the comparator threshold. For analysis simplicity, the resistors connected to
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the outputs of diodes are assumed to have same resistances. However, it is possible

to alter these resistances separately in order to tune the separation between resistive

states of the memory cell. The decision on where to set the resistive states is highly

dependent on the non-linear behavior of the device. The design decisions can also be

made based on the trade-off between the programming time and the resistive margins.

Solving for Vdiode1 in (2.4) yields:

Vdiode1 = Vint − Vselect−col −
3

k
Vc−res (2.5)

The above expression relates the intermediate node voltage with the series diode

threshold. We need one more expression that relates the two in order to be able

to numerically solve both to obtain Vint value, which we can plug in (2.3) to obtain

corresponding resistive state level. The additional expression can be obtained using

the diode current equation and solving for the diode threshold. The final expression

is:

Vdiode1 = 3I0Rh + Vint − Vselect−col −
kT

nq
LambertW [

3e
3I0Rh+Vint−Vselect−col

kT/nq I0Rh

kT/nq
] (2.6)

where LambertW is the lambert omega function, Rh is the magnitude of the resis-

tances connected to the diode outputs, I0 is the reverse bias saturation current, n is

the ideality factor, k is the Boltzmann constant, T is the absolute temperature and

q is the magnitude of the charge of an electron.

Since I0Rh term is extremely small, it can be omitted where it is an additive

factor. The new simplified expression yields:

Vdiode1 = Vint − Vselect−col −
kT

nq
LambertW [

3e
Vint−Vselect−col

kT/nq I0Rh

kT/nq
] (2.7)

The expressions (2.5) and (2.7) form a pair of equations with two unknown pa-
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rameters. They can be evaluated together numerically to obtain a unique pair of Vint

and Vdiode1 values which satisfy both. A unique pair is obtained for each resistive state

since expression (2.5) depends on the state to be encoded. After obtaining unique

pairs, the next step is to evaluate expression (2.3) to obtain corresponding resistive

states.

Calculated(Ω) Simulated(Ω) % Error
‘01’ 10064 10166 1.003
‘10’ 20227 20590 1.763
‘11’ 25653 26067 1.588

Table 2.1: Calculated vs. Simulated Resistance Levels

Table 2.1 lists the resistances calculated using expressions (2.3), (2.5) and (2.7) vs

the results obtained through SPECTRE simulations of a 16x16 array. The percent

error in calculations are also listed. The disagreement between the simulated and

the calculated results are less than 2% for each programmed state. The leakage

through the half-selected cells also contributes to the intermediate node voltage Vint;

however, the agreement between the simulated and calculated results indicate that

this contribution to voltage mode reading is minimized especially owing to the 1D1R

structure and the array biasing scheme used.

Another point to note is that the analytical models derived in this section are not

dependent on the resistive device model used. The proposed circuitry behaves the

same as long as the model meets the minimum and maximum resistances required for

state encoding.

2.3 Read/Write Operations

2.3.1 Read/Write Simulations

Our simulations are performed on a 16x16 array with the adoption of distributed

PI-model for the metal crossbars. The read interpreter circuitry is capable of per-
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Figure 2.5: Array biasing levels during a write operation

forming a read operation during a write operation by actively monitoring the voltage

change across the series resistor connected to the selected column via the selection

circuitry.

The bias voltages applied to the array during a write operation is shown in Fig-

ure 2.5. As explained earlier, this biasing scheme ensures that the disturbances to

the unselected cells are minimized while the selected cell is exposed to a large voltage

bias higher than the cell threshold. Example voltage levels shown in Figure 2.5 are:

Vselect−row = −Vselect−col = 1.6V , Vunselect−row = 0.82V and Vunselect−col = 0.045V .

The operation of the interpreter circuitry is shown in Figure 2.6. The voltage

division stage generates three distinct Interp signal levels which are then compared

to the selection voltage that is also applied through the interpreter circuitry. Each

Interp signal is connected to a comparator, and the comparator generates the corre-

sponding Out signal that indicates if a certain state is reached. Interp signal levels
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Figure 2.6: Interpreter operation during a write operation. The value being written
is ‘11’
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decrease as the resistance of the cell increases. Once the signal level reaches below the

comparator threshold, the comparator output (Out) signal becomes low, signaling to

the controller.

In our simulations Out<2>, Out<1>and Out<0>indicate that the states ‘01’, ‘10’ and

‘11’ are reached, respectively. The series diode provides a close-to-constant voltage

reduction of the intermediate voltage to be interpreted, allowing Interp signals to

reach the comparator threshold more quickly; thus, reducing the write time and

compacting the resistance levels.

Figure 2.7 shows writing of states ‘00’, ‘01’, ‘10’ and ‘11’. Since state ‘00’ is the

erase state of the cell, the controller does not apply any voltage to the array to change

the state, and the Out signals remain high.

In ‘01’, ‘10’ and ‘11’ cases, as the resistance of the cell increases, the Out signals

start to become low. Once the desired resistances are reached, the controller stops

applying write voltages to the array, and the Out signals become high again.

Since the read interpreter circuitry monitors the state of the cell as it is being

written, the read operation can be implemented using the same biasing scheme as

the write operation while keeping the pulse duration short to prevent significantly

altering the resistive state of the memory. Since the write operation programs each

cell to the point of detection, there is a significant read margin when the cell drifts

toward a higher resistance; however, there is no margin if the cell drifts toward a

lower resistance and a wrong value can be read. In order to mitigate this problem,

modifications on the read scheme by reducing the pulse magnitudes used, and/or

increasing the series resistance value during a read operation are proposed. The

optimizations to the read operation will be discussed further in the following sections.
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Figure 2.7: Writing of various values into the selected memory cell. Resistance change
is overlapped with interpreter output signals.
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2.3.2 Read Disturbances to the Neighboring Cells

Even though each memory cell has a built-in threshold, a voltage bias below this

value still induces a trivial resistance change in the cell. This means that the cell

resistance can drift over time due to the repeated reading of the cell or due to the

read and write operations performed on other cells in the array.

In order to quantify the effects of read disturbances in the presented architecture,

the resistance drift of the neighboring cells to a selected cell is simulated while the

selected cell is read repeatedly. Since the amount of drift is state dependent, the simu-

lations for different values stored in the memory cell and its neighbors are performed.

We have assumed the same voltage levels and the series resistance as used during a

write operation to simulate the worst case drift. As any reduction in read voltage

and increase in series resistance would yield better drift characteristics as shown in

Figure 2.8.

The results indicate that for the cases of ‘01’, ‘10’ and ‘11’, the greatest resistance

drift is observed in the cells that are connected to the same column as the selected

cell. The cells connected to the same row as the selected cell observe a drift that is

less-however, still non-zero. The remaining cells observe a close-to-zero drift within

the simulated 100 consecutive read operations. Among these three resistive states,

the greatest change is observed when the selected cell is storing ‘11’ due to the fact

that the voltage bias across the unselected cells connected to the same column as the

selected cell is highest.

In the case when the memory cell is storing ‘00’, no meaningful change in resistance

was observed, hence the results are not listed.
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Figure 2.8: Percent change of resistance in neighboring cells vs. number of read op-
erations. The cell located at the crossing of row 7 and column 7 (R7C7)
is selected.
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Figure 2.9: Write voltage sweep. How the resistive states change is shown with dashed
and dotted lines. Maximum write time which corresponds to writing of
state ‘11’ is shown with straight line.

2.4 Effects of Variations

2.4.1 Variations in Programming Voltage

As indicated by expressions (2.3), (2.5) and (2.7), the programmed states are

dependent on the voltage levels used. If the voltage bias levels are scaled, the pro-

grammed states change accordingly as shown in Figure 2.9.

The selected row and column pulse magnitudes are kept equal and are listed in the

x-axis while their signs are opposite. Although it is possible to scale the unselected

row and column voltages separately, they were reduced or increased the same amount

as the selected row and column voltage magnitudes. It was found that this scaling

scheme provided more even scaling of the applied voltages to the unselected and half

selected cells.
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The results show that as the voltage levels are increased, the programmed resis-

tance levels increase. This also results in increase in the programming time of the

cell. As the resistance levels increase, the separation between the states increases,

which can allow for better margin of detection.

Since a read operation is a write operation with an extremely short duration, the

results reported in Figure 2.9 have important consequences in terms of improving the

tolerance for resistance drift in both increasing and decreasing directions. If a cell

is written at a pulse magnitude of 1.6V, it can still be read at, for example, 1.55V

while allowing drift in its resistance. This can be further clarified by comparing the

programmed resistances for both voltage levels as shown in Table 2.2.

1.6V 1.55V MARGINH MARGINL

‘00’ 100 Ω 100 Ω 8801 Ω -
‘01’ 10166 Ω 8901 Ω 8099 Ω 1265 Ω
‘10’ 20590 Ω 18265 Ω 3125 Ω 2325 Ω
‘11’ 26067 Ω 23715 Ω 76285 Ω 2352 Ω

Table 2.2: Comparison of Resistive States

The ‘11’ state programmed at 1.6V has resistance of 26067 Ω. However, if this

programmed resistance is read at 1.55V, it would yield a value of ‘11’ since 26067

Ω is greater than the ‘11’ value written at 1.55V which is 23715 Ω. In fact, reading

at 1.55V allows the programmed resistance of 26067 Ω to drift up to the device

maximum, which is assumed to be 100 KΩ, or down to the boundary of state ‘10’,

which is 23715 Ω.

Table 2.2 lists the high and low resistance margins that are the distances of the

programmed resistances of the memory states at higher voltage level to the detection

boundaries of the lower voltage reads. It is possible to optimize these margins by

scaling the circuit parameters that contribute to the resistive states as characterized

in Section 2.2.5.
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Figure 2.10: Series Resistance Sweep. The change in programmed states vs the series
resistance value is shown for fixed write voltage levels.

2.4.2 Variations in Series Resistance

The programmed states are also dependent on the series resistance used, similar

to the case of pulse magnitudes. The change in programmed resistances versus the

series resistance is shown in Figure 2.10.

For fixed write pulse magnitude of 1.6V, the increase in series resistance results

in increase in programmed resistances. The same trend as in the case of increased

voltage levels is observed. The separation between the states increases with increased

series resistance, which can allow for better margin of detection.

Similar to the case of voltage reduction, the reduction of series resistance when

reading allows for generation of high and low margins, which in turn allows for drift

in both increasing and decreasing directions. An example is not provided for this case

in order to avoid repetition; however, similar results as in Table 2.2 can be deduced

from values plotted in Figure 2.10.
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Figure 2.11: Resistance distributions when a single device is programmed in the whole
array (a), after all the cells are programmed in the whole array (b). The
black arrows indicate a sample cell resistances. The grey dashed arrows
indicate where the lower boundaries of the resistive states shift when
reduced-impact read scheme is used.

2.4.3 Reduced-Impact Read Scheme

Even more powerful benefits can be obtained when both the read voltages and

the series resistance are scaled simultaneously.

Figure 2.9 indicates that it is not possible to scale the read pulse magnitudes to

1.5V because the lower boundary for ‘11’ state is 18891 Ω which is lower than the

‘10’ boundary (20590 Ω) for 1.6V writes. This means ‘10’ written at 1.6V would be

evaluated as ‘11’ at 1.5V reads. However, the increase in series resistance shows the

opposite trend as in the case of decrease in read voltage. Therefore, it is possible

to perform reads even below 1.5V pulse magnitude with the help of increased series

resistance.

The simulations indicated that it is possible to write the values at 1.6V with 20KΩ

resistance, and then read at 1.5V pulse magnitude with 25KΩ series resistance or at

1.25V pulse magnitude with 45KΩ series resistance.

Figure 2.11 aims to visualize how the reduced-impact read scheme works together

with the write scheme. When a single cell is programmed in the array, its resistance

can land anywhere in the distributions shown in Figure 2.11a, depending on its loca-
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Figure 2.12: Reduced impact read operation. Relevant signals are shown for each
state.
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tion in the array. In this case, the variation in resistances is due to the change in the

lumped crossbar parasitic resistance seen by the interpreter circuitry, depending on

the location of the memory cell in the array. As more cells are programmed in the

array, the resistances of the previously-programmed cells start to drift due to write

disturbances, causing the spreading of the resistance distributions as shown in Fig-

ure 2.11b. Most approaches in literature fail to address this spreading; however, write

simulations on the whole array are performed sequentially to show the spreading and

shifting of the states, and the results are presented in the next part of this section.

The reduced-impact scheme aims to shift the lower detection margins such that

the new distributions fall completely within their intended resistive states.

Figure 2.12 shows the reduced-impact read operations performed on cells storing

the four possible values. A cell located at the middle of the array is selected. The

scheme uses 1.25V pulse magnitude with 45KΩ series resistance. In each case, when

the controller receives the read enable signal, it facilitates the application of the bias

voltages on the array. How Interp signals settle depending on the value that the cell

is storing is shown. Interp signals settle in decreasing order, hence Out signals flip

in the decreasing order as well. Signals R11, R10, R01 and R00 are the controller

signals indicating whether a particular state is detected. The sequential flipping of

Out signals also cause these signals to flip; however, the correct result is obtained at

the end of the read operation.

2.4.4 Resistance Distributions after Array Writes

The consecutive write operations on the neighboring cells cause the cell resistances

to drift over time. Even though unselected and half selected cells are biased with low

voltages, the leakages during the lengthy write durations add up and cause the array

resistances to drift.

In order to quantify this drift, consecutive write operations are performed on every

32



Figure 2.13: Resistance distributions after programming the entire array with the
same value.
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cell of the array. The resulting resistance distributions are listed in Figure 2.13. The

distributions include the effects of writes to the neighboring cells and the parasitic

crossbar resistances as these values change depending on the location of the selected

memory cell. The variations from the nominal value are within the margins that

can be obtainable with the reduced-impact read scheme proposed in this section.

Therefore, it is concluded that it is possible to write to the cells in the whole array,

and then read the values using the presented read scheme while allowing margin for

additional drift that can be caused by repeated read operations.

2.5 Conclusion

In this chapter a multi-level memristor memory architecture that incorporates a

novel read-monitored-write scheme was presented. The architecture allows for pro-

gramming of the cells to the detection thresholds with very tight state distributions.

In addition, an analytical model for state derivations which can be utilized to decide

on the component parameters to be used in the design was presented. Various read

schemes where voltage reduction or series resistance increase or a combination of both

can be used to evaluate the resistive state of the memory cell were also presented.

Finally, the resistive distributions after the entire array is written were shown. These

distributions fall within the detection margins of the proposed read methods.
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CHAPTER III

Image Processing by a Programmable Artificial

Retina Comprising Quantum Dots and Variable

Resistance Devices

3.1 Introduction

Feature extraction is a fundamental task in vision systems as extracted features

provide bases for correlation. In digital general purpose processors, many image

processing applications require an immense number of operations per second, albeit

these applications do not require floating point accuracy [52]. Use of fast, simple

and relatively accurate extraction systems in vision machines directly reduces the

processing time and required iterations. The main processor element can thereby rely

on the reduced dataset that provides quality information on the extracted features

for decision making.

Inherent parallel processing capabilities of Cellular Nonlinear Network (CNN)

based architectures make them an efficient platform for various image processing

tasks [53, 54]. Real time operation provides fast processing times, and local connec-

tions provide simplicity, scalability and power efficiency for VLSI implementations

[55]. Therefore, much effort has been put into developing novel methods and finding

adequate CNN templates to perform detail extraction tasks in vision systems, such
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as edge detection [56, 57, 58] which benefit greatly from immense parallelism and

computational efficiency.

Resistive grid based architectures are shown to provide simple yet efficient ways

to perform many image processing tasks and motion detection, and they are simple

forms of CNNs [53]. Additional advantages including compact area, noise immu-

nity and lower power consumption compared to digital computation structures, make

them attractive for researchers. They are also relatively insensitive to mismatches

in component values in VLSI chips [59]. However, most of the resistive grid based

architectures in literature are static application specific structures and do not have

the functional flexibility of their digital counterparts. Therefore, novel methods and

devices should be introduced in these architectures to achieve functional versatility.

Resonant tunneling diodes (RTDs) have been employed in many applications in-

cluding various CNN architectures due to their negative differential resistance (NDR)

and fast switching characteristics. In [60] RTDs have been introduced as variable

resistors to introduce versatility and compactness to CNN unit cells. In [61] a CNN

architecture employing RTDs is investigated for its operation and it is shown that

RTDs support fast settling times for various image processing applications.

In this chapter, a variable resistance grid-based architecture which improves the

velocity tuned filter (VTF) architecture proposed by our group [62] is presented. It

is demonstrated that when variable resistance connections are incorporated, various

diffusion characteristics are obtained, and the developed architecture can be pro-

grammed for different image processing applications such as edge detection and line

detection providing flexible analog processing environment that can perform vari-

ous tasks. In addition RTDs are utilized to provide high speed signal detection and

amplification. A method to program resistive connections in four directions is also

demonstrated.
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3.2 CNN Architecture

3.2.1 Resonant Tunneling Diode Model and Biasing

RTDs have been employed in many circuit applications utilizing their fundamental

characteristic of negative differential resistance (NDR). NDR implies that for certain

range, the increase in applied voltage across an NDR device will result in decreased

current through it, indicating increased resistance with increased voltage.

RTD conductance is determined by two mechanisms: The first mechanism is res-

onant tunneling, which provides the NDR characteristic, and the other mechanism is

diode conduction.

The NDR property of the RTD I-V characteristics is shown in Figure 3.1 utilizing

the physics-based model laid out in [63]. The RTD current JRTD(V ) is given by:

J1(V ) =
qm∗kTΓ

4π2~3
ln(

1 + e(EF−Er+n1qV/2)/kT

1 + e(EF−Er−n1qV/2)/kT
) ∗ (

π

2
+ arctan(

Er − n1qV/2

Γ/2
)) (3.1a)

J2(V ) = H(en2qV/kT − 1) (3.1b)

JRTD(V ) = J1(V ) + J2(V ) (3.1c)

where J1(V ) is the current due to resonant tunneling and J2(V ) is the diode con-

duction current. EF is the Fermi energy, Er is the resonant level energy, Γ is the

resonant width, n1 and n2 are empirical model parameters. q, m∗, k, T , ~ are elec-

tron charge, effective mass, Boltzmann constant, absolute temperature, and reduced

Planck constant respectively. V is the voltage across the device.

The main advantage of the NDR characteristic becomes apparent when RTD is

biased with a static current source. If current magnitude of the source is selected

such that it intersects RTD I-V curve in three places as shown in Figure 3.1, two

stable voltage points are obtained. This result indicates that for the same amount
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Figure 3.1: RTD I-V curve. The red line corresponds to the bias level. The intersec-
tions of the two lines represent the stable operating points.
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of current passing through RTD, the voltage across it can take two stable values

which correspond to the lowest and highest voltage intersection points. RTD does

not stabilize in the middle intersection point, since any small disturbance causes it to

switch to one of the outer intersection points.

The bistable characteristic of this structure can be utilized to build voltage level

detectors since any voltage below switching threshold results in stabilizing in the

low state, and any voltage above threshold results in stabilizing in high state. RTD

switching threshold can be approximated as:

VthRTD
=
Vpeak + Vvalley

2
(3.2)

where Vpeak and Vvalley are the peak and the valley voltages of the RTD, respectively.

When used in the detection mode, as the system starts all the RTDs are biased to

the low voltage state, and a controlled disturbance toward a higher voltage results in

the RTDs stabilizing at the higher stable level, allowing the detection and locking of

the signal state.

3.2.2 Unit Cell Structure

Figure 3.2a shows the proposed unit cell structure. It is composed of variable

resistance devices to provide resistive connections to neighboring cells, diodes to in-

troduce unidirectionality to these connections, and RTDs to detect and latch signal

levels. The proposed cell has an input node denoted by In,m, a center node Cn,m,

and an output node On,m. The input is driven by voltage signals that correspond

to the pixel intensity level which can be generated by a photo-detector. The con-

nections employing variable resistance devices provide programmability for the re-

alization of different characteristics including isotropic, anisotropic symmetrical and
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Figure 3.2: (a) Variable resistance unit cell (b) Top view of the processing array. A
unit cell is highlighted in red. Red and green lines denote programming
connections to access transistors.

asymmetrical diffusion in grid architecture giving way to various spatiotemporal filter

implementations.

Four variable resistors are connected to the center nodes of the unit cell and its

neighbors, making the center node voltage a function of the center node voltages

of the neighboring cells. Resistances of connections determine how much neighbors’

center voltages contribute to the center voltage of the cell. Series diodes allow current

in one direction separating how outputs of the two neighboring cells affect each other.

The output node is isolated from the center node by a diode providing a voltage

barrier equal to the diode threshold. RTDs enable detection and latching of output

signals. When biased with a current source, RTDs initially settle at the lower stable

voltage. When the voltage level on the center node goes above detection threshold,
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RTDs settle at the higher stable voltage. Two stable states provide a binary output.

The detection threshold is equal to the sum of the diode threshold and the switching

threshold of the RTD.

Figure 3.2b shows unit cells connected in a 2D array fashion. A top view for a

4x4 sample processing array is provided to show the neighboring connections. The

unit cell shown in Figure 3.2a is highlighted in red. In order to program certain

functionalities in the array, the resistances need to be altered. The Green lines in

Figure 3.2b indicate the programming connections to the cells. Each green connection

denotes programming-enable signal and voltage driver connections. Access transistors

are used to isolate the connections during normal array operations. Programming

connections can also be made to share the same connections as cell inputs, thus

reducing number of access transistors if the input resistances are designed to be small

at the expense of increased programming time or increased programming voltages

due to voltage drop across the input resistor. Connections shown in red and blue

as well as access transistors are needed during cell erase to bypass reverse biased

diodes. During erase operation voltage polarity across the variable resistance device

is reversed.

3.3 Programming Variable Resistance Connections

To be able to implement different processing tasks in the same array, we need a

procedure to program the resistances of the resistive connections.

Figure 3.3 shows the programming flow for an N x N array. Programming is

performed in four directions (left-to-right, right-to-left, top-to-bottom, and bottom-

to-top) one direction at a time. Programming of the whole array is completed in

four passes across the array in different directions to change the resistances in these

directions. While a pass is being made in one direction, the resistances are set in a

column by column fashion. Programming in this fashion reduces the total required
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Figure 3.3: Array programming flow

42



time significantly compared to programming every resistive cell in the array individu-

ally. The duration and voltage amplitude of the write pulses determine the resistance

to be stored in the connections.

Within one direction, same voltage amplitudes and pulse durations are used. How-

ever, pulse characteristics can be changed in different directions to program different

resistances, hence to program different functionalities to the array.

A sample programming operation in the left to right direction is shown in Fig-

ure 3.4. All the connections in the array are initially at the low resistance state. The

programming begins by setting the first column write voltage to high (indicated with

a red line) and the remaining columns (indicated with a green line) to low (0V in our

implementation).

In this configuration the first column of connections observe a non-zero voltage

difference across, whereas the remaining connections observe zero voltage difference.

In the first column, only half of the connections are programmed due to the fact that

half of the series diodes are forward-biased conducting high currents, and the other

half are reverse-biased.

Once the resistances of the first column connections reach the desired level, the

second column write voltage is set to high, making the voltage difference across these

connections zero, thus stopping their programming. The rise of the voltage levels

on the second column in turn causes the voltage difference across the next column

connections to be non-zero. Once these connections reach the desired resistance, the

next column’s voltage is raised. This process is repeated until all the connections in

the selected direction are programmed.

When programming in the selected direction is completed, another direction is

selected and the same process is repeated in this new direction. The use of differ-

ent voltages or change of voltage raise-durations result in programming of different

resistances in this direction.
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Figure 3.4: Programming in one direction. The green lines indicate the low voltage
level (0V); other colors indicate altered high voltage levels. The different
colors of variable resistance devices indicate different final resistances: a)
Array in initial state, b) Programming started in left to right direction,
c) Programming of first column completed in left to right direction, d)
Programming of all connections completed in left to right direction, e)
Programming of first column completed in right to left direction, f) Whole
array after all connections are programmed in all directions
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Figure 3.5: Programming in one direction in a 4 by 4 array: Programming voltages

Figure 3.5, sample left-to-right direction programming voltages to the array are

shown. As described earlier, write voltages are applied per column basis. Voltage

levels are increased with same time intervals.

Figure 3.6 shows how the resistances of the connections change. The programming

scheme succeeds in tuning all the connections in the same direction to the same

resistive state.

In order for the proposed method to be feasible, two critical requirements must

be met: The first requirement is that the variable resistive device should be able

to be programmed even when there is a forward-biased diode connected in series.

The second requirement is that the resistive state of the device should not change or

should change negligibly when there is a reverse-biased diode connected in series.

Figure 3.7 shows effect of having a series diode with the variable resistance de-

vice while performing a programming operation. The results indicate that having a

forward-biased series diode with the device causes the device to be programmed to a

lower resistance than when programmed with no series diode. This reduction in resis-

tance can be compensated for by increasing programming time or voltage amplitude.

This result indicates that it is still possible to program connections with series diode.
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Figure 3.6: Programming in one direction in a 4 by 4 array: Resistances in the same
row

Figure 3.7: Connections under different bias conditions
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A series reverse-biased diode causes no significant change in the resistance of the

device during programming, effectively shielding it from the high voltage bias. This

property enables programming connections in opposite directions possible, which is

crucial in our proposed scheme.

3.4 Analytical Modeling

3.4.1 Edge Detection

Edge detection provides physical information about object boundaries in processed

images and is a fundamental feature extraction task in vision systems. An edge is

located at the transition points between two different intensity levels.

The grid provides diffusion characteristics that can be adjusted by controlling the

resistances. These characteristics combined together with bistable RTD biasing can

be used to implement various image processing tasks including edge detection. When

all the memristors are programmed to the same resistance, the grid shows symmetric

diffusion properties that can be applied to detect edges or contours of an input image.

An edge exists whenever a low input is neighbored by a high input, since an edge

is defined where the discontinuity between the input voltages occur.

A simplified analysis on one dimensional connection (Figure 3.8) is carried out

to show that this structure can be used for edge detection. In the figure, In,m is

the input voltage level, Cn,m is the center node voltage level and On,m is the output

voltage level for the nth node.

It is assumed that there is an edge between inputs In,m and In+1,m. Thus, In,m and

inputs before it are high and In+1,m and inputs after it are low (0V for this analysis

purposes).

The analysis starts by applying Kirchoff’s Current law to nodes Cn,m and Cn+1,m

to obtain the node voltages. Initially the effects of the nearest neighborhood are
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Figure 3.8: CNN circuitry in 1D case

ignored.

In,m − Cn,m

r
=
Cn,m − Cn+1,m

M
+

Cn,m

RRTD1

(3.3)

where r is the input resistance, M is the resistance of the device, RRTD1 is the

effective resistance of center node RTD, and Cn,m/RRTD1 indicates current through

RTD. The current branch through the diode to the output nodes is also ignored, since

the diode current is order of magnitude less until the center node voltage reaches the

switching threshold at the output node. When the RTD current equation is inserted,

the equation becomes:

In,m − Cn,m

r
=
Cn,m − Cn+1,m

M
+
qm∗kTΓ

4π2~3
ln(

1 + e(EF−Er+n1qCn,m/2)/kT

1 + e(EF−Er−n1qCn,m/2)/kT
)

∗ (
π

2
+ arctan(

Er − n1qCn,m/2

Γ/2
)) +H(en2qCn,m/kT − 1)

(3.4)
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Similarly at node Cn+1,m:

Cn,m − Cn+1,m

M
=
Cn+1,m

r
+
Cn+1,m

RRTD2

(3.5)

and

Cn,m − Cn+1,m

M
=
Cn+1,m

r
+
qm∗kTΓ

4π2~3
ln(

1 + e(EF−Er+n1qCn+1,m/2)/kT

1 + e(EF−Er−n1qCn+1,m/2)/kT
)

∗ (
π

2
+ arctan(

Er − n1qCn+1,m/2

Γ/2
)) +H(en2qCn+1,m/kT − 1)

(3.6)

RRTD2 is the effective resistance of output node RTD. Equations (3.4) and (3.6)

can be evaluated numerically to obtain the intermediate node voltages Cn,m and

Cn+1,m. Designing what these voltages will be is essential to obtaining edge detection

functionality. When there is an edge, the center node voltage Cn,m should rise to

disturb the detection node RTD.

Parameters should be picked such that:

Cn,m > VthresholdwhenIn,m = Vhigh (3.7a)

Cn+1,m < VthresholdwhenIn+1,m = Vlow(0V ) (3.7b)

Vthreshold = Vd + VRTD (3.7c)

Vd is the diode threshold, and VRTD is the switching threshold of the RTD. In this

way, the output On,m will switch to high stable point, indicating there is an edge and

On+1,m will remain at low stable point.

If the effects of the nearing neighbors are considered, one can see that since In+2,m

is also low, the actual voltage on the node Cn+1,m will be lower than the above

calculated value, hence not violating the condition Cn+1,m < Vthreshold, but instead

further helping to meet it. Similarly, In+1,m helps node Cn,m to be higher than
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Vthreshold. In 2-D case, the state equation of the diffusion circuitry can be obtained as

In,m − Cn,m

r
+
Cn−1,m − Cn,m

M
+
Cn,m−1 − Cn,m

M
+
Cn+1,m − Cn,m

M

+
Cn,m+1 − Cn,m

M
− IRTD = c

dsn,m
dt

(3.8)

where:

−IRTD =
Cn,m

RRTD

(3.9)

and c is parasitic capacitance of the RTD. Assuming RTD has a finite resistance,

replacing (3.9) in (3.8):

In,m = Cn,m(1 +
4r

M
+

r

RRTD

)− r

M
(Cn−1,m + Cn,m−1 + Cn+1,m + Cn,m+1) + rc

dCn,m

dt

(3.10)

Taking Fourier transform, the transfer function is:

H(fm, fn, ft) =
S(fm, fn, ft)

E(fm, fn, ft)
=

1

(1 + 4r
M

+ r
RRTD

)− 2r
M

(cos(2πfm) + cos(2πfn)) + rc2πjft

(3.11)

As the RTD I-V curve indicates, it acts as a positive variable resistor, indicating

that the real part of the denominator of the transfer function is always positive.

3.4.2 Line Detection

Introducing anisotropy in the vertical and horizontal directions in the resistive

grid allows the implementation of line detection. In order to detect lines, the center

node voltages should be made a weaker function of the neighboring cells’ center node

voltages in one direction and a stronger function in the other. For example, high
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resistance in the vertical, and low resistance in the horizontal direction limits the

effects of the neighboring cells in the vertical direction and enables diffusion in the

horizontal direction, which means the detection of lines in the horizontal direction.

Low resistance in the vertical and high resistance in the horizontal direction limits

the effects of the neighboring cells in the horizontal direction and enables diffusion in

the vertical direction, which means the detection of vertical lines. In this case, the

diffusion network state equation becomes:

In,m = Cn,m(1 +
2r

Mhigh

+
2r

Mlow

+
r

RRTD

)− r

Mhigh

(Cn−1,m + Cn+1,m)

− r

Mlow

(Cn,m−1 + Cn,m+1) + rc
dCn,m

dt

(3.12)

where Mhigh is the resistance of the variable resistance device when programmed to

high, and Mlow is the resistance when programmed to low. The state equation is

symmetrical for vertical and horizontal line detection cases.

3.5 Simulation Results

Simulation results verifying various diffusion configurations and demonstrating

edge detection and line detection operations are presented in this section. Simula-

tions are carried out on a 64x64 array. RTDs based on device characteristics shown in

Figure 3.1 as well as the variable resistance device model from [8] are used. Simula-

tions are carried out with nominal parameters to provide proof of concept. However,

studies carried out in [59] show that resistive grid-based architectures are variation

tolerant and can operate with non-optimal values. Therefore, the proposed architec-

ture is expected to be variation tolerant. For example, for the edge detection case,

this tolerance depends on how much margin is left between the designed high/low

voltages and the threshold.
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Figure 3.9: Various diffusion characteristics that can be implemented in proposed
architecture. a) Input, b) Isotropic Diffusion, c) Anisotropic symmetrical
diffusion in horizontal direction, d) Anisotropic symmetrical diffusion in
vertical direction, e) Anisotropic asymmetrical diffusion

The proposed memristive grid can support the different diffusion characteristics

mentioned above. These characteristics are important in many image processing

applications. Anisotropic diffusion can be used for edge extraction applications [64],

anisotropic symmetrical diffusion characteristics can be used for line detection, and

anisotropic asymmetrical diffusion characteristics can be used for motion detection

[65].

Figure 3.9 shows diffusion characteristics that can be realized in the proposed ar-

chitecture. When all the connections are programmed to the same resistance, isotropic

diffusion (Figure 3.9b) is obtained. When horizontal connectiions are programmed
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Figure 3.10: (a) Edge detection sample input with irregular edges, (b) Output result

to low and vertical ones are programmed to high resistance, anisotropic symmetrical

diffusion in horizontal direction (Figure 3.9c) is obtained. When the resistances of

the horizontal and vertical memristors are programmed reverse with respect to the

previous case, anisotropic symmetrical diffusion in vertical direction (Figure 3.9d)

is achieved. Finally when all resistances are programmed to different resistances,

anisotropic asymmetrical diffusion (Figure 3.9e) is achieved. These characteristics or

combinations of them can be utilized to perform various vision tasks.

3.5.1 Edge Detection

Edge detection simulations are carried out on two types of input images: First,

with irregular edges and intermediate pixel intensity values around the edges shown

in Figure 3.10; second, with regular edges and maximum pixel intensity difference

around the edges shown in Figure 3.11.

In edge detection mode, the proposed architecture is initiated with high and low

input values corresponding to black and white pixels with scaled voltages in between

corresponding to shades of gray. When the first input type shown in Fig. 9a is applied

to the array, the edge pattern shown in Figure 3.10b is observed at the On,m nodes of
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Figure 3.11: (a) Edge detection sample 2 with regular edges (b) Output at 2.5ns (c)
Output at 100ns

the architecture. In Figure 3.10b, black lines correspond to high RTD voltage level

and white lines correspond to low RTD voltage level on On,m nodes.

The results of the above simulation suggest that edges are extracted with relative

accuracy. In the regions with thicknesses of a few pixels or where the borders include

shades of gray, discontinuities or jumps in the border lines are observed. However,

the quality of the results can be improved by fine tuning grid resistance as well as

RTD design parameters.
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The second set of sample filtering is provided in Figure 3.11a-c. The second type

of image contains a circle with large continuous areas of the same color pixels. In

this image there is no region with several pixels thickness (except the outer line due

to finite number of pixels available to represent a circle). The architecture is able to

clearly outline the edges without any discontinuities.

Although the speed of operation can be tuned by scaling the current capabilities

of the active devices, the above simulation shows that the results obtained after 2.5ns

into the operation are almost exactly the same as the results obtained after 100ns.

Simulations on the variable resistance devices using the model provided in [8]

indicated that a read pulse of 100ns duration and 2V amplitude does not change

the resistance detectably, and a write process usually takes in the range of a few

seconds depending on the resistance to be encoded. Therefore, the architecture can

perform the tuned operation repeatedly without detectably altering the tuning, thus

minimizing (effectively eliminating) the need for a refresh operation.

The effect of component mismatch is more significant in input resistors (i.e ver-

tical resistors) compared to grid resistors (i. e. horizontal resistors) [59]. A set of

simulation results are listed in Figure 3.12a-f, showing how the variation in input

resistance changes edge detection results. Simulation results indicate that edges are

detected less accurately when the input resistance deviates from the optimum value

obtained through simulations. Exact resistance values depend on various circuit and

device parameters such as voltage levels used, RTD and diode current characteristics.

Therefore, the resistance variation is presented in percentages. Edge detection quality

directly depends on the variation of the input resistance mainly due to two factors.

The first factor is that input resistance changes the spatial frequency tuning of the

architecture making it less sensitive to edges. The second factor is that large input

resistances cause input voltage drops, thus putting the architecture off the operating

region.
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Figure 3.12: Edge detection results with input resistance variation: a) 50% resistance,
b) 75% resistance, c) 100% resistance (nominal case), d) 500% resistance,
e) 1000% resistance, f) 2000% resistance
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Figure 3.13: (a) Line detection sample input (b) Horizontal line detection (c) Vertical
line detection

3.5.2 Line Detection

Figure 3.13 shows line detection results. The plotted results are obtained 500ns

after system initialization. When the image in Figure 3.10a is considered, if we

assume the black pixels represent the high voltages and white pixels represent the

low voltages, the diffusion from high voltages to low voltages will result in the low

voltages increasing and stabilizing at the higher voltage level. The results presented

in Figure 3.13 are inverted to clearly show the detected lines.
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3.6 Conclusion

An analog grid-based architecture incorporating variable resistance connections

for programmability and RTDs for signal detection and latching was revealed in this

chapter. The architecture can be programmed to perform various image processing

tasks. A method to change the resistive state of the memristors in an array config-

uration was also provided and demonstrated through circuit simulations. Analytical

models characterizing edge detection and line detection configurations were discussed

and simulation results were provided to verify functionality. The simulation data

establish that the presented architectural configuration incorporating programmable

analog resistive elements can be reused to perform a wide gamut of image processing

functions at extremely high speeds.
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CHAPTER IV

Optimal Control via Neural Network

Approximators

4.1 Introduction

Living organisms interact with their environment and they respond to the en-

vironmental stimuli. Some of the actions they perform as responses are rewarding,

some of them are unrewarding, and some of them result in negative rewards or loss of

rewards. These actions can include finding the best/largest amount of food, surviving

predators, finding the best place for shelter, etc. Organisms learn from the results of

their actions and adjust them to maximize their rewards.

This type of learning is commonly referred to as the ‘Reinforcement Learning’

[66]. Reinforcement learning has inspired many works in the field of control theory

to mimic the optimal behavior observed in nature in the engineered systems[67, 68,

69, 70, 71, 72, 73].

A practical implementation of reinforcement learning is the ‘Adaptive Dynamic

Programming (ADP)’[74, 75]. ADP encompasses various iterative algorithms where

value or policy iterations are performed to converge on the optimal control policy.

In this work, the main focus is on a particular type of ADP which is based on

‘Actor-Critic Networks’ where the actor network tries to perform the optimal action
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and the critic network assesses the reward(value) of this action. The actor and critic

networks can be realized via the utilization of ‘Neural Networks’[76, 77, 78, 79, 80].

‘Heuristic Dynamic Programming’ (HDP) is a practical implementation of adap-

tive dynamic programming which is a form of reinforcement learning. HDP uses

adaptive critics and actors to learn the optimum control action and the associated

cost function in order to minimize or maximize a goal for a given system [81]. Neural

networks trained using HDP algorithm can effectively learn and approximate arbitrary

linear or non-linear behaviors of functions providing means for powerful neuro-control.

The adaptive critics enable improvement of the performance over time during system

operation through environmental interactions and past experience [82]. HDP has tra-

ditionally been adopted in software implementations of neural networks as it requires

derivative calculations and large amounts of storage for weight calculations.

HDP has been used in various neuro-control applications. It is very powerful in

terms of learning desired robotic behaviors defined by complex non-linear functions.

It has been shown that HDP can be used to control robotic joints generating the

optimum value for the force needed with respect to the mass and desired trajectory

of the robotic arm [81]. Oscillations in a power system poses a threat in the overall

stability of the system and can limit the power transfer capabilities [83]. HDP has

been proposed to be adopted by these systems to effectively stabilize the system.

The adaptive capabilities of the HDP enable the controller to adapt to the changing

conditions and parameters with time [84]. HDP can also be used in bio-chemical plant

control to ensure optimum process conditions are sustained during industrial processes

[85]. HDP can provide online adaptation, enabling the controller to re-optimize to

maximize the process performance [86].

The goal of this work is to provide an adaptive hardware for objective minimiza-

tion/maximization, which will successfully perform HDP algorithm on chip. There

has been great interest in hardware implementation of neural networks and their train-
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ing mechanisms [87, 88, 89, 90, 91, 92, 93, 94]. However, to the best of our knowledge,

a hardware implementation for HDP has not been proposed in literature. Such a hard-

ware is critical for real-time learning tasks where a software implementation cannot

provide the required learning speed. This work focuses on the development of a digi-

tal hardware composed of two neural networks (actor-critic) trained to approximate

arbitrary non-linear functions which enable them to be utilized as global controllers

for a wide range of discrete time applications.

A digital ASIC approach has been adopted, where the digital neurons have com-

plex polynomial activation functions that allow the neural networks to approximate

complex mathematical representations of non-linear control. Prior work suggests that

digital neural network implementations provide higher accuracy, noise immunity, ease

of testing and verification, adaptability, flexibility, as well as consistent repeatability

[95, 96]. An analog or mixed signal design approach has not been incorporated in this

work as analog designs do not scale very well to the latest fabrication technologies [97].

They are noisy and imprecise [98]. Also Analog/mixed signal design is mainly used

for continuous time operation. It is hard, if not impossible, to make them correspond

to mathematical models since they rely on transistor characteristics[99]. Therefore,

analog design is not very suitable for discrete time applications.

The rest of this chapter is organized as follows: Section II provides a theoretical

background on optimum control problem and heuristic dynamic programming. Sec-

tion III goes into details of the proposed hardware architecture. Section IV provides

simulation results to compare the hardware performance and accuracy versus software

implementation. Finally, Section V provides concluding remarks.
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4.2 Optimal Control via Adaptive Dynamic Programming

for Discrete-Time Systems

A non-linear discrete-time system can be represented by the difference equation

[66]:

xk+1 = f(xk) + g(xk)uk (4.1)

where k is the discrete-time index, xk ∈ Rn is the state and uk ∈ Rm is the control

input. In order to obtain control inputs, a control policy should be assumed, which

is a function defined from state space to contol space (h() : Rn → Rm). Then the

state dependent control action is:

uk = h(xk) (4.2)

In ADP, this control policy is learned based on the stimuli the system observes in

the environment.

4.2.1 Control Optimization

In order to asses the optimality of an action, a measure of performance called the

cost-to-go function is defined as:

Vh(xk) =
∞∑
i=k

γi−kr(xi, ui) (4.3)

where γ is the discount factor and suffices 0 < γ ≤ 1. r(xi, ui) is the utility function

and represents the cost of each action at a given time step. The expression in (4.3) is

the sum of discounted costs for the current and future actions starting from current

time and going to the infinity. The main goal of optimal control theory is to find a
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control policy that minimizes the cost and yields the ‘optimal cost’:

V ∗(xk) = min
h()

(
∞∑
i=k

γi−kr(xi, ui)) (4.4)

The ‘optimal control policy’ that results in the optimal cost is therefore:

h∗(xk) = arg min
h()

(
∞∑
i=k

γi−kr(xi, ui)) (4.5)

Optimizing the cost for a single step is easy, however a decision based on only the

current time step may not be the optimum decision when the sum of all costs from all

time steps is considered. A decision based on optimizing the cost of current action can

increase the costs of future actions, increasing the overall cost. Therefore, a decision

should be made based on its effects on optimizing all costs in all time steps. However,

obtaining the exact solution to this problem is close to impossible in difficulty for a

general nonlinear system.

4.2.2 Bellman Equation

In order to transform the infinite sum presented in (4.3) to a more computation

friendly form, one can write it as:

Vh(xk) = r(xk, uk) + γ

∞∑
i=k+1

γi−(k+1)r(xi, ui) (4.6)

which is equivalent to the difference equation:

Vh(xk) = r(xk, h(xk)) + γVh(xk+1), Vh(0) = 0 (4.7)

This equation is known as the Bellman equation. Solving the Bellman equation

is the critical step in ADP to assess the cost of the current policy.

63



4.2.3 The Discrete-Time Hamilton-Jacobi-Bellman (HJB) Equation

The Bellman equation as presented in (4.7) is backward in time, meaning it has

to be solved offline starting from the terminal state and by tracing the time-steps

backward. r(xk, uk) can be represented in the form of quadratic energy function,

r(xi, ui) = xTi Qxi + uTi Rui. In this case the cost function becomes [100]:

V (xk) =
∞∑
i=k

(xTi Qxi + uTi Rui) (4.8)

where Q and R are positive definite matrices with Q ∈ Rnxn and R ∈ Rnxm. And the

discrete-time HJB equation is

V ∗(xk) = min
uk

(xTkQxk + uTkRuk + V ∗(xk+1)) (4.9)

The optimal control u∗ is

u∗(xk) =
1

2
R−1g(xk)T

∂V ∗(xk+1)

∂xk+1

(4.10)

By substituting optimal control equation (4.10) in (4.9), the HJB equation can be

rewritten in the form:

V ∗(xk) = xTkQxk +
1

4

∂V ∗T (xk+1)

∂xk+1

g(xk)R−1g(xk)T
∂V ∗(xk+1)

∂xk+1

+ V ∗(xk+1) (4.11)

V ∗(xk) is the cost function associated with the optimal control policy u∗(xk).

For general nonlinear systems, the exact solution to HJB is unattainable. There-

fore, various iterative approximation techniques are proposed in literature with their

corresponding proofs of convergence to the optimal control [66, 75, 84, 100, 101].

64



4.2.4 Heuristic Dynamic Programming

Heuristic Dynamic Programming (HDP) is an iterative algorithm originally pro-

posed by Werbos [75] which aims to solve the discrete-time HJB equation to reach

the optimal control. The algorithm has the following steps [101]:

First, one starts with an initial value for the value function. For example, V0(x) =

0.

Next, one solves for u0(xk):

u0(xk) = arg min
u()

(xTkQxk + uTRu+ V0(xk+1)) (4.12)

After obtaining u0, one iterates over the value:

V1(xk) = xTkQxk + uT0 (xk)Ru0(xk) + V0(f(xk) + g(xk)u0(xk)) (4.13)

Then, one keeps iterating between ui(x) and Vi(x) ≥ 0:

ui(xk) = arg min
u()

(xTkQxk + uTRu+ Vi(xk+1))

= arg min
u()

(xTkQxk + uTRu+ Vi(f(xk) + g(xk)u))

=
1

2
R−1g(xTk )

∂Vi(xk+1)

∂xk+1

(4.14)

V̂i+1(xk) = min
u()

(xTkQxk + uTRu+ Vi(xk+1))

= xTkQxk + uTi (xk)Rui(xk) + Vi(f(xk) + g(xk)ui(xk))

(4.15)

where i is the value iteration index and k is the time index. HDP is an online forward

in time algorithm.
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4.2.5 Neural Network Approximation of HDP for Non-linear Systems

ui and vi at each iteration are hard to calculate exactly. Therefore, approximat-

ing each with neural networks (NN) have been proposed. A critic NN is used to

approximately solve equation (4.15):

V̂i(x) =
L∑

j=1

wj
viΦj(x) = W T

viΦ(x) (4.16)

And an action NN is used to approximately solve (4.14):

ûi(x) =
M∑
j=1

wj
uiσj(x) = W T

uiσ(x) (4.17)

where L and M are the number of hidden layers, wvi and wui are the weights in the

critic and action neural netwrks respectively. Φ(x) and σ(x) are vector activation

functions. Wvi and Wui are the weight vectors at iteration i.

4.3 Hardware Implementation of Action-Critic based ADP

4.3.1 Actor-Critic Networks

The proposed hardware is based on actor-critic structure as shown in Fig. 4.1

where the actor network approximates the optimum control action and the critic

network approximates the cost of this action. Both networks are provided the system

state X(k) as the input. The optimum action U(k) generated by the actor is then

provided to an external model of the system which provides the system state X(k+1)

(response) at the next time step (k+1) based on the optimum action and the current

system state. The optimum policy provided by the actor and the response from the

model is evaluated by the critic which can update its weights and triggers an update

for the actor.
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Figure 4.1: Actor-Critic Network structure.
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Figure 4.2: The neural network structure. x1(k), ..., xn(k) are neural network inputs,
W1(k), ..., Wm(k) are neural network weights, y(k) is the neural network
output at discrete time step k.

Actor and the critic are approximated by two neural networks with the connections

as shown in Fig. 4.2. We have chosen the neurons to have polynomial activation

functions as in [101, 102] due the fact that complex neuron behavior can provide

better approximation of non-linear functions. The neurons are excited based on

the input stimuli x1(k), .., xn(k) and each neuron output is then multiplied with the

corresponding network weight W1(k), ...,Wm(k) and summed to generate the network

output y(k).
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4.3.2 Hardware HDP Algorithm

The version of the algorithm that is adopted by our hardware is presented in

Algorithm 1.

Algorithm 1 Hardware HDP Algorithm

Require: V0(xk) = 0 and u0(xk) = 0
1: for each iteration i = 1 to n do
2: for all xk ∈ critic training set do
3: estimate cost
4: end for
5: update critic weights and cost
6: for all xk ∈ actor training set do
7: update actor weights and policy
8: end for
9: end for

In this algorithm, the critic network is trained to improve the approximate cost

and then the actor network is trained to improve the approximate policy at each

iteration. In order to further visualize the algorithm flow, Fig. 4.3 is presented.

First the hardware is configured with the user specified parameters such as the

training set size, number of state variables, linear or non-linear control mode. The

hardware is then initialized the neural network weights of ’0’, which then yields an

initial control action of ’0’. The hardware, then evaluates the cost of the initial control

action given the elements of the critic network training set by evaluating equation

4.13. Once a vector of estimated costs are obtained for the critic training set, the

hardware moves on to solve the least squares problem to find the critic weights that

best fit the estimated costs in the previous step. Once the critic weights are obtained,

the hardware uses Least Mean Squares (LMS) method to train the action network

to improve the policy. The training of the actor network, completes an iteration of

the algorithm. If the user specified number of iterations is not reached, the hardware

moves on with reestimating the costs for the critic training set using the updated

policy, updates the critic weights and then updates the action network weights using
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Figure 4.3: Hardware heuristic dynamic programming algorithm flow.
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the improved cost function. The hardware completes training when the user specified

number of iterations is reached.

4.3.3 Hardware Architecture and Specifications

The proposed hardware can currently provide adaptive control for linear and non-

linear systems with up to two state variables, although the design can be extended

to provide support for higher number of state variables. The proposed hardware

structure is shown in Fig.4.4. The main on-chip components include the actor-critic

neural network estimators, least squares fit generator,and training set generator. The

model is an external component providing the dynamics of the system to be controlled

which can be implemented in hardware or software. The SoC summary is presented

in Table 4.2.

Training set generator produces a linearly spaced training set based on the user

configurable parameters. The user can specify number of state variables, beginning

value and the linear spacing for each variable as well as the training set size desired.

There are two sets of parameters for the critic and the actor networks, thus their

training can be customized separately.

Scan chain block is used to scan in the configuration data for the training set

generator, actor-critic neural network estimators, the least squares fit generator, and

the iteration controller.

Iteration controller supervises the learning and weight calculation processes. It

triggers the improvement of actor and critic network weights at each iteration. The

iteration number is programmed by the scan chain.

Serial Interface divides the off-chip communicated data in byte-size segments and

allows a serial communication protocol to reduce the pin count of the chip. It also

parallelizes incoming data to be sent to the on-chip components.

Actor-critic neural network estimators are the core of the hardware and implement
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Figure 4.4: Block diagram showing the overall hardware architecture.
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Table 4.1: Hardware Configurations

Linear Mode Non-linear Mode

Single State Two State Single State Two State

Variable Variables Variable Variables

Critic N. 1 Neuron 3 Neurons 3 Neurons 15 Neurons

Actor N. 1 Neuron 2 Neurons 3 Neurons 12 Neurons

the actor and critic neural networks. The neural networks are programmable in the

sense that the user can configure the number of neurons the networks use depending

on if the number of state variables of the system to be controlled and its linear or non-

linear classification. The possible configurations are listed in Table 4.1. The variable

number of neurons are achieved by time multiplexing the neuron operation and reusing

the common hardware resources between neurons. 24-bit fixed point representation

for weights and neuron outputs was chosen to reduce hardware complexity while

still maintaining accuracy compared to the software implementation. This block

also includes on-chip memory blocks to store the neural network weights and neuron

outputs. The total memory storage in this block is 252 Bytes.

Actor and Critic Controllers oversee the training and operation of the networks.

They are also responsible for the managing the time multiplexing of the neuron op-

eration.

Activation function generators generate and store the different activation outputs

resulted from the neuron operation. The work presented in [95] recommends the use

of look-up tables (LUTs) for fast operation. However, the use of LUTs proved to be

too expensive in terms of chip area so arithmetic blocks have been used instead and

the common blocks between neurons have been shared.

Policy generator block performs the main weighted sum operation required by the

actor network. The block computes the optimal policy based on the actor network

weights and the actor neuron outputs generated by the activation function generator.

73



Cost generator block is essentially the critic network version of the policy genera-

tor. It performs the main weighted sum operation required by the critic network. It

computes the cost based on the critic network weights and the critic neuron outputs

generated by the activation function generator.

Actor weights updater tunes the actor weights based on the training set using the

least mean squares method [101, 103] and stores the resulting weights in the Actor

weights block. Tuning the critic network weights, on the other hand, is not trivial as

will be explained in the following subsection.

4.3.4 Least Squares Regression Calculation

In order to generate the weights for the critic neural network, least squares re-

gression (LSR) can be used to approximate the vector of weights that correlate the

neuron outputs with the associated costs of a set of possible states [101, 85].

LSR accuracy can be increased by increasing the number of sample states, which

in turn increases the number of neuron output vectors and the number of associated

costs that need to be stored. However, in order to ensure a solution, the minimum

requirement is to use as many samples as the number of neurons in the network to

generate a square matrix. One can understand this requirement by thinking about a

linear system with n unknowns. In order to solve for this system, at least n different

equations with n unknowns are required. The critic weights can be estimated by

solving the least squares problem:

~Wc = (ATA)−1AT~b (4.18)

where ~Wc is the vector of critic weights, A is the square matrix generated by the

sampled neuron outputs, ~b is the vector of sampled costs. The hardware is capable

of generating the approximate solution to the LSR problem on-chip. In order to

minimize the memory requirements and reduce the computation time, the minimum
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number of samples that suffice the solution criteria are used.

Algorithm 2 Modified Gaussian Elimination Algorithm

Require: matrix A ∈ RnxRn

1: for each column i = 1 to n do
2: for each row k = i to n do
3: if (ak,i 6= 0) ∧ (ak,i 6= 1) then
4: divide row k by ak,i
5: end if
6: end for
7: for each row k = i to n do
8: if (ak,i = 1) then
9: if k = i then
10: break
11: else
12: add row k to i
13: break
14: end if
15: end if
16: end for
17: for each row k = i+ 1 to n do
18: if (ak,i = 1) then
19: subtract row i from row k
20: end if
21: end for
22: end for
23: for each column i = 2 to n do
24: for each row k = 1 to i− 1 do
25: if (ak,i 6= 0) then
26: subtract ak,i times row i from row k
27: end if
28: end for
29: end for

Least squares estimator block uses the square matrix and the vector of associated

costs generated by the critic network and solves the least squares problem of equation

(4.18) using various matrix operations. Basic matrix operations such as matrix mul-

tiplication are trivial to implement in hardware. However inverting a matrix involves

calculating computationally and memory-wise expensive determinants. In order to

save hardware resources, the Gaussian elimination algorithm was modified for the
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proposed hardware to solve the LSR problem on chip as shown in Algorithm 2. The

algorithm aims to make the Gaussian elimination which is usually implemented in

software more hardware friendly by only using arithmetic operations.

Least squares fit generator block encompasses least squares estimator block as

well as the required memory banks to store the intermediate results of the matrix

operations. The total amount of memory required is about 5.56 KBytes As will be

shown in the next section, the hardware is capable of accurately approximating the

cost function using minimum number of samples to solve the least squares problem

on-chip.

4.4 Simulation Results

4.4.1 Simulation Setting

In order to be able to judge the proposed hardware performance, the HDP algo-

rithm was also implemented in software. The software implementation was performed

using MATLAB.

For both implementations the actor network is trained using a training set of

126x126 (15876) elements linearly spaced in the range (-1,1). The critic network is

trained using a training set of 5x3 (15) elements linearly spaced within the range

(-1,1).

The software implementation was run on a 64-bit Intel Xeon processor with 1.2

GHz clock frequency. The total execution time for 100 iterations of the algorithm

is measured to be 1 hour 29 minutes 39 seconds. The hardware implementation has

clock frequency of 10 MHz, and the run-time is 22.63 seconds.

The hardware power estimation is obtained using SPICE simulations and the

power consumption is 2.1 mWatts for 10 MHz clock.

76



4.4.2 Error Quantization

To quantize the weight mismatch between the hardware and the software, lumped

absolute error was defined as the ratio of the sum of the absolute distances between

the observed and the expected weights over the sum of the absolute values of the

expected weights:

LumpedAbsoluteError =

N∑
i

|WH −WT |

N∑
i

|WT |
(4.19)

where WH is the hardware (observed) weights, WT is the software (expected) weights,

N is the number of neurons, i is the neuron index. The average lumped absolute error

is defined as the lumped absolute error divided by the number of neurons:

AverageLumpedAbsoluteError =

N∑
i

|WH −WT |

N
N∑
i

|WT |
(4.20)

Finally, the average lumped absolute error is multiplied by 100 to obtain the error

percentages:

AverageAbsoluteErrorPercentage =

N∑
i

|WH −WT |

N
N∑
i

|WT |
x100 (4.21)
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4.4.3 Non-linear System Example

The following non-linear system is used to compare the hardware and software

controllers. The system is defined as:

 x1

x2


k+1

= f(

 x1

x2


k

) + g(xk)uk (4.22)

where

f(xk) =

 0.25(x1e
x1 − x42)

0.49x21x2

 (4.23)

and

g(xk) =

 0

−0.375

 (4.24)

4.4.4 Actor and Critic Network Weights during Training

The non-linear system of equation (4.22) is used as the model for both the soft-

ware implementation of HDP and our proposed SoC. The change in actor network

weights over 100 iterations are shown in Fig. 4.5 for both the hardware and software

implementations. For the actor network, the weights fall within a similar range for

both the hardware and software, however they do not match perfectly. The average

absolute error percentage calculated using equation (4.21) is 5.94%.

The main source of differences between the hardware and software weights is

the limited bits available to the hardware, which directly affects the response of the

neural network causing some neurons to be over-trained and most to be under-trained

compared to their software counterparts. Even though the hardware weights start to

diverge from the software weights, it is still possible to approximate the main output of

the network, the optimum policy, such that the hardware output follows the software

output as will be shown in the following subsection.

78



Figure 4.5: Hardware vs software actor network weights over iterations.
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Figure 4.6: Hardware vs software critic network weights over iterations.
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For both the hardware and the software implementations, the neural network

weights are initialized as zero. In hardware case, the weights start to converge around

50th iteration. For software case some weights start converging as early as 30th

iteration, whereas few of them start converging around 50th iteration.

Fig. 4.6 shows the change in critic network weights for both the hardware and

software implementations. The critic network weights for the hardware follow the

software implementation very closely. The average absolute error percentage is 0.4%.

The bit limitation as well as divergence of the actor weights also cause the hardware

weights to diverge from the software weights. However, the diversion is smaller than

the case of the actor network. The critic weights start converging earlier around 4th

iteration.

4.4.5 Optimum Policy and Associated Cost during Training

The optimum policy for the software implementation starts converging early on

around 20th iteration with an initial sharp training response within the first few

iterations as shown in the first row of Fig. 4.7. However, a slow transition still takes

place until around 50th iteration. The hardware policy undergoes a much slower

but more uniform transition, starting to converge around 50th iteration. The limited

number of bits available to the hardware, limits the training of the actor network

causing the hardware policy to exhibit a much slower initial response whereas the

software policy displays a fast initial response. The difference between the software

and the hardware optimum policies is 10.2% at 100th iteration.

The associated cost shows a much steeper response for both the hardware and the

software for the first few iterations as shown in the second row of Fig. 4.7. The steep

response is expected for the software as the same trend is observed in the case of the

policies. For the hardware, more bits are available for the generation of an accurate

least squares fit estimation as shown in Table 4.2; hence, the hardware response is
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Figure 4.7: Hardware vs software optimum policy and its cost over iterations.
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also much steeper. The costs start to converge around 10 iterations although some

slight changes are observed in the hardware cost due to the slow settling of the actor

network. The difference between the software and the hardware costs is 2.96% at

100th iteration.

4.4.6 Discrete Time System Response

Once the training phase is over, the system response as well as the controller

outputs are compared for both the hardware and software over six time steps. The

system defined in (4.22) is given initial condition [1,-1] for the state variables x1 and x2

respectively. Even though any admissible initial condition within the training range

can be picked, we picked this condition as an example and also because ‘1’ and ‘-1’

form the extremes of the hardware training range.

The initial states are shown in Fig. 4.8 and the initial hardware and software

control policies are shown in Fig. 4.10. At time step 0, the initial states [x1,x2] are

[1,-1], and the hardware and software policies are -0.2011 and -0.1825 respectively.

The difference in the policies are shown in Fig. 4.11 and the resulting state errors

are also plotted on Fig. 4.9. Since the initial conditions are the same for both the

hardware and software controlled systems, the initial state errors are ‘0’ at time step

0. The error on state variable x2 maximizes on time step 1, which is the result of the

different initial policies at time step 0. However, in both cases the system reaches the

target state [0, 0] around the same discrete time step. The error between the policies

and the state variables become approximately ‘0’ by the discrete time step 5.

4.4.7 The Proposed Hardware Layout

The results indicate that the proposed hardware can perform very similar to the

purely software based controller in controlling a discrete non-linear system, even

though the hardware has reduced precision. The hardware can be trained at a much
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Figure 4.8: Discrete time system response with hardware and software policies over
time. The change in system state is plotted for both the hardware and
software policies.

84



Figure 4.9: The error in system states for the hardware policy compared to the soft-
ware policy.
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Figure 4.10: The hardware and software policies over time.
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Figure 4.11: The differences between the hardware policy and cost compared to the
software counterparts.
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Figure 4.12: Proposed heuristic dynamic programming (HDP) chip layout. The SoC
dimensions are 1950µmx1550µm in 65nm CMOS LP technology includ-
ing the pads. The core dimensions are 1700µmx1300µm.

faster rate than the software allowing the application of heuristic dynamic program-

ming to real-time learning tasks. At 10 MHz the hardware can be trained about 237

times faster than the software run on a 1.2 GHz Intel Xeon processor.

The final chip layout is shown in Fig. 4.12. Individual components are anno-

tated. The chip is designed using TSMC’s 65nm LP CMOS technology using high-Vt

transistors.
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Table 4.2: HDP SoC Summary

Technology 65 nm LP CMOS

Die Size 1950µm x 1550µm

Supply Voltage 1.2 V

Operation Frequency 10 MHz

Training Set Range (-1,1)

Neural Network Resolution 2−13

Neural Network Word Length 24-bits

Least Squares Fit Block Word Length 96-bits

4.5 Conclusion

In this chapter a hardware capable of implementing heuristic dynamic program-

ming on chip for general non-linear systems was presented. How the least squares

problem using minimum number of samples can be accurately solved on chip was

shown, thus reducing on-chip memory requirements. Finally, the simulation results

for the hardware implemented in 65 nm LP CMOS technology using high-Vt tran-

sistors were presented. The hardware policy shows 10.2% and the cost shows 2.96%

divergence compared to the software counterparts while the hardware can complete

the training 237 times faster than the software while consuming mere 2.1 mW of

power.
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CHAPTER V

Conclusions

In this dissertation bio-inspired hardware structures aimed at enhancing/replacing

conventional VLSI systems, and their applications have been presented.

In the second chapter of this dissertation, a crossbar memory structure capable

of storing multi-bit information per cell is presented. A reduced constraint read-

monitored-write scheme was also presented to accurately program the resistive states

of the memory cells. The simulation results indicate that the architecture programs

the cells to the detection thresholds with very tight state distributions. An analytical

model for state derivations was also presented to guide the designers on how to select

the component parameters. The proposed hardware allows for reliable memory state

detection by generating detection margins via scaling of read voltages and series

resistance values.

In the third chapter of this dissertation, an analog grid-based structure consisting

of variable resistance connections for programmability, and resonant tunneling diodes

for signal detection and latching was presented. The flexible fabric of this structure,

provides the ability to program it for various image processing tasks. A programming

scheme for the connections was also presented. The architecture was characterized

analytically for edge detection and line detection applications. Extensive simulations

were performed to verify the different functions of the structure and demonstrate its
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operations at extremely high speeds.

In the fourth chapter of this dissertation, a hardware implementation for heuristic

dynamic programming was presented. The hardware is capable of providing neuro-

control for general non-linear systems. A hardware solution to the least squares

problem while using minimum number of samples, thus reducing the on-chip memory

requirements was also presented. The hardware was designed using 65 nm LP CMOS

technology high-Vt transistors. The hardware policy is 10.2% and the hardware cost

is 2.96% different compared to their software results using the same training set and

model. The hardware on the other hand can complete the training 237 times faster

than the software while consuming 2.1 mW of power according to SPICE simulation

results.
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