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ABSTRACT

Ultrasound Methods for Quantitative Edema Monitoring

by

John J. Pitre, Jr.

Chair: Joseph L. Bull

Patients with end stage renal disease typically must undergo regular dialysis treat-

ments to replace the loss of kidney function. A critical part of these dialysis treat-

ments is the careful management of fluid status, as these patients are at an in-

creased risk for developing fluid overload, a condition that poses a number of

dangers to their health and quality of life. Current clinical methods are lacking

in their ability to accurately provide a quantitative metric for grading edema and

fluid overload. In this dissertation, I explore a number of methods based on ul-

trasound strain imaging, ultrasound viscoelastography, and ultrasound poroelas-

tography to address this clinical need. The practical and theoretical aspects of the

measurement process and parameter estimation methods are explored, and new

methods are proposed and evaluated to overcome common difficulties. Chiefly,

the experiments and simulations described in this work aim to highlight the role of

assumptions in visco- and poroelastic imaging, to explore how these assumptions

can hinder accurate parameter estimation, and to develop methods that are less
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assumption-dependent. First, I evaluate a point-of-care ultrasound viscoelastogra-

phy system and use it to estimate the viscoelastic properties of a tissue-mimicking

material. The strain and material properties are observed to be depth dependent,

highlighting possible breaks with the viscoelastic model assumptions and possible

poroelastic behavior. Next, I analyze the role of model assumptions on poroelas-

tography measurements using both finite element models and benchtop experi-

ments. Strain magnitudes and loading geometries that differ from the model as-

sumptions used in most poroelastography studies are shown to produce large dif-

ferences in poroelastic parameter estimates. Furthermore, they can lead to lateral-

to-axial strain ratio measurements that do not converge to the true Poisson’s ratio

of the material, thus highlighting the need for more careful interpretation of stan-

dard effective Poisson’s ratio (EPR) poroelastograms. Finally, I develop and eval-

uate a new approach to poroelastography by posing the poroelastic imaging as an

inverse problem. This allows for the quantitative imaging of spatial variations.

This method is shown to produce more accurate poroelastic images in simulations

with ideal, Gaussian corrupted data. In addition, the method shows promise in

reconstructions based on simulated ultrasound images, though some difficulties

remain. Possible improvements and recommendations for future poroelastogra-

phy studies are discussed.
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CHAPTER 1

Introduction

The following work explores ultrasound-based methods for estimating the ma-

terial properties of edematous tissue. The problem of quantifying the degree of

edema is one for which no one solution exists, and various methods have been

proposed to meet this need. Of interest to this work are a class of methods called

poroelastography that rely on ultrasound strain measurements to characterize the

temporal behavior of tissue under compression. The benchtop experiments and

simulation studies reported in this dissertation seek to address both the practical

and theoretical aspects of this problem, which sits at the intersection of tissue me-

chanics, signal processing, image reconstruction, and applied mathematics. The

work has therefore been organized into the following chapters:

1. Chapter 2 (Background) discusses the practical clinical aspects of the edema

quantification problem. It provides an overview of the basic techniques in-

volved in ultrasound strain estimation and proceeds into a review of the liter-

ature in the subfield of ultrasound poroelastography, including preliminary

clinical studies.

2. Chapter 3 (Theory) provides derivations of the Biot model of poroelasticity

as well as Armstrong’s solution to the Kuei-Lai-Mow biphasic model, both of

which can be used to provide the theoretical basis for poroelastography. The
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implications of these theoretical treatments will become particularly impor-

tant in chapters 5 and 6.

3. Chapter 4 (Design and testing of a single-element ultrasound viscoelastog-

raphy system for point-of-care edema quantification) describes benchtop ex-

periments and analysis to evaluate the performance of a simple, low-cost ul-

trasound system for quantifying viscoelastic properties of a tissue mimicking

material under compression at large strain.

4. Chapter 5 (The effects of geometry and strain magnitude on poroelastog-

raphy curve fitting) discusses the implications of incorrect assumptions on

poroelastic parameter estimation. Finite element models are used to provide

numerical evidence of the different behavior that might be expected to occur

under different poroelastography measurement configurations. These effects

are then demonstrated in benchtop experiments.

5. Chapter 6 (Evaluation of a model-based ultrasound poroelastography algo-

rithm) describes a new framework for poroelastic image formation based on

an inverse problem formulation. This removes assumptions of spatial uni-

formity from the parameter estimation process. The performance of the al-

gorithm is investigated in simulation studies using both ideal data and syn-

thetic ultrasound image sequences.

6. Chapter 7 (Conclusions and future directions) summarizes the overall results

of this work, their implications for the broader field of poroelastography, and

their impact on the clinical problem of edema quantification. Future direc-

tions and questions raised are also presented.
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CHAPTER 2

Background

2.1 Clinical Motivation

In its 2016 Annual Report, the United States Renal Data System reported 678,383

prevalent cases of end stage renal disease (ESRD) in the United States (United

States Renal Data System, 2016). ESRD is the final stage of chronic kidney dis-

ease (CKD) and is marked by a decreased glomerular filtration rate (less than 15

mL/min/173m2) and/or the need for renal replacement therapy (National Kid-

ney Foundation, 2002). Most patients with ESRD (97.2%) undergo regular dialysis

treatments to replace the loss of kidney function. A critical part of these dialysis

treatments is the careful management of fluid status, as ESRD patients are at an

increased risk for developing fluid overload. As many as 30% of dialysis patients

may exceed the recommended levels of fluid retention (Lindberg et al., 2009), and

the prevalence of fluid overload in dialysis patients is strongly associated with

the occurence of clinical care episodes and higher mortality (Leggat et al., 1998;

Mallick and Gokal, 1999; Saran et al., 2003; Stegmayr et al., 2006; Movilli et al.,

2007; Kalantar-Zadeh et al., 2009; Arneson et al., 2010). As such, it is imperative

that patient hydration status be accurately, easily, and reproducibly monitored.

Fluid overload is a complex pathological state manifesting itself with excess fluid

in various body compartments including the vascular, pulmonary, abdominal, and
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peripheral spaces. While simple quantitative methods exist for measuring fluid in

the vascular space (blood pressure or CRIT-LINE)(Rodriguez et al., 2005), measure-

ments in the other compartments are either invasive – pulmonary capillary wedge

pressure in the case of pulmonary edema – or qualitative – ultrasound or physi-

cal examination in the cases of aciteps (abdominal) or peripheral edema (Hogan,

2007).

Currently, the clinical practice of determining a patient’s ideal fluid status,

known as dry weight, follows a process that is largely reactive or subjective. For

example, clinicians often note the weight at which hypotension and cramping are

observed as fluid is removed during a dialysis treatment. Additionally, clinicians

use a physical examination to monitor the level of peripheral edema, grading it

on a semi-quantitative scale of 0-4+ (Table 2.1). In this “pitting test”, a clinician

uses his or her thumb to compress a small region of the edematous limb (Figure

2.1). The level of edema is then assessed based on the observed depth of the de-

pression, the rebound time, and the condition of the skin. In contrast to other

quantitative methods routinely used in the clinic, for example, to measure blood

pressure, the edema pitting test can be largely subjective and leaves room for large

inter-examiner variation (Brodowicz et al., 2009). Studies have shown that these

methods are neither specific nor sensitive enough, and this has stimulated inter-

est in improving quantitative measures of dry weight and fluid overload. To this

end, several methods have been proposed including the measurement of biochem-

ical markers, interior vena cava diameter, bioimpedance, mechanical properties,

and blood volume. These methods have repeatedly demonstrated that the clinical

exam alone is an inadequate measure of dry weight, underestimating fluid over-

load in 24-37% of patients (Kouw et al., 1993; Oe et al., 2000; Yashiro et al., 2007).
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2.2 Ultrasound Elastography

Ultrasound-based approaches to quantifying fluid overload hold a number of ad-

vantages. Ultrasound imaging is non-invasive, and it can be performed quickly

and easily, facilitating its use at the point-of-care. One approach that has been pro-

posed is the use of ultrasound elastography to quantify edematous tissue mechan-

ical properties (Righetti et al., 2007a; Berry et al., 2008; Adriaenssens et al., 2012;

Kruger et al., 2012). Ultrasound elastography is an imaging technique that uses a

known compressive stress to elicit a measurable strain in a region of tissue (Ophir

et al., 1991). Briefly, an ultrasound transducer is placed so that a region of interest

is visible, and an initial image is captured. A known axial compressive stress is

then applied to the tissue, inducing a deformation, and a second ultrasound image

is acquired. Assuming that compression occurs in the axial direction only, Hooke’s

law for linear elasticity states that the stress σ in the tissue must be proportional to

the strain ε,

σ = Eε. (2.1)

The proportionality constant E is known as the Young’s modulus, and it is a mea-

sure of the elasticity of a material. Assuming the applied stress is known and is

uniform throughout the tissue, only the internal strain field is needed to estimate

the Young’s modulus. That is,

E =
σapplied

εmeasured
. (2.2)

Internal strain can be estimated by measuring the displacement between the first

and second ultrasound images at each point in the tissue. By definition, the strain
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tensor εij is related to the displacement vector ui by

εij =
1
2
(ui,j + uj,i). (2.3)

Since it is assumed that only axial strains are present, equation 2.3 can be simplified

by considering only the third component. If z represents the axial direction, this

leaves the relationship

εmeasured = ε33 =
∂u3

∂z
. (2.4)

Provided the displacement estimates and differentiation operation are accurate

enough, equations 2.2 and 2.4 can be combined to accurately estimate the Young’s

modulus.

2.3 Ultrasonic Speckle Tracking

2.3.1 Basic Algorithm

Internal tissue displacements can be estimated using a technique called ultrasonic

speckle tracking. To form an ultrasound image, a pressure transducer emits a high

frequency sound wave. The wave travels through the tissue, interacting with the

many microscale features present. Each of these features creates a scattered sound

wave that returns to the transducer, which records the pressure waves as an elec-

trical signal. This recorded signal is called the raw radiofrequency (RF) signal. The

direct reflection of sound waves is not the only feature recorded in the RF signal.

As the sound scatters, the hills and valleys of the waves interfere constructively

and destructively, creating small bright and dark spots, respectively. This interfer-

ence pattern is called ultrasonic speckle. The speckle pattern is intrinsically linked

to the unique microscale geometry of the tissue, and motion of the tissue induces

a near identical motion of the speckle pattern. Speckle can therefore be used as a
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type of identifying “tissue marker” to track how discrete regions move between

two ultrasound images.

Speckle tracking algorithms rely on cross correlation to track motion. Small

windows, or kernels, are defined in the precompression image, typically along

each A-line of the RF data. The normalized cross correlation ρ between the kernel

k and a search region s in the postcompression image is then computed:

ρ(m) =

N−m−1
∑

n=0
sn+mk∗n√(

N−1
∑

n=0
sns∗n

)(
N−1
∑

n=0
knk∗n

) . (2.5)

The peak of the normalized cross correlation corresponds to the best match be-

tween the pre- and postcompression images, and the associated lag represents

the most likely displacement. Figure 2.2 summarizes the speckle tracking process

graphically.

As long as the speckle pattern remains correlated between the pre- and post-

compression RF signals, the displacement estimates obtained by this simple algo-

rithm will be accurate. However, strains lead to changes in the speckle pattern,

and the correlation peak may become ambiguous, resulting in displacement er-

rors. This decorrelation of the signal tends to increase with the strain. To over-

come these challenges, a number of improvements to the basic speckle tracking

algorithm have been developed. One important development was the strain filter,

a theoretical framework used to estimate the internal tissue strain required to ob-

tain the most accurate estimates of the displacement (Varghese and Ophir, 1997a).

Strain filter theory states that the optimal strain is 1-2%. At higher strains, the elas-

tographic signal-to-noise ratio drops abruptly. Other approaches have sought to

cleverly improve the correlation between pre- and postcompression signals. These

methods include fixed and adaptive temporal stretching (Varghese and Ophir,
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1996, 1997b; Alam and Ophir, 1997; Alam et al., 1998), short time correlation (Lu-

binski et al., 1999), and the use of dynamic programming (Petrank et al., 2009). All

of these approaches allow for greater accuracy at higher strains.

An alternate approach for large strain measurements relies on acquiring a time

series of images. The pre- and postcompression frames for the tracking step are

then carefully chosen so as to ensure that the strain between that frame pair falls

in the 1-2% range. This produces an incremental displacement (or equivalently

strain) estimate that may be summed over the entire sequence of tracked frames,

effectively measuring large total strains while only tracking over more optimal

small strains (Righetti et al., 2005a).

Once the displacements are obtained, the strain field can be estimated. A naive

approach might use simple finite differences to approximate spatial derivatives. In

practice, this process amplifies noise in the displacement estimates. To avoid this,

a local least-squares fit can be used to estimate the mean slope over small regions

of the displacement field. The number of points included in the fit must be chosen

carefully so as to balance smoothness and resolution. The resulting strain field

may then be used, together with a material model, to estimate tissue properties.

2.3.2 Two-dimensional Speckle Tracking

Speckle tracking in the axial direction (along the ultrasound beam) can produce

displacement estimates with a very fine spatial resolution. This is because axial

resolution is determined by the pulse length, which is on the order of 0.5-1 mm

for a typical ultrasound system (Hoskins et al., 2010). Speckle tracking algorithms

can be extended to the lateral direction as well, but displacement estimates in the

lateral direction are inherently less accurate. Lateral resolution is a function of

the pulse width, which is typically on the order of 1-5 mm (Hoskins et al., 2010).

Furthermore, the lack of lateral phase information and the relatively low spatial
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sampling in the lateral direction make lateral tracking difficult.

To overcome the difficulties associated with lateral speckle tracking, Konofagou

and Ophir (1998) introduced an iterative two-dimensional speckle tracking algo-

rithm capable of producing accurate displacement estimates in both the axial and

lateral directions. First, the postcompression ultrasound image is laterally upsam-

pled by creating new linearly interpolated A-lines between the original A-lines.

Tracking windows from the A-lines in the precompression frame are tracked axi-

ally using the same methods detailed in the previous section. Tracking then pro-

ceeds laterally from the location of the best axial displacement estimate. In this

step, the interpolated postcompression A-lines are used to provide better lateral

sampling. These alternating axial and lateral tracking steps can then be repeated

for a set number of iterations or until the correlation coefficient converges to a

high value. Since this method produces accurate estimates of lateral displacement,

a strain estimator can also be applied in the lateral direction to produce an estimate

of the lateral strain.

2.4 The Inverse Elastography Problem

In the previous sections, I described how elastography could be used to obtain

strain estimates and how Hooke’s law could be used to obtain a Young’s modulus

estimate. This approach relies on two critical assumptions, both of which are taken

as a given in most elastography studies. The first is that the stress is uniform

throughout the tissue and that it is equal to the applied stress at the boundary.

In general, this is not true. The prescence of lateral strains in the compressed tissue

points to a slightly more complex relationship between the mechanical properties,

stress, and strain. It becomes important to consider not only the Young’s modulus

but also the Poisson’s ratio of the tissue being imaged. This analysis requires a
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more nuanced appraoch. One must consider the general form of the equilibrium

equations for linear elastic solids

σij,j = 0, (2.6)

σij =
E

(1 + ν)(1− 2ν)

[
νδijεkk + (1− 2ν)εij

]
, (2.7)

εij =
1
2
(ui,j + uj,i). (2.8)

Typically, studies simplify these equations by making the second major assump-

tion – that the tissue is incompressible. Incompressibility implies that the Poisson’s

ratio equals 0.5. This provides a link between the axial and lateral strains.

Even with the incompressibility assumption, the elastography problem remains

difficult:

Given a set of known displacements ui(x, y) and known boundary forces,

determine the Young’s modulus field E(x, y) that satisfies equations 2.6-

2.8.

The above is known as an inverse elasticity problem. Posing the elastography

problem in this way allows for more complicated physics and even more complex

material models to be employed. Furthermore, the inverse problem formulation

reduces artifacts and performs better than strain-based formulations in cases of

high elasticity contrast (Doyley et al., 2005). Provided the solution to the inverse

problem can be computed (Barbone and Bamber, 2002), this approach to generat-

ing an elastogram becomes very appealing.

Skovoroda et al. (1994, 1995, 1999) posed the inverse elastography problem us-

ing a displacement-pressure formulation, solving it for both small and large defor-

mation using a gradient descent method. In contrast, Kallel and Bertrand (1996)

solved the elastography inverse problem using a modified Gauss-Newton method.
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This approach has become much more common in model-based elastography. Us-

ing both ideal displacement data and simulated RF ultrasound data, they were

able to reconstruct Young’s modulus images for materials with hard cylindrical in-

clusions. Doyley et al. (2000) provided experimental validation of this technique

using a similar inverse problem solver, the Levenberg-Marquardt method.

Both the Gauss-Newton and Levenberg-Marquardt methods face a computa-

tional disadvantage. Namely, they both require a computation of the system Jaco-

bian, or sensitivity, matrix. Computing the Jacobian directly requires that the for-

ward elasticity problem be solved at least once for each pixel in the image. Oberai

et al. (2003, 2004) derived and tested an adjoint-based method for computing the

Jacobian matrix that greatly reduces computational costs, requiring only one solve

of the forward problem when linear elasticity is assumed.

More recent work in model-based elastography has focused on implementing

more accurate tissue models into the inverse elastography framework. In partic-

ular, numerous studies have sought to measure the properties of tissue assum-

ing it behaves as a more complex hyperelastic material (Samani and Plewes, 2004;

Goenezen et al., 2011, 2012).

2.5 Ultrasound Poroelastography

The stress-strain behavior of biological tissue is rather complex. This is due to

its complex structure. Biological tissue is not a homogeneous solid, but rather a

large network of many constituent components. Most simply, tissue can be di-

vided into three parts: the cells, the extracellular matrix, and the interstitial fluid.

The extracellular matrix is a dense network of polysaccharides and proteins that

houses the various cells of the body. Its primary structural components are colla-

gen and elastin. These fibrous proteins account for the elastic properties of tissue
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as well as anisotropy. The extracellular matrix is saturated with the interstitial

fluid, a solution of water and the various dissolved ions necessary for physiolog-

ical function. The interaction between the extracellular matrix and the interstitial

fluid during deformation also contributes to the complex stress-strain response.

The movement of fluid through the porous extracellular matrix leads to time de-

pendent responses, for example, creep and stress relaxation. The relative motion of

fibrous proteins against each other also contributes to these responses. A number

of constitutive relationships are used to model tissue behavior ranging in com-

plexity. The most common are hyperelastic models to account for the nonlinear

stress-strain relationship, and viscoelastic or poroelastic models to account for the

effects of fluid motion within the tissue.

The poroelastic model of tissue is of special interest when discussing edema-

tous tissue. Since edema is a state of fluid overload in tissue, fluid motion is very

important to the stress-strain response. As mentioned earlier, the clinical “pitting

test” of edema is based in part on the refilling time of the deformed region – that

is, the time required for interstitial fluid to flow back into the compressed region.

Both the initial compression and the refilling are time dependent. Suppose a com-

pressive force is applied to a region of tissue. In response, the extracellular matrix

deforms elastically and pressurizes the interstitial fluid. The increase in internal

fluid pressure drives fluid flow through the porous matrix according to Darcy’s

law. As more fluid leaves the compressed region, less fluid remains to support the

extracellular matrix. This leads to tissue exhibiting a slow additional deformation,

the creep response, which approaches a constant value once all the mobilizable

fluid is driven from the region.

Poroelastography methods seek to image the mechanical properties that lead

to this poroelastic response – the elastic coefficients of the extracellular matrix, the

fluid volume contained in it, and the porosity and permeability of the tissue. It
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has been hypothesized that these measurements may be useful in a diverse num-

ber of clinical settings, including edema monitoring. The first attempt to image

the poroelastic properties of tissue came from Konofagou and Ophir (1998). In

their study, they introduced the interative axial and lateral speckle tracking algo-

rithm and used the newly acquired lateral strain images to form a lateral-to-axial

strain ratio elastogram, giving a measurement of the effective Poisson’s ratio of

the tissue (EPR). Konofagou et al. (2001) later termed this method poroelastogra-

phy when they combined their measurement method of the lateral-to-axial strain

ratio with a theoretical solution of deformation for a biphasic poroelastic material.

Note that the terms lateral-to-axial strain ratio elastogram and EPR elastogram are

used interchangably in the literature, and I will follow that convention here.

The initial theoretical basis for poroelastography was an analytical solution to

the Kuei-Lai-Mow (KLM) biphasic model of tissue (Kuei et al., 1978; Mow and

Kuei, 1980; Armstrong et al., 1984). The KLM model can be derived by consider-

ing the conservation of mass, momentum, and energy for a binary mixture of fluid

and solid constituents. The model was originally used to describe the stress-strain

response of articular cartilage, where it successfully described the creep and stress

relaxiation responses of cartilage under sustained compression (Mow and Kuei,

1980). Armstrong et al. (1984) later derived an analytical solution to the KLM equa-

tions for a uniform unconfined cylinder with slip boundary conditions subjected

to an axial compressive stress. This solution, which will be described in more de-

tail later, dictates that the average lateral-to-axial strain ratio (the average effective

Poisson’s ratio) in the cylinder should decay in time to that of the drained matrix.

The typical model for poroelastography studies proceeds as follows (Konofagou

et al., 2001; Righetti et al., 2004, 2005a,b; Berry et al., 2006a,b). First, displacement

data are collected according to a standard elastography protocol. The tissue to be

imaged is compressed, and pre- and postcompression images are collected. Typ-
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ically, a time series of multiple postcompression images is collected. Ultrasound

speckle tracking provides an estimate of the internal displacement field in the im-

aged region of interest, both in the axial and lateral directions. The EPR elastogram

is then computed using a finite difference or least squares strain estimator. Finally,

a curve fitting procedure is usually applied to obtain other descriptive parameters.

For example, by fitting an exponential function to the each pixel of the time se-

ries of EPR elastograms, one can create an EPR time constant elastogram (Righetti

et al., 2005b). This image is purely descriptive, and its relationship to the phys-

ical mechanical properties is tenuous, but it nevertheless provides a potentially

useful measurement of tissue behavior. An alternative curve fitting routine uses

Armstrong’s solution to the KLM model (2.9) for each pixel to create a perme-

ability elastogram (Righetti et al., 2005b) or aggregate modulus, drained Poisson’s

ratio, and permeability elastograms (Berry et al., 2006a,b). Armstrong’s solution

intrinsically assumes material uniformity, however, and so care should be taken in

interpreting these elastograms in situations that do not exactly match the model

assumptions (unconfined uniaxial compression of a uniform cylinder).

u
aε0

(a, t) = νs + (1− 2νs)(1− νs)
∞

∑
n=1

exp
(
− α2

n HAkt
a2

)
α2

n(1− νs)2 − (1− 2νs)
(2.9)

2.5.1 Early Studies

Initial poroelastography studies made heavy use of simulated ultrasound RF data

and tissue mimicking materials. One can simulate RF data by convolving the point

spread function of a theoretical ultrasound scanner with the positions of uniformly

distributed scatterers with Gaussian distributed scattering strengths. In its most

simple form, this operation can be written in a few lines of code. Academic and

commercial software packages also exist to perform these simulations (for example

Field-II and FOCUS). Konofagou et al. (2001) used the solution of a finite element
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model to displace the scatterers between simulated ultrasound frames. This finite

element model used the Biot model of poroelasticity (Biot, 1941), which I will de-

scribe in detail later. Note that the Biot model is equivalent to the KLM model

under common simplifying assumptions for soft tissue (Simon, 1992). The mea-

sured EPR showed good agreement with the computational true value, but the

image was very noisy.

Righetti et al. (2004) followed a similar procedure but also tested the method

experimentally using tofu as a tissue mimicking phantom. Their study exhibited

similar results – namely, the Poisson’s ratio image, though accurate, was highly

noisy, especially for the experimental case. They also noted the difficulty in apply-

ing corrections to the lateral measured strains in the presence of contrast in both

the Poisson’s ratio and Young’s modulus. Despite these drawbacks, the study pro-

duced an important extension to earlier work. Using experimentally measured

values of the Young’s modulus and permeability, the authors used Armstrong’s

solution to solve for the Poisson’s ratio of the draiend matrix. They observed an

expected decay in the mean Poisson’s ratio, but the true value was difficult to ob-

tain since the permeability could only be accurately estimated experimentally to

an within an order of magnitude (by falling-head test).

In a similar study, Righetti et al. (2005b) generated two new varieties of poroe-

lastogram using two types of tofu phantoms as well as porcine tissue. The first, the

Poisson’s ratio time constant elastogram, was generated by fitting an exponential

curve of the form ν = ν0(1− exp(−t/τ)) to the EPR at each pixel in the series of

poroelastograms, where the constant ν0 was estimated from the experimental data

directly at time t = 0. The time constant τ for each pixel then gives a measure

for the degree to which the tissue deviates from a purely elastic behavior (since

for a purely elastic material, the time constant should approach zero). The second

type of poroelastogram detailed in the study, the permeability poroelastogram, re-
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lies on a priori estimates of the drained Poisson’s ratio and the Young’s modulus.

With both of these measurements, the EPR at each pixel in the time series of poroe-

lastograms can be fit to Armstrong’s biphasic solution to the KLM model. This

provides an estimate for the permeability k at each pixel. In practice, such a pro-

cedure is difficult since it requires accurate estimates of both the Poisson’s ratio

and Young’s modulus. Furthermore, as mentioned earlier, Armstrong’s solution

assumes uniform permeability, and so variations in the permeability elastogram

should be interpreted carefully as they do not fit the model assumptions.

Berry et al. (2006a) improved upon Konofagou’s work and Righetti’s work by

deriving a local, rather than average, expression for the lateral-to-axial strain ratio.

This approach, which focused more heavily on the underlying theory of poroe-

lastic deformation, centered around a curve fitting algorithm for determining the

poroelastic constants. They also provided experimental validation for homoge-

neous tofu cylinders with slip boundary conditions (Berry et al., 2006b). While this

work corrected some of the earlier theoretical flaws, it also relied on the assump-

tion of material homogeneity throughout the region of interest. In general, this

may not hold in the body, and in some cases such as tumors, it should be expected

that inhomogeneity exists.

2.5.2 In vivo Studies

To date, two clinical ultrasound poroelastography studies have been performed

(Righetti et al., 2007a; Berry et al., 2008). The first compared Poissons ratio time

constant elastograms for patients with and without lymphedema (Righetti et al.,

2007a). Ultrasound measurements were obtained from the thigh or forearm sub-

cutis of 7 females and 1 male with clinically diagnosed lymphedema. Similar

measurements were obtained from 5 female subjects without lymphedema. All

subjects were asked to lie in a supine position while a constant 25% strain was
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applied, corresponding to a stress relaxation experiment. Effective Poissons ratio

time constant elastograms were then used to differentiate the two patient popu-

lations. While the images themselves were difficult to interpret, the mean value

of the time constant for each patient provided a useful metric for differentiating

the presence of lymphedema. For subjects in the non-edematous group, the mean

Poissons ratio time constant was on the order of 225 seconds. In contrast, patients

with lymphedema exhibited time constants on the order of 55 seconds with a dis-

tribution heavily skewed towards lower values. Although staging the degree of

lymphedema was not addressed in this study and indeed remains an open prob-

lem, the ability to differentiate edematous and non-edematous subjects represents

an important step forward for clinical translation and marks effective Poissons ra-

tio poroelastography as a feasible method for edema measurements.

The second clinical poroelastography study, from Berry et al. (2008), examined

the differences in the poroelastic response measured from patients with chronic

unilateral lymphedema. The study examined 6 female subjects who exhibited

at least a 20% fluid volume difference between the ipsilateral and contralateral

arms, as measured using optoelectronic volumetry. A constant strain was applied

to the measured arm for 500 seconds (stress relaxation), and ultrasound images

were collected during and following a ramp-like compression. Axial strain im-

ages were then computed, and strains were compared at various depths along the

image centerline. While the researchers did not analyze any poroelastic constants

in this study, they were able to observe poroelastic behavior in both the ipsilateral

(edematous) and contralateral (non-edematous) arms for each patient. Specifically,

they observed that the axial strain in both arms exhibited temporal and spatial de-

pendence, as is typical for poroelastic materials under compression. Moreover,

they reported that these effects seemed to be more pronounced in the ipsilateral

(edematous) arm. Because of the small sample size and single measurements ob-
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tained per patient, more definite conclusions could not be made regarding signif-

icant differences or reproducibility. They also noted the need to reduce patient

motion and to reduce experimental variance. Nevertheless, the fact that this study

observed poroelastic effects in all of their clinical measurements gives ample mo-

tivation to continuing research into poroelastic imaging methods.

2.6 Measured Properties of Poroelastic Materials and

Tissues

Poroelastography is still a nascent field, and as such, most of the work has taken

place within the laboratory as opposed to the clinic. Tofu has frequently been

used as a tissue mimicking phantom because of its porous structure and time-

dependent response to applied loads. The properties of tofu as a tissue-mimicking

ultrasound phantom are well documented (Wu, 2001; Kim et al., 2009), and it has

become the de facto choice of phantom in poroelastography studies (Righetti et al.,

2004, 2005a; Berry et al., 2006b; Righetti et al., 2007b; Perriñez et al., 2010b,a; Nair

et al., 2011; Nair and Righetti, 2015). Most poroelastography studies, whether

ultrasound-based or magnetic resonance-based, have sought to compare the im-

aged properties of tofu to those measured using standard mechanical creep and

stress-relaxation tests. The goal has typically been to estimate the time constant of

the temporal response (Table 2.2) or the shear modulus (Table 2.3). Studies have

reported a wide range of values for these parameters. This may in part be due to

the variability inherent in studying a material like tofu whose properties may vary

by type (soft, firm, extra-firm), manufacturer, age, and storage conditions. These

variables make it difficult to reasonably evaluate comparisons across studies.

Clinical pilot studies have also shown a wide range in variation when mea-

suring the poroelastic properties of tissue. Often, comparisons between imaging
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studies and mechanical measurements are difficult because tissue structure and

loading vary greatly between the in-vivo case (typically employed for imaging

studies) and the case of excised tissue (typically used for mechanical tests). Periph-

eral edema imaging represents a special case where a more direct comparison can

be made. Both imaging tests and mechanical tests in this setting apply a compres-

sive stress to the surface of the skin and measure the resulting deformation. The

behavior is then described by fitting an exponential model to the measured axial

strain or EPR, yielding a time constant. This allows comparisons of the temporal

response between patients with edema and those without it. The literature in this

area remains sparse, however, and the conclusions of existing studies vary. Table

2.4 summarizes some key results of one poroelastic imaging study (Righetti et al.,

2007b) and three studies utilizing mechanical tests. Two of the mechanical studies

suggest that edematous tissues exhibit longer time constants, but their time con-

stant measurements differ from each other by two orders of magnitude (Mridha

and Odman, 1986; Bates et al., 1994). In contrast, one mechanical study and the

previously mentioned imaging study suggest the opposite – namely, that time con-

stants are lower in edematous tissues (Lindahl, 1995). These studies demonstrated

similar time constant measurements and similar differences between edematous

and non-edematous tissues. Because of the discrepancies in the literature, more

study is clearly required to produce a satisfactory conclusion. A study that com-

bines both ultrasound and mechanical measurements on a large cohort of patients

for varying degrees of edema should be able to more accurately answer these ques-

tions.

19



Table 2.1: Physical Examination Edema Grades

Edema Grade Description

Zero to trace No visible swelling

1+ 2 mm depression, barely detectable, immediate rebound

2+ 4 mm deep pit, a few seconds to rebound

3+ 6 mm deep pit, 10-12 seconds to rebound

4+ 8 mm deep pit, more than 20 seconds to rebound, blister or skin break
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Table 2.2: Mechanical Properties of Tofu – Time Constants

Type Axial Strain TC (s) EPR TC (s) Study

Unspecified (TT1 in study) NA 339 (relaxation) Righetti et al. (2005b)

Unspecified (TT1 in study) 290 (creep)
240 (creep)

Righetti et al. (2007b)
340 (relaxation)

Unspecified (TT1 in study) 270 (relaxation) NA Righetti et al. (2007b)

Unspecified (TT2 in study) NA 50 (relaxation) Righetti et al. (2005b)

Unspecified (TT2 in study) 56 (creep)
32 (creep)

Righetti et al. (2007b)
49 (relaxation)

Unspecified (TT2 in study) 67 (relaxation) NA Righetti et al. (2007b)

Extra firm 20 (relaxation) NA Belmont et al. (2013)
(Italics denotes a mechanical, rather than imaging, test)
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Table 2.3: Mechanical Properties of Tofu – Shear Modulus (kPa)

Type Imaged Mechanical
Quasistatic

Mechanical
Harmonic

Study

Silken 6-7 (MR) NA NA Perriñez et al. (2010a)

Soft 4.5-4.8 (MR) 0.89 6.4 Perriñez et al. (2010b)

Firm 5.1-10.6 (MR) 2 16 Perriñez et al. (2010b)

Extra Firm 7.1-14 (MR) 2.3 22 Perriñez et al. (2010b)

Extra Firm 5.4 (MR) NA NA Perriñez et al. (2009)

Unspecified
(fully
hydrated)

0.64* (USN) NA NA Righetti et al. (2004)

Unspecified
(partially
dehydrated)

0.69* (USN) NA NA Righetti et al. (2004)

Unspecified
(TT1 in study)

NA 0.67* NA Righetti et al. (2007b)

Unspecified
(TT2 in study)

NA 1.2* NA Righetti et al. (2007b)

(* denotes that the shear modulus µ was computed from the Young’s modulus E
and Poisson’s ratio ν determined by the study according to µ = E/2(1 + ν).)

22



Ta
bl

e
2.

4:
M

ec
ha

ni
ca

lP
ro

pe
rt

ie
s

of
Ed

em
at

ou
s

Ti
ss

ue
–

Ti
m

e
C

on
st

an
ts

(s
)

Ti
ss

ue
Ti

m
e

C
on

st
an

t
Ty

pe
St

ud
y

Normal

Su
bc

ut
is

,a
rm

an
d

le
g,

no
rm

al
pa

ti
en

ts
(U

SN
)

22
5

EP
R

R
ig

he
tt

ie
ta

l.
(2

00
7a

)

Su
bc

ut
is

,l
ow

er
le

g,
no

rm
al

pa
ti

en
ts

0.
39

A
S

M
ri

dh
a

an
d

O
dm

an
(1

98
6)

Su
bc

ut
is

,c
on

tr
al

at
er

al
ar

m
,u

ni
la

te
ra

le
de

m
a

71
A

S
Ba

te
s

et
al

.(
19

94
)

Su
bc

ut
is

,c
on

tr
al

at
er

al
ar

m
,u

ni
la

te
ra

le
de

m
a

13
5

A
S

Li
nd

ah
l(

19
95

)

Edematous

Su
bc

ut
is

,a
rm

an
d

le
g,

ly
m

ph
ed

em
a

pa
ti

en
ts

(U
SN

)
25

EP
R

R
ig

he
tt

ie
ta

l.
(2

00
7a

)

Su
bc

ut
is

,l
ow

er
le

g,
ed

em
a

pa
ti

en
ts

1.
4-

2.
8

A
S

M
ri

dh
a

an
d

O
dm

an
(1

98
6)

Su
bc

ut
is

,i
ps

ila
te

ra
la

rm
,u

ni
la

te
ra

le
de

m
a

23
0

A
S

Ba
te

s
et

al
.(

19
94

)

Su
bc

ut
is

,i
ps

ila
te

ra
la

rm
,u

ni
la

te
ra

le
de

m
a

30
A

S
Li

nd
ah

l(
19

95
)

23



Figure 2.1: Illustration of the physical examination, or “pitting” test, for grading
peripheral edema. The edematous region is compressed manually, and the degree
of edema is rated on a scale of 0-4+ based on the depth and rebound time of the
observed indentation in the skin.

24



6 6.5 7 7.5 8
Time (µs)

-8

-6

-4

-2

0

2

4

6

8
Si

gn
al

Precompression
Postcompression

Time delay
estimate

Figure 2.2: Simple graphical illustration of the speckle tracking time delay estima-
tion. The RF ultrasound signals are shifted relative to one another by the applied
compression. Normalized cross correlation can then be used to estimate the time
delay for which small segments of the pre- and postcompression RF signals are
most similar.
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Perriñez, P. R., Kennedy, F. E., Van Houten, E. E. W., Weaver, J. B., and Paulsen,
K. D. (2009). Modeling of soft poroelastic tissue in time-harmonic MR elastogra-
phy. IEEE Trans. Biomed. Eng., 56(3):598–608.
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CHAPTER 3

Theory

3.1 Introduction

In this chapter, I describe some of the important theoretical models used in poroe-

lastography. These models provide the basis for which poroelastograms are inter-

preted and serve as a means of estimating physical parameters from the measured

strain or displacement data. I begin with a description of the Biot model of poroe-

lasticity (Biot, 1941). This is the oldest poroelastic theory, and it will form the basis

of finite element models described in Chapter 5 and the inverse problem poroelas-

tography algorithm detailed in Chapter 6. It can be shown that the Biot model is

equivalent to the later KLM biphasic model under normal assumptions applying to

soft biological tissue. Following the Biot theory, I will briefly discuss Armstrong’s

analytical solution of the KLM equations for unconstrained uniaxial compression

of a uniform cylinder. This will form the basis of one of the parameter estimation

techniques utilized in Chapter 5.

3.2 Biot Theory of Poroelasticity

The general theory of poroelasticity has its roots in soil mechanics. Soil undergoes

a process called consolidation whereby the material slowly deforms in response to
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an applied load. Terzaghi (1923) was the first to propose a mechanism to explain

this phenomenon, basing it on assumptions of one dimensional deformation and a

constant load. It was Biot (1941) who outlined the first general theory in the three

dimensional case.

Consider, as Biot did, an isotropic material composed of a porous matrix sat-

urated by a pore fluid. It is helpful to require that pores of the matrix are small

enough compared to the macroscopic behavior that the material can be considered

homogeneous. In addition, it is reasonable to limit the analysis to assume small

strains, linearity of the stress-strain relations, and reversibility of the equilibrium

stress-strain relationship.

3.2.1 Constitutive Relationships

We begin the derivation by defining a variable ζ called the variation in fluid con-

tent that describes the increment of water volume per unit volume of the porous

matrix. We also define the fluid pressure p that acts on the pore fluid. In the case

that ζ = 0, our material by definition will behave as a perfectly elastic solid – that

is, there is no pore fluid and therefore no pore pressure (p = 0). We therefore

expect the material to behave according to Hooke’s law. Writing Hooke’s law in

terms of Young’s modulus E and Poisson’s ratio ν, we expect the following consti-

tutive relationship between the stress tensor and the strain tensor:

εij =
1
E
(
σij − ν

[
σkk − σij

])
, (3.1)

where summation is implied over repeated indices. For a nonzero pressure, we

note that isotropy requires that the pressure cannot produce any shearing strain. It

must also act equally on the three principal directions. By our assumption of small

strain, we may further assume a linear relationship between the strain and the pore
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pressure. Letting H′ denote some physical constant and δij denote the Kronecker

delta, we can then write the stress-strain-pressure relationship for a poroelastic

material as

εij =
1
E
(
σij − ν

[
σkk − σij

])
+

p
H′

δij. (3.2)

The volumetric strain ε = εkk can be written by summing the principal strains

to give

ε = ε11 + ε22 + ε33 =
1
E
(1− 2ν) σkk +

3p
H′

. (3.3)

Solving equation 3.3 for σkk and defining H′ = 3H (for convenience) yields

σkk =
E

1− 2ν

(
ε− p

H

)
. (3.4)

This now allows us to determine the stress tensor for our poroelastic material. We

combine equations 3.2 and 3.4, rearranging terms to solve for the stress. This yields

σij = 2G
(

εij +
νε

1− 2ν

)
− αpδij. (3.5)

Here, we have defined two new constants – the shear modulus G and the Biot-

Willis coefficient α. The shear modulus is not independent from the parameters E

and ν. Rather, it can be written as a combination of the two – specifically,

G =
E

2(1 + ν)
. (3.6)

The Biot-Willis coefficient α, as we shall later show, is a measure of the ratio of the

fluid volume change to the total volume change of the porous matrix. It can be

written in terms of the shear modulus and Poissons ratio, or alternatively in terms
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of the bulk modulus K, and the poroelastic constant H as

α =
2(1 + ν)G

3(1− 2ν)H
=

K
H

. (3.7)

Let us now turn our attention back to the variation of fluid content ζ. As the

simplest possible assumption, we take ζ to have the general linear form

ζ = a1σ11 + a2σ22 + a3σ33 + a4σ12 + a5σ13 + a6σ23 + a7p. (3.8)

As before, we make use of the isotropy assumption to eliminate shear terms (a4 =

a5 = a6 = 0). Since all three principal stresses must have equivalent effects on the

fluid content, we are left with the following expression for the variation of fluid

content:

ζ =
1

H′1
σkk +

1
R

p, (3.9)

where H′1 and R are physical poroelastic constants. Assuming that the material has

potential energy – this follows naturally if we assume the stress-strain relationship

is reversible – it can be shown that H′1 = H′ = 3H (Biot, 1941). Combining equa-

tions 3.4 and 3.8, we can express the fluid content as a function of the volumetric

strain and the pore pressure. After some algebraic manipulations, we obtain

ζ = αε +
1
M

p, (3.10)

where 1/M = 1/R− α/H is sometimes called the Biot modulus.

3.2.2 Physical Interpretation of the Poroelastic Parameters

It is worth mentioning now that we still have two unique poroelastic constants we

have not fully defined: H and R, which enter our constitutive equations through
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the Biot-Willis coefficient α and the Biot modulus 1/M. In general, these represent

physical constants that must be measured by experiment. In the case of an ideal

porous solid, however, we can derive expressions for these in terms of more fa-

miliar material properties such as porosity, compressibility, and bulk modulus. By

an ideal porous solid, we mean a material composed of a homogeneous, isotropic

solid matrix containing a fully connected pore space. It turns out that such materi-

als exhibit a very useful property. Consider applying a known confining pressure

P′ to the material while holding the fluid pore pressure at an equal magnitude –

a useful thought experiment Detournay and Cheng (1993) termed a “Π-loading”.

Biot referred to this as an unjacketed test, and it is sometimes also referred to as

an undrained test. Under a Π-loading, the solid matrix and pore space of an ideal

porous solid deform with a uniform volumetric strain. This means that the poros-

ity of an ideal porous solid is constant under a Π-loading, making our analysis

much simpler.

Our first goal is to derive a simple physical interpretation of the Biot-Willis

coefficient α. We imagine applying a Π-loading with an all around confining pres-

sure P′ to an ideal porous material. In other words, the three principle stresses all

equal −P′ (where the negative denotes compression). It follows that the sum of

the principle stresses can be written

σkk = σ11 + σ22 + σ33 = −3P′. (3.11)

We now employ an equivalent form of equation 3.4, expressed in terms of the bulk

modulus rather than the Youngs modulus and Poissons ratio

σkk = 3K
(

ε− p
H

)
. (3.12)

By virtue of our chosen Π-loading, we can make some substitutions into equation
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3.12. First, the pore pressure p = P′, and second, σkk = −3P′ from equation 3.11.

Finally, we recall that for a Π-loading, the volumetric strain is uniform – that is,

the volumetric strain in the bulk porous material is equal to the volumetric strain

in the solid phase alone. These substitutions yield

− 3P′ = 3K
(

εs −
P′

H

)
. (3.13)

Focusing our attention on the solid components of our porous material only, we

use the definition of the bulk modulus to describe the volumetric strain in the

solid

− εs ≡ −
(

∆V
V

)
s
=

P′

Ks
, (3.14)

where V denotes volume and Ks is the bulk modulus of a homogeneous (non-

porous) volume of the solid matrix material. Combining equations 3.6, 3.13, and

3.14 and rearranging, we find that

α = 1− K
Ks

. (3.15)

This means that α can be thought of as a measure of the relative compressibility

of the solid matrix material itself and that of the porous material as a whole. In

the case of an incompressible solid phase, Ks approaches infinity and we find that

α = 1.

We now turn our attention to the Biot modulus 1/M. We know from equation

3.10 that this constant relates the variation of fluid content to the volumetric strain

and pore pressure. In fact, the Biot modulus can be defined very precisely as the

change in fluid content with respect to pressure under conditions of constant volu-

metric strain. We start therefore by considering changes in the pore fluid volume.

If the pore space of our porous solid is saturated, the pore volume Vp and fluid
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volume Vf are equal. The same holds for any changes in those two volumes. We

can then write the decomposition

∆Vp

Vp
=

∆Vf

Vf
=

∆V(1)
f

Vf
+

∆V(2)
f

Vf
, (3.16)

where ∆V(1)
f is associated with volume changes due to dilatation of the pore fluid

and ∆V(2)
f is due to fluid exchange between the pore space and the environment.

By the definition of compressibility χ f of the pore fluid

∆V(1)
f

Vf
= −χ f p. (3.17)

We recall now that the variation in fluid content ζ describes the increment of water

volume per unit volume of the porous matrix. That is,

ζ ≡
∆V(2)

f

Vf
. (3.18)

This is very close to the form seen in equation 3.16. Using the porosity of the ma-

terial φ, defined as the ratio of pore volume to total volume, we can write equation

3.18 in terms of the total fluid volume (again noting that for a saturated pore space

Vp = Vf )

ζ =
Vf

V
·

∆V(2)
f

Vf
= φ

∆V(2)
f

Vf
(3.19)

Substituting equations 3.17 and 3.19 into equation 3.16, noting that the left hand

side of the equation is equal to the volumetric strain in the pore space, we obtain

εp = −χ f +
ζ

φ
(3.20)

We now use equation 3.9 to eliminate ζ from equation 3.20. With some mild rear-
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ranging, this yields

φεp = −φχ f p + αε +
1
M

p, (3.21)

As we did for the Biot-Willis coefficient, we now imagine applying a Π-loading

to our ideal porous material. Recall that for a Π-loading, the following hold: (1)

p equals a uniform confining pressure P′ and (2) εp = ε = εs. Applying these

conditions to equation 3.21, we obtain

φεs = −φχ f P′ + αεs +
1
M

P′. (3.22)

which can then be simplified further using equation 3.13:

− φ
P′

Ks
=

(
−φχ f − α

1
Ks

+
1
M

)
P′. (3.23)

From here, we eliminate P′ and solve for the Biot modulus

1
M

= φχ f + (α− φ)
1

Ks
, (3.24)

or, equivalently, making use of our definition of α (equation 3.15),

1
M

= φχ f + (α− φ)
1− α

K
. (3.25)

The poroelastic parameters now have clear physical interpretations, fully ex-

pressible in terms of the mechanical properties of the constituent materials (solid,

fluid, and bulk matrix) and their internal structure (porosity). This will be particu-

larly beneficial to poroelastography studies as we shall discuss later since it allows

us to more easily make material assumptions. For example, we can consider the

case where the bulk porous material is much more compressible than an equiva-

lent block of the non-porous solid (Ks � K), which yields the case α = 1 (from
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equation 3.15). We might also assume that the pore fluid has the same properties

as water. In many applications ranging from soil dynamics to poroelastography

this is indeed the case. The constitutive equations under these assumptions then

involve only bulk material properties (G, ν, K, φ) and one poroelastic parameter

1/M that we can calculate rather than measure.

3.2.3 Governing Equations

We now have a full constitutive model for our poroelastic material. That is, we

can describe how stresses, strains, and pressures relate to each other. However, we

do not yet have a closed system of equations that we can solve. This requires two

equations: (1) an equilibrium equation for the stress and (2) an evolution equation

for the pore pressure.

We start by assuming that the deformation of our poroelastic material can be

described as quasi-static. That is, we require that deformation to an equilibrium

state occurs very quickly, particularly when compared to the timescale over which

the pore fluid pressure changes. This allows us to enforce an equilibrium condi-

tion. The equilibrium condition is identical to that for an elastic solid, in accor-

dance with Cauchy’s momentum equation. If we neglect gravitational effects, the

divergence of the total stress tensor must equal zero:

σij,j = 0. (3.26)

Applying this to equation 3.5, this leads to the equilibrium pressure-strain rela-

tionship

2G
(

εij,j +
ν

1− 2ν
ε,i

)
− αp,i = 0, (3.27)
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or equivalently using the bulk modulus K instead of Poissons ratio ν

2Gεij,j +

(
K +

2
3

G
)

ε,i − αp,i = 0. (3.28)

This equation has three components, one for each of the three spatial dimensions,

and allows us to relate the fluid pore pressure to the displacement field ui, since

εij = (ui,j + uj,i)/2. We therefore have four unknowns – the three displacements ui

and the pore pressure p.

To close the system of equations, we now derive an equation for the evolution

of the pore pressure. The pressure evolution is a time-dependent equation, but one

that varies on a much slower time scale than the deformation. It is in this sense that

the time-dependent behavior – for example, in the consolidation of soil or the creep

response of biological tissue – enters the problem even though the deformation is

assumed to be quasi-static. We begin by noting that continuity requires that the

variation of fluid content is dependent on the volumetric flux qi of fluid into and

out of the porous matrix. Mathematically, we can write this relationship as

∂ζ

∂t
+ qi,i = 0. (3.29)

Now we note that the volumetric flux of fluid moving through a porous matrix

is described by Darcys law. If κ is the permeability of the porous matrix (with

units of m2) and µ is the viscosity of the pore fluid, then Darcys law states that the

volumetric flux is proportional to the pressure gradient

qi = −
κ

µ
p,i. (3.30)
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Combining equations 3.10, 3.29, and 3.30 gives the pressure evolution equation

1
M

∂p
∂t
− κ

µ
p,ii = −α

∂ε

∂t
. (3.31)

We now have enough equations to solve for all the unknown variables - three

equations for the displacement components u, v, and w, and one equation for the

pressure p - for some deformation problem. Table 3.1 gives a summary of the

variables, parameters, and governing equations for poroelastic deformation.

3.3 Armstrong’s Solution to the Kuei-Lai-Mow Model

The Kuei-Lai-Mow (KLM) biphasic model was developed in the 1980s to describe

the behavior of articular cartilage (Kuei et al., 1978; Mow and Kuei, 1980; Mow

and Lai, 1980). The KLM model provides separate equations for fluid and solid

phases of a porous material saturated with a fluid. This differs from the Biot the-

ory which does not explicitly treat the two phases separately. Under specific con-

ditions, namely that both phases are incompressible, the KLM model and the Biot

model are equivalent (Simon, 1992). Armstrong et al. (1984) developed an ana-

lytical solution to the KLM model for the unconfined compression of a biphasic

cylinder. This analytical solution has been used extensively in poroelastography

studies. In this section, I will briefly review the governing equations of the KLM

model and Armstrong’s solution for the stress relaxation and creep responses, in-

sofar as they are used in poroelastography.

The KLM model defines stress-strain relations separately for the solid porous

matrix and the pore fluid as

σs
ij = −αpδij + λεδij + 2µεij (3.32)
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and

σ
f
ij = −pδij, (3.33)

where λ and µ are the first Lamé parameter and shear modulus, respectively, and

all other variables are defined similarly to the previous section. The only exception

is the definition of α, which now denotes the ratio of solid volume to fluid volume

and is related to the porosity φ by the relationship 1 + α = φ−1. The total stress is

related to the individual phases by

σt
ij = σs

ij + σ
f
ij . (3.34)

For these constitutive equations, conservation of mass and momentum for the

mixture can be written

div v f + αdiv vs = 0, (3.35)

div σs − 1
k(1 + α)2 (v

s − v f ) = 0, (3.36)

div σ f +
1

k(1 + α)2 (v
s − v f ) = 0, (3.37)

div σt = 0, (3.38)

where v f and vs are the fluid and solid phase velocities, respectively, and k is the

permeability in units of m4N−1s−1, related to the Biot permeability by k = κ/µ f .

In his solution, Armstrong considers the unconfined compression of a cylinder

of radius a under small (infinitesimal) strain. The displacement and pressure fields

are assumed to be axisymmetric, and it is assumed that the axial strain is uniform.

Under these assumptions, the strain tensor in cylindrical coordinates is diagonal

with nonzero components

εrr =
∂u
∂r , εθθ =

u
r , εzz = ε(t). (3.39)
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This allows us to simplify the conservation of mass equation (3.35). Because of the

small strain assumption, the temporal and space derivatives may be interchanged,

allowing us to write

(
∂v f

r

∂r
+

v f
r

r
+

∂v f
z

∂z

)
+ α

∂

∂t

(
∂u
∂r

+
u
r
+ ε(t)

)
= 0. (3.40)

This equation can be integrated with respect to r and used together with the sim-

plified governing equations to express a single equation relating the axial strain

history ε(t) to the radial displacement u:

∂2u
∂r2 +

1
r

∂u
∂r
− u

r2 =
1

Hak
∂u
∂t

+
1

Hak
r
2

∂ε

∂t
, (3.41)

where HA = λ + 2µ is the aggregate modulus.

For stress relaxation, the strain history ε(t) = ε0 is a known constant, while for

creep, the following integral constraint is imposed:

a∫
0

σt
zz2πrdr = F(t). (3.42)

Because the deformation is infinitesimal, the upper limit of the integral a may be

treated as a constant defined by the reference configuration of the material. Un-

der large strain, this assumption would not hold and the upper limit becomes a

function of time.

Taking the Laplace transform of Equation 3.41 yields an ordinary differential

equation in r, the solution of which may be written in terms of Bessel functions.

The Heaviside Expansion Theorem can then be used to invert the solution to obtain

the solution of the equation in the original time domain.

In the stress relaxation case, this yields an equation for the mean radial strain
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in the cylinder,

u
a
(a, t) = ε0

ν + (1− 2ν)(1− ν)
∞

∑
n=1

exp
(
−α2

n
Hakt

a2

)
α2

n(1− ν)2 − (1− 2ν)

 , (3.43)

where

Ha =
E(1− ν)

(1 + ν)(1− 2ν)
, (3.44)

and αn are the roots of the characteristic equation

J1(x)− (1− ν)
xJ0(x)
1− 2ν

= 0. (3.45)

The creep case yields an equation for the strain history,

ε(t) = − F0

Eπa2

[
1− (1− ν2)(1− 2ν)

∞

∑
n=1

4
9(1− ν2)β2

n − 8(1 + ν)(1− 2ν)
exp

(
−β2

n
Hakt

a2

)] (3.46)

where βn are the roots of

J0(x)− 4(1− 2ν)

3(1− ν)

J1(x)
x

= 0. (3.47)

Poroelastography studies typically employ these equations in curve fitting rou-

tines to estimate poroelastic parameters from ultrasound strain measurements. In

addition, Equations 3.43 and 3.46 can be rearranged to obtain expressions for the

mean radial-to-axial strain ratio in the cylinder. This value, also termed the effec-

tive Poisson’s ratio (EPR), approaches the Poisson’s ratio ν as t → ∞ and gives an

additional useful interpretation for the time evolution of poroelastograms.
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Table 3.1: Summary of the Biot poroelasticity parameters and equations

Material parameters K Matrix bulk modulus

G Matrix shear modulus

Ks Solid bulk modulus

κ Matrix permeability

φ Matrix porosity

χ f Fluid compressibility

µ Fluid viscosity

Poroelastic parameters α = 1− K
Ks

Biot-Willis coefficient

1
M = φχ f + (α− φ) 1−α

K Biot Modulus

Governing equations 2Gε ij,j +
(
K− 2

3 G
)

ε,i − αp,i = 0 Equilibrium equations

1
M

∂p
∂t −

κ
µ p,ii = −α ∂ε

∂t Pressure evolution equation

Unknown variables u, v, w Displacement field

p Pore fluid pressure
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CHAPTER 4

Design and testing of a single-element

ultrasound viscoelastography system for

point-of-care edema quantification

4.1 Introduction

Parts of this chapter have been published in “Design and testing of a single-element

ultrasound viscoelastography system for point-of-care edema quantification”, Ul-

trasound in Medicine and Biology (Pitre, Jr et al., 2016). As discussed earlier, care-

ful monitoring of patient fluid overload is an essential part of standard care for

patients with end stage renal disease (ESRD). Current monitoring techniques rely

primarily on palpation to grade the degree of peripheral edema as an indication of

fluid overload. This method provides an inadequate assessment, and fully quanti-

tative methods based on new technologies have the potential to substantially im-

prove patient fluid balance monitoring by providing a more consistent, observer-

independent measurement (Kouw et al., 1993; Oe et al., 2000; Yashiro et al., 2007).

A number of studies have proposed the use of ultrasound elastography as a po-

tential tool for measuring the mechanical properties of edematous tissue (Righetti

et al., 2007; Berry et al., 2008; Adriaenssens et al., 2012; Kruger et al., 2012).

Standard ultrasound elastography techniques rely on assumptions of stress
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uniformity and linear elasticity. Biological tissue is more accurately described as

poroelastic or viscoelastic, and various models have been developed to describe

the stress-strain response of tissue under compression (Kuei et al., 1978; Mow

and Kuei, 1980; Armstrong et al., 1984; Fung, 1993). Ultrasound viscoelastogra-

phy (UVE) replaces the linear elastic tissue model with the more accurate, but still

relatively simple, standard linear solid (SLS) model (Fung, 1993; Insana et al., 2004;

Sridhar et al., 2007; Qiu et al., 2008). This lumped-parameter model can be repre-

sented as a collection of springs and dashpots (Figure 4.1). Under a constant stress

step loading σ0H(t), the SLS model exhibits the following creep response with

strain ε:

ε(t) = σ0

[
1
E0

+
1
E1

(1− exp(−t/τ))

]
H(t). (4.1)

This simple, closed form expression for the strain response to compression is ideal

for obtaining a bulk estimate of tissue properties. Point-of-care applications such

as edema monitoring may benefit from such a simple tissue model.

In this chapter, I detail the development and testing of a point-of-care viscoelas-

tography system. This system was designed around a single-element ultrasound

transducer to decrease hardware complexity and computational expense. I inves-

tigated the use of this single-element viscoelastography system to quantify the vis-

coelastic properties of a tissue-mimicking material subjected to large strains.

4.2 Methods and Material

To demonstrate the feasibility of using UVE measurements to estimate the fluid

content of edematous tissue, I conducted two similar experiments. One experi-

ment was a standard creep compression test; the other was a creep compression

test with simultaneous UVE measurements. The standard creep compression test

served as a gold standard comparison for the UVE measurements. In this section,
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I outline the procedure used to obtain and process data for each of these experi-

ments.

In all experiments, I used cylindrical samples of extra-firm tofu (Nasoya, Ayer,

MA) as an edematous tissue-mimicking phantom. Cylinders were cut from a sin-

gle block of tofu using a 32 mm diameter tube of sharpened plastic at room tem-

perature. Next, each cylinder was trimmed to a height of 20 ± 1 mm. This yielded

a total of 12 samples per block of tofu. The samples were relatively uniform in

structure although some macroscale variations in the structure (e.g. larger pores)

were visibly present, as might be expected of a randomly porous material such as

tofu. The samples were stored at room temperature for the course of the experi-

ment (approximately 3 hours) in the original holes from which they were cut in the

tofu block and submerged in the original preservation fluid from the tofu packag-

ing. This ensured that the samples experienced constant structural and osmotic

conditions when not in use.

During testing, individual tofu samples were submerged in a water tank and

immediately subjected to a constant, step-like loading of 1.0 N (a mechanical creep

test). A single-axis programmable test stand (ESM301L, Mark-10, Copiague, NY)

and digital force gauge (Series 5, Mark-10, Copiague, NY) allowed for precise con-

trol of the loading. To create the step-like loading, the test stand subjected the

samples to a steep ramp compression of 50 mm/min until the force gauge mea-

sured 1.0 N. After this point, the ramp loading ceased, and the test stand adjusted

the loading to maintain a constant 1.0 N force for five minutes while data were col-

lected. A schematic of the apparatus is shown in Figure 4.2. A fixture containing a

single-element, 8 MHz focused ultrasound transducer made contact with the tofu

samples and distributed the load uniformly across the surface of the sample. For

standard creep compression tests, I used MesurGauge software (Mark-10, Copi-

ague, NY) to collect displacement data from the test stand. As a side note, the
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loading produced a steady state strain of approximately 10%. This constitutes a

large strain at which nonlinear effects are not negligible. I accounted for this by

using incremental strain estimation and finite strain theory in my analysis.

Although all of my experiments used the same brand and type of tofu, I did no-

tice large variations between different blocks (Table 4.1). Because of this, I treated

each pack as a separate data set and drew comparisons between standard creep

compression and UVE tests for each block individually (3 total blocks). Because

large strains can cause irreversible mechanical changes to the porous structure of

the tofu and viscoelastic materials exhibit strong effects from loading history (Fung

1993), each tofu cylinder cut from a block was loaded only once. Half of the cylin-

ders underwent the standard creep compression test, and the other half underwent

the UVE test.

For UVE tests, I collected radio frequency (RF) ultrasound data using an in-

house single-element ultrasound data acquisition system (Figure 4.3). This sys-

tem was designed with point-of-care applications in mind where conventional

high frame rates are not required, and minimizing device complexity is desirable.

The design of this ultrasound system minimizes the dedicated hardware neces-

sary compared with typical ultrasound systems. A 32-bit MIPS microcontroller

(MCU) running at 80 MHz controls all the high-level functions of the device, while

a complex programmable logic device (CPLD) is responsible for low-level sequenc-

ing of the ultrasound sub-systems. The MCU is responsible for configuring the

CPLD with the specific parameters necessary to create the required pulse-receive

sequence, for initiating the pulse/acquisition sequence, and for reading the re-

ceived RF data via an 8-bit data bus interface. Specifically, the CPLD controls the

transmit pulse duration and timing for the transmit circuit control and drivers con-

sisting of a power amplifier (PA) and drivers. The system is configured to drive a

single-element 8 MHz transducer (Acetara, Longmount, CO) at a frame rate of 16
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kHz. The CPLD also controls the transmit/receive switch (T/R) as well as a pro-

grammable time-gain amplifier (TGA) and reads samples from the 3 MSPS 12-Bit

ADC over a 48 MHz serial peripheral interface (SPI) bus. The MCU controls the

demodulator (DeMod), which is followed by integrated low pass filters to provide

noise removal and control of the RF signal acquired by the ADC.

In my experiments, I acquired the analog RF signal output from a low-pass fil-

ter following the transmit/receive switch. I then applied further filtering to the RF

signal using an external analog filter board. The filter board consisted of a one-pole

high pass filter with a 100 Hz cutoff frequency in series with a four-pole low pass

Bessel filter with a 10 MHz cutoff frequency. The filtered RF signal was digitized

at a sampling rate of 100 MHz using an oscilloscope (DSO7032B, Agilent Tech-

nologies, Santa Clara, CA). Data acquisition was controlled with a MATLAB (The

Mathworks, Natick, MA) script on a Windows-based workstation. The MATLAB

script triggered acquisitions of 1 ms windows of data from the oscilloscope via

USB at a rate of approximately 4 Hz. Each 1 ms acquisition from the oscilloscope

contained multiple ultrasound A-lines.

Following data collection, the digitized RF acquisitions were segmented into

individual A-lines, and A-lines within each 1 ms window were averaged together.

The averaged A-lines were then filtered with a second-order Butterworth band-

pass filter with cutoff frequencies of 6 and 10 MHz. The final averaged and fil-

tered RF signals were then converted to analytic signals using the Hilbert trans-

form. These analytic signals were used to estimate the axial displacement of the

tofu as a function of depth and time using an exhaustive-search speckle tracking

algorithm with a normalized cross-correlation coefficient matching criteria. The

speckle tracking kernel was 1.5 mm in length, and adjacent kernels were over-

lapped 50%. The speckle tracking algorithm utilized a search region of 0.5 mm in

both the positive and negative axial directions to coarsely estimate the most likely
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displacement of each kernel. Following coarse displacement estimation, the near-

est zero crossing of the analytic signal phase was computed and defined as the

final displacement estimate. The resulting displacement fields were cropped to in-

clude only depths of 5-15 mm (to exclude near field and far field), processed with a

2.3 mm local outlier filter (Westerweel and Scarano, 2005), and smoothed with a 1

mm median filter along the axial direction. The differential Green-Lagrange strain

was computed from an ensemble average of the displacement fields using a simple

finite difference (Equation 4.2). In Equation 4.2, wn
m denotes the axial displacement

at position k for ultrasound frame n, and z0
k denotes the axial position k in the ref-

erence (uncompressed) configuration. The Green-Lagrange strain is a metric used

to describe large strains, usually those greater than 5%. I chose to use this metric

to analyze my data since the measured strains were on the order of 10-15%. By

integrating the differential strain function in time, I obtained the time-dependent

Green-Lagrange strain function (Ammann et al., 2005). Creep curves were gen-

erated for both standard creep compression data and UVE data. Standard creep

curves were computed from the displacement of the test stand, and UVE creep

curves were generated by averaging the UVE strain function at all depths.

dEn
k =

∂w
∂z

+
1
2

(
∂w
∂z

)2

≈
wn

k − wn
k−1

z0
k − z0

k−1
+

1
2

(
wn

k − wn
k−1

z0
k − z0

k−1

)2

(4.2)

The mechanical properties of the tofu were estimated by assuming that a mod-

ified version of the SLS viscoelastic model (Figure 4.1) could describe the material

(Fung, 1993). This model is commonly used to model the behavior of viscoelas-

tic materials in one dimension. The SLS model describes a solid as a combination

of elastic (spring) and viscous (dashpot) elements. The strain in a standard linear

solid in response to a constant stress σ0 applied impulsively at time t0 is given by

Equation 4.1 (that is, applied as a Heaviside step function H(t)). The response de-

pends upon three material properties: the elastic moduli E0 and E1 and the time
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constant τ = E1/η1. Note that the time constant contains the viscous constant η1.

In tissue, this means that the time constant carries information about fluid con-

tent and tissue porosity. The model was fit to the UVE ensemble creep curves at

each depth using a nonlinear least squares trust-region fitting procedure (MAT-

LAB Curve Fitting Toolbox, The Mathworks, Natick, MA). The fitting procedure

yielded three material parameters for each data set – two elastic moduli (E0 and

E1) and one time constant τ.

4.3 Results

Figure 4.4 shows the ensemble Green-Lagrange strain as well as the minimum cor-

relation image for each of the three blocks of tofu used. The Green-Lagrange strain

is displayed as a set of creep curves at various depths throughout the tofu. The

minimum correlation images are displayed in an m-mode configuration with time

on the horizontal axis and depth on the vertical axis. The ensemble strain shows

clear depth dependence with larger strains closer to the upper surface (where the

stress was applied) decaying to smaller strains nearer to the lower surface.

At each depth, the creep curves generated resemble the rising exponential func-

tion modeled by the SLS model (Equation 4.1). To illustrate this, Figure 4.5 shows

some examples of the UVE strain and corresponding curve fits at depths of 5, 7.5,

10, 12.5, and 15 mm from one tofu block (labelled C in Figure 4.4). From these

curve fits, we obtained time constants and elastic moduli for each depth (Figures

4.6-4.8 and Table 4.2). The instantaneous elastic modulus E0 showed a slight up-

ward trend with depth and median values of 15.5, 21.6, and 12.3 kPa for tofu blocks

A-C, respectively. The secondary elastic modulus E1 also showed a slight upward

trend with depth and median values of 28.0, 42.5, and 18.9 kPa. Finally, the time

constant showed large variations with some large spikes. Median values were 18.7,
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8.7, and 30.3 s.

For comparison with these UVE measured parameters, Figure 4.9 shows creep

curve data and fits obtained using displacement data from the mechanical test

stand. These represent the mean behavior of the tofu samples as a whole. The

viscoelastic parameter estimates obtained via curve fitting are given in Table 4.1.

In general, the mechanical curve fits produced elastic moduli slightly smaller than

those estimated by UVE. In contrast, the time constants obtained from the mechan-

ical curve fits tended to be much larger than the UVE estimates.

To further describe the depth dependent strain and aid in validating this UVE

system, it is useful to compare the steady state strain at each depth to a theoretical

prediction. Figure 4.10 shows the steady state strain (at time t = 300 s) as a function

of depth in tofu block A. For comparison, it also shows a numerical prediction

based on a finite element model. The finite element model simulated axisymmetric

compression of a cylinder with radius 16 mm, height 20 mm, a Young’s modulus

of 10 kPa, Poisson’s ratio of 0.3, permeability of 10−11 m4N−1s−1, and loading

force of 1.0 N. The boundary conditions were defined as a no-slip condition on

the top surface, a roller condition on the bottom, and atmospheric pressure on the

sides. The material properties and boundary conditions used are simply meant to

exhibit, for illustrative purposes, a plausible set of conditions for the experiment.

The behavior of the UVE measured strain closely matches the predictions of the

numerical model.

The correlation coefficient produced at each point in space and time by the

speckle tracking algorithm provides a useful quality metric for the strain estima-

tion. Each tofu sample in an ensemble yielded a correlation image. The minimum

correlation of all displacement estimates included in an ensemble was chosen as a

conservative quality metric (Figure 4.4). Regions of low correlation, defined here

as less than or equal to 0.9, are indicative of large changes in speckle characteristics
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between consecutive frames. In all experiments, I observed some low correlation

during the initial compression. This is likely due to the higher strain rate causing

larger changes in the speckle pattern between ultrasound frames. Speckle track-

ing of tofu block B resulted in noticeably lower correlations (shown in purple)

throughout the experiment. Over the course of the experiments, tracking of tofu

blocks A and C resulted in a mean estimated elastographic signal-to-noise ratio

(SNRs) (Lindop et al., 2008; Treece et al., 2011) of 30.6 and 30.5 dB, respectively,

while tofu block B resulted in a mean SNRs of 28.2 dB.

As a final metric of quality, I compared the creep curves obtained by standard

creep tests to those obtained by averaging the UVE generated creep curves over all

depths at each time point (Figure 4.11). In all three cases, UVE underestimated the

mean strain with a maximum absolute error of approximately 4% for tofu block B

and 2% for tofu blocks A and C.

4.4 Discussion

The data suggest that this UVE method can accurately estimate strain, including

depth dependence, in a viscoelastic tissue mimicking material. This is most clear

when comparing the depth-averaged UVE generated creep curves with the results

of standard mechanical creep testing (Figure 4.11). The small errors (2-4%) show

that in an average sense, the system can accurately measure the compression-

induced strain in tofu samples. More importantly though, it can also accurately

quantify depth dependent changes in strain. As shown in Figure 4.4 and high-

lighted in Figure 4.10, the steady state strain in each tofu block decreased with

depth. This depth dependence cannot be fully explained by the data available in

this study, but plausible answers are easy to evaluate. The results of the finite el-

ement model show that differences in boundary conditions may lead to observed
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depth dependent strain even for cylinders with spatially uniform material prop-

erties. This is due to fluid pressure inside the porous tofu structure acting as a

support for the solid matrix, thus resulting in lower observed strains (Figure 4.12).

This explanation is not without caveats however. The material properties used in

the finite element model may not be the best fit to the data – they only represent a

reasonable set of values. Likewise, there is no way to verify the boundary condi-

tions assumed by the model compared to the experiments. The boundary condi-

tion assumptions may be reasonable though, expecially since the top compressor

was substantially rougher than the lower one (3D printed vs smooth plastic, re-

spectively).

In addition, the random porous structure of tofu could lead to spatial variations

that cannot be predicted theoretically. While the UVE measurement shows much

more variation and noise than the numerical prediction, the same general trend is

observed. Alternatively, other material effects such as consolidation of the porous

structure over time or different surface material properties could play a role in the

observed depth dependence.

This UVE method also performed well when considering two quality metrics:

the speckle tracking correlation coefficient and the elastographic signal-to-noise

ratio. As mentioned earlier, decreased correlation is indicative of changes in the

speckle pattern and therefore less reliable displacement estimation. This manifests

itself as errors in the strain field which will affect the viscoelastic curve fits. In

Figure 4.4, it was observed that the high initial strain rates during the step com-

pression may have caused decreased correlation. As seen in Figure 4.11, however,

this initial decreased correlation did not seem to negatively affect the UVE mea-

sured strains, at least in tofu blocks A and C. Lower correlation and SNRs for tofu

block B were observed at all times, especially for depths below 10 mm. This is

the most likely mechanism for the strain measurement errors seen in tofu block B
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(Figure 4.11).

The decreased correlation in tofu block B also may explain some of the differ-

ences in the estimation of the elastic moduli E0 and E1. When performed for data

from tofu block B, the curve fitting procedure estimated values of E0 and E1 that

were slightly higher than blocks A and C (21.6 kPa versus 15.5 kPa and 12.3 kPa

for E0, and 42.5 kPa versus 28.0 kPa and 18.9 kPa for E1). These same differences

were not present in the mechanically measured moduli.

The previous analyses suggest successful benchtop validation for this point-

of-care UVE system. I have shown that depth dependent maps of tissue strain

and viscoelastic properties can be generated for a tissue mimicking material. Al-

though these laboratory tests demonstrate the possible usefulness of this point-of-

care UVE system, clinical studies must be able to show the system can be used

to improve patient care. That is, UVE measurements of tissue time constants and

elastic moduli must be able to guide clinical decision making by providing a con-

sistent, quantitative metric for grading peripheral edema. Ideally, this would take

the form of an estimated volume of mobilizable fluid that could be removed from

the edematous limb to reach dry weight. Theoretically, the time constant should

provide some insight into excess fluid volumes. Such an analysis was outside the

scope of this study but should be the focus of future clinical studies that may inves-

tigate the correlation between UVE-measured time constants and elastic moduli

and the degree of clinical edema observed in patients.

The transition from the controlled laboratory environment to the clinic raises a

number of challenges for this imaging system. Perhaps chief among these is the

sensitivity to poorly defined geometry within the edematous limb. In vivo, the

lack of a 2D image from this single-element ultrasound system may make it diffi-

cult for clinicians to identify suitable regions of interest for UVE edema measure-

ments. Additionally, the test geometry described in this study, where the tissue
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is compressed between two hard, parallel surfaces, may not always be available

clinically. I envision this system being used to take UVE measurements on the

lower calf of patients, where the tibia may provide a hard lower surface for the

compression. In general, however, this will not provide a parallel surface to the

upper compressor and may result in out-of-plane motion that may confound this

one-dimensional measurement through large decorrelation errors. The two prob-

lems previously mentioned are likely surmountable provided the clinician receives

adequate training in choosing a region of interest and applying the compression.

Future clinical studies mimicking the image processing algorithms of this system

(tracking motion along a single A-line) using an array transducer could clarify the

extent of this these challenges. Finally, tissue is not isotropic, and slip boundaries

between different layers of tissue (skin, fat, fascia, muscle, bone, etc.) may lead

to discontinuities in the speckle tracking process. This will likely manifest itself

as errors in the depth-dependent creep curves. This can possibly be compensated

for by a more clever integration of the differential Green-Lagrange strain field that

integrates along material path lines defined by the displacement estimates. Future

clinical studies should explore the impact of these challenges on the system for

UVE measurements in vivo.

Other mechanical parameters may prove to be useful to classifying edema and

may be less susceptible to errors when compared to elastic and viscous moduli.

The compressibility of a material, defined as the volumetric response to a pressure

change, naturally lends itself to a description of edematous tissue. In response

to an applied stress, fluid movement out of edematous tissue leads to a volume

change in the compressed region of interest. This volumetric response can be de-

scribed as a function of Poisson’s ratio or measured directly. Poroelastography

methods provide a natural avenue for determining the Poisson’s ratio and the Pois-

son’s ratio time constant. The application of these methods to edema monitoring
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may therefore lead to useful metrics for tissue fluid content.

4.5 Conclusions

In this study, I tested a simplified single-element viscoelastography system for

point-of-care edema monitoring. This system has the potential to reduce hardware

complexity as well as computational expense. Using this system, I measured the

viscoelastic properties of a tissue-mimicking material (tofu) in creep tests under

large strains, as would be used clinically to diagnose edema. The Green-Lagrange

strain creep curves generated for all depths in the tofu samples could be described

accurately by the SLS model. Using this model, I demonstrated that the UVE sys-

tem was capable of generating depth-dependent maps of viscoelastic material pa-

rameters including time constants and elastic moduli. A quality analysis of my

results showed that the speckle tracking algorithm produced a good estimate of

the internal displacement field with high correlation and SNRs. Estimates of the

mean creep response were highly sensitive to tracking errors, and experiments

with lower SNRs showed poor agreement with the creep response measured using

a standard creep compression test. My results suggest successful benchtop valida-

tion of this UVE system. Future clinical studies will be required to fully establish

the feasibility of using this method and ultrasound system for edema monitoring.

This translation to the clinic will bring with it a number of challenges, but the

results of this work provide a good foundation for future studies, which should

investigate the relationship between UVE measurements and current methods of

assessing peripheral edema.
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Table 4.1: Material properties of the individual tofu blocks (with 95% confidence
intervals), as measured using mechanical creep tests

Tofu Block E0 (kPa) E1 (kPa) τ (s)

A 12.7 (12.5, 12.8) 25.6 (24.9, 26.2) 79.5 (74.2, 85.0)

B 13.2 (13.1, 13.4) 28.3 (27.6, 29.0) 92.9 (85.7, 100.)

C 10.7 (10.6, 10.9) 17.8 (17.4, 18.1) 81.1 (77.0, 85.0)
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Table 4.2: Material properties of the individual tofu blocks, median values as mea-
sured using UVE

Tofu Block E0 (kPa) E1 (kPa) τ (s)

A 15.5 28.0 18.7

B 21.6 42.5 8.70

C 12.3 18.9 30.3
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Figure 4.1: Spring-dashpot representation of the standard linear solid (SLS) vis-
coelastic model used to describe both the ultrasound viscoelastography and stan-
dard creep measurements.
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Figure 4.2: Schematic of ultrasound viscoelastography system depicting the me-
chanical test stand, single-element ultrasound transducer and tofu sample under
test, as well as block diagrams for the electronics and acquisition hardware. Note
that the mechanical test stand could be replaced with a portable or hand-held pres-
sure source in the clinic. RF=radiofrequency.
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Figure 4.3: Block diagram of the portable ultrasound board used in our ultrasound
viscoelastography experiments. ADC T/H = analogue-to-digital converter with
track and hold function; CPLD = complex programmable logic device; DeMod
= demodulator; LNA = low noise amplifier; MCU = microcontroller unit; PSU
= power supply unit; RF = radiofrequency; TGA = time-gain amplifier; T/R =
transmit/receive; serial peripheral interface bus.
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Figure 4.4: Ensemble Green–Lagrange strain creep curves and minimum correla-
tion images obtained from samples in three blocks (A-C) of extra firm tofu. En-
semble strain creep curves are computed from an ensemble mean of measured
displacement fields (n = 5, 6, and 6 for blocks A-C, respectively). These indicate
a clear depth dependence in the mechanical response of the tofu samples. The
minimum correlation images (rendered in an m-mode configuration) illustrate the
pointwise minima of all computed correlation coefficients in each ensemble. In all
cases (A-C), we found high correlation, with slightly less quality in tofu block B.

66



0 100 200 300
Time (s)

-0.1

0

0.1

0.2

0.3

-G
re

en
-L

ag
ra

ng
e 

St
ra

in

Figure 4.5: Example ultrasound viscoelastography creep curves at depths of 5, 7.5,
10, 12.5 and 15 mm from tofu block C, as well as curve fits using the SLS model of
viscoelasticity. These curve fits were used to estimate the viscoelastic properties of
the tofu samples at all depths.
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Figure 4.10: Comparison of the steady-state strained measured using UVE (gray
dots = individual strain measurements; black line = mean strain) with a similar
finite element model (red line) assuming a no-slip boundary along the top com-
pressor. The strain shows a clear depth dependence. The finite element model
suggests that it is possible that this dependence may be a result of the loading
state rather than the material properties.
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Figure 4.11: Comparison of mean creep curves from the mechanical displacement
measurements (black dashed curves) with those obtained by averaging the strain
measured using ultrasound viscoelastography over the depth of the sample (black
solid curves) for tofu blocks (A–C). The individual realizations (n=6) of the me-
chanical creep measurements for each tofu block are shown as well (gray dashed
curves).
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Figure 4.12: Comparison of the steady-state strained predicted by the finite ele-
ment model (blue line) assuming a no-slip boundary along the top compressor
and the fluid pressure field, normalized by the applied stress (orange line). The
strain decreases at deeper depths while the pressure increases, potentially provid-
ing additional support for the solid matrix.
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CHAPTER 5

The effects of geometry and strain magnitude

on poroelastography curve fitting

5.1 Introduction

In the previous chapter, I demonstrated a method for estimating the material pa-

rameters of a tissue-mimicking material using ultrasound viscoelastography. These

ultrasound measurements were taken at large strain magnitudes, on the order of

10%, with a motorized test stand applying a constant compressive force to the

cylindrical tofu samples. Using the standard linear solid (SLS) constitutive model,

I obtained elastic moduli and time constants to characterize the tofu.

While this study detailed a potentially useful method for obtaining viscoelastic

coefficients of edematous tissue, it also faced a number of limitations that could

hinder its clinical application. The viscoelastic coefficients obtained from the SLS

model are primarily descriptive in nature. They are based on a spring-dashpot

representation rather than a continuum model, and their interpretation is not as

straightforward as the physical parameters normally associated with continuum

mechanics, such as Young’s modulus and Poisson’s ratio. Poroelastography offers

one avenue for circumventing this difficulty by providing a continuum model that

exhibits similar creep behavior. Ultimately however, clinical usefulness is the most

important measure of a method’s promise. The difficulty of interpreting parame-
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ters does not necessarily preclude this method from finding uses, and only future

clinical studies can assess this.

More fundamentally, the previous study faced limitations also common to many

poroelastography studies. These limitations stem from the assumptions inherent

in the constitutive model, the loading configuration, and the test sample geometry,

and they are not as easily surmounted. Because it is zero-dimensional, the SLS

model in some sense assumes spatial uniformity, uniaxial loading, and stress uni-

formity. In a similar way, most poroelastography studies fundamentally rely on

Armstrong’s solution to the KLM biphasic model (Armstrong et al., 1984). This

solution, as detailed in Chapter 3, assumes a cylindrical geometry, axisymme-

try, uniaxial loading, small strain, uniform axial strain, and no dependence on

the axial coordinate. In the first paper describing poroelastography, Konofagou

et al. (2001) used Armstrong’s solution to argue that the lateral-to-axial strain ra-

tio, or the effective Poisson’s ratio (EPR), approaches the Poisson’s radius of the

drained porous matrix as the behavior approaches steady state. Multiple studies

have expanded on this assumption and have relied on Armstrong’s solution to es-

timate the Young’s modulus, Poisson’s ratio, and permeability of poroelastic phan-

toms via curve fitting (Righetti et al., 2004, 2005b; Berry et al., 2006a,b; Galaz and

Acevedo, 2017). These benchtop experimental studies satisfy all the assumptions

of Armstrong’s solution, and so their findings are entirely in line with biphasic

theory.

The restrictive assumptions of Armstrong’s solution may hinder clinical ap-

plicability of poroelastography methods that rely on curve fitting. It is infeasi-

ble to obtain cylindrical samples of tissue for external laboratory testing in most

cases. While tumor biopsies represent one more reasonable example, this approach

would border on the absurd for the commonly proposed application of edema

quantification. Clinical studies must instead rely on in-vivo measurements of a
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large region of tissue, for example the arms or legs (Righetti et al., 2007b; Berry

et al., 2008). In these cases, most of the assumptions of Armstrong’s solution are

no longer valid. The tissue is not a cylinder, the imaged region may not be spatially

uniform, and boundary conditions at tissue borders may not match the simple slip

conditions required.

Another aspect of Armstrong’s solution that may potentially hinder clinical ap-

plications is its requirement of small strains. Small strains are known to increase

the elastographic signal to noise ratio (SNRe), which decreases rapidly above 10%

strain where signal decorrelation becomes problematic (Varghese and Ophir, 1997).

Small strains are easy to enforce in the laboratory using motorized compression

devices, but these devices may limit imaging locations or take too much time to

configure in the clinic. Free hand elastography may therefore be more desireable

in clinical settings (Hall, 2003b). Free hand elastography studies tend to differ in

their approach of applying strain. Many apply strains on the order of 1-2% (Doy-

ley et al., 2001; Zhu and Hall, 2002; Treece et al., 2008; Qiu et al., 2008), but others

tend to prefer applying larger strains ranging from 5-20% (Zhu and Hall, 2002;

Hall, 2003a; Righetti et al., 2007a; Berry et al., 2008; Goenezen et al., 2012). Large

strain studies must make use of more complicated processing methods such as

summing incremental strains (Hall, 2003a), multicompression averaging (Vargh-

ese et al., 1996), and moving reference frames (Righetti et al., 2005a). These adjust-

ments to the strain estimation procedure circumvent the large strain limitations

of the SNRe. Large strains offer the additional advantage that it is simply easier

to accurately and reproducibly apply a large strain to soft tissue. Furthermore,

for poroelastography applications, large strains more closely mirror the physical

examination for edema.

The extent to which model assumptions of geometry and strain magnitude play

a role in affecting poroelastic measurements has not been investigated previously.
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In this chapter, I analyze these effects using a finite element model of poroelastic

deformation of a rectangular block compressed only in a small region at its center.

This is meant to mirror the case of a clincian applying compression using an ul-

trasound transducer. This has important implications both for the expected axial

strain measurements and the observed EPR. I also show the limitations of the Arm-

strong solution at large strain using a finite element model of a poroelastic cylinder

under creep compression. The importance of these results is then demonstrated us-

ing ultrasound measurements of tofu under compression, mimicking both of the

cases described by the finite element models.

5.2 Methods and Materials

5.2.1 Poroelastic Block Model

To analyze the importance of geometry on poroelastography curve fitting meth-

ods, I developed a finite element model of the deformation of a rectangular block

of poroelastic material using Comsol Multiphysics (Comsol, Burlington, MA). De-

formation was governed by Biot’s poroelastic model (Biot, 1941):

E
1 + ν

εij +
ν

(1 + ν)(1− 2ν)
ε,i − αp,i = 0 (5.1)

1
M

∂p
∂t
− κ

µ
p,ii = −α

∂ε

∂t
(5.2)

1
M

= φχ f + (α− φ)
1− α

K
, (5.3)

where E, K, ν, and κ are the Young’s modulus, bulk modulus, Poisson’s ratio, and

permeability of the drained porous matrix, respectively, ε is the strain tensor, ε is

the volumetric strain, p is the pore fluid pressure, α is the Biot-Willis coefficient,

χ f is the fluid compressibility, µ f is the fluid viscosity, and φ is the matrix porosity.
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The values for these parameters used in the model are given in Table 5.1. Of note,

the Biot-Willis coefficient α was set to 1, corresponding to a case where the solid

and fluid constituents are both incompressible. This assumption is reasonable for

biological tissue, and also matches the formulation of the KLM biphasic model.

Additionally, the porosity φ was arbitrarily set to 0.3. Since porosity only factors

into the definition of the Biot modulus 1/M where it is multiplied by the fluid

compressibility χ f = 0 and the term 1 − α = 0, the chosen value will have no

effect on the material behavior.

The height of the poroelastic block was defined as 40 mm. A compressive load

was applied to the top surface of the block inside a rectangular region 26 mm wide

by 17 mm deep (Aload). The total width and depth of the block were defined by an

area ratio Â = A/Aload, where A = width× depth. I tested area ratios of 2, 5, 10,

and 25. The block geometries including the load area for each area ratio are shown

in Figure 5.1.

The model’s boundary conditions are shown in Figure 5.2. The bottom surface

was assigned a roller condition, and two of the bottom edges were constrained

to move only along their respective axes. All other faces were allowed to deform

freely. Along the side faces, the fluid pressure was set to atmospheric pressure, p =

0. The top face outside the loading area was set either to an atmospheric pressure

condition or a no flow condition. The loading area and bottom surface were also

set to no flow conditions. The boundary load inforced on the loading area was a

constant force condition with the force F0 = Eεnom Aload, for some nominal strain

εnom. For small strain tests, εnom = 0.02, while for large strain, εnom = 0.20. It is

important to note that at large strains, this is not equivalent to a constant stress

condition since the loading area may change with time as the material deforms.

The domain was discretized using a free tetrahedral mesh and quadratic ele-

ments for both the displacements and pressures. An implicit backwards differen-
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tiation formula (BDF) method was used for time stepping with the solver free to

choose the size of the time step (SUNDIALS, Lawrence Livermore National Labs,

(Hindmarsh et al., 2005)). The equations were solved either to t = 240 s to mirror

the experiments detailed later in this chapter or to t = 960 s to reach steady state.

The engineering strain was obtain from the model by dividing the maximum dis-

placement within the loading area wmax by the original height of the block h = 0.04

m.

5.2.2 Poroelastic Cylinder Model

To analyze the effect of strain magnitude on curve fitting poroelastography mea-

surements, I developed a second finite element model, this time of the unconfined

compression of a cylinder, using Comsol. This model mirrors the one used by

Konofagou et al. (2001) and Berry et al. (2006a) with the exception of the loading

conditions. In those studies, the authors enforced stress-relaxation conditions – a

constant axial displacement of the top surface. This configuration has some ad-

vantages in ease of experimental implementation, but would likely face clinical

challenges since the internal strain in the tissue is a goal of the poroelastic mea-

surement rather than an enforceable condition. Furthermore, the stress-relaxation

solution developed by Armstrong (Equation 5.4) does not allow the permeability k

to be independently determined from the other poroelastic constants, as noted by

Berry et al. (2006a). In contrast, Armstrong’s solution for creep loading (Equation

5.5) allows for E, ν, and k to all be determined uniquely from curve fitting.

u
a
(a, t) = ε0

ν + (1− 2ν)(1− ν)
∞

∑
n=1

exp
(
−α2

n
Hakt

a2

)
α2

n(1− ν)2 − (1− 2ν)

 (5.4)
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ε(t) = − F0

Eπa2

[
1− (1− ν2)(1− 2ν)

∞

∑
n=1

4
9(1− ν2)β2

n − 8(1 + ν)(1− 2ν)
exp

(
−β2

n
Hakt

a2

)] (5.5)

Ha =
E(1− ν)

(1 + ν)(1− 2ν)
. (5.6)

The cylindrical domain was defined with height h = 40 mm and radius a = 17.5

mm to mirror benchtop experiments. All material properties were kept the same

as the poroelastic block model (Table 5.1). The domain was discretized using a

regular grid with 400 elements in the radial direction and 1 element in the axial

direction, identical to the grid used by Berry et al. (2006a). The axisymmetric form

of equations 5.1, 5.2, and 5.3 was solved using quadratic elements for both the

displacements and pressures, using the same time stepping scheme described in

the previous section. As before, the engineering strain was obtain from the model

by dividing the maximum displacement wmax by the original height.

Boundary conditions for the cylinder finite element model are shown in Figure

5.3. These are nearly identical to those required by Armstrong’s solution, with the

subtle exception of the boundary load. The boundary load was enforced as a con-

stant force condition, F0 = Eεnomπa2, for some nominal strain εnom. For small strain

tests, εnom = 0.02, while for large strain, εnom = 0.20. Again, this constant force con-

dition is only equivalent to the constant stress condition imposed by Armstrong at

infinitesimal strain. The top and bottom surfaces were both set as roller conditions

(implying that vertical displacements were uniform on the top face, and vertical

displacements were zero along the bottom face). The outer surface of the cylinder

was allowed to deform freely, and the fluid pressure was set to atmospheric, p = 0.
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5.2.3 Biphasic Cylinder Model

As a comparison for the block and cylinder models, I implemented Armstrong’s

solution for a biphasic cylinder of radius a under constant stress loading (creep

conditions). Equation 5.5 was solved in MATLAB (The Mathworks, Natick, MA) to

obtain the strain history in the material under compression. To find the roots βn of

the characteristic equation, a coarse zero crossing routine was first used to bracket

the locations of the zeros. Next, a combination of bisection and interpolation meth-

ods were used to find a finer estimate of the bracketed zero (fzero, MATLAB, The

Mathworks, Natick, MA).

5.2.4 Experiments - Tofu Cylinders

The objective of these experiments was to demonstrate the implications of the the-

oretical assumptions associated with each of the above models. To do this, I first

performed creep compression experiments on cylinders of tofu. The properties of

tofu as a tissue-mimicking ultrasound phantom are well documented (Wu, 2001;

Kim et al., 2009), and tofu has become the de facto choice of phantom in poroe-

lastography studies (Righetti et al., 2004, 2005a; Berry et al., 2006b; Righetti et al.,

2007b; Perriñez et al., 2010b,a; Nair et al., 2011; Nair and Righetti, 2015). Cylinders

of extra firm tofu (House Foods America, Golden Grove, CA) were cut to dimen-

sions of 40 mm tall and 35 mm in diameter (n = 65). These were placed atop an

electronic scale, and ultrasound coupling gel was applied to the top surface of the

cylinders. The scale was then zeroed.

Compression was applied by placing a cylindrical compressor holding a 3.3

MHz phased array ultrasound transducer (SA4-2, BK Ultrasound, Peabody, MA)

onto the sample (Figure 5.4). The compressor consisted of a cylindrical plastic en-

closure with a window cut in the bottom for the ultrasound transducer face. The
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transducer was placed inside this enclosure with its face completing the bottom

of the contact surface of the compressor. Modeling clay was then packed around

the transducer to hold it securely in place and add weight to the compressor. The

total mass of this assembly was 220 g. When placed on the tofu samples, the com-

pressor was stabilized by hand, but its weight was allowed to freely deform the

tofu. Observations of the scale showed that the force could be held relatively con-

stant within a range of +/- 2 N. The radius of the tofu cylinders together with

the applied force imply a nominal applied stress of 2.2 kPa. Compression was

maintained for 4 minutes while ultrasound RF data were acquired by a SonixRP

ultrasound scanner (Ultrasonix, BK Ultrasound, Peabody, MA) at a frame rate of

30 Hz. The imaging depth was set to 5 cm, and the scan sector to 50% (45 degree

sector). The frame buffer could not store all 4 minutes of images, so RF data sets

were saved in intervals of 90, 90, and 60 seconds.

The time series of ultrasound data were processed offline using two methods.

Each method produced an estimate of the axial strain history in the sample. I will

refer to the first method as boundary tracking. For these measurements, the RF

frames were converted into brightness (B-mode) images using the envelope of the

RF data and logarithmic compression. The sector line data were resampled on a

512 × 512 pixel regular grid. To identify a reference frame, the pixel brightnesses

were summed in each image, and the reference frame chosen by the sudden jump

in brightness created when the transducer properly coupled to the sample (Figure

5.5). For each image, the lower boundary of the tofu was identified manually, and a

31 × 31 pixel window created containing the boundary. This window was tracked

vertically with respect to the initial reference frame for every tenth frame in the

data set using normalized cross correlation. The strain was then estimated as the

tracked displacement in pixels divided by the pixel index of the boundary.

The second method tracked motion using the RF data directly. In this method
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a moving reference frame was used to ensure that each interframe strain was ap-

proximately 2% (Righetti et al., 2005a). Motion was tracked along the radial di-

rection of each scan line (corresponding to different angular coordinates) using

normalized cross correlation with a 1 cm axial kernel window with a 75% overlap.

Temporal stretching was not applied to the RF windows because the compression

was not perfecly parallel to the scan lines. These radial displacements were then

converted to cartesian displacement components. The displacement estimates cor-

responding to the five central scan lines were then extracted. These scan lines

were the only ones that spanned the full depth of the image (due to the sector to

cartesian conversion). Furthermore, these lines represented the closest set of mea-

surements for which the scan line was nearly parallel to the compression direction.

An axial region of interest was then created using the boundary tracking method

to crop measurements that were beyond the lower boundary of the tofu cylinder.

The incremental strain for each frame pair was then estimated using the slope of a

linear fit over the axial displacement measurements in the region of interest. These

incremental strains were then summed, ensuring that the correct series of incre-

ments were summed from the first frame to any given interrogation frame.

5.2.5 Experiments - Tofu Blocks

As a point of comparison for the poroelastic block model, I also performed exper-

iments using rectangular blocks of tofu. Blocks of extra firm tofu (House Foods

America, Golden Grove, CA) were cut to dimensions of 122 mm × 94 mm (n =

9). As in the previous experiments, the tofu blocks were placed on an electronic

scale and ultrasound coupling gel was applied to the middle of the block. Using

the 3.3 MHz phased array ultrasound transducer (SA4-2, BK Ultrasound, Peabody,

MA), I applied a freehand compression of 1 N, using the measurement on the scale

for feedback (Figure 5.6). The face of the transducer had an area of 26 mm × 17
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mm yielding an applied stress of approximately 2.2 kPa. Note that this is the same

as the nominal stress applied in the cylinder experiments. The compression was

again sustained for 4 minutes, and data were acquired using the same ultrasound

settings and processed using the same strain estimation techniques as the previ-

ously described cylinder experiments.

5.2.6 Curve Fitting Parameter Estimation

The mean strain creep curves obtained in all experiments were fit using a nonlin-

ear least squares procedure to obtain estimates of E, ν, and k. For the tofu cylinder

data, fits were performed using both the Armstrong solution and the finite element

poroelastic cylinder model to solve the forward problem. For the tofu block data,

the finite element poroelastic block model was used in addition to the two cylinder

models. This corresponds to the potential misuse of the cylindrical geometry as-

sumption in estimating poroelastic parameters. The fit parameters were initialized

as E = 16 kPa, ν = 0.0, and k = 1× 10−10 m4N−1s−1. The Young’s modulus and per-

meability were bounded below by zero, but unbounded above. Poisson’s ratio was

bounded to the range [-0.49, 0.49] to ensure that the forward problem remained

non-singular. Previous poroelastography studies have not observed negative val-

ues of Poisson’s ratio for tofu (Righetti et al., 2004, 2005b,a, 2007b; Berry et al.,

2006b), and so additional fits were performed with the Poisson’s ratio constrained

to only positive values. Because the fitting parameters spanned several orders of

magnitude (ranging from approximately 10−11 to 104), scaling was introduced to

improve the performance of the least squares solver:


E

ν

k

 =


p1 × 104

p2 × 10−1

p3 × 10−11

 . (5.7)
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5.3 Results

5.3.1 Finite Element Models

Figure 5.7 shows the predicted engineering strain at time t = 240 s for the poroelas-

tic cylinder finite element model at both small and large strain for various meshes.

Figures 5.8 and 5.9 show the same metric for various meshes for the poroelastic

block finite element at different area ratios Â = 2, 5, 10, and 25 at small and large

strains, respectively. These show that the solutions are independent of the chosen

mesh element size.

Figure 5.10 compares the engineering strain history at small strain for Arm-

strong’s creep solution, the poroelastic cylinder finite element model, and the poroe-

lastic block finite element model for various area ratios Â. The finite element model

of the cylinder closely resembles the analytical solution, diverging from it only

slightly as the time increases. All of the creep curves obtained from the block

model show substantially lower strains that decrease as the area ratio increases

and tend to converge toward each other with increasing Â.

Figure 5.11 presents the same comparison of the engineering strain history at

large strain. In this case, Armstrong’s analytic creep solution differs greatly from

the finite element cylinder model with the difference becoming much more pro-

nounced as time increases. As before, the poroelastic block model exhibits de-

creasing strain as Â increases, and the creep curves tend to converge for larger

values of Â.

Figure 5.12 shows the evolution of the effective Poisson’s ratio in the poroelastic

block model for Â = 25. This area ratio most closely approximates the size of the

tofu blocks used in my experiments. The EPR, defined here by EPR = −εxx/εzz,

is shown at various depths below the loading area with coordinates (x, y, z) =

(0, 0, z). Figure 5.12b shows the evolution when a no flow boundary condition is
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enforced on the top surface of the block, mirroring conditions likely to be seen in

a clinical measurement. Figure 5.12c shows the evolution when an atmospheric

pressure condition is enforced, mirroring the benchtop tofu block experiments. At

time t = 0, the EPR exhibits its maximum value, typically in the range of 0.3-0.5.

As time progresses, the EPR decays until it approaches a steady state value. The

steady state EPR varies with depth and differs slightly between the two boundary

conditions investigated (Figure 5.13). Greater differences are observed near the

bottom of the block.

5.3.2 Ultrasound Measurements and Parameter Estimates

Figure 5.14 shows the mean creep curves (n = 65) generated by ultrasound mea-

surements of tofu cylinders under compression as well as curve fits obtained us-

ing Armstrong’s solution and the finite element cylinder model. The two strain

estimation methods produced very similar measurements. Allowing the Poisson’s

ratio estimate to be negative produced better fits than constraining it to be positive.

While it is not the most rigorous quality of fit metric for nonlinear data, the coef-

ficient of determination R2 of the negative Poisson’s ratio images was in all cases

higher than the corresponding positive Poisson’s ratio fit. Also of note, for positive

Poisson’s ratio fits, the R2 of the fits obtained using the finite element model was

greater than those obtained using Armstrong’s solution.

Tables 5.2 and 5.3 show the parameter estimates for the negative and positive

Poisson’s ratio fits, respectively. In the former case, the Poisson’s ratio tended to

fall between -0.15 and -0.32, while in the latter, it consistently produced an estimate

of 0.00. Differences in the Young’s modulus estimates were rather independent of

the Poisson’s ratio constraint and instead differed primarily with respect to the

strain estimation method and the curve fitting method, producing estimates be-

tween 12.2 and 18.0 kPa. Permeability estimates fell in the range of 1.01 ×10−10 to
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2.60 ×10−10 m4N−1s−1.

Figure 5.15 shows the mean creep curves (n = 9) generated by ultrasound mea-

surements of tofu blocks under compression and the curve fits obtained from Arm-

strong’s solution, the finite element cylinder model, and the finite element block

model. In this set of measurements, the choice of strain estimation method greatly

affected the generated creep curves. The block model produced the best fit, with R2

increasing as one moves from the Armstrong solution to the finite element cylinder

model to the block model for the positive Poisson’s ratio constraint.

Tables 5.4 and 5.5 show the parameter estimates for the boundary tracking and

RF tracking strain estimators. Here, the Poisson’s ratio constraint primarily af-

fected the estimates of ν and k. The Young’s modulus depended primarily on the

choice of model and different fits produced a range of values from 10 kPa to 50.9

kPa. The poroelastic block models produced estimates closest to those observed in

the cylinder experiments.

5.4 Discussion

5.4.1 Finite Element Models

The finite element models described in this chapter highlight the importance of

model assumptions on the expected strain history of a poroelastic material un-

der creep compression. Past poroelastography studies have relied heavily on the

assumptions of Armstrong’s solution to the biphasic KLM model. These assump-

tions chiefly include cylindrical geometry and small strain. In clinical practice,

however, these conditions may not always be appropriate. Even at small strain,

large differences in the expected strain history are predicted as the geometry shifts

from a cylinder to a wider slab (Figure 5.10). These differences become even more

pronounced at large strains. This is a result of the subtle difference in how the
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boundary load is defined. For a constant force loading, deformation of the com-

pressed material leads to a change in the area to which compression is applied, as-

suming the compressor is larger than the cylinder being compressed. This implies

that the applied stress actually decreases with time, despite the force remaining

constant. This could pose problems for freehand poroelastography where large

deformations may be preferable to small ones.

Even when using a deformation model that accounts for the change in configu-

ration, the large variations observed between the cylinder models and the block

model, especially for large values of Â suggest that the choice of deformation

model geometry may be very important in obtaining reliable poroelastic parameter

estimates. Furthermore, the poroelastic block finite element model reveals that one

of the fundamental assumptions of poroelastography – that the EPR decays to the

Poisson’s ratio at steady state – is itself subject to the same limitations of geomet-

ric assumptions. While it is a useful property of poroelastic cylinder deformation,

it does not hold true for the block model and may not hold true in clinical mea-

surements. Indeed, it could be argued that some of the clinical poroelastograms

generated by Righetti et al. (2007b) exhibit a depth-dependent EPR (see Figures

2-5, 10-13 in that study). The authors seemed to have noted these features, but

suggested that they were the result of spatial variations in the poroelastic prop-

erties that were not visible in the standard sonograms. While this interpretation

may be reasonable, the models presented in the present study provide an alternate

explanation that should be investigated with further benchtop and clinical exper-

iments. Note that the Righetti et al. study enforced stress relaxation conditions

rather than creep, and the differences between these loadings should be examined

carefully in future studies.
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5.4.2 Ultrasound Measurements and Parameter Estimates

The strain measurements obtained experimentally for cylinders of tofu at large

strain closely resemble the classical creep response typically described for vis-

coelastic and poroelastic materials (Fung, 1993). Both Armstrong’s biphasic so-

lution and the finite element model developed in this study produce reasonably

good fits to the experimental data, though they perform somewhat poorly for data

within the first minute, particularly when the Poisson’s ratio is constrained to pos-

itive values (Figure 5.14). There is some ambiguity to the correct choice in this

matter. While not exactly common, materials with negative Poisson’s ratio do exist

(Greaves et al., 2011). However, such materials are typically synthetic metamateri-

als, and previous poroelastography studies that have quantified the Poisson’s ratio

of tofu using both mechanical tests and poroelastograms have placed its value be-

tween 0 and 0.3 (Righetti et al., 2004, 2005b,a, 2007b; Berry et al., 2006b). In light of

this, the constraint ν ≥ 0 may be more reasonable despite the apparent lack of fit

(Table 5.3). This study consistently estimated the Poisson’s ratio to be equal to zero,

which is consistent with measurements of tofu by Berry et al. (2006b). The Young’s

modulus estimates found in this study were on the order of 12.5-18.0 kPa. The

permeability estimates were on the order of 1× 10−10 m4N−1s−1. These estimates

are large compared to the values reported in the aforementioned studies, roughly

an order of magnitude higher in both cases. It is unclear if this corresponds to an

actual difference in material properties or if the conditions of large strain lead to a

different measured parameter.

Taking the coefficient of determination R2 as a metric for the quality of fit, it is

clear that the finite element cylinder model produces a better fit than Armstrong’s

solution (Table 5.3). While the R2 is not strictly valid for nonlinear least squares, the

plots of the obtained fits show that the finite element based fits are slightly better

(Figure 5.14). This conclusion can be supported by the theoretical advantage of the
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finite element model, namely, that it accounts for the effects of radial deformation

of the cylinder in enforcing the loading condition. In contrast, Armstrong’s model

assumes that the radius of the cylinder changes only infinitesimally, an assumption

that may be inaccurate for the strains considered in this study.

Parameter estimates obtained for the mean ultrasound creep curves from the

tofu block differed greatly from those estimated for the tofu cylinders when cylin-

drical models were used in the curve fitting, typically producing Young’s modulus

values on the order of 32-50 kPa (Tables 5.4 and 5.5). In contrast, the finite element

block model was able to produce much closer Young’s modulus estimates of ap-

proximately 14-20 kPa, nearly identical to the range of the cylinder test estimates.

In addition, the block model fit exhibited the highest R2 value when the Poisson’s

ratio was constrained to be positive, and clearly produced the best fit to the ex-

perimental data (Figure 5.15). All of this highlights the large error that can result

from applying the wrong poroelastic model to the curve fitting routine. Clinical

experiments are more likely to mirror the loading of the tofu block, and so more

appropriate models must be incorporated into poroelastic parameter estimation in

those settings.

While the present study has made progress in demonstrating the importance of

model assumptions in poroelastography parameter estimation, there is still much

that can be done to increase our understanding of these effects, improve curve

fitting procedures, and provide more flexible frameworks for poroelastography.

Future studies should examine in more detail the effect of spatial variations, par-

ticularly in the temporal evolution of the EPR at large and small strains. These

studies should also vary the compressor size to simulate various values of the area

ratio Â. Other avenues of research include developing analytical models of poroe-

lastic deformation in an infinite slab of finite height in response to a point load.

This would simulate the condition Â→ ∞, and it may serve to be useful since the
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poroelastic block solutions seem to converge towards each other as the area ratio

increases. Finally, future work should focus on developing more flexible poroelas-

tography methods that do not depend on such rigid assumptions. In particular,

the present study did not address the assumption of spatial uniformity, which is

perhaps the most likely assumption to fail in the clinic. To account for this, more

general methods that reconstruct the poroelastic properties on a pixel by pixel ba-

sis must be developed. Posing the poroelastographic parameter estimation as an

inverse problem using a full poroelastic continuum model with a spatially varying

parameter field provides one approach for doing so. An initial investigation into

this will be the subject of the next chapter.

5.5 Conclusions

In this chapter, I detailed the development of two finite element models of poroe-

lastic deformation – a cylinder and a rectangular block – and used these to demon-

strate the importance of geometric and strain magnitude assumptions on poroelas-

tic parameter estimation methods that utilize curve fitting. In particular, I showed

that Armstrong’s solution to the KLM equations may not be accurate in poroe-

lastography measurements utilizing large strains. Furthermore, I showed that

assumptions of cylindrical geometry behave very differently from an alternative

loading that clinical use may find more suitable. These differences exist not only

in the axial strain history, but also in the behavior of the effective Poisson’s ratio,

a key component of poroelastography imaging. The predictions of the computa-

tional models were verified using experimental measurements of tofu cylinders

and blocks under large strain. The results demonstrate the importance of utilizing

accurate assumptions in poroelastic parameter estimation and suggest that more

general methods may be more useful for obtaining accurate measurements in the
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clinic.
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Table 5.1: Material properties used in the finite element model of a poroelastic
block under compression

Parameter Value Description

E 16 Young’s Modulus (kPa)

ν 0.0 Poisson’s Ratio

κ kµ f Permeability (m2)

k 1× 10−10 Permeability (m4N−1s−1)

α 1 Biot-Willis Coefficient

χ f 0 Fluid compressibility (Pa−1)

µ f 1.002 Fluid viscosity (mPa·s)

φ 0.3 Porosity (arbitrary)
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A/Aload = 25

A/Aload = 10

A/Aload = 5

A/Aload = 2

Figure 5.1: Poroelastic block geometry for different area ratios Â = A/Aload =
2, 5, 10, 25. The loading area is outlined in the center of the domain.
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Figure 5.2: Boundary conditions for the poroelastic block finite element model.

102



Roller, 
Boundary Load (Constant Force)
No Flow

Roller, No Flow

Free, p = 0

A
xi

sy
m

m
et

ry

Figure 5.3: Boundary conditions for the poroelastic cylinder finite element model.
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Figure 5.4: Experiment schematic for tofu cylinder experiments. An ultrasound
transducer embedded in a cylindrical compressor was used to compress cylindri-
cal samples of tofu.
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Figure 5.5: Example Bmode image and reference frame identification using the
total pixel brightness.
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Figure 5.6: Experiment schematic for tofu block experiments. An ultrasound trans-
ducer was used to freehand compress a central region of a larger block of tofu.
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Figure 5.7: Mesh independence of the poroelastic cylinder finite element model
showing that the axial strain at time t = 240 s does not change with the number of
degrees of freedom in the model.
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Figure 5.8: Mesh independence of the poroelastic block finite element model show-
ing that the axial strain at time t = 240 s does not change with the number of degrees
of freedom in the model for small strain.
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Figure 5.9: Mesh independence of the poroelastic block finite element model show-
ing that the axial strain at time t = 240 s does not change with the number of degrees
of freedom in the model for large strain.
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Figure 5.10: Comparison of Armstrong’s biphasic creep solution to the poroelas-
tic cylinder and block finite element models at small strain. The finite element
cylinder model behaves similarly to the analytical solution, but the block geome-
try differs greatly as a consequence of the different loading conditions.
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Figure 5.11: Comparison of Armstrong’s biphasic creep solution to the poroelastic
cylinder and block finite element models at large strain. Under these conditions,
the finite element cylinder model differs greatly from the analytical solution, as
does the the block geometry. This points to the increased importance of geometry
and strain magnitude assumptions in poroelastography parameter estimation.

111



0 1 0 500 1000
Time (s)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

xx
/

zz

-1 0 1
x (cm)

0

0.5

1

1.5

2

2.5

3

3.5

4

z 
(c

m
)

0 500 1000
Time (s)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
xx

/
zz

A B C

Figure 5.12: Evolution of the effective Poisson’s ratio (EPR) as a function of time at
various depths (A) below the compressor in the block finite element model when
the top face is set to no flow conditions (B) or atmospheric pressure (C).
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in the block finite element model when the top face is set to no flow conditions or
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Figure 5.14: Mean strain history measured in tofu cylinders using ultrasound
boundary tracking and RF tracking for strain estimation. The Armstrong and fi-
nite element cylinder models were fit to the measured data to yield poroelastic
parameter estimates.
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Figure 5.15: Mean strain history measured in tofu blocks using ultrasound bound-
ary tracking and RF tracking for strain estimation. The Armstrong and finite ele-
ment cylinder and block models were fit to the measured data to yield poroelastic
parameter estimates.
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CHAPTER 6

Evaluation of a model-based ultrasound

poroelastography algorithm

6.1 Introduction

The mechanical properties of tissue have long been associated with its pathologi-

cal state. Indeed, the practice of palpation for diagnosis has been around for mil-

lenia, since at least the time of Hippocrates (Walker, 1990). A natural extension of

this diagnostic practice is to measure tissue mechanical properties quantitatively.

Accurate quantitative estimates of tissue elasticity, compressibility, and temporal

responses may help to improve a wide variety of diagnoses ranging from nonin-

vasive tumor biopsy (Garra et al., 1997) to management of edema (Mridha and

Odman, 1986).

Traditionally, ultrasound elastography has provided a useful platform for these

investigations. Many different approaches to ultrasound elastography have been

developed since the method was first proposed (Ophir et al., 1991). In its most

basic form though, the method proceeds as follows. An ultrasound transducer is

aligned with some region of interest, and a reference radiofrequency (RF) ultra-

sound image of the region is acquired. A small compressive stress is then applied

to the tissue, and a second image is acquired. By applying time delay estimation

techniques between corresponding RF A-lines in the pre- and post-compression
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images, accurate estimates of the axial tissue displacement field can be obtained.

Differentiation of this axial displacement with respect to the axial position yields a

quantitative image of the axial tissue strain ε. Assuming stress uniformity, Hooke’s

law can be invoked to determine the Young’s modulus E, or stiffness, of the tissue,

provided the stress σ is known.

E =
σ

ε

In tissues with non-uniform stiffness, the assumption of stress uniformity may

not be accurate, leading to artifacts in the Young’s modulus images. In addition,

differentiation of the displacement estimates tends to amplify noise in the images.

To address these issues, several studies have reformulated the Young’s modulus

estimation as an inverse problem (Skovoroda et al., 1994, 1995; Kallel et al., 1996;

Doyley et al., 2000; Oberai et al., 2003, 2004; Doyley et al., 2005). While direct in-

version schemes can be used (Skovoroda et al., 1994, 1995), they require sufficient

knowledge of boundary loads and boundary properties to remain well-posed (Bar-

bone and Bamber, 2002). More typically, these inverse problem approaches are

posed as an iterative minimization,

Eopt = argmin
E
‖um − u(E)‖2

2,

where um denotes a measured axial displacement and u(E) is the solution to the

forward elasticity problem for a given Young’s modulus estimate. These inverse

problem approaches tend to produce higher quality elastograms with more ac-

curate quantitative estimates, particularly when the Young’s modulus contrast is

large (Doyley et al., 2005), though they do incur a greater computational expense.

Besides image quality, inverse problem formulations of elastography offer an-

other advantage. They can be generalized to include material models other than

linear elasticity. This is especially important given that many tissues, particularly
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soft tissues, cannot adequately be described as linearly elastic (Fung, 1993). Rather,

they often exhibit some combination of time-dependent behavior and nonlinear

stress-strain relationships. This has led to interest in developing elastography ap-

proaches based on viscoelastic (Insana et al., 2004; Sridhar et al., 2007; Qiu et al.,

2008; Zhang et al., 2012; Pitre, Jr et al., 2016), hyperelastic (Samani and Plewes,

2004; Goenezen et al., 2011), and poroelastic models (Konofagou et al., 2001; Berry

et al., 2006a,b; Perriñez et al., 2009, 2010b,a).

One potentially useful application of elastography methods is quantifying the

degree of clinical edema in patients with end stage renal disease (ESRD). In these

patients, the kidneys no longer function to adequately control filtration and fluid

balance. This can easily lead to fluid overload which can manifest as peripheral

edema or life-threatening congestive heart failure. Studies have shown that 30% of

ESRD dialysis patients may exceed recommended levels of fluid retention (Lind-

berg et al., 2009), and 10% of all ESRD clinical care episodes may be associated

with fluid overload (Arneson et al., 2010). The current diagnosis for fluid overload

is based on imprecise semi-quantitative measures such as observing the degree of

indentation or “pitting” present when a clinician compresses the edematous limb

with his or her thumb. Other methods such as the measurement of biochemical

markers, interior vena cava diameter, bioimpedance, and blood volume have re-

peatedly shown that the clinical exam alone underestimates fluid overload in 24-

37% of patients, making it an inadequate measure of fluid status (Kouw et al., 1993;

Oe et al., 2000; Yashiro et al., 2007).

Poroelastography was originally proposed as a possible technique for improv-

ing edema quantification (Konofagou et al., 2001). With the development of new

algorithms capable of accurately measuring both axial and lateral displacements

and strains (Konofagou and Ophir, 1998), it became possible to also produce an

accurate estimate of the tissue Poisson’s ratio. For an isotropic linear elastic solid
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under uniaxial compression, the Poisson’s ratio is related to the lateral and axial

strains ε lat and εaxi, respectively, by

ν = − ε lat
εaxi

.

As mentioned before, many tissues do not behave as linearly elastic solids, and this

is particularly true of edematous tissue which exhibits a time-dependent stress re-

sponse driven by fluid transport. Poroelastography therefore relies on, predictably,

a poroelastic description of tissue.

The general three dimensional form of the linear poroelasticity equations was

first derived by Biot (1941) within the context of soil consolidation. The Biot model

describes the deformation of a porous solid matrix saturated with fluid. According

to the this model, a poroelastic material deforms with the following constitutive

relationship between the stress σij, strain εij, and pore pressure p, expressed here

in tensor notation:

σij = λεδij + 2µεij − αpδij. (6.1)

Here, ε = εkk is the volumetric strain, λ and µ are the first Lamé parameter and

shear modulus of the bulk porous matrix, respectively, and α is the Biot-Willis

coefficient. We also note that the strain tensor εij can be defined in terms of the

displacement field ui = (u, v, w),

εij =
1
2
(
ui,j + uj,i

)
. (6.2)

For an ideal porous matrix, α describes the compressibility of the bulk porous ma-

terial relative to the compressibility of its solid phase. This is usually written in

terms of the bulk modulus of the poroelastic material K and that of the solid phase
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Ks,

α = 1− K
Ks

. (6.3)

For a poroelastic material with an incompressible solid phase, Ks → ∞, and α = 1.

The equilibrium equations for a poroelastic material can then be derived to

describe the material’s response to applied forces Fi,

λε,i + 2µεij,j − αp,i + Fi = 0. (6.4)

In three dimensions, this system of equations contains four unknowns u, v, w, and

p. To close the system, we require a fourth equation to describe the evolution of the

pressure field. Such an equation is obtained by assuming that fluid flow through

the porous matrix behaves according the Darcy’s law. The resulting pressure evo-

lution equation is given by

1
M

∂p
∂t
− κ

µ f
p,ii = −α

∂ε

∂t
, (6.5)

where κ is the permeability of the material and µ f is the viscosity of the pore fluid.

For an ideal poroelastic solid, the empirical Biot modulus 1
M can be defined in

terms of more fundamental material constants,

1
M

= φχ f + (α− φ)
1− α

K
, (6.6)

where φ is the material porosity, χ f is the pore fluid compressibility, and K is the

bulk modulus. It is important to note that the bulk modulus K can be calculated

from the parameters λ and µ and is therefore not an additional independent poroe-

lastic parameter.

A separate model of poroelasticity, the biphasic Kuei-Lai-Mow (KLM) model,

was developed in the 1980s to describe the poroelastic stress response of cartilage
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(Kuei et al., 1978; Mow and Kuei, 1980; Mow and Lai, 1980). It has been shown that

this model is equivalent to the Biot model (Simon, 1992). For the case of uniaxial

compression of a uniform poroelastic cylinder, Armstrong et al. (1984) derived an

analytical solution to the KLM model. In the steady state limit, this solution pre-

dicts that the strain ratio −ε lat/εaxi approaches the Poisson’s ratio of the drained

poroelastic material. Previous poroelastography studies have taken advantage of

this behavior and of Armstrong’s solution, leading to two common poroelastogra-

phy approaches.

The first poroelastography approach is analogous to the basic elastography pro-

cess described previously (Konofagou et al., 2001; Righetti et al., 2004). In this case,

however, lateral and axial displacements and strains are estimated over a time se-

ries of ultrasound images. The strain ratio, also termed the effective Poisson’s ratio

(EPR), is then computed for each image to display the time dependent behavior of

the material under compression

EPR = − ε lat
εaxi

.

As the system approaches steady state, the EPR is assumed to approach the drained

Poisson’s ratio.

The second common poroelastography approach seeks to construct paramet-

ric images of other important poroelastic parameters. This approach builds on

the first approach, using the same estimates of the lateral strain, axial strain, and

EPR. For each pixel in the time series of poroelastograms, either Armstrong’s an-

alytical model (Righetti et al., 2005; Berry et al., 2006a,b) or a simple exponential

function (Righetti et al., 2007b; Nair et al., 2011; Nair and Righetti, 2015) is then fit

to the measurements. This curve fitting procedure produces parametric images

of poroelastic parameters that are more difficult to measure directly, for exam-
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ple, the permeability, aggregate modulus, axial strain time constant, and EPR time

constant. In the case of permeability and aggregate modulus (derived from Arm-

strong’s model) these parametric images are not interpreted as spatial variations

since the model assumes homogeneity. In the case of time constants, the exponen-

tial model is meant to be descriptive rather than predictive and so the images can

be interpreted as showing spatial material property variations, but these properties

cannot be directly linked to the poroelastic properties of the Biot or KLM models.

In the previous chapter, I highlighted the importance of geometry and strain

magnitude assumptions on poroelastography parameter estimation. The assump-

tion that the EPR decays uniformly to the drained Poisson’s ratio is not valid in

all geometries and loading configurations. As such, care should be taken in inter-

preting EPR poroelastograms quantitatively. In addition, I showed that the choice

of model and the validity of its assumptions greatly affect the parameter estimates

produced by curve fitting methods. All of these principles may lead to difficulty

in clinical translation for poroelastography.

Pilot clincial studies using traditional poroelastography to quantify lymphedema

have met only limited success (Righetti et al., 2007a; Berry et al., 2008). These stud-

ies presented clinical case studies including the evolution of axial strain in edema-

tous versus non-edematous limbs, time evolution of the EPR, and maps of the EPR

time constant. Both studies showed that lymphedematous tissues and normal tis-

sues exhibit significantly different behavior as measured by the EPR time constant

and axial strain. As mentioned before, however, these parameters are descriptive

of the fundamental poroelastic properties, but not fundamental properties them-

selves.

My goal in this study was to develop and test a new model-based poroelas-

tography approach capable of producing accurate spatially varying images of fun-

damental poroelastic parameters. Unlike traditional elastograms and poroelas-
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tograms, I sought to develop a method that did not assume spatial uniformity, was

flexible in assigning boundary conditions, was robust against noise, and yielded

fewer image artifacts. My approach poses poroelastography as an inverse prob-

lem based on the Biot poroelastic model. In this way, I make no assumptions of

homogeneity or symmetry, and thus the approach represents a more general at-

tempt at quantifying poroelastic tissue properties. In this chapter, I outline the

formulation and implementation of this method and show that it outperforms tra-

ditional poroelastography techniques for ideal data corrupted by Gaussian noise.

I then go on to analyze some difficulties associated with extending this behavior

to displacement data measured from simulated ultrasound images.

6.2 Methods

This study focuses on developing a new poroelastography algorithm based on

the Biot model of poroelasticity. In this section, I outline the formulation of the

forward and inverse poroelasticity problems and my implementation for solving

each in MATLAB (The Mathworks, Natick, MA). I then describe two simulation

studies meant to test the performance of the algorithm, first using an ideal solu-

tion corrupted with various levels of Gaussian noise and second using simulated

ultrasound data. All simulations were run on a machine with an Intel Xeon E5 pro-

cessor with 6 cores running at 3.5 GHz. The machine had 64 GB of RAM, though

typical memory usage was less than 2 GB.

6.2.1 Forward Poroelasticity Problem

The forward poroelasticity problem is defined as follows. Given the set of poroe-

lastic parameters {λ, µ, κ, φ, α} and the set of pore fluid properties {χ f , µ f }, and

given known body forces Fi and suitable boundary conditions, determine the dis-
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placement field ui and pressure field p that satisfy Equations 6.4 and 6.5. By suit-

able boundary conditions, I mean that the following must be prescribed: 1) the

displacement, its derivative, or optionally an applied force on each boundary, and

2) the pressure or fluid flux on each boundary. In the present work, I consider

the forward problem shown in Figure 6.1. I simplify the equations by considering

only two-dimensional motion (plane strain) and by assuming that the body forces

Fi are negligible. For boundary conditions, I enforce a constant force and uniform

vertical displacement along the top boundary, a roller condition along the bottom

boundary, and allow free displacement along the left and right boundaries. One

corner of the domain is fixed to ensure that the solution is not singular. I also pre-

scribe no flow conditions along the top and bottom boundaries and atmospheric

pressure conditions along the left and right boundaries.

I implemented the forward poroelasticity problem solver using the finite ele-

ment method in MATLAB. The weak form of the governing equations was dis-

cretized on a triangular mesh using isoparametric linear triangle finite elements.

This produced a system of differential equations

 0 0

M LT


u̇

ṗ

+

K −L

0 H


u

p

−
 f

q

 =

0

0

 (6.7)

with 3N degrees of freedom. The submatrices are defined by sums over the finite
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elements

K = ∑
e

∫
Ωe

BT
e DeBedΩe (6.8)

L = ∑
e

∫
Ωe

αBT
e mNdΩe (6.9)

H = ∑
e

∫
Ωe

κ

µ f
(∇N)T

e (∇N)e dΩe (6.10)

M = ∑
e

∫
Ωe

φχ f NT NdΩe (6.11)

where Be is the element strain differential operator matrix, De is the elasticity coef-

ficient matrix, N is the shape function vector, and ∇ is the gradient operator ma-

trix. For more information, I refer the reader to Detournay and Cheng (1993) and

Zienkiewicz and Taylor (2000). For present purposes, it is sufficient to note that

only De is dependent on the first Lamé parameter and shear modulus. Specifically,

De takes the form

De =


λe + 2µe λe 0

λe λe + 2µe 0

0 0 µe

 . (6.12)

The parameters λ and µ were assumed to be spatially varying, and their values

were assigned on a regular grid of 15× 15 pixels spanning the 5× 5 cm domain.

The values from this regular grid were linearly interpolated onto the element cen-

troid coordinates of the free triangular finite element mesh. This mapping can be

written as a matrix multiplication xtri = Lxgrid, where L ∈ RNelm×152
is dependent

only on the distances between the grid points and element centroids. This imple-

mentation is very convenient for relating the grid parameters, which will be very

important in the inverse problem, and the element parameters λe and µe, which are

very important in the forward problem. Specifically, the parameters for a given el-

ement in the finite element mesh are obtained by taking the dot product between
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the eth row of the Lmatrix and the vector of gridded parameter values.

λe = Le · λgrid (6.13)

µe = Le · µgrid (6.14)

The other parameters κ, φ, α, χ f , µ f were assumed to be constant throughout

the domain. Their assigned values are summarized in Table 6.1. Along the top

boundary, I enforced a constant compressive stress of 12.9 Pa. This was meant to

yield an approximate steady state strain of 1% in simulations. For time integration

of the governing equations, I used an implicit backwards differentiation formula

(BDF) solver (ode15i, MATLAB Version 2015a). The equations were solved from

time 0-300 seconds. The solver was allowed to freely choose the optimal time steps,

and solutions were exported at three second intervals.

Once the equations were solved, the results of the forward problem f (x) were

arranged as a column vector with the following organization:

f (x) = [ut1
1 , vt1

1 , ut1
2 , vt1

2 , ..., ut1
N, vt1

N, (6.15)

ut2
1 , vt2

1 , ut2
2 , vt2

2 , ..., ut2
N, vt2

N, (6.16)

..., (6.17)

u
t f
1 , v

t f
1 , u

t f
2 , v

t f
2 , ..., u

t f
N, v

t f
N]

T. (6.18)

The first 2N entries of f (x) are the lateral and axial displacements at the first mea-

surement time point t1 = 3 s. The next 2N entries correspond to the next mea-

surement time t2 = 6 s, and this pattern continues until all measurement times are

included, up to 300 s in 3 s increments with a final additional time point at 1500 s

(approaching steady state).
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6.2.2 Forward Sensitivity Problem

Solving the poroelastic inverse problem, as detailed in the next section, requires

some knowledge of how the solution of the forward problem f (x) varies with

respect to the parameters λ and µ. Specifically, we wish to compute the derivative

of the solution with respect to a given parameter. This is known as the sensitivity

problem. The sensitivity is often computed using finite differences and two solves

of the forward problem. In the present implementation, the forward sensitivity

matrix S is computed by taking partial derivatives of the finite element system of

equations, Equation 6.7, with respect to the elements of the parameter vector xj,

which might represent either λj or µj. For notational convencience, we rewrite

Equation 6.7 in the condensed form

Ĉu̇ + K̂u− f̂ = 0. (6.19)

Taking the partial derivative with respect to xj and remembering to apply the prod-

uct rule, we find
∂Ĉ
∂xj

u̇ + Ĉ
∂u̇
∂xj

+
∂K̂
∂xj

u + K̂
∂u
∂xj

= 0. (6.20)

From Equations 6.7-6.11, we note that only the K finite element submatrix depends

on λ or µ via the elasticity coefficient matrix De. It follows then that we can simplify

Equation 6.20 to

Ĉ
∂u̇
∂xj

+ K̂
∂u
∂xj

= − ∂K̂
∂xj

u. (6.21)

Note that the matrices Ĉ and K̂ and the solution vector u may be precomputed,

and these are independent of parameter xj that appears in the partial derivatives.

To solve Equation 6.21 for a given xj, we must construct first the matrix ∂K̂
∂xj

.
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Again referencing Equations 6.7-6.11, we see that

∂K̂
∂xj

=
∂

∂xj

K −L

0 H

 =

 ∂K
∂xj

0

0 0

 . (6.22)

By Equation 6.8, noting that only De depends on the parameters, we obtain

∂K
∂xj

= ∑
e

∫
Ωe

BT
e

(
∂De

∂xj

)
BedΩe (6.23)

To determine ∂De
∂xj

, we must first determine ∂λe
∂xj

and ∂µe
∂xj

. Refering to Equations 6.13-

6.14, we have

∂λe

∂xj
= Le ·

∂λgrid

∂xj
=


Lej xj = λj

0 otherwise
(6.24)

∂µe

∂xj
= Le ·

∂µgrid

∂xj
=


Lej xj = µj

0 otherwise
(6.25)

By combining Equations 6.12, 6.24, and 6.25, we can derive ∂De
∂xj

and, therefore, ∂K̂
∂xj

via Equations 6.22 and 6.23. This means we now can compute the entire right hand

side of Equation 6.21. As with the forward problem solution, we may solve this

system of equations for ∂u
∂xj

using an implicit numerical integration scheme.

6.2.3 Inverse Poroelasticity Problem

The reconstruction of poroelastic constants from ultrasound measurements can be

cast in the form of an inverse poroelasticity problem. The full inverse problem

involves estimating the set of poroelastic parameters and fluid properties given

known forces, boundary conditions, displacement field, and pressure field. In this

study, I simplify the inverse problem by assuming that I have some a priori knowl-
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edge of some of the poroelastic parameters, specifically κ and φ, and that they are

uniform through out the domain. I also assume that the solid phase of the tissue is

incompressible and therefore α = 1. Finally, I assume that the pore fluid is water,

thus providing values for both χ f and µ f .

With these simplifications, define the inverse problem as follows. Given the

known body forces and suitable boundary conditions, and given measurements

of the displacement field u, determine the parameters λ and µ that minimize the

objective function

Φ(x) = ‖W(d− f (x))‖2
2 + βR(x), (6.26)

where W is a diagonal weighting matrix, d is the vector of the measured displace-

ment data, f (x) is the solution of the forward problem for the parameter vector x, β

is a regularization parameter, and R(x) is a regularization function. The parameter

vector x here is defined

x = [λgrid, µgrid]
T = [λ1, λ2, ..., λN, µ1, µ2, ..., µN]

T. (6.27)

and contains the Lamé parameters and shear moduli for N discrete points, defined

on a regular grid of 15× 15 pixels spanning a 5× 5 cm domain. The data vector d

has the same structure as the forward model solution f (x) described in Equation

6.15. For the regularization function R, we choose an edge-preserving hyperbola

regularizer

R(λgrid) =
N

∑
i=1

ψi
(
[Cλgrid]i

)
, (6.28)

ψ(t) = δ2

√1 +
∣∣∣∣ t
δ

∣∣∣∣2 − 1

 . (6.29)

where C is a two-dimensional, first order finite difference matrix and δ is a pa-

rameter that controls the level of the edge preservation. The regularizer, potential
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function, and finite difference matrix were implemented using Jeff Fessler’s Image

Reconstruction Toolbox, available at web.eecs.umich.edu/˜fessler/. The

regularization parameter β controls the relative effect of the regularization term on

the value of the objective function compared to the least squares term. In this study,

I chose values of β that resulted in good images. This was a accomplished largely

by trial-and-error. In practice, one may not have a priori knowledge of the true

solution, and more rigorous techniques for choosing the regularization parameter

can be applied such as the L-curve criteria or Generalized Cross Validation.

The goal of solving the inverse problem is to find the optimal parameter vector

xopt = argmin
x

Φ(x). (6.30)

A number of approaches exist to solve this problem, but my approach is to use

a trust-region algorithm, an iterative method for solving nonlinear least squares

problems. This can be handled by the MATLAB function lsqnonlin, a nonlinear

least squares solver, using only minor modifications. I first rewrite the objective

function in the following form:

Φ(x) = ‖F‖2
2, (6.31)

F =


W(d− f (x))√

β
(
ψi
(
[Cλgrid]i

)
+ 1
)

√
β
(
ψi
(
[Cµgrid]i

)
+ 1
)


. (6.32)

It can easily be shown that this objective is identical to Equation 6.26 up to an

additive constant and thus represents an identical minimization problem.

At each iteration, the algorithm proceeds by minimizing a quadratic approxi-

mation to the objective function within some neighborhood of the current param-
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eter estimate. That is, it solves the trust-region sub-problem

min{1
2

sT Hs + sTg such that‖Ds‖ < ∆}, (6.33)

where s is the update step, H is an approximation to the Hessian matrix of second

derivatives, g is the gradient of the objective function, D is a diagonal scaling ma-

trix, and ∆ is the radius of the trust region. In the least squares case, this simplifies

to solving

s = argmin ‖Js− F‖2
2, (6.34)

where J = Jij is the Jacobian matrix of F, that is, the partial derivatives of the

components Fi with respect to each parameter λj or µj.

To construct the Jacobian matrix, one must describe how each entry of F varies

with respect to each parameter. Differentiating Equation 6.32 with respect to each

parameter yields

Jij =
∂Fi

∂xj
=


−W ∂ui

∂λj
−W ∂ui

∂µj

P([Cλgrid]) 0

0 P([Cµgrid])

 (6.35)

Pj(ti) =

√
βtiCej

2

√
[ψi(ti) + 1]

[
1 +

∣∣∣ ti
δ

∣∣∣2] (6.36)

The matrices ∂ui
∂λj

and ∂ui
∂µj

represent the forward sensitivities, obtained by solving

the forward sensitivity problem once for each parameter λj and µj, as detailed

in the previous section. Each solution vector of the forward sensitivity problem

makes up a column of one of these matrices, and each row corresponds to a row

of the vector f (x), as described in Equation 6.15. The matrices P(ti) are simply the

derivatives of the regularization terms with respect to the parameters. As before,

C is a finite difference matrix and ej is a vector of zeros with a one as the jth entry.
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I initialize the parameter vector x to some initial guess using standard elastog-

raphy assumptions such as linear elasticity and stress uniformity. I first estimated

the axial strain by differentiating the steady state displacement field with a local-

least squares strain estimator with a 9-point stencil. This gave estimates of the

lateral and axial strain. By dividing the known applied axial stress by the axial

strain, I obtained an estimate of Young’s modulus Eobs. I initialized the Poisson’s

ratio νobs using the observed lateral-to-axial strain ratio. These “observed” values

of the Young’s modulus and strain ratio are not equivalent to the true Young’s

modulus and Poisson’s ratio in the plane strain case since the loading no longer

corresponds to uniaxial compression. I therefore apply a correction to estimate the

Young’s modulus and Poisson’s ratio:

E =
Eobs

1− ν2
obs

, (6.37)

ν =
νobs

1 + νobs
. (6.38)

The Young’s modulus and Poisson’s ratio were then converted into the Lamé pa-

rameter λ and shear modulus µ to form the initial parameter vector:

λ =
Eν

(1 + ν)(1− 2ν)
, (6.39)

µ =
E

2(1 + ν)
. (6.40)

6.2.4 Computer Simulations with Ideal Data

I first tested the poroelastic parameter reconstruction using synthetic displacement

data generated by solving the forward poroelasticity problem as detailed previ-

ously. I set the “true” values of the poroelastic parameters λ and µ according to the

following procedure. The domain consisted of a uniform background surround-
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ing a more rigid and less compressible circular inclusion with a radius of 8.5 mm.

For background values, I assigned a Young’s modulus of 1290 Pa and a Poisson’s

ratio of 0.3 (for comparison, see Berry et al. (2006a)). The inclusion values were

6450 Pa for Young’s modulus (five times stiffer than the background) and 0.45 for

Poisson’s ratio. I then converted these values to the λ, µ form. After solving the

forward model, I added Gaussian white noise to each displacement field, varying

the signal-to-noise ratio (SNR) with values of infinity (no noise), 50 dB, 40 dB, and

30 dB. This corresponds roughly to noise levels of 0, 0.3, 1, and 3%, respectively,

which is identical to the cases tested by Oberai et al. (2003). Of note, a signal-to-

noise ratio of 40 dB is typical of sonograms (Doyley et al., 2000), although this may

be different from the noise level of ultrasound-based displacement estimates. The

regularization parameter β was set to 1× 10−10, 1× 10−6, 3× 10−6, and 1× 10−4

for each noise level, respectively (∞, 50, 40, 30 dB). These values were found by

trial-and-error to yield the optimal results, but a more systematic approach, such

as the L-curve criteria or Generalized Cross Validation, could be also be imple-

mented. Because the noise is Gaussian with uniform SNR for all displacements, I

set the weighting matrix W in Equation 6.26 equal to the identity matrix.

6.2.5 Computer Simulations with Simulated Ultrasound Data

I also tested the poroelastic parameter reconstruction using simulated ultrasound

RF data. Two simulated phantoms were used. Both were similar to that described

in the idealized data simulations. That is, the domain was a 5 cm × 5 cm square

containing a circular inclusion of radius 8.5 mm. In both cases, the background

Young’s modulus was 1290 Pa, and the inclusion Young’s modulus was 6450 Pa.

In the first simulated phantom, the background value of the Poisson’s ratio was 0.3

and the inclusion value was 0.45. In the second phantom, this was reversed so that

the background value was 0.45 and the inclusion value was 0.3. A regularization
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parameter of β = 5 × 10−4 was used for the first phantom, and a value of β =

1× 10−4 was used for the second. As before, these were found by trial-and-error to

yield the best images, but a more systematic approach could also be implemented.

Boundary conditions and loads were the same as those described earlier.

For each simulated phantom, a time series of images was computed using

a convolution model. Briefly, I assumed a 128 element linear array transducer

with 5 MHz center frequency, 60% fractional bandwidth, 0.4 mm pitch, and 2 mm

beamwidth. The two dimensional point spread function was written in the follow-

ing form

P(x, y) = Px(x)Py(y). (6.41)

For a Gaussian pulse, one can assume that Py(y) takes the form

Py(y) = exp
y2

2σ2
y

cos
2πy
λw

, (6.42)

where σy is the pulse length and λw is the wavelength. I also assume that the lateral

point spread function mimics a Gaussian function. This gives

Px(x) = exp
x2

2σ2
x

, (6.43)

where σx is related to the beamwidth b by

σ2
x =

1
8

(
b

ln 2

)2

. (6.44)

The RF frame R(x, y, t) was then computed by spatially convolving the point

spread function P(x, y) with a scatterer distribution S(x, y, t), defined by a uni-

form field of scatterers with normally distributed scattering strength resampled
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according to a known displacement field at each time t,

R(x, y, t) = P(x, y) ∗ S(x, y, t). (6.45)

I verified that the envelope of each of the generated RF images followed a Rayleigh

distribution, ensuring that each contained fully developed speckle.

Displacement estimation in the series of RF frames was perfomed using a sim-

ilar algorithm to that described by Konofagou and Ophir (1998) using 3 mm ker-

nels with 75% overlap, 16:1 lateral interpolation, 2.5 mm lateral search width, and

no temporal stretching (since the strain is non-uniform, time varying, and not as-

sumed to be known a priori). Displacement estimates were refined using a local

cosine fit (Cespedes et al., 1995) of the normalized cross correlation peak to achieve

subpixel accuracy. I then applied global and local outlier filters (Westerweel and

Scarano, 2005) to remove spurious estimates which were then replaced with an in-

painting algorithm based on a spring metaphor (D’Errico, 2012). The resulting dis-

placement fields were then smoothed using robust spline smoothing (Garcia, 2010,

2011). Finally, the lateral and axial strains were estimated using a least-squares

strain estimator with a 9-point stencil (Kallel and Ophir, 1997). The displacement

estimates were then interpolated from the speckle tracking grid onto a finite ele-

ment triangular mesh using spline interpolation.

The tracked displacement data require a more careful choice for the weighting

matrix W. Each measurement carries with it a different degree of uncertainty, and

this must be accounted for in the minimization. The Cramér-Rao Lower Bound

(CRLB) gives the lowest theoretical estimate of the variance of an unbiased time-

delay estimator. In the context of ultrasonic speckle tracking, an expression of the

CRLB for displacement estimates was originally derived by Walker and Trahey
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(Walker and Trahey, 1994),

σ2
CRLB =

3
2 f 3

c π2T(B3 + 12B)

(
1
ρ2

(
1 +

1
SNR2

)2

− 1

)
, (6.46)

where fc is the center frequency, T is the kernel length, B is the fractional band-

width, ρ is the normalized cross correlation coefficent, and SNR is the electronic

signal-to-noise ratio of the RF data. In the present case, I did not add any addi-

tional noise to the simulated RF signals, and so SNR → ∞. It is also worth noting

that the lateral displacement estimates are far less accurate than the axial displace-

ments. This is due to the higher resolution of ultrasound in the axial direction. In

light of this, I set the weights of the horizontal displacement components to zero

so that they are not used in the reconstruction. Furthermore, because the data are

measured at points insided the domain and some padding is introduced by the

speckle tracking procedure, it is possible that some of the elements of the data

vector are extrapolated from the true measured data. I set the weights of these

extrapolated values to zero as well. Together, these three ideas led to define the

diagonal elements of the weighting matrix as follows:

Wii =


0 lateral displacements

0 extrapolated data

1
σCRLB

otherwise

(6.47)

In this implementation, I normalized the weights to have a maximum value of 1.

This is equivalent to multiplying the objective function terms by a constant and

so does not affect the minimization. Figure 6.2 shows the relationship between

the weighting value and the normalized cross correlation coefficient. I also tested

different choices of the weighting matrix such as a full identity matrix or an iden-

tity matrix with zero weights for the lateral displacements. The importance of the
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choice of weighting matrix will be explained in more detail in the Results and Dis-

cussion sections.

6.2.6 Computer Simulations with Simulated Ultrasound Data -

Modified Regularization

In a second set of simulations, I also tested a modified version of the objective func-

tion regularization. The simulated phantom properties used were identical to the

first simulated phantom described in the previous section, with an inclusion that

was less compressible than the background. Ultrasound RF frames were simulated

with the same convolution model, this time assuming a 10 MHz center frequency.

The applied force used to generate displacements was doubled, producing a strain

of roughly 2%. Furthermore, the frames were distributed equally in the time range

with one frame for every 30 seconds over a duration of 1500 seconds. The same dis-

placement and strain estimation techniques were applied, this time using a 1 mm

kernel. This reconstruction used a modified version of the regularization, such that

the objective function minimized was

Φ(x) = ‖W(d− f (x))‖2
2 +

β

1000
R(λgrid) + βR(µgrid), (6.48)

R(λgrid) =
N

∑
i=1

ψi
(
[Cλgrid]i

)
, (6.49)

ψλ(t) = (10δ)2

√1 +
∣∣∣∣ t
10δ

∣∣∣∣2 − 1

 , (6.50)

ψµ(t) = (δ)2

√1 +
∣∣∣∣ t
δ

∣∣∣∣2 − 1

 . (6.51)

The changed scales of the regularization parameters were meant to better capture

the difference is scales of the reconstruction parameters λ and µ. Equation 6.48
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was then minimized, using the following weighting matrix:

Wii =


0 lateral displacements

0 extrapolated data

1 otherwise

(6.52)

The reconstructions were run first on a 15 × 15 pixel grid, as before, and then

on a 36 × 36 grid for comparison at higher resolution. In the former case, the

regularization parameters were set as β = 0.01 and δ = 1000, while in the latter

reconstruction, they were set as β = 1 and δ = 1000.

6.3 Results

6.3.1 Computer Simulations with Ideal Data

Figures 6.3 and 6.4 show the reconstructed Lamé parameter and shear modulus,

respectively, along the cutline y = 2.5 cm for the SNR = ∞, 50, 40, and 30 dB cases

alongside the target, or true, parameter fields. As the SNR decreases, artifacts and

errors become more apparent in the solution data. This is particularly true for the

Lamé parameter, which was underestimated in the SNR = 30 dB case. In contrast,

the shear modulus appears to be quite robust to errors in the reconstruction, and

apart from some “salt-and-pepper” noise, remains accurate at all noise levels.

Figure 6.5 shows the mean values of the reconstruction parameters in the in-

clusion and background along with their standard deviations. The reconstructions

match the true values very closely with very small standard deviations both in-

side the inclusion and within the background. In contrast, standard elastography

and poroelastography methods (corresponding to my algorithm’s initial param-

eter values) tend to overestimate the background values and underestimate the
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inclusion values. These methods also exhibit larger standard deviations, on the or-

der of 0.1-4 kPa. In all cases both the error and standard deviation tend to increase

as the SNR increases.

Converting the reconstruction parameters λ and µ into the Young’s modulus

and Poisson’s ratio also helps to compare my algorithm to existing elastography

and poroelastography methods. The errors of the reconstruction and the tradi-

tional methods for both of these parameters are summarized in Table 6.2. Fig-

ure 6.6 shows the reconstructed Young’s modulus elastograms alongside those

obtained by standard elastography methods, namely computing the ratio of the

uniform applied stress to the measured strain. In all cases, my algorithm pro-

duced sharper, more accurate images of the Young’s modulus. The differences

are even more striking when comparing Poisson’s ratio elastograms (Figure 6.7).

The present method greatly outperforms the standard axial-to-lateral strain ratio

method at all noise levels, though this comes at a computational cost. Algorithm

runtimes averaged 3-3.5 hours.

6.3.2 Computer Simulations with Simulated Ultrasound Data

6.3.2.1 Synthetic Ultrasound Images, Displacement, and Strain Estimates

Figures 6.8 and 6.9 show example brightness (B-mode) images and histograms

of the RF envelope data for the simulated ultrasound frames. The envelope his-

tograms were observed to follow a Rayleigh distribution, suggesting that the sim-

ulated frames contain fully developed speckle. Speckle tracking of the simulated

RF yielded estimates of the axial and lateral displacement fields as a function of

both space and time. Figure 6.10 compares the estimated displacements to the true

values used to displace the scatterers during image simulation. The strain estima-

tor was then applied to produce images of the lateral and axial strain as well as the
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observed and corrected EPR (Figure 6.11).

6.3.2.2 Simulated Phantom I: Less Compressible Inclusion

Figure 6.12 shows a comparison of the estimated Young’s modulus and Poisson’s

ratio for standard elastography and poroelastography techniques and the model-

based poroelastic reconstruction in the first simulated phantom case. In both meth-

ods, the Young’s modulus is underestimated, but the standard elastography esti-

mate tends to produce fewer artifacts. The Poisson’s ratio images show very differ-

ent behaviors. The standard poroelastography estimate does contain a peak near

in the true inclusion location, but this peak has a value of 0.63, a non-physical

value for Poisson’s ratio. Furthermore, the standard poroelastography image also

contains a very large amount of noise. In contrast, the reconstructed Poisson’s ra-

tio image very clearly identifies the correct size and location of the inclusion, but

it provides a very poor quantitative estimate. While it estimated the background

value correctly, the reconstruction produced an inclusion Poisson’s ratio that was

lower than the background, as opposed to the true value which was higher. These

effects are more easily seen in Figure 6.13 which shows the Young’s modulus and

Poisson’s ratio estimates along the line y = 2.5 cm. The algorithm runtime was 4.5

hours.

6.3.2.3 Simulated Phantom II: More Compressible Inclusion

Figure 6.14 shows a comparison of the estimated Young’s modulus and Poisson’s

ratio for standard elastography and poroelastography techniques and my model-

based poroelastic reconstruction for the second simulated phantom case. As be-

fore, both methods underestimated the true Young’s modulus, with the standard

method producing an elastogram with fewer artifacts. In the Poisson’s ratio im-

ages, the standard method produces a poroelastogram that does not clearly delin-

143



eate the inclusion. As before, the reconstructed Poisson’s ratio image very clearly

identifies the correct size and location of the inclusion. In this case, however, the

result is quantitatively accurate to a reasonable degree, predicting a peak inclusion

Poisson’s ratio of 0.35. Figure 6.15 shows the Young’s modulus and Poisson’s ratio

estimates along the line y = 2.5 cm. The algorithm runtime was 9 hours.

6.3.2.4 Simulated Phantom III: Modified Regularization

Figure 6.16 shows a comparison of the estimated Young’s modulus and Poisson’s

ratio for standard elastography and poroelastography techniques and my model-

based poroelastic reconstruction using the modified regularization function de-

fined in section 6.2.6 for the 15 × 15 pixel grid. In this case, the reconstruction pro-

duced accurate quantitative maps of the Poisson’s ratio with some artifacts along

the edges and the center line. The Young’s modulus in the inclusion was signifi-

cantly underestimated. These observations are both made more clear in the y = 2.5

cm cut line plots (Figure 6.17). The algorithm runtime was 10 hours.

Figure 6.18 shows a comparison of the estimated Young’s modulus and Pois-

son’s ratio for standard elastography and poroelastography techniques and my

model-based poroelastic reconstruction using the modified regularization function

defined in section 6.2.6 for the higher resolution 36 × 36 pixel grid. This recon-

struction produced similar accurate quantitative maps of the Poisson’s ratio. Arti-

facts along the edges were less pronounced, while artifacts along the centerline re-

mained prominent. A new artifact in this reconstruction is the apparent widening

of the inclusion in the Poisson’s ratio image. The Young’s modulus in the inclusion

was underestimated even more so than in the 15 × 15 pixel grid, likely owing to

the larger value of β used in the higher resolution case. The y = 2.5 cm cut line

plots (Figure 6.19) show a similar pattern to the 15 × 15 pixel grid results, with the

widening of the inclusion clearly visible. The algorithm runtime was 49 hours.

144



6.4 Discussion

Poroelastography techniques currenly rely on very limiting assumptions of spa-

tial uniformity and specific geometry and loading conditions. They also tend to

be highly prone to noise both because of the noise-amplifying effect of strain esti-

mators (differentiation) and the inclusion of lateral displacement estimates which

tend to be far less accurate than axial estimates. I have proposed an inverse prob-

lem formulation for poroelastic imaging that seeks to circumvent these issues.

Given a set of ideal displacement measurements corrupted by Gaussian dis-

tributed errors, the model-based poroelastography method can indeed outperform

traditional poroelastography methods. This is clear from computer simulations

performed with ideal data (see Figures 6.5-6.7). The method demonstrated good

performance for the range of SNR values tested (SNR≥ 30 dB). Standard poroelas-

tography methods yielded greater uncertainty in estimating the background and

inclusion values of the Lamé parameter and shear modulus, especially as the noise

level increase. In particular, Poisson’s ratio elastograms generated by standard

methods begin to show an unacceptable level of noise as the SNR approaches 30

dB.

The advantages of the model-based method begin to fade away as the qual-

ity of the measurement data becomes more realistic. In practice, errors may not

follow a perfect Gaussian distribution and may even be spatially and temporally

dependent. Computer simulations with simulated ultrasound data highlight the

challenges this poses. In these experiments, the model-based method still main-

tained some good advantages. In both simulated phantoms, it was able to delin-

eate the shape and size of the inclusion from the background. In the case of a less

compressible inclusion, however, this carried with it a very poor quantitative esti-

mate. The case of a more compressible inclusion seemed to perform much better

and could even be said to outperform the corresponding standard measurement.
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It is unclear though if the algorithm tends to favor solutions of this shape, making

this case predisposed to better performance.

We can attempt to answer some of the questions surrounding the difficulty

encountered by these first two simulation studies by analyzing the residuals that

would be generated by the “true” solution. That is, we consider how different

the displacement measurements are from the displacements predicted for the true

parameter fields. Figures 6.20 and 6.21 show the distribution of weighted dis-

placement errors W(d− f (xtrue)) between the measured displacements d and the

estimated displacement for the true parameters f (xtrue) for different choices of the

weighting matrix W. For every choice of weighting used, there exists a nonzero

bias in the weighted displacement error. The CRLB-based weighting used in the

experiments greatly reduces the bias, but does not remove it completely. In both

simulated phantoms, the CRLB weighting reduces the bias from approximately -7

µm to -2 µm. The simulated RF data were sampled at 80 MHz, however, which

makes both of these biases smaller than the sampling resolution (9.6 µm). The

model-based approach then is extremely sensitive to biased errors in the displace-

ment estimates, since the ideal data experiments show good performance in pres-

ence of unbiased Gaussian errors. This sensitivity presents a challenge to the prac-

ticality of this method since it requires such a high degree of accuracy from the

speckle tracking algorithm. In theory though, a more accurate speckle tracking

algorithm with no bias and roughly Gaussian noise should vastly improve the

performance of this method.

In the modified regularization simulations, the reconstructions produced highly

accurate quantitative estimates of Poisson’s ratio. Because multiple parameters

varied between these simulations and the previous ones, it is difficult to ascertain

the changes that most likely contribute to the improvement. In this case, the distri-

bution of the data points in time, the strain magnitude, the regularization, and the
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weighting all differed. Because of the long run times required to reconstruct a sin-

gle image, analyzing these variables independently is computationally intractable

in the present implementation. Nevertheless, the results of these simulations are

encouraging and point to the potential usefulness of these poroelastic reconstruc-

tion methods. The observation that the higher resolution reconstruction reduced

edge artifacts is also encouraging.

Despite the difficulties encountered in this study, I have shown that a more

general framework for poroelastography parameter estimation can be achieved.

The current implementation faces many barriers to clinical application, includ-

ing computational efficiency, but it provides important proof of concept for this

new approach to poroelastography. Future work should focus first on increas-

ing computational efficiency of the model-based poroelastography reconstruction

code. Implementation in a compiled language could decrease the amount of time

required to solve the forward problem thus decreasing runtimes. In particular,

efforts should be focused on increasing the efficiency of the forward sensitivity

solver since the computation of the Jacobian dominates the runtime of the recon-

struction. Once the computational efficiency of the implementation has been in-

creased, systematic studies should be conducted to analyze the effects of the tem-

poral sampling, strain magnitude, regularization parameters, and weighting ma-

trix choice. Furthermore, the inclusion of lateral displacement data has not been

fully explored, and this may have implications for solution convergence or unique-

ness.

6.5 Conclusion

I have developed and tested a new ultrasound poroelastography method based

on Biot poroelasticity and an inverse problem formulation. Compared to previous
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poroelastic imaging methods, this approach reduces the number of assumptions

imposed and allows for quantitative estimation of spatially varying poroelastic

properties. I tested this method in a simulation study using both ideal data cor-

rupted by zero mean Gaussian noise and using displacement measurements from

simulated ultrasound images. For the case of ideal measurements and Gaussian

noise, my method greatly outperforms traditional poroelastography methods. In

the simulated ultrasound experiments, biases in the data pose a major challenge

for the poroelastic reconstruction algorithm, and the quality of the parameter es-

timates greatly decreases. This sensitivity to measurement errors and the compu-

tational expense are both major challenges to the proposed method. Despite this,

the method still is of theoretical value for the field of poroelastography and the

study of inverse problems. Future studies should seek to investigate the effects

of temporal sampling, grid resolution, and strain magnitude, and to increase the

robustness of this method to measurement errors, either through improved data

weighting or the use of different objective functions or regularizers. Efforts to im-

prove computational efficiency may also facilitate future studies.
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Table 6.1: Summary of the poroelastic parameters used in solving the forward
model.

Parameter Value
Permeability, κ 1× 10−12 m2

Porosity, φ 0.333
Biot-Willis coefficient, α 1
Fluid compressibility, χ f 4.4× 10−10 Pa−1

Fluid viscosity, µ f 1.002× 10−3 Pa · s
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Table 6.2: Mean relative errors of poroelastograms produced with the model-based
method (Recon) and traditional poroelastography methods (Trad) at varying noise
levels.

SNR (dB) Young’s Modulus Error (%) Poisson’s Ratio Error (%)
Recon Trad Recon Trad

∞ 0.008 18.86 0.005 4.84
50 0.68 18.94 0.79 5.43
40 1.80 18.83 2.16 8.35
30 4.71 22.43 5.66 21.42
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Figure 6.1: Schematic of the forward poroelasticity problem with boundary condi-
tions and loading shown.
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Figure 6.2: Relationship of the weighting values, as defined by the Cramér-Rao
Lower Bound, to the normalized cross correlation coefficient.
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Figure 6.3: Reconstructed values of λ along the line y = 2.5 cm for various SNR
levels.
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Figure 6.4: Reconstructed values of µ along the line y = 2.5 cm for various SNR
levels.
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Figure 6.5: Mean values of the reconstruction parameters and standard deviations
for (a) Lamé parameter in the inclusion, (b) Lamé parameter in the background, (c)
shear modulus in the inclusion, (d) shear modulus in the background.
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Figure 6.6: Comparison of the Young’s modulus for the proposed reconstruction
method (Recon) and the standard elastography estimate (Linear) for various SNR
values.
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Figure 6.7: Comparison of the Poisson’s ratio for the proposed reconstruction
method (Recon) and the standard poroelastography estimate (Linear) for various
SNR values.
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Figure 6.8: Example brightness mode images produced from the simulated RF
data.
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Figure 6.9: Example histograms of the signal envelope for the simulated RF frames.
The envelope levels are Rayleigh distributed, suggesting that the simulated ultra-
sound frames contain fully developed speckle.
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Figure 6.10: Example displacement estimates from speckle tracking applied to the
synthesized RF frame sequence showing good agreement between the true and
measured displacements.
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Figure 6.11: Example strain and EPR estimates from speckle tracking and strain
estimators applied to the synthesized RF frame sequence.
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Figure 6.12: Comparison of Young’s modulus and Poisson’s ratio images estimated
by the proposed reconstruction method (Recon) and by standard elastography and
poroelastography techniques for a simulated phantom with an inclusion that is less
compressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45).
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Figure 6.13: Comparison of Young’s modulus and Poisson’s ratio estimates along
the line y = 2.5 cm for a simulated phantom with an inclusion that is less com-
pressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45).
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Figure 6.14: Comparison of Young’s modulus and Poisson’s ratio images estimated
by the proposed reconstruction method (Recon) and by standard elastography and
poroelastography techniques for a simulated phantom with an inclusion that is less
compressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45).
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Figure 6.15: Comparison of Young’s modulus and Poisson’s ratio estimates along
the line y = 2.5 cm for a simulated phantom with an inclusion that is less com-
pressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45).
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Figure 6.16: Comparison of Young’s modulus and Poisson’s ratio images estimated
by the proposed reconstruction method (Recon) and by standard elastography and
poroelastography techniques for a simulated phantom with an inclusion that is
less compressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45).
This reconstruction used the modified regularization function described in section
6.2.6 with a 15 × 15 pixel grid.
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Figure 6.17: Comparison of Young’s modulus and Poisson’s ratio estimates along
the line y = 2.5 cm for a simulated phantom with an inclusion that is less com-
pressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45). This
reconstruction used the modified regularization function described in section 6.2.6
with a 15 × 15 pixel grid.
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Figure 6.18: Comparison of Young’s modulus and Poisson’s ratio images estimated
by the proposed reconstruction method (Recon) and by standard elastography and
poroelastography techniques for a simulated phantom with an inclusion that is
less compressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45).
This reconstruction used the modified regularization function described in section
6.2.6 with a 36 × 36 pixel grid.
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Figure 6.19: Comparison of Young’s modulus and Poisson’s ratio estimates along
the line y = 2.5 cm for a simulated phantom with an inclusion that is less com-
pressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45). This
reconstruction used the modified regularization function described in section 6.2.6
with a 36 × 36 pixel grid.
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Figure 6.20: Histograms of the weighted displacement error W(d− f (xtrue)) for the
measurements obtained from a simulated phantom with an inclusion that is less
compressible than the background (Background: ν = 0.3, Inclusion: ν = 0.45). In-
cluding all measurements components with indentical weights (All u, v) produces
a broader and more biased histogram. As we remove the lateral displacement esti-
mates (All v) as well as any points extrapolated from the measured data (Internal
v) the total error decreases, but the bias remains. Weighting the measurements by
the CRLB greatly reduces the error and bias, but does not negate it (Weighted v).
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Figure 6.21: Histograms of the weighted displacement error W(d− f (xtrue)) for the
measurements obtained from a simulated phantom with an inclusion that is more
compressible than the background (Background: ν = 0.45, Inclusion: ν = 0.3). In-
cluding all measurements components with indentical weights (All u, v) produces
a broader and more biased histogram. As we remove the lateral displacement esti-
mates (All v) as well as any points extrapolated from the measured data (Internal
v) the total error decreases, but the bias remains. Weighting the measurements by
the CRLB greatly reduces the error and bias, but does not negate it (Weighted v).
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CHAPTER 7

Conclusions and future directions

7.1 Conclusions

The work presented in chapters 4-6 contributed to the development of new meth-

ods of estimating viscoelastic and poroelastic tissue properties as well as the un-

derstanding of present methods. The literature on poroelastgraphy is sparse, and

the field is young compared to the rest of ultrasound elastography. Furthermore,

it has met only limited success in clinical studies, in part because the results can be

difficult to interpret. This work has sought to expand the theoretical understand-

ing of poroelastic imaging and highlight important considerations for interpreting

poroelastogram measurements. The importance of geometry and loading assump-

tions has been demonstrated using both numerical and experimental methods. Fi-

nally, new methods of poroelastic parameter estimation have been proposed and

evaluated, the goal being to provide more flexibility in the assumptions that must

be accepted for any poroelastgraphy measurement.

In Chapter 4, I tested a simplified single-element ultrasound viscoelastography

(UVE) system for point-of-care edema monitoring by measuring the viscoelastic

properties of a tissue-mimicking material (tofu) in creep tests under large strains,

as would be used clinically to diagnose edema. I demonstrated that the UVE sys-

tem was capable of generating depth-dependent maps of viscoelastic material pa-

177



rameters including time constants and elastic moduli. My results suggest success-

ful benchtop validation of this UVE system. This provides a good foundation for

future studies to investigate the relationship between UVE measurements and cur-

rent methods of assessing peripheral edema.

In Chapter 5, I detailed the development of two finite element models of poroe-

lastic deformation – a cylinder and a rectangular block – and used these to demon-

strate the importance of geometric and strain magnitude assumptions on poroelas-

tic parameter estimation methods that utilize curve fitting. In particular, I showed

that Armstrong’s solution to the KLM equations may not be accurate in poroe-

lastography measurements utilizing large strains. Furthermore, I showed that

assumptions of cylindrical geometry behave very differently from an alternative

loading that clinical use may find more suitable. These differences exist not only

in the axial strain history, but also in the behavior of the effective Poisson’s ratio,

a key component of poroelastography imaging. The predictions of the computa-

tional models were verified using experimental measurements of tofu cylinders

and blocks under large strain. The results demonstrate the importance of utilizing

accurate assumptions in poroelastic parameter estimation and suggest that more

general methods may be more useful for obtaining accurate measurements in the

clinic.

In Chapter 6, I described the development and testing of a new ultrasound

poroelastography method based on Biot poroelasticity and an inverse problem for-

mulation. Compared to previous poroelastic imaging methods, this approach re-

duces the number of assumptions imposed and allows for quantitative estimation

of spatially varying poroelastic properties. I tested this method in a simulation

study using both ideal data corrupted by zero mean Gaussian noise and using dis-

placement measurements from simulated ultrasound images. For the case of ideal

measurements and Gaussian noise, my method greatly outperformed traditional
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poroelastography methods. In the simulated ultrasound experiments, biases in

the data posed a major challenge for the poroelastic reconstruction algorithm, and

the quality of the parameter estimates greatly decreased. This sensitivity to mea-

surement errors and the computational expense are both major challenges to my

proposed method. Despite this, the method still is of theoretical value for the field

of poroelastography and the study of inverse problems.

7.2 Summary of Scientific Contributions

The key contributions of this work to the development of ultrasound viscoelastog-

raphy and ultrasound poroelastography are listed as follows:

1. Ultrasound viscoelastography can be used to generate depth dependent maps

of viscoelastic material properties in a tissue mimicking material.

2. Poroelastography techniques that rely on curve fitting to estimate poroelas-

tic parameters must carefully match the assumptions of the fitting model

and the experimental measurements. Mismatches between these assump-

tions and conditions can lead to disagreement between the true poroelastic

parameters and the measured estimates.

3. When creep loading is applied to a small central area embedded in a larger

block of tissue, as might be done in a clinical poroelastography experiment,

the effective Poisson’s ratio exhibits depth dependence and does not decay

uniformly to the Poisson’s ratio of the drained matrix.

4. Fitting mismatches of poroelastic parameters are greater at larger strain, but

appropriate choices of fitting model can decrease these errors.

5. Poroelastic imaging can be posed as an inverse problem, and spatial maps of

poroelastic properties can be estimated without violating the assumption of
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spatial uniformity required by most poroelastic parameter estimation meth-

ods.

7.3 Future Directions

This work has provided a number of avenues for estimating edematous tissue me-

chanical properties using ultrasound displacement and strain measurements. The

results presented in this dissertation can be further expanded upon by benchtop

and clinical measurements.

It was noted in Chapter 5 that the creep curves predicted for the “block” geom-

etry tend to converge as the area ratio Â = A/Aload increases. This geometry may

offer advantages in providing robust parameter estimates and in ease of clinical

implementation. Of theoretical interest, future studies should attempt to obtain an

analytical solution to the “slab” geometry Â → ∞. This would facilitate efficient

and accurate parameter estimation in a geometry that is easily replicated in clinical

measurements.

Most poroelastography studies rely on the assumption that, at steady state,

the EPR decays to Poisson’s ratio of the drained porous matrix. The finite ele-

ment models in Chapter 5 predicted the depth dependent evolution of the effec-

tive Poisson’s ratio (EPR). This has important implications for interpreting EPR

elastograms, and benchtop validation of these numerical predictions is vital to un-

derstanding the images obtained in the clinic. Future studies should therefore be

conducted to examine this effect in poroelastic phantoms.

Chief among the open questions that remain are questions of clinical applicabil-

ity. More clinical studies of poroelastography are needed to determine how useful

this method might be in quantifying the properties of edematous tissue. This work

has highlighted the role of model assumptions and raised new questions about the
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most accurate way to perform and interpret clinical measurements. To further ex-

plore this, clinical studies should employ a wide variety of loading conditions,

geometric configurations, applied strain magnitudes, and deformation models. Of

immediate interest is the use of the “slab” geometry in clinical measurements since

this configuration can be easily realized clinically. Furthermore, since the “block”

finite element models tend to converge as Â→ ∞, this configuration may provide

robust measurements of poroelastic parameters that are not not as sensitive to geo-

metric assumptions. Additionally, clinical studies should explore new geometries

and loading configurations. The prospect of using radial compression of the lower

limb is particularly attractive since it could easily be applied with a blood pressure

cuff.

The inverse problem formulation of the poroelastic imaging problem described

in Chapter 6 also provides a completely new avenue of investigation. In its present

form, the method is computationally inefficient, but shows theoretical promise.

Further work should be done to improve efficiency and optimize the performance

of the algorithm. Future studies may use this increased efficiency to more exten-

sively explore the effects of temporal sampling, grid resolution, and strain magni-

tude, and to increase the robustness of this method to measurement errors, either

through improved data weighting or the use of different objective functions or

regularizers.

Efforts to improve computational efficiency and understand parameter selec-

tion may also facilitate future clinical studies. In particular, the permeability of the

tissue may be extremely useful clinically as it may indicate the degree to which

fluid is mobile in edematous tissues. The inclusion of permeability into the in-

verse problem formulation is straightforward but computationally expensive. If

adequate gains in efficiency can be achieved, however, this may provide an easily

interpreted variable for quantitatively evaluating edema in clinical studies.
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