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ABSTRACT

Attacking and Defending Emerging Computer Systems Using the Memory
Remanence Effect

by

Amir Rahmati

Chair: Atul Prakash

In computer systems, manufacturing variances and hardware effects are typically

abstracted away by the software layer. This dissertation explores how these effects,

specifically memory remanence, can be used both as an attack vector and a tool to

defend emerging computing systems. To achieve this, we show how time-keeping,

anonymity, and authenticity can be affected by memory remanence. In terms of

attacks, we explore the deanonymizing effect of approximate computing in the context

of approximate memory in Probable Cause. We show how data passing through an

approximate memory is watermarked with a device specific tag that points the attacker

back to the device. In terms of defenses, we first present TARDIS: an approach to

provide a notion of time for transiently powered embedded devices without requiring

any hardware modification using remanence effect of SRAM. TARDIS allows these

devices to keep a coarse-grained notion of time without the need for a running clock.

Second, we propose data retention voltage of memory cells as a new type of physical

unclonable function that allows for low-cost authentication and counterfeit resistance

in computer systems.
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CHAPTER I

Introduction

Memory remanence refers to the residual data or its traces that remain in memory

after it is expected to be lost. In volatile memories where the integrity of the data

relies on continuous access to a source of energy and/or refresh operations, memory

remanence shows itself as the gradual decay of data after loss of power, or errors that

may appear due to reduced input voltage or refresh rate in energy saving mechanism.

A prominent example of memory remanence effect on security of computer systems

was presented by Halderman et al. [42] where they used effect of memory remanence

to extract secret cryptographic keys from DRAM memories.

This thesis focuses on security implications and potentials of memory remanence,

exploring how various security primitives can be challenged or obtained using its

effects. Table 1.1 provides an overview of this work. First, we look at Approximate

Computing as an emerging field that seeks to trade computational accuracy for energy

and performance, and show how use of approximation in memory can create a privacy

risk by watermarking any data passing through the memory with a signature specific

to that device. Second, we tackle the problem of time-keeping in transiently powered

embedded devices in TARDIS. We show how limited access to energy makes these

devices incapable of performing simple security functionalities such as rate-limiting

and time-out and show how this capability can be regained in software by taking

1



System Type Security Primitive Contribution

Probable Cause Attack Anonymity Showing that use of Approx-
imate Computing creates in-
herent privacy risks

TARDIS Defense Time Providing a notion of time to
transiently powered devices

DRV-Fingerprinting Defense Authenticity Creating an unforgeable fin-
gerprint using data retention
voltage of memory

Table 1.1: Summary of work

advantage of memory remanence in hardware.

In this dissertation, we take a principled approach to examine the effects of memory

remanence and build attacks and security mechanisms that take advantage of its effects.

We build open-source experimental platforms to implement attacks and security

mechanisms. We use these platforms to evaluate these systems and to examine their

robustness against physical and environmental factors. Finally, we prototype these

systems in real-life scenarios to showcase their effectiveness.

1.1 Contributions of This Dissertation

1.1.1 Probable Cause: Deanonymizing Effect of Approximate Memory

Approximate computing research seeks to trade the accuracy of computation for

increases in performance or reductions in power consumption. The observation driving

approximate computing is that many applications tolerate small amounts of error

which allows for an opportunistic relaxation of guard bands (e.g., clock rate and

voltage). Besides affecting performance and power, reducing guard bands exposes

analog properties of traditionally digital components. For DRAM, one analog property

exposed by approximation is the variability of memory cell decay times.

In Probable Cause, we show how the differing cell decay times of approximate

2



DRAM creates an error pattern that serves as a system identifying fingerprint. To

validate this observation, we build an approximate memory platform and perform

experiments that show that the fingerprint due to approximation is device dependent

and resilient to changes in environment and level of approximation. To identify a

DRAM chip given an approximate output, we develop a distance metric that yields

a two-orders-of-magnitude difference in the distance between approximate results

produced by the same DRAM chip and those produced by other DRAM chips. We

use these results to create a mathematical model of approximate DRAM that we

leverage to explore the end-to-end deanonymizing effects of approximate memory

using a commodity system running an image manipulation program. The results from

our experiment show that given less than 100 approximate outputs, the fingerprint for

an approximate DRAM begins to converge to a single, machine identifying fingerprint.

1.1.2 TARDIS: Providing a Notion of Time to Transiently

Powered Devices

Lack of a locally trustworthy clock makes security protocols challenging to im-

plement on batteryless embedded devices such as contact smartcards, contactless

smartcards, and RFID tags. A device that knows how much time has elapsed between

queries from an untrusted reader can better protect against attacks that depend on

the existence of a rate-unlimited encryption oracle.

The TARDIS (Time and Remanence Decay in SRAM) helps the system locally

maintain a sense of time elapsed without power and without special-purpose hardware.

The TARDIS software computes the expiration state of a timer by analyzing the

decay of existing on-chip SRAM. The TARDIS enables coarse-grained, hourglass-like

timers such that cryptographic software can more deliberately decide how to throttle

its response rate. Our experiments demonstrate that the TARDIS can measure

time ranging from seconds to several hours depending on hardware parameters. We
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address key challenges in implementing a practical TARDIS include compensating for

temperature and handling variation across hardware.

Our contributions are (1) the algorithmic building blocks for computing elapsed time

from SRAM decay; (2) characterizing TARDIS behavior under different temperatures,

capacitors, SRAM sizes, and chips; and (3) three proof-of-concept implementations

that use the TARDIS to enable privacy-preserving RFID tags, to deter double swiping

of contactless credit cards, and to increase the difficulty of brute-force attacks against

e-passports.

1.1.3 DRV-Fingerprinting: Using Data Retention Voltage

for Chip Identification

Physical unclonable functions (PUFs) produce outputs that are a function of minute

random physical variations. Promoted for low-cost authentication and resistance to

counterfeiting, many varieties of PUFs have been used to enhance the security and

privacy of embedded systems. To different extents, applications for both identification

and authentication require a PUF to produce a consistent output over time. As the

sensing of minute variations is a fundamentally noisy process, much effort is spent

on error correction of PUF outputs. We propose a new variant of PUF that uses

well-understood properties of common memory cells as a fingerprint. Our method of

fingerprinting SRAM cells by their data retention voltage improves the success rate of

identification by 28% over fingerprints based on power-up state.
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CHAPTER II

Probable Cause: Deanonymizing Effect of

Approximate Memory

2.1 Introduction

Secure system designers tend to focus on the anonymity of communication [86] and

take for granted the hardware used to generate the data communicated. Attribution

of data is usually done through communication meta-data [23]. While the use of

encryption secures the communication against eavesdroppers, it is unable to hide the

occurrence of communication. Anonymity systems such as Tor [26] try to provide this

guarantee over the Internet. Even when software and communication channels are

designed to preserve anonymity of users, devices can be deanonymized using intrusive

measures such as espionage tools and Trojans [115] or non-intrusively using unique

characteristics of analog hardware such as RF fingerprinting [17, 87], clock skew [57],

or camera sensor noise [71]. The anonymity of digital computation has not been

traditionally a concern since, in general, computer systems are deterministic machines

that yield identical results to identical inputs.

The assumption of anonymous computation must be reconsidered with the emer-

gence of approximate computing. The goal of approximate computing is to provide

significant performance improvements and/or energy savings by sacrificing the accu-
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Figure 2.1: Probable Cause creates a fingerprint of an approximate DRAM system by
collecting approximate outputs and stitching together error patterns in those outputs
to form a fingerprint for the memory. Attackers can then use this memory fingerprint
to identify other approximate outputs as belonging to the system.

racy of computation or storage. In many cases, the error pattern due to approximation

depends on hardware variations locked-in at manufacturing time. The dependency of

computation result on hardware properties creates an opportunity for an attacker to

deanonymize systems that produce approximate results.

Approximate computing adds accuracy as a third dimension to the conventional

energy/performance trade-off. Many applications, such as computer vision, machine

learning, and sensor networks, are naturally imprecise and thus accept a range of

results, so expending extra time and energy to calculate an exact results is of no

advantage. For example, any application that uses floating point numbers already

accepts some inaccuracy.

As one of the main components of an approximate system, many works consider

the trade off between accuracy and energy saving in Dynamic Random Access Memory

(DRAM). Energy saving schemes targeted at DRAM work by lowering the input
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voltage [24] or by decreasing the refresh rate [67, 68, 125]. These techniques are a key

component in future approximate computing systems, especially those that tolerate

limited errors in data [28].

While much of the previous work has examined approximate DRAM’s impact

on correctness, performance, and energy, none of the existing approximate DRAM

systems consider their impact on privacy. To this end, we introduce Probable Cause,

to our knowledge, the first paper that explores the security implications of approximate

DRAM. Probable Cause is an approach to uniquely identify approximate computing

systems based on the error pattern imprinted in approximate outputs. Figure 2.1

provides an overview of how Probable Cause works. The insight driving Probable

Cause is that the error pattern imprinted on data reveals the location of the most

volatile cells in an approximate memory. Additionally, this volatility is chip-specific

and due mainly to process variations locked-in during manufacturing.

To demonstrate the real-world implications of our observation, we implement

Probable Cause. Probable Cause consists of an approximate memory system and set

of approximate result classification algorithms. We show that Probable Cause reliably

deanonymizes approximate results, even with changes in temperature and level of

approximation. Additionally, we show that it is possible to dynamically construct a

fingerprint for a DRAM by collecting arbitrary approximate results and stitching their

individual fingerprints together to form a whole-memory fingerprint.

Our contributions are,

• We present the first work to highlight the privacy implications of approximate

DRAM.

• We empirically evaluate the feasibility of our approach by deanonymizing DRAM

devices based only on their approximate results.

• We present a mathematical model to quantify the end-to-end information leakage
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of approximate DRAM, showing how many approximate results an attacker

must gather to reliably identify a system.

2.2 Background

Dynamic Random Access Memory (DRAM) is a type of volatile memory that

stores values by holding charge in a capacitor. Figure 2.2 presents a simplified DRAM

structure. The storage capacitor in each DRAM cell has a default/uncharged state

and a charged state. The uncharged state of a cell corresponds to either a logical ’0’

or a logical ’1’, depending on the DRAM mapping. For each cell, the logical value

corresponding to an uncharged capacitor is denoted as the default value. Generally,

all cells in the same row have the same default value, and the default value alternates

every few rows. Writing a value opposite of the default value charges a cell’s storage

capacitor. The capacitor then begins to lose its charge. Eventually the capacitor

voltage will drop below a detection threshold and return the cell to its default value.

To prevent data loss in charged cells, DRAM must perform regular refresh operations.

The JEDEC standard [53] specifies a refresh period of 64ms for operating temperatures

below 85◦C. Refreshes have row granularity (due to the architecture of DRAM). At

the hardware level, a refresh operation is a read followed by a write. The write fully

charges any data storage capacitors not in the default value.

DRAM cells decay at different rates, mainly due to their manufacturing variations.

The distribution of how quickly DRAM cells decay follows a Gaussian distribution [90].

There are two types of manufacturing variation that influence the probability of

state loss between refresh: (1) variation in the capacitance of the DRAM cell and

(2) variation in the leakage current through the access transistor that drains the

capacitor. It is possible that some variation in capacitance is mask-dependent, thus

replicated across wafers produced in the same fabrication process. On the other hand,

the variation in the leakage current is not mask-dependent, because it is caused by
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Figure 2.2: A DRAM cell has a default low value that can be changed by charging the
capacitor. DRAM cells need to be constantly refreshed for the value to hold, otherwise
capacitor leakage slowly reverts the cell to its default value. All DRAM operations
are done at row granularity.

threshold voltage variations due to random dopant fluctuations in the channel of the

access transistor. Thus, we expect leakage current to be the dominant factor in DRAM

cell retention time, i.e., essentially mask independent.

In traditional/exact computing models, a DRAM requires frequent refreshes to

prevent decay of the most volatile cells in the most extreme environmental conditions.

This results in large overheads because, while some cells decay in less than a tenth of

a second, the majority of the cells hold their value for tens of seconds. Additionally,

most systems are not running in extreme environments.

Approximate computing systems take advantage of this opportunity either by

lowering the supply voltage of memory or by decreasing the refresh rate. Both of

these methods result in energy savings but cause errors in data. Given that the errors

are mainly due to capacitor leakage, the ordering of cells that lose their charge is

repeatable. This observation drives Probable Cause. In the remainder of this chapter,

we experimentally show that these orderings are unique, stable given environmental
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changes, and stable given the amount of error.

2.3 Threat Model

Probable Cause’s threat model assumes that a user has a system with approximate

memory. The user wishes to publish data (e.g., post a picture on a forum) created on

an approximate system while preserving his or her anonymity. We assume that the

user takes all known precautions, such as removing identifying meta-data from the files

they post and that they publish data using an anonymity-preserving communication

channel (e.g., The Onion Router (Tor) [26]).

A key aspect of the threat model is a resource imbalance between the attacker and

the victim: it assumes a sophisticated attacker with abundant resources (i.e., a nation

state) that seeks to identify a relatively small set of users (e.g., a dissident) using only

those users’ approximate outputs. Figure 2.3 depicts two attack scenarios explored in

this chapter:

(a) The attacker inserts themselves in the supply chain between the manufacturer

and the end user. This encompasses the attacker intercepting complete computer

systems or just the DRAM modules themselves. The attacker fingerprints devices

completely before they reach the user, thus Probable Cause can deanonymize

any public approximate result generated by the system.

(b) The attacker creates a database of all observed approximate outputs. The error

patterns in the outputs are stitched together to form whole-system fingerprints.

In this scenario, we assume that the attacker has access to the public data and

can guess the positions of error in the approximate outputs. While this scenario

is less intrusive, it requires collecting many approximate outputs from a system

before Probable Cause is able to construct a reliable system-level fingerprint.
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Figure 2.3: Probable Cause tackles two attack scenarios: (a) the attacker intercepts
and fingerprints the entire memory (as a part of a system or a standalone module) in
the supply chain and (b) the attacker captures approximate outputs from a deployed
system to create a fingerprint.

Both the supply-chain attack and eavesdropping attack are feasible given real-world

precedents [38].

2.4 Design of Probable Cause

The two scenarios described in Section 2.3 pose very different attack vectors for

the adversary to deanonymize data generated by an approximate memory. Attacking

the supply chain is the easier of the two attacks to implement. Giving the adversary

physical access to the approximate memory guarantees complete and accurate fin-

gerprinting of the memory. Section 2.7.1 covers how data only a few memory pages

in length can produce a fingerprint powerful enough to differentiate outputs from

one DRAM chip from another. The second attack scenario is more challenging since

the attacker cannot control what data the victim gives him. This section shows that

even with such limitations, Probable Cause still deanonymizes users based solely on

user-provided approximate outputs.

For the post-deployment attack scenario, we assume the attacker has access to
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Figure 2.4: Probable Cause constructs the whole-memory fingerprint by stitching
together fingerprints of overlapping approximate outputs. Pages of the same color are
the same page and are matched by Probable Cause using page fingerprints.

approximate outputs from the device, but does not know which page1 of memory

it emanates from. To formalize this, assume that we have approximate outputs

D1, D2, ..., Dn. Without loss of generality, we assume that these pages are stored in

physical memory pages s1, s2, ..., sn and have length of l1, l2, ..., ln consecutive pages.

Note that this is not a strong assumption as even operating systems that utilize

Address Space Layout Randomization (ASLR) [106] do not randomize the location of

the pages that make up a file due to the added management overhead.

To create a holistic picture of memory, Probable Cause treats each output as a piece

of a puzzle that it puts together to create a fingerprint of the entire memory. Figure 2.4

depicts how this process works: initially, Probable Cause creates a fingerprint for

every page of data that it sees. Therefore, each approximate output will result in a

contiguous series of page-size fingerprints FP1, FP2, ..., FPn with length of l1, l2, ..., ln

pages, respectively. We will explain the process of fingerprinting in Section 2.5.2. Next

Probable Cause tries to stitch these page-size fingerprints together into a system-level

fingerprint by searching for overlap among the series of connected page fingerprints.

This algorithm is explained in detail in Section 2.5.3. If the page fingerprints of two

approximate outputs match, then there is a range of physical memory pages that held

both outputs. Probable Cause uses the page fingerprints outside the overlap region

1Our analysis focuses on 4 KB chunks of memory—called a page, because that is the smallest unit
of contiguous memory that operating systems manage. Modern operating systems also use larger
page sizes, which only makes our analysis easier.
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to create a combined system-level fingerprint that encompasses the page fingerprints

of each output. As the number of outputs increase, more fingerprints are stitched

together. In Section 2.7.6 we show how, with large enough data and enough overlap, it

is possible to create a system-level fingerprint comparable to the supply chain attack.

In cases where the approximate outputs were not stored in any of the same physical

memory pages, Probable Cause must assume that the outputs come from different

systems.

Probable Cause stores system-level fingerprints in a database equal to the size

of the fingerprinted region of memory. Although we do not imagine storage to be

an issue for powerful attackers such as government agencies or Advanced Persistent

Threats (APTs), it is possible to reduce the storage requirement by only tracking the

fast decaying bits of memory (approximately, 1% of the bits in a memory).

2.5 Mechanics of Probable Cause

(a) (b) (c)

Figure 2.5: Three identical images after storage in approximate memory. Image (c) is
stored in a different chip than (a) and (b). Simple visual inspection reveals similar
patterns of errors in results coming from the same chip.

Probable Cause’s goal is to identify the origin of approximate data based on the

error pattern imprinted by approximate DRAM. Figure 2.5 presents three example

outputs of two approximate DRAMs. For this example, a 200× 154 pixel black and

white image is stored in two different DRAM chips refreshed at a rate that yields 1%
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Algorithm 1 Characterization Algorithm: Creates a fingerprint for a DRAM chip
based on the errors from several approximate results.

Characterize(approx[#ofResults][size], exact[size])

1 for i← 1 to #ofResults
� exact is a bitstring representing an unapproximated result

2 do errorString[i]← XOR(approx[i], exact)
� Fingerprint is the intersection of error bits

3 return ∧#ofResultsi=1 errorString[i]

error with worst-case data. Figure 2.5.a and Figure 2.5.b show the image produced

by the same chip, but at different temperatures, while Figure 2.5.c shows the output

from a second chip.

Even from visual observation, it is possible to distinguish the results coming from

a different chip as there are many similarities in the error patterns in Figures 2.5.a

and 2.5.b, but no real similarity to Figure 2.5.c. We highlight regions with notable

similarities and differences to ease the comparison.

It is not practical to expect a user to analyze the error pattern in every approximate

output for similarities to the known error patterns. Thus, this section presents the

algorithms used by Probable Cause to cluster approximate results and identify host

systems based on known system-level fingerprints and observed approximate outputs.

There are three parts to this problem: Section 2.5.1 covers generating system-level

fingerprints for DRAM chips. Section 2.5.2 covers correlating approximate results and

system-level fingerprints. Finally, Section 2.5.3 covers clustering approximate results

with the same system-level fingerprint and determining the system that produced

them, even when they have not been previously seen by the attacker.

2.5.1 Characterization

The first step required for Probable Cause to successfully deanonymize a user is

characterization. To characterize an approximate memory, Probable Cause needs a
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Algorithm 2 Error Marking Algorithm: The algorithm compares approximate result
with exact data, returning a bitstring with errors marked as 1.

markError(approx[size], exact[size])

1 for i← 1 to size
2 do if approx[i] 6= exact[i]
3 do errorString[i]← 1
4 else errorString[i]← 0
5 return errorString

series of approximate results. Based on the adversarial model described in Section 2.3,

there are two possible paths for the attacker to acquire these: (1) the attacker gets

physical access to the system or DRAM chip and characterizes it completely using

their own inputs, or (2) the attacker collects user-published approximate outputs from

the system by eavesdropping or by scraping the web.

Algorithm 1 characterizes a DRAM chip by collecting a series of approximate

results from the chip along with their corresponding exact values. Next, it detects the

pattern of errors in each of the results and records the intersection of the errors as the

fingerprint of the chip in the form of a bit vector. Algorithm 2 explains this process.

Given that we expect most of the failed bits to match during different runs, using

the intersection will minimize the effect of noise—keeping only the most volatile bits.

Keeping such a small number errors around as the fingerprint has several advantages:

it makes the fingerprint amenable to lightly approximated systems, it provides ample

information to correctly classify approximate outputs and identify systems, and it

makes DRAM chip classification fast as it takes little time for the first 1% of bits to

fail.

2.5.2 Identification

To correctly match an approximate output with a system-level fingerprint, Algo-

rithm 3 first detects errors in the approximate data by comparing it to the exact data.
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Algorithm 3 Identification Algorithm: Compares an approximate output with
fingerprints in a database to identify which DRAM chip produced the output.

Identify(approx[size], fingerprintDB[#ofFPs], exact[size])

1 errorString ← XOR(approx, exact)
2 for i← 1 to #ofFPs
3 do if Distance(errorString, fingerprintDB[i])

< threshold
4 do return i
5 return failed

We assume the availability or calculability of exact value in our threat model. It then

searches a database of system-level fingerprints to see if any match the error pattern

of the output. For comparisons, the algorithm uses the distance metric described in

Algorithm 4. The algorithm returns the first system-level fingerprint whose distance to

the error pattern in the output is below a pre-defined threshold. Section 2.7 discusses

how we experimentally determine this threshold.

Designing a suitable distance metric requires for Probable Cause requires special

considerations. Mainly, our distance metric needs to consider cases where the amount

of error in the system-level fingerprint and the approximate output differ dramatically

(e.g., the chip is fingerprinted at 99% accuracy while the data is 95% accurate). In

such cases, an approximate result from the same chip as the fingerprint, but with

much less error will look farther away than an approximate result from another chip

that has much more error than the fingerprint. This makes simple distance metrics

such as Hamming distance unsuitable for our system.

To compensate for this, we designed a custom distance metric (detailed in Al-

gorithm 4 and Algorithm 5) based on Jaccard’s index [52]. Equation 2.1 provides

the formal definition of the Jaccard index. Our metric looks for errors that exist in

the fingerprint, but are absent in output’s error pattern2. This makes the distance

2Without loss of generality, we assume that the fingerprint has less error bits. When the
approximate output has less error bits, it can be treated as the “fingerprint”.
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Algorithm 4 Distance Algorithm based on Jaccard index [52].

Distance(errorString[size], fingerprint[size])

1 Initialize d← 0
� Count the number of errors in fingerprint which are absent in errorString

2 for i← 1 to size
3 do if fingerprint[i] = 1 and errorString[i] = 0
4 do d← d+ 1

5 return d
HammingWeight(fingerprint)

Algorithm 5 Hamming Weight Algorithm: Counts the the hamming weight of an
error string.

HammingDistance(errorString[size])

1 Initialize d← 0
2 for i← 1 to size
3 do if errorString[i] = 1
4 do d← d+ 1
5 return d

metric focus on identifying errors in data which can determine if it originates from a

previously fingerprinted memory. This result is then normalized to ranges from [0, 1]

by division to the total number of errors in the fingerprint (i.e., the Hamming weight

of the fingerprint). Algorithm 5 provides the steps to calculate this value.

J(A,B) =
|A ∩B|
|A ∪B|

(2.1)

Our distance metric does not suffer from the varying approximation problem

as it only looks for error bits that should be present if data originated from the

fingerprinted memory and ignores any additional errors that could have happened

because of mismatch in level of approximation. Our metric is also less prone to noise

as it similarly ignores random bit flips that might have occurred because of noise.
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2.5.3 Clustering

To support the second attack where the attacker has not preemptively fingerprinted

devices, Probable Cause must be able to cluster results of unknown or previously

unseen devices in addition to identifying approximate outputs created by known

devices. Our clustering algorithm is similar to the approach discussed in Section 2.4.

Each approximate result creates an error string that is compared to each of the

previously identified clusters using the distance metric. If the error string matches any

of the clusters, it will be intersected with the fingerprint of the cluster to augment

it (similar to approach used in the characterization algorithm). In cases where the

error string does not match any of the clusters, it will be assigned to a new cluster

(representing the system-level fingerprint of a new system). Algorithm 6 describes

the pseudo-code of this algorithm. This algorithm has three main benefits: (1) it

requires minimum supervision from the user, (2) it is low cost compared to more

complicated machine learning techniques, and (3) the chance of a mismatch is low due

to the performance of our modified Jaccard distance metric. Note that this algorithm

assumes that a page fingerprint is unique. We will provide the mathematical proof

behind this assumption in Section 2.7.1.

2.6 Experimental Setup

We evaluate our system on both an older DRAM and a DDR2 platform. Because

of similarity in results, we postpone our description of the DDR2 setup and the effect

of process technology on Probable Cause to Section 2.8.1. Our DRAM experiments

consist of a set of 10 32KB KM41464A DRAM chips [103]. This DRAM stores data

as 64K 4-bit words, arranged in 256 columns and 256 rows. We disable automatic

refresh, thus the only way to refresh a row is through memory accesses. Other relevant

blocks and their roles are,

18



Algorithm 6 Clustering Algorithm: Creates a fingerprintDB based on a set of
approximate results.

Cluster(approx[#ofResults][size], exact)

1 Initialize cluster ← 0
2 for i← 1 to #ofResults
3 do j ← 0
4 errorString ←MarkError(approx[i], exact)
5 while j < cluster
6 do if Distance(errorString, fingerprintDB[j])

< threshold
7 do fingerprintDB[i]

← fingerprintDB[i] ∧ errorString
8 goto 2
9 fingerprintDB[cluster]← errorString

10 cluster ← cluster + 1
11 return fingerprintDB

• The MSP-FET430UIF [118] JTAG Programmer is responsible for program-

ming the microcontroller and later transferring the results back to the analysis

computer.

• The MSP430-F2618 [117] microcontroller orchestrates the experiments. Its

duties include writing and reading data to and from the DRAM, controlling the

timing of refreshes, and analyzing the data from the DRAM for decay.

• The Sun Electronics EC-12 thermal chamber [113] allows us to control tem-

perature for the DRAM experiments. Temperature is the most important

environmental factor to control as the rate of decay in DRAM heavily depends

on its variations [90].

• The Agilent power supply powers the DRAM.

For experiments not involving image data, we load data that charges every memory

cell in the DRAM. Section 2.2 discusses how each DRAM cell has a charged state

which corresponds to logical 1 or 0, depending on the row. Using the charged value

19



Power SupplyMicrocontroller

DRAM

JTAG 
Programmer

Control Bus

Thermal Chamber

Data Bus

Figure 2.6: Probable Cause experimental platform. The MSP430 microcontroller
controls DRAM read/write functions. The target DRAM is placed inside a ther-
mal chamber to ensure environment consistency across experiments. The JTAG
programmer allows us to program the microcontroller and extract the results.

of cells has the advantage that it gives every cell the possibility of losing state by

decaying to the default value—a worst case scenario.

2.7 Evaluation

To evaluate Probable Cause, we start by examining it with respect to five factors

that affect the performance of DRAM fingerprinting. All of these experiments run on

the approximate memory platform presented in Section 2.6. The five factors are

1. Uniqueness: How distinguishable are the fingerprints of different chips from

each other?

2. Consistency: How much variation exists in the fingerprint of a single chip

across multiple trials, given the same conditions?

3. Thermal effect: How does temperature impact the relative volatility of DRAM
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cells?

4. Order of failure: How do fingerprints coming from data produced on the same

chip, but with different levels of approximation correspond to each other?

5. Accuracy versus privacy: How do changes in the level of approximation

impact the ability of Probable Cause to successfully identify the outputs of a

chip?

Then, using the results from the generalized evaluation, we create a mathematical

model to evaluate the end-to-end deanonymizing effects of approximate memory using

a commodity system with an approximate computing benchmark program.

2.7.1 Uniqueness

The goal of this experiment is to show that Probable Cause correctly associates

an approximate output to the DRAM chip that produced it, given a system-level

fingerprint of all DRAM chips. To evaluate the uniqueness of fingerprints, we first

create a system-level fingerprint for each chip by taking the intersection of the error

bits in three outputs created at 1% error and different temperatures. We then create

9 approximate data outputs from each of our 10 DRAM chips, where each output

comes from a different combination of temperature (40◦C, 50◦C, and 60◦C) and level

of approximation (99%, 95%, and 90%).

For each of the 90 results, we calculate the error bitstring and use Algorithm 4 to

calculate the distance between the output and every system-level fingerprint. Figure 2.7

is a histogram of the within-class (belonging to same chip) and the between-class

(belonging to different chips) distance of every pair of fingerprints. The between-class

distances are two orders-of-magnitude larger than within-class distances; this allows

Algorithm 3 to trivially deanonymize chips from their approximate data.

Uniqueness can also be evaluated theoretically by reasoning about the space of
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Figure 2.7: Histogram of fingerprint distances for within-class (same chip) and between-
class (other chips) pairings.

possible fingerprints. If the possible number of fingerprints is low compared to the

number of devices, it would be likely for fingerprints of two devices to match or be

close enough to make them indistinguishable using our metric.

Assuming an approximate memory of size M bits where A bits of error are

tolerated, the total number of unique fingerprints is given by the binomial coefficient

in Equation 2.2.

Max unique fingerprints =

(
M

A

)
(2.2)

Given the existence of noise, fingerprints will not match exactly, and a threshold

of T bits is used for matching two fingerprints. Using this threshold, every fingerprint

is matchable with
∑T

i=0

(
M
i

)
fingerprints that are within Hamming distance T . Taking

into consideration that the noise threshold exists for both the system-level fingerprint

and the approximate output, the range of possible distinguishable fingerprints is
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One page of memory

M = 32768 bits, A = 1%, T = 32 bits

Max possible fingerprints 8.70× 10795

Max unique fingerprints ≥ 1.07× 10590

Chance of mismatching ≤ 9.29× 10−591

Total Entropy 2423 bits

Table 2.1: Results for a page of memory

calculated using the Hamming bound [72]:

(
M
A

)∑2T
i=0

(
M
i

) ≤Max distinguishable fingerprints ≤
(
M
A

)∑T
i=0

(
M
i

) (2.3)

and the chance of two fingerprints being mistakenly matched is in the range of:

∑T
i=1

(
M
i

)(
M
A

) ≤ Chance of mismatching ≤
∑2T

i=1

(
M
i

)(
M
A

) (2.4)

The surprisingly low chance of misidentification is due to the high amount of

entropy in the fingerprints. Assuming that noise and other external factors cause no

more than T bit-flips (A > T ), the amount of entropy per bit of memory is given by

Equation 2.5.

entropy/bit ≥
log2 (

(M
A)∑2T

i=0 (M
i )

)

M
≥

log2

(
M
A−T

)
M

(2.5)

To put these equations into perspective, Table 2.1 presents these result for a page

of memory (M = 32768 bits) with a A = 1
100

M (328 bits), and threshold of T = 10
100

A

(32 bits). This threshold value is a safe upper bound chosen based on our experiment

results.
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Figure 2.8: Heatmap of cells unpredictability in a sample DRAM chip. Darker cells
behave more like noise. More than 98% of cells behave reliably across all 21 runs.

2.7.2 Consistency

The goal of this experiment is to show that, given the same operating conditions,

DRAM cells fail in a repeatable fashion. To evaluate the consistency of errors in an

approximate DRAM across different runs, we record 21 outputs of a DRAM chip at

99% accuracy and 40◦C, then compare the error locations in each output. Figure 2.8

presents a heatmap of the bits that are not predictable across different trials. In the

heatmap, the darker the cell, the more it behaves like noise. Our results show that

98% of bits that fail in any one trial, will also fail in the other 20 trials. This suggests

that the errors created by approximate DRAM are mostly repeatable.

2.7.3 Thermal effect

Temperature variation is known to have a significant effect on the rate of charge

decay in DRAM [44]. DRAM refresh rates account for this either by assuming

a worst-case operating environment [53] or by dynamically adjusting the refresh

rate to compensate for environmental changes while keeping current consumption

minimized [77]. Our approximate DRAM implementation similarly adjusts its refresh

rate to maintain a desired accuracy across changes in temperature. To explore
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Figure 2.9: Histogram of between-class (different chips) pair distances grouped by
temperature. Temperature has no noticeable effect on distance.

whether the change of temperature affects the relative DRAM cell decay rates, we

run experiments under different temperatures (40◦C, 50◦C, and 60◦C) and different

levels of approximation (99%, 95%, and 90%). Figure 2.9 shows how variations in

temperature affects between-class (different chips) pair distance. Even though the

increased temperature causes DRAM cells to decay faster, our approximate DRAM

system accounts for these changes to maintain the desired level of approximation.

The results show that the relative decay rate of DRAM memory cells is robust to

temperature change and thus, does not impact Probable Cause.

2.7.4 Order of failures

Based on the consistency of errors in approximate DRAM, we hypothesize that

the decay of cells within each DRAM chip follows a particular order that is mostly
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Figure 2.10: Overlap of a DRAM error locations at different levels of approximation.
The results support a rough subset relation 99% ⊂ 95% ⊂ 90%.

consistent across experiments. To verify this, we record failed bits of a chip at three

different levels of approximation (99%, 95%, and 90%) and evaluate the overlap in

error locations in these results. Figure 2.10 presents a Venn diagram of the overlaps.

Aside from a single outlier, all erroneous cells at 99% accuracy are a subset of the

cells that are erroneous at 95% accuracy, which, aside from 32 cells, are a subset of

those at 90% accuracy. This result supports our hypothesis about the existence of an

ordering in DRAM cell failures.
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Figure 2.11: Histogram of between-class chip distance grouped by approximate memory
accuracy. The increased chance of bit error overlap causes the average distance to
shrink with increases in approximation. Note that these distances are still two orders
larger than the largest within-class distance.

2.7.5 Accuracy versus privacy

Depending on the application, an approximate system may use different levels of

accuracy. As the accuracy of data decreases, the number of errors increase proportional

to the size of the memory. In contrast, the increased number of error bits creates

greater chance of overlap with the fingerprint from out-of-class chips, decreasing the

distance between two distinct chips. Going back to our mathematical model from

Section 2.7.1, lowering the accuracy is expected to result in an exponential increase

in the fingerprint state space—making a misclassification exponentially more likely.

Table 2.2 presents the maximum chance of mismatch at different accuracies for a page

of memory.
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Accuracy Chance of mismatch

99% ≤ 9.29× 10−591

95% ≤ 8.78× 10−2028

90% ≤ 4.76× 10−3232

Table 2.2: Chance of mismatching two pages of memory for different accuracies.
Decreasing accuracy causes an exponential increase in fingerprint state space.

We also evaluate the effect of varying accuracies on our distance metric. Figure 2.11

presents the histogram of between-class (other chips) distances at three different

accuracies. As expected, the greater chance of overlap causes the distance to decrease

as the accuracy decreases, but at the levels of approximation used in the literature,

there is still a vast divide between within-class distances and between-class distances.

2.7.6 Eavesdropping attacker evaluation

The results up to this point make it clear that it is possible to identify the DRAM

chip that produced an approximate output in a variety of operating conditions. The

goal of this experiment is to understand the end-to-end deanonymizing effects of

approximate memory given the constraints of a commodity system, an approximate

computing benchmark, and the more difficult post-deployment attack model. The

setup for this experiment is an iMac running Ubuntu 14.04 inside a virtual machine

with 1 GB of memory allocated. On this platform, we run a Valgrind [78] instrumented

edge-detection program from the CImg open-source image processing library [121].

Figure 2.12 shows a sample input and output of this program. We run the program

and analyze the report from Valgrind to uncover the physical pages the program used

to store its approximate outputs. Using this data, along with the mathematical model

presented in Section 2.7.1, we emulate the result of this computation on approximate

DRAM.

Our observation using Valgrind is that the operating system’s memory mapping
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Figure 2.12: Sample input (left) and output (right) of CImg gradient edge-detection
code used to evaluate Probable Cause.

causes the edge-detection program to store its results in different memory pages during

different runs. Uniqueness of data placement during different runs, makes stitching

possible. This allows Probable Cause to create larger fingerprints of memory by

observing different samples using the technique described in Section 2.4. Furthermore

these experiments verified our original assumptions that data is stored in consecutive

physical pages in main memory and that it does not get remapped to different physical

pages during a single run.

As the number of sample data collected increases, Probable Cause stitches together

different fingerprints to create larger system-level fingerprints. Figure 2.13 presents

the relation between number of samples and number of clusters identified by our

system using 10MB data samples (one photo from a digital camera). Because of

lack of overlap, Probable Cause clusters the initial fingerprints as unique chips. As

the number of approximate outputs observed increases, Probable Cause is able to

use overlaps to stitch fingerprints together, decreasing the number of suspected chips.

In our experiment, Probable Cause was able to begin fingerprint convergence after

approximately 90 samples.
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Figure 2.13: Number of distinct fingerprints generated from a chip of size 1GB based
on collected samples of size 10MB for our edge detection program. As the number
of samples increase, Probable Cause is able to connect different partial fingerprints
together to create a single system-level fingerprint.

2.8 Discussion

After presenting the design and evaluation of Probable Cause, there are three

issues that require more in-depth discussion. First, for controllability reasons, our

evaluation uses DRAM chips two decades past their prime. Do our results hold for

more recent DRAM technologies? Second, what are possible defenses against Probable

Cause? Third, all of the results in this chapter assume that the error locations in an

approximate output are known. How can an attacker identify potential error bits from

the approximate output alone?
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2.8.1 Effect of DRAM technology

To verify that Probable Cause is not limited to the dated DRAM that we use

in our evaluation platform, we construct an FPGA-based platform that uses DDR2

memory. While it is possible to confirm all of our results using this DDR2 platform,

running all of our experiments on this platform is cost and time prohibitive. Due to

this fact and the similarity of the results, we limited the presentation in Section 2.7 to

the older DRAM platform. Here, we cover the DDR2 platform.

Our DDR2 platform consists of a Xilinx Virtex-5 FPGA with an altered soft-core

memory controller. We alter the memory controller to expose an automatic refresh

disable signal to the software layer. For memory, we use a Micron MT4HTF3264HY

256MB DDR2 DRAM chip [76]. To control everything, we implement an OR1200-

based System-on-Chip [83] on the FPGA. To avoid contaminating program code and

data, we add a scratchpad memory to the FPGA fabric that we use as the program’s

main memory.

We port the MSP430 test code to the OR1200 and run with the same levels of

approximation and temperatures that we use in Section 2.7. The results of these

experiments show that, as in the older DRAM, the spatial distribution of volatility

is robust to both temperature changes and different levels of approximation. We do

notice that the probability distribution of cell volatilities in the DDR2 chip is skewed

toward higher volatility where the older DRAM had no skew. While our analysis

shows that this difference does not impact the clustering or classification abilities

of Probable Cause, it could mean that it is harder to fine-tune the desired level of

approximation on DDR2-based systems.

2.8.2 Defenses against Probable Cause

Probable Cause leverages a side channel that allows an attacker to correlate

approximate data to its origin. In this section, we examine three possible methods to
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protect users against Probable Cause.

Data segregation

One possible defense is to to separate sensitive data and general data in memory.

This approach suffers from three major drawbacks:

1. It relies on user intervention to identify sensitive data.

2. It does not provide either backward or forward secrecy: there is no way to

take back approximate outputs or to change how approximation affects future

outputs.

3. It sacrifices system resources by segregating how much memory system can use

based on its privacy requirements.

Noise

Addition of noise is one of the main approaches researchers use to counteract

side-channels [60]. Defending against Probable Cause using this approach requires

addition of random noise to the data which further degrades the accuracy of the results.

This trade-off is undesirable for a system designer, because it imposes heavy penalties

both on possible energy and computational time savings, while deteriorating output

quality. Accumulating noise through movement of data in approximate memory also

suffers from the same shortcomings. In the end, adding noise only slows the attacker

down.

Data scrambling

Page-level Address Space Layout Randomization (ASLR) can prevent Probable

Cause from deanonymizing data by preventing the stitching of page-level fingerprints

into system-level fingerprints. If the granularity of ASLR is at most the size of the
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smallest fingerprint (e.g., page size for our system), there will be no overlap for

Probable Cause to detect. This reduces Probable Cause’s classification and clustering

accuracy and forces it to flag any page-level fingerprint as a potential match if it

was within the threshold distance of any chunk of system-level fingerprint. This can

result in an increase in false positives as it makes random matches more likely. Using

page-level ASLR comes at the cost of a significant increase memory management

overhead.

2.8.3 Error localization

There are multiple approaches that an attacker can use to estimate the precise

outputs based on an approximate output. In scenarios were the output is the result

of a computation on known inputs, an attacker can recalculate the exact outputs

from the inputs. Another approach has the attacker leveraging the white Gaussian

noise properties of the error due to DRAM approximation. An attacker can use one

of various noise detection algorithms to detect potential bit error locations. A final

approach works in-conjunction with the previous two approaches. It is possible for

an attacker to perform speculative distance calculations to see if any case produces a

distance below the threshold with one of existing system-level fingerprints. Probable

Cause can leverage any of these techniques to detect potential error patterns in

approximate outputs and reconstruct an exact version.

2.9 Related Work

This section frames Probable Cause with respect to previous research on using

physical attributes of digital devices as an system identifying side channel and highlights

recent works on approximate memory.
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2.9.1 Analog artifacts in a digital World

Previous research has shown that it is possible to identify image and video recording

devices using sensor noise [71, 58] and pixel defects [36]. These works are similar to

Probable Cause in that they both exploit stable analog properties that are imprinted

on outputs to identify devices, but Probable Cause has greater potential impact on

users as it can operate on any output stored in main memory—including data coming

from analog sensors.

Manufacturing variations of volatile memory have been suggested as a type of

Physical Unclonable Function (PUF) for chip identification. FERNS [48] introduced

power-up SRAM state as a method of system identification and also a source of

random numbers. Recent work by Rosenblatt et al. [96] extends the idea of FERNS to

DRAM to create a DRAM PUF. Like our work, Rosenblatt et al. use the variability

in DRAM cell decay times and their spatial stability as the basis for their DRAM

PUF. Although the underlying physical mechanism used in a DRAM PUF and

Probable Cause are the same, the goals of a PUF and our system are at odds: PUFs

use intentional manipulation of digital components for attestation while our work

shows how manipulations aimed at achieving approximation create a side channel

that unintentionally attests for the machine. Additionally, PUFs rely on complete

characterization of DRAM, while our experiments show that it is possible to identify a

system by capturing approximate results and stitching them together to form a device

fingerprint.

Besides using DRAM cell decay time variation for system identification or random

number generation, in the Cold-Boot attack [42], researchers exploit the ability to

control decay time through temperature variation to maintain state in DRAM while

it is transported between a victim machine and an attacker’s machine. This allows

attackers to search the victim’s DRAM for secret keys in an offline manner. Using the

same mechanism as the Cold Boot attack, but swapping controlled and uncontrolled
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variables is TARDIS [91]. TARDIS is a time keeping scheme for security protocols

that uses the relationship between the amount of data decayed in SRAM memory and

the amount of time the SRAM has been in a powered-off state to track the amount a

time a device has been powered off.

2.9.2 Approximate memory

Approximate memory is a well studied concept in the field of approximate comput-

ing. Esmaeilzadeh et al. [28] proposed a general hardware structure for approximate

programming with approximate memory as one of the main components. EnerJ [102]

is a model for allowing programs to use both approximate and exact variables safely

in the same program.

Various works have proposed energy saving schemes targeting main memory. Most

approaches control DRAM refresh rate to save power. The driving insight behind

these works is that the refresh rate is set based-upon the fastest decaying memory

cell—an outlier. Flikker [68], partitions memory into high-refresh and low-refresh

zones and stores error-tolerant data in the low-refresh zone. RAPID [125] ranks and

populates memory locations by their data retention time and sets DRAM’s refresh

rate based on the worst retention time of the populated memory locations. Similar

to RAPID, RAIDR [67] leverages the idea that adjacent rows have similar retention

times to create a unique refresh rate for groups of rows.

Refresh rate is not the only knob available for reducing memory power consumption.

David et al. [24] and Deng et al. [25] propose dynamic voltage/frequency scaling to

save energy. Half-wits [99] explores the effects of voltage scaling on Flash memory

by writing data at a reduced voltage and checking to see if the write succeeded to

avoid pumping the charge to a higher voltage and expending more energy. Sampson

et al. [101] propose using multi-level non-volatile memory cells as approximate storage

using reduced-cost imprecise write operations.
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2.10 Conclusion

In this chapter, we expose the deanonymizing aspects of emerging hardware-based

approximate computing systems. To deanonymize a host machine, we leverage the

observation that each DRAM chip imprints its own unique physical properties in

the errors of an approximate result. Our experiments show that it is possible to

both identify the host machine that produced an approximate result and to cluster

approximate results by host machine. In our experiments, we have 100% success in

both host machine identification and clustering using a basic distance metric. This

success rate is a product of the two orders-of-magnitude difference in similarity between

the error patterns in approximate results produced by the same DRAM chip compared

to the approximate results produced by other DRAM chips. Lastly, experiments

show that our identification and clustering algorithms are robust against changes in

operating conditions, i.e., temperature, and level of approximation.

The ability to reliably identify the host machine that produced an approximate

result shows that current DRAM-based approximate memory systems are not appro-

priate for situations where the user wishes to preserve their anonymity. To maintain

anonymity, future hardware-based approximate computing systems must facilitate

exact computation of privacy sensitive data and expose that decision to the user or

future research must design anonymity preserving hardware approximation techniques.

At a higher level, our results motivate the need for privacy to be a primary design

criteria for future approximate computing systems.
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CHAPTER III

TARDIS: Providing a Notion of Time to

Transiently Powered Embedded Devices

3.1 Introduction

“Timestamps require a secure and accurate

system clock—not a trivial problem in itself.”

–Bruce Schneier, Applied Cryptography [105]

Even a perfect cryptographic protocol can fail without a trustworthy source of

time. The notion of a trustworthy clock is so fundamental that security protocols

rarely state this assumption. While a continuously powered computer can maintain a

reasonably accurate clock without trusting a third party, a batteryless device has no

such luxury. Contact smartcards, contactless smartcards, and RFIDs can maintain a

locally secured clock during the short duration of a power-up (e.g., 300 ms), but not

after the untrusted external reader removes power.

It’s Groundhog Day! Again.

Unawareness of time has left contactless payment cards vulnerable to a number of

successful attacks (Table 3.1). For instance, Kasper et al. [85] recently demonstrated

how to extract the 112-bit key from a MIFARE DESFire contactless smartcard (used
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Platform Attack #Queries
MIFARE Classic Brute-force [32] ≥1,500
MIFARE DESFire Side-channel [85] 250,000
UHF RFID tags Side-channel [84] 200
TI DST Reverse eng. [15, 14] ∼75,000
GSM SIM card Brute-force [37] 150,000

Table 3.1: Practical attacks on intermittently powered devices. These attacks require
repeated interactions between the reader and the device. Throttling the reader’s
attempts to query the device could mitigate the attacks.

by the Clipper all-in-one transit payment card1). The side channel attack required

approximately 10 queries/s for 7 hours. Some RFID credit cards are vulnerable to

replay attacks because they lack a notion of time [45]. Oren and Shamir [84] show

that power analysis attacks on UHF RFID tags can recover the password protecting

a “kill” command with only 200 queries. At USENIX Security 2005, Bono et al. [14]

implemented a brute-force attack against the Texas Instruments Digital Signature

Transponder (DST) used in engine immobilizers and the ExxonMobile SpeedPass
TM

.

The first stage of the attack required approximately 75,000 online “oracle” queries to

recover the proprietary cipher parameters [15].

A batteryless device could mitigate the risks of brute-force attacks, side-channel

attacks, and reverse engineering by throttling its query response rate. However, the

tag has no access to a trustworthy clock to implement throttling. A smartcard does

not know whether the last interrogation was 5 seconds ago or 5 days ago.

Enter the TARDIS.

To enable security protocols on intermittently powered devices without clocks, we

propose Time and Remanence Decay in SRAM (TARDIS) to keep track of time without

a power source and without additional circuitry. The TARDIS relies on the behavior of

decaying SRAM circuits to estimate the duration of a power failure (Figure 3.1). Upon

power-up, the TARDIS initializes a region in SRAM of an intermittently powered

1No relation to the Clipper Chip [63].
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Figure 3.1: TARDIS estimates time by counting the number of SRAM cells that have
a value of zero in power-up (computes SRAM decay). Initially, a portion of SRAM
cells are set to one (initializes SRAM) and their values decay during power-off. The
dots in the power-off indicate the arbitrary and unpredictable duration of power-off.

device. Later, during power-off, the SRAM starts to decay. Upon the next power-up,

the TARDIS measures the fraction of SRAM cells that retain their state. In many

ways, TARDIS operation resembles the functioning of an hourglass: the un-decayed,

decaying, and fully decayed stages of SRAM are analogous to full, emptying, and

empty hourglass states.

Contributions.

Our primary contributions are:

• Algorithmic building blocks to demonstrate the feasibility of using SRAM for a

trustworthy source of time without power.

• Empirical evaluation that characterizes the behavior of SRAM-based timekeeping

under the effects of temperature, capacitance, and SRAM size.

• Enabling three security applications using SRAM-based TARDIS: sleepy RFID

tags, squealing credit cards, and forgiving e-passports.

State of the Art.

Today, batteryless devices often implement monotonically increasing counters as a

proxy for timekeeping. RFID credit cards occasionally include transaction counters to

defend against replay attacks. Yet the counters introduce vulnerabilities for denial
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of service and are difficult to reset based on time elapsed; one credit card ceases to

function after the counter rolls over [45]. While one can maintain a real-time clock

(RTC) with a battery on low-power mobile devices [97], batteryless platforms do not

support RTCs across power failures [80, 100, 18] because of the quiescent current

draw.

While a timer of just a few seconds would suffice to increase the difficulty of

brute-force attacks (Table 3.1), our experimental results indicate that an SRAM timer

can reliably estimate the time of power failures from a few seconds up to several hours.

For example, using a 100 µF capacitor at room temperature, the TARDIS expiration

time can exceed 2 hours of time. We evaluate the energy and time overhead of the

TARDIS, its security against thermal and power-up attacks, and its precision across

different platforms.

The primary novelty of the TARDIS is that a moderately simple software update

can enable a sought-after security primitive on existing hardware without power.

While data remanence is historically considered an undesirable security property [41],

the TARDIS uses remanence to improve security. At the heart of the TARDIS are

SRAM cells, which are among the most common building blocks of digital systems.

The ubiquity of SRAM is due in part to ease of integration: in contrast with flash

memory and DRAM, SRAM requires only a simple CMOS process and nominal supply

voltage.

3.2 Intermittently Powered Devices: Background, Observa-

tions, and Challenges

New mobile applications with strict size and cost constraints, as well as recent

advances in low-power microcontrollers, have given rise to a new class of intermittently

powered device that is batteryless and operates purely on harvested energy. These
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SRAM DRAM
Purpose Fast local memory Large main memory
Location Usually on-chip w/ CPU Usually off-chip
Applications CPU caches, microcontrollers PC, notebooks, servers
Storage technology Cross-coupled transistors Capacitors
Normal operation Constantly powered Intermittently refreshed
Decay state 50% zero/one bits All zero bits

Table 3.2: Because CPUs of embedded devices generally do not have on-chip DRAM,
the TARDIS operates on SRAM. SRAM and DRAM differ fundamentally in their
manufacture, operation, intended use, and state of decay.

devices—including contact and contactless smart cards and computational RFID

tags (CRFIDs) [93, 100, 132, 130]— typically have limited computational power, rely

on wireless transmissions from a reader both for energy and for timing information, and

lose power frequently due to minimal energy storage. For example, when a contactless

transit card is brought sufficiently close to a reader in a subway, the card gets enough

energy to perform the requested tasks. As soon as the card is out of the reader range,

it loses power and is unable to operate until presented to another reader. Since a tag

loses power in the absence of a reader, it doesn’t have any estimation of time between

two interactions with a reader.

A typical secure communication between a reader and a tag is shown in Figure 3.2.

The tag will only respond to the reader’s request if it has authenticated itself by

correctly answering the challenge sent by the tag. Two problems arise in this scheme:

• The tag is unaware of the amount of time spent by the reader to answer the

challenge, so an adversary has an unlimited amount of time to crack a challenge.

• The tag is unaware of the time between two different queries, so an adversary

can send a large number of queries to the tag in a short time space. This can

make various brute-force attacks possible on these devices.

Traditionally, computing devices have either had a direct connection to a reliable

power supply or large batteries that mask disconnections and maintain a constant
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Figure 3.2: The tag cannot determine the time between a challenge and a response or
the time between two sessions. The reader could respond to the tag as tardily as it
likes or query the tag as quickly as it wants.

supply of power to the circuit. In either case, a reliable sense of time can be provided

using an internal clock. Time measurement errors, due to clock drift or power failures,

can be corrected by synchronizing with a trusted peer or other networked time source.

Current embedded systems address the timekeeping issue in one of the following ways:

1. A system can power a real-time clock (RTC); however, this is not practical on

intermittently powered devices due to their tight energy budget. Even if the

system uses a low-power RTC (e.g., NXP PCF2123 RTC chip [81]), the RTC

component has to be constantly powered (for example, using a battery). This

choice also increases the cost of manufacturing and it does not benefit devices

that are already deployed.

2. A system can keep time by accessing an external device (e.g., an RFID tag

reader) or by secure time synchronization [31, 111]. This option introduces

security concerns and may either require significant infrastructure or severely

limit range and mobility.
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3.2.1 Threat Model and Assumptions

“...if the attack surface includes an awful lot of clocks that you do not

control, then it’s worth some effort to try and make your system not

depend on them anymore.”–Ross Anderson [75]

The primary goal of the adversary in our model is to distort the TARDIS timekeep-

ing. Our threat model considers semi-invasive attacks common to smart cards [32, 85].

We will not discuss attacks such as buffer overflows which are against the systems

that would integrate the TARDIS; we focus on the attacks aimed at the TARDIS

itself. Our adversarial model considers two classes of attacks: (1) thermal attacks that

use heating and cooling [41] to distort the speed of memory decay; and (2) power-up

attacks that keep the tag partially powered to prevent memory decay.

3.3 The TARDIS Algorithms

The TARDIS exploits SRAM decay during a power-off to estimate time. An

example of the effect of time on SRAM decay in the absence of power is visualized

in Figure 3.3. In this experiment, a 100 × 135 pixel bitmap image of a different

TARDIS [1] was stored into the SRAM of a TI MSP430 microcontroller. The contents

of the memory were read 150, 190, and 210 seconds after the power was disconnected.

The degree of image distortion is a function of the duration of power failure.2

Figure 3.1 shows the general mechanism of the TARDIS. When a tag is powered

up, the TARDIS initializes a region in SRAM cells to 1. Once the power is cut off,

the SRAM cells decay and their value might reset from 1 to 0. The next time the

tag is powered up, the TARDIS tracks the time elapsed after the power loss based

2The 14.6 KB image was too large to fit in memory, and therefore was divided into four pieces
with the experiment repeated for each to get the complete image. The microcontroller was tested in
a circuit shown in Figure 3.6 with a 10 µF capacitor at 26◦C. No block transfer computation was
necessary.

43



on the percentage of cells remaining 1. Algorithm 7 gives more details about the

implementation of the TARDIS.

measure temperature: To detect and compensate for temperature changes

that could affect the decay rate (Section 3.6), the TARDIS uses the on-board tempera-

ture sensor found on most microcontrollers. The procedure measure temperature

stores inside-the-chip temperature in the flash memory upon power-up. The proce-

dure decay calls the temperature analyze function to decide if the temperature

changes are normal.

time: The TARDIS time procedure returns time and decay . The precision of the

time returned can be derived from the decay . If the memory decay has not started

(decay = 0), the procedure returns {time, 0} meaning that the time duration is less

than time. If the SRAM decay has started but has not finished yet (0 ≤ decay ≤ 50%),

the return value time is an estimate of the elapsed time based on the decay . If the

SRAM decay has finished (decay ' 50%), the return result is {time, 50} meaning that

the time elapsed is greater than time.

estimation: The procedure estimate uses a lookup table filled with entries of

decay, temperature, and time stored in non-volatile memory. This table is computed

based on a set of experiments on SRAM in different temperatures. Once the time is

looked up based on the measured decay and the current temperature, the result is

returned as time by the estimate procedure. The pre-compiled lookup table does not

necessarily need to be calibrated for each chip as we have observed that chip-to-chip

variation affects decay only negligibly (Section 3.6).

3.3.1 TARDIS Performance

The two most resource-consuming procedures of the TARDIS are init (initializing

parts of the SRAM as well as measuring and storing the temperature) and decay

(counting the zero bits and measuring the temperature). Table 3.3 shows that energy
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Figure 3.3: Programs without access to a trustworthy clock can determine time elapsed
during a power failure by observing the contents of uninitialized SRAM. These bitmap
images of the TARDIS [1] represent four separate trials of storing the bitmap in SRAM,
creating an open circuit across the voltage supply for the specified time at 26◦C, then
immediately returning a normal voltage supply and reading uninitialized SRAM upon
reboot. The architecture of a contactless card is modeled using a 10 µF capacitor
and a diode in series with the MSP430 microcontroller’s voltage supply pin. The
degree of decay is a function of the duration of power failure, enabling hourglass-like
timekeeping precision without power. No TARDIS was harmed or dematerialized in
this experiment.

consumed in total by these two procedures is about 48.75 µJ and it runs in 15.20 ms.

Our experiments of time and energy measurements are performed on Moo RFID[132]

sensor tags that use an MSP430F2618 microcontroller with 8 KB of memory, and a

10 µF capacitor. A tag is programmed to perform one of the procedures, and the

start and end of the task is marked by toggling a GPIO pin. The tag’s capacitor is

charged up to 4.5 V using a DC power supply and then disconnected from the power

supply so that the capacitor is the only power source for the tag. In the experiments,

the DC power supply is used instead of an RF energy supply because it is difficult

to disconnect the power harvesting at a precise capacitor voltage. We measured the

voltage drop of the capacitor and the GPIO pin toggling using an oscilloscope. The

energy consumption of the task is the difference of energy (1
2
× CV 2) at the start and

end of the task. The reported measurement is the average of ten trials.
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Algorithm 7 TARDIS Implementation

init(addr , size)

1 for i ← 1 to size
2 do memory(addr + i −1)← 0xFF
3 temperature ← measure temperature()

decay(addr , size)

1 decay ← count0s(addr , size)
2 � Proc. count0s counts the number of 0s in a byte.
3 if temperature analyze(temperature)
4 � This procedure decides if the temperature changes are expected considering
5 � the history of temperature values stored in flash memory.
6 then return decay
7 else return error

expired(addr , size)

1 decay ← decay(addr ,size)
2 if (decay ≥ %50× 8× size)
3 then return true
4 else return false

time(addr , size, temperature)

1 � Estimate the passage of time by comparing the percentage of decayed bits to
2 � a precompiled table.
3 decay ← decay(addr ,size)/(8× size)
4 time ← estimate(decay,temperature)
5 return {time, decay}

3.4 Securing Protocols with the TARDIS

There are many cases where the security of real-world applications has been broken

because the adversary could query the device as many times as required for attack.

Table 3.1 gives a summary of today’s practical attacks on intermittently powered

devices. By integrating the TARDIS, these applications could throttle their response

rates and improve their security.

We discuss six security protocols that could strengthen their defense against

brute-force attacks by using the TARDIS. To demonstrate the ease of integrating
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Procedure Energy Cost Exec. Time

init 11.53 µJ ± 2.47 2.80 ms± 0.00̄
decay 37.22 µJ ± 9.31 12.40 ms± 1.10

Table 3.3: Overhead of TARDIS init and decay procedures measured for TARDIS
size of 256 bytes.

the TARDIS, we have implemented and tested three of these security protocols on

the Moo, a batteryless microcontroller-based RFID tag with sensors but without

a clock [132]. Our prototypes demonstrate the feasibility of the TARDIS and its

capabilities in practice.

Sleepy RFID Tags:

To preserve the users privacy and prevent traceability, one could use a “kill” command

to permanently deactivate RFID tags on purchased items [55]. However, killing a tag

disables many features that a customer could benefit from after purchase. For example,

smart home appliances (e.g., refrigerators or washing machines) may no longer interact

with related items even though they have RFID tags in them. One could temporarily

deactivate RFID tags by putting them to “sleep.” However, lack of a simple and

practical method to wake up the tags has made this solution inconvenient [55]. By

providing a secure notion of time, the TARDIS makes it possible to implement sleepy

tags that can sleep temporarily without requiring additional key PINs or cryptographic

solutions. We consider a time resolution on the order of hours more appropriate for

this application.

To extend the sleep time of sleepy tags, one could use a counter along with the

TARDIS as follows: upon power-up, the tag checks the TARDIS timer, and it does

not respond to the reader if the timer has not expired. If the TARDIS timer has

expired, the tag decreases the counter by one and initializes the TARDIS again. This

loop will continue while the counter is not zero. For example, using a counter initially

set to 1000 and a TARDIS resolution time of 10 seconds, the tag could maintain more
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than 2 hours of delay. Since the tag exhausts its counter every time it wakes up, the

reader interacting with the tag has to query the tag intermittently.

The TARDIS could prevent yet another attack on Electronic Product Code (EPC)

tags that use “kill” commands. To prevent accidental deactivation of tags, a reader

must issue the right PIN to kill a tag [27]. An adversary could brute-force the PIN (32

bits for EPC Class1 Gen2 tags). The TARDIS enables the RFID tag to slow down the

unauthorized killing of a tag by increasing the delay between queries and responses.

Squealing Credit Cards:

Today, a consumer cannot determine if her card has been used more than once in

a short period of time unless she receives a receipt. This is because a card cannot

determine the time elapsed between two reads as the card is powered on only when

it communicates with the reader. The TARDIS enables a “time lock” on the card

such that additional reads would be noticed. Thus a consumer could have some

assurance that after exposing a card to make a purchase, an accidental second read or

an adversary trying to trick the card into responding would be revealed. Squealing

credit cards would work similarly to today’s credit cards, but they are empowered

by the TARDIS to estimate the time between queries and warn the user audibly (a

cloister bell) if a second read is issued to the card too quickly. A time lock of about

one minute can be considered enough for these applications.

Forgiving E-passports:

RFID tags are used in e-passports to store holder’s data such as name, date of birth,

biometric ID, and a unique chip ID number. E-passports are protected with techniques

such as the Basic Access Control (BAC) protocol, shielding, and passive authentication.

However, in practice, e-passports are not fully protected. An adversary can brute-force

the BAC key in real time by querying the passport 400 times per minute for a few

weeks [8]. Another attack can accurately trace a specific passport by sending hundreds

of queries per minute [21].
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We performed some experiments on the Basic Access Control of a French passport issued in
2010. We noticed that once a BAC execution fails (we provided a wrong MRZ to the passport),
the behavior of the passport is modified as follows: the time taken by the passport to answer to
the next Mutual Authenticate command (ie the command used in the BAC) increases. It actually
increases up to 14 seconds after 14 unsuccessful executions. At this point, the response time remains
14 seconds as long as the BAC executions fail. Figure 1 represents the response time of the passport
during our experiment (we always sent a wrong MRZ).
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Fig. 1. Response time of a French passport when a wrong MRZ is sent. The
experiments have been done with an Omnikey 5321.

An interesting point is that, when the passport enters into this kind of “protecting mode”, it
stays in this mode till a correct MRZ is provided. This means that removing the passport from
the reader’s field, even for several days, does not change anything. For example, let’s consider that
we perform 14 unsuccessfull BAC executions. Several days later, we perform a 15th execution with
a correct MRZ. During this 15th execution, the passport will take about 14 seconds to answer
but will leave the“protecting mode”, meaning that it will no longer delay its response in the next
executions. This means that the idea suggested in [1] (Section 4.1) has been implemented in the
French passport (issued in 2010) we experimented.
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Figure 3.4: Measured response time of a 2010-issued French passport [7]. The passport
imposes up to 14 seconds of delay on its responses after unsuccessful execution. The
delay will remain until a correct reading happens even if the passport were removed
from the reader’s field for a long time.

To mitigate the effect of brute-force attacks, French e-passports have implemented

a delay mechanism—we imagine using a counter—to throttle the read rate [7]. This

delay increases to 14 seconds after 14 unsuccessful attempts (Figure 3.4) and would

occur even if the passport was removed from the RF field for several days. Once the

tag is presented with an authorized reader, the delay will be enforced and then reset

to zero. The TARDIS provides a time-aware alternative that delays unauthorized

access but ignores the previous false authentication attempts if the passport has

been removed from the reader’s range for an appropriate duration. A time duration

matching the maximum implemented delay (14 seconds for French passports) would

be enough to implement this function.

Passback - Double-tap Prevention:

In mass transportation and other similar card entry systems, the goal of the operator

is to prevent multiple people from accessing the system simultaneously using the same

card. To achieve this goal, systems are typically connected to a central database that
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prevents a card from being used twice in a short time frame.3 Using the TARDIS,

a card could implement delay before permitting re-entry rather than requiring the

system to check a central database.

Resurrecting Duckling:

Secure communication in ad-hoc wireless networks faces many obstacles because of

the low computing power and scarce energy resources of these devices. Stajano et al.

[108] proposed a policy in which these devices would transiently accept a new owner.

The devices will later return to an unprogrammed status when the owner no longer

needs them, they receive a kill command, or another predefined reset condition is met.

Later, others can reclaim and reuse these devices.

For wirelessly powered devices, the TARDIS can provide a sense of time, allowing

them to be “reborn” with a new owner only if there is an extended power outage. A

legitimate user can continue to power the device wirelessly, but if she wishes to transfer

ownership to another entity, she must power it down for a long enough time (defined

by the user). Otherwise, the RFID tag refuses to interact with anyone not possessing

the present cryptographic key. An example of this application is secure pairing for

computational contact lenses [47]. The controller could be cryptographically bound

until power disappears for more than a few minutes. Another use of this application

is to make stealing SIM cards difficult [37]. The card could refuse to boot if it has

been unpowered for a fair amount of time.

Time-out in Authentication Protocols:

Because RFID tags rely on a reader as their source of energy, they cannot measure

the delay between a request to the reader and its corresponding response. The tag

ignorance gives the reader virtually unlimited time to process the request and response

in an authentication algorithm. Having unlimited response time enables the adversary

to employ various attacks on the request message with the goal of breaking it. Using

3Houston METRO system: http://www.ridemetro.org/fareinfo/default.aspx
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Figure 3.5: Our applications are implemented and tested on the Moo RFID sensors
and are remotely powered by a RFID reader (ThingMagic M5 [120]).

the TARDIS will limit the adversary time frame for a successful attack. An example

of these protocols can be seen in the e-passport BAC protocol where the reader and

passport create a session key for communication. Using The TARDIS would enable

passports to enforce expiration of these keys.

3.4.1 Implementation and Evaluation

For the implementation of sleepy tags, squealing credit cards, and forgiving e-

passports, we have chosen the Moo, a batteryless microcontroller-based RFID tag. We

have augmented this tag with a piezo-element [43] so that it can audibly alert the user

to events.

Implementation:

We have implemented a TARDIS library that provides the procedures init and expire

listed in Algorithm 7. For the three implemented protocols, a 1-bit precision of time–

whether or not the timer had expired–was enough. The programs used for all three

protocols are similar and are shown in Algorithm 8. The tag was programmed to call

the expire procedure upon power-up; if the timer had expired, it would respond to

the reader and call init; otherwise, the tag would buzz its piezo-element. In the case
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Algorithm 8 An example of TARDIS usage in a protocol.

TARDIS example(addr , size)

1 if expired(addr ,size)
2 then respond to reader()
3 init(addr ,size)
4 else buzz piezo element()

of the squealing credit cards protocol the tag was programmed to respond to the reader

after buzzing, but for the two other applications, the tag stopped communicating with

the reader.

We used a ThingMagic reader [120] and its corresponding antenna to query the

tag. When the tag was queried for the first time upon removal from the RF field, it

buzzed. The tag stayed quiet whenever it was queried constantly or too quickly.

Experimental Setup:

To measure the TARDIS resolution time on this platform, we powered up the tag

to 3.0 V using an external power supply and then disconnected it. We observed the

voltage drop over time on an oscilloscope and measured the elapsed time between loss

of power and when SRAM decay has finished.4 We conducted our experiments on five

tags, which use a 10 µF capacitor as its primary power source. The TARDIS resolution

time on average was 12.03 seconds with a standard deviation of 0.11 seconds. A similar

tag, which uses 100 mF, yields a TARDIS resolution time of 145.85 seconds. These

time measurements are specific to the platform we have chosen for our experiment.

The resolution could potentially be extended to hours using additional capacitors

(Table 3.5).

4Our experiments (Section 3.6) have shown that SRAM decay finishes when the tag voltage
reaches 50 mV .
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3.5 Security Analysis

Depending on the application, the adversary may wish either to slow down or to

speed up the expiration of the TARDIS. We discuss four different attacks that try to

distort the TARDIS interpretation of time.

Cooling Attacks.

An adversary might try to reduce the system’s temperature, aiming to slow down the

memory decay rate. Other works [41] have used this technique to prevent data decay in

DRAM for the purpose of data extraction. Cooling attacks might target the TARDIS

timer in cases where the adversary needs to slow the passage of time. As explained in

Algorithm 7, the TARDIS measures and records a device’s temperature over time and

therefore it can prevent cooling attacks by observing unexpected temperature changes.

Heating Attacks.

In contrast to cooling attacks, an attacker might need to speed up the TARDIS timer.

For example, someone might try to decrease the delay between queries in order to

speed up brute-force attacks. Similarly to the defense against cooling attacks, the

TARDIS will report an error indicating unexpected temperature changes.

Pulse Attacks.

A more sophisticated attack is a combination of the cooling and heating attacks such

that the temperature would remain the same in the beginning and the end of the

attack. It should be noted that this is not a trivial attack because the adversary needs

to restore the original internal temperature to prevent the thermal sensor from noticing

any difference. A defense against pulse attacks is to implement a thermal fuse [20]

on the chip that will activate when the chip is exposed to a high temperature. The

activation of this fuse will then either notify the TARDIS of temperature tampering

on the next boot-up or possibly prevent the system from booting up at all.

Voltage Control Attack.

Another possible attack scenario would be to power up the system wirelessly to a
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minimum voltage that is not sufficient for booting up but sufficient for stopping the

memory decay. This would prevent the device from noticing the unauthorized reader

and it would stop the memory from decaying further (see Figure 3.8). The voltage

control attack can freeze the TARDIS timer at a specific time as long as it sustains

the power supply. We imagine that this attack is difficult to implement because of the

inherent design of the readers. Many factors (e.g., distance) affect the voltage received

by the tags and tags are very sensitive to environmental effects. The readers are also

generally designed to flood the targeted environment with energy to provide the tags

in range with more than the maximum required power [129]. Excessive power that

may have been generated by these devices is then filtered out in tags using voltage

regulators. To implement this attack, we imagine the adversary would need to control

the input voltage to the tag with a very high precision. If the tag voltage for any

reason drops, the SRAM will decay irreversibly. At the same time, the adversary

would need to prevent the tags from fully powering up and noticing the unauthorized

reader.

3.6 Factors Affecting SRAM Decay

In our evaluation of the TARDIS, we examine the decay behavior of SRAM and

three factors that have major effects on this behavior. All experiments use the same

circuit (Figure 3.6), and follow the same general procedure.

Experimental Setup:

A microcontroller runs a program that sets all available memory bits to 1. The power

is then effectively disconnected for a fixed amount of time (off -time). When power

is reapplied to the chip, the program records the percentage of remaining 1-bits to

measure memory decay, and then it resets all bits to 1 in preparation for the next time

power is disconnected. A Data Acquisition (DAQ) unit from Agilent (U2541A series)

precisely controls the timing of power-ups and power-downs between 3 and 0 Volts,
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Figure 3.6: General circuit used during the experiments. The microcontroller is held
in an environmental chamber to ensure consistent temperature during the tests. The
Data Acquisition (DAQ) unit both provides power to the microcontroller and records
the voltage decay.

and also measures the voltage across the microcontroller throughout the experiment.

An inline diode between the power supply and microcontroller models the diode at

the output of the power harvesting circuit in RFIDs; it also prevents the DAQ from

grounding VCC during the off-time when the DAQ is still physically connected but is

not supplying power. In all experiments, microcontrollers from the TI MSP430 family

are used to ensure maximum consistency. The microcontroller used in all experiments

is MSP430F2131 with 256 B of SRAM unless stated otherwise.

In all of the experiments, temperature is controlled by conducting all tests inside

of a Sun Electronics EC12 Environmental Chamber [112] capable of creating a ther-

mally stable environment from −184◦C to +315◦C with 0.5◦C precision. We use an

OSXL450 infrared non-contact thermometer [82] with ±2◦C accuracy to verify that

our microcontroller has reached thermal equilibrium within the chamber before testing.

For all the experiments, we have collected at least 10 trials.

Defining Stages of Decay:

Three distinct stages of decay are observed in all experiments. Figure 3.7 illustrates

the three stages of SRAM decay measured on a TI MSP430F2131 with 256 B of

SRAM and a 10 µF capacitor, at 26◦C. We vary the off -time from 0 to 400 seconds

in 20-second increments. In the first stage, no memory cells have decayed; during
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Term Definition

SRAM Decay Change of value in SRAM cells because of power outag.e
Decay Stage 1 Time before the first SRAM cell decays.
Decay Stage 2 Time between the decay of first SRAM cell and last one.
Decay Stage 3 Time after the last SRAM cell decays
Ground State The state that will be observed in an SRAM cell upon power-

up, after a very long time without power.
DRV Data Retention Voltage, minimum voltage at which each cell

can store a datum.
DRV Probability(v) Probability that a randomly chosen cell will have a DRV equal

to v and a written state that is opposite its ground state.

Table 3.4: Definition of the terms used to explain the behavior of SRAM decay and
the theory behind it.

the second stage, a fraction of the cells, but not all, have decayed; by the third stage

the cells have decayed completely (see Table 3.4 for a summary of term definitions).

Observations made during Stages 1 or 3 provide a single bit of coarse information,

indicating only that Stage 2 has not yet begun or else that Stage 2 has already been

completed. Observations made during Stage 2 can provide a more accurate notion of

time based on the percentage of decayed bits.

Decay vs. Voltage:

The decay rate of SRAM is expected to depend only on its voltage level (Section 3.7).

Temperature, SRAM size, and circuit capacitance all affect the rate of voltage depletion

and thus only have secondary effects on memory decay. Our experimental results

(Figure 3.8) for five sets of tests (each at least 10 trials) support this hypothesis. The

same setup as explained before was used and five different temperatures (one with a

10 mF capacitor and four of them without) were tested.

Impact of Temperature:

The work of Skorobogatov [107] shows that low temperature can increase the remanence

time of SRAM, and the work of Halderman et al. [41] similarly shows that low

temperature can extend the remanence time of DRAM. For the TARDIS using SRAM
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Figure 3.7: The TARDIS presents a three-stage response pattern according to its
amount of decay. Before 175 seconds, the percentage of bits that retain their 1-value
across a power-off is 100%. For times exceeding 225 seconds, the TARDIS memory has
fully decayed. The decay of memory cells between these two thresholds can provide us
with a more accurate measurement of time during that period. This graph presents our
results measured on a TI MSP430F2131 with 256 B of SRAM and a 10 µF capacitor
at 26◦C.

decay to provide a notion of time, the interesting question is the opposite case of

whether high temperature can decrease remanence. We use the same experimental

setup as before (without using capacitors) to investigate how decay time varies across

five different elevated temperatures (in the range of 28◦C − 50◦C). The off-time of the

microcontroller varied from 0 to a maximum of 5 seconds. Figure 3.9 shows that the

decay time is non-zero across all temperatures. This indicates that the TARDIS could

work at various temperatures as long as changes in the temperature are compensated

for. For the TARDIS, this compensation is done by using temperature sensors which

are available in many of the today’s microcontrollers.5

Impact of Additional Capacitance:

5According to the TI website, 37% of their microcontrollers are equipped with temperature
sensors.
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Figure 3.8: Regardless of temperature, the amount of decay depends almost entirely
on the minimum supply voltage reached during a power-down. The bottom graph
shows the 3-parameter DRV probabilities (Equation 3.4) that best predict the ob-
served relationships between decay and minimum supply voltage for each of the three
temperatures. The fit lines in the upper graph show the relationships between decay
and minimum supply voltage that are predicted by these DRV models (Section 3.9).

Capacitors can greatly extend the resolution time of the TARDIS. In our experiment,

we have tested five different capacitors ranging from 10 µF to 10 mF at 26.5◦C. For

this experiment, the capacitors were fully charged in the circuit and their voltage decay

traces were recorded. These traces were later used in conjunction with our previous

remanence-vs.-decay results (Section 3.6) to calculate the time frame achievable with

each capacitor. Table 3.5 summarizes the results for the duration of TARDIS Stage 1

and 2 based on capacitor size. The voltage decay traces, our conversion function (DRV

Prob.), and the resulting SRAM-decay-over-time graph can be seen in Figure 3.10.

Results ranging from seconds to days open the path for a wide variety of applications
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Figure 3.9: The duration of SRAM decay is non-zero across all temperatures even
when no capacitor is used. For any given temperature, the duration of SRAM decay
is consistent across trials. Increasing the temperature from 28◦C to 50◦C reduces the
duration of both Stage 1 and Stage 2 decay by approximately 80%.

for the TARDIS, as it can now be tweaked to work in a specific time frame. Current

RFID-scale devices generally use capacitors ranging from tens of picofarads to tens of

microfarads (e.g., [2] [3]). Although a 10 mF capacitor size might be large compared

to the size of today’s transiently powered devices, the progress in capacitors’ size and

capacity may very well make their use possible in the near future.

Impact of SRAM Size:

Our hypothesis is that SRAM size has an inverse relation with decay time. This is

expected because a larger SRAM will have a larger leakage current and thus will drain

the capacitor more quickly. We tested three different models of MSP430 microcontroller

with SRAM sizes of 256 B, 2 KB, and 8 KB at 28◦C with no capacitor. The DAQ

sweeps off-time from 0 to a maximum of 5 seconds. The experiment results are

consistent with our hypothesis and are shown in Figure 3.11. It should be noted that

SRAM size is not the only difference between these three models, as they also have
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Figure 3.10: For five different capacitor values, measured supply voltage traces are
combined with a pre-characterized DRV distribution to predict decay as a function of
time. The decaying supply voltages after power is turned off are shown at left. The
known DRV probabilities (Equation 3.4) for 26.5◦C are shown at center. Equation 3.5
maps every supply voltage measurement to a predicted decay, thus creating the
memory-decay-vs.-time plots shown at right. The two horizontal lines in the left image
at approximately 150 and 50 mV are the voltages where the first and last bits of
SRAM will respectively decay.

slightly different power consumptions.

Impact of Chip Variation:

The chip-to-chip variation of the same microcontroller model is not expected to have

a major effect on the TARDIS. We tested three instances of the MSP430F2131 with

256 B of memory and no capacitor at 27◦C. The off-time changes from 0 to a maximum

of 2.5 seconds with increments of 0.2 seconds. The result shown in Figure 3.12 matches

our expectation and shows that changes in decay time due to chip-to-chip variation are

insignificant (notice that no capacitor is used and the temperature for one of the chips

is one degree higher). This result indicates that TARDIS would work consistently

across different chips of the same platform and can be implemented on a system

without concern for chip-to-chip variation.

TARDIS Simulation:

We verified the TARDIS mechanism using SPICE simulation of a small SRAM array

of 50 cells; the transistor models are 65 nm PTM, the power pin is connected to VCC
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Cap. Size Stage 1 (s) Stage 2 (s)

0 µF 1.22e0 8.80e-1
10 µF 1.75e2 5.00e1
100 µF 1.13e3 8.47e2
1000 µF 1.17e4 9.50e3
10000 µF 1.43e5 >5.34e4∗

∗ Test was interrupted.

Table 3.5: Estimated time in Stage 1 and Stage 2 of the TARDIS increases as capacitor
size increases. The experiments are done on a MSP430F2131 microcontroller at 26.5◦C
and an SRAM size of 256 B. Stage 1 is the time after the power failure but before the
SRAM decay. Stage 2 represents the duration of SRAM decay.

through a D1N4148 diode, and the decoupling capacitor is 70 nF . Each transistor is

assigned a random threshold voltage deviation chosen uniformly from range ±100 mV .

Each line in Figure 3.13 plots the voltage difference across the two state nodes A and

B for a single SRAM cell. Because all state nodes remain between 0V and VCC during

the discharge, the differential voltage is roughly enveloped by ±VCC as shaded in grey.

A positive differential voltage indicates a stored state of 1 (the written state), and

a negative differential is a state of 0. Some of the nodes are observed to flip state,

starting when VCC reaches 200 mV at 0.55 seconds after power is disconnected. As

VCC discharges further, more cells decay by crossing from state 1 to 0. When VCC is

powered again at 1.05 seconds, each cell locks into its current state by fully charging

either A or B and discharging the other; this is observed in Figure 3.13 as an increase

in the magnitude of the differential voltage of each cell.

3.7 Inside an SRAM Cell

Each SRAM cell holds state using two cross-coupled inverters as shown in Fig-

ure 3.14; the access transistors that control reading and writing to the cell are omitted

from the figure. The cross-coupled inverters are powered via connections to the chip’s

power supply node. The two states of the SRAM cell, representing a logical 1 and

61



0 1 2 3 4 5 6
0

10

20

30

40

50

Seconds without Power

%
 M

em
or

y 
D

ec
ay

 

 

8KB 28° C, 0µF

2KB  28° C, 0µF

256B 28° C, 0µF

Figure 3.11: Different microcontrollers within the TI MSP430 family with different
SRAM sizes exhibit different decay times, but follow the same general trend. The
MSP430F2618, MSP430F169, and MSP430F2131 respectively have 8 KB, 2 KB, and
256 B of SRAM.

logical 0, are symmetrical. In each state, under normal conditions, the voltage of

either A or B is approximately Vcc while the voltage of the other is approximately 0V .

Data Retention Voltage:

The minimum voltage at which each cell can store either a 0 or 1 is referred to as

the cell’s data retention voltage (DRV) [89]. Since DRV depends on random process

variation, any set of SRAM cells will have a distribution of DRVs. Although the actual

DRV distribution depends on process and design parameters, typical values fall within

the range of 50 mV to 250 mV ; a published design in 0.13 µm has a distribution of

DRVs ranging from 80 mV to 250 mV , and our own analysis in this work estimates a

majority of DRVs to be in the range of 50 mV to 160 mV (Figure 3.8).
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Figure 3.12: Decay versus time in 3 different instances of the MSP430F2131 microcon-
troller at similar temperatures. The durations of Stage 1 and Stage 2 decay match
closely across instances.

3.7.1 Memory Decay Mechanisms

Memory decay occurs in SRAM when a cell loses its state during a power cycle and

subsequently initializes to the opposite state upon restoration of power. Given that

each cell typically favors one power-up state over the other [49, 39], memory decay

can be observed only when the last-written state opposes the favored power-up state.

We denote the favored power-up state as the ground state, since this is the value an

SRAM cell will take at power-up after a very long time without power. We say that

a cell written with the value opposite its ground state is eligible for memory decay.

Each eligible cell will decay once the supply voltage falls below the cell’s DRV. Cells

that are randomly assigned very low DRVs thus do not decay until the supply voltage

is very low. With sufficient capacitance, it can take days for all eligible cells to decay.

Supply voltage decays according to Equation 3.1, where VCC , ICC , and CCC

represent the supply voltage, current, and capacitance of the power supply node. The

voltage decay is slowed by a large capacitance and low current, and the following
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Figure 3.13: The differential voltage of SRAM cells during decay. The envelope of
±VCC is shaded in grey. All cells are in the 1 state when power is first turned off. As
VCC decays, some cells flip from 1 to 0. The cells stabilize when power is restored.
The number of zeros after the restoration of power is used to estimate the duration of
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Figure 3.14: The state-holding portion of an SRAM cell consists of two cross-coupled
inverters tied to the chip’s power and ground nodes.
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paragraphs explain why both are present in our TARDIS application.

dvCC
dt

=
ICC
CCC

(3.1)

Large Capacitance:

The large amount of charge stored on the power supply node is due to the decoupling

capacitance that designers add between VCC and gnd. During normal operation, this

capacitance serves to stabilize the supply voltage to the functional blocks of the chip,

including SRAM. In some experiments, the time ranges measurable by the TARDIS are

further extended by supplementing the standard decoupling capacitors with additional

explicit capacitance.

Low Leakage Current:

The total current ICC comprises the operating current of the microcontroller and the

SRAM’s data-retention current; both currents are functions of the supply voltage.

The current during the voltage decay is shown in Figure 3.15, and explained here:

Immediately after power is disconnected, supply voltages are above 1.4 V and the

microcontroller is operational. The observed current is between 250 µA and 350 µA,

consistent with the 250 µA current specified for the lowest-power operating point

(1.8 V with 1 MHz clock) of the MSP430F2131 [119]. The SRAM current is negligible

by comparison. The high current consumption causes the voltage to decay quickly

while the microcontroller remains active.

As the voltage drops below 1.4 V , the microcontroller deactivates and kills all

clocks to enter an ultra-low power RAM-retention mode in an attempt to avoid losing

data. The nominal current consumed in this mode is only the data-retention current,

specified to be 0.1 µA for the 256 B of SRAM in the MSP430F2131 [119]. In our

observations, ICC is between 0.5 µA and 10 µA during the time that VCC is between

0.5 V and 1.4 V . This current is 1.5− 3 orders of magnitude smaller than the current

when the microcontroller is active. With so little current being consumed, the supply
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Figure 3.15: Supply voltage and current during two power-down events with different
capacitors. The voltage VCC is measured directly, and the current ICC is calculated
per Equation 3.1 using the measured dVCC

dt
and known capacitor values. The voltage

initially decays rapidly due to the high current draw of the microcontroller. When
VCC reaches 1.40V the microcontroller turns off and ICC drops by several orders of
magnitude, leading to a long and slow voltage decay. At the time when VCC crosses
the horizontal line at 0.09V, approximately half of all eligible cells will have decayed.

voltage decays very slowly. The current further decreases as the supply voltage drops

into subthreshold, and cells begin to experience memory decay.6

Impact of Temperature:

Increasing the temperature leads to more rapid memory decay for two reasons. First,

increasing the temperature increases the leakage currents that persist through data-

retention mode. Increased leakage currents lead to a faster supply voltage decay,

6Note that setting VCC to 0 V during the power-down, instead of leaving it floating, reduces
voltage and memory decay times by at least an order of magnitude [107] by providing a low impedance
leakage path to rapidly drain the capacitance; we have observed this same result in our experiments
as well.
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causing the supply voltage to drop below DRVs sooner. Second, temperature expedites

memory decay by increasing the DRV of SRAM cells [89], causing them to decay at

slightly higher supply voltages. Prior work shows a modest 13mV increase in DRV

when temperature increases from 27◦C to 100◦C [89].

3.7.2 Choosing a State to Write

It is possible to increase the maximum observable memory decay by making every

cell eligible for decay. This would be accomplished by characterizing the ground state

of each SRAM cell over many remanence-free trials [39, 49], and then writing each cell

with its non-ground state in order to make its memory decay observable. In contrast

to writing a uniform 1 to all cells, this approach can extract more timing information

from the same collection of SRAM cells. However, this alternative requires storing

the ground states in non-volatile memory (or equivalently storing written states in

non-volatile memory) in order to evaluate whether or not a cell has decayed. Our

approach of writing a uniform 1 to all cells makes it possible to evaluate memory decay

without this overhead simply by evaluating the Hamming Weight of the SRAM state.

3.8 Alternative Approaches

The more general question of how to keep time without a power source is fundamen-

tal and has numerous applications in security and real-time computing. Techniques

for keeping time without power or with very reduced power typically rely on phys-

ical processes with very long time constants. In CMOS, the most obvious process

with a long time constant is the leakage of charge off of a large capacitor through a

reverse-biased diode or MOSFET in the cut-off region.

An unexplored alternative to the TARDIS is charging a capacitor whenever the

device is active, and checking the capacitor’s voltage at a subsequent power-up to

determine whether the device has been active recently. The power-up measurement
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can be performed using an ADC if available, or else by checking whether or not the

remaining voltage is sufficient to register as a logical 1. This approach differs from

the TARDIS in incurring monetary and power costs due to the use of a dedicated

capacitor and dedicated input-output pins for charging the capacitor and sensing its

voltage. Furthermore, the capacitor voltage is still dynamic after power-up, leaving

the measurement sensitive to timing variations caused by interrupts. By comparison,

the TARDIS uses no dedicated capacitor or input-output pins; its measurement

materializes in SRAM at power-up and remains static thereafter until being read and

subsequently overwritten.

The EPC Gen2 protocol [27] requires UHF RFID tags to maintain four floating-

gate based “inventorial flags” used to support short power gaps without losing the

selected/inventoried status. An interesting alternative approach could co-opt these

flags to provide a notion of time; however, the flags only persist between 500ms and

5s across power failures. In comparison, the SRAM-based approach in the TARDIS

has a resolution time from seconds to hours and has a temperature compensation

mechanism. Another advantage of the TARDIS is that it works on any SRAM-based

device regardless of the existence of special circuits to support inventorial flags.

3.9 Model of Decay Probabilities

Knowing the DRV distribution of a collection of SRAM cells makes it possible

to predict the amount of memory decay that will result from reaching any known

minimum supply voltage during a power cycle. We propose a simple and intuitive

3-parameter (α, µ, σ) model to characterize the DRV distribution. We chose the

parameters such that the model predictions agree with empirical data relating memory

decay to minimum supply voltage.

Cells eligible for memory decay after being written with a value of 1 are those with

a ground state of 0. We use g = 0 to denote cells with a 0 ground state, and use α to
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denote the fraction of cells with this ground state; α is therefore the largest fraction

of cells that can decay after writing a 1 to all cells.

Pr(g = 0) = α (3.2)

Among cells that are eligible for memory decay, we assume that DRVs are normally

distributed with mean µ and standard deviation σ (Equation 3.3).

DRV | (g = 0) ∼ N
(
µ, σ2

)
(3.3)

The probability of a randomly selected cell being eligible for memory decay and

having DRV = v is given by Equation 3.4. This is an α-scaled instance of the PDF of

a normally distributed random variable, and we refer to this as the “DRV probability”

of voltage v.

Pr ((g = 0) ∧ (DRV = v)) =
α

σ
√

2π
e−(v−µ)

2/(2σ2) (3.4)

If the minimum voltage of a power cycle is known, then the 3-parameter model

can predict the memory decay. The cells that will decay are eligible cells with a

DRV that is above the minimum supply voltage reached during the power cycle. A

closed-form equation for predicting the memory decay from the minimum voltage and

model parameters is then given by Equation 3.5; this equation is 1 minus the CDF of

a normally distributed random variable, scaled by α.

DPRED(vmin, α, µ, σ) = α

1−
1 + erf

(
vmin−µ
σ
√
2

)
2

 (3.5)

A 3-parameter model is evaluated according to how well its predicted memory decay

matches empirical data. The evaluation is performed using a set of n observations

〈v0, D(v0)〉, 〈v1, D(v1)〉, . . . , 〈vn−1, D(vn−1)〉; each observation is a measurement of the
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minimum supply voltage reached during a power cycle, and the memory decay observed

across that power cycle. The prediction error of any model is defined according to

Equation 3.6. We initially use the set of measurements to find the model parameters

that minimize the prediction error (see Figure 3.8).

ERR(α, µ, σ) =
n−1∑
i=0

(DPRED (vi, α, µ, σ)−D (vi))
2 (3.6)

After measurements are used to fit the model parameters to empirical data, the

model is subsequently used to predict memory-decay-vs.-time curves from voltage-vs.-

time measurements (see Figure 3.10).

3.10 Related Work

RFID Security and Privacy:

The inability of intermittently powered devices to control their response rates has

made them susceptible to various attacks. An RFID tag could be easily “killed” by

exhausting all possible 32-bit “kill” keys. Such unsafe “kill” commands could be

replaced with a “sleep” command [55]; however, lack of a timer to wake up the tag in

time has made the use of the “sleep” command inconvenient. The key to e-passports

can be discovered in real time by brute-force attacks [8]. The attack could be slowed

down if the e-passport had a trustworthy notion of time. The minimalist model [54]

offered for RFID tags assumes a scheme that enforces a low query-response rate. This

model could be implemented using the TARDIS.

Secure Timers:

To acquire a trustworthy notion of time, multiple sources of time can be used to

increase the security level of a timer [97]; but this requires the device to interact

actively with more than one source of time, which is not practical for RFID tags

that use passive radio communication. The same issues prevent us from using the
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Lamport clock and other similar mechanisms that provide order in distributed systems

[59]. This inability to acquire secure time precludes the use of many cryptographic

protocols, including timed-release cryptography [74] [95]

Ultra-low Power Clocks:

With the rise of pervasive computing come a need for low-power clocks and counters.

Two example applications for low-power clocks are timestamping secure transactions

and controlling when a device should wake from a sleep state. The lack of a rechargeable

power source in some pervasive platforms requires ultra-low power consumption. Low

voltage and subthreshold designs have been used to minimize power consumption

of digital circuits since the 1970s [114]. Circuits in wristwatches combine analog

components and small digital designs to operate at hundreds of nW [126]. A counter

designed for smart cards uses adiabatic logic to operate at 14KHz while consuming

11nW of power [116]. A gate-leakage-based oscillator implements a temperature-

invariant clock that operates at sub-Hz frequencies while consuming 1pW at 300mV [66].

A TI-recommended technique [92] for the MSP430 is to charge a dedicated external

capacitor from the microcontroller while in a low-power sleep mode with clocks

deactivated; the microcontroller is triggered to wake up when the capacitor voltage

surpasses a threshold. But all of these solutions, while very low-power, still require

a constant supply voltage and hence a power source in the form of a battery or a

persistently charged storage capacitor. However, embedded systems without reliable

power and exotic low-power timers may still benefit from the ability to estimate time

elapsed since power-down.

Attacks Based on Memory Remanence:

Processes with long time constants can also raise security concerns by allowing data

to be read from supposedly erased memory cells. Drowsy caches [29] provide a good

background on the electrical aspects of data retention. Gutmann stated that older

SRAM cells can retain stored state for days without power [40]. Gutmann also suggest
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exposing the device to higher temperatures to decrease the retention time. Anderson

and Kuhn first proposed attacks based on low-temperature SRAM data remanence [5].

Experimental data demonstrating low-temperature data remanence on a variety of

SRAMs is provided by Skorobogatov [107], who also shows that remanence is increased

when the supply during power-down is left floating instead of grounded. More recent

freezing attacks have been demonstrated on a 90nm technology SRAM [122], as well as

on DRAM [41]. Data remanence also imposes a fundamental limit on the throughput

of true random numbers that can be generated using power-up SRAM state as an

entropy source [104]. The TARDIS, in finding a constructive use for remanence and

decay, can thus be seen as a counterpoint to the attacks discussed in this section. The

TARDIS is the first constructive method that takes advantage of SRAM remanence to

increase the security and privacy of intermittently powered devices.

3.11 Conclusions

A trustworthy source of time on batteryless devices could equip cryptographic

protocols for more deliberate defense against semi-invasive attacks such as differential

power analysis and brute-force attacks. The TARDIS uses remanence decay in SRAM

to compute the time elapsed during a power outage—ranging from seconds to hours

depending on hardware parameters. The mechanism provides a coarse-grained notion

of time for intermittently powered computers that otherwise have no effective way

of measuring time. Applications using the TARDIS primarily rely on timers with

hourglass-like precision to throttle queries. The TARDIS consists purely of software,

making the mechanism easy to deploy on devices with SRAM. A novel aspect of the

TARDIS is its use of memory decay or data remanence for improved security rather

than attacking security. Without the TARDIS, batteryless devices are unlikely to give

you the time of day.
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CHAPTER IV

DRV-Fingerprinting: Using Data Retention

Voltage of SRAM Cells for Chip Identification

4.1 Introduction

RFID circuits can be identified or authenticated using static identifiers stored in

non-volatile memory or through the use of identifying physical characteristics. Physi-

cal characteristics have several security advantages over static identifiers, including

immutability and resistance to cloning and tampering. The physical characteristics

can be viewed as an identifying fingerprint of a given device. More formally, physical

fingerprints are a component of a particular type of physical unclonable function (PUF)

that is originally described as a physically obfuscated key [35], and more recently as a

weak PUF [39].

If used for identification or constructing secret keys, fingerprint observations must

be consistent over time. Sensing the microscopic variations that make each device

unique while also minimizing the impact of noise is a fundamental concern in PUFs.

Much effort is spent on error correction of somewhat-unreliable fingerprints or PUF

outputs. Error correcting codes are expensive in terms of the number of raw bits

required to create a reliable key, and more so if the number of correctable errors must

be large. Toward this goal, we present a new fingerprinting method that is more
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reliable across trials than comparable previous approaches.

In this work we propose a new method for chip fingerprinting that uses Data

Retention Voltage (DRV) in SRAM as the identifier. The DRV of an SRAM is the

minimum voltage at which its cells can retain state. DRV fingerprints are found

to be more informative than other approaches for fingerprinting SRAM that have

been proposed in research [39, 49] and commercially.1 The physical characteristics

responsible for DRV are imparted randomly during manufacturing and therefore serve

as a natural barrier against counterfeiting. The proposed technique has the potential

for wide application, as SRAM cells are among the most common building blocks of

nearly all digital systems including smart cards and programmable RFID tags.

The contributions of this work are as follows:

• Demonstrating that the DRVs of SRAM cells are consistent fingerprints capable

of identifying devices among a population.

• Demonstrating that DRV fingerprints make use of physical variations in a way

that is similar to SRAM power-up fingerprints, but that DRV fingerprints have

the potential for more accurate identification.

The remainder of this chapter is structured as follows: Section 4.2 introduces data

retention voltage. Section 4.3 explains how the DRVs of SRAM cells are characterized.

Section 4.4 evaluates DRV fingerprinting using experimental data. Sections 4.5 and 4.6

review related work and present directions for future work.

4.2 Data Retention Voltage

A data retention failure is said to occur when an SRAM cell spuriously flips

state due to insufficient supply voltage. The data retention voltage (DRV) of an

SRAM array signifies the minimum supply voltage at which all SRAM cells can store

1http://www.intrinsic-id.com/
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arbitrary state. DRV is studied in the literature as a limit to supply voltage scaling.

Various simulation models [127, 19, 79] and silicon measurements [89] show modern

SRAM DRVs to be under 300mV. Most previous literature focuses on cases where

the supply voltage of the circuit remains safely above DRV. While remaining above

DRV, the supply voltage can be adjusted to reduce leakage power [30], compensate

for manufacturing variability [79], or compensate for environmental variations [127].

Each SRAM cell uses the positive feedback of cross-coupled inverters to hold state

on two complementary storage nodes. Retention failures occur at low supply voltages

because the low voltage weakens the positive feedback of the cross-coupled inverters.

Due to asymmetric process variation, at some low supply voltages a transition from

a written state to the opposite state becomes inevitable; observations about the

direction of such transitions and the voltages at which they occur are the basis for

DRV fingerprints. Any collection of SRAM cells has a distinctive DRV fingerprint

because of its unique random process variation.

4.3 Characterizing the DRV of an SRAM Cell

The DRVs of SRAM cells are characterized by repeatedly lowering the SRAM

supply voltage and observing the highest voltage at which each cell fails. If the SRAM

supply node also supplies the processing core, then the low voltages used for the

characterization will cause the core to reset and lose its state. Our experiments avoid

this difficulty by using non-volatile memory to maintain persistency across the low

voltages. However, a custom integrated circuit designed for DRV fingerprinting can

also avoid this difficulty by using an SRAM supply node that is decoupled from the

nominal supply node of the processor. This is often done, for example, in power-gated

circuits where unused on-chip functional blocks are turned off entirely while the chip

as a whole remains powered.

We characterize the DRV of an SRAM cell c with a pair 〈v0c , v1c 〉. Each vwc in the
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Figure 4.1: The joint probability distribution function over all cells of the two variables
(v0c and v1c ) comprising a DRV characterization. The distribution is determined
experimentally using Algorithm 9, and shows that a large fraction of cells have the
minimum possible value of 20mV for either v0 or v1, but none have the minimum
value (or near-minimum values) for both. A cell with a minimum value for v0 or v1 is
a cell that retains one written state across all test voltages.

pair represents the highest voltage at which cell c will have a retention failure after

state w is written to it. In principle, v0c and v1c are real-valued; but in practice, we

approximate each using one of N = (300mV − 20mV )/∆ discrete values as shown

in Algorithm 9. With ∆ set at 10mV, the N = 28 possible values for v0c and v1c are

{20mV, 30mV, . . . , 290mV }. The frequency of observing different DRV pairs is shown

in the joint probability distribution function of variables v0c and v1c in Fig. 4.1.

4.3.1 Experimental Setup

We examine the DRV of SRAM cells using Algorithm 9 implemented as follows: A

microcontroller runs a program that sets all available memory bits to either 1 or 0. The

supply voltage is then decreased to a value between 300mV and 20mV (∆ = 10mV )

for 5 seconds. When supply voltage is restored to 3V, the program stores the content

of SRAM to the flash memory. Note that we conservatively use twait = 5s to avoid

missing marginal failures. Simulations by Nourivand et al. [79] using a procedure

similar to Algorithm 9 show that waiting for twait = 2ms at a reduced supply voltage

is sufficient to observe retention failures. An Agilent U2541A-series data acquisition
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Algorithm 9 Characterize the DRV fingerprint of a set of SRAM cells.
Prerequisite: C – a set of SRAM cells
Ensure: v0c , v

1
c – the DRV characterizations of each SRAM cell c ∈ C.

1: Let Vnom be the nominal supply voltage (Vdd) for the chip
2: Let sc refer to the logical state of SRAM cell c ∈ C.
3: Let s′c refer to the logical state of NVM cell that corresponds to SRAM cell c.

4: for w = 0, 1 do
5: for c ∈ C do
6: sc ← w {write w into SRAM cell}
7: s′c ← w {write w into NVM cell}
8: vwc ← 0 {value used if no retention failure observed}
9: end for

10: vtest ← 300mV {initialize test voltage}
11: while vtest > 20mV do
12: lower chip voltage from Vnom to vtest
13: wait for twait seconds
14: raise chip voltage from vtest to Vnom
15: for c ∈ C do
16: if (sc = ¬w) ∧ (s′c = w) then
17: SRAM cell c had a retention failure from state w at voltage vtest, but previously

had no failure at voltage vtest + ∆. Therefore vtest approximates the largest
voltage that induces a retention failure after writing w.

18: vwc ← vtest
19: end if
20: s′c ← sc {write SRAM to NVM}
21: end for
22: vtest ← vtest −∆ {try a lower voltage next}
23: end while

24: end for

(DAQ) unit controls the supply voltage and the timing of when voltage is raised and

lowered. Thermal tests are conducted inside of a Sun Electronics EC12 Environmental

Chamber [112], and an OSXL450 infrared non-contact thermometer [82] with ±2◦C

accuracy is used to verify the temperature. All experiments use instances of Texas

Instruments MSP430 F2131 microcontrollers with 256 bytes of SRAM, of which 240

bytes are available for DRV fingerprinting. The DRV of each cell is characterized 20

times. The total runtime to characterize all 240 bytes of SRAM on a chip once using

Algorithm 9 is given by tproc in Eq. 4.1, and is 140 seconds for the conservative case of

∆ = 10mV and twait = 5s.
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tproc = twait ×
300mV − 20mV

∆
(4.1)

4.3.2 Information Content of SRAM Cell DRV

The DRV of each cell has N2 possible outcomes representing all combinations of

N outcomes for v0c and the N outcomes for v1c (in our case N = 28). The DRV of each

cell is then a random variable X with N2 outcomes denoted x0 through xN2−1. The

total entropy H(X) is the expected information value of the DRV of an unknown cell.

Entropy depends (per Eq. 4.2) on the probabilities of each DRV outcome, denoted

p(xi). In the ideal case where all N2 outcomes are equally likely (e.g. p(xi) = 1/N2

for all xi), each DRV would have almost 10 bits of entropy. Applying Eq. 4.2 to the

decidedly non-uniform outcome probabilities of Fig. 4.1 shows the actual entropy of

a DRV to be 5.12 bits. The most frequently observed DRV outcomes are given in

Table. 4.1.

Eq. 4.1 shows that runtime is inversely proportional to ∆, so we consider the

information loss from making ∆ larger than 10mV. Fig. 4.2 shows the ideal and

actual entropy of DRV characterizations when different values of ∆ are used. In the

extreme case where ∆ = 140mV , variables v0c and v1c are each restricted to the values

{20mV, 160mV }, so the ideal entropy of the DRV is equivalent to 2 flips of a fair

coin. The values of ∆ used in Fig. 4.2 are chosen on account of being unambiguously

recreatable from the ∆ = 10mV data.

H(X) = −
∑
i=1

p(xi) log p(xi) (4.2)
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Table 4.1: The 4 most commonly observed weak and strong DRV characterizations,
and the probability of observing each in a randomly selected trial.

(a) Most common weak DRVs

Outcome
Freq.〈v0c , v1c 〉

〈130mV , 100mV 〉 0.0096
〈120mV , 100mV 〉 0.0076
〈130mV , 110mV 〉 0.0070
〈120mV , 110mV 〉 0.0070

(b) Most common strong DRVs

Outcome
Freq.〈v0c , v1c 〉

〈20mV , 130mV 〉 0.0893
〈20mV , 120mV 〉 0.0719
〈130mV , 20mV 〉 0.0685
〈20mV , 140mV 〉 0.0651

4.3.3 Observations about Strong and Weak Cells

We abstract the N2 possible DRV characterizations (Fig. 4.1) into three classes2

that are sufficient to demonstrate general observations about all DRVs:

• A strongly 0 DRV characterization is a pair 〈v0c , v1c 〉 such that v0c = 20mV and

v1c > 20mV . A strongly 0 DRV indicates that no retention failure occurs at any

voltage vtest after state 0 is written.

• A strongly 1 DRV characterization is a pair 〈v0c , v1c 〉 such that v0c > 20mV and

v1c = 20mV . A strongly 1 DRV indicates that no retention failure occurs at any

voltage vtest after state 1 is written.

• A weak DRV characterization is a pair 〈v0c , v1c 〉 such that v0c > 20mV and

v1c > 20mV . A weak DRV indicates that a failure is observed at some voltage

vtest after each state is written.

The variation-dependent behavior of an SRAM cell occurs somewhere between

20mV and 300mV for each cell; above 300mV all cells can reliably hold either the 0

or the 1 state, and below 20mV no cells can do so. When a cell produces a strongly

0 or strongly 1 characterization, it means (per Algorithm 9) that for one written

state the supply voltage is lowered all the way through the sensitive region down to

20mV and then raised back up without causing a failure. A strongly 0 or strongly 1

2Note that no observation of 〈v0c , v1v〉 = 〈20mV, 20mV 〉 is ever made, so we do not include this
outcome in any of the three cases.
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Figure 4.2: Sweeping ∆ from 10mV to 140mV shows that a loss of measurement
precision reduces entropy of each cell’s DRV characterization.

characterization therefore indicates a strong preference for one state over the other at

all supply voltages. A weak characterization is when each written state flips at some

voltage within the sensitive region, and neither state can be retained down to 20mV.

Both strong and weak DRV characterizations are largely repeatable across trials.

Fig. 4.3 shows the distribution of DRVs produced by randomly selected cells for which

the first DRV produced is one of the 4 most commonly observed weak DRVs from

Table 4.1(a); each plot shows the conditional probability distribution of a subsequent

DRV characterization. Occasionally the same cells that produce a weak DRV produce

a strong DRV in subsequent trials. Fig. 4.4 shows the same analysis for the 4 most

commonly observed strong DRVs; none of the cells subsequently produces the opposite

strong characterization.

4.3.4 Relation to Power-up State

It is known that SRAM cells consistently power-up to the same state [39, 49] in a

majority of trials. Cells with highly reliable power-up states tend to be the same cells
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Figure 4.3: For each of the 4 most frequently observed weak DRVs (see Table 4.1(a)),
the DRV in a second trial from a cell that produced the frequently observed DRV in a
first trial.

with strong DRV characterizations. Fig. 4.5 shows the mean power-up state over 28

trials for cells that produced a strongly 0 or strongly 1 DRV characterization. Among

cells with strongly 0 DRV, 98.6% power-up to the 0 state in all 28 power-up trials

(Fig. 4.5(a)). Similarly, 95.1% of cells characterized as strongly 1 consistently power-up

to the 1 state (Fig. 4.5(a)). Although a strong DRV fingerprint is correlated to power-

up tendency, the DRV provides a more informative identifier than does power-up

by providing information about the maximum voltage at which the unfavored state

cannot be reliably stored.
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Figure 4.4: For each of the 4 most frequently observed strong DRVs (see Table. 4.1(b)),
the DRV in a second trial from a cell that produced the frequently observed DRV in a
first trial.

4.4 Fingerprint Matching

A DRV fingerprint is obtained from a single characterization of a set of adja-

cent cells within an SRAM. A k-bit fingerprint Fi comprises cell characterizations

〈v0i , v1i 〉, 〈v0i+1, v
1
i+1〉, . . . , 〈v0i+k−1, v1i+k−1〉. The difference between fingerprints is the

sum of the differences between their corresponding single-cell characterizations. Re-

calling that each DRV is a point 〈v0c , v1c 〉 in 2-dimensional space, we define the distance

between two DRVs according to the square of their distance along each dimension

(Eq. 4.3). For comparison, a second metric used is the Hamming distance between

power-up trials; this is shown by Eq. 4.4, where pi is the state of the ith bit of SRAM

after a power-up.
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Table 4.2: Probability of different pairwise outcomes when 2 DRV fingerprints are
taken from a randomly chosen cell. Over the 5000 samples collected, no cell ever has
a DRV that is strongly 1 in one trial and strongly 0 in another, but 5.6% of outcomes
have one strong and one weak DRV.

Strongly 0 Weak Strongly 1
Strongly 0 35.80% 3.10% 0.00%

Weak - 24.98% 2.48%
Strongly 1 - - 33.64%

d1(Fi, Fj) =
k−1∑
n=0

(
v0i+n − v0j+n

)2
+
(
v1i+n − v1j+n

)2
(4.3)

hd(Fi, Fj) =
k−1∑
n=0

pi+n ⊕ pj+n (4.4)

4.4.1 Identification at Nominal Temperature

At the nominal operating temperature of 29◦C, three experiments compare DRV

fingerprints with power-up fingerprints. These experiments are explained in the

following subsections; the first shows the histograms of distances between fingerprints,

and the second and third evaluate the accuracy of distance-based matching.

Histogram of Distances Between Fingerprints

A first experiment shows that DRV fingerprints are repeatable and unique, as is

necessary for successfully identifying chips within a population. Within-class pairings

are of multiple fingerprints generated by the same set of cells on the same device.

Between-class pairings are from different sets of cells on the same device, or from any

sets of cells on different devices. The similarity of any two fingerprints is quantified

by a distance, and this distance is the basis for determining the correct identity of

a fingerprint. If within-class fingerprint pairings consistently have smaller distances

than between-class pairings, then it is possible to determine identity by choosing an

appropriate threshold that separates the two classes. The histograms of within-class
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and between-class distances for DRV and power-up fingerprints are shown in Fig. 4.6.

These histograms represent all data collected from the MSP430F2131 microcontrollers

at room temperature. The distances on the x-axes are not directly comparable across

metrics; of importance is only whether the two classes are clearly separable within

each plot.

Accuracy of Top Match

The next experiment performed at nominal temperature evaluates how reliably

a single within-class DRV fingerprint can be identified among a population. This

experiment matches a single 16-bit target fingerprint against a population containing

another fingerprint from the same cells and one fingerprint from each of the 239

remaining locations across 2 chips. A positive result occurs if the closest match

among the 240 possibilities is from the same SRAM cells as the target. The results

of the top match experiment are shown in Table 4.3; the column labelled “co-top”

shows the percentage of trials where there are multiple top matches and one of them

correctly matches the target. Multiple top matches are relatively common in Hamming

distance matching due to the small number of possible distances between fingerprints.

Compared to power-up fingerprints, matching based on DRV fingerprints is 28% more

likely to have the correct match be closer to the target (i.e. separated by a smaller

distance) than all incorrect matches.

Table 4.3: Over 300 trials with a population of 240 16-bit fingerprints, DRV identifi-
cation returns the fingerprint that correctly matches the target more reliably than
power-up state identification. Matching based on power-up state more frequently
returns a misidentified fingerprint, or returns multiple fingerprints among which one
is the correct match (denoted “co-top”).

Top Co-top Misidentified
DRV (d1) 99.7% - 0.3%
Power-up 71.7% 24.7% 3.6%

Precision and Recall
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The top match experiment is generalized to the case of identifying multiple correct

matches among a larger population, and again shows DRV fingerprints to outperform

power-up fingerprints. In this experiment, our goal is to find all correct matches

in the population, without also finding too many incorrect matches. In doing so,

the distance that is considered to be the threshold between a correct and incorrect

match can be adjusted. If the threshold is too low then correct matches may not be

identified, but if the threshold is too high then false positives will occur. Recall refers

to the fraction of within-class pairings under the threshold, and precision refers to the

fraction of pairings under the threshold that are within-class. Increasing the threshold

will sacrifice precision for recall, and decreasing the threshold will sacrifice recall for

precision. An ideal result is for both precision and recall to be 1; this result occurs if

all correct matches are identified as within-class (perfect recall) with no incorrect ones

identified as within-class (perfect precision).

The precision and recall plots of Fig. 4.7 are obtained by iterating the following

procedure. One 16-bit segment of SRAM is chosen for identification. One fingerprint

trial from this segment is chosen at random as the target, and it is matched against a

population of 1019 fingerprints comprising 19 from the same SRAM segment (within-

class pairings) and 1000 non-matching fingerprints (between-class pairings). The

non-matching fingerprints are randomly selected among 20 trials from 239 other

segments of SRAM3. The matching threshold is swept to find achievable precision-

versus-recall tradeoffs, and each achievable tradeoff is a point in Fig. 4.7. The large

number of tradeoff points in the plot is collected from multiple iterations of this

procedure. The general trend is that DRV fingerprints produce better recall for a given

precision, or better precision for a given recall compared to power-up fingerprints.

3The 239 eligible 16-bit segments are the 119 remaining on the target’s own chip, and all 120 such
locations on the other device.
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4.4.2 Impact of Temperature Variations

Given that DRV fingerprints would likely be used in real-world scenarios with-

out precisely-controlled temperatures, a final experiment explores the impact of

temperature on DRV fingerprints. This experiment is similar to the experiment of

subsection 4.4.1, but the pairs of fingerprint observations used to generate the within-

class distances are now made at different temperatures. The results are shown in

Fig. 4.8. The increase of within-class distances across temperature implies a diminished

reliability. To compensate for this, larger fingerprints (comprising more bits) may

be needed for identification, and more robust error correcting codes may be needed

in key-generation applications. If the increased within-class distances are due to a

uniform shift in the DRVs of all cells, then a promising direction for future work would

be to design a matching scheme that is insensitive to this type of uniform shift.

4.5 Related Works

A wide variety of PUFs and fingerprints based on custom or pre-existing integrated

circuit components have been developed. The identifying features used by custom

designs include MOSFET drain-current [70], timing race conditions [34], and the

digital state taken by cross-coupled logic after a reset [109]. IC identification based

on pre-existing circuitry is demonstrated using SRAM power-up state [49, 39], and

physical variations of flash memory [88]. Lee et al. [61] derive a secret key unique

to each IC using the statistical delay variations of wires and transistors across ICs.

Bhargava et al. explore circuit-level techniques for increasing the reliability of SRAM

PUFs [13]. An experimental evaluation of low-temperature data remanence on a

variety of SRAMs is provided by Skorobogatov [107], and SRAM remanence in RFID

has been studied by Saxena and Voris as a limitation to SRAM-based true random

number generation [104].
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Previous works [123, 98] have used error correction to construct secret keys from

noisy PUF sources; however, this is expensive in terms of gates and other resources.

To give an idea of the cost of error correction, BCH codes previously used with PUFs

include one to correct 21 errors among 127 raw bits in creating a 64-bit key [110],

and to correct 102 errors among 1023 raw bits in creating a 278-bit key [39]. The

work of Guajardo et al. [39] uses a derivative of power-up SRAM state as a secret key;

however, it requires an error correction code and imposes SRAM space overhead. Maes

et al. [73] introduce an SRAM helper data algorithm to mask unreliable bits using

low-overhead post-processing algorithms. Recently, Yu et al. [131] proposed a method

of error correction for PUFs using a new syndrome coding scheme to minimize the

information leaked by the error correction codes, and Hiller et al. extend this approach

for SRAM PUFs [46]. Van Herrewege et al. [124] have designed a new lightweight

authentication scheme using PUFs that does not require the reader to store a large

number of PUF challenge and response pairs.

Given the low cost of the several bytes of SRAM that are used for DRV fingerprint-

ing, a relatively significant practical cost may be associated with the generation of the

test voltages for characterizing the DRVs. Emerging devices such as computational

RFIDs [94] can use software routines to extract DRVs, but as contactless devices

they must generate all test voltages on-chip. On-chip dynamic control of SRAM

supply voltage is assumed in the low-power literature at least since work on drowsy

caches [30]. Supply voltage tuning has also been applied with canary cells to detect

potential SRAM failures, and as a post-silicon technique to compensate for process

variation and increase manufacturing yields [79].

4.6 Conclusions and Future Works

This work has demonstrated that SRAM DRV fingerprints are static identifiers of

a device, and it has presented a simple characterization procedure and matching algo-
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rithms to use them as such. DRV fingerprints are similar to previously demonstrated

power-up fingerprints, but they provide a more informative non-binary identifier of

each cell. As a result of this, DRV fingerprints are identified up to 28% more reliably

than are power-up fingerprints.

The practical limits of DRV fingerprint performance and reliability should be

explored further. Within the constraints of acceptable precision, the runtime of the

characterization procedure can be reduced by increasing the voltage step size ∆ and

reducing the time twait spent at each voltage (Eq. 4.1). An expanded evaluation could

investigate the reliability of DRV fingerprints across a larger variety of devices and a

range of environmental conditions. A high reliability could make DRV fingerprints

suitable as a basis for key-generation with lightweight error correcting codes.
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Figure 4.5: The plot at left shows that 98.6% of SRAM cells that produce a strongly
0 DRV reliably power-up to state 0, as observed by a mean power-up state of 0. The
plot at right shows that 95.1% of cells with strongly 1 DRVs reliably power-up to
state 1. The DRV is from a single trial of the cell, and the mean power-up state is
measured over 28 power-up trials.
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Figure 4.6: Within-class and between-class distances of 16-bit fingerprints. The upper
plot uses DRV fingerprints with distance metric d1 from Eq. 4.3. The lower plot uses
power-up fingerprints with Hamming distance as a metric.
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Figure 4.8: The line plots show within-class distances when one fingerprint observation
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with temperature, implying a diminished reliability. The bar plot shows between-class
distances of 16-bit fingerprints taken at 27◦C. Because there does not exist a distance
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necessary to use larger fingerprints for reliable identification.
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CHAPTER V

Survey of Related Work

5.1 Physical Unclonable Functions

In TARDIS, we use the same principle used in Physical Uncloneable Functions

(PUFS) to integrate a notion of time in transiently powered embedded devices. A wide

variety of PUFs and fingerprints based on custom or pre-existing integrated circuit

components are known. The identifying features used by custom designs include

MOSFET drain-current [70], timing race conditions [34], and the digital state taken by

cross-coupled logic after a reset [109]. IC identification based on pre-existing circuitry

is demonstrated using SRAM power-up state [49, 39], and physical variations of flash

memory [88]. Lee et al. [61] derive a secret key unique to each IC using the statistical

delay variations of wires and transistors across ICs. Bhargava et al. explore circuit-

level techniques for increasing the reliability of SRAM PUFs [13]. Skorobogatov [107]

provide an experimental evaluation of low-temperature data remanence on a variety

of SRAMs. Saxena and Voris study SRAM remanence in RFID has as a limitation to

SRAM-based true random number generation [104].

Previous work [123, 98] use error correction to construct secret keys from noisy

PUF sources, however, this is expensive in terms of gates and other resources. To give

an idea of the cost of error correction, BoseChaudhuriHocquenghem (BCH) codes [16]

used with PUFs include one to correct 21 errors among 127 raw bits in creating a
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64-bit key [110], and to correct 102 errors among 1023 raw bits in creating a 278-bit

key [39]. Guajardo et al. [39] use a derivative of power-up SRAM state as a secret

key, but requires an error correction code and imposes SRAM space overhead. Maes

et al. [73] introduce an SRAM helper data algorithm to mask unreliable bits using

low-overhead post-processing algorithms. Yu et al. [131] propose a method of error

correction for PUFs using a new syndrome coding scheme to minimize the information

leaked by the error correction codes. Hiller et al. extend this approach for SRAM

PUFs [46]. Van Herrewege et al. [124] present a new lightweight authentication scheme

using PUFs that does not require the reader to store a large number of PUF challenge

and response pairs.

5.2 Approximate DRAM

Approximate storage in DRAM trades precision for power by extending the refresh

period beyond the point of first failure. This was first demonstrated in Flikker [69],

a system that partitions DRAM into approximate and exact storage, and uses a

longer refresh period for the approximate storage. In Flikker, the refresh period for

the approximate data is chosen so that, across all temperatures, the bit error rate

remains safely below a given threshold. Our proposal differs from this in proposing to

adaptively control refresh period based on temperature, so that at each temperature

the refresh period is chosen to keep bit error rate just below the given threshold.

Approximate storage in multi-level phase-change memory cells is also proposed [101]

as a power saving technique. Enerj [102] is a programming framework for approximate

computing in which variables are labeled as exact or approximable. ISA extensions

for approximate operations and storage based on dual-voltage operation are proposed

by Esmaeilzadeh [28].

DRAM temperature is a function of its power consumption, ambient air tem-

perature, and thermal capacitances and convective resistances of the chip and heat
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spreader. Thermal emergencies occur when temperatures exceed safe operating condi-

tions, and avoiding thermal emergencies is particularly challenging in heavily used high

performance DRAM as found in servers. Thermal emergencies are local to a single

DIMM, and measurements in servers show that temperature can vary by 10◦C across

DIMMs on account of the different airflow and usage of the respective DIMMs [68].

Numerous techniques exist for predicting and avoiding thermal emergencies by group-

ing and migrating storage [9, 68, 64] or throttling processor cores to reduce DRAM

usage [65]. Techniques for resolving or avoiding thermal emergencies can be evaluated

by modifying simulators to include thermal DRAM models encompassing the relevant

capacitances and resistances; the model inputs are the power consumption over time,

inferred from the DRAM usage [64, 9, 65]. The temperature-dependence of DRAM

decay is exploited in the cold-boot attack [42] to draw secret keys from memory.

5.3 DRAM Energy Saving Techniques

Various techniques has been suggested to reduce the energy usage of DRAM. In

this section we highlight some of the more prominent techniques:

RAPID [125]: In RAPID, Venkatesan et al. presented three power-saving tech-

niques. The key idea behind their work was to prioritize pages with longer retention

time in memory allocation. RAPID-1 increases the minimum required refresh time by

removing the 1% worse performing pages, while RAPID-2 and RAPID-3 bin pages

according to their retention times and prioritize the allocation of shorter-retaining

pages. RAPID-3 also used migration to move data from lower retention pages to

higher ones when space becomes available. To evaluate their method, the authors

first ran a series of experiment on pages retention time at 3 temperatures using a

heatgun and later used this data in a mathematical model to analyze the effect of

their techniques.
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RAIDR [67]: RAIDR grouped rows into different bins according to their retention

time and used Bloom filters to increase the efficiency of their bins implementation.

Their evaluation is simulation based and relies on the retention distribution parameters

provided by Kim et al. [56].

Mosaic [4]: Mosaic builds an advanced mathematical model of embedded DRAM

based on the assumption of spatial locality and retention distribution parameters of

Kim et al. [56]. Using this model, it divides the eDRAM module into regions and

program their refresh requirements in counters in the cache controller.

RIO & PARIS [10]: In their work, Baek et al. propose two techniques for energy

saving in DRAM. In RIO, a system similar to RAPID-1 that logically deletes highly

volatile page frames but their approach targets less than 0.1% of cells. They argue

that most of the benefits that can be achieved by removing 1% of cells are gained in

their system with much less space overhead. To evaluate their technique the authors

modified the Linux OS to adjust refresh period and delete pages that have weak cells

in their experimental platform. Their other technique, PARIS, works by excluding

DRAM rows that contain no data from refresh similar to predecessor techniques such

as ESKIMO [51]. In their system, DRAM controller has to provide a way for the OS

to send information about used memory rows. Because of the overhead of hardware

modification, they evaluated PARIS by implementing it as a Linux loadable kernel

module. Their work also considers the effect of temperature and evaluates their system

in temperature ranging from 45− 85◦C but also unnecessarily consider that DRAM

cells respond to temperature variations differently.

Flikker [69]: Approximate storage in DRAM trades precision for power by extending

the refresh period beyond the point of first failure. In Flikker, the authors partitioned

DRAM into approximate and exact storage, and uses a longer refresh period for the
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approximate storage. Their evaluation uses measurements done by Bhalodia [12] for

simulation but ignores the effect of temperature by only considering their performance

at 48◦C.

DTAIL [22]: In DTAIL Cui et al. Use similar binning technique suggested in

previous works but place retention data of DRAM in itself. Their key observation is

that required data for each refresh decision is small and data from adjacent rows are

used sequentially. Their evaluation is based on simulation and uses Baek et al. [10]

and Kim et al. [56] as basis for its model. Their work also only considers 85◦C for its

evaluation.

We previously described how some memory systems use temperature compensated

refresh to adjust refresh rate in higher temperatures. The increase in refresh rate can

itself be the source of creating more heat that can move DRAM out of its operational

range and into a thermal emergency. Thermal emergencies occur when temperatures

exceed safe operating conditions, and avoiding thermal emergencies is particularly

challenging in heavily used high performance DRAM as found in servers. Thermal

emergencies are local to a single DIMM, and measurements in servers show that

temperature can vary by 10◦C across DIMMs on account of the different airflow

and usage of the respective DIMMs [68]. Numerous techniques exist for predicting

and avoiding thermal emergencies by grouping and migrating storage [9, 68, 64] or

throttling processor cores to reduce DRAM usage [65]. Techniques for resolving or

avoiding thermal emergencies can be evaluated by modifying simulators to include

models of DRAM thermal capacitances and convective resistances; the model inputs

are the power consumption over time, inferred from the DRAM usage [64, 9, 65].

Because these works focus on avoiding errors entirely, they are agnostic to spatial

distributions of DRAM errors.
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An alternative to traditional DRAM is embedded DRAM (eDRAM). eDRAM

differs from DRAM in that it is fabricated using standard logic process technology

and can therefore be implemented on the same die as logic for a memory that is higher

density than SRAM, but higher bandwidth and lower latency than off-chip DRAM.

The retention time of eDRAM, on the order of tens of microseconds [11] nominally or

milliseconds in a low-power process [62], is considerably lower than that of off-chip

DRAM. Wilkerson et al. [128] propose using a less frequent refresh and a stronger

error correcting code to correct and avoid errors from bad cells in eDRAM.
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CHAPTER VI

Future Work & Conclusion

In this chapter, we look at future research directions based on this research and

conclude by highlighting the contributions presented in this dissertation.

6.1 Future Work

6.1.1 Security of Emerging IoT Platforms

The proliferation of computing capabilities in everyday devices have given rise to a

phenomenon known as the Internet of Things (IoT). There are currently an estimated

6.4 billion IoT devices worldwide. This figure is expected to rise to more than 20

billion by the year 2020 [33]. IoT allows for integration and collaboration of individual

embedded devices with each other and the cloud. This connection creates opportunity

to provide useful functions and services to the user, but also create new security and

privacy risks. There are many challenges with securing the IoT environment. First

and foremost, devices in an IoT environment usually suffer from limited computational

capability, energy availability, or communication ability. These limitations hinder

implementation of many security practices and protocols in these devices. Second,

the ubiquity of these systems has dramatically increased the amount of data and

functions accessible to malicious parties if they infiltrate these systems. Moving from
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software-based security solutions to hardware-based approaches can play an important

role in improving the security and reliability of these systems.

6.1.2 Security of Approximate Computing Systems

Approximate computing systems continue to draw the attention of researchers

especially in the computer architecture community. While our work studied the

privacy implications of using approximate memory, similar studies can be conducted

on other approximate computing components such as processors. Furthermore, one of

approximate computing’s main goal is to reduce the power consumption of the system

by accepting certain level of error. As such, these systems may be more vulnerable to

physical attacks such as side-channel or error injection.

6.1.3 Trusted Execution Environments

In recent years, hardware-supported Trusted Execution Environments such as

Intel SGX [50] and ARM TrustZone [6] have become main-stream in commodity

systems, mobiles, and cloud platforms. Trusted Execution Environments provide

developers with features such as isolated execution, secure storage, remote attestation,

secure provisioning, and trusted execution path. These platforms provide a great

opportunity for researchers and application developers to build systems with higher

security guarantees that do not rely upon a trusted operating system. Furthermore,

improving performance of these systems, their vulnerability to side-channel attacks,

and building a resilient and flexible root of trust for them remain as open problems.

6.2 Concluding Remarks

Computer systems security has traditionally focused on software mechanisms to

implement features and provide security, privacy, and confidentiality guarantees in

computer systems. In recent years, however, the growing availability of specialized
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hardware support (e.g., Trusted Platform Modules) has increased attention to hardware

side-channels. Moreover, new computing paradigms such as Internet of Things and

approximate computing that are more closely intertwined with the hardware has

shifted attention to use of underlying hardware as both source of attack and defenses

in computer systems.

This dissertation explored how memory remanence, an often ignored hardware effect,

affects system security, forming the basis for both attack and defense mechanisms. To

this end, we developed experimental platforms and testing methodology that enabled

us to study the memory remanence effect in SRAM, DRAM, and Flash memory. Using

these platforms, we developed three systems that showcased the potential of memory

remanence as an attack and defense vector. First, in Probable Cause, we examined

the effect of approximate computing on data processing. We showed how data passing

through an approximate memory is watermarked with a unique, device specific, error

pattern that compromises data anonymity by uniquely matching the data with its

creator. Second, we looked at the problem of time-keeping in transiently powered

systems. Because these devices lack a consistent source of energy, they are unable to

run a clock that comprehends the passage of time in their unpowered state. TARDIS

enables these devices to maintain a coarse notion of time by using the gradual decay

of data in volatile memory as an estimator for the passing time. Finally, we looked

at data-retention voltage of memory cells as an identifier that enables the creation

of unforgeable fingerprints and identifiers in DRV-Fingerprint. We show that use

of data-retention voltage improves identification by 28% over traditional techniques.

These results showcase the potential effect of ignored hardware effect on security and

privacy of computer systems.
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