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ABSTRACT

Bladed disks (blisks) used in turbomachinery applications frequently operate under severe

forcing conditions, which can lead to high levels of dynamics responses and pre-mature

high cycle fatigue (HCF). Small blade-to-blade variations in structural properties, referred

to as mistuning, result in strain energy localization, drastically amplifying blisk forced

responses, and accelerate HCF. To quantitatively capture the effect of mistuning, it is nec-

essary to develop efficient computational methods to predict the free and forced responses

of blisks with various types of mistuning patterns. Due to the high geometric complex-

ity of commercial blisks, full-order finite element (FE) blisk models contain many degrees

of freedom (DOFs). Direct structural analyses with such FE models are computationally

cumbersome or practically infeasible. Moreover, to prevent blisks from reaching HCF, fric-

tional damping sources are introduced to dissipate vibrational energy and reduce the level

of forced responses. Frictional damping is nonlinear in nature, and adds complexity into

the blisk systems. Thus, robust and accurate reduced-order models must be developed to

predict fast the dynamic responses of blisks with various mistuning and frictional damping

sources.

The main objective of this study is to develop a framework that involves several novel

reduced-order modeling techniques. This framework is capable of efficiently and accu-

rately capturing linear and nonlinear dynamic responses of blisks with small blade mate-

rial variations, large changes in blisk mass, stiffness, and geometry, and dry friction ring

dampers. Moreover, this framework serves as a powerful tool in designing friction dampers

with optimal design parameters.
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CHAPTER 1

Introduction

1.1 Dissertation Objective

Ideally, an integrally bladed disk (blisk) possesses cyclic symmetry, and each of its sec-
tors carries identical geometry and material properties. This property enables structural
analyses of a full-order blisk system to be performed with the model of a single sector.
However, variations in structural properties of individual sectors, referred to as mistuning,
are often introduced by non-uniform material properties, manufacturing tolerances, wear,
and operational damages. Mistuning can lead to localization of strain energy and drastic in-
creases in forced responses. Thus, in the blisk design process, the effect of mistuning must
be accounted for to prevent potential structural failure from prematured high cycle fatigue
(HCF). To prevent mechanical failures caused by HCF, and to increase the working lifetime
of blisks, extensive effort has been made to reduce the amplitudes of forced vibrations by
introducing various designs of frictional damping sources to blisks, such as underplatform
wedge dampers, frictional shroud contacts, and ring dampers.

Unfortunately, cyclic symmetry no longer exists in the presence of mistuning. There-
fore, a single sector is insufficient, and the full-order model of the entire blisk is required
to capture the free and forced responses of mistuned blisks. Full-order finite element (FE)
models of commercial blisks may contain many degrees of freedom (DOFs), and analyses
performed on such models are computationally expensive. Moreover, mistuning patterns
are random, and are best studied via statistical analyses. A Monte Carlo analysis requires
sampling the blisk dynamics over a large number of mistuning patterns, and is infeasi-
ble when full-order FE models are involved. Thus, researchers have developed various
reduced-order models (ROMs) to replace the full-order FE models. These ROMs accu-
rately predict the dynamics of mistuned systems with significantly reduced computational
effort. However, linear ROMs cannot be directly applied to blisks in contact with frictional
dampers, as frictionally damped systems are nonlinear in natural. As a result, ROMs are
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often combined with iterative solution methods to become capable of modeling nonlinear
blisk-damper systems.

Motivated by these concerns, this work aims to explore ROMs to predict the structural
dynamics of blisks under various conditions, including blisks with small material mistun-
ing, large geometric mistuning, and frictional ring dampers. Specifically, this work aims to
achieve the following:

• To develop ROMs that can model blisks with both small and large mistuning. The
ROM construction process should not incur high computational cost, and should be
efficient to be used for Monte-Carlo analyses to retrieve statistical characteristics of
blisk dynamics under random mistuning.

• To develop ROMs that can accurately capture the contact dynamics between a mis-
tuned blisk, and a dry friction ring damper. The ROM should be compact enough to
be used for statistical analysis to study the correlation between small mistuning and
frictional damping.

• To further enhance the capability of the developed ROMs so that they are capable of
analyzing structural dynamics of blisks with both small and large mistuning, and in
contact with friction dampers.

• To explore the effect of variations of damper geometry on its effectiveness in dissi-
pating vibrational energy. A set of design guidelines should be proposed to obtain
optimal damper geometries.

1.2 Dissertation Background

1.2.1 Modeling of Mistuning

Most of the existing reduced-order modeling techniques focus on small mistuning, assum-
ing that mistuning is small enough to be modeled as deviations in natural frequencies of
a nominal system. This assumption fails in the presence of significant changes of mass,
stiffness and geometry, hereafter referred to as large mistuning. One of the first reduced-
order modeling techniques for solving large mistuning problems was developed by Lim et
al. [1,2], based on the technique of component mode synthesis (CMS), where the mistuned
blisk is substructured into a tuned model and a virtual mistuning component. The tuned
blisk is projected onto its normal and attachment modes, whereas the mistuning compo-
nent is projected onto its normal and constraint modes. This method is general and can
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be applied to model both large and small mistuning. Unfortunately, since the attachment
and constraint modes are computed for each of the interface DOFs, the size of the resulting
ROM is very large. Thus, Lim et al. proposed a mode-acceleration formulation to reduce
the size of the ROM [3], where the projection basis is formed by tuned system modes
compensated by a set of quasi-static modes. The resulting ROM is much smaller in size
without significantly sacrificing its accuracy. However, this method is not effective to study
random mistuning since the quasi-static modes need to be repetitively computed for each
mistuning pattern. An interesting approach that targets random geometric mistuning was
proposed by Sinha [4]. His method characterizes geometric variations by a few proper
orthogonal decomposition (POD) features. A mode basis is formed by truncated sets of
system normal modes, where each set is obtained from a blisk model carrying a distinct
POD feature. This method is subsequently applied to model multistage blisks with random
mistuning patterns [5]. However, the number of POD features increases as the complexity
of geometric variations grows. Note that the mode bases formed by the above methods
require system-level mode shapes, which are extracted from the full-order blisk models. In
contrast, a method that utilizes cyclic modes was proposed by Mbaye et al. [6] to tackle
geometric mistuning. Cyclic mode shapes of each mistuned sector are obtained in their
method from cyclic symmetry modal analyses, which involve only sector-level computa-
tions. These sector-level mode shapes are expanded to assemble the corresponding system-
level mode shapes, which are subsequently used to form a mode basis. Unfortunately, such
a mode basis is very large in size, and direct projection of the full-order systems onto the
mode basis results in very heavy computations. Moreover, a modal scale factor (MSF) is
adopted to correct the phase shift among mode shapes of sectors with different mistun-
ing, characterized by rotations of nodal diameters. Computing MSF requires all mistuned
sectors to have the same number of DOFs. Consequently, this method is not applicable to
geometric mistuning that involves large volumes of missing material. Mbaye’s method also
has other issues yet to be addressed, including overly constrained ROMs, and potentially
ill-conditioned mode bases.

An exciting approach was proposed by Madden et al. [7] to efficiently model large mis-
tuning. Their technique is named the pristine rogue interface modal expansion (PRIME),
as it partitions a mistuned blisk into three components, including 1) a pristine component
that contains all DOFs of sectors identical to a nominal sector, 2) a rogue component that
contains all DOFs of sectors that have large mistuning, and 3) an interface component that
connects the pristine and rogue components. Similar to the method developed by Mbaye et
al., the mode basis formed by the PRIME technique makes use of cyclic modes. However,
instead of projecting the blisk onto full-order mode shapes, which requires system-level

3



computations, PRIME projects each sector onto its own cyclic modes expanded to only
the corresponding sector DOFs. Thus, the projection process is maintained on a sector
level. Displacement compatibility is then enforced across the interface DOFs. Note that
all computations required by the PRIME method are on a sector level. This feature makes
PRIME a promising candidate for studying random mistuning due to the low computa-
tional cost involved. Compared to Mbaye’s method, PRIME does not require any phase
angle matching process. PRIME has a conditioning process that prevents the ROM to be
overly constrained, and eliminates the ill-conditioning problem of the mode basis.

Small mistuning has been studied extensively, and many efficient approaches have been
developed. Most of the techniques fall into two categories: component-mode-based and
system-mode-based techniques. The first category of methods is based on the CMS tech-
nique, and involves substructuring a blisk into disk and blade components. Ottarsson et
al. [8, 9] proposed a hybrid-CMS method suggesting that the blade responses can be ex-
pressed as a linear combination of system normal modes computed for a blisk model
with massless blades, in addition to a set of cantilever blade modes (CB modes). This
method has been adopted by Bladh et al., and extended to study the dynamics of shrouded
blisks [10], and the effect of random mistuning [11]. However, Ottarsson’s method suffers
from inaccuracy in predicting the motion at the disk-blade interfaces. To accurately cap-
ture the interface responses, the Craig-Bampton CMS (CB-CMS) technique was adopted
by Bladh et al. [12, 13], where the blade and disk components are projected on to their re-
spective normal and constraint modes, with displacement compatibility enforced across the
disk-blade interface. Since the constraint modes are computed by applying a unit displace-
ment at every interface DOF, the resulting ROMs are very large in size. Although Bladh et
al. proposed a secondary modal analysis as a subsequent approach to reduce the ROM size,
this method requires re-calculating the mode basis once the mistuning pattern changes. In
2001, Yang et al. [14] proposed the first system-mode-based approach for modeling small
mistuning. This method is referred to as the subset of normal modes (SNM), as it is based
on the assumption that mode shapes of a mistuned blisk with closely spaced natural fre-
quencies can be expressed as a linear combination of the normal modes of a tuned system
in the same frequency range. Thus, the ROM of a mistuned blisk can be constructed with a
mode basis that contains only the normal modes of a tuned system. SNM importantly indi-
cates that small mistuning can be modeled without substructuring the blisk, as required by
the component-mode-based techniques. Feiner et al. [15] subsequently developed a sim-
plified form of SNM that requires very few input parameters, including only the natural
frequencies of a tuned system and the mistuning-incurred deviation in blade-alone natural
frequencies. Due to its minimal input requirement, this method is named the fundamental
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mistuning model (FMM). However, the simplicity of FMM is achieved by trading off its
generality, as FMM is only applicable when an isolated family of blade-dominated modes
is excited. Note that SNM has a feature that is favorable in statistical analyses of random
small mistuning. The basis formed by SNM contains modes of only a tuned system and
does not require re-constructions when the mistuning pattern changes. However, the modes
adopted by the SNM method are system-level normal modes, which are large in size for
refined blisk models.

As noted above, Lim et al. proposed a CMS-based method that can solve both large
and small mistuning problems. They also derived a simplified form of this approach that
focuses on small mistuning [1, 2]. This formulation, named component mode mistuning
(CMM), is similar to SNM in principle, which makes use of the normal modes of a tuned
system. However, based on the observation that most strain energy is localized in the
blades, it is assumed that the effect of mistuning on the system responses is dominated by
the blade mistuning components. Thus, Lim et al. further assume that small mistuning
only exists in the blades. Then, the blade mistuning components are projected onto a set of
CB modes. Modal participation factors are calculated to represent the contribution of each
CB mode, and to relate the blade-alone responses to the basis of system normal modes.
Compared to SNM, CB modes are much smaller in size than the system normal modes.
Also, the blade motion is usually dominated by only a few CB modes, and the size of the
CB mode basis can be further reduced. Therefore, the computational effort required by
CMM for model reduction is significantly lower than that required by SNM. However, CB
modes are calculated with the disk-blade interface held fixed, which assumes no motion
at the root of the blade. Thus, CMM suffers from inaccurate prediction for responses
associated with high interface motions. Also, CMM restricts mistuning to exist only in the
blade components, whereas in practice mistuning is random and can spread throughout the
entire blisk. Moreover, to compute CB modes, it is required to have a clear root of the blade,
which is not readily defined for complex structures such as dual-flow path systems. Vargiu
et al. [16] proposed the approach of integral mode mistuning (IMM) as an alternative to
CMM. IMM replaces the CB modes with the normal modes of a sector with free boundary
conditions. Such a mode basis eliminates the need of a root of the blade, and makes IMM
applicable to more realistic mistuning patterns.

Nodal energy weighted transformation, or NEWT, was recently proposed by Fitzner et
al. [17] as an efficient approach for modeling small mistuning. Similar to CMM, a mistuned
blisk is substructured into a tuned blisk and a virtual mistuning component. The mistuning
component is first projected onto a set of projection modes, and transformed into the modal
coordinates of a system tuned mode basis through participation factors. However, unlike
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the CB modes used by CMM and the normal modes of a sector with free interfaces used
by IMM, NEWT uses normal modes of a tuned sector with cyclic boundary conditions
(cyclic modes). Similar to IMM, these sector-level normal modes eliminate the need of a
root of the blade, and allow small mistuning to exist on multiple components throughout
a blisk. A mode selection criterion was developed based on the fact that within a family
of the cyclic modes, those associated with higher nodal diameters share similar shapes and
can be mutually dependent. Through such a criterion, the basis of projection modes can be
further reduced while the accuracy of the ROM is maintained.

1.2.2 Modeling of Frictionally Damped Blisks

To investigate the complex and nonlinear contact dynamics of dry friction damping, a vari-
ety of contact models have been developed and can be found in literatures. Due to its sim-
plicity, one-dimensional (1D) marco-slip contact models have been widely used [18–20],
and validated by data obtained from bench tests [21]. Arrays of 1D macro-slip models are
constructed to capture the micro-slip phenomenon [22–25]. These 1D friction models are
based on the assumption that the normal load acting on the contact surfaces is constant.
However, in the presence of out-of-plane motions, this assumption no longer holds. Yang
et al. [26] developed a 1D contact model that features normal contact stiffness to capture
the variable normal loads between two contact surfaces induced by relative motions in the
normal direction. Transition criteria for contact status among stick, slip, and separation
conditions were also suggested. Cigeroglu et al. [27] adopted this model, and proposed a
multi-mode solution method.

The contact models described above focus on 1D relative motions between two contact
surfaces. Sanliturk et al. [28] extended the 1D macro-slip contact model by allowing a
single-spring point contact to travel on a 2D plane. Menq et al. [29] developed a 2D contact
model that contains two coupled tangential contact springs, and derived analytical transition
criteria for contact status. Yang et al. [30] addressed the issue of variable normal loads for
3D relative motions between contact surfaces. Their 3D contact model was further used to
predict forced responses of nonlinear structures under periodic forcing [31].

Frictional contacts are nonlinear in nature. To solve the equations of motion of blisk-
damper systems that carry nonlinear contact models, a variety of solution methods have
been developed. Early studies focus on analytic derivations of the contact dynamics, and
heavily rely on assumptions of the damper geometry [32, 33]. Tanrikulu [34] proposed the
technique of describing functions, which models the nonlinear contact forces as response-
dependent equivalent damping and stiffness. Cigeroglu et al. [35] adopted this technique
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to study the dynamics of a friction-damped tip-shrouded blisk. Compared to describing
functions, a more well-known and widely adopted solution method is the harmonic bal-
ance method (HBM). Cardona applied HBM to predict periodic responses of a frictionally
damped system, and provided an analytical Jacobian for the Newton-Raphson solver [36].
Yang et al. [37] assumed two rigid contact surfaces between a blisk and a wedge damper,
where each contact surface is modeled by a 1D macro-slip contact model that accounts for
normal load variations. This work includes analytical transition criteria of contact status
that involve simultaneous stick-slip motions of two contact surfaces. HBM was used to
solve the nonlinear equations of motion [38]. A similar method is developed by Sanliturk
et al. [39], in which a two-dimensional contact model is used to account for the relative
motions in the axial direction of the blisk. Csaba [22] applied HBM to study the dynamic
responses of a curve-shaped underplatform damper. HBM has also been adopted to study
the periodic responses of blisks with frictional shroud contacts [40–42]. Variants of HBM
have also been developed to improve its efficiency [43,44]. Guillen developed a hybrid fre-
quency/time (HFT) domain method. In the HFT method, the nonlinear friction forces are
computed in the time domain, and transformed to the frequency domain, in which the equa-
tions of motion are solved by Newton-Raphson-like methods [45]. This method has been
adopted by Poudou et al. [46] to analyze friction damping in turbomachinery applications.

Although HBM and its variants have proved efficiency in analyzing friction-damped
systems, directly applying HBM to commercial FE models of blisk-damper systems can be
computationally expensive as the nonlinear equations of motion may contain many DOFs.
To address this issue, ROMs have been introduced to reduce the size of the full-order mod-
els. Exploiting cyclic symmetry, it is possible to use the model of a single sector to ob-
tain forced responses of blisks with frictional shroud contacts [47, 48]. Classical model
reduction methods, such as CB-CMS [49], are used to condense full-order models into
a relatively small subset of physical DOFs, including those on the contact surfaces, and
modal coordinates of the system normal modes with fixed CB-CMS interfaces [46, 50]. A
modal superposition method was introduced by Cigeroglu et al. [27] to project the full-
order models onto their free mode shapes. That approach adds rigid body mode shapes into
the projection mode basis [51, 52]. Recently, Mitra et al. [53] proposed a method using
adaptive micro-slip projection. This method is based on combining mode shapes of a set
of linear systems with strategically chosen boundary conditions on the contact surfaces.

The frictional contact models, solution methods and ROMs described above have been
extensively used to study underplatform wedge dampers, and frictional shroud contacts.
Comprehensive reviews are also available in literature [54, 55]. In contrast, limited work
has been done to study ring dampers. In the early studies, Niemotka et al. [56] analyzed the
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stress-strain relationships of a split ring under static forcing. Laxalde et al. [57] constructed
a lumped-parameter model of the blisk-damper system that features a 1D macro-slip con-
tact model. The resulting nonlinear equations of motion were solved by the HFT method.
The HFT method was further applied to a more realistic FE model of the blisk-ring sys-
tem [58]. A dynamic Lagrangian method was used to predict the nonlinear contact forces.
A nonlinear modal analysis approach was developed by Laxalde et al. [59], and applied to
determine design parameters of ring dampers.

1.2.3 Optimization of Damper Effectiveness

The effectiveness of friction dampers are commonly evaluated by the reduction in forced re-
sponse amplitudes at resonance. The non-linear forced responses of blisk-damper systems
are usually obtained by solving the equation of motion (EOM) in the frequency domain
based on HBM due to its superior computational efficiency. Although existing ROMs and
solution methods are powerful, it is often demanded, from a design perspective, to identify
a few sets of parameters that provide maximum energy dissipation and minimum forced re-
sponses at resonance. Thus, it is necessary to understand the sensitivity of forced responses
to variations of each design parameter. Conventional approaches of investigating the effect
of damper parameters on resonant responses involve performing forced response analyses
with a large amount of pre-selected sets of parameters. Unfortunately, repetitive computa-
tions of nonlinear forced responses, even with the advanced ROMs and solution methods,
require significant computational effort. Moreover, the pre-selected sets of parameters are
often not guaranteed to provide all necessary information required to search for an optimal
solution.

Sensitivity analyses have been adopted in many research areas to facilitate in tracing the
optimal sets of design parameters, and reducing the amount of repetitive computations. The
optimization problem can be efficiently solved when the sensitivity characteristics of forced
responses are determined. Unfortunately, limited investigations on forced response sensi-
tivity have been done in turbomachinery applications, especially for frictionally damped
blisks. Based on direct parametric analyses, Petrov et al. [60, 61] proposed a method to
predict nonlinear forced responses of frictionally damped blisks as a function of contact
parameters. The authors also derived analytical expressions of forced response sensitivity
to variations of each contact parameter. This method was further extended to directly pre-
dict the sensitivity of resonant frequencies and responses at resonance to contact parameter
variations and external forcing levels [62, 63]. A similar method was developed by Krack
et al. [64], with uncertainties in the design parameters and the excitation level taken into
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account. Although methods based on direct parametric analyses are effective in determin-
ing an optimal set of contact parameters, unfortunately, these methods share a common
limitation by assuming the geometry of a blisk-damper system remains unchanged dur-
ing optimization. The effectiveness of a friction damper depends not only on the contact
parameters, but also on its geometry.

1.3 Dissertation Outline

Chapter II introduces a reduced-order modeling technique that is capable of modeling
blisks with simultaneous large and small mistuning. The resulting ROM is expected to
be computationally efficient so that it is applicable to perform statistical analyses to study
the effects of random mistuning. The PRIME method [7] is capable of solving both large
and small mistuning problems. However, when sampling over a large amount of mistuning
patterns, especially when statistical analyses are involved, repetitively re-constructing the
ROM for each combination of large and small mistuning patterns can be a computationally
formidable task. Thus, it is necessary to adopt a method that specifically handles small
mistuning and is computationally less expensive than the current PRIME method. Strategi-
cally integrating a modified NEWT approach into the PRIME work frame can significantly
reduce the computational effort, and extend the PRIME technique to investigate random
mistuning. The NEWT projection basis is computed for a pristine sector and one of each
of the rogue sectors. The small mistuning component of each sector is then projected onto
its corresponding NEWT basis. Unlike the current NEWT method, the participation fac-
tors, instead of relating the contribution of the NEWT projection modes to the system-level
tuned normal modes, are computed to relate the projection modes to the PRIME basis.
Thus, the small mistuning component is eventually reduced and carried by the PRIME
ROMs, following the same pristine, rogue, and interface partitions.

Chapter III develops a novel ROM that can predict the nonlinear steady-state forced
responses of blisks with frictional ring dampers. The blisk-damper systems are projected
onto a small mode basis that mimics the relative motions between the contact surfaces
under stick and slip conditions, named as the basis of Coherent Ring Damper (CoRiD). The
resulting ROMs are expressed in a HBM formulation. The frictional contact between the
ring and the blisk contains contact node pairs that are distributed across the contact surfaces.
Each node pair can be modeled by a 3D sophisticated contact model developed by Yang et
al. [30]. However, to accelerate the computations, a simplified 3D contact model, consisting
of two independent 1D macro-slip models and an additional spring accounting for normal
load variations, is adopted in this study. The HFT method is used to solve the nonlinear
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equations of motion, where in the frequency domain, the nonlinear equations of motion
are expressed using only a few coordinates. Also, this work explores the effectiveness of
ring dampers in dissipating vibrational energy when forced responses are amplified by the
presence of mistuning. In this study, a method based on CMM is developed to construct
the mistuning components of the blisk-damper systems directly in the ROM coordinates
[1, 2, 7]. This method enables the developed ROMs to capture the forced responses of
mistuned blisk-damper systems, and to explore the correlations between mistuning and the
effectiveness of the frictional ring dampers.

Chapter IV further extends the CoRiD method by strategically Integrating it into the
PRIME frame. The resulted ROM is used to study the effectiveness of frictional ring
dampers when the blisk suffers from high-level forced responses due to simultaneous large
and small mistuning. The PRIME method is used to compute the system normal mode
shapes of a mistuned blisk-damper system with the two types of contact status, which are
further used as the input to the CoRiD method to form the mode basis for system reduction.

Chapter V studies the effect of variations of damper geometry on its effectiveness in
dissipating vibrational energy from the blisks. In this study, the geometry of a V-shaped
damper is parametrized following a volume constraint. A parametric study is performed by
varying two of the geometric parameters simultaneously at a time to explore the trade-offs
among dimensions of the damper. Moreover, a series of sensitivity analyses along each of
the damper dimensions are performed to reveal the optimal geometric parameters that the
damper should possess to reach its maximum effectiveness. Based on the results from the
sensitivity analyses, a set of damper design guidelines are also proposed.

Chapter VI offers a brief summary of contributions of the work in this dissertation, and
suggests ideas for future work.
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CHAPTER 2

Models for Blisks with Large Blends and Small
Mistuning

2.1 Introduction

Small deviations of the structural properties of individual sectors of blisks, referred to as
mistuning, can lead to localization of vibration energy and drastically increased forced
responses. Similar phenomena are observed in blisks with large damages or repair blends.
Such deviations are best studied statistically because they are random. In the absence of
cyclic symmetry, the computational cost to predict the vibration behavior of blisks becomes
prohibitively high. That has lead to the development of various ROMs. Most of the existing
approaches focus heavily on modeling small mistuning [1, 2, 8–17]. Among the limited
methods that are developed for modeling blisks with large mistuning, most of them [1–
5] involve repetitive CB-CMS condensation of the full-order FE models. This process is
computationally expensive and thus not ideal to be used for statistical analysis to study the
random nature of mistuning.

This work discusses a reduced-order modeling method for blisks with both large and
small mistuning, which requires low computational effort. This method utilizes the PRIME
method to model large blends. PRIME uses only sector-level cyclic modes strategically
combined together to create a reduction basis which yields ROMs that efficiently and accu-
rately model large mistuning. To model small mistuning, NEWT is integrated with PRIME,
resulting in N-PRIME, which requires only sector-level calculations to create a ROM which
captures both small and large mistuning with minimized computational effort.

This section is organized as follows. The PRIME and NEWT methods are briefly re-
viewed in the next section, followed by the formulation of the new approach, called N-
PRIME, as it is a hybrid of the PRIME and the NEWT methods. A stress mode technique
is also proposed to recover fast the stress distributions of forced responses. The combined
effects of large blends and small mistuning are studied using N-PRIME for a dual flow
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path system and for a conventional blisk. A typical example of the dual-flow path sys-
tem is shown in Fig. 2.1, which is also referred to as the FLADE™system. The accuracy
of the N-PRIME method is validated against full-order finite element analyses for both
natural and forced response computations, including displacement amplitudes and surface
stresses. Results reveal that N-PRIME is capable of accurately predicting the dynamics of
a blisk with severely large mistuning, along with small random mistuning throughout each
sector. Also, N-PRIME can accurately capture modes with highly localized motions. A
statistical analysis is performed to study the effects of random mistuning on both natural
frequencies and forced responses and reveals that 1) new clusters of mistuned natural fre-
quencies exist and cannot be treated as small deviations from nominal frequencies, and 2)
unexpectedly high amplifications of forced responses exist, showing 3 to 5 times higher
responses compared to the nominal system.

Figure 2.1: A finite element model of the FLADE™system

2.2 Methodology

In this section, two reduced-order modeling techniques which contribute to the develop-
ment of the N-PRIME method are briefly reviewed. Also, the process of integrating NEWT
into the PRIME work frame is discussed. Next, forced response computations are formu-
lated based on the developed N-PRIME ROM, with the stress mode technique included to
recover stress distributions fast.
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Figure 2.2: A mistuned dual-flow path system partitioned by PRIME

2.2.1 Pristine Rogue Interface Modal Expansion

N-PRIME is constructed under the frame of pristine-rogue-interface modal expansion, or
PRIME, which is designed to solve large mistuning problems. Consider the equation of
motion of a mistuned blisk with harmonic forcing as[

−ω2M+ (1+ jγ)K
]
x = f, (2.1)

where M and K are the system mass and stiffness matrices, γ is the structural damping
ratio, and f is the amplitude of the harmonic forcing. This mistuned system is partitioned
into three components: a pristine component which contains the DOFs of sectors that are
structurally identical to a nominal sector, a rogue component which contains the DOFs of
sectors that are largely mistuned, and an interface component that connects the pristine and
rogue components (Fig. 2.2). The partitioned mass and stiffness matrices can be expressed
as

M =


MPP MPR MPI

MRP MRR MRI

MIP MIR MII

 , K =


KPP KPR KPI

KRP KRR KRI

KIP KIR KII

 . (2.2)

It has been observed in previous work [2,3] that in the presence of large mistuning, the
assumption suggested by Yang et al. [14] that the mistuned mode shapes can be expressed
as a linear a combination of tuned mode shapes no longer holds. Instead, the PRIME
method is based on a relaxed assumption, namely that the pristine DOFs of the mistuned
mode shapes can be represented by a linear combination of the corresponding DOFs of
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cyclic tuned mode shapes (ΦP). Similarly, the rogue DOFs of the mistuned mode shapes
can be represented by a linear combination of the corresponding DOFs of cyclic rogue
mode shapes (ΦR). With such assumption, the PRIME mode basis can be assembled as

ΦPRI =


ΦP 0 0
0 ΦR 0
0 0 ΦI

 . (2.3)

Note thatΦI represents interface mode shapes added to the PRIME mode basis to char-
acterize the motion of the interface. The motion of the interface is conditioned so that we
enforce displacement compatibility across the boundaries between the pristine and rogue
components. This displacement compatibility is enforced by ensuring the same generalized
coordinate amplitude along all independent directions in a subspace that is the intersection
of two subspaces one ofr each of the two sectors at that interface. Projecting the mistuned
system onto the PRIME basis yields the reduced-order mass and stiffness matrices as

MPRI =Φ
PRITMΦPRI

=


ΦPTMPPΦP ΦPTMPRΦR ΦPTMPIΦI

ΦRTMRPΦP ΦRTMRRΦR ΦRTMRIΦI

ΦITMIPΦP ΦITMIRΦR ΦITMIIΦI

 ,
KPRI =Φ

PRITKΦPRI

=


ΦPTKPPΦP ΦPTKPRΦR ΦPTKPIΦI

ΦRTKRPΦP ΦRTKRRΦR ΦRTKRIΦI

ΦITKIPΦP ΦITKIRΦR ΦITKIIΦI

 .
(2.4)

Note that ΦP and ΦR contain sector-level mode shapes obtained from cyclic modal
analyses. Also, the mass and stiffness matrices of a cyclically symmetric blisk, M and K,
are block-diagonal for usual node numbering. Thus, constructing the reduced-order model
involves only sector-level computations.

PRIME is also capable of constructing ROMs for systems with simultaneous large and
small mistuning. Consider the equation of motion of a blisk with both large and small
mistuning [

−ω2(M+Mδ)+ (1+ jγ)(K+Kδ)
]
x = f, (2.5)

where Mδ and Kδ are the mass and stiffness matrices of small mistuning components.
Projecting the mistuned system onto PRIME mode basis transforms the equation of motion
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into the reduced-order domain as[
−ω2(MPRI+ΦPRITMδΦPRI)+

(1+ jγ)(KPRI+ΦPRITKδΦPRI)
]
pPRI =ΦPRITf,

(2.6)

and the mass and stiffness matrices of the mistuned system are thus reduced to the following
form

Mred =MPRI+ΦPRITMδΦPRI,

Kred =KPRI+ΦPRITKδΦPRI.
(2.7)

The formulation shown by Eqns. (2.6) and (2.7) is acceptable in terms of accuracy. How-
ever, in the context of statistical analyses, the process of repetitively projecting the small
mistuning component onto the PRIME basis may require a heavy computational effort. To
model small mistuning more efficiently, Madden et al. [7] integrated a modified CMM [2,3]
approach into PRIME (C-PRIME). The PRIME mode basis is projected onto a set of a few
CB modes computed for a pristine sector and one of each of the rogue sectors. The projec-
tion is expressed as

ΦP
j =Φ

P
cbqP

cb, j,

ΦR
j =Φ

R
cb, jq

R
cb, j.

(2.8)

If the jth sector of the blisk system is pristine, Φcb contains the CB modes of a pristine
sector. The participation factor qP

cb, j represents the contributions of the pristine CB modes
to the mode shapes of the jth sector in the PRIME mode basis. Similarly, if the jth sector
is rogue, ΦR

cb, j contains the CB mode shapes of that rogue sector, and the participation
factors qR

cb, j represents contributions of the rogue CB modes to the PRIME basis. The
ROM formulated by C-PRIME is expressed as

Mred =MPRI+

N∑
j=1

qT
cb, jΦcb, j

TMδ
jΦcb, jqcb, j,

Kred =KPRI+

N∑
j=1

qT
cb, jΦcb, j

TKδ
jΦcb, jqcb, j.

(2.9)

Note that in Eqn. (2.9), the projection of the mistuning components onto the CB modes,
and the subsequent transformation into the PRIME modal coordinates by participation fac-
tors, are formulated as a sum of sector-level projections over the number N of sectors,
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where Mδ
j and Kδ

j are the mistuning components of the jth sector. Φcb, j represents the
set of CB modes of the jth sector, which is selected from either ΦP

cb or ΦR
cb, j, depending

on whether the jth sector is a pristine or one of the rogue sectors. qcb, j contains the cor-
responding participation factors of the jth sector. The integration of CMM into PRIME
separates the construction of ROM for small mistuning from that of large mistuning. Since
the blade motions are in general dominated by one or two CB modes, the computational
effort required to assemble the reduced-order mistuning matrices is significantly reduced.
However, by using CB modes as the mode basis for projection, CMM assumes little or no
motion at the root of each blade. This assumption fails when disk-dominated modes are
excited. Moreover, CB modes contain only blade DOFs, which restricts mistuning to exist
only on the blade components. Also, extracting CB modes requires a clear definition of the
root of a blade. These requirements render CMM inapplicable to dual-flow path systems,
where one sector may contain multiple components with distinct mistuning patterns, and
the root of a blade is not readily defined.

2.2.2 Nodal Energy Weighted Transformation

To explore the dynamics of dual-flow path systems, and to address the limitations of the
C-PRIME method, the NEWT method is adopted in this study. Consider a system that
has small mistuning only. The mistuning components Mδ and Kδ are projected onto the
system-level tuned modes Φ0 as follows

Mred,δ =Φ0TMδΦ0,

Kred,δ =Φ0TKδΦ0.
(2.10)

Instead of CB modes used by CMM [2,3], NEWT strategically selects a subset of cyclic
mode pairs A0 and B0 of a tuned sector as the projection basis. The system-level tuned
mode shapes of the jth sector can be expressed as a linear combination of the selected
cyclic mode pairs as

Φ0
j = A0q j+B0r j, (2.11)

where Φ0
j contains the system-level tuned mode shapes corresponding to the DOFs of the

jthsector. Modal participation factors q j and r j represent the contributions of the cyclic
mode pairs, A0 and B0 respectively, to each mode in Φ0

j . Substituting Eqn. (2.11) into
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Eqn. (2.10) yields

Mred,δ =

N∑
j=1

(A0q j+B0r j)TMδ
j(A

0q j+B0r j),

Kred,δ =

N∑
j=1

(A0q j+B0r j)TKδ
j(A

0q j+B0r j).

(2.12)

Note that a mode selection process is also proposed by Fitzner et al. [17], based on
the assumption that within one mode family, cyclic modes associated with higher nodal
diameters share similar shapes, and are mutually dependent on each other. Therefore, a
strategically selected subset of cyclic mode shapes can span the full modal space, and the
projection basis formed by NEWT can be further reduced.

2.2.3 N-PRIME: Extending PRIME with a Modified NEWT

Due to the presence of large mistuning, the original NEWT projection basis, formed by
only the tuned cyclic modes, becomes insufficient. Therefore, the NEWT basis is modified
to include not only the cyclic mode pairs of a pristine sector, but also the those of each
rogue sector. The projection from the PRIME mode basis onto the modified NEWT basis
for the jth sector possesses either of the following forms

ΦP
j = APqP

j +BPrP
j ,

ΦR
j = AR

j qR
j +BR

j rR
j .

(2.13)

Similar to the C-PRIME method, the mode shapes of the jth sector in the PRIME mode
basis are projected onto the cyclic mode pairs. Depending on the sector type, if the jth sector
is pristine, the cyclic mode pairs are selected from AP and BP, and the modal participation
factors qP

j and rP
j represent the contribution of the pristine cyclic mode pairs to the mode

shapes of the jth sector in the PRIME mode basis. Similarly, if the jth sector is rogue, AR
j

and BR
j contain the cyclic mode pairs of the rogue sector, and modal participation factors

qR
j and rR

j represent the contribution of the rogue cyclic mode pairs to the mode shapes of
the jth sector in the PRIME mode basis.

Note that the above projection involves expanding cyclic mode pairs to a specific sec-
tor. This process requires adjusting the phase angle based on the sector index as well as the
nodal diameter (or harmonic index). Such adjustment is implicitly carried by the participa-
tion factors, and indicated by their subscripts j = sector number. Substituting Eqn. (2.13)
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into Eqn. (2.6) results in the following reduced-order matrices

Mred =MPRI+

N∑
j=1

(A jq j+B jr j)TMδ
j(A jq j+B jr j),

Kred =KPRI+

N∑
j=1

(A jq j+B jr j)TKδ
j(A jq j+B jr j).

(2.14)

Equation (2.14) shows ROM matrices that are capable of efficiently modeling both
large and small mistuning for complex structures such as dual-flow path systems. This
novel reduced-order modeling technique is developed by integrating a modified NEWT
method into the current PRIME work frame, and is thus named N-PRIME. The mistuning
components of the N-PRIME ROM expressed in Eqn. (2.14) are computed as a sum of
sector-level projections. Note that the NEWT basis in general contains much fewer modes
than the PRIME basis. And since the modal participation factors can be pre-calculated, the
computational effort required to formulate ROMs for small mistuning is minimal.

2.2.4 Forced Responses and Fast Stress Recovery

With the ROM constructed by N-PRIME, forced response computations can be formulated
as [

−ω2Mred+ (1+ jγ)Kred
]
pPRI =ΦPRITf, (2.15)

and the physical displacement responses can be extracted as

x =ΦPRIpPRI. (2.16)

To explore the effects of simultaneous large and small mistuning on forced responses,
a metric within which the effect of mistuning is measured must be defined. It is well
known that in the presence of mistuning, strain energy localization may occur which leads
to drastic increases in forced responses. Thus, it is insightful to compare the maximum
magnitude of displacements throughout the mistuned system with that throughout a tuned
system, under the same forcing conditions. This metric is called the amplification factor,
and is defined as

AFx =
maxω(maxNnode

i=1 (‖xm
i ‖))

maxω(maxNnode
j=1 (‖x0

j‖))
, (2.17)

where Nnode is the total number of nodes in an entire blisk, and ω is the forcing frequency.
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Superscript m stands for a mistuned system, whereas 0 stands for a tuned system. Note
that the definition of the amplification factor proposed here does not focus on one or a few
pre-select response nodes, despite the fact that the maximum responses of a tuned and a
mistuned systems can occur at different locations. This is intentionally done to account
for localization of strain energy and highly confined motion caused by mistuning. Such
localization can occur at different locations from where the maximum response of a tuned
system is. If only a single or a few response nodes are included for analyses, the amplifi-
cation factor can be underestimated. For low order mode families, an amplification factor
based on specified points on the blade would be very similar in the case of small mistuning.
However, in the case of large mistuning, that point may not even exist on all blades, so we
defined an amplification factor based on the maximum response in the entire sector.

In addition to displacements, stress distributions of mistuned systems under external
forcing are investigated to further reveal the effects of mistuning. Instead of performing a
full-order harmonic analysis, it is ideal to re-use the developed N-PRIME ROM to com-
pute stress responses. This can be achieved with the following observation. Substituting
Eqn. (2.16) into the definition of strain and stresses yields the following expressions

εkl =
1
2

(xk,l+xl,k)

=
1
2

((ΦPRI
k pPRI),l+ (ΦPRI

l pPRI),k)

=
1
2

(ΦPRI
k,l +Φ

PRI
l,k )pPRI,

(2.18)

σkl = Cklmnεmn

=
1
2

Cklmn(ΦPRI
m,n +Φ

PRI
n,m )pPRI,

(2.19)

where C is the elasticity tensor, and xk represents the displacements in the kth direction.
With the above relationship among stresses, strain, and PRIME modal participation factors,
it is convenient to define and pre-compute the PRIME stress modes ΨPRI

kl as

ΨPRI
kl =

1
2

Cklmn(ΦPRI
m,n +Φ

PRI
n,m ), (2.20)

and the stress distributions of forced responses can be computed easily as a linear combi-
nation of ΨPRI

kl as

σkl =Ψ
PRI
kl pPRI. (2.21)
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The above formulation takes advantage of the developed N-PRIME ROM, and the
modal participation factors obtained from the displacement responses. Thus, this formu-
lation involves only sector-level computations, and requires minimal input parameters. In
practice, the highest stresses are usually found on the surfaces of the blade components,
where the largest strain occurs. This assumption reduces the size of each stress mode, and
accelerates the stress recovery process in two ways. First, surface stresses are extracted at
the center point of each surface element. The number of surface elements is much smaller
than the total number of nodes. Also, compared with six stress components possessed by
each node, only three in-plane stress components are extracted for each surface element.
It should be noted that the stress recovery procedures demonstrated in this paper is not re-
stricted to the N-PRIME method. For a mode shape in any reduction basis, a corresponding
stress mode shape can be obtained. The stress distribution (elements of the stress tensor)
resulting from forced responses can be expressed as a linear combination of the stress mode
shapes.

Similar to the magnitude of displacement used in formulating the amplification factor
of displacements, Von-Mises stresses are adopted in this study to develop the stress ampli-
fication factor. For a 2D planar case, Von-Mises stresses at the center point of each surface
element is defined as

σ2
VM = ‖σk‖

2+ ‖σl‖
2+3‖σkl‖

2−
σ̄kσl+σkσ̄l

2
, (2.22)

where σVM represents the Von-Mises stresses, and σ̄i and σ̄ j are the complex conjugates of
corresponding in-plane stress components. Comparing the maximum Von-Mises stresses
over all blade surface elements of a mistuned system with that of a tuned system. The stress
amplification factor can be defined as

AFσ =
maxω(maxNnode

i=1 (σm
VM,i))

maxω(maxNnode
i=1 (σ0

VM,i))
. (2.23)

The stress amplification factor is defined in the same way as for the displacement ampli-
fication factor. The same arguments apply here for stresses as those for displacements. In
fact, for stresses, this is an even more important issue because the location of the maximum
stress can significantly change due to the large blends.
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2.3 Results and Discussion

In this section, the N-PRIME approach is applied to two distinct models, including a sim-
plified academic model of a conventional blisk and a more complex model of a dual-flow
path system. Mistuned natural frequencies are computed for both models, and compared
with the results generated by the C-PRIME method, where applicable. Forced responses
are computed for both systems to extract the displacements and stresses under traveling
wave excitations. For both analyses, the results are validated against the full-order finite el-
ement analysis performed in ANSYS. A statistical analysis is performed on the dual-flow
path system to compute the probability distributions of 1) mistuned natural frequencies,
and 2) displacement and stress amplification factors by sampling the dual-flow path system
over a large number of simultaneous large and small mistuning patterns.

2.3.1 Conventional Blisks

Figure 2.3 shows a simplified academic model of a conventional blisk, referred to as the UM
Validation Blisk. Small material mistuning is applied to each blade by varying its Young’s
modulus by a small percentage from the nominal value. Such variations are determined
randomly following a normal distribution with a 0 mean and a 2% standard deviation.
Large mistuning is created by removing a significant volume of material from one of the
blades. In this study, three cases of large mistuning are considered, each of which involves
a different volume of material removed from a blade tip, as shown in Fig. 2.4.

Figure 2.3: A finite element model of the UM Validation Blisk
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(a) 10% Material (b) 20% Material (c) 30% Material

Figure 2.4: Large mistuning: 10%, 20% and 30% material removed from a blade compo-
nent

2.3.1.1 Free Responses

Consider a case with 10% material removed from one of the blades. 186 PRIME modes
for the pristine and each of the rogue sectors are included to compute the first 102 natural
frequencies of the mistuned blisk. Figure 2.5a shows the error in natural frequencies com-
puted by the C-PRIME method. 5 CB modes are used to form the CMM mode basis for the
pristine sector and each one of the rogue sectors (up to 20 kHz). These results are compared
with the errors in the natural frequencies provided by the N-PRIME method, with 5 cyclic
modes (selected within the frequency range, up to 20 kHz) used to form the NEWT pro-
jection basis. These cyclic modes are associated with the highest nodal diameter, and are
hereafter referred to as the N/2 modes. At the first glance, results generated by N-PRIME
are not superior to those computed by C-PRIME. However, with more CB modes adopted
by C-PRIME (37 modes for each sector, up to 120 kHz), its accuracy is not significantly
improved (Fig. 2.5b). In contrast, with 37 cyclic modes adopted for each sector, N-PRIME
provides a much better accuracy. With all 186 cyclic modes included in the NEWT projec-
tion basis, hereafter referred to as the exhaustive projection, the maximum error of natural
frequencies is reduced to a value less than 0.011% (Fig. 2.5c), which is approximately three
times lower than the maximum error in the results computed by C-PRIME with either of
the two sets of CB modes.

Figure 2.6 shows the relative error in the maximum displacement of each mode shape
computed by the ROMs. A similar trend is observed in the case of mode shapes, where
the N/2 mode basis generates the highest error of approximately 3.5%. The bases formed
by 5 and 37 CB modes result in same level of accuracy, with a maximum error of approxi-
mately 1.3%. N-PRIME with exhaustive projection results in a lowest error of 0.5%, which
indicates a good accuracy of this basis in predicting mistuned mode shapes.

As mentioned previously, mistuning can lead to strain energy localization, which typi-
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(c) N-PRIME Exhaustive Projection

Figure 2.5: Relative errors in frequencies for the UM Validation Blisk: C-PRIME and
N-PRIME with different small mistuning projection bases
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Figure 2.6: Relative errors in mode shapes for the UM Validation Blisk: C-PRIME and
N-PRIME with different small mistuning projection bases
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Figure 2.7: A mode shape with highly localized blade motion (mode index 71)

cally results in mode shapes with localized and significantly amplified motions. Figure 2.7
shows the mode shape of index 71. Note that the error carried by the ROM-predicted fre-
quency for this localized mode remains small, which is less than 0.001%, and demonstrates
that N-PRIME is capable of capturing such extreme cases.

Due to its better accuracy, N-PRIME with exhaustive mode basis is used to compute the
natural frequencies for the UM Validation Blisk with 20% and 30% material removed from
one blade. Figure 2.8 shows the error in natural frequencies of the ROM-predicted results.
Note that in an extreme case of large mistuning, where 30% blade material is removed from
the blade, N-PRIME remains capable of accurately capturing the natural frequencies, with
a maximum error that is less than 0.013%.

Figure 2.9 shows the shift of natural frequencies induced by mistuning, from the fre-
quencies of a pristine blisk. Compared to the maximum shift of 15%, and an average shift of
1.14%, the relative error in natural frequencies, provided by both C-PRIME and N-PRIME,
is significantly smaller than the level of shift due to mistuning. Under this circumstance,
both methods are acceptable in predicting natural frequencies, with the exhaustive projec-
tion basis providing a better accuracy.

2.3.1.2 Forced Responses

A traveling wave excitation is adopted in this study as the forcing function. It is the most
common type of forcing used in analyzing blisk dynamics. A traveling wave excitation is
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Figure 2.8: Relative errors in frequencies computed by N-PRIME with the exhaustive pro-
jection for the UM Validation Blisk with 20% and 30% material removed from a single
sector
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Figure 2.9: Natural frequency shift induced by mistuning for the UM Validation Blisk with
10%, 20% and 30% material removed from a single sector
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a function of engine order EO, and can be expressed as

f =
N∑

j=1

F je−i( j−1)EO 2π
N , (2.24)

where F j is the amplitude vector of the excitation on the jth sector. Responses under exci-
tations of lower engine orders are expected to exhibit disk-dominated motions. In contrast,
excitations of higher engine orders often result in blade-dominated responses. For the
completeness of this analysis, excitations of both engine order 1 and 12 are included. The
traveling wave excitation is applied at the tip of each blade to generate adequately large de-
formation. Mistuned natural frequencies are chosen as the forcing frequencies. A structural
damping ratio of 0.03 is selected.

Consider a blisk that has 30% material removed from one blade, along with small varia-
tions in Young’s modulus of each blade. This mistuning pattern resembles an extreme case
of simultaneous large and small mistuning. Maximum displacements throughout the blisk
at each forcing frequency are extracted for validation. Figure 2.10a shows the deviations in
ROM-predicted displacements, under a traveling wave excitation of engine order 1, from
the responses computed by the full-order FEA. With 5 N/2 modes and 5 CB modes adopted,
respectively, N-PRIME provides a comparable accuracy with that provided by C-PRIME,
throughout the range of forcing frequencies (0 - 4 kHz). N-PRIME with exhaustive pro-
jection provides the best accuracy among all presented projection bases, with a maximum
error in displacements that is less than 0.18%. Figure 2.10b shows another case where the
same mistuned blisk is forced under a traveling wave excitation of engine order 12. With
the 5 N/2 and CB modes employed, respectively, N-PRIME provides a better accuracy than
C-PRIME does. Again, N-PRIME with exhaustive projection achieves the best accuracy.

Surface stress distributions are computed for above cases based on the technique of
stress modes. Similar to the validation process for displacement responses, the maximum
Von-Mises stresses are extracted throughout the surface of all blades at each forcing fre-
quency. Figure 2.11a shows the error in surface stresses for the mistuned blisk under an
excitation of engine order 1. In this case, C-PRIME provides a better accuracy than N-
PRIME. With exhaustive projection, N-PRIME provides a better accuracy, comparable to
that of C-PRIME, with an error in surface stresses of approximately 0.3%. However, under
an excitation of engine order 12, with the same number of N/2 and CB modes involved,
N-PRIME shows a better accuracy, with a maximum error of 0.5% compared to 0.66%
provided by C-PRIME. This error is further reduced to 0.35% when the exhaustive projec-
tion is used. Note that the accuracy in predicting surface stresses is limited by the fact that
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(b) Engine order 12

Figure 2.10: Error in displacements under traveling wave excitations of engine order 1
and 12, computed by C-PRIME and N-PRIME with different projection bases for the UM
Validation Blisk with 30% material removed from a single sector

strain is a spatial derivative of displacements, and the process of numerical differentiation
introduces an additional error source in predicting strains and stresses. Thus, the error in
predicting surface stresses can only be considered an upper bound error carried by the N-
PRIME method. This upper bound does not indicate N-PRIME has a worse accuracy than
C-PRIME in computing surface stresses, and vice versa.

2.3.2 Dual-Flow Path Systems

2.3.2.1 Free and Forced Responses

The N-PRIME method is applied in this section to a model of a dual-flow path system that
contains 28 sectors. Compared to a conventional bladed disk, the tips of the inner blades
are connected to an additional shroud. A second set of blades are attached to the opposite
side of the shroud. A sector model of the dual-flow path system is shown in Fig. 2.12.
The design of the dual-flow path system adds complexity to its geometry, and a lack of a
clear definition of the root of a blade. Consequently, C-PRIME method cannot be applied
easily to the dual-flow path system. In contrast, the N-PRIME with exhaustive projection
can easily be adopted to analyze the dynamics of the dual-flow path system.

Each sector of the dual-flow path system contains four components that can have dis-
tinct small material mistuning. Also, large geometric mistuning may occur at both the inner
and outer blade components. In this study, the source of large mistuning includes material
being removed from inner blades, outer blades, and simultaneously both these components
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Figure 2.11: Error in surface stresses under traveling wave excitations of engine order 1
and 12, computed by C-PRIME and N-PRIME with different projection bases for the UM
Validation Blisk with 30% material removed from a single sector

Figure 2.12: A finite element model of a sector of the dual-flow path system
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(a) 10% of the inner blade (b) 30% and 20% of outer and inner blades

Figure 2.13: Large mistuning of the dual-flow path system created by removing different
amounts of material from different components

of a single sector. Similar to the UM Validation Blisk, small mistuning is applied to the
dual-flow path system by varying the Young’s modulus of each component. Three distinct
sets of small mistuning patterns are applied to all 28 inner blade, 28 outer blade, and 28
shroud components, respectively. Each of the mistuning patterns is chosen randomly and
follows a normal distribution with a 0 mean and a 2% standard deviation.

Consider the case where 10% material is removed from the inner blade of one sector,
shown in Fig. 2.13a. Figure 2.14 shows the error in displacements and stresses under a
traveling wave excitation of engine order 14 applied at the tip of each outer blade. The
system is forced at the mistuned natural frequencies. Note that the error carried by most
ROM-predicted responses is less 1.5%. However, some responses are associated with a
large error ranging from 2% to 4.5%. These responses occur when modes with highly
localized motions are excited (Fig. 2.15).

Note that for a conventional blisk, all cyclic modes that are associated with high nodal
diameters have mode shapes with blade-dominated motion. In the previous section, 7 mode
families for each pristine and rogue sector ranging from 0 to 20 kHz are added to the
PRIME basis and are sufficient to capture the localized modes from 0 to 12 kHz. Unlike
conventional blisks, cyclic modes of the dual-flow path system that are associated with
high nodal diameters can have either inner-blade-dominated or outer-blade-dominated mo-
tion (Fig. 2.16). Thus, the PRIME basis for the dual-flow path system must include enough
mode families, compared with 7 families used for UM Validation Blisk, in order to ade-
quately contain both types of modes. The current PRIME basis, formed by 232 sector-level
cyclic mode shapes, consists of 5 families of outer-blade-dominated modes, and only 2
families of inner-blade-dominated modes for the pristine and each of the rogue sectors.
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Figure 2.14: Error in forced responses of the dual-flow path system under a traveling wave
excitation of engine order 14, in the case where 10% material is removed from the blade
component of a sector

(a) Mode caused by inner blade mistuning (b) Mode caused by outer blade mistuning

Figure 2.15: Modes with highly localized motion under different types of large mistuning
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(a) Inner-blade-dominated mode (b) Outer-blade-dominated mode

Figure 2.16: Modes associated with high nodal diameters

Such a basis is insufficient to capture the localized modes. To improve the accuracy of the
N-PRIME method, all cyclic modes ranging from 0 to 20 kHz are added to the PRIME
basis. Figure 2.17 shows the deviation in ROM-predicted free and forced responses when
the larger PRIME basis is used. The error is reduced to a significantly lower level, with a
maximum error of 0.53% in displacements and 0.8% in stresses under an excitation of en-
gine order 14 (Fig. 2.17b). Note that such a small error is also observed when an excitation
of engine order 1 is applied to the mistuned blisk, where the disk-dominated modes are
excited (0.38% in displacements, and 0.9% in stresses), as shown in Fig. 2.17a. Moreover,
the maximum error in ROM-predicted mistuned frequencies is 0.0049%, which is negligi-
bly small (Fig. 2.18). Due to the improved accuracy, this larger PRIME basis is used for
the rest of the analysis.

Consider an extreme case that involves large mistuning on both the inner and outer blade
components. Figure 2.13b shows a damaged sector of a dual-flow path system with 20%
and 30% material removed from the inner and outer blade components. Figure 2.20 shows
that even in this extreme case, the error carried by the ROM-predicted natural frequencies
remains below 0.008%. And the error in forced responses, including both displacements
and stresses, has an upper bound of 0.7% (Figs. 2.19a and 2.19b). These results demon-
strate that the N-PRIME method is accurate and stable even for severe scenarios of large
mistuning.
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(a) Engine order 1 excitation
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(b) Engine order 14 excitation

Figure 2.17: Forced response errors computed with a larger N-PRIME basis, for the dual-
flow path system with 10% material removed from the inner blade component of a single
sector
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Figure 2.18: Frequency errors computed with a larger N-PRIME basis, for the dual-flow
path system with 10% material removed from the inner blade component of a single sector
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(b) Engine order 14 excitation

Figure 2.19: Forced response errors computed with a larger N-PRIME basis, for the dual-
flow path system with 30% material removed from the outer blade and 20% removed from
the inner blade of a single sector
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Figure 2.20: Frequency errors computed with a larger N-PRIME basis, for the dual-flow
path system with 30% material removed from the outer blade and 20% removed from the
inner blade of a single sector
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2.3.2.2 Statistical Analysis

The previous free and forced response analyses reveal that certain mistuning patterns result
in modes with highly localized motions. These modes are often associated with isolated
natural frequencies that do not belong to any mode family. However, the correlation be-
tween mistuning patterns and occurrences of the isolated modes are uncertain. With fast
computations and accuracy provided by the N-PRIME method, it is possible to sample a
dual-flow path system over a large amount of mistuning patterns to extract its statistical
characteristics, and to reveal the effect of random mistuning on blisk dynamics. In this
study, a Monte-Carlo analysis is applied to the dual-flow path system, with 1,000 samples
of mistuning patterns included. The mistuning patterns are created as the following:

1. Large mistuning patterns are created by randomly selecting 1 or 2 of the 28 sectors
as rogue sectors. Each of the rogue sectors has different volume of material removed
from either its inner or outer blade component. In this study, 10 large mistuning
patterns are created.

2. Each large mistuning pattern is associated with 100 different small mistuning pat-
terns. Small mistuning patterns are randomly created by varying the Young’s modu-
lus of all inner blade, shroud, and outer blade components. These variations follow a
normal distribution with a 0 mean and a 2% standard deviation.

Figure 2.21 shows the probability distribution of the ROM-predicted natural frequen-
cies for the 1,000 mistuning patterns. Note that most natural frequencies can be treated as
deviations from the natural frequencies of a nominal system (shown by x symbols below
the zero probability line). However, there exist groups of mistuned natural frequencies that
are not close to any nominal frequencies, including the groups formed near 1,640 Hz and
3,340 Hz. These mistuned natural frequencies correspond to isolated modes that contain
highly localized motion, as shown in Fig. 2.22. Since all mistuned natural frequencies up
to 5 kHz are included in the Monte Carlo analysis, the occurrence of these isolated modes
is relatively low. The probability of the natural frequencies near 3,340 Hz is approximately
0.0048%. However, 99 of the 1,000 mistuning patterns result in such an isolated mode, and
therefore such occurrence of isolated modes cannot be ignored in the design process.

An interesting phenomenon is discovered that the motion contained by the isolated
mode shapes demonstrated in Fig. 2.22 are localized on the rogue sectors. This phe-
nomenon indicates that the cyclic modes of the rogue sectors have a dominating partici-
pation in forming such isolated mode shapes. Thus, in this case, one possible source of
the emerging groups of mistuned natural frequencies near 1,640 Hz and 3,340 Hz are the
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Figure 2.21: Probability distribution of mistuned natural frequencies of the dual-flow path
system with random mistuning

(a) Isolated mode shape around 1,640 Hz (b) Isolated mode shape around 3,340 Hz

Figure 2.22: Typical mode shapes for the two clusters of isolated modes around 1,640 and
3,340 Hz
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Figure 2.23: Probability distributions of amplification factors of forced responses for the
dual-flow path system with random mistuning

frequencies associated with cyclic rogue modes within the same frequency range (shown
by circles below the zero probability line in Fig. 2.21). However, this is an incomplete
observation since within the frequency range between 3,840 Hz and 3,890 Hz, there exist
frequencies of cyclic rogue modes. However, no mistuned natural frequencies are found in
this frequency range.

Figure 2.23 shows the probability distributions of displacement and stress amplification
factors under traveling wave excitations. The forced response computations are performed
for a) each of the 1,000 mistuning patterns at the resulting mistuned natural frequencies up
to 4 kHz, and b) for all engine orders from 0 to 14. In Fig. 2.23a, the mean value of the
displacement amplification factors is 1.3131, and the 95 percentile amplification factors is
1.7413, which corresponds to an increase in displacement amplitudes of 74.13%. Also, the
mean stress amplification factor is 1.3436, and the 95 percentile stress amplification factors
is 1.7800, which corresponds to an increase in Von-Mises stresses of 78.00% (Fig. 2.23b).
Note that both the mean and 95 percentile amplification factors of stresses are slightly
higher than that of displacements.

Conventionally, the amplification factors extracted from displacement responses are
used to estimate the maximum stress as

max
ω

(σm) =max
ω

(σ0)AFx. (2.25)

The results provided by the statistical analysis suggests that Eqn. (2.25) is valid in
estimating the mean value of stress amplification, and the 95 percentile of the maximum
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stress amplification. However, Fig. 2.23b reveals that the stress amplification factors are
more concentrated in a certain range, such as the peak located at 1.30, and the group of
amplification factors near 2.20. Thus, Eqn. (2.25) cannot be applied to generate an accurate
full profile of stress amplifications.

Previous work by Bladh et al. [11] suggests that the probability density functions (pdf)
of the amplification factors follow a modified Weibull pdf, which is expressed as

P(AF) =
a
b

(
−AF+ c

b
)
a−1

e−(−AF+c
b )

a
, (2.26)

where P is the probability density, a function of the amplification factor AF. a, b, and c are
the parameters of the modified Weibull distribution, which differs slightly from the con-
ventional 3-parameter Weibull distribution by a negative sign before the variable. Bladh’s
analysis involves cases with only small mistuning. In order to verify whether such a pdf
is applicable to simultaneous large and small mistuning, a statistical analysis is performed
with a single known large mistuning pattern, associated with 1,000 small random mistun-
ing patterns. These mistuning patterns are created in the same way as the previous analysis.
The resulted probability distributions of amplification factors are shown in Fig. 2.24, along
with the Weibull pdf with proper fitting parameters.

As shown by Fig. 2.24a, although most displacement amplification factors follow the
pdf, outliers form a second peak located around 1.90. Similarly, Fig. 2.24b shows that
3 groups of amplification factors, located around 1.51, 1.64 and 2.55, do not follow the
Weibull pdf. These outliers correspond to the forced responses where the isolated modes
are excited. These modes can be excited under traveling wave excitations of multiple engine
orders, and thus increase the occurrence of amplification factors within certain ranges.
Also, from a mathematical perspective, the Weibull distribution should not be expected
to capture the amplification factors when large mistuning is involved, as the assumption
of independently and identically distributed (IID) random variables is violated. Since the
results that Bladh et al. presents only involves cases with small mistuning, the occurrence of
the isolated modes is very low, and the assumption of IID variables can still hold. However,
in the presence of large mistuning, the Weibull pdf may fail to estimate the amplification
of forced responses, due to the higher occurrence of the isolated modes.

2.4 Conclusions

A new reduced-order modeling technique, capable of capturing the dynamics of bladed
disks with simultaneous large and small mistuning, was presented in this paper. This tech-
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Figure 2.24: Weibull-fitted probability density distributions of amplification factors

nique, referred to as N-PRIME, utilizes the concepts of pristine, rogue, and interface modal
expansion, and nodal energy weighted transformation. The N-PRIME method has the fol-
lowing attractive features.

1. Compared to the CMM method adopted by Madden et al. [7], N-PRIME does not
require a clear definition of the root of a blade because N-PRIME uses cyclic modes
rather than CB modes as the projection basis to model small mistuning. Therefore,
N-PRIME is applicable to complex structures such as dual-flow path systems.

2. Unlike CMM, which restricts small mistuning to exist only on the blade components,
N-PRIME allows all components of a sector to have distinct levels of small mistun-
ing. Thus, it is possible for users to flexibly define regions or components to be
mistuned.

3. Mistuning often introduces isolated modes that have highly localized motions. N-
PRIME is capable of capturing these modes with very good accuracy.

4. N-PRIME has NEWT strategically integrated under the frame of the PRIME method.
A PRIME basis is formed for a large mistuning pattern and is re-constructed only
when the large mistuning changes. The small mistuning component is projected on
to a small subset of cyclic modes, and modeled with low computational cost. This
integration allows a largely mistuned blisk to be fast sampled over multiple small
mistuning patterns.
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5. N-PRIME requires only sector-level mode shapes to form the PRIME basis. Also, a
subset of the cyclic modes is used for small mistuning projection. Thus, all compu-
tations performed by N-PRIME are on a sector level, and require low computational
effort.

The results presented demonstrate that N-PRIME has very good accuracy in predict-
ing free and forced responses of mistuned blisks, including conventional blisks, and more
complex structures such as dual-flow path systems. Moreover, the efficiency of N-PRIME
enables it to be one of the first available methods that can perform statistical analyses to
study the effects of random large and small mistuning on blisk dynamics.
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CHAPTER 3

Nonlinear Dynamics of Mistuned Bladed Disks
with Ring Dampers

3.1 Introduction

To reduce forced response amplitudes when subject to high level of dynamic loadings,
various dry friction dampers are designed for blisk systems, including the underplatform
wedge damper [22, 32, 33, 37–39, 51, 52], frictional shroud contact [35, 40, 41, 47, 48], and
ring dampers [56–59]. Ring dampers have gained increasing popularity and are the focus
of this study. These ring-shaped damping sources are located in the disk, underneath the
blades, and are held in contact with the blisk by centrifugal loading. Energy is dissipated
by nonlinear friction forces when relative motions between the ring damper and the blisk
take place.

To investigate the dynamic responses of blisk-damper systems in the presence of the
nonlinear frictional contacts, conventional methods based on numerical time integration
are not suitable since they are computationally expensive. Limited amount of effort has
been done to develop efficient ROMs for blisks in contact with ring dampers. This paper
presents a reduced-order modeling technique to efficiently capture the nonlinear dynamic
responses of the blisk-damper systems. CB-CMS serves as the first model reduction step.
A novel mode basis that mimics the contact behavior under sliding and sticking condi-
tions is developed to further reduce the CB-CMS model while maintaining its accuracy.
The resulting reduced nonlinear equations of motion are solved by a HFT method. In the
HFT method, the contact status and friction forces are determined in the time domain by
a three-dimensional contact model at each contact point, whereas the reduced equations of
motion are solved in the frequency domain according to a harmonic balance formulation.
Moreover, to investigate the effects of blade mistuning, which can lead to drastic increase
of forced responses, an extension of the ROMs is developed based on component mode
mistuning.
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Figure 3.1: A typical blisk-damper system (UM Validation Blisk with a ring damper)

The reduced-order modeling technique developed in this study is applied to the UM
Validation Blisk model, in contact with a frictional ring damper, as shown in Fig. 3.1.
ROM-predicted forced responses are retrieved and validated for both tuned and mistuned
models. The computational effort required by the developed ROM is minimal, and that
enables statistical analyses, which reveal the influence of random mistuning on the effec-
tiveness of energy dissipation by frictional ring dampers. A statistical analysis is presented
in this paper.

3.2 Methodology

3.2.1 Frequency-Domain Formulation of the Equations of Motion

Consider the following equations of motion of a general blisk-damper system

Mẍ(t)+βKẋ(t)+Kx(t) = Fe(t)+Fnl(t), (3.1)

where M and K are the mass and stiffness matrices of the full-order blisk-damper system,
β is the stiffness-proportional damping coefficient, x(t) is the displacement vector, Fe(t) is
the vector of external periodic forcing, and Fnl(t) is the vector of nonlinear contact forces
that are functions of displacements and velocities at the contact DOFs.

It is assumed that under periodic excitations, the steady-state responses of the nonlinear
blisk-damper system remain periodic. Thus, each of the variables in Eqn. (3.1), including
the displacement x(t), the external forcing Fe(t), and the nonlinear force Fnl(t), can be
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approximated by a truncated sum of harmonic terms, written as

x(t) = x(0)+Re
( NH∑

n=1

x(n)einωt
)
,

Fe(t) = F(0)
e +Re

( NH∑
n=1

F(n)
e einωt

)
,

Fnl(t) = F(0)
nl +Re

( NH∑
n=1

F(n)
nl einωt

)
,

(3.2)

where NH is the number of harmonics used in the approximation, and ω is the frequency
of the external excitation Fe(t). By substituting Eqn. (3.2) into Eqn. (3.1), a set of NH

nonlinear complex algebraic equations are obtained as

D(n)x(n) = F(n)
e +F(n)

nl , (3.3)

where x(n) is a vector containing the amplitudes of motion of the nth harmonic at all
DOFs, and D(n) is the nth order dynamic stiffness matrix of the blisk-damper system
(n = 1,2, · · · ,NH), and is expressed as

D(n) = −(nω)2M+ (1+ iβnω)K. (3.4)

3.2.2 Contact Model

The frictional contact between the blisk and the ring damper is modeled by contact node
pairs that are evenly distributed across two mating contact surfaces. The 3D relative dis-
placements between each contact node pair are expressed in the contact local coordinates,
and decomposed into an out-of-plane normal and two perpendicular in-plane tangential
components. A fully coupled 3D contact model is available in Ref. [30]. However, the
focus of this study is to develop reduced-order modeling techniques for blisk-damper sys-
tems. Thus, a simplified model is adopted to accelerate the computations. This simplified
model is based on the assumption that the two tangential components of relative motions, as
well as the resulted tangential contact forces, are independent of each other. Thus, contact
dynamics along each contact tangential direction can be modeled by a 1D macro-slip con-
tact model with normal load variations [26]. This assumption has been extensively adopted
and validated in many studies of frictional contacts [51, 52, 65]; it is particularly adequate
for ring dampers because there is a strongly dominant direction of relative motion at the
contact, namely, the tangential direction along the ring.
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Figure 3.2: Macro-slip model showing tangential and normal coordinates and stiffness

The 1D macro-slip contact model with normal load variations is shown in Fig. 3.2.
The parameters of the contact model include the tangential contact stiffness kt, the normal
contact stiffness kn, and the friction coefficient µ. Relative displacements in the tangential
and normal directions are denoted by u(t) and v(t), respectively. The amount of slip motion
is expressed as w(t). The normal force between the contact surfaces is expressed as

N(t) =max(N0+ knv(t),0), (3.5)

where N0 is the initial normal force due to static pre-stress. Along the tangential direction,
the friction force is computed according to the Coulomb’s law of friction as follows

T (t) =


kt(u(t)−w(t)) sticking
sign(ẇ(t))µN(t) sliding
0 separation

(3.6)

Detailed transition criteria for the contact status (sticking, sliding, or separation) can be
found in Ref. [30]. Note that the friction forces applied on each contact node are computed
in the contact local coordinates. Due to the circular geometry of the ring damper, it is
convenient to align one of the local in-plane directions with the tangential direction of the
global cylindrical coordinate system.

3.2.3 Reduced-Order Modeling

Full-order finite element models of industrial blisk-damper systems in general contain
many DOFs. Thus, solving Eqn. (3.3) in the frequency domain remains a formidable task.
To reduce the computational effort required to solve the nonlinear algebraic equations, suc-
cessive model reduction techniques are developed and applied in this study.
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3.2.3.1 Craig-Bampton Component Mode Synthesis

The nonlinearity possessed by a general blisk-damper system is localized at contact DOFs.
Thus, it is possible to categorize the DOFs of the system into nonlinear DOFs, where
nonlinear friction forces are applied upon, and all other linear DOFs. Since the set of
nonlinear DOFs is small in size, applying a classical CB-CMS method to the system can
result in significant model reduction because most linear DOFs can be reduced to much
fewer modal coordinates of the normal modes of a blisk-damper system with fixed CB-
CMS interfaces, while leaving the nonlinear DOFs intact.

Note that not all linear DOFs are substituted by modal coordinates. Some linear DOFs
of particular importance to the forced response analysis can be retained. Thus, the DOFs
of the blisk-damper system can be re-arranged as

x(n) = [x(n)
nl ,x

(n)
l,r ,x

(n)
u ]T = [x(n)

a ,x(n)
u ]T , (3.7)

where x(n)
nl represents the nth harmonic of the amplitudes of motion of the nonlinear DOFs,

x(n)
l,r contains the nth harmonic of the amplitudes of motion of the linear retained DOFs, and

x(n)
u contains the nth harmonic of the amplitudes of motion of the slave/unretained linear

DOFs. Both x(n)
nl and x(n)

l,r are retained after the CB-CMS reduction process, and thus they
are grouped into a vector x(n)

a (active DOFs). Eqn. (3.3) is subsequently partitioned asD(n)
aa D(n)

au

D(n)
ua D(n)

uu

 x(n)
a

x(n)
u

 = F(n)
e,a

F(n)
e,u

+
F(n)

nl,a

F(n)
nl,u

 . (3.8)

CB-CMS is a well-established reduced-order modeling technique, and its detailed for-
mulation can be found in Ref. [49]. Using CB-CMS, Eqn. (3.3) is transformed into CB-
CMS coordinates for each harmonic n based on the following transformation

x(n)
CMS =

 x(n)
a

q(n)
CMS

 = TCMS

x(n)
a

x(n)
u

 =  I 0
Ψ Φ

 x(n)
a

x(n)
u

 , (3.9)

where TCMS is the CB-CMS transformation matrix. Ψ contains the constraint mode shapes
for each active DOF, andΦ contains the system normal mode shapes under CB-CMS fixed-
interface boundary conditions. x(n)

u has many physical linear DOFs which are replaced by
a few modal coordinates q(n)

CMS . The resulting equations of motion can be written as

D(n)
CMS x(n)

CMS = F(n)
e,CMS +F(n)

nl,CMS , (3.10)
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where the subscript CMS indicates that the corresponding term is expressed in the CB-
CMS coordinates.

3.2.3.2 Extending CB-CMS with Component Mode Mistuning (CB-CMS-CMM)

One of the objectives of this study is to analyze the forced responses of blisk-damper sys-
tems with random blade mistuning. The process of repetitively applying the CB-CMS
method to a large number of full-order blisk-damper systems, where each of the systems is
associated with a distinct mistuning pattern, can be computationally expensive. Methods to
speed up the process have been proposed and used especially for geometric mistuning [66].
In general, it is preferable to perform the CB-CMS model condensation to a tuned sys-
tem, and construct the mistuning component of the dynamic stiffness matrix, without any
involvement of the full-order finite element model, directly in the CB-CMS coordinates.
Thus, a reduced-order modeling technique is proposed by extending CB-CMS with the
technique of CMM, resulting in a generalized CB-CMS method that can efficiently model
mistuned systems. This method is named CB-CMS-CMM. The first step of CB-CMS-
CMM is to apply CB-CMS on a tuned system to obtain the tuned dynamic stiffness matrix
in the CB-CMS coordinates, D0(n)

CMS , and the CB-CMS transformation matrix T0
CMS . The

superscript 0 indicates that the corresponding term is for a tuned system.
Consider a blisk-damper system with blade mistuning. Assume mistuning is small and

can be represented as variations in the stiffness of each blade. The dynamic stiffness matrix
expressed in Eqn. (3.4) becomes

D(n) = −(nω)2M0+ (1+ iβnω)(K0+Kδ), (3.11)

where M0 and K0 are the mass and stiffness matrices of the tuned system, and Kδ is the
mistuning component of the stiffness matrix. If CB-CMS is applied to the mistuned system,
the mistuned dynamic stiffness matrix in the CB-CMS coordinates can be expressed as

D(n)
CMS = TT

CMS D(n)TCMS

= TT
CMS (−(nω)2M0+ (1+ iβnω)(K0+Kδ))TCMS

= TT
CMS D0(n)TCMS + (1+ iβnω)TT

CMS KδTCMS .

(3.12)

The mistuned CB-CMS transformation matrix TCMS contains two sets of mode shapes,
including the system normal mode shapes Φ, and the constraint mode shapes Ψ. As sug-
gested by Yang et al. [14], system normal mode shapes of a blisk with small mistuning and
with closely spaced natural frequencies can be estimated as a linear combination of the nor-
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mal mode shapes of a tuned system, within the same frequency range. Moreover, constraint
modes are computed by applying a unit displacement at each of the active DOFs. All the
active DOFs in the case of ring damper surfaces are located on the disk and on the ring
damper, and are remote from the mistuning components (i.e., the blades). Therefore, the
difference between the constraint mode shapes of a tuned and a mistuned systems is neg-
ligible. Thus, the CB-CMS mode basis of a mistuned system is approximated by a linear
combination of the mode basis of a tuned system. Based on this assumption, Eqn. (3.12)
can be re-written as

D(n)
CMS ≈ T0T

CMS D0(n)T0
CMS + (1+ iβnω)T0T

CMS KδT0
CMS . (3.13)

Note that T0T
CMS D0(n)T0

CMS is the dynamic stiffness matrix D0(n)
CMS of the tuned system

in CB-CMS coordinates. Thus, Eqn. (3.13) becomes

D(n)
CMS ≈ D0(n)

CMS + (1+ iβnω)T0T
CMS KδT0

CMS . (3.14)

Matrix Dδ(n)
CMS = T0T

CMS (1+ iβnω)KδT0
CMS represents the mistuning component of the

dynamic stiffness matrix in CB-CMS coordinates. For cases where mistuning exists only
on the blade components of the system, only the blade DOFs of the mistuning stiffness
matrix Kδ contain non-zero entries. Thus, Dδ(n)

CMS can be expanded as

Dδ(n)
CMS = (1+ iβnω)

 I 0
Ψ Φ

0T

Kδ

 I 0
Ψ Φ

0

= (1+ iβnω)
( N∑

i

Ψ0T
i,BKδ

i,BΨ
0
i,B+

N∑
i

Ψ0T
i,BKδ

i,BΦ
0
i,B+ ...

...+

N∑
i

Φ0T
i,BKδ

i,BΨ
0
i,B+

N∑
i

Φ0T
i,BKδ

i,BΦ
0
i,B

)
,

(3.15)

where N is the number of blades, andΨ0
i,B,Φ0

i,B, and Kδ
i,B represent the portion of constraint

modes, system normal modes and mistuning stiffness matrix that contain only the DOFs of
the ith blade, respectively. To further simplify Eqn. (3.15), two assumptions are made and
discussed next.

The first assumption is that the blade DOFs of the tuned system normal modes under
CB-CMS boundary conditions can be expressed as a linear combination of the cantilever
blade (CB) modes of a tuned sector [1, 2]. CB modes are the normal modes of the blade
component computed with the root of the blade held fixed. This assumption has been used
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in many studies and is at the heart of CMM [1, 2, 7]. Thus, no DOFs retained by the CB-
CMS condensation exist on the blade components. With this assumption, the projection of
mistuning components onto the system normal modes can be simplified as

N∑
i

Φ0T
i,BKδ

i,BΦ
0
i,B ≈

N∑
i

qT
i,CB(ΦT

CBKδ
i,BΦCB)qi,CB, (3.16)

where ΦCB contains the CB mode shapes of a tuned sector. qi,CB represents the participa-
tion factors of each CB mode contributing to the tuned system normal modes. The benefits
of CMM are highlighted by Eqn. (3.16) which shows that the mistuning is projected onto
tuned CB modes at a blade level.

The second assumption is that the tuned and mistuned static constraint modes are equal
in their blade portions. Constraint modes are computed by applying a unit displacement
on each of the active DOFs, and all active DOFs are located on the disk and the ring
damper. Since the disk is typically much stiffer than the blade, and since the ring damper is
decoupled from the blisk during the CB-CMS model reduction, the blade motion resulting
from a unit displacement on any of the active DOFs is negligible. Thus, in Eqn. 3.15, all
terms that involve projections of mistuning components onto the constraint mode shapes
can be neglected (i.e.,

∑N
i Ψ

0T
i,BKδ

i,BΨ
0
i,B,

∑N
i Ψ

0T
i,BKδ

i,BΦ
0
i,B, and

∑N
i Φ

0T
i,BKδ

i,BΨ
0
i,B).

Using these two assumptions, Eqn. (3.15) can be simplified to

Dδ(n)
CMS ≈ (1+ iβnω)

N∑
i

qT
i,CBΦ

T
CBKδ

i,BΦCBqi,CB

= (1+ iβnω)
N∑
i

qT
i,CBΛi,CBqi,CB

(3.17)

where in general, Λi,CB = Φ
T
CBKδ

i,BΦCB is a diagonally-dominated matrix. In classical
CMM [1, 2] its off-diagonal terms are neglected. Based on Eqn. (3.17), an approximation
of the mistuning component of the dynamic stiffness matrix can be directly constructed
in the CB-CMS coordinates. Note that qi,CB represents the relation between the tuned
CB modes and the tuned system normal modes. Since only the tuned system is involved,
the participation factors can be pre-calculated in a single calculation. Since Λi,CB can be
simplified to a diagonal matrix, minimal computational effort is required by the method of
CB-CMS-CMM to construct the mistuning component of dynamics stiffness.
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(a) Sliding condition (b) Sticking condition

Figure 3.3: Equivalent contact models of a node pair under two limiting contact statuses

3.2.3.3 Stick-Slip Modal Transformation

The size of the ROMs resulting from CB-CMS model reduction is usually several orders
of magnitude smaller than that of the full-order finite element models of the blisk-damper
systems. However, fully refined contact surfaces can possess numerous nonlinear DOFs,
and solving Eqn. (3.10) can still be a computationally difficult task. Thus, a novel reduced-
order modeling technique is proposed in this section to further reduce the size of the CB-
CMS model.

Consider a contact in the sliding condition. In this case, the tangential contact force is
constant, and hence, the tangential contact stiffness has no effect. An equivalent contact
model is constructed by removing the tangential stiffness from the 1D macro-slip model,
as shown in Fig. 3.3a. Now consider the opposite case where a contact is in the sticking
condition. This contact can be modeled as shown in Fig. 3.3b, where the slider is bonded
to the contact surface so that no sliding motion occurs. Local contact stiffness matrices can
be defined for the two cases as

ksl,l =


0 0 0
0 0 0
0 0 kn

 , kst,l =


kt 0 0
0 kt 0
0 0 kn

 , (3.18)

where the subscript l denotes local coordinates.
Using a rotation matrix R defined for each contact node pair, the contact stiffness ma-

trices can be transformed into global coordinates as

ksl,g = RT ksl,lR, kst,g = RT kst,lR. (3.19)

Next, we consider two extreme cases where all node pairs on the frictionless contact
surfaces remain in contact, and are in one of the following conditions:

49



1. Global sliding condition: the entire contact surfaces slide.

2. Global sticking condition: the entire contact surfaces are stuck.

For the global sliding and sticking conditions, global contact stiffness matrices Ksl and
Kst can be assembled from ksl,g and kst,g, respectively. Note that since all contact DOFs
are retained by CB-CMS condensation, the global stiffness matrices can be constructed
directly in the CB-CMS coordinates, denoted as Ksl,CMS and Kst,CMS . Also, note that
under a global sliding or global sticking condition, the blisk-damper system model is linear.
Thus, linear modal analyses can be performed for the two global conditions by solving the
following eigenvalue problems

[−ω2
slMCMS + (KCMS +Ksl,CMS )]Φsl,CMS = 0, (3.20)

[−ω2
stMCMS + (KCMS +Kst,CMS )]Φst,CMS = 0, (3.21)

whereωsl andωst are natural frequencies of a blisk-damper system under global sliding and
sticking conditions, respectively. Vectors Φsl,CMS and Φst,CMS contain the corresponding
system normal mode shapes. Note that all computations are performed in CB-CMS coor-
dinates. Thus, the subscript CMS is dropped hereafter for notation simplicity.

Due to the ring-shaped geometry, the damper contains a small amount of mass, and is
much softer than the blisk. Thus, the two sets of system normal mode shapes Φsl and Φst

are nearly identical for all DOFs except those on or near the contact surfaces. The motion of
the contact DOFs ofΦsl andΦst represent contact dynamics in two limiting cases: zero slip
motion, and full sliding. Forced responses of a blisk-damper system with frictional contact
can be considered an intermediate state, when only a limited level of sliding motions is
allowed. Such sliding motions are well captured by the difference between the contact
DOFs ofΦsl andΦst, while the motions of the rest DOFs can be represented by eitherΦsl

orΦst. Based on the above observations, forced responses of a frictionally damped system
are treated as a linear combination of Φsl and Φst. Therefore, the CB-CMS model can be
projected onto a new modal basis with the following transformation

x(n) =
[
Φst Φsl

]
q(n) = Tq(n). (3.22)

The modal equation of motion resulting from the stick-slip modal transformation can
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be expressed as

d(n)q(n) = f(n)
e + f(n)

nl . (3.23)

As a consequence of this transformation, Eqn. (3.23) does not possess any physical
DOFs. Thus, the size of the ROM is not related to the number of nonlinear DOFs on the
contact surface. Depending on the number of harmonic terms NH used in the frequency
domain formulation, and the number of mode shapes NM included in the mode basis of
stick-slip modal transformation T, the resulting ROM has a small size of (2NH − 1)NM

variables. This novel technique to form such ROMs is named the method of coherent ring
damper, or CoRiD.

3.2.4 Solution Method

3.2.4.1 Static Deformation Resulting from Pre-Stress

The initial normal load results from pre-stress, such as the centrifugal loading during engine
operations, which holds the ring damper in contact with the blisk. Thus, depending on the
level of pre-stress, as well as the geometry of the damper, the initial normal load applied on
each contact node varies (and even may result in separation at certain contact node pairs).
Hence, an iterative static analysis is performed for a given pre-stress to determine the initial
normal load distribution and the contact status. In this static analysis, the contact surfaces
are assumed to be frictionless, and each contact node pair is modeled as shown in Fig. 3.3a.
This results in infinite static solutions due to the rotational rigid body motion of the ring
damper. Thus, the contact surfaces are coupled at one node in the tangential direction. The
static analysis procedure is outlined below.

Initially, nodes of each contact node pair coincide, with no forces acting in between.
Next, for each contact node pair, the relative displacement v in the normal direction are
computed, and the resulting normal contact forces are

N =max(knv,0). (3.24)

Next, the residual of the balance equation is computed as

∆ =Kx0−F0−Fnl, (3.25)

where x0 is the static deformation due to the vector F0 of pre-stress. Note that F0 includes
also the static (0th harmonic) term of the external excitation force F(0)

e . Fnl is the vector
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Figure 3.4: Pre-stress applied on the inner surface of the ring damper

of nonlinear forces assembled from normal contact forces at each node. ∆ represents the
residual of the balance equation.

Then, if ‖∆‖ > ε, where ε is a small positive scalar, x0 is not a solution, and an updated
value of x0 is computed by solving the following equation

Kx = F0+Fnl. (3.26)

The solution process is updated iteratively until a converged solution is obtained.
A converged solution of the static deformation x0, and the initial normal contact force

F0 is obtained when ‖∆‖ ≤ ε. The converged solution corresponds to the 0th harmonic so
that

x(0) = x0, F(0)
nl = Fnl. (3.27)

Note that in general, the centrifugal load is applied on every node of the blisk-damper
system. To simplify the pre-stress and speed up the iterative computations, the centrifugal
load is replaced by discrete nodal forces, pointing in the radial direction, applied on the
inner surface of the ring damper, as shown in Fig. 3.4. This simplification does not preclude
the proposed ROM from handling centrifugal loads or other complex types of pre-stress.

3.2.4.2 Hybrid Frequency/Time Method

The ROM model in Eqn. (3.23) consists of a set of nonlinear complex algebraic equations.
This set of equations is solved by the hybrid frequency/time domain method introduced
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by Guillen [45]. The HFT method is based on alternate transformations between the time
and frequency domains. Contact forces acting on each node along the contact surfaces are
evaluated in the time domain, while forced responses are obtained in the frequency domain
by solving Eqn. (3.23). The procedure of the HFT method is outlined as

1. Initially, nodes of each contact node pair coincide, with no forces acting in between,
and an initial guess of displacement in the frequency domain x(n) is made.

2. An inverse fast Fourier transform is used to convert x(n) for n = 0,1, · · · ,NH into a
time domain vector x(t) of displacements

3. For each contact node, the relative displacements are computed from x(t), and the
contact forces Fnl(t) are obtained in the time domain from the macro-slip contact
model.

4. A fast Fourier transform is used to convert contact forces into the frequency domain
to obtain F(n)

nl from Fnl(t) for n = 0,1, · · · ,NH .

5. The nonlinear forces F(n)
nl are transformed into the reduced-order space based on the

stick-slip modal transformation expressed in Eqn. (3.22) to obtain

f(n)
nl = TT F(n)

nl , (3.28)

and to compute the residual of Eqn. (??) as

∆(n) = d(n)q(n)− f(n)
e − f(n)

nl . (3.29)

6. If
∑NH

n=0 ‖∆
(n)‖ > ε, where ε is a small positive scalar, the solution has not converged

yet, and q(n) is computed by solving Eqn. (3.23). Next, q(n) is transformed into phys-
ical domain based on Eqn. (3.22) to obtain x(n), which serves as the input parameter
for the next iteration,

x(n) = Tq(n). (3.30)

7. If
∑NH

n=0 ‖∆
(n)‖ ≤ ε, a converged solution has been reached, and the steady state forced

response x(n) and its time domain equivalent x(t) represent the forced response.

Note that the 0th harmonic of the displacement in the frequency domain, x(0), is linked
to both the static responses computed in the previous section, and to the higher harmonics.
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The HFT method is based on a continuation approach or on a Newton-Raphson-like
solver. An initial guess of displacement x(n) can be obtained by using the harmonic re-
sponses of a linear system under the same periodic forcing, where the entire contact sur-
faces remain stuck. Also, to compute the forced responses over a range of excitation fre-
quencies, it is common practice to use the responses computed at a lower frequency as
the initial condition at the next frequency step. However, with the softening or stiffening
effects, bifurcations may occur, in which case two possible solutions exist at a single exci-
tation frequency, and an increment of excitation frequency at the turning point can lead to
the jump phenomenon. Thus, a pseudo-arc-length continuation method is used to ensure
convergence [67].

3.3 Results and Discussion

3.3.1 Forced Response Analyses

The CoRiD method developed in this study is applied to the simplified academic model
shown in Fig. 3.1, referred to as the UM Validation Blisk. Two examples are provided, in-
cluding forced response analyses on a tuned system, and a system with small blade material
mistuning. ROM-predicted results are validated against analyses performed on converged
CB-CMS models. Note that all nonlinear equations are used in the validation model, and
only the linear DOFs are reduced. The validations and error analyses focus on the accuracy
of the stick-slip modal transformation, and the approximation of mistuning components by
CB-CMS-CMM. Numerical error inherited by the classical CB-CMS method is negligible
as the CB-CMS model is converged.

A traveling wave excitation is used in this study as external periodic forcing. It is
the most common type of forcing used in analyzing blisk dynamics. A traveling wave
excitation is a function of the engine order EO, and can be expressed as

f =
N∑

j=1

F je−i( j−1)EO 2π
N , (3.31)

where F j is the amplitude vector of the excitation on the jth blade. Responses under ex-
citations of lower EOs are expected to contain disk-dominated motions, in which case
significant relative motions occur between the blisk and the ring damper, and the frictional
damping is most effective. In contrast, under excitations of higher EOs, the blisk exhibits
high levels of blade motions, and the effect of blade mistuning is stronger, whereas the
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Figure 3.5: Forced responses of the tuned UM Validation Blisk under an EO 1 traveling
wave excitation (left) and an EO 3 excitation (right)

frictional damping is ineffective. Thus, for the completeness of this study, traveling wave
excitations of both engine orders 1 and 3 are adopted. To ensure a large blade deformation,
the excitations are applied at the tip of each blade. Forced response are extracted at selected
nodes, referred to as the response nodes, that are in proximity with the nodes on which the
excitations are applied. Rayleigh damping ratio is chosen as α = 0, and β = 4.4396×10−7,
which corresponds to a damping ratio ζ = 4.0622×10−4 at ωn = 1,830 Hz.

The first example includes forced response analyses of a tuned blisk-damper system.
Responses are computed by using NH = 1 in the HBM. Higher harmonics were used too,
but they were found not to contribute significantly to the forced response.

To evaluate the relative importance and effects of the pre-stress magnitude N0, the am-
plitude of external forcing ‖F j‖ = F, and the coefficient of friction µ, the ratio ρ = µN0

F is
used in this study. Figure 3.5a shows the maximum response amplitude across all response
nodes, under an EO 1 traveling wave excitation. Responses are extracted at each forcing
frequency, and at each ρ value, ranging from 0 to 2. A maximum response is obtained at
ρ = 0, where the contact surfaces can slide freely relative to each other. In this case, no
energy dissipation by friction exists. As ρ increases, so does the effectiveness of friction
damping, leading to a lower response amplitude. A minimum response amplitude is ob-
served at ρ = 0.6. As ρ increases beyond 0.6 and approaches 2, it becomes more difficult
for the contact surfaces to slide against each other, resulting in less energy dissipation and
a higher response amplitude.

The ROM-predicted results are validated at three values of ρ: ρ = 0, 0.6, and 2. The
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Figure 3.6: Error in forced responses of the tuned UM Validation Blisk under an EO 1
excitation (left) and an EO 3 excitation (right) at different ρ values

relative errors between the ROM results and the validation data are shown in Fig. 3.6a. The
maximum relative error occurs at ρ = 0, and is approximately 1.02%. A better accuracy is
observed in the forced responses under an EO 3 excitation (Fig. 3.6b), with a maximum
relative error of 0.105%. Such a small error indicates that the nonlinear contact dynamics
are accurately captured by the method of the stick-slip modal transformation. Note that
in Fig. 3.5b, the reduction of the amplitude due to frictional damping is approximately
13.0%, smaller than the reduction ratio of 37.9% observed in the case of EO 1 excitation
(Fig. 3.5a). This behavior indicates a better effectiveness of the ring damper at lower EOs.

The second example considers small blade mistuning in material properties applied to
all blade components by varying their Young’s modulus by a small percentage from the
nominal value. Such variations are randomly chosen following a normal distribution with
a 0 mean and a 2% standard deviation. The forced responses of the mistuned blisk-damper
system under EO 1 and EO 3 traveling wave excitations are shown in Fig. 3.7. Validation
data reveals that the maximum relative error in mistuned forced responses is approximately
1.32%, observed in the case of an EO 1 excitation (Fig. 3.8a). Note that in the CB-CMS-
CMM method, the mistuning components of the dynamic stiffness are projected onto CB
modes, which are computed with the root of the blade held fixed. This boundary condition
assumes that little or no motion exists on the disk-blade interfaces. This assumption is less
accurate when the blisk is subject to traveling wave excitations of low EOs. In this case,
the root of each blade may contain high levels of motions. Thus, the error of 1.32% can be
viewed as a worst case scenario for CMM. Thus, the CB-CMS-CMM approximation can
be considered accurate.
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Figure 3.7: Forced responses of a mistuned UM Validation Blisk under an EO 1 traveling
wave excitation (left) and an EO 3 excitation (right)
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Figure 3.8: Error in forced responses of a mistuned UM Validation Blisk under an EO 1
excitation (left) and an EO 3 excitation (right) at different ρ values
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3.3.2 Statistical Analyses

With the fast computations and good accuracy provided by the CoRiD method, it is possible
to sample the blisk-damper system over a large number of mistuning patterns to study the
correlation between random mistuning and effectiveness of the friction ring dampers. In
this study, a Monte-Carlo analysis is demonstrated for the UM validation blisk, with 100
samples of mistuning patterns included. Each of the mistuning patterns is generated in the
same way as described in the previous section, namely small variations in Young’s modulus
are applied to all blade components following a normal distribution with a 0 mean and a
2% standard deviation. A traveling wave excitation of EO 1 is applied.

It is well know that in the presence of mistuning, strain energy localization may occur,
and can lead to drastic amplification of forced responses. Thus, it is useful to define a
metric so that the amplification of forced responses due to mistuning can be evaluated. In
this study, this metric is defined by comparing the maximum magnitude of forced responses
at all pre-selected response nodes of the mistuned system with that of a tuned system, under
the same forcing conditions. This metric is called the amplification factor AFx(ρ) and is
defined as

AFx(ρ) =
maxω(maxNnode

i=1 (‖xm
i (ρ)‖))

maxω(maxNnode
i=1 (‖x0

i (ρ)‖))
, (3.32)

where Nnode is the number of response nodes, and ω is the forcing frequency. Superscript
m stands for a mistuned system, whereas 0 stands for a tuned system. Note that the ampli-
fication factor is computed with mistuned and tuned responses for the same ρ value.

Figure 3.9 shows the probability distribution of the amplification factors extracted from
the Monte-Carlo analysis. The analysis is performed for a frictionless case (ρ = 0), and
for the case with a ρ value of 0.6, where the friction damper is likely to be effective. It
is observed that the distribution of amplification factors does not vary significantly, and
reveals that frictional damping has a small effect on the amplification of forced responses
due to mistuning. However, the correlation of the effects of mistuning and friction damping
is mutual.

The analysis is not conclusive without also evaluating the effect of mistuning on the
effectiveness of friction damping. This effect can be measured by a reduction ratio RRx(ρ),
defined as the maximum percentage reduction of forced response amplitudes resulting from
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Figure 3.9: Probability distribution of amplification factors of forced responses with ran-
dom mistuning patterns computed with ρ values of 0 and 0.6

frictional damping, namely

RRx(ρ) = 1−
maxωmaxNnode

i=1 ‖x
m
i (ρ)‖

maxωmaxNnode
i=1 ‖x

m
i (0)‖

. (3.33)

Again, in this analysis the value of ρ is selected to be 0.6, where the frictional damping
is expected to be effective. Figure 3.10 contains the reduction ratio of the forced responses
for the UM Validation Blisk with each mistuning pattern included in the Monte-Carlo anal-
ysis. The reduction ratios are sorted from the lowest to the highest value. It is noteworthy
that the friction damping is least effective in the tuned system, with a reduction ratio of
37.9%. Most mistuning patterns are associated with higher reduction of the response am-
plitude, with a maximum ratio of 40.0%. This analysis reveals that the ring-shaped friction
damper is more effective when small mistuning is present in the blade components.

Note that with the ROMs constructed by CoRiD, the above statistical analysis that in-
volves 100 mistuning patterns consumes approximately 4 days of CPU time. In contrast,
conventional methods such as numerical time integration performed on a full-order model
may require at least 800 days of CPU time to obtain the same forced responses.

3.4 Conclusions

A novel reduced-order modeling technique, capable of capturing nonlinear forced re-
sponses of mistuned bladed disks with frictional ring dampers, was presented. The CoRiD
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resulting from frictional damping for all 100 mistuning patterns

method contains a series of model reduction steps, and has the following attractive features.

1. The stick-slip modal transformation accurately mimics the dynamics of the contact
surfaces. It reduces the size of blisk-damper models to the number of a few modal
coordinates, which is not affected by the number of the contact DOFs. Thus, this
method can be applied to models with highly refined contact surfaces.

2. By extending the classical CB-CMS technique with the CMM method, which results
in the CB-CMS-CMM method, the mistuning component of the dynamic stiffness
matrix can be directly computed in the ROM coordinates. Therefore, repetitive CB-
CMS model reductions for systems associated with different mistuning patterns can
be avoided.

3. The ROMs provided by the CoRiD method are compact, and require minimal amount
of computational cost. Thus, they are suitable for statistical analyses to study the
blisk dynamics under various forcing, mistuning, and damping conditions.

Forced response computations have been performed on the UM Validation Blisk. The
results have been proven accurate. A statistical analysis has shown a noteworthy correla-
tion between the small mistuning and the effectiveness of the ring damper in reducing the
maximum response amplitude. One important area for future development is to extend the
CoRiD method to model blisk-damper systems with not only small blade mistuning, but
also significant changes in mass, stiffness, and geometry.
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CHAPTER 4

Reduced Order Models for Blisks with Small
and Large Mistuning and Friction Dampers

4.1 Introduction

In operation, rotating blisks are often subject to high levels of dynamic loading, resulting
in large amplitudes of forced vibrations especially at resonance. Moreover, variations in
structural properties of individual sectors, referred to as mistuning, can lead to strain en-
ergy localization and can amplify forced responses. To prevent damages caused by high
cycle fatigue, frictional damping sources are introduced to dissipate vibration energy. Due
to the nonlinear behavior of frictional contacts, conventional methods to study the dynam-
ics of the blisk-damper systems are based often on numerical time integration, which is
time-consuming and can be computationally prohibitive due to the large sizes of commer-
cial blisk models. Existing techniques for model reduction either rely heavily on cyclic
symmetry of the blisk-damper system, or are based on CMS techniques. However, in the
presence of mistuning, cyclic symmetry no longer exists. Also, mistuning is random and
best studied statistically. Repetitive CMS condensation for a large amount of random mis-
tuning patterns can lead to a computationally formidable task.

The CoRiD method, introduced in Chapter II, is developed to address this issue. CoRiD
projects the blisk-damper system onto a small mode basis that can accurately mimic the rel-
ative motions between the contact surfaces. The CoRiD mode basis consists of two sets of
mode shapes: 1) mode shapes extracted from a blisk-damper system within which two
mating contact surfaces are completely stuck together, and 2) mode shapes extracted when
the contact surfaces can fully slide relative to each other. ROMs provided by CoRiD are
compact and possess no physical DOFs. However, note that the mode basis formed by the
CoRiD method requires system normal mode shapes. In the presence of mistuning, the
amount of computations required for repetitive system-level modal analyses can be pro-
hibitive. Therefore, it is necessary to extend the current CoRiD method with an efficient
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reduced-order modeling technique that provides the required mode shapes with signifi-
cantly less computational effort. The objective of this study is to combine the methods of
N-PRIME and CoRiD to form a comprehensive tool to study the effectiveness of frictional
ring dampers when the blisk suffers from high-level forced responses due to simultaneous
large and small mistuning. The N-PRIME method is used to compute the system normal
mode shapes of a mistuned blisk-damper system with the two types of contact status, which
are further used as the input to the CoRiD method to form the mode basis for system reduc-
tion. The resulting reduced-order modeling technique can efficiently capture the nonlinear
dynamic responses of blisk-damper systems with both small perturbations in blade material
properties (small mistuning), and significant changes in the blisk geometries (large mistun-
ing). Modal nonlinear equations of motion in the reduced-order space are solved by a HFT
method with continuation. In the HFT method, the contact status and friction forces are
determined in the time domain by a quasi-two-dimensional contact model at each contact
point, whereas the modal equations of motion are solved in the frequency domain according
to a harmonic balance formulation.

This section is organized as follows. The implementation of the CoRiD method, and its
extension with N-PRIME, are introduced in the next section. The reduced-order modeling
technique developed in this study, named PRIME-CoRiD, is applied to the UM Validation
Blisk model, shown in Fig. 3.1. ROM-predicted forced responses for mistuned blisks are
retrieved and validated. Since the computational effort required by the PRIME-CoRiD
method is minimal, it is suitable for statistical analyses to reveal the influence of random
mistuning on the effectiveness of the dry friction ring dampers. A typical statistical analysis
is provided as well.

4.2 Reduced-Order Modeling

4.2.1 Harmonic Balance Formulation

Consider a model of a general blisk-damper system coupled through nonlinear friction
forces

Mẍ(t)+βKẋ(t)+Kx(t) = Fe(t)+Fnl(t), (4.1)

where M and K are the mass and stiffness matrices of the blisk-damper system, and β is the
stiffness-proportional damping coefficient. Fe(t) represents the external periodic forcing
function. Fnl(t) represents the nonlinear contact forces. Note that the contact surfaces
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Figure 4.1: A 3D macro-slip contact model

between the blisk and the damper are discretized into contact node pairs, and the contact
force Fnl(t) acting between each node pair is a nonlinear function of relative displacements
and velocities between the two contact nodes. In this study, the contact forces are captured
by a 2-1D contact model, consisting of a pair of 1D macro-slip models with normal load
variations [26], respectively modeling the the contact dynamics between a contact node
pair in each tangential direction on the contact surfaces, as shown in Fig. 4.1. The detailed
description of the contact model and the transition criteria of contact status can be found in
Sec. 3.2.2.

As mentioned previously, solving Eqn. (4.1) directly in the time domain through numer-
ical time integration requires a large amount of iterations before the solution reaches steady
state. Thus, the harmonic balance method (HBM) is introduced to transform Eqn. (4.1).
The assumption in HBM formulation is that under periodic external forcing, steady-state re-
sponses of a non-linear system remain periodic. Thus, the variables involved in Eqn. (4.1),
including the displacement x(t), the external forcing Fe(t), and the nonlinear force Fnl(t),
can be approximated by a truncated sum of harmonic terms, written as

x(t) = x(0)+Re
( NH∑

n=1

x(n)einωt
)
,

Fe(t) = F(0)
e +Re

( NH∑
n=1

F(n)
e einωt

)
,

Fnl(t) = F(0)
nl +Re

( NH∑
n=1

F(n)
nl einωt

)
,

(4.2)
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where NH is the number of harmonics used in the HBM formulation, and ω is the angular
frequency of periodic forcing Fe(t). Substituting Eqn. (4.2) into Eqn. (4.1), the ordinary
differential equation is transformed into a set of NH complex algebraic equations as

D(n)x(n) = F(n)
e +F(n)

nl , (4.3)

where x(n) is the nth harmonic of the vector of displacement, and D(n) is the nth harmonic
of the dynamic stiffness matrix of the blisk-damper system, expressed as

D(n) = −(nω)2M+ (1+ iβnω)K. (4.4)

4.2.2 Stick-Slip Modal Transformation

Full-order FE models of industrial blisk-damper systems in general contain many DOFs,
and thus solving Eqn. (4.3) in the frequency domain can be a formidable task. To reduce
the computational effort required to solve the large set of nonlinear algebraic equations. A
novel reduced-order modeling technique is proposed to reduce the size of Eqn. (4.3).

Consider two nodes of a contact node pair that can freely slide relative to each other.
In this case, the tangential stiffness between the two contact nodes has no effects. An
equivalent model for the contact node pair in the sliding condition can be constructed by
removing the tangential contact stiffness from the 1D macro-slip model. This modification
is shown in Fig. 4.2a. Similarly, two nodes within a contact node pair that are stuck to each
other can be modeled by bonding the Coulomb slider to the contact surface, so that no slip
motion is allowed, as shown in Fig. 4.2b. According to the two models, a local contact
stiffness matrix for a contact node pair in sliding and sticking conditions can be defined
respectively as the following

ksl,l =


0 0 0
0 0 0
0 0 kn

 , kst,l =


kt 0 0
0 kt 0
0 0 kn

 . (4.5)

where the subscript l indicates that the contact stiffness matrices are expressed in the local
contact coordinates at node i, and can be transformed into the global (cylindrical) coordi-
nate system by using the rotation matrix Ri, as follows

ksl,i = Riksl,lRT
i , kst,i = Rikst,lRT

i . (4.6)
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(a) Sliding condition (b) Sticking condition

Figure 4.2: Contact models for a node pair of two frictionless contact states

Consider a global contact status where the two mating contact surfaces can slide freely
relative to each other. This status is defined as the global sliding condition, for which
a global contact stiffness matrix Ksl can be assembled by summing the contributions of
each local contact stiffness matrix ksl,i. Similarly, for a global sticking condition, where
the entire contact surfaces are stuck, a global contact stiffness matrix Kst can be assembled
from the local contact stiffness matrix kst,i. Note that under both global sliding and sticking
conditions, the contact surfaces can be considered frictionless. A linear modal analysis can
be performed for each of the global contact states by solving the following eigenvalue
problems

[−ω2
slM+ (K+Ksl)]Φsl = 0, (4.7)

[−ω2
stM+ (K+Kst)]Φst = 0, (4.8)

where ωsl and ωst are natural frequencies of a blisk-damper system with the contact sur-
faces under global sliding and sticking conditions, respectively. Φsl and Φst contain the
corresponding system normal mode shapes. Equation (4.1) can be projected onto a mode
basis formed with Φsl and Φst by the following transformation

x(n) =
[
Φst Φsl

]
q(n) = Tq(n). (4.9)

The fundamental assumption for the above transformation is that the forced responses
of a blisk-damper system with frictional contact surfaces can be approximated as a linear
combination of the normal mode shapes of the same system under global sliding and stick-
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ing conditions. Due to its ring-shaped geometry, the damper contains a small amount of
mass and is much softer than the blisk. Thus, the two sets of normal mode shapes Φsl and
Φst are nearly identical for all DOFs of the blisk-damper system, except for those on the
contact surfaces. The motion of the contact DOFs of Φsl and Φst represents the contact
dynamics in two extreme cases: no sliding motion allowed, and free sliding. A frictional
contact results in forced responses of an intermediate state, where only certain sliding mo-
tions are allowed on the contact surfaces. Such sliding motions are well captured by the
difference between the contact DOFs ofΦsl andΦst, while the responses of the rest DOFs
can be represented by either Φsl or Φst. Thus, the mode basis proposed in Eqn. (4.9) is
expected to accurately capture forced responses with a frictional contact status. The modal
equation of motion resulting from the stick-slip modal transformation has the following
form

d(n)q(n) = f(n)
e + f(n)

nl . (4.10)

where d(n) = TT D(n)T, f(n)
e = TT F(n)

e , and f(n)
nl = TT F(n)

nl .
As a consequence of this transformation, Eqn. (4.10) does not possess any physical

DOFs. Thus, the size of Eqn. (4.10) is not related to the number of nonlinear DOFs on the
contact surface. Depending on the number of harmonic terms NH used in the frequency
domain formulation, and the number of mode shapes NM included in the mode basis T, the
resulting ROM resembles a compact system, with only (2NH −1)NM variables.

4.2.3 Extension with N-PRIME

Note that Eqns. (4.7) and (4.8) are system-level equations, and the computational cost
involved in solving both equations can be prohibitively high. The ROM formulated as
Eqn. (4.10) is first introduced by the authors in combination with the CB-CMS technique
to replace the full-order system with a condensed model. However, a general blisk-damper
system can be mistuned, and reconstructing the CB-CMS model for each mistuning pattern
can result in unaffordable amount of computations.

The method of N-PRIME is constructed under the frame of pristine-rogue-interface
modal expansion, and is designed to efficiently compute the free responses of a blisk with
simultaneous large and small mistuning. Consider a free response problem for a mistuned
blisk-damper system as follows [

−ω2M+ K̄
]
x = 0, (4.11)
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where M and K̄ are system mass and stiffness matrices. Note that matrix K̄ includes the
stiffness component of the blisk-damper system K and the contact stiffness between the
blisk and the damper, which can be Ksl or Kst, depending on the status of the contact
surfaces. In the presence of large mistuning, the assumption suggested by Yang et al.
[14] that the mistuned mode shapes can be expressed as linear combination of tuned mode
shapes is no longer valid. One trivial reason for the assumption to fail is that in the case
of missing material, tuned and mistuned mode shapes do not possess the same number of
DOFs. Thus, Eqn. (4.11) cannot be directly projected on to the tuned system normal modes
to form the ROM.

Figure 4.3: A mistuned UM validation blisk partitioned by PRIME

Figure 4.3 shows a typical mistuned system with a large volume of missing material.
It can be partitioned into three components: a pristine component which consists of DOFs
of sectors whose structural properties are identical to a nominal sector, a rogue component
which consists of DOFs of sectors that have large mistuning, and an interface component
that connects the pristine and rogue components. The partitioned mass and stiffness matri-
ces are formulated as

M =


MPP MPR MPI

MRP MRR MRI

MIP MIR MII

 , K̄ =


K̄PP K̄PR K̄PI

K̄RP K̄RR K̄RI

K̄IP K̄IR K̄II

 . (4.12)

The PRIME method is based on the following assumption. The pristine DOFs of the
mistuned mode shapes can be represented by a linear combination of the corresponding
DOFs of a basis assembled from the cyclic modes computed for a pristine sector (ΦP).
Similarly, the rogue DOFs of the mistuned mode shapes can be represented by a linear
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combination of the corresponding DOFs of a basis assembled from the cyclic modes com-
puted for rogue sectors (ΦR). These cyclic modes can be inexpensively extracted from
cyclic symmetry modal analysis performed for a single pristine and each of the rogue sec-
tors. With the above assumption, a preliminary PRIME mode basis can be assembled as
follows

ΦPRI =


ΦP 0 0
0 ΦR 0
0 0 ΦI

 . (4.13)

Note that each interface component is shared by a pristine and a rogue sector, and
is included as the cyclic boundary during the cyclic symmetry modal analysis for both
sectors. To ensure displacement compatibility on the interface, it is assumed that in the
PRIME mode basis, the mode shapes of the interface component can be represented by the
corresponding DOFs of the cyclic mode shapes of a tuned sector. This assumption is valid
since all interface DOFs are on the rigid disk component, and thus the variations between
the interface mode shapes of a pristine and a rogue sector are negligible. Projecting the
mass and stiffness matrices of the mistuned system onto the PRIME mode basis yields the
following ROM matrices

MPRI =Φ
PRIT MΦPRI

=


ΦPTMPPΦP ΦPTMPRΦR ΦPTMPIΦI

ΦRTMRPΦP ΦRTMRRΦR ΦRTMRIΦI

ΦITMIPΦP ΦITMIRΦR ΦITMIIΦI

 ,
K̄PRI =Φ

PRIT K̄ΦPRI

=


ΦPTK̄PPΦP ΦPTK̄PRΦR ΦPTK̄PIΦI

ΦRTK̄RPΦP ΦRTK̄RRΦR ΦRTK̄RIΦI

ΦITK̄IPΦP ΦITK̄IRΦR ΦITK̄IIΦI

 .
(4.14)

Note that the number of rows ofΦPRI is the number of all DOFs of the full mistuned sys-
tem. Thus, formulating the PRIME ROMs through direct matrix multiplication suggested
by Eqn. (4.14) can be computationally expensive. However, the mode shapes contained
by the PRIME mode basis ΦPRI are sector-level cyclic modes expanded to corresponding
pristine and rogue DOFs. Also, the mass and stiffness matrices of the mistuned system
are block-diagonal in nature. Thus, the above projection can be performed as a sum of
sector-level projections, and reduce the computational effort involved.
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To enable the PRIME method to efficiently formulate ROMs for systems with both
large and small mistuning, a modified version of the NEWT approach is integrated into the
PRIME frame. Consider the equations of motion of a blisk with simultaneous large and
small mistuning [

−ω2(M+Mδ)+ K̄+ K̄δ
]
x = 0, (4.15)

where Mδ and K̄δ are the small mistuning components of the system mass and stiffness
matrices. Projecting the mistuning components onto the PRIME mode basis transforms
Eqn. (4.15) into the reduced-order coordinates as[

−ω2(MPRI+ΦPRITMδΦPRI)+ K̄PRI+ ...

...+ΦPRITK̄δΦPRI
]
pPRI = 0.

(4.16)

The mass and stiffness matrices of the mistuned system are thus reduced to the follow-
ing form

Mred =MPRI+ΦPRITMδΦPRI,

K̄red = K̄PRI+ΦPRITK̄δΦPRI.
(4.17)

The above formulation is acceptable in terms of accuracy. However, in the context of
statistical analyses, re-constructing the ROM for multiple small mistuning patterns, based
the approach of direct projection, can result in prohibitively high computational cost. In-
stead, NEWT strategically selects a subset of cyclic mode pairs for the pristine and each
of the rogue sectors to form the projection basis for model reduction. The mode selec-
tion process is based on the criteria proposed by Fitzner et al. [17], following the fact that
within the same mode family, cyclic modes associated with higher nodal diameters share
similar shapes and can be mutually dependent on each other. And thus most of the cyclic
modes of higher nodal diameters can be removed from the projection basis, whereas the
rest of cyclic modes remain spanning the full modal space. This mode selection criterion
results in a projection basis that is much smaller in size than the PRIME basis. To integrate
the NEWT method into the PRIME frame, the PRIME mode basis is expressed as linear
combinations of the cyclic modes selected following the NEWT criteria. The projection
process from the PRIME mode basis to the cyclic mode basis for the jth sector possesses
either of the following two forms

ΦP
j = APqP

j +BPrP
j ,

ΦR
j = AR

j qR
j +BR

j rR
j .

(4.18)
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If the jth sector of the blisk-damper system is pristine, AP and BP contain the cyclic
mode pairs of a pristine sector, and the modal participation factors qP

j and rP
j represent the

contribution of the pristine cyclic mode pairs to the mode shapes of the jth sector in the
PRIME mode basis. Similarly, if the jth sector is rogue, AR

j and BR
j contain the cyclic

mode pairs of the rogue sector. The modal participation factors qR
j and rR

j represent the
contribution of the rogue cyclic mode pairs to the mode shapes of the jth sector in the
PRIME mode basis.

Note that the above projection involves expanding cyclic mode pairs to a specific sec-
tor. This process requires adjusting the phase angle based on the sector index as well as the
nodal diameter (or harmonic index). Such adjustment is implicitly carried by the participa-
tion factors, and indicated by their subscripts j = sector number. Substituting Eqn. (4.18)
into Eqn. (4.16) results in the following ROM matrices

Mred =MPRI+

N∑
j=1

(A jq j+B jr j)TMδ
j(A jq j+B jr j),

K̄red = K̄PRI+

N∑
j=1

(A jq j+B jr j)TK̄δ
j(A jq j+B jr j),

(4.19)

where Mδ
j and K̄δ

j are the mistuning components of the jth sector. A j and B j represent the
cyclic mode pairs of the jth sector, which are selected from either AP and BP, or AR

j and
BR

j , depending on whether the jth sector is a pristine or one of the rogue sectors. q j and r j

are the corresponding participation factors of the jth sector.
Note that the contribution of cyclic mode pairs to the interface mode shapes ΦI in the

PRIME mode basis is neglected in formulating the ROM for small mistuning. All inter-
face DOFs are located on the disk component, which is significantly more rigid than the
blade components. Small mistuning on the disk component can rarely result in noticeable
changes in the free and forced responses of the blisk-damper system. Thus, it is assumed
that small mistuning does not exist on the interface components. Consequently, the projec-
tion of the mistuning components onto the interface mode shapes of the PRIME basis can
be omitted. Note that the projection of the mistuning components in the above equation
is formulated as a sum of sector-level projections over a number of N sectors. The free
response problem in the PRIME modal domain can be expressed as

[−ω2Mred+ K̄red]pPRI = 0, (4.20)

and the normal mode shapes of the mistuned system can be extracted based on the following
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transformation

Φ =ΦPRIpPRI. (4.21)

Thus, for each of the two global contact status, a PRIME mode basis can be formed,
denoted as ΦPRI

sl and ΦPRI
st . With the PRIME mode bases that serve as the input parame-

ters to the N-PRIME method, the mode shapes Φsl and Φst of a mistuned system can be
computed. Thus, the transformation expressed by Eqn. (4.9) can be written as

x(n) =
[
Φst Φsl

]
q(n) =

[
ΦPRI

st pPRI
st ΦPRI

sl pPRI
sl

]
q(n). (4.22)

The mode shapes contained by the two PRIME bases are assembled from sector-level
mode shapes. Thus, the above transformation, as well as the projection of Eqn. (4.3) onto
the modal domain, involves only sector-level computations. By integrating N-PRIME into
the CoRiD method, a novel reduced-order modeling technique is developed for frictionally
damped blisks with simultaneous large and small mistuning.

4.3 Results and Validation

As mentioned previously, the ring dampers are held in contact with the blisk by pre-stress,
such as centrifugal loading. Depending on the amplitude of the pre-stress, as well as the
geometry of the damper, the initial normal load acting on the contact surfaces varies from
node to node, and may result in separation at certain contact node pairs. To determine the
initial normal load at each contact node, and the resulted deformation, an iterative static
analysis is performed for the given pre-stress. Moreover, Eqn. (4.10) represents a compact
ROM, and consists of a small set of modal complex algebraic equations, in the frequency
domain. However, the nonlinear contact forces F(n)

nl must be first computed in the time do-
main. Thus, the hybrid frequency/domain method, originally introduced by Guillen [45],
is adopted in this study to solve Eqn. (4.10). Both iterative solution processes of deter-
mining the static deformation resulting from pre-stress, and the nonlinear forced responses
computed by HFT, are detailed in Sec. 3.2.4. With the solution methods established, the
PRIME-CoRiD method is applied to obtain the forced responses of the UM Validation
Blisk shown in Fig. 3.1.
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4.3.1 Forced Response Analyses

In this section, forced responses are computed for the blisk-damper system with two mis-
tuning patterns. Validations against finite element analyses on the full-order system are
computationally prohibitive. Instead, the results provided by the ROM are validated against
the forced response analyses performed on a condensed CB-CMS model provided by AN-
SYS. To minimize the error between the validation data generated by the CB-CMS model
and the full-order model (so that it is negligible), 100 system normal modes with fixed
CMS interfaces are included in the CB-CMS mode basis, enough to ensure the accuracy of
the CB-CMS model for forced response analyses performed within the forcing frequency
range of interest.

A traveling wave excitation is used in this study as the external periodic forcing func-
tion, which can be expressed as follows

f =
N∑

j=1

F je−i( j−1)EO 2π
N , (4.23)

where F j is the amplitude of the excitation applied on the jth sector. Note that a traveling
wave excitation is a function of the engine order EO. Responses under excitations of lower
engine orders exhibit disk-dominated behavior, where significant relative motions are ob-
served between the ring damper and the blisk, and the frictional damping is most effective
in dissipating energies. However in this case, the blade mistuning has little or no effect on
the forced responses since little or no motion is present on the blades. In contrast, under
excitations of higher engine orders, the effect of blade mistuning is stronger, whereas the
frictional damping becomes ineffective. Thus, to ensure both blade mistuning and frictional
damping are effective so that their correlation can be observed, an excitation of engine or-
der 3 is selected, as this intermediate engine order results in motions distributed throughout
the blisk. The traveling wave excitation is applied at the tip of each blade to ensure a large
blade deformation. Forced responses are extracted at one selected node per blade, referred
to as the response nodes, that are in proximity with the nodes on which the excitations are
applied. A small Rayleigh damping ratio is chosen as α = 0, and β = 4.4396×10−7 s, which
corresponds to a damping ratio ζ = 4.0622×10−4 at ωn = 1,830 Hz.

It it well known that in predicting the responses of complex systems, better accuracy can
be achieved with more harmonics added to the HBM formulation. For the simple academic
model, a single harmonic is sufficient to capture the correct responses, and test cases reveal
that adding more harmonics results in unnoticeable improvements to the accuracy of the
ROM-predicted responses. Thus, in this study a single harmonic is used.
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Figure 4.4: Forced responses of a UM validation blisk with large mistuning under a travel-
ing wave excitation of engine order 3
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Figure 4.5: Maximum forced responses within the range of excitation frequencies at each
ratio ρ of a UM validation blisk with large mistuning under a traveling wave excitation of
engine order 3
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(b) Error in forced responses at ρ = 0.6
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(c) Error in forced responses at ρ = 2

Figure 4.6: Error in forced responses of a UM validation blisk with large mistuning under
a traveling wave excitation of engine order 3, validated at ρ values of 0, 0.6, and 2
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The first example includes the forced responses performed on a blisk-damper system
with large mistuning only, where 10% material is removed from one of the blades, as shown
in Fig. 4.10a. To evaluate the relative importance and effects of the pre-stress magnitude
N0, forcing magnitude F, and the coefficient of friction µ, the ratio ρ =

µN0
F is used in

this study. The maximum amplitude of forced responses across all response nodes are
extracted at each excitation frequency, from 1,820 to 1,840 Hz, and each ρ value, ranging
from 0 to 2, as shown in Fig. 4.4. A more clear view is shown in Fig. 4.5 by extracting
the maximum forced response amplitude within the range of forcing frequencies at each ρ
value. At ρ = 0, the contact surfaces are frictionless and can freely slide relative to each
other. Thus, no energy dissipation by frictional damping occurs, and a maximum response
is observed. As the friction coefficient increases, so does the effectiveness of frictional
damping, resulting in a lower response. A maximum reduction in the forced response
amplitude occurs at ρ= 0.4. As the friction coefficient continues increasing, and ρ increases
(approaching 2), it becomes difficult for the contact surfaces to slide against each other,
leading to less effective frictional damping and a higher amplitude of forced responses.
The ROM-predicted results are validated at three values of ρ: ρ = 0, 0.6, and 2. The
relative errors between the ROM results and the validation data provided by the ANSYS
CB-CMS model are shown in Fig. 4.6. The maximum relative error occurs at ρ = 0.6, and
is approximately 0.27% (Fig. 4.6b). Such a small error indicates a good accuracy of the
ROM when modeling large mistuning. Also, it shows that the contact dynamics is well
captured by the mode basis involved in the stick-slip modal transformation.
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Figure 4.7: Forced responses of a UM validation blisk with both large and small mistuning
under a traveling wave excitation of engine order 3

75



0 0.5 1 1.5 2
0.079

0.08

0.081

0.082

0.083

0.084

0.085

0.086

0.087

0.088

ρ

D
is

pl
ac

em
en

t M
ag

ni
tu

de
 (

m
m

)

Maximum Forced Response at Each ρ Value: Engine Order 3

Figure 4.8: Maximum forced responses within the range of excitation frequencies at each
ratio ρ of a UM validation blisk with both large and small mistuning under a traveling wave
excitation of engine order 3

In the second example, in addition to the damaged blade, small perturbations in material
property are applied to all blades by varying their Young’s modulus by a small percentage
from their nominal value. Such variations are randomly determined following a normal
probability distribution of a zero mean value and a 2% standard deviation, resembling a
small mistuning pattern that typically results from manufacturing tolerances. The ROM-
predicted forced responses under a traveling wave excitation of engine order 3 are shown
in Fig. 4.7. The maximum forced responses within the range of forcing frequencies at each
friction coefficient are shown in Fig. 4.8. It is observed that the added small mistuning
pattern has little influence on the effectiveness of the frictional damping, as the maximum
reduction of forced response amplitude remains at ρ = 0.4. Interestingly, validation against
the CB-CMS model indicates that the maximum relative error occurs at ρ = 0, and is ap-
proximately 0.15% (Fig. 4.9a), lower than the value observed in the case where only large
mistuning exists. This small error indicates that an upper bound of error is set by the
PRIME-CoRiD method when solving large mistuning problems, and little or no additional
error is introduced by NEWT for modeling small mistuning.

4.3.2 Statistical Analyses

Recall that all computations required by the PRIME-CoRiD method are sector-level, re-
sulting in fast construction of ROMs of mistuned blisk-damper systems. Moreover, if a
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(a) Error in forced responses at ρ = 0
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(b) Error in forced responses at ρ = 0.6
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(c) Error in forced responses at ρ = 2

Figure 4.9: Error in forced responses of a UM validation blisk with both large and small
mistuning under a traveling wave excitation of engine order 3, validated at ρ values of 0,
0.6, and 2
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(a) 10% tip (b) 14% tip (c) 8% edge

Figure 4.10: Examples of rogue sectors with different volume of material removed from
different locations on the blade component

single harmonic is used in the HBM formulation, the size of the resulting ROM depends
only on the number of (a few) modal coordinates used in the stick-slip modal transfor-
mation. Thus, minimal computational effort is required to compute forced responses by
the HFT method. For a mistuned blisk-damper system excited under external forcing at a
specified forcing frequency, the PRIME-CoRiD requires only 3-5 minutes of CPU time to
compute its forced responses for all DOFs of the system. In contrast, the transient analysis
performed on a full-order finite element model of the blisk-damper system requires more
than 5 days of CPU time for the solution to reach steady state. Due to the fast computations
and good accuracy provided by the PRIME-CoRiD method, it is possible to sample a blisk-
damper system over a large amount of simultaneous large and small mistuning patterns to
obtain its statistical characteristics and to study the correlation between random mistuning
and the effectiveness of frictional ring dampers. In this study, a Monte-Carlo analysis is
applied to the UM Validation Blisk, with 400 samples of small and large mistuning patterns
included. The mistuning patterns are created as follows

1. Large mistuning patterns are created by randomly selecting 1 or 2 sectors as rogue
sectors. Each of the rogue sectors has distinct volume of material removed from its
blade component. Examples of rogue sectors are shown in Fig. 4.10. In this study,
10 large mistuning patterns are involved.

2. Each large mistuning pattern is associated with 40 different small mistuning patterns.
The small mistuning patterns are created through the same process introduced in the
previous section. Variations in Young’s modulus are applied to each blade. A ran-
dom number generator is implemented to provide the variations following a normal
probability distribution of a zero mean value and a 2% standard deviation.

A traveling wave excitation of engine order 3 is adopted in this study so that the effects
of both blade mistuning and frictional damping are present. It is well known that mistun-
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(c) ρ = 0.6

Figure 4.11: Probability distributions of amplification factors of forced responses of mis-
tuned blisk-damper systems obtained at different ρ value

ing can lead to strain energy localization and drastically increase the amplitude of forced
responses. Thus, it is useful to define a metric so that the effect of mistuning can be quan-
tified. In this study, this metric is defined by comparing the maximum amplitude of forced
response throughout the pre-selected response nodes of the mistuned system with that of
a tuned system, under the same forcing conditions, with the same ρ value, and within the
same range of forcing frequencies. This metric is called the amplification factor (AFx(ρ)),
and is defined as follows

AFx(ρ) =
maxω(maxNnode

i=1 (‖xm
i (ρ)‖))

maxω(maxNnode
i=1 (‖x0

i (ρ)‖))
, (4.24)

where Nnode is the number of response nodes, and ω is the angular forcing frequency. Su-
perscript m stands for a mistuned system, whereas 0 stands for a tuned system. Note that
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the amplification factor is computed for forced responses of mistuned and tuned systems
with the same ρ value. Figure 4.11 shows the probability distributions of amplification fac-
tors for the forced responses of mistuned systems obtained from the Monte-Carlo analyses.
The analyses are performed for three values of ρ: ρ = 0,0.6, and 2. Note that in the cases of
ρ = 0 or 2, (Fig. 4.11a, and 4.11b), the contact surfaces maintain a sliding or sticking con-
dition, respectively. A side-by-side comparison shows that similar probability distributions
are observed in these two linear cases. A frictional contact surface with ρ = 0.6 results in
amplification factors which are more centered toward the mean value of 1.18 (Fig. 4.11c).
However, the maximum amplification factor is not influenced by the friction damping, and
is approximately 1.33 for all three cases.

The probability distribution of amplification factors reveals that frictional damping has
a small influence on the amplification of forced responses caused by blade mistuning. How-
ever, the correlation between mistuning and friction damping is mutual, and the analysis
cannot be conclusive without studying the effect of mistuning on the effectiveness of fric-
tion damping. This effect can be measured by the reduction ratio (RRx(ρ)), representing
the maximum percentage reduction in forced response amplitude due to frictional damp-
ing, expressed as the following

RRx(ρ) = 1−
maxω(maxNnode

i=1 (‖xm
i (ρ)‖))

maxω(maxNnode
i=1 (‖xm

i (0)‖))
. (4.25)

In this study, the value of ρ is selected as 0.6. Figure 4.12 shows the reduction ratio of
forced responses, sorted from the lowest to the highest value, for the UM Validation Blisk
with each of the mistuning patterns involved in the Monte-Carlo analyses. It is observed
that the reduction ratios spread over a wide range from 8% to 15.2%. This range cannot be
estimated based on analyzing a tuned system, with a reduction ratio of approximately 13%,
that is neither a mean nor a median value of all the samples. Such results emphasize the
value of the PRIME-CoRiD method in efficiently predicting the effectiveness of a damper
design, especially for mistuned systems, through statistical analyses.

4.4 Conclusion

A novel reduced-order modeling technique, referred to as the PRIME-CoRiD method, is
proposed and presented in this paper. This method is capable of predicting the nonlinear
forced responses of bladed disks with frictional ring dampers, and random large and small
mistuning patterns. This method has the following attractive features.
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Figure 4.12: Ratio of reduction of forced response amplitudes resulted from frictional
damping, extracted for a tuned and each of the 400 mistuned systems

1. The PRIME-CoRiD method forms a mode basis that contains the system normal
mode shapes of a blisk-damper system that undergoes global sliding and sticking
conditions. This mode basis can accurately capture the nonlinear behavior of the
contact surfaces. By projecting the blisk-damper system onto this mode basis through
stick-slip modal transformation, its size is reduced from the level of the full-order FE
model that contains many DOFs, to a few modal coordinates.

2. The mode shapes contained by this mode basis are obtained through the N-PRIME
method, which is specialized in computing free and forced responses of bladed disks
with simultaneous large and small mistuning. The N-PRIME method uses only
sector-level cyclic mode shapes as the input parameters, and all computations re-
quired by N-PRIME are performed on a sector level. Thus, the computational effort
required to form the mode basis of the stick-slip modal transformation is minimal.

3. Due to the compactness of the ROM, and the minimal computational cost required to
form it, nonlinear forced response analyses performed on the PRIME-CoRiD ROM
through the HFT method is fast and efficient. This enables PRIME-CoRiD to be used
for Monte-Carlo analyses, for the first time, to study the mutual influence between
random large and small mistuning and the effectiveness of ring dampers.

The PRIME-CoRiD method is applied to the UM Validation Blisk with two different
mistuning patterns. The results indicate that the method has very good accuracy in predict-
ing the nonlinear forced responses of mistuned blisk-damper systems. A statistical analysis
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reveals a wide range of effectiveness of the friction ring damper when the blisk suffers from
different mistuning patterns. Since the upper and lower bounds of the effectiveness cannot
be simply estimated based on the forced responses of a tuned system, the results empha-
size the unique usefulness of the PRIME-CoRiD method. Moreover, though ring dampers
are selected as the damping source in this study, it does not indicate that the variety of
damping sources that the PRIME-CoRiD method can model is restricted. One important
area for future development is to extend the current PRIME-CoRiD method to applications
that involve underplatform wedge dampers, frictional shroud contacts, and other types of
frictional damping sources.
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CHAPTER 5

Geometric Optimization of Dry Friction Ring
Dampers for Maximized Reduction in Forced

Responses

5.1 Introduction

The CoRiD and PRIME-CoRiD methods are powerful in accurately and efficiently cap-
turing the nonlinear forced responses of blisk-damper systems. However, from a design
perspective, the reduced-order methods alone cannot provide an optimal design of friction
ring dampers. The effectiveness of ring dampers depend on a variety of parameters, in-
cluding 1) contact parameters, such as contact stiffness, friction coefficient, and the level
of pre-stress, 2) external forcing conditions, such as the location of forcing, and the forcing
amplitude, and 3) geometry of the cross-section of the ring. Optimization of damper ef-
fectiveness has been carried out by many researchers. Conventional methods in predicting
optimal damper design involves repetitive computations of nonlinear forced responses of
blisk-damper systems with a few pre-selected sets of parameters. Such methods require
tremendous amount of computational effort, and do not guarantee to involve the optimal
sets of parameters.

To address this issue, direct parametric analyses have been adopted to facilitate in trac-
ing the optimal of design parameters [60–64]. The optimization problem can be efficiently
solved when the sensitivity characteristics of forced responses are determined. Unfortu-
nately, direct parametric analyses imposes a restriction that no geometric changes are al-
lowed during the optimization process. In practice, variations in each dimension of the
damper geometry can result in significant changes in damper effectiveness. Thus, a ring
damper with optimal geometry cannot be directly obtained through direct parametric anal-
yses.

Figure 5.1 shows the UM Validation Blisk model used in this study, in contact with
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a V-shaped ring damper. In this study, the geometry of the V-shaped damper is first
parametrized following a volume constraint. A parametric study is performed by vary-
ing two of the geometric parameters simultaneously at a time to study the trade-offs among
different dimensions of the damper geometry. Moreover, a series of sensitivity analyses
are performed to reveal the optimal location that the damper should be placed upon to
reach its maximum effectiveness. The effect of joints and changes in thickness are also
explored. Based on the analyses conducted in this paper, a set of damper design guidelines
are proposed.

Figure 5.1: A typical blisk-damper system: UM validation blisk (blue) in contact with a
V-shaped ring damper (purple)

5.2 Methodology

5.2.1 Damper Geometry Parametrization

Consider the V-shaped ring damper shown in Fig. 5.2. To create a deterministic geometry
of the damper, the values of four parameters must be specified, including the length of the
contact surface l, the opening angle of the groove θ, the damper thickness t, and the radius
r from the center of the blisk to the groove depth. For a given blisk model, such as the
academic model shown in Fig. 5.1, the distance from the center of the blisk to the rim is
fixed. Since the groove is located underneath the rim, it is reasonable to specify r with a
pre-set value. Thus, variations in r are not included as a parameter for optimization.

Moreover, the optimization of the damper geometry follows a volume constraint. In
other words, during the optimization process, at least two of the remaining three geometric
parameters, l, θ, and t, must vary simultaneously to keep the volume of the damper constant.
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Figure 5.2: A V-shaped ring damper parametrized into four dimensions

Although this study focuses on a V-shaped ring damper, the parametrization process is
not limited to such a single geometry. In general, for a ring damper with a generic shape
of the cross-section, it is often feasible to identify the minimum number of parameters that
are sufficient to construct the geometry of the damper. While some parameters are fixed
due to certain geometric constraints imposed by the blisk model, the rest parameters can be
included for optimization process following a volume constraint.

5.2.2 Coherent Ring Damper (CoRiD)

One of the widely-used metrics for evaluating the effectiveness of a friction damper is the
maximum reduction in the nonlinear forced responses of the blisk-damper system. For
a blisk in contact with the V-shaped damper with a specific set of geometric parameters,
its responses under external excitation is computed by the CoRiD method [68, 69]. The
formulation of the CoRiD method is reviewed in this section.

Figure 5.3: A 1D macro-slip model
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(a) Sliding condition (b) Sticking condition

Figure 5.4: Equivalent contact models of a node pair under two limiting contact statuses

Consider a typical blisk-damper model as shown in Fig. 5.1. Its EOMs can be expressed
as

Mẍ(t)+βKẋ(t)+Kx(t) = Fe(t)+Fnl(t), (5.1)

where M and K are the mass and stiffness matrices of the blisk-damper system, and β is
the stiffness-proportional damping coefficient. Fe(t) represents the external periodic forc-
ing function. Fnl(t) represents the nonlinear contact forces. To capture the nonlinear contact
forces Fnl(t), the two mating contact surfaces between the blisk and the ring damper are dis-
cretized into evenly distributed contact node pairs. The 3D relative displacements, as well
as contact forces, are decomposed into two perpendicular in-plane tangential directions,
and an out-of-plane normal direction. By assuming the two tangential components of the
relative displacements, as well as the resulting tangential contact forces, are independent
of each other, the contact dynamics along each tangential direction can be modeled by a
simple 1D macro-slip model with normal load variation [26], as shown in Fig. 5.3. This
assumption has been extensively adopted and validated in many studies [51, 52, 65]. Thus,
the 3D contact dynamics at each contact node pair can be modeled by a pair of independent
1D models.

Full-order FE models of commercial blisk-damper systems often contain many DOFs.
Thus solving Eqn. (5.1) directly can be a formidable task. In order to reduce the size
of the full-order model, two limiting contact conditions of the 1D macro-slip model are
considered.

Consider two nodes of a contact node pair that can fully slide relative to each other. In
this case, the contact force is constant, and the tangential contact stiffness between the two
contact nodes is ineffective. An equivalent model is constructed by removing the tangential
stiffness from the 1D macro-slip model, as shown in Fig. 5.4a. In contrast, two nodes of a
contact node pair that are stuck together can be modeled as shown in Fig. 5.4b, where the
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Coulomb slider is bonded to the contact surface, and no slip motion is allowed. A local
contact stiffness matrix can be written for each of the two limiting contact models.

ksl =


0 0 0
0 0 0
0 0 kn

 , kst =


kt 0 0
0 kt 0
0 0 kn

 . (5.2)

Note that the contact stiffness matrices for each contact node pair are expressed in local
contact coordinates. Now consider a global contact status, where the two mating contact
surfaces can fully slide relatively to each other. In this case, a global contact stiffness ma-
trix Ksl can be assembled from ksl, and expressed in global (cylindrical) coordinate system,
with proper rotation applied. Similarly, when the two contact surfaces are completely stuck
together, a global contact stiffness matrix Kst can be assembled from the local contact stiff-
ness matrix kst. Note that under both global sliding and sticking conditions, no nonlinear
forces exist between the contact surfaces. Thus, a linear modal analysis can be performed
for the blisk-damper system under each of the global contact status by solving the following
eigenvalue problems

[−ω2
slM+ (K+Ksl)]Φsl = 0, (5.3)

[−ω2
stM+ (K+Kst)]Φst = 0, (5.4)

where ωsl and ωst are natural frequencies of a blisk-damper system with global sliding and
sticking conditions respectively enforced along the contact surfaces. Φsl and Φst contain
the corresponding system normal mode shapes. Equation (5.1) can be projected onto a
mode basis formed by Φsl and Φst by the following transformation

x(n) =
[
Φst Φsl

]
q(n) = Tq(n). (5.5)

Since the motion along the contact DOFs ofΦsl andΦst represents the contact dynam-
ics in two limiting cases: no sliding motion allowed, and free sliding, the contact dynamics
of a blisk-damper system with frictional contact can be considered an intermediate state
with only a limited level of sliding allowed. Such sliding motion is well captured by the
difference between contact DOFs of Φsl and Φst. Thus, the forced responses of a fric-
tionally damped system can be approximated as a linear combination of the normal mode
shapes of the same system under global sliding and sticking conditions (Φsl and Φst).

The modal equation of motion resulting from the stick-slip modal transformation can
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be expressed as

mq̈(t)+βkq̇(t)+kq(t) = fe(t)+ fnl(t), (5.6)

where m = TT MT, k = TT KT, fe = TT Fe, and fnl = TT Fnl.
The ROM resulting from the stick-slip modal transformation does not possess any phys-

ical DOFs, and its size depends only on the number of mode shapes involved in the trans-
formation basis. Thus, this ROM resembles a compact system.

Note that Eqn. (5.6) is expressed in the time domain. Conventional method such as
the direct numerical time integration requires a large amount of iterations to obtain the
steady state solution. Thus, the classical harmonic balance formulation is introduced to
transform Eqn. (5.6) into the frequency domain by expressing each variable (q, fe, and fnl)
as a truncated sum of harmonic terms. And the resulting EOM in the frequency domain
can be written as

d(n)q(n) = f(n)
e + f(n)

nl . (5.7)

where q(n) is the nth order harmonic of the vector of modal displacement, and d(n) is the nth

order harmonic of the modal dynamic stiffness matrix, expressed as

d(n) = −(nω)2m+ (1+ iβnω)k. (5.8)

Equation (5.7) represents a compact frequency domain equation. However, the non-
linear contact forces must be evaluated in the time domain. Thus, the HFT method is
adopted in this study to solve Eqn. (5.7). Detailed iterative solution process can be found in
Ref. [46,68,69]. With the HFT method, the nonlinear forced responses of the blisk-damper
system, with a provided set of damper dimensions, can be obtained.

5.3 Results and Discussion

5.3.1 Parametric Study of Geometric Variations

In this study, 28 V-shaped dampers are created by varying either the length of contact area
from 3 to 6 mm, or the opening angle of the V-groove from π

3 to 5π
6 . The thickness of the

dampers are adjusted accordingly to maintain the volume constraint. Several examples of
the V-shaped dampers are shown in Fig. 5.5. Nonlinear forced responses are extracted at
the tip of the blades for each of the 28 blisk-damper models. A traveling wave excitation is
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(a) l = 3, θ = π
6 (b) l = 4.5, θ = π

3 (c) l = 6, θ = π
4

Figure 5.5: Examples of V-shaped dampers with various lengths of contact area and open-
ing angles of the groove

used as the external periodic forcing function, which can be expressed as follows

f =
N∑

j=1

Fe−i( j−1)EO 2π
N , (5.9)
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Figure 5.6: Forced responses of a UM validation blisk in contact with a typical V-shaped
damper under a traveling wave excitation

As an example, Figure 5.6 shows the forced responses of a blisk-damper systems. The
damper geometry is shown in Fig. 5.5b, which has a length of contact area of 4.5 mm, and
an opening angle of π

3 . To comprehensively evaluate the relative importance among the
pre-stress magnitude N0, forcing magnitude F, and the coefficient of friction µ, the ratio
ρ =

µN0
F is used in this study. Also, to account for the variations of damper effectiveness

due to external forcing, the forced response magnitude x is normalized with respect to the

89



external forcing magnitude F. Thus, the normalized response magnitude u = x
F is used in

this study. The maximum response amplitude within the range of excitation frequency is
extracted at each ρ value, ranging from 0 to 40. The effectiveness of a damper is often
evaluated by the reduction ratio of forced responses R from the maximum value, typically
when the damper is full sliding or completely stuck with the blisk, to the minimum re-
sponse where the friction damping is most effective. Moreover, from a design perspective,
a damper is often required to be effective over a wide range of frictional coefficients, or
under different forcing conditions. This requirement is reflected in Fig. 5.6 as to maintain
the reduction ratio above certain threshold over a wide range of ρ values, referred hereafter
as the effective range of ρ. In this study, the two metrics, reduction ratio R and the effective
range of ρ, are used to evaluate damper performance.
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Figure 5.7: Forced responses of a UM validation blisk in contact with 28 V-shaped dampers
of different variations in geometric parameters

Figure 5.7 shows the nonlinear responses of 28 blisk-damper systems. Surprisingly,
the forced responses of all 28 models are almost identical to each other, with the same
reduction ratio and the same effective range of ρ. This observation indicates that small
variations of damper geometry has little or no effect on the damper effectiveness. Thus, it
is of interest to explore the aspects of damper geometry that control damper effectiveness.
A cone-shaped damper is created as shown in Fig. 5.8a, which possess half of the contact
area compared with a V-shaped damper (Fig. 5.8b). It is expected that under the same
forcing condition, the cone-shaped damper should reach at least half of the reduction ratio
that a V-shaped damper provides.

However, Figure 5.9a shows that the cone-shaped damper has a reduction ratio of
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(a) A cone-shaped damper (b) A V-shaped damper

Figure 5.8: A cone-shaped damper that has half contact area of a V-shaped damper

Sliding Sticking Frequency
Frequency (Hz) Frequency (Hz) Split (Hz)

Cone-Shaped Damper 399.5890 399.6969 0.1079
V-Shaped Damper 399.0624 399.6754 0.6130

Table 5.1: Natural frequencies of a UM Validation Blisk in contact with a cone-shaped and
a V-shaped damper

19.46%. Compared to the reduction ratio of 46.95% provided by the V-shaped damper
(Fig. 5.9b), the cone-shaped damper fails to meet the expectation of reaching half of the
effectiveness that the V-shaped damper provides. Moreover, the effective range of ρ values
that the cone-shaped damper provides is 0.45, if the threshold of reduction ratio is set as
10%. This range is much narrower than the range of 24 that the V-shaped damper provides
with the same threshold.

With the same forcing condition, and half of the contact area of the V-shaped damper,
it is suspected that the ineffectiveness of the cone-shaped damper is due to the joint that
the V-shaped damper possesses. The main contribution of the joint is additional bending
stiffness along the tangential direction. Thus, the natural frequencies of the blisk-damper
systems under sliding and sticking conditions are computed. Presented in Tab. 5.1 are the
natural frequencies that fall into the range of excitation frequency. Note that while the
sticking frequency remains the same for both cases, the sliding frequency has changed
by approximately 0.5 Hz. This change leads to a larger difference between sliding and
sticking frequencies, hereafter referred to as the frequency split, in the case of a V-shaped
damper. It is believed that with a narrow frequency split, a small perturbation in excitation
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(b) A V-shaped damper

Figure 5.9: Forced responses of a cone-shaped damper in comparison with the responses
of a V-shaped damper that has twice the contact area

frequency can result in a sudden change of contact status of the entire contact surface from a
sliding to a sticking condition. In contrast, a large frequency split provides more tolerance
in perturbation in excitation frequency, and allows more micro-slip to occur. To prove
this point, a double cone-shaped damper is created as shown in Fig. 5.10, and its Young’s
modulus is tuned to increase its bending stiffness so that its frequency split matches that of
the V-shaped damper, as shown in Tab. 5.2.

Figure 5.10: A double cone-shaped damper

Forced response analyses reveal that the double cone-shaped damper and the V-shaped
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Sliding Sticking Frequency
Frequency (Hz) Frequency (Hz) Split (Hz)

Double Cone- 399.3131 399.9290 0.6159
Shaped Damper
V-Shaped Damper 399.0624 399.6754 0.6130

Table 5.2: Natural frequencies of a UM Validation Blisk in contact with a double cone-
shaped and a V-shaped damper

0 20 40 60 80

0.4

0.5

0.6

0.7

0.8

ρ

u

Double Cone−Shaped Damper

(a) A double cone-shaped damper
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(b) A V-shaped damper

Figure 5.11: Forced responses of a double cone-shaped damper in comparison with the
responses of a V-shaped damper that has twice the contact area

damper has similar reduction ratio of forced response amplitudes, as shown in Fig. 5.11.
This observation is consistent with the statement that under the same forcing condition, the
frequency split that damper provides determines its effectiveness. This is further confirmed
by revisiting the frequency split provided by the 28 V-shaped damper models. It is revealed
that all the 28 models have nearly identical frequency split of approximately 0.58 to 0.62
Hz.

5.3.2 Sensitivity Analyses

The observation that the frequency split provided by a friction ring damper determines
its effectiveness is very impactful. It suggests that instead of time-consuming nonlinear
analyses, a few harmonic analyses can fast predict whether a damper design is effective.
Thus, in this section, a series of sensitivity analyses are performed to understand the relation
between damper geometries and the frequency split. The results are further used to develop
a systematical approach to increase the frequency split, as well as damper effectiveness, as
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much as possible.

5.3.2.1 Location of Ring Dampers

With given geometry of the contact surface, the location which the damper is placed upon
has certain effect on the interaction between the damper and the blisk, and thus affect the
frequency split. To determine the optimal location for the damper, a sensitivity analysis is
conducted by continuously applying circumferential elements of damping material along
the contact surface, as shown in Fig. 5.12. Frequency split is computed with modal analyses
performed after each time the material is added to the system, as shown in Fig. 5.13.

Figure 5.12: Models involved in the sensitivity analysis. Damper material is continuously
added along the contact surface.
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Figure 5.13: Frequency split resulted from continuously adding damper material along the
contact surface

It is observed that adding damping material on the left slope of the groove is most
influential to increase the frequency split, followed by material added to the right slope.
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(a) A hook-shaped damper along the left
slope of the groove

(b) A hook-shaped damper along the right
slope of the groove

Figure 5.14: Hook-shaped dampers that respectively include damper material along the left
and the right slope of the groove

Sensitivity Modal
Analysis (Hz) Analysis (Hz)

Left Hook-Shaped Damper 0.4501 0.5114
Right Hook-Shaped Damper 0.4761 0.5311
V-Shaped Damper 0.4763 0.5364

Table 5.3: Comparison between the frequency split suggested by sensitivity analyses, and
results computed from modal analyses on each of the two hook-shaped dampers and a
V-shaped damper

Also, the frequency split increases linearly along both slopes with more material added.
The rate of increase is 0.04785 Hz per element of material added to the left slope, and
0.05384 Hz per element added to the right slope. Interestingly, adding material to the
flat surface, from location 1 to 4, causes negative frequency splits. Thus, a good damper
design practice should avoid adding damping material to such regions. To validate this
sensitivity analysis, two hook-shaped dampers are created, as shown in Fig. 5.14. These
two dampers include damping material along left and right slope of the groove. Modal
analyses are performed on the two hook-shaped dampers, as well as a V-shaped damper.
Frequency splits are extracted and presented in Tab. 5.3, in comparison with the results
from the sensitivity analysis.

Certain discrepancies exists between the frequency split computed from the dampers,
and the sensitivity analyses. This is due to the fact that in the sensitivity analysis, the
material possessed by the each of the dampers are connected with material from other
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(a) Joint between damper material along
the flat surface and the left slope of the
groove

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Location Index

F
re

qu
en

cy
 S

pl
it

 

 

Without Left Joint
With Left Joint

(b) Comparison between sensitivity analyses with
and without the left joint

Figure 5.15: Sensitivity analyses reveal the effect of the joint on the increasing the starting
point of frequency split

regions, especially the flat surfaces (location 1 to 4) that tend to decrease the frequency
split. However, the trend among the frequency splits provided by each of the dampers is
consistent with that observed in the sensitivity analysis.

The sensitivity analysis indicates that to create a most effective damper, material along
both slopes should be included. However, it is also observed that a large increase in fre-
quency split exists from location 4 to location 5 (Fig. 5.13). This location corresponds to
the left joint between material from the flat surface and the left slope of the groove, as
shown in Fig.5.15a. Thus, the above sensitivity analysis is repeated starting at location 5.
Figure 5.15b reveals that without this joint, the frequency split resulted from material from
other region remains the same. However, the starting point of frequency split is at a much
lower value. This suggests that adding the joint to the damper design results in a larger
frequency split, which is favorable in damper design practice.

Figure 5.16 shows a damper design that includes material from all the effective regions,
with the joints included. A modal analysis shows that the frequency split possessed by this
damper is as high as 0.8910 Hz. Nonlinear forced response analyses are also performed
on this blisk-damper system. Figure 5.17 shows the maximum normalized response ampli-
tudes at each value of ρ. Compared to a V-shaped damper (Fig. 5.8b), significant improve-
ment in reduction ratio of response amplitudes is observed (62.89% compared to 46.95%).
Moreover, the new damper has a much wider effective range of ρ values. If a threshold of
30% reduction ratio is selected, the new damper has a effective range of ρ values that is
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approximately 51, 4 times wider than that provided by the V-shaped damper, which has a
range that is approximately 12.

Figure 5.16: An effective damper that includes necessary joints, and material from regions
that provide large frequency split

5.3.2.2 Thickness of Damping Material

In the previous section, sensitivity analyses are performed by adding damper material along
the contact surface. This practice can be considered analyzing the effect of variations in one
of the damper dimensions (length) on its effectiveness. In this section, sensitivity analyses
are applied to explore the effect variations in another dimension of the damper geometry,
which is the damper thickness. A thin-layered cone-shaped damper is applied to the left
slope of the groove, as shown in Fig. 5.18a. During the sensitivity analysis, the thickness
of the damper gradually increases. Modal analyses are performed after each increment of
thickness to extract the frequency split (Fig 5.19). Figure 5.20 reveals the frequency split
resulted from the cone-shaped damper with various thickness.

It is observed that the frequency split increases linearly with the thickness of the slope.
The same analysis is repeated with a cone-shaped damper placed on the right slope of
the groove (Fig. 5.18b). Linearity between the frequency split and the damper thickness
is again observed, with a smaller rate of increase (Fig. 5.20). This observation suggests
that increasing the damper thickness tends to increase the bending stiffness of the damper,
and consequently increase the frequency split. Thus, the thickness of the V-shaped damper
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Figure 5.17: Forced responses of an effective damper with a high reduction ratio of re-
sponse amplitudes, and a wide effective range of ρ values

(a) Thin-layered damper on the left slope (b) Thin-layered damper on the right slope

Figure 5.18: Thin-layered cone-shaped damper placed on the left and right slope of the
groove, respectively

Figure 5.19: Models involved in the sensitivity analysis with the thickness of the damper
continuously increasing
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Figure 5.20: Frequency split resulted from continuously increasing damper thickness

(Fig. 5.8b) is increased by a factor of 1.7, as shown in Fig. 5.21. Nonlinear forced responses
reveals that the thicker V-shaped damper has a larger reduction ratio of response amplitudes
(62.93% compared to 46.95%), as shown in Fig. 5.22. And if the threshold of reduction
ratio is chosen as 30%, the effective range of ρ values that the thicker V-shaped damper
provides is much wider than its thinner counterpart (55.5 compared to 12).

Figure 5.21: A V-shaped damper with larger thickness

The sensitivity analyses performed in previous sections reveal that the frequency split
that a damper can provide depends on its location as well as thickness. During damper
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Figure 5.22: Forced responses of a V-shaped damper with increased thickness, providing a
high reduction ratio of response amplitudes, and a wide effective range of ρ values

design practice, to ensure the largest possible frequency split is involved in designing an
effective damper, it is recommended to first perform sensitivity analyses to reveal the lo-
cations that are most effective in proving large frequency split. Damping material placed
on these locations are connected by several joints. It is favorable to involve as many joints
as possible, as revealed in Sec.5.3.2.1, since joints tend to increase the bending stiffness of
the damper, and consequently the frequency split. Moreover, the frequency split increases
linearly with the damper thickness. Thus, after the location of the damper is determined,
its thickness should be increased as much as possible to ensure an optimal frequency split.

5.4 Conclusion

The conventional damper design process involves nonlinear forced response analyses repet-
itively performed for numerous sets of contact and geometric parameters. The observation
that the frequency split between sliding and sticking frequencies determines damper effec-
tiveness is very impactful since computationally costly nonlinear analyses can be replaced
by linear modal analyses used to extract the frequency split. A series of sensitivity anal-
yses is used in this study to explore the geometric parameters that dictate the frequency
split. Two distinctive damper models are created following the discoveries from the sensi-
tivity analyses, and are validated to be effective by forced response analyses. These damper
models provide high reduction ratio of response amplitudes and wide effective range of ρ
values.
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CHAPTER 6

Conclusions and Future Work

6.1 Contributions

The research in this dissertation proposes several algorithms and techniques for predicting
linear and nonlinear dynamic responses of turbomachinery, and identifying design param-
eters of friction damping sources. The original contributions of this work are summarized
as follows:

• In Chapter II, a reduced-order modeling technique based on the concept of PRIME
was proposed. It was observed that the existing PRIME method can accurately
capture the free and forced responses of blisks with both small and large mistun-
ing. However, repetitive construction of small mistuning model through PRIME is
computationally inefficient. To address this issue, two distinct methods, CMM and
NEWT, were both strategically integrated into the PRIME work frame to specifically
target small mistuning with less computational effort required, resulting in two new
methods called C-PRIME and N-PRIME. Both methods were applied to the UM
blisk to extract its system natural frequencies, and forced responses under traveling
wave excitations. Results were validated against full-order finite element analyses,
which revealed a better accuracy possessed by the N-PRIME method. Moreover, un-
like the cantilever blade modes required by CMM, NEWT forms its model reduction
basis with sector-level normal modes, which do not require a clear definition of the
root of each blade. This property enables the N-PRIME method to be applicable
to dual-flow path systems, which resemble complex structures with multiple sector-
to-sector interfaces. Structural analyses were performed by applying the N-PRIME
method to a typical dual-flow path system. Validation once again showed the blisk
responses can be captured by N-PRIME with good accuracy. Since both PRIME and
NEWT methods utilize sector-level calculations, the computational effort required
by N-PRIME to generate ROMs is minimal. Thus, the N-PRIME method was used
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for a Monte-Carlo analysis to study the characteristics of random combinations of
both large and small mistuning. This analysis revealed emerging groups of mistuned
natural frequencies resulting from isolated modes with high strain energy localiza-
tion. Moreover, amplification factors of forced responses were extracted for each
randomly mistuned blisk. It was discovered that the conventional method of es-
timating stress amplification based on displacement responses is not applicable to
systems with large mistuning. The modified Weibull distribution, commonly used to
estimate probability distributions of amplification factors, were proven to be invalid
both physically and mathematically when large mistuning is present.

• In Chapter III, a dry friction ring damper was added to the UM blisk. To capture
the nonlinear dynamics along the frictional contact surfaces between the blisk and
the damper, the CoRiD method was proposed by exploring the coherent motion be-
tween the two mating contact surfaces. CoRiD utilizes the mode shapes of the blisk-
damper system when the contact surfaces experience either a full sliding or a full
sticking condition. The resulting mode basis mimics the relative motion between
the contact surfaces, and can capture the contact dynamics accurately. Forced re-
sponses of a tuned blisk-damper system were computed by CoRiD and validated
against results obtained directly from full-order systems, which revealed good accu-
racy provided by CoRiD. Moreover, it was noted that frictional damping sources and
blade mistuning often coexist, and investigation on their mutual effects are neces-
sary. To do that through the CoRiD method, the normal mode shapes of the mistuned
blisk-damper systems required by CoRiD must be extracted in absence of cyclic sym-
metry. Thus, the technique of CB-CMS-CMM were developed to condense the size
of full-order blisk-damper systems. CB-CMS-CMM consists of a series of model
reduction steps. First, the CB-CMS model of a tuned blisk-damper system was gen-
erated. The blade mistuning component was modeled by CMM, and the mistuning
model was then transformed into the CB-CMS domain. This novel model reduction
process avoids repetitive construction of CB-CMS models for blisk-damper systems
with multiple mistuning patterns, and significantly reduces the computational effort
required to form the CoRiD mode basis. CB-CMS-CMM was validated using a UM
blisk-damper system with small deviations in blade stiffness, and was proven to pos-
sess good accuracy and efficiency. Finally, since the ROMs generated by CoRiD are
compact, and require minimal amount of computations, they were used for studying
the correlations between frictional damping and random small mistuning, through a
Monte-Carlo analysis. This analysis revealed that frictional damping has small effect
on the amplification resulting from random small mistuning patterns. However, small
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mistuning tends to increase the effectiveness of the damper in terms of reduction ratio
in forced response amplitudes.

• In Chapter IV, the CoRiD method was strategically integrated into the PRIME work
frame, resulting in the PRIME-CoRiD method, which is a comprehensive tool that
can model blisk-damper systems with both large and small mistuning. It was noted
that though the ROMs generated by the CB-CMS-CMM method formulated in Chap-
ter III can be used to fast extract the system normal mode shapes required by CoRiD,
this method is restricted to modeling small material mistuning. Thus, the PRIME
method was adopted to replace CB-CMS-CMM as the first model reduction step,
and to extend the CoRiD method to accurately predict nonlinear dynamic responses
of blisk-damper systems with simultaneous large and small mistuning patterns. Con-
tact stiffness matrices were added to the full-order blisk-damper systems, and car-
ried throughout the PRIME partition process. The ROMs resulting from the PRIME
method were compact and resembled the blisk-damper systems in either full-sliding
or full-sticking contact condition. Mode shapes provided by PRIME ROMs were
used as the input parameters required by the CoRiD method. The PRIME-CoRiD
method was applied to a UM blisk-damper system with both large and small mis-
tuning. The results were validated against full-order analyses and revealed good
accuracy and efficiency possessed by PRIME-CoRiD. In Chapter III, weak corre-
lations between small mistuning and frictional damping were observed. This was
caused by the fact that small mistuning, compared with large mistuning, is less likely
to trigger significant energy localization and amplification in forced responses. Thus,
a Monte-Carlo analysis was carried out using PRIME-CoRiD to investigate the cor-
relations between frictional damping and simultaneous large and small mistuning. It
was revealed that a mixed mistuning patterns can cause the probability distributions
to concentrate towards their mean values. Also, unlike small mistuning, mixed mis-
tuning patterns can either increase or decrease the damper effectiveness. Resulting
changes of reduction ratio in forced response amplitudes cannot be estimated with
solely a tuned system, but through statistical analyses.

• In Chapter V, the dependence of the effectiveness of ring dampers on their geometric
parameters was investigated. The geometry of a V-shaped damper was parametrized.
A parametric study was performed by creating 28 different damper models by vary-
ing the damper geometric parameters simultaneously following a volume constraint.
Nonlinear forced responses were computed using the CoRiD method to evaluate the
damper performance. It was revealed that the 28 different dampers resulted in similar
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levels of effectiveness. Further investigations have shown that these models share a
nearly identical frequency split between system natural frequencies under full slid-
ing and full sticking conditions, and validated that the frequency split influences the
most the damper effectiveness. This observation is impactful since it suggests that
linear modal analyses can be used to replace computationally expensive nonlinear
forced responses to estimate the effectiveness of a damper. Optimal damper loca-
tions were discovered through sensitivity analyses, which also revealed that joints
between damper material along different contact surfaces can enhance the bending
stiffness of the damper, and consequently increase the frequency split. Moreover,
it was shown that the frequency split increases approximately linearly with damper
thickness. These findings assisted in proposing a set of damper design guidelines to
obtain an optimal damper geometry.

6.2 Future Work

• The N-PRIME method introduced in Chapter II forms its reduction basis with sector-
level cyclic modes for a pristine and each of the rogue sectors. This mode basis
specifically targets cyclic symmetric structures, and is thus applicable to blisk sys-
tems. Turbomachinery components include both blisks and vane packets. Vane pack-
ets are stationary airfoils that convert rotational kinetic energy into static pressure. It
is known that mistuning is also present on vane packets. However, vane packets
are non-cyclic structures. Thus, the N-PRIME method cannot be directly applied to
study the effect of mistuning on vane packets. Future work would utilize the PRIME
partition, and form PRIME mode basis with other mode shapes obtainable from non-
cyclic structures, to replace cyclic mode shapes, so that the N-PRIME method can be
extended for vane packets.

• The guidelines for optimal damper design proposed in Chapter V suggests to ap-
ply damping material to more effective locations, and to increase damper thickness.
The resulting damper geometry following the guidelines can be bulky and require a
considerably large amount of damping material. Thus, these guidelines should be re-
fined in the future work by performing additional sensitivity analyses with a volume
constraint enforced. Moreover, the design guidelines are based on analyses on a V-
shaped damper, it is necessary to conduct tests on dampers with different geometries.

104



BIBLIOGRAPHY

[1] Lim, S.-H., Bladh, R., Castanier, M., and Pierre, C., “A Compact, Generalized Com-
ponent Mode Mistuning Representation for Modeling Bladed Disk Vibration,” Struc-
tures, Structural Dynamics, and Materials and Co-located Conferences, American
Institute of Aeronautics and Astronautics, April 2003, pp. –.

[2] Lim, S.-H., Bladh, R., Castanier, M. P., and Pierre, C., “Compact, Generalized Com-
ponent Mode Mistuning Representation for Modeling Bladed Disk Vibration,” AIAA
Journal, Vol. 45, No. 9, Sept. 2007, pp. 2285–2298.

[3] Lim, S.-H., Castanier, M., and Pierre, C., “Vibration Modeling of Bladed Disks Sub-
ject to Geometric Mistuning and Design Changes,” Structures, Structural Dynamics,
and Materials and Co-located Conferences, American Institute of Aeronautics and
Astronautics, April 2004.

[4] Sinha, A., “Reduced-Order Model of a Bladed Rotor With Geometric Mistuning,” J
Turbomach, Vol. 131, No. 3, April 2009, pp. 031007–031007.

[5] Bhartiya, Y. and Sinha, A., “Reduced Order Model of a Multistage Bladed Rotor With
Geometric Mistuning via Modal Analyses of Finite Element Sectors,” J Turbomach,
Vol. 134, No. 4, July 2011, pp. 041001–041001.

[6] Mbaye, M., Soize, C., and Ousty, J.-P., “A Reduced-Order Model of Detuned Cyclic
Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes,”
J Eng Gas Turb Power, Vol. 132, No. 11, Aug. 2010, pp. 112502–112502.

[7] Madden, A., Epureanu, B. I., and Filippi, S., “Reduced-Order Modeling Approach for
Blisks with Large Mass, Stiffness, and Geometric Mistuning,” AIAA Journal, Vol. 50,
No. 2, Feb. 2012, pp. 366–374.

[8] Ottarsson, G., Castanier, M., and Pierre, C., “A reduced-order modeling technique
for mistuned bladed disks,” Structures, Structural Dynamics, and Materials and Co-
located Conferences, American Institute of Aeronautics and Astronautics, April 1994.

[9] Castanier, M. P., Ottarsson, G., and Pierre, C., “A Reduced Order Modeling Technique
for Mistuned Bladed Disks,” Journal of Vibration and Acoustics, Vol. 119, No. 3, July
1997, pp. 439–447.

105



[10] Bladh, R., Castanier, M. P., and Pierre, C., “Reduced Order Modeling and Vibration
Analysis of Mistuned Bladed Disk Assemblies With Shrouds,” J Eng Gas Turb Power,
Vol. 121, No. 3, July 1999, pp. 515–522.

[11] Bladh, R., Pierre, C., Castanier, M. P., and Kruse, M. J., “Dynamic Response Predic-
tions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Model-
ing,” J Eng Gas Turb Power, Vol. 124, No. 2, March 2002, pp. 311–324.

[12] Bladh, R., Castanier, M. P., and Pierre, C., “Component-Mode-Based Reduced Order
Modeling Techniques for Mistuned Bladed Disks-Part I: Theoretical Models,” J Eng
Gas Turb Power, Vol. 123, No. 1, April 2000, pp. 89–99.

[13] Bladh, R., Castanier, M. P., and Pierre, C., “Component-Mode-Based Reduced Order
Modeling Techniques for Mistuned Bladed Disks-Part II: Application,” J Eng Gas
Turb Power, Vol. 123, No. 1, April 2000, pp. 100–108.

[14] Yang, M.-T. and Griffin, J. H., “A Reduced-Order Model of Mistuning Using a Subset
of Nominal System Modes,” J Eng Gas Turb Power, Vol. 123, No. 4, March 1999,
pp. 893–900.

[15] Feiner, D. M. and Griffin, J. H., “A Fundamental Model of Mistuning for a Single
Family of Modes,” J Turbomach, Vol. 124, No. 4, Nov. 2002, pp. 597–605.

[16] Vargiu, P., Firrone, C., Zucca, S., and Gola, M., “A reduced order model based on
sector mistuning for the dynamic analysis of mistuned bladed disks,” International
Journal of Mechanical Sciences, Vol. 53, No. 8, Aug. 2011, pp. 639–646.

[17] Fitzner, C., Epureanu, B. I., and Filippi, S., “Nodal energy weighted transformation:
A mistuning projection and its application to FLADE turbines,” Mechanical Systems
and Signal Processing, Vol. 42, No. 1–2, Jan. 2014, pp. 167–180.

[18] Griffin, J., “Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils,”
Journal of engineering for power, Vol. 102, No. 2, 1980, pp. 329–333.

[19] Ferri, A., “Friction damping and isolation systems,” Journal of Mechanical Design,
Transactions of the ASME, Vol. 117 B, 1995, pp. 196–206.

[20] Menq, C.-H. and Griffin, J., “Comparison of Transient and Steady State Finite Ele-
ment Analyses of the Forced Response of a Frictionally Damped Beam,” Journal of
Vibration, Acoustics, Stress, and Reliability in Design, Vol. 107, No. 1, 1985, pp. 19–
25.

[21] Cameron, T., Griffin, J., Kielb, R., and Hoosac, T., “Integrated approach for fric-
tion damper design,” Journal of vibration, acoustics, stress, and reliability in design,
Vol. 112, No. 2, 1990, pp. 175–182.

[22] Csaba, G., “Modeling of a Microslip Friction Damper Subjected to Translation and
Rotation,” ASME International Gas Turbine and Aeroengine Congress and Exhibi-
tion, Vol. 4, Indianapolis, Indiana, USA, June 1999.

106



[23] Menq, C.-H., Bielak, J., and Griffin, J., “Influence of Microslip on Vibratory Re-
sponse, Part I: A New Microslip Model,” Journal of Sound and Vibration, Vol. 107,
No. 2, 1986, pp. 279–293.

[24] Menq, C.-H., Griffin, J., and Bielak, J., “Influence of Microslip on Vibratory Re-
sponse, Part II: A Comparison with Experimental Results,” Journal of Sound and
Vibration, Vol. 107, No. 2, 1986, pp. 295–307.

[25] Menq, C.-H., Cigeroglu, E., and Lu, W., “One-dimensional dynamic microslip fric-
tion model,” Journal of Sound and Vibration, Vol. 292, No. 3-5, May 2006, pp. 881–
98.

[26] Yang, B., Chu, M., and Menq, C., “Stick-slip-separation analysis and non-linear stiff-
ness and damping characterization of friction contacts having variable normal load,”
Journal of Sound and Vibration, Vol. 210, No. 4, March 1998, pp. 461–81.

[27] Cigeroglu, E., An, N., and Menq, C.-H., “A microslip friction model with normal
load variation induced by normal motion,” Nonlinear Dynamics, Vol. 50, No. 3, 2007,
pp. 609–626.

[28] Sanliturk, K. and Ewins, D., “Modelling two-dimensional friction contact and its ap-
plication using harmonic balance method,” Journal of Sound and Vibration, Vol. 193,
No. 2, 1996, pp. 511–523.

[29] Menq, C. and Yang, B., “Non-linear spring resistance and friction damping of fric-
tional constraint having two-dimensional motion,” Journal of Sound and Vibration,
Vol. 217, No. 1, 1998, pp. 127–143.

[30] Yang, B. and Menq, C., “Characterization of 3D contact kinematics and prediction
of resonant response of structures having 3D frictional constraint,” Journal of Sound
and Vibration, Vol. 217, No. 5, 1998, pp. 909–925.

[31] Chen, J., Yang, B., and Menq, C., “Periodic forced response of structures having
three-dimensional frictional constraints,” Journal of Sound and Vibration, Vol. 229,
No. 4, 2000, pp. 775–792.

[32] Pfeiffer, F. and Hajek, M., “Stick-Slip Motion of Turbine Blade Dampers,” Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, Vol. 338, No. 1651, March 1992, pp. 503–517.

[33] Sextro, W., Popp, K., and Wolter, I., “Improved reliability of bladed disks due to fric-
tion dampers,” American Society of Mechanical Engineers (Paper), ASME, Orlando,
FL, USA, 1997.

[34] Tanrikulu, O., Kuran, B., Ozguven, H., and Imregun, M., “Forced harmonic response
analysis of nonlinear structures using describing functions,” AIAA journal, Vol. 31,
No. 7, 1993, pp. 1313–1320.

107



[35] Cigeroglu, E. and Ozguven, H. N., “Nonlinear vibration analysis of bladed disks
with dry friction dampers,” Journal of Sound and Vibration, Vol. 295, No. 3-5, 2006,
pp. 1028–1043.

[36] Cardona, A., Coune, T., Lerusse, A., and Geradin, M., “A multiharmonic method
for non-linear vibration analysis,” International Journal for Numerical Methods in
Engineering, Vol. 37, No. 9, May 1994, pp. 1593–608.

[37] Yang, B. and Menq, C., “Characterization of contact kinematics and application to
the design of wedge dampers in turbomachinery blading: Part 1 - stick-slip contact
kinematics,” J Eng Gas Turb Power, Vol. 120, No. 2, 1998, pp. 410–417.

[38] Yang, B. and Menq, C., “Characterization of contact kinematics and application to
the design of wedge dampers in turbomachinery blading: Part 2 - prediction of forced
response and experimental verification,” J Eng Gas Turb Power, Vol. 120, No. 2,
1998, pp. 418–423.

[39] Sanliturk, K., Ewins, D., and Stanbridge, A., “Underplatform dampers for turbine
blades: Theoretical modeling, analysis, and comparison with experimental data,” J
Eng Gas Turb Power, Vol. 123, No. 4, 2001, pp. 919–929.

[40] Yang, B., Chen, J., and Menq, C., “Prediction of resonant response of shrouded blades
with three-dimensional shroud constraint,” J Eng Gas Turb Power, Vol. 121, No. 3,
1999, pp. 523–529.

[41] Petrov, E. and Ewins, D., “Analytical formulation of friction interface elements for
analysis of nonlinear multi-harmonic vibrations of bladed disks,” Journal of Turbo-
machinery, Vol. 125, No. 2, 2003, pp. 364–371.

[42] Chen, J. and Menq, C., “Periodic response of blades having three-dimensional nonlin-
ear shroud constraints,” J Eng Gas Turb Power, Vol. 123, No. 4, 2001, pp. 901–909.

[43] Lau, S., Cheung, Y., and Wu, S., “Incremental Harmonic Balance Method With Mul-
tiple Time Scales for Aperiodic Vibration of Nonlinear Systems,” Journal of Applied
Mechanics, Transactions ASME, Vol. 50, No. 4 a, 1983, pp. 871–876.

[44] Pierre, C., Ferri, A., and Dowell, E., “Multi-harmonic analysis of dry friction damped
systems using an incremental harmonic balance method,” Transactions of the ASME.
Journal of Applied Mechanics, Vol. 52, No. 4, Dec. 1985, pp. 958–64.

[45] Guillen, J., Studies of the dynamics of dry-friction-damped blade assemblies, Ph.D.
thesis, University of Michigan, Ann Arbor, 1999.

[46] Poudou, O. and Pierre, C., “Hybrid frequency-time domain methods for the analysis
of complex structural systems with dry friction damping,” Collection of Technical Pa-
pers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Vol. 1, American Inst. Aeronautics and Astronautics Inc., Norfolk, VA,
United states, 2003, pp. 111–124.

108



[47] Petrov, E., “A method for use of cyclic symmetry properties in analysis of nonlin-
ear multiharmonic vibrations of bladed disks,” Journal of Turbomachinery, Vol. 126,
No. 1, 2004, pp. 175–183.

[48] Siewert, C., Panning, L., Wallaschek, J., and Richter, C., “Multiharmonic forced re-
sponse analysis of a turbine blading coupled by nonlinear contact forces,” J Eng Gas
Turb Power, Vol. 132, No. 8, 2010.

[49] Craig, R. R. and Kurdila, A. J., Fundamentals of structural dynamics, John Wiley &
Sons, 2nd ed., 2006.

[50] Berthillier, M., Dupont, C., Mondal, R., and Barrau, J., “Blades forced response anal-
ysis with friction dampers,” Journal of Vibration and Acoustics, Transactions of the
ASME, Vol. 120, No. 2, 1998, pp. 468–474.

[51] Cigeroglu, E., An, N., and Menq, C.-H., “Wedge damper modeling and forced re-
sponse prediction of frictionally constrained blades,” Proceedings of the ASME Turbo
Expo, Vol. 5, American Society of Mechanical Engineers, Montreal, Que., Canada,
2007, pp. 519–528.

[52] Cigeroglu, E., An, N., and Menq, C.-H., “Forced response prediction of constrained
and unconstrained structures coupled through frictional contacts,” J Eng Gas Turb
Power, Vol. 131, No. 2, March 2009, pp. 022505 (11 pp.).

[53] Mitra, M., Zucca, S., and Epureanu, B. I., “Adaptive Microslip Projection for Reduc-
tion of Frictional and Contact Nonlinearities in Shrouded Blisks,” Journal of Compu-
tational and Nonlinear Dynamics, Vol. 11, No. 4, May 2016, pp. 041016–041016.

[54] Popp, K., Panning, L., and Sextro, W., “Vibration damping by friction forces: The-
ory and applications,” JVC/Journal of Vibration and Control, Vol. 9, No. 3-4, 2003,
pp. 419–448.

[55] Firrone, C. M. and Zucca, S., Numerical Analysis - Theory and Application, chap. 14
Modelling Friction Contacts in Structural Dynamics and its Application to Turbine
Bladed Disks, InTech, 2011, ISBN: 978-953-307-389-7.

[56] Niemotka, M. A. and Ziegert, J. C., “Optimal design of split ring dampers for gas tur-
bine engines,” ASME 1993 International Gas Turbine and Aeroengine Congress and
Exposition, GT 1993, Vol. 2, American Society of Mechanical Engineers, Cincinnati,
OH, United states, 1993, pp. International Gas Turbine Institute–.

[57] Laxalde, D., Thouverez, F., Sinou, J.-J., and Lombard, J.-P., “Qualitative analysis of
forced response of blisks with friction ring dampers,” European Journal of Mechan-
ics, A/Solids, Vol. 26, No. 4, 2007, pp. 676–687.

[58] Laxalde, D., Thouverez, F., and Lombard, J.-P., “Forced response analysis of inte-
grally bladed disks with friction ring dampers,” Journal of Vibration and Acoustics,
Transactions of the ASME, Vol. 132, No. 1, 2010, pp. 0110131–0110139.

109



[59] Laxalde, D., Salles, L., Blanc, L., and Thouverez, F., “Non-linear modal analysis for
bladed disks with friction contact interfaces,” Proceedings of the ASME Turbo Expo,
Vol. 5, American Society of Mechanical Engineers, Berlin, Germany, 2008, pp. 457–
467.

[60] Petrov, E. P., “Method for Direct Parametric Analysis of Nonlinear Forced Re-
sponse of Bladed Disks With Friction Contact Interfaces,” Journal of Turbomachin-
ery, Vol. 126, No. 4, Dec. 2004, pp. 654–662.

[61] Petrov, E. P., “Sensitivity Analysis of Nonlinear Forced Response for Bladed Discs
with Friction Contact Interfaces,” Proceedings of ASME Turbo Expo, No. GT2005-
68935, Reno-Tahoe, NV, June 6-9 2005.

[62] Petrov, E. P., “Direct Parametric Analysis of Resonance Regimes for Nonlinear Vi-
brations of Bladed Disks,” Journal of Turbomachinery, Vol. 129, No. 3, July 2006,
pp. 495–502.

[63] Petrov, E. P., “Method for Sensitivity Analysis of Resonance Forced Response of
Bladed Disks With Nonlinear Contact Interfaces,” Journal of Engineering for Gas
Turbines and Power, Vol. 131, No. 2, Dec. 2008, pp. 022510–022510.

[64] Krack, M., Panning, L., Wallaschek, J., Siewert, C., and Hartung, A., “Robust Design
of Friction Interfaces of Bladed Disks With Respect to Parameter Uncertainties,” Pro-
ceedings of ASME Turbo Expo, Vol. 7, Copenhagen, Denmark, June 11-15 2012, pp.
1193–1204.

[65] Petrov, E., “Explicit finite element models of friction dampers in forced response anal-
ysis of bladed disks,” Journal of Engineering for Gas Turbines and Power, Vol. 130,
No. 2, March 2008, pp. 022502 (11 pp.)–.

[66] Beck, J. A., Brown, J. M., Cross, C. J., and Slater, J. C., “Component-Mode Reduced-
Order Models for Geometric Mistuning of Integrally Bladed Rotors,” AIAA Journal,
Vol. 52, No. 7, May 2014, pp. 1345–1356.

[67] Sundararajan, P. and Noah, S., “Dynamics of forced nonlinear systems using
shooting/arc-length continuation method - application to rotor systems,” Journal of
Vibration and Acoustics, Transactions of the ASME, Vol. 119, No. 1, 1997, pp. 9–20.

[68] Tang, W., Baek, S., and Epureanu, B. I., “Reduced Order Models for Blisks with
Small and Large Mistuning and Friction Dampers,” Journal of Engineering for Gas
Turbines and Power, July 2016, pp. –.

[69] Tang, W., Baek, S., and Epureanu, B. I., “Reduced Order Models for Blisks With
Small and Large Mistuning and Friction Dampers,” Proceedings of ASME Turbo
Expo, Vol. 7A, Seoul, South Korea, June 13C17 2016.

110


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Dissertation Objective
	Dissertation Background
	Modeling of Mistuning
	Modeling of Frictionally Damped Blisks
	Optimization of Damper Effectiveness

	Dissertation Outline

	Models for Blisks with Large Blends and Small Mistuning
	Introduction
	Methodology
	Pristine Rogue Interface Modal Expansion
	Nodal Energy Weighted Transformation
	N-PRIME: Extending PRIME with a Modified NEWT
	Forced Responses and Fast Stress Recovery

	Results and Discussion
	Conventional Blisks
	Free Responses
	Forced Responses

	Dual-Flow Path Systems
	Free and Forced Responses
	Statistical Analysis


	Conclusions

	Nonlinear Dynamics of Mistuned Bladed Disks with Ring Dampers
	Introduction
	Methodology
	Frequency-Domain Formulation of the Equations of Motion
	Contact Model
	Reduced-Order Modeling
	Craig-Bampton Component Mode Synthesis
	Extending CB-CMS with Component Mode Mistuning (CB-CMS-CMM)
	Stick-Slip Modal Transformation

	Solution Method
	Static Deformation Resulting from Pre-Stress
	Hybrid Frequency/Time Method


	Results and Discussion
	Forced Response Analyses
	Statistical Analyses

	Conclusions

	Reduced Order Models for Blisks with Small and Large Mistuning and Friction Dampers
	Introduction
	Reduced-Order Modeling
	Harmonic Balance Formulation
	Stick-Slip Modal Transformation
	Extension with N-PRIME

	Results and Validation
	Forced Response Analyses
	Statistical Analyses

	Conclusion

	Geometric Optimization of Dry Friction Ring Dampers for Maximized Reduction in Forced Responses
	Introduction
	Methodology
	Damper Geometry Parametrization
	Coherent Ring Damper (CoRiD)

	Results and Discussion
	Parametric Study of Geometric Variations
	Sensitivity Analyses
	Location of Ring Dampers
	Thickness of Damping Material


	Conclusion

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography

