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ABSTRACT

Structural Results for Coding Over Communication Networks

by

Farhad Shirani Chaharsooghi

Chair: S. Sandeep Pradhan

We study the structure of optimality achieving codes in network communications. The thesis consists of two

parts: in the first part, we investigate the role of algebraic structure in the performance of communication

strategies. In chapter two, we provide a linear coding scheme for the multiple-descriptions source coding

problem which improves upon the performance of the best known unstructured coding scheme. In chapter

three, we propose a new method for lattice-based codebook generation. The new method leads to a simplifi-

cation in the analysis of the performance of lattice codes in continuous-alphabet communication. In chapter

four, we show that although linear codes are necessary to achieve optimality in certain problems, loosening

the closure restriction in the codebook leads to gains in other network communication settings. We introduce

a new class of structured codes called quasi-linear codes (QLC). These codes cover the whole spectrum be-

tween unstructured codes and linear codes. We develop coding strategies in the interference channel and the

multiple-descriptions problems using QLCs which outperform the previous schemes.

In the second part, which includes the last two chapters, we consider a different structural restriction

on codes used in network communication. Namely, we limit the ‘effective length’ of these codes. First,

we consider an arbitrary pair of Boolean functions which operate on two sequences of correlated random

variables. We derive a new upper-bound on the correlation between the outputs of these functions. The upper-

bound is presented as a function of the ‘dependency spectrum’ of the corresponding Boolean functions. Next,

we investigate binary block-codes (BBC). A BBC is defined as a vector of Boolean functions. We consider

BBCs which are generated randomly, and using single-letter distributions. We characterize the vector of

dependency spectrums of these BBCs. This gives an upper-bound on the correlation between the outputs of

two distributed BBCs. Finally, the upper-bound is used to show that the large blocklength single-letter coding

schemes in the literature are sub-optimal in various multiterminal communication settings.

xiv



CHAPTER I

Introduction

Ever since the inception of Shannon theory, the problem of approaching the perfor-

mance limits for multiterminal communications has been of great interest. However, con-

trary to the Point-to-Point (PtP) communication settings, characterizing the optimal per-

formance in multiterminal communications has remained an open problem. Although the

exact asymptotic limits to the performance are not known in general, considerable progress

was made. Optimal coding strategies were proposed for special classes of multiterminal

problems, and general upper and lower bounds were derived. Initial attempts at solving the

problem mainly included the application of Shannon’s unstructured random coding tech-

niques over large blocklengths, coupled with superposition coding and binning [54], [25],

[16], [45]. Later, it was observed that random coding over ensembles of codes with spe-

cific structure results in improved performance in certain communication problems. More

specifically, it was shown that in the distributed source coding problem, the interference

channel, and the broadcast channel, randomly generated linear codes outperform previous

known coding strategies [18], [29],[28], [20], [23]. Similar results were derived for codes

constructed over weaker structures such as rings and groups [35], [22]. These findings

suggest that the key to constructing optimal random coding strategies might lie in char-

acterizing the structure of optimal encoders. In this work we investigate this idea further.

In our efforts to find optimal encoding functions, we uncover several new coding struc-
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tures. We divide these structures into two main categories: 1) Coding structures which

are generated randomly, and whose effective length is asymptotically large and 2) Codes

with constant finite effective length. In the next sections, we first discuss codebooks and

their role in the communication strategies considered in this work, next we explain the two

categories of code ensembles mentioned above.

1.1 Codebooks

The goal of the communications engineer is to design and implement algorithms for

efficient and reliable communication. The coding system designed for performing the task

of communication consists of encoders and decoders. Ever since Shannon’s work on point-

to-point communications [38], codebooks have played a key role in the operation of the

encoding and decoding. A codebook is an ordered collection of sequences of a specific

length. The elements of this collection are called codewords. Shannon proposed the use

of such structures as a prime component in the construction of encoders and decoders. In

the ensuing decades, most of the coding strategies which were developed for multiterminal

communications have utilized codebooks in constructing the encoders and decoders. Fur-

thermore, all of the communication strategies investigated in this work are largely based on

the concept of a codebook. In this thesis we are mostly concerned with new designs for,

strategies for, and uses of codebooks.

The role of codebooks varies with the specific communication task. As an example, in

point-to-point channel coding, the codebook consists of the set of possible outputs of the

encoder. The decoder is tasked with identifying which channel codeword was the input

to the channel. That is, by observing the output of the channel, which is affected by the

input codeword as well as the channel noise, the decoder must decide which codeword

was transmitted. The codebook is designed in a way as to facilitate the task of reliable

communication. In the case of point-to-point channel coding, this requires the codewords

to be as distinct as possible, to allow decoding with low probability of error. For efficient

2



channel coding, the codebook should be large, to allow for communication at higher rates.

While in information theory, the efficiency of the communication method is measured based

on the rate of communication, in coding theory there is an additional issue. That is that

codebooks should ideally have structure that enables the encoding and decoding to have as

low implementation complexity as possible in terms of arithmetic operations per channel

symbol and required auxiliary storage.

Another example is the problem of point-to-point lossy source coding. In this problem,

the codebook is the set of possible outputs of the decoder. Given an input sequence, the

encoder transmits an index to the decoder. The index points to the codeword which is the

most suitable reconstruction of the input sequence. The suitability of the reconstruction de-

pends on the distortion criterion in the source coding problem. In this case, the codebook

should be designed such that there will be codewords that are satisfactory reconstructions

for the source sequence as often as possible. In this problem efficient communication re-

quired smaller codebooks and small average distortion at the decoder. So, the codebook

should be designed to optimize the rate-distortion tradeoff. Similar to the channel coding

case, coding theory is further concerned with the computational and storage complexity of

the resulting communication algorithms.

The use of codebooks was extended to the multiterminal communication scenarios such

as distributed source coding, multiple-descriptions source coding, and communicating over

the interference channel and the broadcast channel. As an example, in the two user dis-

tributed source coding problem, the goal is to separately encode and jointly decode, two

correlated sources. This task is to be performed with low transmission rates and low av-

erage distortion at the decoder. The Berger-Tung strategy [45] is the best known strategy

for this setup in terms of optimizing the rate-distortion tradeoff. In this strategy, there are

two codebooks, one associated with each encoder. The encoding operation involves two

steps. First, encoders quantize the source sequence using their corresponding codebooks.

This step is similar to the encoding in point-to-point source coding explained above. In the

3



second step, the quantized outputs are binned and the bin numbers are sent to the decoder.

Binning is the operation of grouping codewords together and indexing these groups. The

binning step results in a reduction of rate due to the correlation between the outputs of the

two quantizers. The decoder recovers the quantizations at each encoder using the bin num-

bers it receives. Here, the objective is to design codebooks and binning functions which

optimize the rate-distortion tradeoff.

In Shannon’s original point-to-point communication theory, the codebooks are ran-

domly generated according to some distribution. The choice of the distribution is essential

in the efficiency of the resulting coding strategy. Moreover, the performance of point-to-

point systems improves as the length of the codewords increases. Shannon’s method does

not enforce any additional structural restriction on the randomly generated codebooks. As a

result these codebooks are called randomly generated unstructured codebooks. Most of the

multiterminal communication strategies in the literature build upon Shannon’s work, and

utilize randomly generated unstructured codebooks with asymptotically large blocklengths.

Initial interest in constructing random coding strategies which produce codebooks with

specific algebraic structure was due to the computational efficiency of such algorithms.

Unfortunately, the complexity of coding systems based on randomly generated unstruc-

tured codebooks grows exponentially with the codeword length. For this reason, ever since

Shannon’s original work, the main focus of point-to-point communication has been on

codebooks with "structure". That enables encoding and decoding to be done by algorithms

requiring far fewer operations and storage than required for unstructured codebooks.

Recently, it was found that in various multiterminal communication problems, struc-

ture not only decreases the encoding/decoding complexity, but also improves performance

in terms of achievable rates and distortions. In this thesis we introduce several different

codebook structures, and analyze their performance. We show that these new codebook

structures give improved performance in many network communication settings. We also

discover the striking fact that in some multiterminal communication problems, and some

4



common codebook design strategies, performance is not made best with asymptotically

large codeword lengths. That is, there is a best codeword length.

1.2 Codes over Asymptotically large blocklengths

In the first part of the thesis - which includes chapters two, three, and four - we investi-

gate the role of algebraic structure in the performance of communication strategies. In this

part, we follow the common approach in multiterminal communication, which involves

using single-letter distributions and random coding schemes to generate codebooks. The

blocklength of these randomly generated codebooks are then taken to approach infinity,

and the resulting performance is characterized using single-letter expressions.

The necessity of algebraic structure in codebooks used for multiterminal communica-

tion was first shown in [18]. Korner and Marton [18] observed that in the special case

of lossless distributed transmission of the sum of two correlated binary sources, randomly

generated linear codes achieve a larger rate-distortion (RD) region than unstructured codes.

The phenomenon turned-out to be prevalent in multiterminal problems, and such gains were

also observed in other multiterminal problems such as multiple-access channel with states

available at the transmitters [30], computation over multiple-access channels [26], the inter-

ference channel [29], and the broadcast channel [28]. In the large body of work dedicated

to this topic various types of structured codes have been considered. The most well-studied

of these codes are linear codes. These codes are constructed over finite fields and are closed

with respect to the linear operation associated with the field. The gains due to linear coding

are twofolds. First, it turns out that due to their structure, linear codes can compress and

transmit sums of random variables more efficiently than unstructured codes, particularly

when the compression is done in a distributed fashion. Second, the rate of the addition of a

linear code with itself remains the same. This is particularly useful in problems involving

interference alignment, when the size of the interfering set of sequences needs to be small.

Based on these observations it is expected that utilizing linear codes is also advantageous in
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the multiple-descriptions (MD) problems when more than two descriptions are transmitted.

In the second chapter, we investigate this idea for the MD problem with discrete memory-

less sources. We prove that the application of linear codes gives gains in the MD problem.

Then, we generalize the idea and provide a new scheme for the MD problem with an ar-

bitrary number of descriptions. This gives a new RD region for the MD problem which

improves upon the previous known RD regions. This is proved analytically for several

different classes of three and four descriptions problems. In Chapter 3, we further extend

the results to the problem of compression of continuous sources. Previously, inner-bounds

to the achievable regions in various multiterminal continuous source coding problems was

provided using lattices [31], [43], [42]. The first contribution in this chapter is that, we

provide a new method for lattice construction which is considerably simpler than the pre-

vious methods. Using the new method, we derive a new RD region for the MD problem

with general continuous sources (i.e. sources which are not necessarily Gaussian.). The

second contribution in this chapter is that we show that using identical lattices results in

larger achievable RD regions in the Gaussian MD problem.

In Chapter 4, we show that loosening the structure of linear codes, leads to further gains

in some multiterminal settings. Korner and Marton suggested the use of identical linear

codes to effect binning of two correlated binary sources when the objective is to reconstruct

the modulo-two sum of the sources at the decoder. They showed that such an approach

leads to optimality. However, if the objective is to have the complete reconstruction of

both the sources at the decoder (Slepian-Wolf setting), then it was shown that for certain

sources, using identical binning can be strictly suboptimal [21]. In general, to achieve

the Slepian-Wolf performance limit, one needs to use either binning of the two sources

using two independent linear codes or use independent unstructured binning of the two

sources. Moreover, there is no known method based on unstructured codes which achieves

optimality for the reconstruction of the modulo-two sum. In summary, the former requires

only identical binning, whereas the latter requires only independent binning.
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This leads to the following question: (i) is there a spectrum of strategies involving par-

tially independent binning of the two sources that lie between these two extremes, and (ii) is

there a class of problems for which such strategies give gains in asymptotic performance?

In other words, is there a trade-off between structured coding and unstructured coding.

Based on this intuition, in Chapter 4, we propose a new class of codes called Quasi Linear

Codes (QLC). These codes are not fully closed under any algebraic structure but maintain

a degree of "closedness". More precisely, the addition of a QLC with itself does not result

in the same code as in the case of a linear code, rather, the resulting set of codewords has

rate less than twice the rate of the original code. In that sense, these codes breach the gap

between codes with algebraic structure and unstructured codes. Using QLCs we provide

new schemes for the IC and MD problems. We show analytically that these new schemes

result in achievable regions that are strictly larger than the original regions.

1.3 Codes over Constant blocklengths

In his paper, "A Mathematical Theory of Communications" [38] - often regarded as the

Magna Carta of digital communications - Shannon pointed out that in order to exploit the

redundancy of the source in data compression, it is necessary to compress large blocks of

the source simultaneously. More precisely, optimality is only approached as the effective

length of the coding blocks approaches infinity. The same observation was made in the

case of PtP channel coding. As a result, a common feature of the coding schemes used in

PtP communication is that they have large effective lengths. Loosely speaking, this means

that each output element in these schemes is a function of the entire input sequence, where

the length of the input sequence is asymptotically large. In the source coding problem, by

compressing large blocks at the same time, one can exploit the redundancy in the source.

In the channel coding problem, transmitting the input message over large blocks allows the

decoder to exploit the typicality of the noise vector which results from the laws of large

numbers. This remains unchanged by the multiterminal nature of the problem in coding
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over networks. However, in multiterminal communication it is often desirable to maintain

correlation amongst the compressed sequences at different nodes. This requirement can

be due to explicit constraints in the problem statement such as joint distortion measures

in multiterminal source coding, or it can be due to implicit factors such as the need for

interference alignment in multiterminal channel coding, or it can be due to the nature of

the shared communication channel. In the latter case, correlation between the outputs is

necessary as a means for further cooperation among the transmitters. It turns out that pairs

of encoders with large effective lengths are inefficient in coordinating their outputs. This

is due to the fact that such encoding functions are ineffective in preserving correlation.

The loss of correlation undermines the encoders’ ability to conspire to take advantage of

the multiterminal nature of the problem. In PtP communication problems, where there

is only one transmitter, the necessity for cooperation does not manifest itself. For this

reason, although encoders with asymptotically large effective lengths are optimal in PtP

communications, they are sub-optimal in the network communication case.

In Chapter 5, we show that as the effective length of the code increases, the outputs

of the quantizers at each terminal become less correlated. The proof involves three steps.

First, we consider an arbitrary pair of Boolean functions which operate on two sequences of

correlated random variables. We derive a new upper-bound on the correlation between the

outputs of these functions. The upper-bound is presented as a function of the ‘dependency

spectrum’ of the corresponding Boolean functions. Next, we investigate binary block-

codes (BBC) as defined in [53]. A BBC is defined as a vector of Boolean functions. We

consider BBCs which are generated randomly, and using single-letter distributions. We

characterize the vector of dependency spectrums of these BBCs. This gives an upper-

bound on the correlation between the outputs of two distributed BBCs. Using the upper

bound, it is shown that random coding over large blocklengths is detrimental to the ability

of the encoders to coordinate their outputs. Hence, it is sometimes advantageous, that in the
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interest of cooperation, smaller blocklength random codes be used instead 1. In summary,

the first contribution in the second part of the thesis is that we show that the encoders’ ability

to preserve correlation has an inverse relation with their ’effective length’. The second

contribution is that we show that the single-letter coding schemes used in the literature

produce encoding functions which have large effective lengths. This leads us to conjecture

that such schemes are sub-optimal in network communication problems. We investigate

this idea further in Chapter 6 where we show the sub-optimality of the Berger-Tung[20]

scheme in the distributed source coding problem, and come up with a new achievable rate-

distortion region for the problem using finite blocklength schemes. We show analytically

that this achievable RD region improves upon the BT region.

1It is well known that the performance of block-codes is super-additive, meaning that the best perfor-
mance of block-codes of a certain length is an increasing function of the blocklength. This is true since a
concatenation of smaller block codes gives the same performance as the original code. However, here we are
discussing the performance of randomly generated block-codes.
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CHAPTER II

Linear Structure for Multiple-Descriptions Coding

2.1 Introduction

In this chapter, we consider the problem of multiple descriptions (MD) source coding.

The Multiple-Descriptions (MD) source coding problem arises naturally in a number of

applications such as transmission of video, audio and speech over packet networks and

fading channels [15][52]. The multiple-descriptions (MD) source coding setup describes

a communications setting consisting of one encoder and several decoders. The encoder

receives a discrete memoryless source and wishes to compress it into several descriptions.

Each decoder receives a specific subset of these descriptions through noiseless links, and

produces a reconstruction of the source vector with respect to its own distortion criterion.

The parameters of interest are the rates required for transmitting each description, and the

resulting distortions at the decoders. The objective is to design communications schemes

which result in the optimal asymptotic trade-off between these two groups of parameters.

The problem has been studied extensively [27][1][13][54][46][2], however, the optimal

asymptotically achievable rate-distortion (RD) is not known even for the most elementary

case when only two descriptions are considered. The two-descriptions setup is depicted in

Figure 2.1. Evidently, for the individual decoders (which receive only one description) to

perform optimally the encoder must transmit the two-descriptions according to the optimal

Point-to-Point (PtP) source coding schemes. This may require the two-descriptions to be

10



similar to each other. On the other hand, if the descriptions are similar, one of them would

be redundant at the central decoder (which receive two descriptions). In fact, this decoder

requires the two-descriptions to be different from one another in order to yield a better

reconstruction. The main challenge in the MD problem is to strike a balance between these

two situations. The best known achievable region for the this communications setting is

due to Zhang and Berger [54]. In the Zhang-Berger (ZB) strategy, the encoder in the first

step sends a common and coarsely quantized version of the source on both descriptions,

then in the next step, the encoder sends individual refinements for each decoder on the

corresponding descriptions.

The ZB scheme, utilizes three codebooks at the encoder. One codebook to produce the

common quantization which is sent on all of the descriptions, and two codebooks for refin-

ing the original quantization. This refinement is sent on each individual description. The

first codebook is used similar to the codebook in a point-to-point source coding problem.

The source is quantized using this codebook, and this quantized version is sent on both

descriptions. As a result all three decoders receive this quantized version of the source.

The other two codebooks are superimposed on the first codebook. These codebooks are

used for the purpose of refining the reconstruction at each decoder. The encoder uses these

codebooks to quantize the source sequence conditioned on the common quantization from

the first step.

The ZB coding strategy was generalized in [46] for the case where there are more than

two descriptions. In this strategy, first, a common coarsely quantized version of the source

is sent to all the decoders, then in the next step, several refinement layers are transmitted.

As a result this strategy uses l + 1 codebooks. For the symmetric l−descriptions1 problem,

a coding scheme based on random binning was considered in [44] which outperforms the

VKG scheme. This involves generation of independent codebooks followed by random

binning. Although the MD problem has a centralized encoder, the strategy involving ran-

1Here l is an arbitrary natural number whose value is greater than one.
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Figure 2.1: The Two-Descriptions Setup

dom binning was proved to be useful. This was further improved upon by a new coding

scheme in [33] based on certain parity-check codes. However all the three schemes do

not fully exploit the common-information among every subset of individual descriptions.

For example in the three-descriptions problem, there can be common-information between

the first and second descriptions which is not common with the third description. A new

coding scheme called Combinatorial Message Sharing with Binning (CMSB) was consid-

ered in [2, 49] which provided a unified achievable RD region for the general l-descriptions

problem. This scheme provided a grand unification of the schemes based on conditional

codebooks and the schemes based on random binning, which in turn results in the largest

achievable RD region for the problem and enlarges the achievable RD region for the previ-

ous coding schemes. The name is due to the combinatorial number of common-component

codebooks present. It can be noted that CMSB scheme is based on a construction of ran-

dom codes where the codewords are mutually independent, and where the codebooks do

not have any algebraic structure. In the first part of this chapter, we show that this strat-

egy can be improved upon using more general unstructured quantizers and a more general

unstructured binning method. In the second part, we use several examples to prove that

if linear codes are used instead, the resulting rate-distortion region can be improved even

further. Furthermore, we show that structured binning also yields improvements. These

improvements are in addition to the ones derived in the first part. This suggests that struc-

tured coding is essential when coding over more than two descriptions. Using the ideas

12



developed through these examples we provide a new unified coding strategy by consider-

ing several structured coding layers. Finally, we characterize its performance in the form of

an inner bound to the optimal rate-distortion region using computable single-letter informa-

tion quantities. The new RD region strictly contains all of the previous known achievable

regions.

We provide a new coding strategy for the general l-descriptions problem which strictly

subsumes CMSB strategy which is the best known in the literature till now. The coding

strategy is based on the common-information perspective. Taking a cue from the two-

descriptions ZB strategy, we propose that for the general l-descriptions problem the encoder

constructs a common constituent codebook for each subset of the 2l − 1 decoders. So, for

each subset of the decoders there is one common component in the overall coding scheme.

This implies that the number of constituent codebooks grows double-exponentially in l.

However, we prove that only an asymptotically exponential number of the codebooks are

necessary in terms of contributing to the rate-distortion region, and the rest are redundant.

This significantly simplifies the coding strategy. As an example, for the l = 3 case, there

are 223−1 = 128 possible common code components, but only 17 of the corresponding

codebooks are non-redundant. It turns out that one can identify all of the non-redundant

codebooks by associating them with the Sperner families of sets [3]. As a result, we call

the new scheme the Sperner Set Coding (SSC) scheme. The CMSB scheme utilizes 14

codebooks for the 3-descriptions problem. We prove analytically that the addition of the

3 new codebooks in the SSC scheme results in an improved achievable RD region. In

other words, we show analytically that the CMSB scheme is not complete. Additionally,

we propose a generalized binning approach which improves upon the CMSB scheme and

further enhances the SSC scheme. We characterize the asymptotic performance of this

coding scheme using computable single-letter information quantities. This forms the first

part of the chapter. Similar to the coding scheme of CMSB, the SSC scheme uses random

unstructured codes.
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It has been observed in several other multiterminal communications settings such as the

Broadcast Channel (BC) [28], Interference Channel (IC) [29], variations of the MAC chan-

nel [26][30] and the Distributed Source Coding (DSC) problem [20], that the application

of algebraic structured codes results in improvements over random unstructured codes in

the asymptotic performance limits. Based on the inherent dualities between the multiter-

minal communication problems and the corresponding coding schemes, these observations

suggest that one may get such gains in performance even in the MD problem.

In the second part we show that SSC coding scheme which is based on unstructured

codes as mentioned above is not complete. We provide several specific examples of 3-

and 4-description problems and example-specific coding schemes based on random linear

codes that perform strictly better than the above SSC coding scheme. Subsequently, we

supplement the above SSC scheme with new coding layers which have algebraic structure.

We restrict our attention to the algebraic structure associated with finite fields. We present a

unified coding scheme which works for arbitrary sources and distortion measures. We char-

acterize the asymptotic performance of this coding scheme using computable single-letter

information quantities. We interpret the SSC coding as capturing the common-information

components among 2l − 1 decoders using univariate functions, and the algebraic coding

supplement as capturing common information among 2l − 1 decoders using bivariate and

multivariate functions.

The rest of the chapter is organized as follows. Section 2.2 explains the notation used

in this chapter. Section 2.3 provides an overview of the ideas developed in previous works

and provides the groundwork for the next sections. In Section 2.4, we present a new un-

structured coding strategy which improves upon the CMSB scheme. We show that there

are two different types of gains compared to the previous scheme: the first is due to the

addition of several common-component codebook layers, the second is due to a more gen-

eralized binning method. In Section 2.5, we identify examples where improvements due

to structured coding materialize in the MD setup. In this section, we investigate three dif-
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ferent examples. In two of the examples the achievable RD region is improved via using

linear quantizers, and in the other example the gains are due to linear binning. In Section

2.6 we generalize the ideas in the previous section and provide an achievable RD region

for the general l-descriptions problem. Since the characterization of RD region is involved

and complicated we provide the final RD region through several steps, adding new coding

layers in each step.

2.2 Definitions and Notation

In this section we introduce the notation used in the chapter. While most of the new

notation is clarified when it is first used in the next sections, we provide a summary of the

notation here as well, as a reference-point for the reader.

We restrict ourselves to finite alphabet random variables. We denote random variables

by capital letters such as X,U and their corresponding alphabets (finite) by sans-serif type-

face X, U, respectively. Numbers are denoted by small letters such as l, k. Sets of numbers

are also denoted by the sans-serif typeface such as M,N. Specifically, we denote the set of

natural numbers by N, and the field of size q by Fq. The set of numbers {1, 2, . . . ,m} is also

denoted by [1,m]. αM is used to express the vector (α1, α2, ..., αm) where M = {1, 2, . . . ,m}.

A collection whose elements are sets is called a family of sets and is denoted by the calli-

graphic typefaceM. For a given family of setsM we define a set M̃ =
⋃

M∈MM as the set

of numbers which are the elements of the sets inM. The family of sets containing all sub-

sets of M is denoted by 2M. A collection whose elements are families of sets is denoted by

the bold typeface M. The collection of families of sets {A1,A2, . . .Am} is also represented

by AM. Random variables are indexed by families of sets as in UM. For the purposes of

brevity we will write UM1,M2,...,Mn instead of UM whereM = {M1,M2, . . . ,Mn} wherever the

notation doesn’t cause ambiguity. Un
M

denotes a vector of length n of random variables,

each distributed according to the distribution PUM . For ε > 0 and n ∈ N, we denote the

set of n-length vectors which are ε-typical with respect to PUM by An
ε (UM). We use the
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definition of frequency typicality as given in [9].

We denote a set of random variables as follows UM = {UM|M ∈ M}. For two collec-

tions of families M1 and M2, we write [U,V](M1,M2) to denote the unordered collection of

random variables {UM1 ,VM2}. Let Ni ⊂ Mi, i = 1, 2, and define N = (N1,N2). We express

this as N ⊂ (M1,M2). Unions, intersections and complements are defined for (M1,M2) in

the same manner. A family of sets is called a Sperner family of sets if none of its elements

is a subset of another element. In other words a family of sets S is a Sperner family if

@N,N′ ∈ S,N ( N′. For any given set M, the three families φ, {φ} and {M} are all Sperner

families. For a set M, we define the collection of families of sets SM as the set of all Sperner

families whose elements are subsets of M except for the three trivial Sperner families men-

tioned above. So we have SM = {S|@N,N′ ∈ S,N ( N′}\{φ, {φ}, {M}}.

For the general l-descriptions problem, we define the set L , [1, l], and this set repre-

sents the set of all descriptions. Each decoder receives a subset of these descriptions. Let

li ∈ L, i ∈ [1, n] for some n. We denote the decoder which receives descriptions l1, l2, . . . , ln

by the set N = {l1, l2, .., ln}. Define the family of sets L , 2L − {φ}. This family of sets

corresponds to the set of all possible decoders. We further explain the notation through

an example. Consider the three-descriptions problem. In this case we have l = 3, the set

of descriptions are L = {1, 2, 3}. There are seven possible decoders. The set of all de-

coders is L =
{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
. Consider the two families of sets

M1 =
{
{1, 2}, {1, 3}

}
and M2 =

{
{1}, {3}, {1, 2}

}
. In this case, M̃i = {1, 2, 3}, i ∈ {1, 2}.

Define the set M = {M1,M2}. The set of random variables {UM1 ,UM2} is denoted by

UM = UM1,M2 . Here M1 is a Sperner family, but M2 is not a Sperner family since

{1}, {1, 2} ∈ M2 and {1} ( {1, 2}, furthermoreM1 ∈ SL butM2 < SL.

The second part of the chapter involves the application of linear codes and their cosets

to the MD problem. The following give the definitions of a codebook:

Definition 1. An (n,R) codebook constructed on a finite alphabet X is an ordered collection

of n-length vectors, where the components of these n-length vectors take value from the
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alphabet X; the size of this collection is 2nR.2 Each vector in the codebook is called a

codeword.

A linear code is a codebook which is linearly closed. The following gives a formal

definition for such codebooks,

Definition 2. Let q be a prime number. A (k, n) linear code3 , C is characterized by its

generator matrix Gk×n defined on Fq. C is defined as follows: C , {uG|u ∈ Fk
q}. A coset

code C′ is a shifted version of a linear code and is characterized by a generator matrix

Gk×n and a dither bn defined on Fq. C′ is defined as follows: C′ , {uG + b|u ∈ Fk
q}.

We will make frequent use of nested linear codes. A pair of nested linear codes is

defined as follows,

Definition 3. For natural numbers ki < ko < n, let Gki×n, and ∆G(ko−ki)×n be matrices on Fq.

Define Ci,Co as the linear codes generated by G, [G|∆G], respectively. (Ci,Co) is called

a pair of nested linear codes with the inner code Ci and the outer code Co. Nested coset

codes are defined as shifted versions of nested linear codes.

2.3 Previous Work

2.3.1 Problem Statement

The general l-descriptions problem is described in this section. The setup is charac-

terized by a discrete memoryless source with probability distribution PX(x), x ∈ X, where

X is a finite set, and the distortion functions dN : X × X̂N → R+,N ∈ L, where X̂N is the

reconstruction alphabet. We assume that the distortion functions are bounded, and that the

2When the blocklength n and the alphabet X is clear from the context, we refer to the codebook by its size
2nR.

3It is worth noting that the term linear codes has been used to refer to linear codebooks. While it is more
precise to use the latter term, instead due to the wide usage of the former, we call such codebooks linear
codes.
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distortion for the n-length sequence (xn, x̂n) is given by the average distortion of the com-

ponents (xi, x̂i). The discrete, memoryless source X is fed into an encoder. The encoder

upon receiving a block of length n of source symbols produces l different indices called

descriptions of the source. These descriptions are sent to the decoders. Each decoder re-

ceives a specific subset of the descriptions. Decoder N,N ∈ L receives description i for all

i ∈ N. Based on the descriptions it has received, the decoder produces a reconstruction of

the source vector.

Definition 4. An (n,Θ1,Θ2, . . . ,Θl) multiple-descriptions code consist of an encoder and

|L| decoders:

ei : Xn → [1,Θi], i ∈ L,

fN :
∏
i∈N

[1,Θi]→ X̂n
N,N ∈ L.

For a given (n,Θ1,Θ2, . . . ,Θl) multiple-descriptions code, the achievable RD vector is

defined as (Ri,DN)i∈L,N∈L, where

1. log Θi
n = Ri,∀i ∈ L,

2. EXn

[
dN

(
fN((ei(Xn))i∈N), Xn)] = DN,∀N ∈ L.

The achievable rate-distortion (RD) region is defined as follows,

Definition 5. The RD vector (Ri,DN)i∈L,N∈L is said to be achievable if for all ε > 0 and

sufficiently large n, there exists an (n,Θ1,Θ2, . . . ,Θl) multiple-descriptions code such that

the following constraints are satisfied:

1. log Θi
n ≤ Ri + ε,∀i ∈ L,

2. EXn

[
dN

(
fN((ei(Xn))i∈N), Xn)] ≤ DN + ε,∀N ∈ L.

The achievable RD region for the l−descriptions problem is the set of all achievable RD

vectors.
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Remark 6. Although the reconstruction alphabet can be different from the source alpha-

bet, throughout this work we assume that the two alphabets are the same for the ease of

notation. The results hold for the general case.

2.3.2 Prior Results

In this section we present a brief description of some of the previous known schemes,

and state the corresponding inner bounds developed for the achievable RD region. One

of the early strategies for coding over two descriptions was the El Gamal - Cover (EGC)

strategy [13]. Similar to all the other strategies explained in this section, the EGC scheme

relies on random, unstructured codebook generation. The following theorem describes

the corresponding inner bound to the achievable RD region which results from the EGC

scheme. Note that this is an alternative way to characterize the inner bound described in

[13].

Definition 7. For a joint distribution P on random variables (U{1},U{2},U{1,2}, X,Q) and a

set of reconstruction functions gL = {gN : UN → X,N ∈ L}, the set RDEGC(P, gL) is defined

as the set of RD vectors satisfying the following bounds:

R1 ≥ I(U{1}; X|Q), R2 ≥ I(U{2}; X|Q), (2.1)

R1 + R2 ≥ I(U{1},U{2}; X|Q) + I(U{1}; U{2}|Q) + I(U{1,2}; X|U{1},U{2},Q), (2.2)

DN ≥ E(dN(gN(UN,Q), X)),N ∈ L. (2.3)

Theorem II.8 (EGC). The RD vector (R1,R2,D{1},D{2},D{1,2}) is achievable for the two

descriptions problem, if there exists a distribution P and reconstruction functions gL such

that (R1,R2,D{1},D{2},D{1,2}) ∈ RDEGC(P, gL).

Since the results in this work build upon schemes such as the EGC scheme, we provide

a summary of the coding strategy, and the role of the codebooks present in the scheme4:
4In this outline we have neglected time-sharing for brevity, as a result the time-sharing random variable
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Codebook Generation: Fix blocklength n, and positive reals r1, r2, r12. Define ρ12,i ,

Ri − ri, i ∈ [1, 2]. For i ∈ {1, 2}, generate a codebook C{i} based on the marginal PU{i} with

size 2nri . That is, randomly generate 2nri n-length sequences of vectors on the alphabet Un
{i},

where each element of each vector is generated based on the distribution PU{i} . The set of

these vectors is denoted by C{i}. For each pair of codewords cn
1, c

n
2 ∈ C{1} × C{2}, generate

a codebook C{1,2} with size 2nr{1,2} super-imposed on C{1}, and C{2} based on the conditional

distribution PU{1,2} |U{1},U{2} . Index the codewords in the codebooks C{1} and C{2} by the num-

bers [1, 2nr1] and [1, 2nr2], respectively. Also, index the codewords in C{1,2} by the pairs

[1, 2nρ12,1] × [1, 2nρ12,2].

Encoding: Upon receiving the source vector Xn, the encoder finds a jointly-typical set

of codewords cn
1, c

n
2, and cn

1,2 in the set C{1} × C{2} × C{1,2} with respect to the distribution

PU{1},U{2},U{1,2} . Description one carries the index of cn
1 and the first element of the index of

cn
1,2. Description two carries the index of cn

2 and the second element of the index of cn
1,2.

Decoding: Decoder one reconstructs cn
1, and produces the reconstruction X̂n = g{1}(cn

1). De-

coder two reconstructs cn
2, and produces the reconstruction X̂n = g{2}(cn

2). Finally, the joint

decoder reconstructs (cn
1, c

n
2, c

n
1,2), and produces the reconstruction X̂n = g{1,2}(cn

1, c
n
2, c

n
1,2).

As explained above, in the EGC scheme, two codebooks C{1} and C{2} are generated

independently based on the marginals PU{1} and PU{2} . The two codebooks should be large

enough so that the encoder can find a pair of jointly typical codevectors in the two code-

books. If the codebooks were generated jointly based on the joint distribution PU{1},U{2} ,

R1 + R2 ≥ I(U{1},U{2}; X|Q) + I(U{1,2}; X|U{1},U{2},Q) would ensure the existence of such

jointly typical codevectors, however in the EGC scheme, since the codebooks are generated

independently, a rate-penalty is inflicted on the encoder. The term I(U{1}; U{2}|Q) in (2.2)

is a manifestation of this rate-penalty. Towards reducing the rate-penalty a new coding

strategy was introduced. The resulting achievable RD region is called the Zhang-Berger

(ZB) region. The region is given in the following theorem:

Q does not appear in the formulas.
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Remark 9. In Theorem II.8, the random variable Q is the time sharing random variable.

The codewords corresponding to codebooks related to random variables U{i},i∈{1,2} are re-

constructed at any decoder receiving description i, and the codeword corresponding to the

random variable U{1,2} is reconstructed at the central decoder as a refinement.

Definition 10. For a joint distribution P on random variables (U{1},{2},U{1},U{2},U{1,2}, X)

and set of reconstruction functions gL = {gN : UN → X,N ∈ L}, the set RDZB(P, gL) is

defined as the set of RD vectors satisfying the following bounds:

R1 ≥ I(U{1},{2},U{1}; X), R2 ≥ I(U{1},{2},U{2}; X),

R1 + R2 ≥ I(U{1},{2}; X) + I(U{1},{2},U{1,2},U{1},U{2}; X) + I(U{1}; U{2}|U{1},{2}),

DN ≥ E(dN(gN(UN), X)),N ∈ L.

Theorem II.11 (ZB). The RD vector (R1,R2,D{1},D{2},D{1,2}) is achievable for the two

descriptions problem, if there exists a distribution P and reconstruction functions gL such

that (R1,R2,D{1},D{2},D{1,2}) ∈ RDZB(P, gL).

The closure of the union of all the achievable vectors is called the ZB rate-distortion region

and is denoted by RDZB:

RDZB = cl

⋃
P,gL

RDZB(P, gL)

 .
The scheme differs from the EGC strategy in the introduction of the random variable

U{1},{2}. There is an additional codebook constructed based on this random variable. In

the ZB scheme the codeword corresponding to the codebook relating to the new random

variable U{1},{2} is decoded at all decoders. In the EGC scheme, in order to send U{1} =

(Ũ{1},U{1},{2}) and U{2} = (Ũ{2},U{1},{2}), one has to pay the following rate-penalty:

I(U{1}; U{2}) = H(U{1},{2}) + I(Ũ{1}; Ũ{2}|U{1},{2}).
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But in the ZB scheme the rate-penalty is reduced to:

I(U{1},{2}; X) + I(U{1}; U{2}|U{1},{2}) = I(U{1},{2}; X) + I(Ũ{1}; Ũ{2}|U{1},{2}).

As mentioned above, in the ZB scheme the codeword corresponding to the codebook

relating to the random variable U{1},{2} is decoded at all decoders, and is the ‘common infor-

mation’ among the random vectors reconstructed in these decoders. The following defini-

tion provides a characterization of the common-component between two random variables,

Definition 12. Let X{1} and X{2} be two random variables. W is called a common-component

between X{1} and X{2}, if there exist functions hi : X{i} → W, i = 1, 2 such that W = h1(X{1}) =

h2(X{2}) with probability one, and the entropy of W is positive.

It was shown in [54] that in a certain two-descriptions setup, the addition of U{1},{2}

enlarges the RD region. We call such a random variable non-redundant. The following

definition gives a formal description of a non-redundant random variable:

Definition 13. In a given achievable RD region for the l−descriptions setup, characterized

by a collection of auxiliary random variables, an auxiliary random variable U is called

non-redundant if the RD region strictly reduces when U is set as constant.

Example 14. We provide an overview of the example in [54] where the ZB rate-distortion

region is strictly better than EGC rate-distortion region, since it is used extensively in the

following sections. Consider the two-descriptions setting. Here X is a binary symmetric

source (BSS), and the side decoders intend to reconstruct X with Hamming distortion. The

central decoder needs a lossless reconstruction of the source. In [54], it is shown that the

rate distortion vector (R1,R2,D{1},D{2},D{1,2}) = (0.629, 0.629, 0.11, 0.11, 0) is achievable

using the ZB scheme but not the EGC scheme.

Typically, in a given RD region achievable by a specific coding scheme, each random

variable in the single-letter characterization, is associated with an underlying codebook
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used in that scheme. We call a codebook non-redundant if it is associated with a non-

redundant random variable. In the ZB coding scheme, the codebook corresponding to

U{1},{2} is non-redundant.

The idea of constructing a codebook associated with the common-component between

the two random variables is the foundation of most of the schemes proposed for the general

l−descriptions problem. One can even interpret the main difference between these schemes

to be the way the common-component between different random variables are exploited.

As explained in the introduction, the best known achievable RD region for the l−descriptions

problem is the CMS with binning (CMSB) strategy. In this strategy a combinatorial num-

ber of common-component random variables are considered. We explain the codebook

structure for the three-descriptions case. The codebook structure is shown in Figure 2.2.

There are two layers of codebooks, a layer of Maximum-Distance Separable (MDS) codes

and a layer of Source Channel Erasure Codes (SCEC’s). The codebook CM is decoded at

decoder N if ∃N′ ∈ M,N′ ⊂ N5. The codebooks are binned6 independently, and the bin

numbers for the MDS code CM are carried by description i if i ∈
⋃

N∈M
N. Whereas the bin

number for each SCEC is carried by only one description i where i ∈
⋂

N∈M
N. Let RDCMS B

denote the resulting RD region achievable using CMSB strategy (see [2, 48]).

C{1,2},{1,3},{2,3}
C{1},{2},{3}

C{1,3}
C{1,2}

C{1},{2}
C{2,3}

C{2},{3}
C{1},{3}

C{2}
C{1}

C{3}
C{1,2},{2,3}
C{1,2},{1,3}

C{1,3},{2,3}

MDS Codes SCEC

Figure 2.2: The structure of CMSB codebooks in the three-descriptions problem

5More precisely, the codeword in CM which is used in the corresponding block of transmission is decoded
if this condition is satisfied.

6We explain the binning operation in detail in the proof of Theorem II.16.
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2.4 Improvements Using Unstructured Codes

Our objective is to provide a new achievable RD region for the l-descriptions prob-

lem, which improves upon the RD region given by the CMSB strategy. This is based on

a new coding scheme involving both unstructured and structured codes. The achievable

RD region and the corresponding coding scheme is presented pedagogically in two steps.

In the first step, presented in this section, we provide an RD region achievable using un-

structured codes. This region is strictly better than the CMSB region. In other words this

is an improvement upon the CMSB region using only unstructured codes. In the second

step, presented in the next two sections, this is enhanced with a structured coding layer

which improves the performance even further. In other words we show that the codebooks

associated with the structured coding layer are non-redundant.

2.4.1 Improvements to the RD Region Using Unstructured Codes

We describe the key ideas for the case l = 3. There are 7 distinct decoders, one associ-

ated with every non-empty subset of L = {1, 2, 3}. That is, we identify the set of decoders

with L = 2L\φ. The new achievable RD region that we provide improves upon the CMSB

rate-distortion region on two factors. The first comes by adding extra codebooks, and the

second comes by a more general binning method. Using the common-component perspec-

tive, we associate with every non-empty subsetM of these 7 decoders an auxiliary random

variable and a corresponding codebook. That is, we identify the collection of auxiliary

variables (and their codebooks) with 2L\φ. Each codebook is binned multiple times, once

for each description. Each description carries the bin number of the codewords in each

codebook, which correspond to its own binning function. If a description is received by at

least one decoder inM, then a bin index of the codebook associated withM is sent on that

description.

Although it appears that the strategy involves the generation of a doubly-exponential

number of codebooks (in l), we show that most of these codebooks are redundant, leav-
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ing only an asymptotically exponential number of non-redundant codebooks. While the

remaining codebooks are generally non-redundant, only a small number of them are such

in most of the examples we consider here.

C{1,2},{1,3},{2,3}
C{1},{2},{3}

C{1,3}
C{1,2}

C{1},{2}
C{2,3}

C{2},{3}
C{1},{3}

C{2}
C{1}

C{3}
C{1,2},{2,3}
C{1,2},{1,3}

C{1,3},{2,3}
C{2},{1,3}
C{1},{2,3}

C{3},{1,2}

Figure 2.3: The SSC codebooks present in the three-descriptions problem

It turns out that a codebook is non-redundant if and only if it is associated with a a

family of sets in SL. So, instead of 63 codebooks, we have just 17. Since the indices of the

codebooks are associated with the Sperner families of sets, we call the scheme the Sperner

Set Coding (SSC) scheme. A schematic of the codebook collection is shown in Figure

2.3. We start from the left and from the top. The first two codebooks can be identified as

(3, 2) and (3, 1) MDS codes. The next six codebooks can be identified as three (2, 1) MDS

codes, and three (2, 2) MDS codes associated with decoders which get two descriptions.

The next three can be identified as (3, 2) source-channel erasure codes (SCEC). The next

three can be identified as (3, 1) SCEC’s (similar to the codebooks used in the EGC rate

region). All these 14 codebooks are considered in deriving the CMSB rate region. The

final set of codebooks are new. They can be identified as three (2, 1) MDS codes associated

with decoders that receive disjoint subsets of descriptions. Next we provide the main result

of this sections. The following theorem characterizes the achievable RD region for the SSC

scheme:

Definition 15. For a joint distribution P on random variables UM,M ∈ SL and X and a set

of reconstruction functions gL = {gN : UN → X,N ∈ L}, the set RDS S C(P, gL) is defined as

the set of RD vectors satisfying the following bounds for some non-negative real numbers
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(ρM,i, rM)i∈M̃,M∈SL
:

H(UM|X) ≥
∑
M∈M

(H(UM)−rM),∀M ⊂ SL, (2.4)

H(UMN |UL∪M̃N
) ≤

∑
M∈MN\(L∪M̃N)

(H(UM) +
∑
i∈M̃

ρM,i − rM),∀L ⊂MN,∀N ∈ L, (2.5)

rM ≤ H(UM),∀M ∈ SL,

Ri =
∑
M

ρM,i, DN = E
{
dN(gN(UN), X)

}
, (2.6)

where MN is the set of all codebooks decoded at decoder N, that is MN , {M ∈ SL|∃N′ ⊂

N,N′ ∈ M}, and M̃N denotes the set of all codebooks decoded at decoders Np ( N which

receive subsets of descriptions received by N, that is M̃N ,
⋃

Np(N MNp .

Theorem II.16. The RD vector (Ri,DN)i∈L,N∈L is achievable for the l−descriptions problem,

if there exists a distribution P and reconstruction functions gL such that (Ri,DN)i∈L,N∈L ∈

RDS S C(P, gL).

The closure of the union of all such achievable vectors is called the SSC achievable rate-

distortion region and is denoted by RDS S C,

RDS S C = cl

⋃
P,gL

RDS S C(P, gL)

 .
In order to clarify the notation we explain the random variables decoded at each de-

coder7 in the three-descriptions problem. When l = 3, we know SL has 17 elements. In the

formulas, MN corresponds to the set of random variables decoded at decoder N, whereas

M̃N corresponds to the set of random variables which are decodable if we have access to

strict subsets of the descriptions received by N. Here are the random variables decoded at

7More precisely, the random variables relating to the codebooks whose corresponding codewords are
decoded at each decoder.
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decoders {1} and {2, 3}:

decoder {1}: U{1},{2},{3},U{1},{2},U{1},{3},U{1},{2,3},U{1}

decoder {2, 3}: U{1},{2},{3},U{1,2},{1,3},{2,3},U{1},{2},U{1},{3},U{2},{3},

U{1},{2,3},U{2},{1,3}U{3},{1,2},U{1,2},{2,3},U{1,3},{2,3},U{2},U{3},U{2,3}

So as an example M{1} =

{{
{1}, {2}, {3}

}
,
{
{1}, {2}

}
,
{
{1}, {3}

}
,
{
{1}, {2, 3}

}
,
{
{1}

}}
which are

all the codebooks decoded at decoder {1}.Also M̃{2,3} =

{{
{1}, {2}, {3}

}
,
{
{1}, {2}

}
,
{
{1}, {3}

}
,{

{2}, {3}
}
,
{
{2}, {1, 3}

}
,
{
{3}, {1, 2}

}
,
{
{2}

}
,
{
{3}

}}
, and these are all the codebooks which are

decoded at decoders {2} and {3}.

Lemma 17. The SSC rate-distortion region is convex.

Proof. See Section A.1.1 in the appendix. �

Remark 18. For every decoder N ∈ L, we have defined the reconstruction as a func-

tion of the random variable UN. However, decoder N decodes all random variables UM

where M ∈ MN. The following lemma shows that the RD region does not improve if the

reconstruction function is defined as a function of UMN instead.

Lemma 19. The RD region in Theorem II.16 does not change if the reconstruction function

at decoder N is defined as a function of UMN .

Proof. See Section A.1.2 in the appendix. �

Remark 20. In the scheme proposed in Theorem II.16 there are |SL| codebooks. We know

that the size of SL is the number of Sperner families on L minus three. The number of

Sperner families is called the Dedekind numbers [17]. There has been a large body of

work in determining the values of Dedekind numbers for different l. It is known that these

numbers grow exponentially in l. As an example the number of codebooks necessary for

l = 2, 3 and 4 are 3, 17 and 165. However in all of the examples in this work it turns
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out that many of the codebooks become redundant and only a small subset are used in the

scheme.

Proof. Before proceeding to a more detailed description of the coding strategy we provide

a brief outline. For each family of setsM ∈ SL the encoder generates a codebook CM based

on the marginal PUM independently of the other codebooks. Intuitively, this codebook is

the common-component among all the decoders N such that N ∈ M, and it is decoded

in all decoders N′ ⊃ N. Codebook CM is binned independently and uniformly for each

description i if i ∈ M̃. The description will carry the corresponding bin number for the

codewords in each of the corresponding codebooks. Each decoder reconstructs its corre-

sponding codewords by finding a unique set of jointly typical codevectors in the bins it has

received. The existence of the jointly typical set of codewords is ensured at the encoder by

the way of satisfaction of (2.4), whereas at the decoder unique reconstruction is warranted

by (2.5).

Codebook Generation: Fix blocklength n and positive reals (ρM,i, rM)i∈M̃,M∈SL
. For every

M ∈ SL, generate a codebook CM based on the marginal PUM with size 2nrM . For the ith

description, if i ∈ M̃, bin the codebook CM randomly and uniformly into 2nρM,i bins (i.e.

randomly and uniformly assign an index [1, 2nρM,i] to each codeword in CM, and the index

is called the bin-index.).

Encoding: Upon receiving the source vector Xn, the encoder finds a jointly-typical set

of codewords un
M
,M ∈ SL. Each description carries the bin-indices of all the codewords

corresponding to its own binning function.

Decoding: Having received the bin-indices from descriptions i ∈ N, decoder N tries to

reconstruct the codeword corresponding to CM if M ∈ MN. In other words the decoder

finds a unique vector (un
M

)N∈M of jointly typical sequences in the corresponding bins. If the

vector does not exist or is not unique, the decoder declares error.

Covering Bounds: Since codebooks are generated randomly and independently, to find

a set of vectors Un
M

that is jointly typical with the source vector Xn, the mutual covering
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bounds (2.4) are necessary based on the mutual covering lemma [14].

Packing Bounds: For decoder N, description i is received if i ∈ N. Since binning is done

independently and uniformly, to find a unique set of jointly typical sequences (un
M

)N∈M, the

mutual packing bounds (2.5) are required by the mutual packing lemma [14].

�

Remark 21. There are two main differences between the new scheme and the previous

CMSB scheme. First there are additional codebooks present. As an example in Figure

2.3, the three codebooks in the right column are not present in the CMSB scheme. Second,

description i bins all of the codebooksM such that i ∈ M̃. We will show in the next sections

that these additional codebooks contribute to an enlargement of the achievable RD region.

In other words we prove that all of the additional codebooks are non-redundant. Also we

show that the new binning strategy improves the achievable RD region.

2.4.2 Improvements Due to additional codebooks

Consider the general l-descriptions problem. In this section we prove that a codebook

CM is non-redundant ifM ∈ SL.

Remark 22. It is straightforward to see that addition of a codebook CM where M < SL

is not going to result in a larger achievable RD region. To see this consider the three

descriptions problem and assume we add the codebook C{1},{1,2}. By our definition this new

codebook is decoded if we either receive description 1 or both descriptions 1 and 2. In

this case the codebook is decoded in exactly those decoders where C{1} is decoded. This

means that merging these two codebooks does not change the packing bounds whereas it

may relax the covering bounds. So such a codebook would be redundant. This is the reason

why we consider only those codebooks which are associated with Sperner families.

Remark 23. There are three Sperner families for which we do not construct codebooks:

{φ, {φ}, {L}}. It is clear that Uφ and U{φ} are not necessary since they are not decoded at
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any decoder. Furthermore one can use the proof provided in [51] to show that UL is also

redundant.

The next lemma proves that the random variables considered in Theorem II.16 are non-

redundant.

Lemma 24. The random variable UM is non-redundant for everyM ∈ SL.

Dec 3

Dec 123

Dec 12

E
n
co
d
er

X

X̂, D

X̂, D

X

Dec 1
X̂, D1

Figure 2.4: Three Descriptions Setup Showing C{1,2},{3} is not redundant.

Proof. We provide the proof for the l = 3 case and give an outline of how the proof is

generalized for l > 3. The codebooks C{1}, C{2}, C{3}, C{1,2}, C{1,3}, C{2,3}, C{1},{2}, C{1},{3},

C{2},{3}, C{1,2},{1,3}, C{1,2},{2,3}, C{1,3},{2,3}, C{1},{2},{3}, C{1,2},{1,3},{2,3} are all present in the CMSB

scheme and it was shown that they are non-redundant. The new codebooks are C{1,2},{3},

C{1,3},{2} and C{23},{1}. We prove that C{1,2},{3} is non-redundant using the following example,

the two other codebooks are non-redundant by symmetry.

We build on Example 14 to construct a three-descriptions example as shown in Figure

2.4. As explained in the previous section, it is known that U{1},{2} is non-redundant. Let

Ri = 0.629, i ∈ {1, 2}, and D{1,2} = 0. Let

D∗ = min
D
{D|(0.629, 0.629,D,D, 0) ∈ RDZB}. (2.7)

Let P be the set of probability distributions PU{1},{2},U{1},U{2},X, such that (R1,R2,D{1},D{2},D{1,2})

= (0.629, 0.629,D∗,D∗, 0) belongs to RDZB(PU{1},{2},U{1},U{2},X, gL) for some gL as given in
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Theorem II.11. Define the joint distribution P∗U{1},{2},U{1},U{2},X as follows:

P∗U{1},{2},U{1},U{2},X , arginf
PU{1},{2} ,U{1} ,U{2} ,X∈P

I(U{1},{2}; X).

Let P∗U{1},{2},X be the marginal distribution of U{1},{2} and X. Define a random variable W

that is correlated with X such that PW,X = P∗U{1},{2},X. Let Nδ be a binary random variable

independent of X and W with P(Nδ = 1) = δ, δ ∈ (0, 0.5). Define Ŵ = U{1},{2} ∧ Nδ where

∧ denotes the logical AND function. Let PŴ,X, PX|Ŵ be the induced joint and conditional

distributions, respectively.

Example 25. We proceed by explaining the new example. The source X is a BSS, decoders

{1, 2} and {3} want to reconstruct the source with respect to Hamming distortion and the

central decoder wants to reconstruct the source losslessly. Decoder {1}wants to reconstruct

the source with respect to the distortion function given by:

d{1}(x, x̂) = − log(PX|Ŵ(x|x̂))

Lemma 26. The following RD vector does not belong to RDCMS B, where U{1,2},{3} is con-

stant. The vector belongs to RDS S C given in Theorem II.16 which is achievable using the

SSC scheme:

(R1,R2,R3,D{1},D{1,2},D{3},D{1,2,3}) = (I(X; Ŵ), 0.629 − I(X; Ŵ), 0.629,D′,D∗,D∗, 0),

where D′ = E(d{1}(X, Ŵ)).

Proof. We provide the intuition behind the proof first. In the coding scheme in Theorem

II.16, the only codebooks capable of carrying the common-component between decoders

{1, 2} and {3} are C{1},{3}, C{2},{3}, C{1},{2},{3} and C{1,2},{3}. We have set the distortion constraint

at decoder {1} such that this common message can’t be carried exclusively on either of the

descriptions 1 and 2, but rather both descriptions are necessary for the reconstruction of
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the common codebook. So the codebook C{1,2},{3} can’t be empty. The proof is provided in

Section A.1.3 in the appendix. �

So far we have shown that the additional codebooks are non-redundant when l = 3.

The argument can be extended to the case when l > 3, an outline of the general argument

is provided in appendix A.1.4. �

2.4.3 Improvements Due to Binning

The second factor contributing to the gains in the SSC rate-distortion region is the

binning method. In the SSC scheme all descriptions i ∈ M̃ carry independent bin indices of

codebook CM. This is different from the CMSB strategy where each codebook is binned by

a specific subset of the descriptions based on whether the codebook is a SCEC or an MDS

codebook. We prove through a three-descriptions example that the RD region enlarges due

to binning in the SSC scheme, even with the three additional codebooks. We show in the

following example that the bin indices of C{1,2},{1,3} should be carried by all descriptions.

Example 27. The example is generated by modifying Example 25 and is illustrated in

Figure 2.5. The source X is BSS. d{1}(X, Ŵ) is defined as in Example 25. Decoders {1, 2}

and {1, 3} want to reconstruct the source with Hamming distortion and decoder {1, 2, 3}

wants to reconstruct the source losslessly.

Lemma 28. In order to achieve (R1,R2,R3,D{1},D{1,2},D{1,3},D{1,2,3}) = (I(Ŵ; X),R−I(Ŵ; X),

R − I(Ŵ; X), D′,D,D, 0) we must have ρ{1,2},{1,3},2 + ρ{1,2},{1,3},3 > 0.

Proof. See Section A.1.5 in the appendix. �

2.5 Linear Coding Examples

Before providing a unified RD region which uses both unstructured and structured

codes (step 2), in this section, for pedagogical reasons, we look at three examples of
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Figure 2.5: Example Showing Improvements Due to Binning

l−descriptions problems and provide example-specific coding schemes based on linear

codes that perform strictly better than the SSC scheme which is based on unstructured

codes. This shows that the SSC region is not complete and a structured coding layer is

necessary. These coding schemes are unified and presented in the next section.

2.5.1 Gains Due to Linear Quantizers

We create a three-descriptions setting where reconstructions of bivariate functions are

necessary.

Example 29. Consider the three-descriptions example in Figure 2.6. Here X and Z are

independent BSS. Decoder {1}, {2} and {3} wish to reconstruct X, Z and X + Z, respectively,

with Hamming distortion. Decoders {1, 2}, {1, 3}, and {2,3} wish to reconstruct the pair

(X,Z) with distortion function

dXZ((X̂, Ẑ), (X,Z)) = dH(X̂, X) + dH(Ẑ,Z).

We are interested in achieving the following RD vector:

Ri = 1 − hb(δ), i ∈ {1, 2, 3},D{1} = D{2} = δ, ,D{3} = δ ∗ δ,D{1,2} = D{1,3} = D{2,3} = 2δ.

(2.8)
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First we argue that in this example, description 3 should carry a bivariate function of

descriptions 1 and 2. Decoders {1} and {2} operate at the optimal PtP rate-distortion func-

tion. So the corresponding descriptions have to allocate all of their rates to satisfy their

individual decoder’s distortion criteria. Since the distortion constraint at decoder {1} only

relates to X, this description only carries a quantization of X, and by the same argument

description 2 carries a quantization of Z. Then description 3 has to carry the sum of these

two quantizations so that the joint decoders’ distortion constraints are all satisfied. Since

structured codes are efficient for transmitting bivariate summations of random variables,

we expect that using structured codes would give gains in this example as opposed to un-

structured codes. First, we prove that the RD vector is achievable using linear codes.

E
n
cod

er

Dec 1

Dec 2

Dec 12

X,Z

X̂

X̂, Ẑ

Ẑ

Dec 23 X̂, Ẑ

Dec 3 X̂ + Ẑ

Dec 13 X̂, Ẑ

Figure 2.6: Three-Descriptions Example with a Vector Binary Source

Lemma 30. The RD vector in (2.8) is achievable.

Proof. Encoding: Construct a sequence of random linear codes Cn of rate 1 − hb(δ) + εn,

where εn is going to 0. It is well known that such a sequence of linear codes can be used to
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quantize a BSS to Hamming distortion δ. Define the following:

X̂n = argmincn∈CndH(xn, cn)

Ẑn = argmincn∈CndH(zn, cn)

Since X̂n and Ẑn are codewords and the codebook is linear, X̂n + Ẑn is also a codeword.

Description 1 carries the index of X̂n, description 2 carries the index of Ẑn and description

3 carries the index of X̂n + Ẑn.

Decoding: Decoders {1} and {2}, receive X̂n and Ẑn, respectively, so they satisfy their

distortion constraints. Decoder {3} reconstructs X̂n+Ẑn. Lemma 31 shows that the distortion

criteria at this decoder is satisfied.

Lemma 31. In the above setting, we have 1
n E(dH(X̂n + Ẑn, Xn + Zn))→ δ ∗ δ.

Proof. See Section A.2.1 in the appendix.

�

Decoder {1, 2} receives X̂n and Ẑn, so it satisfies its distortion requirements. Also de-

coders {1, 3} and {2, 3} can recover X̂n and Ẑn by adding X̂n + Ẑn to X̂n and Ẑn, respectively.

This shows that the RD vector in (2.8) is achievable using linear codes.

�

Next we show that the SSC scheme cannot achieve this RD vector.

Lemma 32. The RD vector in (2.8) does not belong to RDS S C, i.e., it is not achievable

using the SSC scheme.

Proof. See Section A.2.2 in the appendix. �

2.5.2 Gains Due to Linear Binning

In the SSC scheme, there are two stages in the codebook generation phase. In the

first stage unstructured codebooks are generated randomly and independently, and in the
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second stage these codebooks are binned randomly in an unstructured fashion for each

description. In the previous example it was shown that in the first stage, it is beneficial to

generate codebooks with a linear structure. However in that example there was no need for

binning. In the next example, we show that the binning operation needs to be carried out

in a structured manner as well. This is analogous to the gains observed in the distributed

source coding problem [18] where the bin structure needs to be linear. Consider the four-

descriptions example in Figure 2.7.
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Dec 12

X,Z

X̂

X

X + Z

Dec 34 Z

Dec 4 Ẑ

Figure 2.7: An Example Showing the Gains Due to Linear Binning

Example 33. X and Z are BSS’s. X and Z are not independent, and they are related to each

other through a binary symmetric channel with bias p ∈ (0, 1
2 ). In other words X = Z + Np

where Np ∼ Be(p) is independent of X and Z. Decoders {1} and {4} wish to decode X

and Z, respectively, with Hamming distortion. Decoders {1, 2}, {3, 4} and {2, 3} require a

lossless reconstruction of X, Z and X + Z, respectively. We are interested in achieving the

following RD vector:

R1 = R4 = 1 − hb(p),R2 = R3 = hb(p),D{1} = D{4} = p (2.9)

We show that the RD vector in (2.9) is achievable using structured codebooks and linear

binning in the next lemma.
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Lemma 34. The RD vector in (2.9) is achievable.

Proof. Codebook Generation: Take an arbitrary sequence of positive numbers εn, where

εn → 0 as n → ∞. For any large n ∈ N, fix ri,n = 1 − hb(q) − εn and ro,n = 1 − hb(q) + εn.

Construct a family of nested coset codes (Cn
i ,C

n
o) where Cn

i ⊂ Cn
o such that the rate of

the outer code is ro,n and the rate of the inner code is ri,n. Choose Cn
i such that it is a

good channel code for a BSC(p), and choose Cn
o such that it is a good source code for

quantizing a BSS to Hamming distortion p. The existence of such nested coset codes is

well-known from random coding arguments [12]. Next we bin the space Fn
2 into shifted

versions (cosets) of Cn
i . Let Pi be the Voronoi region of the codeword 0n in Cn

i . Any vector

xn ∈ Fn
2 can be written in the form xn = vn + cn

i , v
n ∈ Pi, cn

i ∈ C. Define the ith bin as vn +Cn
i

. This operation bins the space into |Pi| = 2n(hb(p)+εn) bins. The bin number associated with

an arbitrary vector xn determines exactly the quantization noise resulting from quantizing

the vector using Cn
i with the minimum Hamming distortion criterion. We denote the bin

number of xn as Bi(xn). A similar binning operation can be performed using Cn
o. Denote

the bin number of xn obtained using shifted versions of Cn
o by Bo(xn).

Encoding: The encoder quantizes xn and zn using Cn
o to Qo(xn), and Qo(zn), respectively.

It also finds the bin number of the two source sequences Bi(xn) and Bi(zn). Qo(xn) is trans-

mitted on the first description, Bi(xn) is transmitted on the second description, Bi(zn) is

transmitted on the third description, and Qo(zn) is transmitted on the fourth description.

Decoding: Since the outer codes are good source codes, the distortion constraints at de-

coders {1} and {4} are satisfied.

We argue that the Voronoi region of 0n in Cn
o is a subset of the one for Cn

i . This is

true since Cn
i ⊂ Cn

o. Hence, having Bi(xn), decoders {1, 2} and {3, 4} can calculate Bo(xn).

As mentioned above the bin number determines the quantization noise, so the decoders can

reconstruct the source losslessly using the bin number and the quantization vector. Decoder

{2, 3} receives Bi(xn) and Bi(zn). We have xn = Qi(xn) + Bi(xn) and zn = Qi(zn) + Bi(zn), so

Bi(xn) + Bi(zn) = xn + zn + Qi(xn) + Qi(zn). Since Cn
i is linear, Qi(xn) + Qi(zn) is a codeword,
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and xn + zn can be thought of as the noise vector for a BS C(p). We constructed Cn
i such

that it is a good channel code for BSC(p), so the decoder can recover Q(xn) + Q(zn) from

xn + zn + Qi(xn) + Qi(zn). Then by subtracting the two vectors it can get xn + zn. �

Although we have used linear codes for quantization as well as binning, the linearity

of the binning codebook Cn
i is critical in this example. In fact, it can be similarly shown

that one can achieve the RD vector in (2.9) with Cn
o chosen to be a union of random cosets

of Cn
i . This is in contrast with the previous example where the quantizing codebook was

required to be linear.

Lemma 35. The RD vector in (2.9) is not achievable using the SSC scheme.

Proof. See Section A.2.3 in the appendix. �

2.5.3 Correlated Quantizations of a Source

It can be noted that in the case of SSC scheme, the unstructured quantizers are generated

randomly and independently. As observed in these two examples, in order to efficiently re-

construct the bivariate summation, it is beneficial to use the same linear code for quantizing

the source. However, in the two examples the source was a vector with two components

which were separately quantized using identical linear codes, and the analysis of the cod-

ing scheme required only standard PtP covering and packing bounds for linear codes. In

the more general case, evaluation of the performance of identical, and more generally,

correlated linear codes for MD quantization, requires new covering and packing bounds.

This is illustrated through the following scalar source example which is depicted in Fig-

ure 2.8. The setup is constructed based on the no-excess rate example described in [54]

for the two-descriptions problem. In the two-descriptions example, the source X is BSS,

and the distortion functions at all decoders is Hamming distortion. For the special case,

called no-excess rate regime, when R1 = R2 =
1−h(D0)

2 , it was shown that the EGC region

is tight. Here D0 is the distortion D{1,2} at decoder {1, 2}, and the minimum side distortion
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Figure 2.8: Scalar Source Example with Correlated Quantization

D{1} = D{2} achievable was shown to be 1
2 (1 − (1 − 2D0)(2 −

√
2)). The three-descriptions

example is given as follows.

Example 36. The source X is BSS, the distortion functions at decoders {1}, {2}, {1, 2},

{1, 3} and {2, 3} are Hamming distortions, and the distortion function at decoder {3} is the

following general distortion function,

d{3}(x, x̂) =



0 if x = x̂

α if x = 0, x̂ = 1

β if x = 1, x̂ = 0

where α and β are positive real numbers. We are interested in achieving the RD vectors

with the following projections:

R1 = R2 =
1 − hb(D0)

2
,D{1} = D{2} =

1
2

(1 − (1 − 2D0)(2 −
√

2)),

D{1,2} = D{1,3} = D{2,3} = D0, (2.10)

Our objective is to evaluate the optimal (R3,D{3}) trade-off. The following lemma pro-
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vides the RD vectors achievable using linear codes.

Lemma 37. The RD vector in (4.14) is achievable using linear codes, as long as the fol-

lowing constraints are satisfied:

R3 ≥
1
2

+ hb

(√
2 − 1

)
− hb

 √2
2

 − hb (D0)
2

(2.11)

D{3} ≥ α
(√

2 − 1
)

D0 + β

3 − 2
√

2
2

 (1 − D0) +
D0

2

 (2.12)

hb (D0) + 2hb

 √2
2

 + hb

(
2
(√

2 − 1
)

D0

)
+ hb

(
2
(√

2 − 1
)

(1 − D0)
)
≥ 1. (2.13)

Proof. Consider the following definition.

Definition 38. Let Fq be a field. Consider 3 random variables X, U and V, where X is

defined on an arbitrary finite set X, and U and V are defined on Fq. Fix a PMF PX,U,V

on X × Fq × Fq. A sequence of code pairs (C1,C2), where C j ⊂ F
n
q for j = 1, 2, is called

PXUV-covering if ∀ε > 0,

P({xn|∃(un, vn) ∈ An
ε (U,V |x

n) ∩C1 ×C2})→ 1 as n→ ∞.

First, we derive new covering and packing bounds for joint quantization of a general

source X (i.e. not necessarily binary), using two pairs of nested coset codes. Let (Ci,Co)

and (Ci,C
′
o) be two pairs of nested coset codes with generator matrices G1 and G2 shown

in Figure 2.9 which share the inner code Ci. If ri = 0, the two codebooks are generated

independently. On the other hand, if ro = r′o = ri, the two codebooks are the same, so this

construction generalizes the previous constructions.

Lemma 39 (Covering Lemma). For any PXUV on X×Fq×Fq and rates ro, r′o and ri satisfying

(2.14)-(2.17), there exists a sequence of two pairs of nested coset codes (Co,Ci) and (C′o,Ci)

40



G1

C1

G2

G G

∆G ∆G′

n
·r

i
n
·(r

o −
r
i )

n
·r

i
n
·(r ′o −

r
i )

Figure 2.9: Codebook Construction for Lemma 39

which are PXUV-covering.

ro ≥ log q − H(U |X) (2.14)

r′o ≥ log q − H(V |X) (2.15)

ro + r′o ≥ 2 log q − H(U,V |X) (2.16)

ro + r′o − ri ≥ log q − H(αU ⊕q βV |X),∀α, β ∈ Fq\{0}, (2.17)

Proof. See Section A.2.4 in the appendix. �

Remark 40. The only difference between the new mutual covering bounds and the ones

for independent codebook generation is the presence of the constraint (2.17). If ri = 0,

(2.17) is redundant, so we recover the mutual covering bounds for independent codebook

generation as expected. If ri , 0, (2.17) is non-redundant. There is an intuitive explanation

for this additional bound. Define C3 = αC1⊕qβC2. C3 is a coset code with generator matrix

G3 = [Gt G′t ∆Gt]t, and the size of this codebook is 2n(ro+r′o−ri). Suppose there are codevetors

cu ∈ C1 and cv ∈ C2 jointly typical with x with respect to PUVX, then αc1 ⊕q βc2 ∈ C3 is

jointly typical with x with respect to PαU⊕qβV,X. This implies that C3 should have size at least

2n(log q−H(αU⊕qβV |X)) by the converse source coding theorem.

Definition 41. Let Fq,U,V and X be as in Definition 14. A sequence of code pairs (C1,C2)
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and bin functions Bi : Ci → [1, 2nρi], i ∈ {1, 2} is called PXUV-packing if for all ε > 0,

P




xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(cn
u, c

n
v) , (c′nu, c

′n
v),

(cn
u, c

n
v) ∈ An

ε (U,V |X)
⋂

C1 ×C2,

(c′nu , c
′n
v ) ∈ An

ε (U,V)
⋂

C1 ×C2,

B1(cn
u) = B1(c′nu ), B2(cn

v) = B2(c′nv )




→ 0 as n→ ∞.

Lemma 42 (Packing Lemma). For any PXUV on X×Fq ×Fq, there exists a sequence of two

pairs of nested coset codes (Co,Ci) and (C′o,Ci) and bin function Bi, i ∈ {1, 2} which are

PXUV-packing, if ro, r′o, ρ1 and ρ2 satisfy

ro − ρ1 ≤ log q − H(U |V), (2.18)

r′o − ρ2 ≤ log q − H(V |U), (2.19)

(ro − ρ1) + (r′o − ρ2) ≤ 2 log q − H(U,V). (2.20)

Proof. See Section A.2.5 in the appendix. �

We proceed with explaining the achievability scheme. Define the joint distribution as

in the following tableon random variables V{1},V{2} and X.

X
V{1},V{2} 00 01 10 11

0 1
2 (1 − D0)

√
2−1
2 D0

√
2−1
2 D0

3−2
√

2
2 D0

1 1
2 D0

√
2−1
2 (1 − D0)

√
2−1
2 (1 − D0) 3−2

√
2

2 (1−D0)

Table 2.1: Joint distribution on X, V{1} and V{2}.

Codebook Generation: Set r = ro = r′o = ri = 1 − H(V{1},V{2} |X)
2 + ε, and ρ1 = ρ2 =

H(V{1})−
H(V{1},V{2} |X)

2 + ε and ρ3 = H(V{1} ⊕V{2})−
H(V{1},V{2} |X)

2 + ε. Construct a family of coset

codes C with rate r. Also, construct three binning functions Bi : Cn → [1, 2nρi], i ∈ {1, 2, 3}.

Encoding: Upon receiving source sequence xn, the encoder finds cn
1 and cn

2 in the code-

book, such that they are jointly typical with xn with respect to PV{1},V{2},X. Such a pair of
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codewords exists as long as the covering bounds in Lemma 39 are satisfied. In the case at

hand it can be readily checked that ro, r′o and ri satisfy the bounds. Description 1 carries the

bin index of cn
1 using B1, description 2 carries the bin index of cn

2 using B2 and description

3 carries the bin index of cn
1 + cn

2 using B3.

Decoding: Decoder {1} receives the bin index carried by description 1, and reconstructs

cn
1 as long as there is a unique codeword in the bin which is typical with respect to PV{1} .

The following packing bound ensures correct decoding with arbitrarily small error:

H(V{1}) ≤ 1 − ρ1 + ri.

By the same arguments decoder {2} reconstructs cn
2 correctly. Decoder {3} reconstructs

cn
1 + cn

2 with arbitrarily small error since the following packing bound is satisfied:

H(V{1} + V{2}) ≤ 1 − ρ3 + ri.

We conclude that all the decoders which receive two descriptions would have access

to cn
1 and cn

2. Decoders {1}, {2} and {3} announce their decoded codewords as their recon-

struction of the source. The reconstruction function at the decoders which receive two

descriptions is given as follows:

x̂i =


0 c1i = c2i = 0

1 Otherwise

This implies that the RD vector stated in the lemma is achieved from strong typicality.

�

The following lemma shows that some of the RD vectors in Lemma 21 are not achiev-

able using the SSC scheme.
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Lemma 43. The RD vector in (4.14) is not achievable using the SSC scheme for the fol-

lowing values of α and β and when the equality holds in (4.16):

α = log2
1 − 2(

√
2 − 1)D0

2(2 −
√

2)D0

, β = − log2
1 − 2(

√
2 − 1)(1 − D0)

2(2 −
√

2)(1 − D0)

For example, D0 = 0.035, α = 4.566 and β = 2.495 satisfy the above constraints, where

we have rounded the parameters up to the third decimal place.

Proof. See Section A.2.6 in the appendix. �

2.6 Achievable RD Region using Structured Codes

In this section, we provide a new achievable RD region for the general l−descriptions

problem by enhancing the SSC coding scheme with a structured coding layer. We present

this region in four stages. In the first stage, we prove that the SSC region can also be

achieved using structured codes. In particular, we use independent nested coset codes for

each auxiliary random variable, and exploit the pairwise independence of the codewords

to show the achievability of the SSC region. In the subsequent stages, we add coding

layers that facilitates the reconstruction of multi-variate functions of the auxiliary random

variables. The improvements due to these additional layers comes from exploiting the

algebraic structure of the codebooks. In the second stage, we only allow the reconstruction

of a bivariate summation of codewords. In the third stage we extend this to a multi-variate

summation of the codewords. In the fourth stage, we consider the general case involving

the reconstruction of an arbitrary number of multi-variate summations at the decoders.

2.6.1 Stage 1: Achievability of the SSC Region Using Nested Coset Codes

Definition 44. For a joint distribution P on random variables UM,M ∈ SL and X, and a

set of reconstruction functions gL = {gN : UN → X,N ∈ L}, the set RD1(P, gL) is defined as
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the set of RD vectors satisfying the following bounds for some non-negative real numbers

(ρM,i, ro,M)i∈M̃,M∈SL
:

H(UM|X) ≥
∑
M∈M

(log q− ro,M),∀M ⊂ SL (2.21)

H(UMN |UL∪M̃N
) ≤

∑
M∈MN\L∪M̃N

(log q +
∑

j∈[1:L]

ρM, j− ro,M),∀L ⊂MN,∀N ∈ L (2.22)

Ri =
∑
M

ρM,i, DN = E
{
dN(hN(UN, X))

}
.

where ro,M ≤ log q,∀M ∈ SL.

Theorem II.45. The RD vector (Ri,DN)i∈L,N∈L is achievable for the l−descriptions problem

using nested coset codes, if there exists a distribution P and reconstruction functions gL

such that (Ri,DN)i∈L,N∈L ∈ RD1(P, gL).

Proof. The encoding and decoding steps are exactly the same as the ones in the proof of

Theorem II.16. The only difference is in the codebook generation phase. In this phase,

for every M ∈ SL, we generate a coset code CM with rate rM, generator matrix GM, and

dither bM. GM and bM are generated randomly and uniformly for every M. The bounds

in (2.21) are the mutual covering bounds for independently generated coset codes. These

bounds ensure encoding can be carried out without error. The bounds in (2.22) are the

mutual packing bounds in each decoder. They ensure errorless decoding.

�

Lemma 46. The RD region in Theorem II.45 is equal to the SSC RD region.

Proof. See Section A.3.1 in the appendix. �

2.6.2 Stage 2: Reconstruction of a summation of two codebooks

In the first stage we constructed one codebook for each subset of the decoders. How-

ever, only the codebooks corresponding to the Sperner families of sets are shown to be
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non-redundant. We interpret this using the notion of common-information as defined by

Gacs, Körner, Witsenhausen [11] [53]. Let K(A1; A2) denote the common information be-

tween any two random variables A1 and A2. The common information among m random

variables A1, A2, . . . , Am is a vector of length (2m − m − 1) of information that is common

among every subset of m random variables of size at least two. When m = 3, the common

information is given by

[K(A1; A2; A3),K(A1; A2),K(A1; A3),K(A2; A3)].

This was referred to as univariate common information in [29], as each of these components

are characterized using univariate functions. We interpret the scheme in the first stage (SSC

scheme) as capturing the common-information components among the random variables

associated with 2l − 1 decoders using univariate functions.

For m = 3, this notion of common information was generalized using bivariate func-

tions to the following seven-dimensional vector in [29]:

[K(A1; A2; A3),K(A1; A2),K(A1; A3),K(A2; A3),K(A1; A2, A3),K(A2; A1, A3),K(A3; A1, A2)].

There are seven degrees of freedom in having information common among 3 random vari-

ables. The latter three are called bivariate common information components as they are

characterized using bivariate functions of random variables. In this sense, the addition of

the structured coding layers in the next stages can be thought of as capturing the common-

information among 2l − 1 decoders using bivariate and, more generally, multivariate func-

tions.

We extend the notion of bivariate common information to m > 3 random variables as

follows. To characterize a bivariate common information component, we consider three

subsets of N1,N2 and N3 of {1, 2, 3, . . . ,m}. Define K(ÃN1; ÃN2 , ÃN3) as a bivariate common

information component among A1, A2, . . . , Am, where ÃNi is the information that is common
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among ANi . For example for m = 4, let N1 = {4}, N2 = {1, 2} and N3 = {3}. This

characterizes the information in A4 that can be computed by a conference via a bivariate

function of (i) the information common between A1 and A2, and (ii) the information in A3.

This concept can be extended to define multivariate common information among m random

variables.

We return to our discussion on the achievable RD region for the MD problem, where

m = 2l − 1. In the second stage, we aim to capture the bivariate common information

among random variables associated with 2l − 1 decoders. In particular, we reconstruct a

summation of two codebooks. From the above arguments, instead of one codebook for each

subset of decoders as in the first stage, in this stage we need to construct one codebook for

every triple of subsets of the decoders. For a given triple of sets of decoders, the third set

of decoders reconstruct a bivariate summation of a random variable corresponding to the

first subset and a random variable corresponding to the second subset of decoders. This

is explained in more detail next. We add two new codebooks to the SSC scheme. The

underlying random variables for these two codebooks are denoted by VA1 and VA2 where

Ai ∈ SL, i ∈ {1, 2}, A1 , A2. We construct two pairs of nested coset codes for these two

random variables. The two nested coset codes have the same inner code. The codebook

corresponding to VAi is decoded at decoder N if Ai ∈ MN, furthermore, the sum of the

two codebooks is decoded at decoder N if A3 ∈ MN\{A1,A2}, where A3 is an element of

SL. For example, let us choose Ai = {{i}}, i ∈ {1, 2, 3}. In this case the first codebook is

decoded whenever description 1 is received, the second codebook is decoded if description

2 is received, and the sum is decoded whenever description 3 is received. This corresponds

to the coding schemes we presented for example 29, where VA1 = X +Nδ and VA2 = Z +N′δ.

The following theorem describes the achievable RD region using this scheme.

Definition 47. For any three distinct familiesAi ∈ SL, i = 1, 2, 3, and for a joint distribution

P on random variables UM,M ∈ SL, VA j , j ∈ {1, 2}, and X, where the underlying alphabet

for all auxiliary random variables is the field Fq, and a set of reconstruction functions
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gL = {gN : UN → X,N ∈ L}, the set RD2(P, gL) is defined as the set of RD vectors

satisfying the following bounds for some non-negative real numbers (ρM,i, ro,M)i∈M̃,M∈SL

and ρo,A j,i, r
′
o,A j

, i ∈ Ãi, j ∈ {1, 2, 3} and ri:

H(UMVE|X) ≥
∑
M∈M

(log q− ro,M) +
∑
E∈E

(log q− r′o,E),∀M ⊂ SL,E ⊂ A (2.23)

H(UM,WA3,α,β|X) ≥
∑
M∈M

(log q− ro,M) + log q − r′o,A3
,∀M ⊂ SL,∀α, β ∈ Fq\{0} (2.24)

H([U,V,W]MN
|[U,V,W]M̂N∪L) ≤∑

M∈MN\M̃N∪L

(log q +
∑
j∈M̃

ρM, j − ro,M) +
∑

M∈MN\M̃N∪L⋂
{Ai |i∈[1,3]}

(log q +
∑
j∈M̃

ρo,M, j − r′o,M), ∀L ⊂MN (2.25)

Ri =
∑
M

ρM,i, DN = E
{
dN(hN(UN, X))

}
. (2.26)

where (a) A , {A1,A2}, (b) MN , (MN, {A j, j ∈ {1, 2}|A j ∈ MN}, {{A3, 1, 1}|A3 ∈ MN}),

(c) M̂N ,
⋃

N′(N MN′ , (d) r′o,A3
, r′o,A1

+ r′o,A2
− ri, (e) ro,M ≤ log q, and (f) WA3,α,β ,

αVA1 + βVA2
8.

Theorem II.48. The RD vector (Ri,DN)i∈L,N∈L is achievable for the l−descriptions problem,

if there exists a distribution P and reconstruction functions gL such that (Ri,DN)i∈L,N∈L ∈

RD2(P, gL).

Before providing the proof we explain the bounds in the new RD region. (4.17) and

(4.19) are the mutual covering and packing bounds which are also present in the Theorem

II.16, respectively. (4.18) is a generalization of the additional covering bound derived in

the Lemma in 39. Note that the common component among decoders N ∈ A1 is the pair

(UA1 ,VA1), and similarly for A2. The common component among decoders N ∈ A3 is the

pair (UA1 ,WA3,1,1), and observe that WA3,1,1 = VA1 + VA2 .

Proof. Given a joint distribution PU,V,X, and codebook and binning rates satisfying the

8We have used the script A to denote subscripts of random variables throughout the chapter. However,
the collection {A3, α, β} is used as the subscript for W since the random variable is defined using α and β.
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bounds in the theorem we prove achievability of the RD vector in (4.20).

Codebook Generation: Fix blocklength n. For everyM ∈ SL, independently generate a

linear code CM with size 2nro,M . Also generate two nested coset codes CA j = (Ci,Co,A j), j ∈

{1, 2} where the inner code has rate ri and the outer codes have rates r′o,A j
. Define the set of

codewords Co,A3 , Co,A1 + Co,A2 . The size of Co,A3 is 2nr′o,A3 , where r′o,A3
= r′o,A1

+ r′o,A2
− ri.

For the ith description bin the codebook CM randomly and uniformly with rate 2nρM,i .

Encoding: Upon receiving the source vector Xn, the encoder finds a jointly-typical set

of codewords cM. Each description carries the bin-indices of all of the corresponding

codewords. The encoder declares an error if there is no jointly typical set of codewords

available.

Decoding: Having received the bin-indices from descriptions i ∈ N, decoder N tries to find

a set of jointly typical codewords cM,M ∈ MN. If the set of codewords is not unique, the

decoder declares error.

In order for the encoder to find a set of jointly typical codewords, the mutual covering

bounds (4.17) and (4.18) should hold. This is a generalization of the result in lemma 39

and we omit the proof for brevity. The bounds in (4.19) are the mutual packing bounds at

each decoder.

�

Remark 49. Here we have considered the general case where Ai are chosen arbitrarily

from SL. It turns out that only certain choices of Ai would give non-redundant codebooks

and thus provide improvements over the SSC scheme. One can show that the codebooks are

redundant if ∃N ∈ A1 ∪ A2,N′ ∈ A3 such that N ⊂ N′. For example take A1 = {{1}, {3}},

A2 = {{2}} andA3 = {{2, 3}}.

2.6.3 Stage 3: Reconstruction of a summation of arbitrary number of codebooks

In this section we reconstruct a multi-variate summation of an arbitrary number m of

random variables at one decoder where m ∈ L and the summation is with respect to a
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finite field Fq. Following the steps in the previous section, we add m new codebooks to

the original SSC scheme. Let M , [1,m]. The underlying random variables for these

codebooks are denoted by VAk , k ∈ M. The random variable VAk is decoded at decoder N

if Ak ∈ MN. We take the families Ak, k ∈ M to be distinct. The random variable
∑

i∈M VAk

is decoded at decoder N if Am+1 ∈ MN, where Am+1 is an element of SL. The following

theorem describes the achievable RD region:

Definition 50. For any m ∈ L, and m + 1 distinct families Ai ∈ SL, i ∈ [1,m + 1], and

for a joint distribution P on random variables UM,M ∈ SL, VAk , k ∈ M and X, where

the underlying alphabet for the auxiliary random variables is the field Fq, and a set of

reconstruction functions gL = {gN : UN → X,N ∈ L}, the set RD3(P, gL) is defined as

the set of RD vectors satisfying the following bounds for some non-negative real numbers

(ρM,i, ro,M)i∈M̃,M∈SL
and ρo,Ak ,i, ρo,Am+1,i, r

′
o,Ak

, i ∈ Ãk, k ∈ [1,m + 1] and ri,αJ , J ⊂ M:

H(UMVE|X) ≥
∑
M∈M

(log q− ro,M) +
∑
E∈E

(log q− r′o,E)+,∀M ⊂ SL,E ⊂ A, (2.27)

H(UMWF|X) ≥
∑
M∈M

(log q− ro,M) +
∑
F ∈F

(log q− r′o,F ),∀M ⊂ SL,F ⊂ B, (2.28)

H([U,V,W]MN
|[U,V,W]M̂N∪L) ≤∑

M∈MN\M̃N∪L

(log q +
∑
j∈M̃

ρM, j − ro,M) +
∑

M∈MN\M̃N∪L⋂
{Ai |i∈[1,m+1]}

(log q +
∑
j∈M̃

ρo,M, j − r′o,M), ∀L ⊂MN (2.29)

Ri =
∑
M

ρM,i, DN = E
{
dN(hN(UN, X))

}
. (2.30)

where (a) A = {Ak, k ∈ M}, (b) B = {(Am+1, αM)|αM ∈ F
m
q }, (c) r′o,Am+1,αM

=
∑

k∈J r′o,Ak
−

ri,αJ , J = {k|αk , 0}, (d)
∑

J′:J⊂J′ ri,αJ′
≤ ri,αJ ,∀J ⊂ M,

(e) MN = (MN, {Ak|Ak ∈ MN}, {(Am+1, αM)|Am+1 ∈ MN, αi = 1, i ∈ M}), (f) M̂N =⋃
N′(N MN′ , (g) ro,M ≤ log q, and (h) WAm+1,αM =

∑
i∈M αiVAk .

Theorem II.51. The RD vector (Ri,DN)i∈L,N∈L is achievable for the l−descriptions problem,

if there exists a distribution P and reconstruction functions gL such that (Ri,DN)i∈L,N∈L ∈
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RD3(P, gL).

Toward proving the theorem we need the following definition.

Definition 52. A set of m coset codes Cn
Ak
, k ∈ M is called an ensemble of nested coset

codes with parameter (rJ)J⊂M if the size of the intersection CAJ ,
⋂

k∈J CAk is equal to 2nrJ

for all J ⊂ M.

It is straightforward to show that one can always generate an ensemble of nested coset

codes CAk , k ∈ M with parameter (ri,αJ )J⊂M as long as
∑

J′:J⊂J′ ri,αJ′ ≤ ri,αJ ,∀J ⊂ M. It is

enough to choose the rows of the generator matrices of CAk , k ∈ J such that they have nri,αJ

common rows, similar to the case of Figure 2.9.

Proof. We provide an outline of the proof. The codebook generation for codebooks CM,M ∈

SL is similar to the previous scheme. For random variables VAk , k ∈ M we construct an en-

semble of nested coset codes CAk , k ∈ M with parameter (ri,αJ )J⊂M. The encoder chooses

a set of codewords from all the codebooks that is jointly typical with the source sequence.

The following is a generalized covering lemma which shows that if (2.27) and (2.28) is

satisfied such a set of codewords exists.

Definition 53. Let Fq be a field and defineM ,
{
{1}, {2}, . . . , {m}

}
. Consider m + 1 random

variables X, V{i}, i ∈ M, where X is defined on an arbitrary finite set X and V{i} are defined

on Fq. Fix a PMF PX,VM on X×Fm
q . A sequence of m-tuples of codebooks (Cn

{i}){i}∈M is called

PXVM-covering if:

∀ε > 0, P({xn|∃vn
M
∈ An

ε (VM|x
n) ∩ Π{i}∈MC{i}})→ 1 as n→ ∞.

Lemma 54 (Covering Lemma). For any PX,VM on X×FMq and rates ro,{ j}, { j} ∈ M satisfying

(2.31)-(2.33), there exists a sequence of ensemble of nested coset codes Cn
M

with parameter

(ri,J)J⊂M, which are PX,VM-covering.
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H(VJ |X) ≥
∑
{ j}∈J

(log q− ro,{ j}),∀J ⊂ M (2.31)

H(WK |X) ≥
∑
αM∈K

(log q− ro,αM),∀J ⊂ M,K ⊂ N (2.32)

∑
J′:J⊂J′

ri,J′ ≤ ri,J,∀J ⊂ M, (2.33)

where, (a) N , {αM ∈ F
m
q }, (b) WαM ,

∑
j∈M α jV{ j} and (c) ro,αM ,

∑
j∈J ro,{ j} − ri,J, J =

{k|αk , 0}.

Proof. The proof of the lemma follows the same steps as in lemma 39. We provide

the intuition behind the proof. Given that there is a set of codewords in the codebooks

C{ j}, j ∈ M which are jointly typical with the source sequence, for any linear combination

C ,
∑

j∈M α jC{ j} there is a codeword which is jointly typical with the random variables

X,VM,WN ,∀M,N . From a PtP perspective, the rate of codebook C must satisfy (2.31)

and (2.32). This rate can be calculated by counting the number of rows in the generator

matrix of C which is nro,αM . �

The packing bounds at each encoder can be written in the same way as in the previous

section and are given in (2.29). B is defined such that WB is the set of all possible linear

combinations of VAk’s.

�

2.6.4 Stage 4: Reconstruction of an Arbitrary Number of Summations of Arbitrary

Lengths

In this section for completeness, we provide a coding scheme where we reconstruct

multi-variate summations of random variables at an arbitrary number of decoders, and

these summations each have arbitrary lengths. Of course, due to the large number of ran-

dom variables the coding scheme becomes extremely complicated. Let the number of the
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summations be s, and for each summation, let the length of the summation be denoted by

mi ∈ L, i ∈ [1, s]. Define the sets S , [1, s] and Mi , [1,mi], i ∈ S. Following the steps in

the previous sections, we add mi new codebooks for each summation. The underlying ran-

dom variables for these codebooks are denoted by VAk,i , k ∈ Mi, i ∈ S. The random variable

VAk,i is decoded at decoder N ifAk,i ∈ MN. Fix the prime number qi. The random variable∑
j∈Mi

VAk,i is decoded at decoder N if Ami+1,i ∈ MN, where the summation is carried out in

the finite field Fqi . The following theorem describes the achievable RD region.

Definition 55. For a joint distribution P on random variables UM,M ∈ SL, VAk,i , k ∈ Mi, i ∈

S and X, where the underlying alphabet the auxiliary random variables is the field Fq, and

a set of reconstruction functions gL = {gN : UN → X,N ∈ L}, the set RDlinear(P, gL) is

defined as the set of RD vectors satisfying the following bounds for some non-negative real

numbers (ρM,i, ro,M)i∈M̃,M∈SL
and ρo,Ak,i, jk , ρo,Ami+1,i, jk , ro,Ak,i , jk ∈ Ãk,i, k ∈ [1,mi + 1], i ∈ S

and ri,αJ,i , J ⊂ Mi, i ∈ S:

H(UM,VE|X) ≥
∑
M∈M

(log q− ro,M) +
∑
E∈E

(log q− ro,E),∀M ⊂ SL,E ⊂ A, (2.34)

H(UM,WF|X) ≥
∑
M∈M

(log q− ro,M) +
∑
F ∈F

(log q− ro,F ),∀M ⊂ SL,F ⊂ B, (2.35)

H([U,V,W]MN
|[U,V,W]M̂N∪L) ≤∑

M∈MN\M̃N∪L

(log q +
∑
j∈M̃

ρM, j − ro,M) +
∑

M∈MN\M̃N∪L⋂
{A{i},s |i∈[1,ms+1],s∈S}

(log q +
∑
j∈M̃

ρo,M, j − r′o,M), ∀L ⊂MN (2.36)

Ri =
∑
M

ρM,i, DN = E
{
dN(hN(UN, X))

}
. (2.37)

where (a) A =
⋃

i∈S{Ak,i|k ∈ Mi}, (b) B =
⋃

i∈S{(Ami+1,i, αMi,i)|α j,i ∈ Fqi}, (c) ro,Ami+1,αMi ,i
=∑

k∈J ro,Ak,i − ri,αJi ,i
, Ji = {k|αk,i , 0}, i ∈ S, (d)

∑
J′:J⊂J′ ri,αJ′ ,i ≤ ri,αJ,i ,∀J ⊂ Mi, i ∈ S, (e)

MN = (MN, {Ak,i|k ∈ Mi, i ∈ S,Ak,i ∈ MN}, {(Ami+1,i, αMi,i)|Ami+1 ∈ MN, αk,i = 1}), (f)

M̂N =
⋃

N′(N MN′ , (g) ro,M ≤ log q and (h) WAm+1,i,αMi ,i
=

∑mi
j=1 α j,iVAk,i .

Theorem II.56. The RD vector (Ri,DN)i∈L,N∈L is achievable for the l−descriptions problem,
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if there exists a distribution P and reconstruction functions gL such that (Ri,DN)i∈L,N∈L ∈

RDlinear(P, gL).

Proof. This is a straightforward generalization of the previous step, since the proof is sim-

ilar, it is omitted. �

Remark 57. Similar to Theorem 24 one can identify the non-redundant codebooks in the

above scheme. One can show that a large number of possible codebooks become redundant

in this case as well.
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CHAPTER III

Lattice Construction for Multi-terminal Source Coding

3.1 Introduction

Lattice quantizers have been of great interest in compression of continuous real-valued

sources [31, 43]. A lattice quantizer is a quantizer, whose set of outputs are closed under

additions and subtractions. Similar to linear codes, in the point-to-point (PtP) communi-

cation settings, the interest towards such codes is mainly due to reduced complexity of

encoding and decoding. In multiterminal communications, the significance of lattice codes

is augmented because they give performance gains over unstructured codes in terms of

achievable rate-distortion (RD) regions. The improvement is due to the structure of lattice

quantizers. Encoders utilizing such quantizers can transmit summations of different quanti-

zations more efficiently than those using unstructured quantizers. These gains are observed

in a variety of multiterminal settings [31], [43], [36], and they are analogous to those seen

when using linear codes for quantizing discrete sources [30], [29], [20] as discussed in the

previous chapter.

Direct performance analysis of lattice coding techniques in general multiterminal source

coding setups turns out to be difficult. The analysis is usually carried out for quantization of

Gaussian sources with Gaussian test channels. Hence, characterizations of inner bounds to

the optimal RD region for general sources and test channels are not available. In this section

we provide a new method for lattice generation and lattice quantization. The advantage of
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this new method is that it allows for straightforward transfer of the schemes in the discrete

communication regime to the continuous problems. The method involves two steps. First

the source is discretized using a clipping and quantization operation. Next, the discrete

problems solved using linear codes, similar to the previous chapter. The main difficulty

in analyzing such a scheme is to prove the convergence of the achievable rate-distortion

region for the discrete problem, to the continuous one as a finer quantization is used in the

first step. In Section 3.2, we provide a summary of results on general information measures

for continuous sources. Next, in Section 3.3, we show the convergence for the PtP source

coding problem. Lastly, as an example of how to extend the results to multiterminal source

coding, we investigate the multiple descriptions problem. As discussed in the previous

chapter, in the discrete alphabet case, if a pair of nested coset quantizers with the same

inner code are used in the encoder, there would be a strict improvement in the achievable

RD region for the L-descriptions problem when L ≥ 3. In other words, structured codes

provide asymptotic RD performance gains over unstructured codes. Here, we consider

continuous sources and provide a new achievable RD region for the L-descriptions prob-

lem using random lattice codes. These are new multiterminal lattice codes. This means that

these lattice quantizers induce correlated quantization noises; they can not be decomposed

as a collection of PtP lattice quantizers. An example of such codes is pair of nested lattice

quantizers (i.e. quantizers whose output sequences have a nested lattice structure) with a

shared inner lattice code. We show that using a pair of nested lattice quantizers with the

same inner code gives strict improvements over the SSC region in the continuous source

case.

3.2 General Information Measures

First, let us define the extensions of information theoretic measures such as mutual

information, entropy, and divergence to general continuous sources. The definitions and

results provided here can be found in [32]. The following gives the definition of the proba-
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bility density function (PDF) of a random variable:

Definition 1. Let S be a continuous random variable defined by the probability space

(PS ,FS ,S). Also, assume that the probability measure PS is absolutely continuous with

respect to the Labesgue measure L, denoted by PS � L, the PDF is defined as the Radon-

Nikodym derivative of PS with respect to L:

fS ,
δPS

δL
.

Remark 2. The PDF may not generally exist. Particularly, if the probability measure PS is

not absolutely continuous with respect to the Labesgue measure L, then the above definition

does not provide the formula for the PDF of S .

For the random variable S , if the PDF exists, the entropy is defined by the following

natural extension of the discrete entropy:

h(S ) , −
∫

fS (s) log fS (s)ds,

if the integral exists. The following gives the extension of the Kullback-Leibler divergence:

Definition 3. Consider the pair of continuous random variables (S ,T ). Let PS (QT ) be the

probability measure corresponding to S (T), respectively. Assume that the joint PDF fS T

exists. Also, assume that PS � QT , i.e. fS (x) = 0 whenever fT (x) = 0. The relative entropy

between PS and QT is defined as follows:

D(P||Q) =

∫
fS (x) log

fS (x)
fT (x)

dx,

if the integral exists.
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The mutual information between S and T is defined as:

I(S ; T ) , D(PS T ||PS QT ).

So far, we have defined the information measures for the random variables with the as-

sumption that the PDF exists. The following definition gives an alternative characterization

of the relative entropy which does not require the existence of the PDF.

Definition 4. Let (S ,T ) be a pair of random variables, both defined on the measurable

space (X,FX), where X is a set, and F is a σ-algebra defined on X. Let the corresponding

probability measures be PS and QT . Also, assume PS � QT . The relative entropy is defined

as follows:

D(PS ||QT ) , sup
q

Kq∑
i=1

PS (Ei) log
PS (Ei)
QT (Ei)

,

where the supremum is over all finite measurable partitions q = {E1, E2, · · · , EKq} of X.

In [32] it is shown that Definition 4 is an extension of Definition 3. In other words, the

formula in the above definition is equal to the one in Definition 3, when PS � QT � L.

3.3 Lattice Codes for PtP Source Coding

In this section we prove the existence of optimality achieving lattice codes for the prob-

lem of PtP source coding. The methods developed in this section are used in the rest of the

chapter to construct coding schemes for multiterminal source coding.

Before proceeding with our results, we give a brief summary of nested lattice construc-

tions which are used in this section. We start by explaining coset codes, and nested coset

codes constructed over discrete alphabets. Let q be a prime number. Let Zq denote the

unique finite field of size q. From the previous chapter, a coset code is a shifted version of
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a linear code and is characterized by a generator matrix Gk×n and a dither Bn:

C = {ukGk×n + Bn|uk ∈ Zk
q}.

A pair of coset codes (Ci, Co), are called nested if Ci lies inside Co. Co and Ci are called the

outer and inner codes, respectively. A nested coset code is characterized by two generator

matrices Gk×n and ∆Gl×n and a dither Bn. Here (Gk×n, Bn) is a characterization for Ci and

([G,∆G]t, Bn) characterizes Co. Each of these shifted version of Ci is called a bin of Co and

is denoted by Bm:

Bm = {aG + m∆G + Bn|a ∈ Zk
q}.

A lattice code is a subset of Rn which is closed under integer addition. In the previous

section, we presented a method to generate lattice quantizers using linear codes. For a

coset code C, grid step γ, and discrete alphabet size q, the corresponding lattice would be

characterized follows:

Λ̄(C, γ, q) =
⋃

v∈γpZn

{v + Λ(C, γ, q)},

where

Λ(C, γ, q) = {γ(ci −
q − 1

2
)n
i=1|(ci)n

i=1 ∈ C}.

Nested lattice codes are the continuous duals of coset codes, and are also defined in

a similar fashion by constructing a pair (Λi,Λo) from an underlying pair of nested coset

codes (Ci,Co). Similar to nested coset codes, for m ∈ Zl
q, bin m can be defined as:

B̄m = {γ(ci −
q − 1

2
)n
i=1|(ci)n

i=1 ∈ Bm} (3.1)

where Bm is a bin in the underlying nested coset code.

We proceed with explaining the PtP source coding problem. Consider the PtP source

coding problem depicted in Figure 5.2. The continuous memoryless source X and its recon-
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fX1; X2; · · · ; Xng
Q(Xn) i(Un)

Un

i−1(M)
M Un

Encoder Decoder

Figure 3.1: Point-to-point source coding for continuous sources

struction U are defined on the probability space (R,BX, PX), where B is the Borel σ-algebra

defined on the set of real numbers R. The source X is being fed to an encoder. The encoder

utilizes the mapping Q : Xn → Un to compress the source sequence. The image of Q

is indexed by the bijection i : Im(Q) → [1, |Im(Q)|]. The index M , i(Q(Xn)) is sent to

the decoder. The decoder reconstructs the compressed sequence Un , i−1(M) = Q(Xn).

The efficiency of the reconstruction is evaluated based on the separable distortion criteria

dn : Rn × Rn → [0,+∞). The separability property means that dn(xn, un) =
∑

i∈[1,n] d(xi, ui),

where d(x, u) , d1(x, u). The rate of transmission is defined as R , 1
n log |Im(Q)|, and

the average distortion is defined as 1
nE(dn(Xn,Un)). The goal is to choose Q such that the

rate-distortion tradeoff is optimized. Note that the choice of the bijection ‘i’ is irrelevant to

the performance of the system. The following Theorem, gives an achievable RD region for

this setup.

Theorem III.5. Let X be a continuous memoryless source and let d : R × R → R+, be a

separable distortion criteria. Let U be a random variable defined on the probability space

(R,B), such that its probability measure PU is absolutely continuous with respect to PX.

Furthermore, assume the distortion criteria d : R × R → [0,∞) satisfies the following

properties:

1) d(x, u) is a jointly continuous function for all x, and u.

2) For any given source distribution PX, the expected distortion E(d(X, u)) is finite whenever

u is finite.

The rate-distortion pair (R,D) =
(
r,EX,U(d(X,U)

)
) is achievable for all r ≥ I(U; X) using
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coset-lattice codebooks1, where achievability is defined in the usual way.

Remark 6. The conditions in Theorem III.5 can be explained as follows. The first condi-

tion is a smoothness condition on the distortion function. The second condition is usually

assumed in source coding. As an example the rth power difference distortion function

d(x, u) = |x − u|r satisfies this assumption.

Proof. The proof involves two steps: 1) Discretization, 2) Quantization.

Step 1: In this step we turn the problem into a discrete source coding problem. The

discretization process involves two steps. First, the source is clipped so that its value is

bounded. Next, it is finely quantized using a uniform scalar grid. Fix n ∈ N, and reals

l1, l2 > 0. Define the set Zn ,
1
nZ. The gridding and clipping functions are defined below:

Definition 7. The gridding function Gn : R→ Zn is given as follows:

Gn(x) = argmin
a∈Zn
|x − a|.

The clipping function Cl,u : R→ R is defined as follows:

Cl1,l2(x) = max{min{l2, x},−l1}.

Define the random variable Xd as Gn(Cl1,l2(X)). The index of the discretized version

of the reconstruction U is defined similarly and denoted by Ud. The random variables Xd

and Ud take values from the set Zl1,l2,n , [−l1, l2]
⋂
Zn. Define L , d(l1 + l2)2ne − 1 The

quantization cells Al1,l2,n(i), i ∈ [0, L] of this discretization process are:

Al1,l2,n(i) =



(
−∞,

⌈
l1
2n

⌉
+ 1

2n+1

]
, i = 0(⌈

l1
2n

⌉
+ 2i−1

2n+1 ,
⌈

l1
2n

⌉
+ 2i+1

2n+1

]
, i ∈ [1, L − 1](⌊

l2
2n

⌋
− 1

2n+1 ,∞
)
, i = L.

1This means that the set of reconstruction vectors used at the decoder have a nested-lattice structure.
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Also for a quantization cell Al1,l2,n = (a1, a2], define the quantization reconstruction al1,l2,n

as a1+a2
2 . For the first cell, the quantization reconstruction is defined as

⌈
l1
2n

⌉
, for the last cell

it is defined as
⌊

l2
2n

⌋
.

Step 2: Define the discrete distortion function dQ(i, j) , d(al,u,n(i), al,u,n( j)), i, j ∈ [1, L].

Also, define the discrete sources XQ , al1,l2,n(Xd), and UQ , al1,l2,n(Ud). The joint distribu-

tion between the discrete random variables (XQ,UQ) is defined based on the Markov chain

XQ ↔ X ↔ U ↔ UQ. The Markov chain completely characterizes the joint distribution

since PX,XQ , PU,UQ , and PX,U are defined in the above steps. Consider the discrete PtP source

coding problem with source XQ, and distortion criterion dQ. Using nested coset codes as in

the previous chapter, we can achieve the rate distortion vector (r, d), where r > I(XQ; UQ),

and d > E(dQ(XQ,UQ)). In the quantization step we transmit UQ to the decoder with rate r.

The coding scheme can be summarized in the following way. The encoder receives a

sequence Xm, it then produces Xm
Q as the discretized version of the source sequence. It uses

the test channel defined by the joint distribution PUQ,XQ to produce the quantized version

Um
Q using nested coset codes with rate r similar to the previous chapter. Note that by this

construction the Markov chain Xm ↔ Xm
Q ↔ Um

Q holds. The decoder receives the vector

Um
Q as the reconstruction of Xm. In order to complete the proof we need to show that as

n, l1, l2 → ∞, we have I(XQ; UQ) ≤ I(X,U), and E(d(Xm,Um
Q)) ≤ E(d(Xm,Um)), as m→ ∞.

First we prove the convergence of the expected distortion.

Lemma 8. For every ε > 0, there exist l1, l2, n large enough, such that

1
m

m∑
i=1

E(d(Xi,UQ,i)) ≤
1
m

m∑
i=1

E(d(Xi,Ui)) + ε.

Proof. We provide an outline of the proof. Using the assumption that the distortion func-

tion is jointly continuous, we conclude the following:

∀i ∈ [1,m],∀δ > 0,∃l1, l2, n, |E(d(Xi,UQ,i)) − E(d(Xi,Ui)| < δ.
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In summary, the above inequality is proved using 1) The distortion function is bounded for

bounded inputs, 2) P(Xi > l2)→ 0 as l2 → ∞, 3) P(Xi < −l1)→ 0 as l1 → ∞, and finally 4)

∀x, y ∈ Al1,l2,n( j), |x−y| → 0 as n→ ∞. Summing the above over i completes the proof. �

The next lemma proves the mutual informations converge as well.

Lemma 9. For every ε > 0, there exist l1, l2, n large enough, such that

I(XQ; UQ) ≤ I(X; U) + ε.

Proof. The proof follows from 4, since I(X; U) is the supremum over all quantizers and

XQ,UQ are calculated by using a specific quantizer the statement is correct. �

�

Remark 10. Note that using this method, the set of possible reconstructions of the source

sequence at the decoder are closed under additions and subtractions. So, we have con-

structed a lattice quantization method. The method circumvents the usual lattice construc-

tion complexities by using the linear codes available for discrete alphabets.

3.4 Multiple-Descriptions Coding for Continuous Sources

In this section we extend the method presented in the previous section to provide an

achievable RD region for the MD problem with general continuous sources. First, we

prove that the extension of the SSC rate-distortion region is achievable. Next, we use

lattice codes to improve upon the extension of the SSC scheme similar to the previous

chapter. The following theorem proves the achievability of the SSC scheme:

Definition 11. Consider the MD problem with the continuous source X, and separable

distortion criteria dN,N ∈ L satisfying the conditions in Theorem III.5. For a joint dis-

tribution P on random variables UM,M ∈ SL and X and a set of reconstruction functions
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gL = {gN : UN → X,N ∈ L}, the set RDS S CCTS (P, gL) is defined as the set of RD vectors

satisfying the following bounds for some non-negative real numbers (ρM,i, rM)i∈M̃,M∈SL
:

H(UM|X) ≥
∑
M∈M

(H(UM)−rM),∀M ⊂ SL, (3.2)

H(UMN |UL∪M̃N
) ≤

∑
M∈MN\(L∪M̃N)

(H(UM) +
∑
i∈M̃

ρM,i − rM),∀L ⊂MN,∀N ∈ L, (3.3)

rM ≤ H(UM),∀M ∈ SL,

Ri =
∑
M

ρM,i, DN = E
{
dN(gN(UN), X)

}
, (3.4)

where MN is the set of all codebooks decoded at decoder N, that is MN , {M ∈ SL|∃N′ ⊂

N,N′ ∈ M}, and M̃N denotes the set of all codebooks decoded at decoders Np ( N which

receive subsets of descriptions received by N, that is M̃N ,
⋃

Np(N MNp .

Theorem III.12. The RD vector (Ri,DN)i∈L,N∈L is achievable for the l−descriptions prob-

lem, if there exists a distribution P and reconstruction functions gL such that (Ri,DN)i∈L,N∈L ∈

RDS S CCTS (P, gL).

The proof follows by a similar coding scheme as in the previous section. The source

is first discretized, then the coding scheme in chapter 2 is used to transmit the discrete

source. We showed in the previous section that mutual informations converge. However,

the bounds in the above region are not in terms of mutual informations. The next lemma

shows that after the Fourier-Motzkin elimination these bounds can be written in terms of

mutual informations, and hence convergence follows.

Lemma 13. The bounds in the improved CMS region can be written in terms of mutual

informations.

Proof. In the appendix. �

The above scheme uses independently generated linear codes, which leads to indepen-

dently generated lattices. We will show in the next section that this scheme is sub-optimal
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compared to a scheme which utilizes nested lattices.

3.5 Improvements Using Nested Lattice Quantizers

In this section, we provide two jointly Gaussian examples in which using nested lattice

codes gives gains in terms of achievable rate-distortion.

3.5.1 Example 1

The set-up is shown in figure 3.2. Here (X,Z) ∼ N(0, 1). The distortion function

for the individual decoders is mean squared error. Decoder 1 and 2 want to reconstruct

their respective source with MSE less than or equal P, and decoder 3 wants to reconstruct

Y = X + Z with distortion 2P. The distortion constraint in the joint decoders is as follows:

E(([X,Z] − [X̂12, Ẑ12])t([X,Z] − [X̂12, Ẑ12])) ≤

 P 1

1 P


E(([X,Y] − [X̂13, Ŷ13])t([X,Y] − [X̂13, Ŷ13])) ≤

 P P

P 2P


E(([X,Y] − [X̂23, Ŷ23])t([X,Y] − [X̂23, Ŷ23])) ≤

 P P

P 2P



Where Âi j, A ∈ {X,Z,Y}, i, j ∈ {1, 2, 3} is the reconstruction of A at decoder i j.

Theorem III.14. The following rate triple is achievable for the distortions mentioned

above using the nested lattice structure.
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Encoder

Dec 1

Dec 2

Dec 12

X,Z

X̂

X̂, Ẑ

Ẑ

Dec 23 X̂, Ẑ

Dec 3 X̂ + Ẑ

Dec 13 X̂, Ẑ

Figure 3.2: Example for Vector Gaussian Source

(R1,R2,R3) = (
1
2

log(
1
p

),
1
2

log(
1
p

),
1
2

log(
2
p

))

Proof. In the appendix. �

Theorem III.15. The above rates are not achievable using the enhanced CMS scheme.

Proof. In the appendix. �

Note that in the above example, as a result of the independence between the two source

components X and Z, the extra covering bound in (2.17) is redundant. But this is not always

the case, to illustrate this point we investigate another example.

3.5.2 Example 2

Assume the source X is scalar Gaussian with distribution N(0, 1). Consider the random

variables U and V which are jointly Gaussian with X and have the following covariance

matrix (1
2 < P < 2

3 ):

Cov([X,U,V]) =


1 1 − P 1 − P

1 − P 1 − P 0

1 − P 0 1 − P
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We intend to transmit U on the first description, V on the second description and U + V

on the third description. In this case the new covering bound is not redundant. To see this

note that from (B.5) the covering bound is non-redundant if I(U+V; V |X) − I(U; V |X) < 0.

Simplifying the inequality, the bound is non-redundant if Var(V |XU) < Var(V |X,U + V).

From the formula for conditional variance we have:

Var(V |X,U) =
p(1 − p)

2
,Var(V |X,U + V) =

1 − p
2

,

Var(V |XU) < Var(V |X,U + V) ⇐⇒ p <
2
3

Which shows the bound is non-redundant in this setting. We calculate the achievable

rates using nested lattices. FME gives:

R1 =R2 = max
{ I(UV; X)

2
, I(U; X) − I(αU + βV; V |X) + I(U; V |X)

}
,

R3 = R1 − H(U) + H(U + V)

We have:

I(UV; X) =
1
2

log(
1

2p − 1
), I(U; X) =

1
2

log
1
p
,

− I(αU + βV; V |X) + I(U; V |X) =
1
2

log(
α2 p

α2 + β2 − (α + β)2(1 − p)
)

Hence R1 = R2 = max(1
2 log( p2

p+(1−p)2 ), 1
4 log( 1

2p−1 )),R3 = R1 + 1
2 . And the distortions are

D1 = D2 = p,D3 = 2p,D12 = D13 = D23 = 2p − 1.

3.6 An Improved Achievable Region Using Nested Lattice Codes

In this section we generalize the gains observed in the previous section, and provide a

new achievable RD region for the MD problem with continuous sources. The following

theorem provides the new RD region.
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Definition 16. Consider a joint distribution P on continuous random variables UM,M ∈

SL, VAk,i , k ∈ Mi, i ∈ S and X satisfying the conditions in Theorem 4, and a set of re-

construction functions gL = {gN : UN → X,N ∈ L}, the set RDlinearCTS (P, gL) is defined

as the set of RD vectors satisfying the following bounds for some non-negative real num-

bers (ρM,i, ro,M)i∈M̃,M∈SL
and ρo,Ak,i, jk , ρo,Ami+1,i, jk , ro,Ak,i , jk ∈ Ãk,i, k ∈ [1,mi + 1], i ∈ S and

ri,αJ,i , J ⊂ Mi, i ∈ S, when q→ ∞:

H(UM,VE|X) ≥
∑
M∈M

(log q− ro,M) +
∑
E∈E

(log q− ro,E),∀M ⊂ SL,E ⊂ A, (3.5)

H(UM,WF|X) ≥
∑
M∈M

(log q− ro,M) +
∑
F ∈F

(log q− ro,F ),∀M ⊂ SL,F ⊂ B, (3.6)

H([U,V,W]MN
|[U,V,W]M̂N∪L) ≤∑

M∈MN\M̃N∪L

(log q +
∑
j∈M̃

ρM, j − ro,M) +
∑

M∈MN\M̃N∪L⋂
{A{i},s |i∈[1,ms+1],s∈S}

(log q +
∑
j∈M̃

ρo,M, j − r′o,M), ∀L ⊂MN (3.7)

Ri =
∑
M

ρM,i, DN = E
{
dN(hN(UN, X))

}
. (3.8)

where (a) A =
⋃

i∈S{Ak,i|k ∈ Mi}, (b) B =
⋃

i∈S{(Ami+1,i, αMi,i)|α j,i ∈ Fqi}, (c) ro,Ami+1,αMi ,i
=∑

k∈J ro,Ak,i − ri,αJi ,i
, Ji = {k|αk,i , 0}, i ∈ S, (d)

∑
J′:J⊂J′ ri,αJ′ ,i ≤ ri,αJ,i ,∀J ⊂ Mi, i ∈ S, (e)

MN = (MN, {Ak,i|k ∈ Mi, i ∈ S,Ak,i ∈ MN}, {(Ami+1,i, αMi,i)|Ami+1 ∈ MN, αk,i = 1}), (f)

M̂N =
⋃

N′(N MN′ , (g) ro,M ≤ log q and (h) WAm+1,i,αMi ,i
=

∑mi
j=1 α j,iVAk,i .

Theorem III.17. The RD vector (Ri,DN)i∈L,N∈L is achievable for the l−descriptions prob-

lem, if there exists a distribution P and reconstruction functions gL such that (Ri,DN)i∈L,N∈L ∈

RDlinearCTS (P, gL).

Similar to the previous chapter, since codes with the same inner codes are used, the

mutual covering bounds are not enough to ensure the existence of jointly typical sequences

at the encoder and the uniqueness of the decoded sequences at the decoders. We need to

use the covering bounds in Lemma 39, as q → ∞. It follows by the same arguments as in

the previous section that the region is achievable using lattice quantizers. To see this, note
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that there is only one additional covering bound in the new system of inequalities, but the

difference between this bound and the previous bounds can be written in terms of mutual

informations.

Lemma 18. The new bounds for the achievable RD region using nested coset codes can be

written in terms of mutual informations.

Proof. In the appendix. �

So, the bounds from the discretized version converge to the continuous bounds. Since

the RD vectors in Example 3.5.1 are inside the RD region described above, this provides a

larger RD region than that of the SSC scheme. Furthermore, the RD regions presented in

this chapter are achievable for sources with arbitrary non-Gaussian probability measures.
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CHAPTER IV

Quasi-Linear Structures for Source and Channel Coding

4.1 Introduction

So far, we have used codebooks which are closed with respect to linear combinations to

improve the performance in different multiterminal problems. In this chapter, we introduce

a new class of structured code ensembles called QLC’s whose ’closedness’ with respect

to an operation can be controlled. A QLC is a subset of a linear code. It is difficult to

analyze the performance of arbitrary subsets of linear codes. Instead, we provide a method

for constructing specific subsets of these codes by putting single-letter distributions on the

indices of the codewords. We analyze the performance of the resulting ensemble. We are

able to characterize the asymptotic performance using single-letter information quantities.

By choosing the single-letter distribution on the indices one can operate anywhere in the

spectrum between the two extremes: linear codes and unstructured codes. First, we show

that QLC’s achieve the Shannon rate-distortion function for discrete memoryless sources

with bounded additive distortion functions. Next, we show through an MD source coding

example that application of QLC’s gives a better inner bound to the optimal achievable RD

region compared to the best known MD coding strategies. We provide a new inner bound

to the optimal achievable RD region for the general MD problem. The method builds upon

the Sperner Set Coding (SSC) scheme introduced in chapter 2. Next, we apply QLC’s to

the problem of transmission of massages in the interference channel.
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The interference channel problem describes a setup where multiple pairs of transmitters

and receivers share a communication medium. Each receiver is only interested in decoding

the message from its corresponding transmitter. However, since the channel is shared,

signals from other senders interfere with the desired signal at each decoder. The presence

of interfering signals adds new dimensions to this problem in terms of strategies that can be

used as compared to point-to-point (PtP) communication. For example, the encoders can

cooperate with each other by choosing their channel inputs in a way that would facilitate

their joint communication. It turns out that, often, this cooperation requires an encoder to

employ a strategy which may be sub-optimal from its own PtP communications perspective.

In this chapter, we investigate this tradeoff and develop a new class of codes which allow

for more efficient cooperation between the transmitters.

Characterizing the capacity region for the general IC has been a challenge for decades.

Even in the simplest case of the two user IC, the capacity region is only known in special

cases [37][8]. The best known achievable region for the IC was due to Han and Kobayashi

[16]. However, recently it was shown that the Han-Kobayashi (HK) rate region is subop-

timal [5][29]. Particularly, when there are more than two transmitter-receiver pairs, the

natural generalization of the HK strategy can be improved upon by inducing structure in

the codebooks used in the scheme [29]. Structured codes such as linear codes and group

codes enable the encoders to align their signals more efficiently. This in turn reduces inter-

ference at the decoders. Such codebook structures have also proven to give gains in other

multiterminal communication problems [18]-[41].

The idea of interference alignment was proposed for managing interference when there

are three or more users. Initially, the technique was proposed by Maddah-Ali et. al. [23] for

the MIMO X channel, and for the multi-user IC by Jafar and Cadambe [6]. The interference

alignment strategy was developed for cases of additive interference and uniform channel

inputs over finite fields. However, it turns out that alignment is not always beneficial to the

users in terms of achievable rates. Consider the example in Figure 4.1. Intuitively, it would
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X1

X2

X3

PY1|X1

PY2|X1,X2

PY3|X1,X2,X3

Y1

Y2

Y3

Figure 4.1: A setup where interference alignment is beneficial to user 3 but harmful for
user 2.

be beneficial to align the input from users 1 and 2 to reduce interference at decoder 3.

However, if users 1 and 2 align their signals, it becomes harder for decoder 2 to distinguish

between the two inputs. One might suggest that the problem could be alleviated if users

1 and 2 designed their codebooks in a way that they would "look" aligned at decoder 3

based on PY3 |X1,X2,X3 , but at the same time they would seem different at decoder 2 based on

PY2 |X1,X2 . In this chapter, we show that linear codes lack the necessary flexibility for such a

strategy. Based on this intuition, we propose a new class of structured codes. Using these

codes we derive an achievable rate region which improves upon the best known achievable

region for the three user IC given in [29].

4.2 Notation

Random variables are denoted by capital letters such as X,U, their realizations by small

letters x, u, and their corresponding alphabets (finite) by sans-serif typeface X, U, respec-

tively. Numbers are represented by small letters such as l, k. We denote the the field of size

q by Fq. We represent the field addition by ⊕ and the addition on real numbers by +. The

set of numbers {1, 2, . . . ,m} is represented by [1,m]. Vectors are represented by the bold

type-face such as u,b. For a random variable X, An
ε (X) denotes the set of ε-typical sequence

of length n with respect to PX, where we use the definition of frequency typicality. Let q be

a prime number. For l ∈ N, consider Ui, i ∈ [1,m] i.i.d random variables with distribution

PU defined on a field Fq. U⊗l denotes a random variable which has the same distribution as

72



∑
i∈[1,l] Ui where the summation is over Fq.

4.3 New Codebook Structures

In this section, we define our new coding structures and provide the foundations for their

analysis. These coding structures are used in the next section to derive larger achievable

regions for a variety of multiterminal communication problems.

4.3.1 Quasi Linear Codes

First, we define a new ensemble of codes called QLC’s. The ensemble is defined over a

finite field Fq where q is a prime number. The codebooks are constructed by first generating

the coset of a linear code called a coset code.

Definition 1. A (k, n) coset code C is characterized by a generator matrix Gk×n and a dither

bn defined on the field Fq. C is defined as follows:

C , {uG + b|u ∈ Fk
q}.

The rate of the codebook is defined as R = k
n log q.

A QLC is a subset of a linear code, the following provides the definition of a QLC:

Definition 2. A (k, n) QLC is characterized by a generator matrix Gk×n, a dither bn and a

set U defined on Fq. The codebook is defined as follows:

C , {uG + b|u ∈ U}.

If G is injective on U, then the rate of the code is given by R = 1
n log |C| = 1

n log |U|.

It is difficult to derive single-letter characterizations for the performance of coding

schemes using QLCs with general sets U. In this work, we focus on the case when U is a
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cartesian product of typical sets. More precisely, let m ∈ N, ε ∈ R+, and U1,U2, ...,Um

be random variables defined on Fq. Consider natural numbers ki, i ∈ [1,m] such that∑
i∈[1,m] ki = k. Construct generator matrices Gi with dimension ki × n. We are interested in

analyzing the performance of codebooks of the following form:

C , {
∑

i∈[1,m]

uiGi + b|ui ∈ Aki
ε (Ui)},

where Aki
ε (Ui) is the set of frequency ε-typical sequences of length ki with respect to distri-

bution PUi . In this case, the rate of the code is R =
∑

i∈[1,m]
1
n log |Aki

ε (Ui)| which approaches∑
i∈[1,m]

ki
n H(Ui) as n→ ∞, ε → 0.

Remark 3. In the notation of Definition 2, G = [Gt
1|G

t
2|...|G

t
m]t and u = (u1,u2, ...,um).

Remark 4. While we concentrate on the case when U =
⊗

i∈[1,m] Aki
ε (Ui), it is possible to

carry out performance analysis of such an ensemble of codebooks when U is taken to be

more general. For example, a more general result can be obtained by taking U to be a joint

typical set of vectors of correlated random variables U1,U2, ...,Um.

Remark 5. A (k, n) linear code is only defined for k ≤ n. When constructing a QLC, we

take R ≤ log q. This ensures that for a randomly and uniformly generated matrix G, the

resulting mapping is injective on U with high probability. However, there is no additional

restrictions on the ki’s. As an example, let m = 1, one can take k1 > n and U1 such that

k1
n H(U1) < log q. In this case {u1G1 + B|u1 ∈ Ak1

ε (U1)} is a codebook whose rate is close to

k1
n H(U1) for large n. Note that G1 is not injective on the vector space Fk1

q .

4.3.2 Nested Quasi Linear Codes

In this section, we define Nested Quasi Linear Codes (NQLC). The following gives the

definition for a pair of Nested Linear Codes (NLC):
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Definition 6. For natural numbers ki < ko, k′o < n, let Gki×n,∆G(ko−ki)×n and ∆G′(k′o−ki)×n

be matrices on Fq. Define Ci,Co and C′o as the linear codes generated by G, [G|∆G] and

[G|∆G′], respectively. Co and C′o are called a pair of NLC’s with inner code Ci. We denote

the outer rates as ro = ko
n and r′o =

k′o
n , and the inner rate ri = ki

n .

A pair of NQLC’s are defined as follows:

Definition 7. For natural numbers k1, k2, · · · , km, let Gki×n, i ∈ [1,m] be matrices on Fq, and

let bj, j ∈ {1, 2} be two dithers on the field. Also, let (U1,U2, · · · ,Um) and (U′1,U
′
2, · · · ,U

′
m)

be a pair of random vectors on Fq. The pair of QLC’s characterized by the matrices

Gki×n, i ∈ [1,m], and each of the two vectors of random variables and dithers are called a

pair of NQLC’s.

The definition of the NQLC’s is a generalization of NLC’s. To see this, consider an

arbitrary pair of NLC’s with the parameters as in Definition 6. These two codes are a pair

of NQLC’s with parameters m = 3, U1,U2 and U′1,U
′
3 uniform, U3 and U′2 constants and

k1 = k′1 = ki and k2 = ko − ki, k′3 = k′o − ki. It was shown in [41] that in the general

MD problem, it is beneficial to use m-tuples of NLC’s called an ensemble of NLC’s. The

following gives the definition for an ensemble of NLC’s:

Definition 8. A set of l linear codes Cn
k , k ∈ [1, l] is called an ensemble of nested linear

codes with parameter (rJ)J⊂[1,l] if the size of the intersection
⋂

k∈J Ck is equal to 2nrJ for all

J ⊂ M.

From the above discussions we can define an ensemble of NQLC’s as follows:

Definition 9. Let l ∈ N. For natural numbers k1, k2, · · · , km, let Gki×n, i ∈ [1,m] be matrices

on Fq, and b j, j ∈ [1, l] dithers on the field. Also, let (Ui,1,Ui,2, · · · ,Ui,m), i ∈ [1, l] be

vectors of random variables on Fq. The ensemble of QLC’s characterized by the matrices

Gki×n, i ∈ [1,m] and each of the vectors of random variables and the dithers is called an

ensemble of NQLC’s.
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Once more it is straightforward to check that this is a generalization of the definition for

ensembles of NLC’s. Consequently, any achievability results derived using NLC’s can be

obtained via NQLC’s as well. As an example, the next lemma proves that combined with

binning, application of these codes can achieve Shannon’s RD function for PtP communi-

cation.

Lemma 10. NQLC’s achieve Shannon’s RD function for PtP source coding for arbitrary

source distributions and bounded additive distortion functions.

Proof. We provide an outline of the proof for an arbitrary source X defined on Fq. Let

p(y|x) be an optimizing test channel for Shannon’s RD function. Take m = 1, and Ro =

k1
n1

= log q − H(Y |X). Construct a QLC with these parameters. Bin the code randomly

and uniformly with rate log q − H(Y). For each source sequence xn, the encoder finds a

codeword typical with xn. The encoder transmits the bin index. The decoder finds the

unique codeword in the bin which is typical with respect to p(y). It is straightforward to

check that with the above rates transmission can be carried out with probability of error

going to 0. �

4.4 Fundamental Properties of QLC’s

As mentioned in the introduction, the application of NLC’s gives gains in different

multiterminal source coding problems. These gains are a result of the fact that linear codes

are closed under addition. More precisely, the sum of a pair of NLC’s has a smaller size

than that of two randomly generated unstructured codes of the same rates. As a result, for

the two codebooks C1 and C2 it takes less rate to transmit C1 +C2 if the two codes are nested

linear codes. However, it has been shown that this closure property has its downsides as

well. In fact, a tradeoff has been observed between using NLC’s and unstructured codes

in different communication setups. The drawback of using NLC’s manifests itself in the

derivation of the mutual covering bounds for these coding structures. It turns out that
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unstructured codes satisfy their covering constraint more easily (i.e. their covering bounds

are satisfied for lower rates). The idea behind defining QLC’s is to breach this gap between

NLC’s and unstructured codes.

This section is divided into two parts. First, we analyze the addition of QLC’s. We

show that for the two codebooks C1 and C2, the sum C1 +C2 has a higher rate than the sum

of two linear codes of the same rate and a smaller rate than that of two unstructured codes.

Then, in the second part, we derive the covering bounds associated with QLC’s. In this

part, we show that the covering bounds for QLC’s are less strict than those for NLC’s and

more strict than the ones for unstructured codes. Using these two results, we can analyze

the tradeoff mentioned above for the application of QLC’s.

4.4.1 The Addition of QLC’s

QLC’s are not linearly closed but at the same time maintain a degree of "closedness"

in their structure. Notice that if we repeatedly add a QLC with itself, the resulting set of

codevectors will be a subset of the linear code generated by [G1|G2| · · · |Gm], where the Gi’s

are the generator matrices for the QLC. Whereas, if a random unstructured code is added

with itself repeatedly, the resulting space would converge to the whole vector space. In the

following lemma we investigate the addition of l copies of a QLC with each other:

Lemma 11. For R ∈ (0, log q), let CQ be a QLC with parameters m, n, k1, k2, ..., km ∈ N,

Ui, i ∈ [1,m], matrices Gi, i ∈ [1,m], and dither b, such that the code has rate R, where the

Gi’s and b are generated randomly and uniformly on Fq. The probability of the following

events goes to one as n→ ∞:

1. 1
n log |

∑
i∈[1,l] CQ|

.
=

∑
i∈[1,m]

ki
n H(U⊗l

i ),

2. R ≤ 1
n log |

∑
i∈[1,l] CQ| ≤ min (log q, l × R) where equality is achieved on the left hand

side by taking Ui’s to be uniform.

Proof. The proof follows standard typicality arguments and is omitted. �
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Remark 12. As mentioned in the lemma, equality on the left hand side of condition 2 can

be achieved by taking the Ui’s to be uniform. In this case the QLC becomes a coset code.

On the right hand side, one can approach equality by taking ki > n and Ui to be very low

entropy random variables. Observe that if the random variable Ui has low entropy, then

H(U⊗l
i ) ≈ lH(Ui).

Remark 13. For an arbitrary n-length codebook C with rate R, it is straightforward to

show that R ≤ 1
n log |

∑
i∈[1,l] C| ≤ min (log q, l × R). For linear codes equality always holds

on the left-hand side. For random codes, equality always holds on the right-hand side.

Whereas, QLC’s achieve all of the possible values allowed for 1
n log |

∑
i∈[1,l] C|.

4.4.2 Mutual Covering Bounds for NQLC’s

We proceed with deriving the mutual covering bounds for the NQLC’s. The covering

bounds are useful for determining inner bounds to achievable RD regions in different source

coding settings. In this work, we concentrate on the MD problem. The following gives a

formal definition for a PXV1V2-covering pair of codes.

Definition 14. Let Fq be a field. Consider 3 random variables X, V1 and V2, where X is

defined on an arbitrary finite set X and V1 and V2 are defined on Fq. Fix a PMF PX,V1,V2 on

X × Fq × Fq. A sequence of code pairs (Cn
1,C

n
2) is called PXV1V2-covering if:

∀ε > 0, P({xn|∃(vn
1, v

n
2) ∈ An

ε (V1,V2|xn) ∩C1 ×C2})→ 1,

as n→ ∞.

As mentioned in chapter 2, deriving the achievable RD region for the MD setup using

the SSC scheme involves obtaining the mutual covering bounds for independently gener-

ated codebooks. The following lemma characterizes these bounds for a pair of unstructured

codes.
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Lemma 15. [14] For any distribution PXV1V2 on X × Fq × Fq and rates r1, r2 satisfying

(4.1)-(4.3), there exists a sequence of pairs of unstructured codes Cn
1 and Cn

2 which are

PXV1V2-covering.

r1 ≥ H(V1) − H(V1|X) (4.1)

r2 ≥ H(V2) − H(V2|X) (4.2)

r1 + r2 ≥ H(V1,V2) − H(V1,V2|X) (4.3)

When using ensembles of NLC’s, new covering bounds are necessary since the code-

books are not independently generated (e.g. they share a common inner code.). The next

lemma presents the bounds for a pair of NLC’s.

Lemma 16. [41] For any PXV1V2 on X × Fq × Fq and rates ro = r1, r′o = r2 and ri satisfying

4.4-4.7, there exists a sequence of pairs of NLC’s Cn
1 and Cn

2 which are PXV1V2-covering.

r1 ≥ log q − H(V1|X) (4.4)

r2 ≥ log q − H(V2|X) (4.5)

r1 + r2 ≥ 2 log q − H(V1,V2|X) (4.6)

r1 + r2 − ri ≥ max
α,β∈Fq\{0}

(log q − H(αV1 + βV2|X)), (4.7)

In the process of deriving the inner bound to the achievable RD region, the entropy

terms in Lemma 15 and log q terms in Lemma 16 vanish in the Fourier-Motzkin elimi-

nation and only the conditional entropy terms would remain on the RHS [41]. So, the

only consequential difference between the two bounds lies in the introduction of inequal-

ity (4.7). First, we argue that this inequality can not be eliminated by a more precise

error analysis. We use a converse coding argument to prove this point. Assume the ex-

istence of a pair of NLC’s C1 and C2 which are PXV1V2-covering. Then, for any typical

sequence xn, one can find sequences cn
i ∈ Ci, i ∈ {1, 2} which are typical with xn with re-
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spect to PXV1V2 . From the Markov Lemma [45], xn is typical with αcn
1 + βcn

2 with respect

to PX(αV1+βV2) since αV1 + βV2 ↔ V1,V2 ↔ X. So, by the converse source coding theo-

rem, 1
n log |αC1 + βC2| ≥ log q − H(αV1 + βV2) which gives (4.7). The following lemma

characterizes the covering bounds for a pair of NQLC’s.

Lemma 17. For any PXV1V2 on X × Fq × Fq, parameters m, n, k1, k2, · · · , km and random

vectors (U1,i)i∈[1,m], (U2,i)i∈[1,m] satisfying (4.8)-(4.11), there exists a sequence of pairs of

NQLC’s Cn
1 and Cn

2 which are PXV1V2-covering.

∑
i∈[1,m]

ki

n
H(U1,i) ≥ log q − H(V1|X) (4.8)

∑
i∈[1,m]

ki

n
H(U2,i) ≥ log q − H(V2|X) (4.9)

∑
i∈[1,m]

ki

n
(
H(U1,i) + H(U2,i)

)
≥ 2 log q − H(V1,V2|X) (4.10)

∑
i∈[1,m]

ki

n
H(αU1,i + βU2,i) ≥ log q − H(αV1 + βV2|X),∀α, β ∈ Fq\{0}. (4.11)

Proof. Let X be a discrete memoryless source, for typical sequence x with respect to PX,

define the following:

θ(x) =
∑

u∈C1,v∈C2

1{(v1, v2) ∈ An
ε (V1,V2|x)}

=
∑

u1,i,u2,i∈Z
ki
q ,

i∈[1,m]

∑
(v1,v2)∈An

ε (V1,V2 |x)

1{
∑

i∈[1,m]

u1,iGi + b1 = v1,
∑

i∈[1,m]

u2,iGi + b2 = v2}

Here, Gi,b1, and b2 are chosen randomly and uniformly. For u1,i ∈ Z
ki
q , define g(u1,1,u1,2, · · · ,u1,m)

,
∑

i∈[1,m] u1,iGi + b1. Similarly define g(u2,1,u2,2, · · · ,u2,m) ,
∑

i∈[1,m] u2,iGi + b2 for u2,i ∈

Zki
q .

Lemma 18. The following hold:

1. g(u1,1,u1,2, · · · ,u1,m) and g′(u2,1,u2,2, · · · ,u2,m) are uniform over Fn
q.
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2. g(u1,1,u1,2, · · · ,u1,m) is independent of g(ũ1,1, ũ1,2, · · · , ũ1,m) when (u1,i)i∈[1,m] , (ũ1,i)i∈[1,m].

3. g′(u2,1,u2,2, · · · ,u2,m) is independent of g′(ũ2,1, ũ2,2, · · · , ũ2,m) when (u2,i)i∈[1,m] , (ũ2,i)i∈[1,m].

4. If b1 and b2 independent uniform over Fn
q, then g(u1,1,u1,2, · · · ,u1,m) and g′(u2,1,u2,2, · · · ,u2,m)

are independent.

Proof. Similar to the proof of the covering lemma in [42]. �

We want to use the Chebyshev’s inequality to obtain:

P{θ(x) = 0} ≤
4var{θ(x)}
E{θ(x)}2

→ 0

We calculate the expected value of θ(x):

E{θ(x)} =
∑

x∈An
ε (X)

∑
u1,i,u2,i,
i∈[1,m]

∑
(v1,v2)∈An

ε (V1,V2 |x)

P(x)P{g(u1,1,u1,2, · · · ,u1,m) = v1, g′(u2,1,u2,2, · · · ,u2,m) = v2}

=
∑

x∈A(X)

∑
u1,i,u2,i

|An
ε (V1,V2|x)|P(x)

1
q2n

= 2n(−
∑

i∈[1,m]
ki
n

(
H(U1,i)+H(U2,i)

)
+H(V1,V2 |X)+O(ε)) (4.12)

The following lemma bounds var{θ(x)}
E{θ(x)}2 .

Lemma 19.

var{θ(x)}
E{θ(x)}2

≤ 2−n(−
∑

i∈[1,m]
ki
n

(
H(U1,i)+H(U2,i)

)
+H(V1,V2 |X)) + 2−n(−

∑
i∈[1,m]

ki
n H(U1,i)+H(V1 |X)) + 2−n(−

∑
i∈[1,m]

ki
n H(U2,i)+H(V2 |X))

+
∑

α∈Fq\{0}

2n(−
∑

i∈[1,m]
ki
n H(U1,i+αU2,i)+H(V1,V2 |X)−H(V1,V2 |X,V1+αV2))
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The proof of the lemma follows from arguments similar to the ones used in [42]. Setting

the above to go to 0, we get the covering bounds mentioned in Lemma 17

�

Remark 20. Inequalities (4.8)-(4.10) are exactly the same bounds on the codebook rates

as in (4.4)-(4.6) (note that
∑

i∈[1,m]
ki
n H(U j,i) is the rate of C j, j ∈ {1, 2}.). (4.11) can also

be written as 1
n log |αC1 + βC2| ≥ log q − H(αV1 + βV2). By the same argument as in

the previous lemma, the bounds can not be tightened by a finer error analysis. The main

difference between inequality (4.11) and (4.7) is that in the new bound, the LHS changes

as a function of α and β. This provides new degrees of freedom which in turn result in

improvements in the MD problem as shown in the next section.

4.5 Gains in the MD Problem

In this section, we first present an example in which a scheme based on NQLC’s gives

improvements in terms of achievable RD’s compared to the SSC scheme. The example

is constructed by slightly altering example 6 in [41]. The setup is depicted in Figure 4.2.

Here, X is a binary symmetric source. The distortion constraints at all decoders are bi-

nary Hamming distortions except for decoder {3}. Assume that the distortion constraint

at decoder {3} is such that it needs to reconstruct the ternary addition X̂1 ⊕3 2X̂2, where

X̂i, i ∈ {1, 2} are the reconstructions at decoders {1} and {2}. We are interested in achieving

E
n
cod

er

Dec 1

Dec 2

Dec 12

X

X̂,D

X̂,D0

X̂,D

Dec 23 X̂,D0

Dec 3 X̂,D3

Dec 13 X̂,D0

Figure 4.2: A three-descriptions example where NQLC’s give gains
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the RD vectors with the following projections:

R1 = R2 =
1 − hb(D0)

2
,D{1} = D{2} =

1
2

(1 − (1 − 2D0)(2 −
√

2)), (4.13)

D{1,2} = D{1,3} = D{2,3} = D0, (4.14)

Our objective is to minimize R3 subject to these constraints. The following lemma gives

the RD vector achievable using NQLC’s which is not present in the RD region in [41].

Lemma 21. There exists ε > 0, such that the RD vector in (4.14) is achievable using

NQLC’s, if the following hold:

R3 ≥ H(V1 ⊕3 2V2) − H(V1 ⊕3 V2|X) − ε (4.15)

hb (D0) + 2hb

 √2
2

 + hb

(
2
(√

2 − 1
)

D0

)
+ hb

(
2
(√

2 − 1
)

(1 − D0)
)

= 1, (4.16)

where the joint distribution between X,V1 and V2 is given in table I.

X
V1,V2

00 01 10 11

0 1
2 (1 − D0)

√
2−1
2 D0

√
2−1
2 D0

3−2
√

2
2 D0

1 1
2 D0

√
2−1
2 (1 − D0)

√
2−1
2 (1 − D0) 3−2

√
2

2 (1−D0)

Table 4.1: The joint distribution PX,V1,V2 .

Furthermore, the RD vector is not achievable using the linear coding scheme stated in

[41].

Proof. We provide a scheme which achieves the RD vector for ε = 10−4 using NQLC’s. Let

n be large and λ a small positive number. construct a pair of PXV1V2-covering NQLC’s with

parameters m = 2, k1
n = 0.8, and k2

n = 0.2665 where U1 and U′1 are ternary and uniform. U2

and U′2 have the following distributions,

0 1 2
U1 0.33 0.48 0.19
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0 1 2
U2 0.33 0.19 0.48

Given the above parameters, it is straightforward to check that the constraints in Lemma

17 are satisfied. Description 1 carries the bin index of C with bin size log 3 − H(V1,V2)
2 − λ,

also, description 2 carries the index for C′ with the same bin size. Description 3 carries the

index for C ⊕3 2C′ with bin size log 3 − H(V1 ⊕ 2V2) − λ. Then,

R1 = R2 =
k1

n
+

k2

n
H(U1) − (log 3 −

H(V1,V2)
2

− λ)

R3 =
k1

n
+

k2

n
H(U1 ⊕3 2U2) − (log 3 − H(V1 ⊕ 2V2) − λ).

Direct calculation shows that the above rates are equal to the ones stated in the lemma. We

provide an outline of the proof that the scheme in [41] can not achieve these rates. By the

same arguments as in the proof of Example 6 in [41], it can be shown that the only non-

redundant codebooks in the scheme are C{1}, C{2}, and Co,{3} (this follows from optimality at

decoders {1, 2} and {3}, and the uniqueness of the optimizing distribution at decoder {1, 2}

shown in [41]). Then, in order to satisfy the constraints at decoder {3}, we need to set

Vo,{3} = V1 + 2V2. Checking the bounds in [41] it can be seen that the above rates are not

achievable. . �

Next, we provide a new achievable RD region for the general MD problem using

NQLC’s. For brevity, we have only considered the case where a summation of two code-

books decoded at decoders {1} and {2} is to be decoded at decoder {3}. So, to achieve the

RD region we use all of the codebooks present in the SSC scheme with the addition of a

pair of NQLC’s. One of the NQLC’s is decoded at {1}, the other at {2}, and a linear com-

bination of the two is decoded at {3} as was the case in the previous example. This RD

region could be improved upon by considering the reconstruction of an arbitrary number of

summations of arbitrary lengths at the decoders as done for the NLC’s in [41]. The notation

used in the next definition is the same as in [41].
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Definition 22. Fix the prime number q. For a joint distribution P on random variables

UM,M ∈ SL, V{ j}, j ∈ {1, 2}, and X, where the underlying alphabet for all auxiliary random

variables is the field Fq, and a set of reconstruction functions gL = {gN : UN → X,N ∈ L},

the set RD(P, gL) is defined as the set of RD vectors satisfying the following bounds for

some non-negative real numbers (ρM,i, ro,M)i∈M̃,M∈SL
, ρo,{ j},i, i ∈ {1, 2, 3}, and parameters

(m, n, k1, k2, · · · , km) and vectors of random variables (Ai, j) j∈[1,m], i ∈ {1, 2}:

H(UMVE|X) ≥
∑
M∈M

(log q− ro,M) +
∑
E∈E

(log q− ro,E), (4.17)

H(UM,W3,α,β|X) ≥
∑
M∈M

(log q− ro,M) + log q − ro,3,α,β (4.18)

H([U,V,W]MN
|[U,V,W]MN∪L) ≤

∑
M∈MN\L

(log q +
∑
j∈M̃

ρM, j − ro,M) +
∑

M∈{A1,A2,A3}
⋂

MN,

j∈M̃

ρo,M, j, (4.19)

Ri =
∑
M

ρM,i, DN = E
{
dN(hN(UN, X))

}
. (4.20)

Where (a) MN , (MN, {{ j}|{ j} ∈ MN},
{
{{3}, 1, 1}|{3} ∈ MN

}
), (b) M̃N ,

⋃
N′(N MN′ , (c)

ro,{3},α,β ,
∑

j∈[1,m]
ki
n H(αV1, j + βV2, j), (d) ro,M ≤ log q, and (e) W{3},α,β , αV{1} + βV{2}, and

the bounds should hold for all M ⊂ SL,E ⊂ {{1}, {2}} and L ⊂MN.

The main difference between this scheme and the one in [41] is that the rate ro,{3},α,β is

now defined according to the size of the linear combination of NQLC’s rather than NLC’s.

Theorem IV.23. RD vectors in cl (RD(P, gL)) are achievable. Where cl(A) is the closure

of set A.

Proof. Given a joint distribution PU,V,X, and codebook and binning rates satisfying the

bounds in the theorem we prove achievability of the RD vector in (4.20).

Codebook Generation: Fix blocklength n. For every M ∈ SL, independently generate

a linear code CM with size 2nro,M . Also generate a pair of NQLC’s C{ j}, j ∈ {1, 2} with

parameters as in Definition 7 and random variables (V1, j) and (V2, j), j ∈ [1,m], respectively
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. Define the set of codewords Co,{3},α,β , αCo,{1} + βCo,{2}. The size of Co,{3},α,β is 2nro,{3},α,β

where ro,{3},α,β =
∑

j∈[1,m]
ki
n H(αV1, j + βV2, j). For the ith description bin the codebook CM

randomly and uniformly with rate 2nρM,i .

Encoding: Upon receiving the source vector Xn, the encoder finds a jointly-typical set

of codewords cM. Each description carries the bin-indices of all of the corresponding

codewords. The encoder declares an error if there is no jointly typical set of codewords

available.

Decoding: Having received the bin-indices from descriptions i ∈ N, decoder N tries to find

a set of jointly typical codewords cM,M ∈ MN. If the set of codewords is not unique, the

decoder declares error.

In order for the encoder to find a set of jointly typical codewords, the mutual covering

bounds (4.17) and (4.18) should hold. This is a generalization of the result in lemma 17

and we omit the proof for brevity. The bounds in (4.19) are the mutual packing bounds at

each decoder.

�

4.6 The Interference Channel

We proceed with formally defining the three user IC problem. A three user IC con-

sists of three input alphabets Xi, i ∈ {1, 2, 3}, three output alphabets Yi, i ∈ {1, 2, 3}, and a

transition probability matrix PY|X. A code for this setup is defined as follows.

Definition 24. A three user IC code (n,M1,M2,M3, e,d) consists of (1) Three sets of mes-

sage indices Mi (2) Three encoder mappings ei : Mi → Xn
i , i ∈ [1, 3], without loss of

generality, these maps are assumed to be injective (3) and three decoding functions di :

Yn
i → Mi, i ∈ [1, 3]. We define the codebook corresponding to the encoding map ei as

Ci = {ei(mi)|mi ∈ Mi}, i ∈ [1, 3]. The rate of user i is defined as ri = 1
n log |Ci|.

Definition 25. A rate-triple (R1,R2,R3) is said to be achievable if for every ε > 0, there
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exists a code (n,M1,M2,M3, e,d) such that (1) ri ≥ Ri − ε, i ∈ [1, 3], and (2) P(d(Yn) =

M|e(M) = Xn) ≥ 1 − ε.

4.7 The Interference Alignment Tradeoff

In this section, we investigate the interference alignment tradeoff mentioned in the in-

troduction in more detail. We show that in certain three user interference setups, on the one

hand, alignment is beneficial to one of the users, while on the other hand, the rates achieved

by the aligning users is reduced due to the alignment. We investigate the phenomenon in

two examples. The first example involves a three user interference setup. In this example,

the first two encoders use linear codes to manage the interference for the third user. This

gives a strictly improved achievable rate region. It is well-known that interference align-

ment can be induced efficiently by the application of structured codes. Additional to this,

we show the stronger statement that the only ensemble of codes which achieve the desired

rate-triples in this example, are the ones with specific linearity properties. Next, we build

upon the first example to create a setup where alignment is beneficial to one of the users

and harmful for the other one. This second example provides the motivation for our new

codebook constructions in the next section.

4.7.1 Example 1

Consider the example shown in Figure 4.3. All of the inputs are q-ary and the additions

are defined on the field Fq. The three outputs of the channel are Yi = Xi⊕N1⊕N3, i ∈ {1, 2},

Y3 = X1 ⊕ X2 ⊕ X3 ⊕ N3. We are interested in achieving the following rates for the first and

second users:
R1 = R2 = log q − H(N1 ⊕ N3).

Given these rates, we want to maximize R3. The following lemma shows that linear codes

achieve the optimum R3 for this setup. Furthermore, we show that if an ensemble of codes
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X1

X2

X3

N1 ⊕q N3

N1 ⊕q N3

N3

Figure 4.3: A Three User IC Where Alignment Is Strictly Beneficial

achieves the optimum R3, then the codes corresponding to the first two users are "almost"

the same coset code.

Lemma 26. For a given family of codes (n,M1,M2,M3, e,d), n ∈ N satisfying the rate and

error constraints at decoders 1 and 2, user 3 can achieve the rate R3 = H(N1⊕N3)−H(N3)

iff there exists a dither b such that for every random variable N defined on Fq with positive

entropy, the following holds:

P
(
e1(M1) ⊕ e2(M2) ∈ (C1

⋃
C2) ⊕ An

ε (N) ⊕ b
)
→ 1, as n→ ∞. (4.21)

Equivalently, the optimal rate is achieved iff there exists another family of codes

(n,M′1,M
′
2,M

′
3, e
′,d′), n ∈ N for which 1) P(e′i(M′

i ) ∈ Ci ⊕ An
ε (N)) → 1 as n → ∞, 2)

C′1 = C′2 is a coset code, and 3) they also achieve the rate triple (R1,R2,R3) = (log q −

H(N1 ⊕ N3), log q − H(N1 ⊕ N3),H(N1 ⊕ N3) − H(N3)).

Proof. We provide an outline of the proof in Appendix C.1.1. �

The lemma proves that even if we expand our search to arbitrary n-length codebook

constructions (as opposed to the usual random codebook generation based on single-letter

distributions), coset codes are the only efficient ensemble of codes for the classes of inter-

ference channels under consideration up to small perturbations. This is a stronger assertion

than the well-known result that linear codes are useful for aligning the interfering signals.

The lemma can be used to provide a converse result proving that schemes involving ran-

dom unstructured codes (e.g. the generalized version of the single-letter HK scheme), can’t
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achieve the desired rate-triple without directly analyzing the bounds corresponding to their

achievable rate region as done in [29].

4.7.2 Example 2

Next, we consider an example where interference alignment results in a tradeoff be-

tween two of the users. Consider the setup in Figure 4.4. Similar to the previous example,

all input alphabets, output alphabets, and additions are defined on the field Fq. The out-

puts of the channel are Y1 = X1 ⊕q N1 ⊕q N2 ⊕q N3, Y2 = X1 ⊕q X2 ⊕q N2 ⊕ N3, and

Y3 = 2X1 ⊕q X2 ⊕q X3 ⊕q N3. Following our arguments in the previous example, for user 3

to be able to transmit its messages at rate R3 = H(X3 ⊕ N3) − H(N3), the inputs for users 1

and 2 must align. However, if these two users align their inputs, user 2 would not be able to

decode its message which is being corrupted by its aligned interfering signal coming from

user 1. Hence, we have a tradeoff. We proceed with evaluating the rate-triples achievable in

this example. The following lemma proves that we must have R1 +R2 ≤ log q−H(N2⊕N3),

otherwise the rate-triple (R1,R2,R3) is not achievable.

X1

X2

X3

N1 ⊕q N2 ⊕q N3

N2 ⊕q N3

N3

×2

Figure 4.4: A Three User IC Where Alignment Results in a Tradeoff

Lemma 27. Given that (R1,R2,R3) is achievable, we must have R1+R2 ≤ logq−H(N2⊕N3).

Proof. Since the rate triple is achievable, there exists a family of codes (n,M1,M2,M3, e,d)

for which the codewords sent by the second user, Xn
2 , is decoded at decoder 2 with error

probability approaching 0. Assuming errorless decoding at decoder 2, the decoder has

access to Xn
2 , X

n
1 ⊕ Xn

2 ⊕ Nn
2 . The decoder can subtract Xn

2 from Xn
1 ⊕ Xn

2 ⊕ Nn
2 to get Xn

1 ⊕ Nn
2 .
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Now, since by assumption decoder 1 can decode Xn
1 from Xn

1 ⊕ Nn
1 ⊕ Nn

2 with error going

to 0, decoder 2 can use Xn
1 ⊕ Nn

2 to recover Xn
1 with small error. So decoder 2 has access to

M1 and M2. By the converse of the point-to-point channel coding theorem, we must have

1
n log |M1 ×M2| ≤ log q − H(N2), which completes the proof. �

We want to achieve the rate R1 = log q − H(N1 ⊕ N2 ⊕ N3). In other words, encoder 1

is to operate at PtP optimality. The goal is to optimize the linear combination R2 + R3. We

argue that the linear coding scheme presented in [29] can’t achieve the triple (R1,R2,R3)

for R2 + R3 > H(N1 ⊕ N2 ⊕ N3) − H(N3).

Lemma 28. Given R1 = log q−H(N1), the scheme in [29] can’t achieve R2 + R3 > H(N1 ⊕

N2 ⊕ N3) − H(N3).

Proof. We provide the intuition behind the proof here. Let us use two NCL’s C1 and C2

as defined in Definition 6 to transmit the messages at encoders 1 and 2. Let the rate of

C j, j ∈ {1, 2} be r j and let the inner code have rate ri. If we assume that the coding scheme

exists which achieves the rate-triple, then by the proof of Lemma 27, one should be able

to recover X1, X2 from X1 ⊕ X2 ⊕ N2 ⊕ N3 with small error probability. Also, at decoder

3, the decoder can reconstruct X3 with low error probability and by subtraction it can have

2X1⊕X2⊕N3. Note that in the linear coding scheme, both 2X1⊕X2 and X1⊕X2 come from

randomly and uniformly generated linear codes of rate r1 + r2 − ri. So, given that X1 and

X2 can be recovered from X1 ⊕ X2 ⊕ N2 ⊕ N3, decoder 3 must be able to recover X1 and X2

from 2X1 ⊕ X2 ⊕ N3. Then similar to the proof of Lemma 26, by the point-to-point channel

coding converse, we must have R1 + R2 + R3 < log q − H(N3). �

The arguments in the proof of the previous lemma suggest that NLC’s lack the neces-

sary flexibility when it comes to determining the size of different linear combinations of

such codes. We explain this in more detail. Consider two NLC’s, C and C′, with rates

ro and r′o, respectively, and with inner code rate ri. The rate of any linear combination of

the two, αC ⊕ βC′, α, β ∈ Fq\{0}, is equal to ro + r′o − ri. Whereas in settings such as the
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one at hand, it is desirable to have different rates for different values of α and β. In this

setup, decoder 2 requires C1 ⊕ C2 to be large (since by Lemma 27 in order to increase R2

it needs to increase the rate of this linear combination) and decoder 3 wants the size of the

interfering codebook 2C1⊕C2 to be small, so that it can decode the interference. In the next

section, we provide a new class of codes. The new construction allows for different rates

for different linear combinations of such codes. This in turn results in higher achievable

sum-rates.

Lemma 29. There exists achievable rate-triples (R1,R2,R3) = (log q − H(N1 ⊕ N2 ⊕

N3), r2, r3) such that r2 + r3 > H(N1 ⊕ N2 ⊕ N3) − H(N3).

Proof. Refer to Appendix C.1.2.

�

So far we have proved that NQLC’s outperform NLC’s in this specific example. It is

straightforward to show that NQLC’s are a generalization of NLC’s. To see this, consider

an arbitrary pair of NLC’s with the parameters as in definition 6. These two codes are a

pair of NQLC’s with parameters m = 3, U1,U2 and U′1,U
′
3 uniform, U3 and U′2 constants

and k1 = k′1 = ki and k2 = ko − ki, k′3 = k′o − ki. So, any rate region achievable by NLC’s is

also achievable using NQLC’s.

4.8 New Achievable Rate Region for the IC

In this section, we provide a general achievable rate region for the three user IC. The

scheme is similar to the one presented in [29] (Theorem 2). The main difference is that here

instead of NLC’s we use NQLC’s. The random variables involved in the coding scheme are

depicted in Figure 4.5. Note that in contrast with the scheme in [29], decoder 2 reconstructs

a linear combination of U1 and U2. By setting α2 = 0, β2 = 1, we recover the random

variables in [29]. The next theorem provides the achievable rate region.
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X1, U1

X2, U2

X3

X1, U1

X2, α2U1 + β2U2

X3, α3U1 + β3U2

P (Y1, Y2, Y3|X1, X2, X3)

Figure 4.5: The LHS random variables are the ones sent by each encoder, the RHS random
variables are the ones decoded at each decoder.

Definition 30. For a given three user IC problem with q-ary inputs and outputs, define

the set R3-IC as the set of rate triples (R1,R2,R3) such that there exist 1) a joint proba-

bility distribution PU1,X1 PU2,X3 PX3 , 2) A vector of positive reals (K1,K2, L1, L2,T1,T2), and

3) a vector of parameters (m, n, k1, k2, · · · , km) and pair of vectors of random variables

(Vi j) j∈[1,m], i ∈ {1, 2}, such that the following inequalities are satisfied:

R1 = L1 + T1,R2 = L2 +
I(U2;α2U1 ⊕ α2U2)

H(U2)
T2 (4.22)

r1,0 − T1 ≥ log q − H(U1), r0,1 − T2 ≥ log q − H(U2), (4.23)

K1 + r1,0 − T1 ≥ log q + H(X1) − H(X1,U1) (4.24)

K2 + r0,1 − T2 ≥ log q + H(X2) − H(X2,U2) (4.25)

r0,1 ≤ log q − H(U1|X1,Y1) (4.26)

r0,1 + L1 + K1 ≤ log q + H(X1) − H(U1, X1|Y1) (4.27)

L1 + K1 ≤ I(X1; U1Y1) (4.28)

rα2,β2 ≤ log q − H(α2U1 ⊕ β2|X2,Y2) (4.29)

rα2,β2+ L2 + K2 ≤ log q+H(X2) − H(α2U1⊕β2U2, X2|Y2) (4.30)

L2 + K2 ≤ I(X2; U2Y2) (4.31)

rα3,β3+ L3 + K3 ≤ log q+H(X3) − H(α3U1⊕β3U2, X3|Y3) (4.32)

R3 ≤ I(X3; Y3, α3U1 ⊕ β3U2), (4.33)

where rα,β ,
∑

i∈[1,m]
ki
n H(αV1 ⊕ βV2),∀α, β ∈ Fq.
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Theorem IV.31. A rate triple (R1,R2,R3) is achievable if it belongs to cl(R3-IC).

Proof. We provide an outline of the proof. The coding scheme is similar to the one in [29].

Except that 1) decoder 2 also decodes a linear combination α2U1 +β2U2, 2) The underlying

codes for U1 and U2 are QNLC’s instead of nested coset codes, and 2) There is an outer

code on U2 which allows decoder 2 to decode U2 from α2U1 + β2U2. As a result the rate

region is similar to the one in [29] except for a few changes. Bounds (4.23)-(4.25) ensure

the existence of jointly typical codewords at each encoder. These bounds are the same

with the ones in [29]. Bounds (4.26)-(4.28) ensure errorless decoding at decoder 1, they

also remain the same. Inequalities (4.29)-(4.31) correspond to the error events at decoder

2, these bounds are altered to ensure reconstruction of α2U1 + β2U2, also the rate R2 is

changed and the linear coding rate T2 is multiplied by I(U2;α2U1⊕α2U2)
H(U2) , which is due to the

outer code. Lastly, (4.32)-(4.33) are for the error events at decoder 3, which is also similar

to the ones in [29]. �

Remark 32. For ease of notation, we have dropped the time-sharing random variable Q.

The scheme can be enhanced by adding the variable in the standard way.

Remark 33. By taking α2 = 0 and β2 = 1 and choosing the NQLC parameters so that the

codes become a pair of NLC’s we recover the bound in [29] as expected.

Remark 34. Following the generalizations in [29], this coding scheme can be enhanced

by adding additional layers containing the public message codebooks corresponding to the

HK strategy.
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CHAPTER V

The Necessity of Finite Block-length Coding

5.1 Introduction

A critical feature of the coding schemes used in PtP communication is that they have

large effective lengths. Loosely speaking, this means that each output element in these

schemes is a function of the entire input sequence, where the length of the input sequence

is asymptotically large. By compressing large blocks at the same time, one can exploit

the redundancy in the source. This remains unchanged by the multiterminal nature of the

problem in source coding over networks. However, in multiterminal communication it is

often desirable to maintain correlation amongst the compressed sequences at each node.

Using this fact, we prove that in various network communication problems, the optimal

encoding functions which have constant, finite effective lengths (i.e. each output element

can be approximated with high precision using a constant, finite number of input elements.

This number does not increase with blocklength.). We prove this claim in several steps.

First, in Section 5.3 we introduce the notion of the effective length of an encoder. The

effective length of the encoder is to be interpreted as the average number of input elements

necessary to estimate an output element of that encoder with high accuracy. In Section

5.4, we consider two arbitrary binary block codes (BBC) as defined in [11]. The two

encoding functions are applied to two correlated Discrete, Memoryless Sources (DMS).

We define the correlation between the outputs of these encoding functions as the average
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probability that any two output-bits are equal, where the average is over the elements of the

output vector. We derive a general upper-bound on the correlation preserving properties

of arbitrary pairs of binary encoding functions. Using this bound we conclude that single-

letter codes are incapable of sustaining the correlation between their respective outputs.

More precisely, we show that as the blocklength increases, the outputs of the quantizers at

each terminal become less correlated.

In Section 5.5, we first characterize a set of coding schemes called the Single-Letter

Coding (SLC) schemes. We show that the SLC coding schemes are a subset of the IBL

coding schemes. The set of SLC schemes is quite general and includes the well-known cod-

ing algorithms in multiterminal communications such as the Burger-Tung scheme for Dis-

tributed Source Coding (DSC) [45], the Zhang-Berger Strategy for the Multiple-Descriptions

(MD) problem [54], the Han-Kobayashi strategy for the Interference Channel (IC) [16], and

Marton’s coding scheme for the Broadcast channel (BC) [25]. Applying the results from

Section 5.4, we conclude that single-letter coding is detrimental to the ability of the en-

coders to coordinate their outputs. Hence, it is sometimes advantageous, that in the interest

of cooperation, finite blocklength codes be used instead. This leads us to hypothesize that

the SLC schemes are sub-optimal in multiterminal coding. This hypothesis is proved in the

case of the distributed source coding problem in the next chapter.

5.2 Notation

In this section, we introduce the notation used in this chapter. We represent ran-

dom variables by capital letters such as X,U. Sets are denoted by calligraphic letters

such as X,U. Particularly, the set of natural numbers and real numbers are shown by

N, and R, respectively. For a random variable X, the corresponding probability space is

(X,FX, PX), where F is the underlying σ-field. The set of all subsets of X is written as

2X. There are three different notations used for different classes of vectors. For random

variables, the n-length vector (X1, X2, · · · , Xn), Xi ∈ X is denoted by Xn ∈ Xn. For the
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vector of functions (e1(X), e2(X), · · · , en(X)) we use the notation e(X). The binary string

(i1, i2, · · · , in), i j ∈ {0, 1} is written as i. As an example, the set of functions {ei(X
n)|i ∈

{0, 1}n} is the set of n-length vectors of functions (e1,i, e2,i, · · · , en,i) operating on the vec-

tor (X1, X2, · · · , Xn) each indexed by an n-length binary string (i1, i2, · · · , in). The vector

of binary strings (i1, i2, · · · , in) denotes the standard basis for the n-dimensional space (e.g.

i1 = (0, 0, · · · , 0, 1)). The vector of random variables (X j1 , X j2 , · · · , X jk), ji ∈ [1, n], ji , jk,

is denoted by Xi, where i jl = 1,∀l ∈ [1, k]. For example, take n = 3, the vector (X1, X3) is

denoted by X101, and the vector (X1, X2) by X110. Particularly, Xi j = X j, j ∈ [1, n]. Also, for

t = 1, the all-ones vector, Xt = Xn. For two binary strings i, j, we write i < j if and only

if ik < jk,∀k ∈ [1, n]. For a binary string i we define Ni , wH(i), where wH denotes the

Hamming weight. Lastly, the vector ∼ i is the element-wise complement of i.

5.3 The Effective Length of an Encoder

In this chapter, we strive to show that in various network communication problems,

the optimal encoding functions operate with finite‘effective length’. More specifically, we

show that in these encoders, each output element is (almost) determined by a finite number

of the input elements. To this end, we first define a set of parameters called the dependency

spectrum which measure the effective length of an encoding function. The effective length

is to be interpreted as the average number of the input elements needed to estimate an

output element with high precision. As an initial attempt at characterizing the effective

length, let us look at the following example.

Example 1. Consider the BBC e which takes n-length blocks of the input X and produces

output elements ei(Xn), i ∈ [1, n] using the following mapping:

ei(Xn) =


Xi + Xi+1, i , n,

Xn + X1. i = n.
(5.1)
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Clearly, each output element is completely determined by the value of Xi and Xi⊕n1. Based

on our interpretation, the effective length of e(Xn) is equal to two.

The example suggests a simple way to define the effective length of an encoder:

Definition 2. For a Boolean function e : {0, 1}n → {0, 1} defined by e(Xn) =
∑

i∈J Xi, J ⊂

[1, n], where the addition operator is the binary addition, the effective length is defined as

the cardinality of the set J.

So, the effective length is a scalar, and the value is equal to the minimum number of

input elements whose function gives the output element. However, this elementary defi-

nition proves to be frivolous when considering more complicated encoding functions. For

a generic encoding function, most of the elements in Xn are correlated with each output

ei(Xn), i ∈ [1, n]. Hence, if we were to define the effective length as described above, the

value would be essentially trivial and of little use. For an arbitrary encoding function, it

would be more meaningful to ask questions such as how strongly does the first element X1

affect the output of ei(Xn)? Is this effect amplified when we take X2 into account as well?

One can ask the same question about the effect of an arbitrary subset of random variables

A = {Xk1 , Xk2 , · · · , Xkl} ⊂ {X1, X2, · · · , Xn}. Is there a subset of random variables that (al-

most) determines the value of the output, similar to the simple case discussed above? In

this section, we formulate these questions in mathematical terms, and find a characteriza-

tion of the dependency spectrum of an encoding function which is a generalization of the

above definition. The dependency spectrum is a vector which captures the correlation be-

tween different subsets of the input elements with each element of the output. In the next

step, we calculate this vector of correlations in terms of e. With this goal in mind, in this

section, we take the intermediate step of finding a decomposition of e into a set of functions

ei, i ∈ {0, 1}
n. In this decomposition, each ei is only a function of a specific subset of the

input random variables.

We proceed by formally defining the problem described above. We assume that two cor-

related DMS’s are being fed to two arbitrary encoders, and analyze the correlation between
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the outputs of these encoders as a function of the dependency spectrum. The following

gives the formal definition for DMS’s.

Definition 3. (X,Y) is called a pair of DMS’s if we have PXn,Yn(xn, yn) =
∏

i∈[1,n] PXi,Yi(xi, yi),∀n ∈

N, xn ∈ Xn, yn ∈ Yn.

Akin to the results presented in [11, 53], we restrict our attention to the binary block

encoders (BBE), which are defined below. The interested reader may refer to [53] for a

discussion on extending the analysis to multi-valued (i.e. non-binary) block encoders.

Definition 4. A Binary-Block-Encoder is characterized by the triple (e,X, n), where e is a

mapping e : Xn → {0, 1}n, X is a set, and n is an integer.

We refer to a BBE by its corresponding mapping e. The mapping e can be viewed as

a vector of functions (ei)i∈[1,n], where ei : Xn → {0, 1}. Furthermore, we assume binary

input alphabets, i.e. X = {0, 1}. Following the method presented in [53], we convert the

problem of analyzing a BBE into one where the encoder is a binary real-valued function.

Converting the discrete-valued encoding function into a real-valued one is crucial since it

allows us to use the rich set of tools available in functional analysis. We present a summary

of the functional analysis apparatus used in this work.

Fix a discrete memoryless source X, and a BBE defined by e : {0, 1}n → {0, 1}n. Let

P (ei(Xn) = 1) = qi. The real-valued function corresponding to ei is represented by ẽi, and

is defined as follows:

ẽi(Xn) =


1 − qi, ei(Xn) = 1,

−qi. otherwise.
(5.2)

Remark 5. Note that ẽi, i ∈ [1, n] has zero mean and variance qi(1 − qi).

The random variable ẽi(Xn) has finite variance on the probability space (Xn, 2X
n
, PXn).

The set of all such functions is denoted by HX,n. More precisely, we define HX,n ,
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L2(Xn, 2X
n
, PXn) as the separable Hilbert space of all measurable functions h̃ : Xn → R.

Since X is a DMS, the isomorphy relation

HX,n = HX,1 ⊗HX,1 · · · ⊗ HX,1 (5.3)

holds [34], where ⊗ indicates the tensor product.

Example 6. Let n=1. The Hilbert space HX,1 is the space of all measurable functions

h̃ : X → R. The space is spanned by the two linearly independent functions h̃1(X) = 1(X)

and h̃2(X) = 1(X̄), where X̄ = X ⊕ 1. We conclude that the space is two-dimensional.

Remark 7. The tensor operation inHX,n is real multiplication (i.e. f1, f2 ∈ HX,1 : f1(X1) ⊗

f2(X2) , f1(X1) f2(X2)). So, if { fi(X)|i ∈ [1, d]} is a basis forHX,1, a basis forHX,n would be

the set of all the real multiplications of these basis elements: {Π j∈[1,n] fi j(X j), i j ∈ [1, d]}.

Example 6 gives a decomposition of the spaceHX,1. Next, we introduce another decom-

position ofHX,1 which turns out to be very useful. Let IX,1 be the subset of all measurable

functions of X which have 0 mean, and let γX,1 be the set of constant real functions of X.

IX,1 and γX,1 are linear subspaces of HX,1. IX,1 is the nullity of the functional which takes

an arbitrary function f̃ ∈ HX,1 to its expected value EX( f̃ ). The nullity of any non-zero

functional is a hyper-space in HX,1. So, IX,1 is a one-dimensional subspace of HX,1. From

Remark 5, ẽ1 ∈ IX,1. We conclude that any element of IX,1 can be written as cẽ1(Xn), c ∈ R.

γX,1 is also one dimensional. It is spanned by the function g̃(X) = 1. Consider an arbi-

trary element f̃ ∈ HX,1. One can write f̃ = f̃1 + f̃2 where f̃1 = f̃ − EX( f̃ ) ∈ IX,1, and

f̃2 = EX( f̃ ) ∈ γX,1. Hence, HX,1 = IX,1 ⊕ γX,1 gives a decomposition of HX,1. Replacing

HX,1 with IX,1 ⊕ γX,1 in (5.3), we have:

HX,n = ⊗n
i=1HX,1 = ⊗n

i=1(IX,1 ⊕ γX,1)
(a)
= ⊕i∈{0,1}n(Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin), (5.4)
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where

G j =


γX,1 j = 0,

IX,1 j = 1,

and, in (a), we have used the distributive property of tensor products over direct sums.

Remark 8. Equation (5.4), can be interpreted as follows: for any ẽ ∈ HX,n, n ∈ N, we

can find a decomposition ẽ =
∑

i ẽi, where ẽi ∈ Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin . ẽi can be viewed as

the component of ẽ which is only a function of {Xi j |i j = 1}. In this sense, the collection

{ẽi|
∑

j∈[1,n] i j = k}, is the set of k-letter components of ẽ.

In order clarify the notation, we provide the following two examples.

Example 9. Let (X1, X2) be two independent symmetric binary random variables. Assume

e(X1, X2) = X1 ⊕ X2 is the binary addition function. In this example P(e = 1) = 1
2 . The

corresponding real function is given as follows:

ẽ(X1, X2) =


−1

2 X1 + X2 ∈ {0, 2},

1
2 X1 + X2 = 1,

Using Lagrange interpolation we can write ẽ as follows:

ẽ = −
1
2

(X1 + X2 − 2)(X1 + X2) −
1
4

(X1 + X2 − 1)(X1 + X2 − 2) −
1
4

(X1 + X2)(X1 + X2 − 1)

= −X2
1 − X2

2 − 2X1X2 + 2X1 + 2X2 −
1
2
.
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The decomposition of ẽ in the form given in (5.4) is

ẽ1,1 = X1 + X2 − 2X1X2 −
1
2

= −
1
2

(1 − 2X1)(1 − 2X2),

ẽ1,0 = −X2
1 + X1 = X1(1 − X1)

(a)
= 0, ẽ0,1 = −X2

2 − X − 2 = X2(1 − X2)
(a)
= 0,

ẽ0,0 = 0.

Where (a) holds since the input is chosen from {0, 1}. In this simple example, the decompo-

sition can be derived directly, by finding functions in the corresponding vector spaces. This

is not possible for general n-letter functions. In this section we provide a formula to derive

each of these components. Note that ẽ has a single non-zero component in its decomposi-

tion. This component is the two-letter function ẽ1,1 = IX,1 ⊗ IX,1. This is to be expected

since the binary addition of two symmetric variables is independent of each variable. So

there are no single-letter components. In fact one can verify this directly as follows:

EX2 |X1(ẽ|X1) = X1 − X1 = 0,EX1 |X2(ẽ|X2) = X2 − X2 = 0.

Also, as expected, ẽ can be written as a product of a function of X1 and another function

of X2, namely −1
2 (1 − 2X1), and (1 − 2X2), respectively. From these three properties, we

conclude that ẽ ∈ IX,1 ⊗ IX,1.

Remark 10. In the previous example, we found that the binary summation of two in-

dependent binary symmetric variables is a two-letter function (i.e. it only has a two-

letter component). However, this is not true when the source is not symmetric. When

P(X = 1) , P(X = 0), the output of the summation is not independent of each of the inputs.

One can show that the single-letter components of the summation are non-zero in this case.

Example 11. Let e(X1, X2) = X1∧X2 be the binary ‘and’ function. The corresponding real
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function is:

ẽ(X1, X2) =


−1

4 (X1, X2) , (1, 1),

3
4 (X1, X2) = (1, 1).

Lagrange interpolation gives ẽ = X1X2 −
1
4 . The decomposition is given by:

ẽ1,1 = (X1 −
1
2

)(X2 −
1
2

), ẽ1,0 =
1
2

(X1 −
1
2

), ẽ0,1 =
1
2

(X2 −
1
2

), ẽ0,0 = 0.

The variances of these functions are given below:

Var(ẽ) =
3

16
, Var(ẽ0,1) = Var(ẽ1,0) = Var(ẽ1,1) =

1
16
.

As we shall see in the next sections, these variances play a major role in determining

the correlation preserving properties of ẽ. The vector whose elements include these vari-

ances is called the dependency spectrum of e. In the perspective of the effective length, the

function ẽ has 2
3 of its variance distributed between ẽ0,1, and ẽ1,0 which are single-letter

functions, and 1
3 of the variance is on ẽ1,1 which is a two-letter function.

Similar to the previous examples, for arbitrary ẽ ∈ HX,n, n ∈ N, we can find a decompo-

sition ẽ =
∑

i ẽi, where ẽi ∈ Gi1 ⊗Gi2 ⊗ · · · ⊗Gin . We can characterize ẽi in terms of products

of the basis elements of Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin using the following result in linear algebra:

Lemma 12 ([34]). LetHi, i ∈ [1, n] be vector spaces over a field F. Also, let Bi = {vi, j| j ∈

[1, di]} be the basis forHi where di is the dimension ofHi. Then, any element v ∈ ⊗i∈[1,n]Hi

can be written as v =
∑

j1∈[1,d1]
∑

j2∈[1,d2] · · ·
∑

jn∈[1,dn] c j1, j2,··· , jnv j1 ⊗ v j2 · · · ⊗ v jn .

Since Gi j’s, j ∈ [1, n] take values from the set {IX,1, γX,1}, they are all one-dimensional.
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Let h̃ be defined as follows:

h̃(X) =


1 − q, if X = 1,

−q. if X = 0.
(5.5)

Then, the single element set {h̃(X)} is a basis for IX,1. Also, the function h̃(X) = 1 spans

γX,1. So, using Lemma 12, ẽi(Xn) = ci
∏

t:it=1 h̃(Xit), ci ∈ R. We are interested in the

variance of ẽi’s. In the next proposition, we show that the ẽi’s are uncorrelated and we

derive an expression for the variance of ẽi.

Proposition 13. Define Pi as the variance of ẽi. The following hold:

1) E(ẽiẽj) = 0, i , j, in other words ẽi’s are uncorrelated.

2) Pi = E(ẽ2
i ) = c2

i .

Proof. 1) follows by direct calculation. 2) holds from the independence of Xi’s. �

In the next lemma we find the characterization of ẽi, i ∈ {0, 1}n for general ẽ.

Lemma 14. ẽi = EXn |Xi(ẽ|Xi) −
∑

j<i ẽj gives the unique orthogonal decomposition of ẽ into

the Hilbert spaces Gi1 ⊗ Gi2 · · · ⊗ Gin , i
n ∈ {0, 1}n.

Proof. The uniqueness of such a decomposition follows from the isomorphy relation stated

in equation (5.4). We prove that the ẽi given in the lemma are indeed the decomposition

into the components of the direct sum. Equivalently, we show that 1) ẽ =
∑

i ẽi, and 2)

ẽi ∈ Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin ,∀i ∈ {0, 1}n.

First we check the equality ẽ =
∑

i ẽi. Let t denote the n-length vector whose elements

are all ones. We have:

ẽt = EXn |Xt(ẽ|Xt) −
∑
i<t

ẽi
(a)
⇒ ẽt +

∑
i<t

ẽi = ẽ
(b)
⇒ ẽ =

∑
i∈{0,1}n

ẽi,

where in (a) we have used 1) Xt = Xn and 2) for any function f̃ of Xn, EXn |Xn( f̃ |Xn) = f̃ , and
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(b) holds since i < t⇔ i , t. . It remains to show that ẽi ∈ Gi1 ⊗Gi2 ⊗ · · · ⊗Gin ,∀i ∈ {0, 1}n.

The next proposition provides a means to verify this property.

Proposition 15. Fix i ∈ {0, 1}n, defineA0 , {s|is = 0}, andA1 , {s|is = 1}. f̃ is an element

of Gi1 ⊗Gi2 ⊗ · · · ⊗Gin if and only if (1) it is constant in all Xs, s ∈ A0, and (2) it has 0 mean

on all Xs, when s ∈ A1.

Proof. Please refer to the appendix. �

Returning to the original problem, it is enough to show that ẽi’s satisfy the conditions

in Proposition 15. We prove the stronger result presented in the next proposition.

Proposition 16. The following hold:

1) EXn(ẽi)=0.

2) ∀i ≤ k, we have EXn |Xj(ẽi|Xk) = ẽi.

3) EXn(ẽiẽk) = 0, for i , k.

4) ∀k ≤ i : EXn |Xk(ẽi|Xk) = 0.

Proof. Please refer to the appendix. �

Remark 17. The second condition above is equivalent to condition (2) in Proposition 15.

The fourth condition is equivalent to (1) in Proposition 15.

Using propositions 15 and 16, we conclude that ẽi ∈ Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin ,∀i ∈ {0, 1}n.

This completes the proof of Lemma 14. �

The following example clarifies the notation used in Lemma 14.

Example 18. Consider the case where n = 2. We have the following decomposition of

HX,2:

HX,2 = (IX,1 ⊗ IX,1) ⊕ (IX,1 ⊗ γX,1) ⊕ (γX,1 ⊗ IX,1) ⊕ (γX,1 ⊗ γX,1). (5.6)
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Let ẽ(X1, X2) be an arbitrary function in HX,2. The unique decomposition of ẽ in the

form given in (5.6) is as follows:

ẽ = ẽ1,1 + ẽ1,0 + ẽ0,1 + ẽ0,0,

ẽ1,1 = ẽ − EX2 |X1(ẽ|X1) − EX1 |X2(ẽ|X2) + EX1,X2(ẽ) ∈ IX,1 ⊗ IX,1,

ẽ1,0 = EX2 |X1(ẽ|X1) − EX1,X2(ẽ) ∈ IX,1 × γX,1,

ẽ0,1 = EX1 |X2(ẽ|X2) − EX1,X2(ẽ) ∈ γX,1 ⊗ IX,1,

ẽ0,0 = EX1,X2(ẽ) ∈ γX,1 ⊗ γX,1.

It is straightforward to show that each of the ẽi, j’s, i, j ∈ {0, 1}, belong to their correspond-

ing subspaces. For instance, ẽ0,1 is constant in X1, and is a 0 mean function of X2 (i.e.

EX2

(
ẽ0,1(x1, X2)

)
= 0, x1 ∈ {0, 1}), so ẽ0,1 ∈ γX,1 ⊗ IX,1.

Lastly, we derive an expression for Pi using Lemma 14:

Lemma 19. For arbitrary e : {0, 1}n → {0, 1}, let ẽ be the corresponding real function,

and let ẽ =
∑

i ẽi be the decomposition in the form of Equation (5.4). The variance of

each component in the decomposition is given by the following recursive formula Pi =

EXi(E
2
Xn |Xi

(ẽ|Xi)) −
∑

j<i Pj,∀i ∈ Fn
2, where P0 , 0.
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Proof.

Pi = VarXi(ẽi(Xn)) = EXi(ẽ
2
i (Xn)) − E2

Xi
(ẽi(Xn))

(a)
= EXi


EXn |Xi(ẽ|Xi) −

∑
j<i

ẽj


2 − 0

= EXi

(
E2

Xn |Xi
(ẽ|Xi)

)
− 2

∑
j<i

EXi

(
EXn |Xi(ẽ|Xi)ẽj

)
+ EXi((

∑
j<i

ẽj)2)

(b)
= EXi

(
E2

Xn |Xi
(ẽ|Xi)

)
− 2

∑
j<i

EXi

EXn |Xi(
∑

l

ẽl|Xi)ẽj

 + EXi((
∑
j<i

ẽj)2)

(c)
= EXi

(
E2

Xn |Xi
(ẽ|Xi)

)
− 2

∑
j<i

EXi

∑
l

EXn |Xi(ẽl|Xi)ẽj

 + EXi((
∑
j<i

ẽj)2)

(d)
= EXi

(
E2

Xn |Xi
(ẽ|Xi)

)
− 2

∑
j<i

EXi

∑
l

1(l ≤ i)EXn |Xi(ẽl|Xi)ẽj

 + EXi((
∑
j<i

ẽj)2)

(e)
= EXi

(
E2

Xn |Xi
(ẽ|Xi)

)
− 2

∑
j<i

EXi

∑
l<i

ẽlẽj

 + EXi((
∑
j<i

ẽj)2)

( f )
= EXi

(
E2

Xn |Xi
(ẽ|Xi)

)
− 2

∑
j<i

∑
l<i

1(j = l)EXi

(
ẽlẽj

)
+ EXi((

∑
j<i

ẽj)2)

= EXi

(
E2

Xn |Xi
(ẽ|Xi)

)
− 2

∑
j<i

EXj(ẽ
2
j ) + EXi((

∑
j<i

ẽj)2)

= EXi(E
2
Xn |Xi

(ẽ|Xi)) − 2
∑
j<i

EXj(ẽ
2
j ) +

∑
j<i

∑
k<i

EXi(ẽjẽk)

(g)
= EXi(E

2
Xn |Xi

(ẽ|Xi)) − 2
∑
j<i

EXj(ẽ
2
j ) +

∑
j<i

∑
k<i

1(j = k)EXi(ẽ
2
j )

= EXi(E
2
Xn |Xi

(ẽ|Xi)) −
∑
j<i

Pj,

where (a) follows from 1) in Proposition 16, b) follows from the decomposition in Equation

(5.4), (c) uses linearity of expectation, (d) uses 4) in Proposition 16, (e) holds from 2) in

16, and in (f) and (g) we have used 1) in Proposition 16. �

Corollary 20. For an arbitrary e : {0, 1}n → {0, 1} with corresponding real function ẽ, and

decomposition ẽ =
∑

i ẽi. Let the variance of ẽ be denoted by P. Then, P =
∑

i Pi. The

corollary is a special case of Lemma 19, where we have taken i to be the all ones vector.
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The following provides a definition of the dependency spectrum of a BCC:

Definition 21 (Dependency Spectrum). For an encoding function e, the vector of variances

(Pi)i∈{0,1}n is called the dependency spectrum of e.

So far we have found the decomposition of ẽ into components ẽi. In the next section, we

find that the answers to the questions posed in the beginning of the section, are related to the

variance of each component in this decomposition. We can reiterate the claims made at the

beginning of the section based on our new understanding of the dependency spectrum: In

various network communication problems, for an optimal encoding function e, the variance

of ẽi is small when ẽi is a function of a large subset of the input. We prove this claim in the

next three sections.

5.4 Correlation Preservation in Arbitrary Encoders

In this work, we prove that in various multiterminal communication problems, encoders

whose effective blocklength is asymptotically large are sub-optimal. This is in contrast

with PtP communications where optimality is achieved only as the length of the encoder

approaches infinity. The secret to this apparent discrepancy is that in multiterminal com-

munications, it is often required that the encoders, having received correlated inputs, pro-

duce outputs which are correlated with each other. This requirement can be due to explicit

constraints in the problem statement such as joint distortion measures, or it can be due to

implicit factors such as the need for interference alignment, or the nature of the shared

communication channel. In the latter case, correlation between the outputs is necessary

as a means for further cooperation between the transmitters. It turns out that pairs of en-

coders with large effective lengths are inefficient in coordinating their outputs. This is due

to the fact that such encoding functions are ineffective in preserving correlation. The loss

of correlation undermines the encoders’ ability to conspire to take advantage of the multi-

terminal nature of the problem. In PtP communication problems, where there is only one
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X1; X2; · · · ; Xn

Y1; Y2; · · · ; Yn

Agent 1

Agent 2

e(Xn) 2 f0; 1g

f(Y n) 2 f0; 1g

Figure 5.1: Correlated Boolean decision functions.

transmitter, the necessity for cooperation does not manifest itself. For this reason, although

encoders with asymptotically large blocklengths are optimal in PtP communications, they

are sub-optimal in the network communication case. When transmitting data over net-

works, there is a trade-off between the sender’s need to transmit in a PtP optimal manner,

and the networks’ requirements for coordination among the transmitters. This results in the

so-called ‘sweet-spot’ for the length of an encoder. In this section, we show that to achieve

a fixed correlation between the outputs of the encoders, most of the power in the depen-

dency spectrum is distributed on the decomposition elements with lower effective lengths.

Alternatively, we derive a bound on the correlation between the outputs of two arbitrary

encoding functions given their dependency spectrums.

Our goal is to bound the correlation preserving properties of general n-length encoding

functions. As a first step, we derive bounds on the correlation between the outputs of two

arbitrary Boolean functions (i.e. functions whose output is a binary scalar). The result

that follows can be viewed as the solution to a more fundamental problem than what we

discussed so far. This general problem is the main motivation for the work in [53]. We

explain a summary of the setup here. Consider the two distributed agents shown in figure

5.1. The generality of the setup is in that these agents can be two encoders in the distributed

source coding problem, or two transmitters in the interference channel problem, or Alice

and Bob in a secret key-generation problem, or they can be two agents in a distributed con-

trol problem. They each recieve a binary string. For simplicity assume that the strings are

produced based on a memoryless distribution. The strings are correlated with each other.

The first agent is to make a binary decision based on its input. The second aims to guess
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the other’s decision. In [53], the author considers the problem when 1) The only constraint

on the agents is that the entropy of the binary output is fixed (e.g. they can not output

constants to improve estimation accuracy.) 2) The agents are completely cooperative in

the sense that barring their personal constraints, they choose the Boolean decision function

which maximizes estimation accuracy, and 3) prior to the start of the process each agent is

made aware of the other’s decision function. It was shown that the best strategy is for both

users to output a single element of the string without further processing (e.g. each user

outputs the first element of its corresponding string). This means that further processing

of the binary strings by the two agents can not induce additional correlation. The result

was used extensively in a variety of areas such as information theory, security, and control

[4, 10, 24]. However, the first assumption proves to be too restrictive in many cases. Here,

we relax this assumption by assuming that the agents may have additional constraints. Par-

ticularly, we assume that the users have constraints on the effective length of their decision

functions. This is a valid assumption, for instance, in the case of communication systems,

the users have restrictions on their effective lengths due to the rate-distortion requirements

in the problem.

We proceed with presenting the main result of this section. Let (X,Y) be a pair of

DMS’s. Consider two arbitrary Boolean functions e : Xn → {0, 1} and f : Yn → {0, 1}.

Let q , P(e = 1), r , P( f = 1). The following theorem provides an upper-bound on the

probability of equality between the functions e(Xn) and f (Yn). . The proof uses some of

the ideas used in [53].

Theorem V.22. Let ε , P(X , Y), the following bound holds:

2
√∑

i

Pi

√∑
i

Qi − 2
∑

i

CiP
1
2
i Q

1
2
i ≤ P(e(Xn) , f (Yn))

≤ 1 − 2
√∑

i

Pi

√∑
i

Qi + 2
∑

i

CiP
1
2
i Q

1
2
i ,

109



where Ci , (1 − 2ε)Ni , Pi is the variance of ẽi, and ẽ is the real function corresponding to

e, and Qi is the variance of f̃i, and finally, Ni , wH(i).

Remark 23. The value Ci = (1 − 2ε)Ni is decreasing with Ni. So, in order to increase

P(e(Xn) , f (Yn)), most of the variance Pi should be distributed on ẽi which have lower Ni

(i.e. operate on smaller blocks). Particularly, the lower bound is minimized by setting

Pi =


1 i = i1,

0 otherwise.

This recovers the result in [53].

Remark 24. For fixed Pi, the lower-bound is minimized by taking ẽ, and f̃ to be the same

functions.

Proof. The proof involves three main steps. In the first two steps we prove the lower bound.

First, we bound the Pearson correlation between the real-valued functions ẽ, and f̃ . In the

second step, we relate the correlation to the probability that the two functions are equal and

derive the necessary bounds. Finally, in the third step we use the lower bound proved in the

first two steps to derive the upper bound.

Step 1: From Remark 5, the expectation of both functions is 0. So, the Pearson correlation

is given by EXn ,Yn (ẽ f̃ )

(rq(1−q)(1−r))
1
2
. Our goal is to bound this value. We have:

EXn,Yn(ẽ f̃ )
(a)
= EXn,Yn

( ∑
i∈{0,1}n

ẽi)(
∑

k∈{0,1}n
f̃k)

 (b)
=

∑
i∈{0,1}n

∑
k∈{0,1}n

EXn,Yn(ẽi f̃k). (5.7)

In (a) we have used Remark 8, and in (b) we use linearity of expectation. Using the fact

that ẽi ∈ Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin and Lemma 12, we have:

ẽi = ci

∏
t:it=1

ẽt(Xit), f̃k = dk

∏
t:kt=1

f̃t(Xkt). (5.8)
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We replace ẽi and f̃k in (5.7):

EXn,Yn(ẽi f̃k)
(5.8)
= EXn,Yn


ci

∏
t:it=1

ẽ(Xit)


dk

∏
s:ks=1

f̃ (Yks)


 (a)

= cidkEXn,Yn

∏
t:it=1

ẽ(Xit)
∏

s:ks=1

f̃ (Yks)


(b)
= cidkEXn,Yn

 ∏
t:it=1,kt=1

ẽ(Xit) f̃ (Ykt)

EXn

 ∏
t:it=1,kt=0

ẽ(Xit)

EYn

 ∏
t:it=0,kt=1

f̃ (Ykt)


(c)
= 1(i = k)cidk

∏
t:it=1

EXn,Yn

(
ẽ(Xit) f̃ (Yit)

) (d)
≤ 1(i = k)cidk(1 − 2ε)Ni

∏
t:it=1

E
1
2
Xn

(
ẽ2(Xit)

)
E

1
2
Yn

(
f̃ 2
t,m(Y)

)
(e)
= 1(i = k)(1 − 2ε)Nicidk

( f )
= 1(i = k)(1 − 2ε)NiP

1
2
i Q

1
2
i = 1(i = k)CiP

1
2
i Q

1
2
i . (5.9)

(a) follows from linearity of expectation. In (b) we have used the fact that in a pair of

DMS’s, Xi and Y j are independent for i , j. (c) holds since from Proposition 16, E(ẽi) =

E( f̃i) = 0,∀i ∈ [1, n]. We prove (d) in Lemma 25 below. In (e) and (f) we have used

proposition 13.

Lemma 25. Let g(X) and h(Y) be two arbitrary zero-mean, real valued functions, then:

EX(g(X)h(Y)) ≤ (1 − 2ε)E
1
2
X(g2(X))E

1
2
Y (h2(Y)).

Proof. Please refer to the appendix. �

Using equations (5.7) and (5.9) we get:

EX(ẽ f̃ ) ≤
∑

i

CiP
1
2
i Q

1
2
i .

Step 2: We use the results from step one to derive a bound on P(e , f ). Define a ,

P(e(Xn) = 1, f (Yn) = 1), b , P(e(Xn) = 0, f (Yn) = 1), c , P(e(Xn) = 1, f (Yn) = 0), and
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d , P(e(Xn) = 0, f (Yn) = 0), then

EXn,YN (ẽ(Xn) f̃ (Yn)) = a(1 − q)(1 − r) − bq(1 − r) − c(1 − q)r + dqr, (5.10)

We write this equation in terms of σ , P( f , g), q, and r using the following relations:

1)a + c = q, 2)b + d = 1 − q, 3)a + b = r, 4)c + d = 1 − r, 5)b + c = σ.

Solving the above we get:

a =
q + r − σ

2
, b =

r + σ − q
2

, c =
q − r + σ

2
, d = 1 −

q + r + σ

2
. (5.11)

We replace a, b, c, and d in (5.10) by their values in (5.11):

σ

2
≥ (

q + r
2

)(1 − q)(1 − r) + (
q − r

2
)q(1 − r) + (

r − q
2

)(1 − q)r + qr(1 −
q + r

2
) −

∑
i

CiP
1
2
i Q

1
2
i

⇒ σ ≥ q + r − 2rq − 2
∑

i

CiP
1
2
i Q

1
2
i

⇒ σ ≥ (
√

q(1 − r) −
√

r(1 − q))2 + 2
√

q(1 − q)r(1 − r) − 2
∑

i

CiP
1
2
i Q

1
2
i

⇒ σ ≥ 2
√

q(1 − q)r(1 − r) − 2
∑

i

CiP
1
2
i Q

1
2
i

On the other hand EX(ẽ2) = q(1 − q) =
∑

i Pi, where the last equality follows from the fact

that ẽi’s are uncorrelated. This proves the lower bound. Next we use the lower bound to

derive the upper bound.

Step 3: The upper-bound can be derived by considering the function h(Yn) to be the com-

plement of f (Yn) (i.e. h(Yn) , 1⊕2 f (Yn).) In this case P(h(Yn) = 1) = P( f (Yn) = 0) = 1−r.
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The corresponding real function for h(Yn) is:

h̃(Yn) =


r h(Yn) = 1,

−(1 − r) h(Yn) = 0,
=


r f (Yn) = 0,

−(1 − r) f (Yn) = 1,
⇒ h̃(Yn) = − f̃ (Yn).

So, h̃(Yn) = −
∑

i f̃i. Using the same method as in the previous step, we have:

EXn,Yn(ẽh̃) = −EXn,Yn(ẽ f̃ ) ≤
∑

i

CiP
1
2
i Q

1
2
i

⇒ P(e(Xn) , h(Yn)) ≥ 2
√∑

i

Pi

√∑
i

Qi − 2
∑

i

CiP
1
2
i Q

1
2
i

On the other hand P(e(Xn) , h(Yn)) = P(e(Xn) , 1 ⊕ f (Yn)) = P(e(Xn) = f (Yn)) =

1 − P(e(Xn) , f (Yn). So,

1 − P(e(Xn) , f (Yn)) ≥ 2
√∑

i

Pi

√∑
i

Qi − 2
∑

i

CiP
1
2
i Q

1
2
i

⇒ P(e(Xn) , f (Yn)) ≤ 1 − 2
√∑

i

Pi

√∑
i

Qi + 2
∑

i

CiP
1
2
i Q

1
2
i .

This completes the proof. �

Corollary 26. We can simplify the bound in Theorem V.22 as follows:

2
∑

i

(1 −Ci)P
1
2
i Q

1
2
i ≤ P(e(Xn) , f (Yn)) ≤ 1 − 2

∑
i

(1 −Ci)P
1
2
i Q

1
2
i
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Proof.

σ ≥ 2
√∑

i

Pi

√∑
i

Qi − 2
∑

i

CiP
1
2
i Q

1
2
i

(a)
⇒ σ ≥ 2

∑
i

P
1
2
i Q

1
2
i − 2

∑
i

CiP
1
2
i Q

1
2
i

⇒ σ ≥ 2
∑

i

(1 −Ci)P
1
2
i Q

1
2
i .

In (a) we have used the Cauchy-Schwarz inequality. �

Next, we relate the previous theorem with BBE’s.

Definition 27. Consider two BBE’s characterized by (e,X, n) and ( f ,Y, n). Define the

Expected Single-Letter Correlation (ESLC) between e and f with respect to the sources X

and Y as:

E(e(Xn), f (Yn)) ,
1
n

n∑
j=1

P(e j(Xn) = f j(Yn)).

Here each (e j, f j) is a pair of Boolean functions. So, using Theorem V.22, we can derive

a bound on the ESLC between e and f as well. We use this bound in the next section to

prove the sub-optimality of the single-letter coding schemes.

5.5 Correlation in Single Letter Coding Schemes

In this section, we first characterize a group of coding strategies we call Single-letter

Random Coding Schemes (SLCS). These coding strategies include a broad range of strate-

gies in the literature including Shannon’s PtP source coding and channel coding schemes,

the Berger-Tung coding strategy in distributed source coding [45], the Han-Kobayashi

scheme in the interference channel [16], Marton’s coding strategy for the broadcast chan-

nel [25], and the Zhang-Berger multiple-descriptions coding scheme [54]. Using the results

from the previous sections, we bound the correlation preserving properties of the SLCS’s.

We show that encoding functions generated by SLCS’s have most of their variance Pi dis-
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Figure 5.2: Point-to-point source coding example

tributed among ẽi’s which operate on large blocks. This along with Theorem V.22 proves

that such schemes are inefficient in preserving correlation. These results are used in the

next section to show the sub-optimality of the SLCS’s in various problems. First, we pro-

vide our definition of a coding scheme. We explain the term through the following example

before providing the definition.

Example 28. Consider the PtP source coding problem depicted in Figure 5.2. This along

with the PtP channel coding problem are the two fundamental problems in information the-

ory. While this is a basic setup, it possesses the complexities involved in the more advanced

setups considered in the next section. The problem was first solved by Shannon [38]. A

discrete memoryless source X is being fed to an encoder. The encoder utilizes the mapping

Q : Xn →Un to compress the source sequence. The image of Q is indexed by the bijection

i : Im(Q) → [1, |Im(Q)|]. The index M , i(Q(Xn)) is sent to the decoder. The decoder

reconstructs the compressed sequence Un , i−1(M) = Q(Xn). The efficiency of the recon-

struction is evaluated based on the separable distortion criteria dn : Xn×Un → [0,∞). The

separability property means that dn(xn, un) =
∑

i∈[1,n] d1(xi, ui). We assume that the alpha-

bets X andU are both binary. The rate of transmission is defined as R , 1
n log |Im(Q)|, and

the average distortion is defined as 1
nE(dn(Xn,Un)). The goal is to choose Q such that the

rate-distortion tradeoff is optimized. Note that the choice of the bijection ‘i’ is irrelevant to

the performance of the system. The following Lemma gives the achievable RD region for

this setup.

Lemma 29. [38] For the source X and distortion criteria d1 : {0, 1} × {0, 1} → [0,∞),
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fix a conditional distribution pU |X(u|x), x, u ∈ {0, 1}. The rate-distortion pair (R,D) =(
r,EX,U(d1(X,U)

)
) is achievable for all r < I(U; X).

Proof. In order to characterize the properties of the SLCS’s, we give an outline of the

scheme used to achieve the above RD region. Fix n ∈ N, and ε > 0. Define PU(u) =

EX{PU |X(u|X))}. Proving achievability is equivalent to showing the existence of a suitable

encoding function Q(Xn). In [38], a randomly generated encoding function is constructed

with the aid of a set of vectors called the codebook, and an assignment rule called typicality

encoding. We construct the codebook C as follows. Let An
ε (U) , {um

∣∣∣1
n |wH(um)−PU(1)| < ε}

be the set of n-length binary vectors which are ε-typical with respect to PU . Choose d2nRe

vectors from An
ε (U) randomly and uniformly. Let C ⊂ An

ε (U) be the set of these vectors.

The encoder constructs the encoding function Q(Xn) as follows. For an arbitrary sequence

xn ∈ {0, 1}n, define An
ε (U |x

n) as the set of vectors in C which are jointly ε-typical with xn

based on PU |X. The vector Q(xn) is chosen randomly and uniformly from An
ε (U |x

n) ∩ C.

The probabilistic choice of the codewords as well as the quantization, puts a distribution on

the random function Q. It can be shown that as n becomes larger codes produced based on

this distribution P(Q) achieve the rate-distortion vector (R,D) with probability approaching

one. �

Remark 30. It is well-known that in the above scheme, the codebook generation process

could be altered in the following way. Instead of choosing the codewords randomly and

uniformly from the set of typical sequences An
ε (U), the encoder can produce each codeword

independent of the others and with the distribution PUn(un) = Πi∈[1,n]PU(ui). However, the

discussion that follows remains unchanged regardless of which of these codebook genera-

tion methods are used.

In the previous example, the distribution P(Q) completely characterizes the coding

scheme in the sense that any two coding schemes with the same P(Q), would have the
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same performance in terms of achievable rate-distortion. Based on this notion, we provide

our definition of a coding scheme:

Definition 31. A Coding Scheme S is characterized by a probability distribution PS(e) on

the set of functions e : {0, 1}n → {0, 1}n.

Whenever the choice of coding scheme is clear we drop the subscript S to denote the

distribution by PE(e). We can make the following observations about the encoding scheme

in Example 28.

1) Codewords are chosen pairwise independently. So, for two input sequences xn, and

yn given that An
ε (U |x

n) ∩ An
ε (V |y

n) = φ, the two vectors are not compressed to the same

codeword, hence they are compressed to independently generated codewords (i.e. Q(xn) is

chosen independently of Q(yn)).

2) As n becomes large, the ith output element Qi(Xn) is correlated with the input se-

quence Xn only through the ith input element Xi:

∀δ > 0,∃n ∈ N : m > n⇒ ∀xm ∈ {0, 1}m, v ∈ {0, 1},

|PS(Qi(Xm) = v|Xm = xm) − PS(Qi(Xm) = v|Xi = xi)| < ε.

3) The encoder is insensitive to permutations. Due to typicality encoding the probabil-

ity that a vector xn is mapped to yn depends only on their joint type and is equal to the

probability that π(xn) is mapped to π(yn).

Remark 32. The second property demands more explanation. Note that for a fixed quan-

tization function q : {0, 1}m → {0, 1}m, q(Xm) is a function of Xm. However, without the

knowledge that which encoding function is used, Qi(Xm) is related to Xm only through Xi.

In other words, averaged over all encoding functions, the effects of the rest of the elements

diminishes. We provide a proof of this statement below:

Proof. First, we are required to provide some definitions relating to the joint type of pairs of

sequences. For binary strings um, xm, define N(a, b|um, xm) , |{ j|u j = a, x j = b}|, that is the
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number of indices j for which the value of the pair (u j, x j) is (a, b). For s, t ∈ {0, 1}, define

ls,t , N(s, t|um, xm), the vector (l0,0, l0,1, l1,0, l1,1) is called the joint type of (um, xm). For fixed

xm The set of sequences T (l0,0, l0,1, l1,0, l1,1) = {um|N(s, t|um, xm) = ls,t, s, t ∈ {0, 1}}, is the set

of vectors which have joint type (l0,0, l0,1, l1,0, l1,1) with the sequence xm. Fix m, ε > 0, and

define Lε,n , {(l0,0, l0,1, l1,0, l1,1)|| ls,t

m − PU,X(s, t)| < ε}. Then for the conditional typical set

An
ε (U |x

m) defined above we can write

An
ε (U |x

m) = ∪(l0,0,l0,1,l1,0,l1,1)∈Lε,nT (l0,0, l0,1, l1,0, l1,1).

The type of xm, denoted by (l0, l1) is defined in a similar manner. Since Qi(Xm) are chosen

uniformly from the set An
ε (U |x

m), we have:

PS(Qi(Xm) = v|Xm = xm) =
|{um|u1 = v, um ∈ An

ε (U |x
m)}|

|{um|um ∈ An
ε (U |xm)}|

=

∑
(l0,0,l0,1,l1,0,l1,1)∈Lε,n |{u

m|u1 = v, um ∈ T (l0,0, l0,1, l1,0, l1,1)}|∑
(l0,0,l0,1,l1,0,l1,1)∈Lε,n |{um|um ∈ T (l0,0, l0,1, l1,0, l1,1)}|

=

∑
(l0,0,l0,1,l1,0,l1,1)∈Lε,n

(
lx1−1

lu1 ,x1−1

)(
lx̄1

lu1 ,x̄1

)
∑

(l0,0,l0,1,l1,0,l1,1)∈Lε,n

(
lx1

lu1 ,x1

)(
lx̄1

lu1 ,x̄1

)
=

∑
(l0,0,l0,1,l1,0,l1,1)∈Lε,n

(lx1−1)!
(lu1 ,x1−1)!(lx1−lu1 ,x1 )!

lx̄1 !
lu1 ,x̄1 !(lx̄1−lu1 ,x̄1 )!∑

(l0,0,l0,1,l1,0,l1,1)∈Lε,n
lx1 !

lu1 ,x1 !(lx1−lu1 ,x1 )!
lx̄1 !

lu1 ,x̄1 !(lx̄1−lu1 ,x̄1 )!

(a)
=

∑
(l0,0,l0,1,l1,0,l1,1)∈Lε,n lu1,x1

1
lu1 ,x1 !(lx1−lu1 ,x1 )!

1
lu1 ,x̄1 !(lx̄1−lu1 ,x̄1 )!

lx1

∑
(l0,0,l0,1,l1,0,l1,1)∈Lε,n

1
lu1 ,x1 !(lx1−lu1 ,x1 )!

1
lu1 ,x̄1 !(lx̄1−lu1 ,x̄1 )!

(b)
⇒

PU,X(u1, x1) − ε
PX(x1) + ε

≤ PS(Qi(Xm) = v|Xm = xm) ≤
PU,X(u1, x1) + ε

PX(x1) − ε

⇒ ∃m, ε > 0 : |PS(Qi(Xm) = v|Xm = xm) − PU |X(u1|x1)| ≤ δ.

In (a), we use the fact that for fixed xm, (lx1 , lx̄1) is fixed to simplify the numerators. In

(b) we have used that for jointly typical ε-sequences (um, xm), lu1,x1 ∈ [n(PU,X(u1, x1) −

ε), n(PU,X(u1, x1) + ε)], and lx1 ∈ [n(PX(x1) − ε), n(PX(x1) + ε)]. �

We generalize these conditions to define what we call SLCS’s:
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Definition 33. The coding scheme characterized by PE is called an SLCS if its correspond-

ing probability distribution satisfies the following constraints:

1) ∀xn,∃Bn(xn) such that ∀yn < Bn(xn), P(E(xn) = c, E(yn) = c′) = P(E(xn) = c)P(E(yn) =

c′), where Pn
X(Bn(xn)) ≤ 2−nδX , δX > 0.

2) ∀δ > 0,∃n ∈ N : m > n ⇒ ∀xm ∈ {0, 1}m, v ∈ {0, 1}, |PS(Qi(Xm) = v|Xm =

xm) − PS(Qi(Xm) = v|Xi = xi)| < ε.

3) ∀π ∈ S n : P(E) = P(Eπ), where Eπ(X
n) = π−1(E(π(Xn))).

Our goal is to analyze the correlation preserving properties of SLCS’s. For a randomly

generated encoding function E = (E1, E2, · · · , En), denote the decomposition of the real

function corresponding to the kth element into the form in Equation 5.4 as Ẽk =
∑

i Ẽk,i, k ∈

[1, n]. Let P j,i be the variance of Ẽk,i. The next theorem states the main result of this section.

Theorem V.34. For any k ∈ [1, n],m ∈ N, γ > 0, PS(
∑

i:Ni≤m,i,ik Pk,i ≥ γ) → 0, as n → ∞.

Where, ik is the kth standard basis element.

Remark 35. Theorem V.34 shows that SLCS’s distribute most of the variance of Ẽk on

Ẽk,i’s which operate on large blocks. Hence, the encoders generated using such schemes

have high expected variance for decomposition elements with large effective lengths. This

along with Theorem V.22 gives an upper bound on the correlation preserving properties of

SLCS’s.

Proof. The following proposition shows that the probability PS(
∑

i:Ni≤m,i,ik Pk,i ≥ γ) is in-

dependent of the index k. This is due to property 1) in the Definition of SLCS’s.

Proposition 36. P(
∑

i:Ni≤m,i,00···01 Pk,i ≥ γ) is constant in k.

Proof. Fix k, k′ ∈ N. Define the permutation πk→k′ ∈ S n as the permutation which switches

the kth and k′th elements and fixes all other elements. Also, let E be the set of all mappings
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e : {0, 1}n → {0, 1}n.

PS(
∑

i:Ni≤m,i,ik

Pk,i > γ) =
∑
e∈E

PS(e)1(
∑

i:Ni≤m,i,ik

Pk,i > γ)
(a)
=

∑
e∈E

PS(eπk→k′
)1(

∑
i:Ni≤m,i,ik

Pk,i > γ|e)

(b)
=

∑
g∈E

PS(g)1(
∑

i:Ni≤m,i,ik

Pπk→k′k,πk→k′ i > γ|g) =
∑
g∈E

PS(g)1(
∑

l:Nl≤m,l,πk→k′ ik

Pk′,l > γ|g)

= PS(
∑

i:Ni≤m,i,ik′

Pk′,i > γ).

Where in (a) we have used property (2) 3) in Definition 5.5, and in (b) we have defined

g , eπk→k′
and used π2

k→k′ = 1.

�

Using the previous proposition, it is enough to show the theorem holds for k = 1. For

ease of notation we drop the subscript k for the rest of the proof and denote P1,i by Pi. By

the Markov inequality, we have the following:

PS(
∑

i:Ni≤m,i,i1

Pi ≥ γ) ≤
∑

i:Ni≤m,i,i1 ES(Pi)
γ

. (5.12)

So, we need to show that
∑

i:Ni≤m,i,i1 ES(Pi) goes to 0 for all fixed m. We first prove the

following claim.

Claim 37. Fix i, such that Ni ≤ m, the following holds:

EẼ,Xi(E
2
Xn |Xi

(Ẽ|Xi)) = EXi(E
2
Ẽ,Xn |Xi

(Ẽ|Xi)) + O(e−nδX ).
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Proof.

EẼ,Xi(E
2
Xn |Xi

(Ẽ|Xi)) =
∑
xi,ẽ

P(xi)P(ẽ)(
∑
x∼i

P(x∼i)ẽ(xn))2

=
∑
xi,ẽ

P(xi)P(ẽ)
∑
x∼i

∑
yn:yi=xi

P(x∼i)P(y∼i)ẽ(xn)ẽ(yn)

=
∑

xn

P(xn)
∑

yn:yi=xi

P(y∼i)EẼ(Ẽ(xn)Ẽ(yn))

=
∑

xn

P(xn)
∑

yn:yi=xi,yn∈Bn(xn)

P(y∼i)EẼ(Ẽ(xn)Ẽ(yn)) +
∑

xn

P(xn)
∑

yn:yi=xi,yn<Bn(xn)

P(y∼i)EẼ(Ẽ(xn)Ẽ(yn))

(a)
≤

∑
xn

P(xn)
∑

yn:yi=xi,yn∈Bn(xn)

P(y∼i) +
∑

xn

P(xn)
∑

yn:yi=xi,yn<Bn(xn)

P(y∼i)EẼ(Ẽ(xn)Ẽ(yn))

= P(Yn ∈ Bn(Xn)|Yi = Xi) +
∑

xn

P(xn)
∑

yn:yi=xi,yn<Bn(xn)

P(y∼i)EẼ(Ẽ(xn)Ẽ(yn))

(b)
= O(e−nδX ) +

∑
xn

P(xn)
∑

yn:yi=xi,yn<Bn(xn)

P(y∼i)EẼ(Ẽ(xn))EẼ(Ẽ(yn))

≤ O(e−nδX ) + P(Yn ∈ Bn(Xn)|Yi = Xi) +
∑

xi

P(xi)
∑
x∼i

∑
yn:yi=xi

P(x∼i)P(y∼i)EẼ(Ẽ(xn))EẼ(Ẽ(yn))

= O(e−nδX ) + EXi(E
2
Ẽ,Xn |Xi

(Ẽ|Xi)).

�

In (a) we use the fact that Ẽ ≤ 1 by definition, in (b) follows from property 1) in

Definition 5.5. Define Ēi = EẼ(Ẽi) = EẼ|Xi(Ẽ|Xi) −
∑

j<i Ēj, and also define P̄i , Var(Ēi).

Using the above claim we have:

PS(
∑

i:Ni≤m,i,i1

Pi ≥ γ) ≤
∑

i:Ni≤m,i,i1 ES(Pi)
γ

≤
2mO(e−nδX ) +

∑
i:Ni≤m ES(P̄i) − ES(P̄i1)
γ

. (5.13)

Using the arguments from the proof of Proposition 16, we can see that the properties

stated in that Proposition hold for Ēi as well. Using the same results as in Lemma 19 and
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Corollary 20, we have that
∑

i∈{0,1}n P̄i = P̄1. Following the calculations in (5.13):

PS(
∑

i:Ni≤m,i,i1

Pi ≥ γ) ≤
2mO(e−nδX ) +

∑
i:Ni≤m ES(P̄i) − ES(P̄i1)
γ

≤
2mO(e−nδX ) +

∑
i∈{0,1}n ES(P̄i) − ES(P̄i1)
γ

=
2mO(e−nδX ) + ES(

∑
i∈{0,1}n P̄i) − ES(P̄i1)
γ

=
2mO(e−nδX ) + EXn

(
E2

Ẽ|Xn(Ẽ(Xn)|Xn)
)
− ES(P̄i1)

γ

≤
2mO(e−nδX ) + ES(P̄i1) + O(ε) − ES(P̄i1)

γ

=
2mO(e−nδX ) + O(ε)

γ

Where in the last inequality we have used the second property in Definition 5.5. The last

line goes to 0 as n→ ∞. This completes the proof.

The following Theorem provides a bound on the correlation preserving ability of SLCS’s.

�

Theorem V.38. Let (X,Y) be a pair of DMS’s, with P(X = Y) = 1 − ε. Also, assume that

the pair of BBE’s E, F are produced using SLCS’s. Define E , E1, and F , F1. Then,

∀δ > 0 : PS

(
PXn,Yn (E(Xn) , F(Yn)) > 2P

1
2 Q

1
2 − 2(1 − 2ε)P

1
2
i1Q

1
2
i1 − δ

)
→ 1,

as n→ ∞. Where Pi , Var(Ẽi), Qi , Var(F̃i), P , Var(Ẽ), and Q , Var(F̃).

Proof. From Theorem V.22, we have:

P
1
2 Q

1
2 − 2

∑
i

CiP
1
2
i Q

1
2
i ≤ P(E(Xn) , F(Yn)).
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From Theorem V.34 we have:

∀m ∈ N, γ > 0, PS(
∑

i:Ni≤m,i,i1

Pi < γ)→ 1, PS(
∑

i:Ni≤m,i,i1

Qi < γ)→ 1. (5.14)

Note that:

∑
i:Ni≤m,i,i1

Pi < γ,
∑

i:Ni≤m,i,i1

Qi < γ

⇒
∑

i

CiP
1
2
i Q

1
2
i > (1 − 2ε)(Pi1 + γ)

1
2 (Qi1 + γ)

1
2 + (1 − 2ε)mP

1
2 Q

1
2 , (5.15)

which converges to (1 − 2ε)P
1
2
i1Q

1
2
i1 + (1 − 2ε)mP 1

2 Q 1
2 as γ → 0. Also Ci is decreasing

in Ni and goes to 0 as Ni → ∞. Choose γ small enough and m large enough such that

(1 − 2ε)(Pi1 + γ)
1
2 (Qi1 + γ)

1
2 + (1 − 2ε)mP 1

2 Q 1
2 − (1 − 2ε)P

1
2
i1Q

1
2
i1 < δ. Then Equations (5.14)

and (5.15) gives

PS

(
PXn,Yn (E(Xn) , F(Yn)) < 2P

1
2 Q

1
2 − 2(1 − 2ε)P

1
2
i1Q

1
2
i1 − δ

)
→ 0.

This is equivalent to the statement of the theorem. �

Remark 39. The result in the theorem holds even if the encoders use the same encoding

function (i.e. E = F) produced using a SLCS.

Remark 40. The previous theorem gives a bound on the correlation preserving properties

on SLCS’s. The theorem shows that in order to increase correlation in these schemes the

encoder needs to put more variance on the element Ẽk,ik , k ∈ [1, n]. This would require more

correlation between the input and output of the encoder which itself would require more

rate. As an example consider the extreme case where Var(Ẽk) = Var(Ẽk,ik), which requires

Ek(Xn) = Xk. This means that in order to achieve maximum correlation, the encoder must

use uncoded transmission.
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Remark 41. In the case when X = Y, there is common-information [11] available at the

encoders. If the encoders use the same encoding function E, their outputs would be equal.

Whereas from theorem V.38, for any non-zero ε, the output correlation is bounded away

from 0 (except when doing uncoded transmission). So, the correlation between the outputs

of SLCS’s is discontinuous as a function of ε.
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CHAPTER VI

Application of Finite Block-length Codes to Distributed

Source Coding

In the classic lossy distributed source coding problem, two distributed encoders observe

the outputs of two correlated sources and communicate a compressed version of the source

sequences to a joint decoder. The decoder then wishes to produce a lossy reconstruction

of the two sources. The suitability of this reconstruction is gauged by the means of two

separable distortion criteria, one for each source. This scenario is depicted in Figure 6.1.

The goal is to characterize the optimal rate-distortion trade-off. The problem of deriving

the optimal achievable rate-distortion region has remained open for several decades. The

main challenge is in devising a scheme which optimally utilizes the correlation between

the sources without requiring the encoders to communicate with each other.

Enc 1

Enc 2

Y1

Y2

Dec
Ŷ1; Ŷ2

Encoder Decoder

Figure 6.1: General Lossy Distributed Source Coding
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Prior to this work, the best known inner bound to the optimal rate-distortion (RD) region

was the Berger-Tung (BT) bound [45]. The BT bound is based on a coding strategy called

quantize and bin. In this strategy the two sources are quantized using two independent,

random vector quantizers. In this scheme the length of the quantizers approaches infinity.

The outputs of these quantizers are binned to reduce the transmission rate. The independent

quantization approach leads to the so-called long Markov chain. The Markov chain implies

that conditioned on the sources, the single-letter distribution of the quantized versions of

the sources decompose into the product of conditional marginal distributions. In [50] it was

pointed out that in the presence of common components, further correlation can be induced

between the quantized versions, in other words the Markov chain can be relaxed using the

common component (CC). Based on this observation the authors in [50] propose a coding

scheme which outperforms the BT strategy in the presence of common components, but

reduces to the latter in their absence. The CC achievable RD region shrinks discontinu-

ously in source probability distribution as common components are replaced with highly

correlated components. Using the continuity of the optimal RD region, it was proved in

[50] that the CC scheme is also sub-optimal since it is discontinuous. Hence the optimal

RD region strictly contains the CC region. However, it was not clear how to achieve points

outside of the CC rate-distortion region.

In the first part of the chapter, we consider the one-help-one problem. The binary

one-help-one problem is a distributed source coding problem, where the decoder is to re-

construct a compressed version of the input to one of the encoders. The second encoder

- called the helper- receives a noisy version of the source and facilitates the transmission

of the compressed version to the decoder. In this setup, the two sources which are avail-

able to the two encoders have highly correlated components but no common components.

We notice that in the absence of exact common components, the scheme presented in [50]

reduces to the BT strategy. Even though sources have highly correlated components, the

correlation is lost in the quantization step as shown in the previous chapter. In this simple
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case, we are able to provide a more compact argument than the one in the last chapter, and

show that no matter how highly correlated the two components are, the quantization noises

of the two sources approach two independent random vectors. However, if the blocklength

is kept finite, the quantization noises remain correlated. This allows the encoders to bin

their outputs more efficiently. Based on this, we introduce a new scheme which utilizes fi-

nite length quantizers in the first stage (quantizing the highly correlated variables) and then

uses large blocklength quantizers in the second stage. An interesting implication is that in

order to get gains in terms of the achievable rate, the length of the first quantization stage

cannot be too small or too high; meaning that for some finite length, the scheme achieves

its best performance.

Since we use finite-length quantizers, a characterization for the finite-length perfor-

mance of codes is needed. The exact characterization of the rate-distortion region as a

function of the quantization blocklength is unknown even in the binary case; however, sev-

eral upper bounds are provided in the literature for finite-length quantization rate with a

constant distortion [19]. Using these results, we show that the method presented in this

chapter achieves a better rate-distortion region than other known results.

The main difficulty in analyzing finite blocklength coding strategies is that in the ab-

sence of simplifying theorems such as laws of large numbers, the resulting characterizations

of achievable inner bounds are in terms of multi-letter probability distributions. This makes

the computation of such inner bounds very complex. In the second part, we first present

a coding scheme for the distributed source coding problem in the general discrete, mem-

oryless setting. The scheme utilizes both small-length codes and codes with blocklength

approaching infinity. A multi-letter characterization of the rate-distortion region achievable

using this scheme is given, and it is shown that there is an approximating single-letter char-

acterization for the inner bound. We prove that the resulting inner bound outperforms the

previous known coding schemes for this communication setting.
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6.1 Preliminaries

In this section, we present a formal statement of the lossy distributed source coding

problem, then we restrict this to the binary one-help-one problem which is the main exam-

ple discussed in this chapter. For the rest of the chapter, a sequence of length n is denoted by

x(1 : n), its ith element is denoted by x(i), and the subsequence consisting of its ith element

to its jth element is shown by x(i : j). A two dimensional matrix of size m × n is denoted

by x(1 : m, 1 : n). Random variables are shown by capital letters and their realizations are

denoted by small letters. Let {Y1(i)} and {Y2(i)} be two source sequences from the alphabets

Y1 and Y2 for the sources shown in Figure 6.1.

Let the sources be i.i.d samples of a joint PMF on Y1 × Y2 given by PY1,Y2(y1, y2).

Let the functions di : Yi × Yi → R≥0, i = 1, 2 be the distortion criteria for the sources.

Without loss of generality, the reconstruction alphabets are assumed to be the same as

source alphabets. A (2nR1 , 2nR2 , n) code consists of: 1) Two encoding functions mi :Yn
i →

[1 : 2nRi], i = 1, 2, and 2) A decoding function r : [1 : 2nR1] × [1 : 2nR2] → Yn
1 × Y

n
2.

Let Ŷi(1 : n) = r(m1(Y1(1 : n)),m2(Y2(1 : n))) be the reconstruction of the two sources.

A quadruple (R1,R2,D1,D2) is said to be achievable if there exists a sequence of codes

(2nR1 , 2nR2 , n) such that lim supn→∞ E(d(Yi, Ŷi)) ≤ Di, i = 1, 2.

6.2 Binary One Help One Example

The example is shown in Figure 6.2. X, Z and E are Bernoulli random variables with

P(X = 1) = 0.5, P(Z = 1) = p, P(E = 1) = ε where p, ε ∈ [0, 0.5). All random variables

are assumed to be independent. As shown in the figure Y1 = X + E and Y2 = (X,Z), also

d1(y1, ŷ1) = 0, y1, ŷ1 ∈ {0, 1} and d2(y2, ŷ2) = dH(x̂ + ẑ, x + z) where ŷ2 = (x̂, ẑ), y2 = (x, z)

and dH represents the Hamming distance. Since the distortion function for Y1 is 0, encoder

1 is only helping encoder 2 transmit its compression. The following gives an achievable

RD vector for this problem.

128



Enc 1

Enc 2

X + E

X;Z

Dec
dX + Z

Encoder Decoder

Figure 6.2: The binary one help one example

Lemma 1 ( [50] ). For ε = 0, the following RD quadruples are achievable using the CC

scheme.However, the RD vector is not achievable using the BT scheme. scheme in [45]:

(r1, r2, d1, d2) = (1 − hb(δ), hb(p ∗ δ) − hb(δ1), 0, δ1) (6.1)

When ε , 0, it was shown that (6.1) is not achievable. In this case, we prove that our

finite-length scheme achieves a larger RD region the previous strategies.

6.2.1 Finite Length Quantizer Scheme

In this section, we introduce a new finite block length coding scheme. The rest of this

section is dedicated to proving the following theorem:

Theorem VI.2. The following rate-distortion region is achievable for any positive integer

n.

R1 ≥ 1 − hb(δ) + θn (6.2)

R2 ≥ hb(p ∗ δ) − hb(δ1) (6.3)

D2 ≤ δ1 ∗ ((1 − (1 − ε)n)(δ +
ε

(1 − (1 − ε)n)
∗ δ)) (6.4)

where p ∗ δ ≥ δ1, a ∗ b = a(b − 1) + b(a − 1), and {θn} is defined in Section 4.
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̂X + Z

Encoding Decoding

C(n)
f

Figure 6.3: A block-diagram of the scheme

Remark 3. The above bound is continuous in ε and simplifies to the one given in [50]

when ε = 0. This proves that it strictly contains the BT rate-distortion region.

Proof.

Lemma 4 ([19]). Consider the PtP problem of quantizing a BSC to Hamming distortion δ

using an n-length quantizer. The following rate is achievable:

R(n, δ) = R(δ) +
1
2

log n
n

+ O(
1
n

)

where R(δ) = 1 − hb(δ) is the binary rate distortion function. Define θn = 1
2

log n
n + O( 1

n ).

Note that {θn} is a sequence of positive numbers converging to 0.

To achieve (6.4) for some fixed n, we use two quantization codes. The first code C(n)
f

is a finite length quantizer for a binary symmetric source (BSS) with codewords of length

n and average distortion δ and rate R(n)
f = 1 − hb(δ) + θn. The existence of such codes

and bounds on θn are discussed in [19]. The second code C(m)
r has codewords of length m,

and it is chosen from a family of codes suitable for quantization of a Bernoulli source with

parameter p∗δwith average distortion δ1. The rate of the code converges to hb(p∗δ)−hb(δ1)

as m tends to infinity. The existence of such codes is given by Shannon’s rate distortion

theorem in [39]. Let Π be the set of permutations on the set [1 :n]. We choose permutations
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πi, i ∈ [1 :m] randomly and uniformly from Π. These permutations are also made available

to the second encoder and the decoder beforehand.

First we give a summary of the scheme and then we present the formal scheme and

a proof of achievability. As shown in Figure 6.3, the first encoder uses C(n)
f to quantize a

block of length n of its input source X + E. It then transmits the quantized version to the

decoder. The second encoder guesses the quantized codeword sent by the first encoder by

quantizing the block of length n of source X into V̂ . The estimation is precise with high

probability if ε � 1
n . This is true since the expected number of bits where E is 1 in one

block of length n is nε which is small under this condition. Using V̂ the encoder calculates

the quantization noise X + V̂ . The quantization noise is correlated with X + E + V , the

quantization noise in the other encoder. Note that in the case when ε = 0, V̂ = V . So, X + V̂

completely captures the uncertainty at the decoder. The second encoder sends a quantized

version of X+V̂+Z to the decoder to refine the description it received from the first encoder.

When ε , 0 we make the second encoder use X + V̂ as an approximation to X + V and add

it to Z. Let us denote the resulting random variable as S . This process is repeated for m

blocks each of length n. The encoder first uses the permutations πi, i ∈ [1 : m] described

above to transform S into an i.i.d Bernoulli source S̃ with parameter p ∗ δ. This will be

explained in more detail in the next paragraphs. Finally, this new i.i.d source is quantized

to distortion δ1 and sent to the decoder. Let the quantized version of S̃ be denoted by Q̃.

The decoder having received Q̃, calculates Q which is a quantized version of S . Finally the

decoder declares Q + V as the reconstruction of X + Z.

Now we proceed to formally present the scheme and prove the theorem. The first

encoder receives a string of nm bits of Y1 = X + E. The encoder breaks this vector into m

blocks of length n. We denote each bit in this string by X(i, j) + E(i, j), i ∈ [1 :m], j ∈ [1 :n]

where i indicates the block containing the bit and j indicates the index of the bit in the

block. The encoder uses C(n)
f to quantize each block of length n. So, for i = 1, ...,m, it finds
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V(i, 1:n) such that:

V(i, 1:n) = argminv(1:n)∈C(n)
f
{dH(Y1(i, 1:n), v(1 :n))}.

The index of V(i, 1 : n) is then transmitted to the decoder. The rate of transmission for this

encoder is R1 = R(n)
f = 1 − hb(δ) + θn.

Next we explain the mechanism used in the second encoder. The encoder receives nm

bits from sources X and Z. It divides them into m blocks of length n as is the previous

case. It quantizes each block of X(i, 1 : n) in the same manner as in the first encoder. Let

V̂(i, 1 : n) be the quantized codeword corresponding to X(i, 1 : n). The encoder computes

S (1 : m, 1 : n) = X(1 : m, 1 : n) + V̂(1 : m, 1 : n) + Z(1 : m, 1 : n). Let S̃ (i, j) = S (i, πi( j)), i ∈

[1 :m], j ∈ [1 :n], a permuted version of S. The next lemma proves that the result is an i.i.d

source.

Lemma 5. S̃ (1 :m, j) is a string of i.i.d Bernoulli random variables with parameter p ∗ δ.

The proof of the lemma is given in the appendix. The encoder quantizes each S̃ (1 :m, j)

using the code C(m)
r . Let Q̃(1 : m, j), be the quantized version of S̃ (1 : m, j). The encoder

transmits the index of Q̃(1 : m, j) in C(m)
r to the decoder. Let T̃ (1 : m, 1 : n) = Q̃(1 : m, 1 :

n)+S̃ (1 :m, 1:n) be the quantization noise. We know that this noise becomes i.i.d.Bernoulli

with parameter δ1 and T̃ (i, j) is independent of S̃ (i, j) as m tends to infinity. Also, define

T (i, j) = T̃ (i, π−1
i ( j)), i ∈ [1 : m], j ∈ [1 : n]. The rate of transmission in the second encoder

is R2 = R(m)
r which approaches hb(p ∗ δ) − hb(δ1) as m goes to infinity.

The decoder computes Q(i, j) = Q̃(i, π−1
i ( j)), that is the decoder undoes the permuta-

tion. Note that E(dH(Q(i, j), S (i, j))) = E(dH(Q̃(i, j), S̃ (i, j))) = E(wH(T (i, j))) = δ1. The

decoder declares Q(1 : m, 1 : n) + V(1 : m, 1 : n) as the reconstruction of the source X + Z.

The resulting average distortion is:

D =
1

mn
E{dH((X + Z)(1 :m, 1:n), (Q + V)(1 :m, 1:n))}.
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This can be computed as follows:

E{dH((X + Z)(1 :m, 1:n), (Q + V)(1 :m, 1:n))} = E{wH((X + Z + S + T + V)(1 :m, 1:n))}

= E{wH((V̂ + V + T )(1 :m, 1:n))} a
= mn(δ1 ∗

1
mn

E{wH((V̂ + V)(1 :m, 1:n))}).

Now we calculate E{wH((V̂ + V)(1 :m, 1:n))}:

m∑
i=1

E{wH((V̂ + V)(i, 1:n))}

b
= m(E{wH((V̂ +V)(1 :n)|E(1 :n)=0)P(E(1 :n)=0)}

+ E{wH((V̂ +V)(1 :n)|E(1 :n) , 0)P(E(1 :n),0))})

c
= m(E{wH((V̂ +V)(1 :n)|E(1 :n),0)P(E(1 :n) , 0))

= m(1−(1−ε)n)E{wH((V̂ +V)(1 :n))|E(1 :n) , 0}

= m(1−(1−ε)n)E{wH((X+V̂ +X+V)(1 :n))|E(1 :n),0}

≤ m(1 − (1 − ε)n)(E{wH((X + V̂)(1 : n))|E(1 :n) , 0}

+ E{wH((X + E + V + E)(1 :n))|E(1 :n) , 0})

d
= m(1 − (1 − ε)n)(E{wH((X + V̂)(1 : n))}

+
ε

(1 − (1 − ε)n)
∗ E{wH((X + E + V)(1 :n))})

e
= mn(1 − (1 − ε)n)(δ +

ε

(1 − (1 − ε)n)
∗ δ)

→ D ≤ δ1 ∗ ((1 − (1 − ε)n)(δ +
ε

(1 − (1 − ε)n)
∗ δ)).

(a) holds since T becomes independent of all the other variables as m tends to infinity;

(b) holds since each block is quantized identically and hence the expected value is equal

for all blocks; (c) is correct since if E(1 : n) = 0 then V(1 : N) = V̂(1 : N) since they

are both quantized versions of X(1 : n); (d) holds since (X + E + V)(1 : n) is a function

of (X + E)(1 : n) also (X + E)(1 : n) is independent of E(1 : n) since X is Bernoulli with

parameter 0.5, and finally (e) holds since the average distortion of the finite length quantizer
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was assumed to be δ. This completes the proof of theorem VI.2. �

6.2.2 Comparison with the Common Component Scheme

Proposition 6. The scheme presented here achieves a larger rate distortion region than the

one presented in [50].

Proof. We shall prove there exists p and ε such that the rate-distortion region in theorem

VI.2 strictly contains the rate-distortion region in [50]. It was shown in [50] that when

ε = 0 the Berger-Tung bound does not include the set of quadruples (r1, r2, d1, d2) = (1 −

hb(δ), hb(p ∗ δ) − hb(δ1), 0, δ1) when δ ∈ (0, 0.5) and δ1 < p ∗ δ. Also it is stated that the

rate region in [50] reduces to the standard Berger-Tung bound for ε , 0 since there is no

common component between Y1 and Y2 in that case. Since the Berger-Tung scheme must

perform worse when ε , 0 as compared to the case when ε = 0, we infer that it cannot

achieve (1 − hb(δ), hb(p ∗ δ) − hb(δ1), 0, δ1) when ε , 0. This means that for a given δ

and δ1 there exists a radius γ > 0 for which no quadruple in the set B((r1, r2, d1, d2), γ) =

{(R1,R2, 0,D2) : dE((R1,R2,D2), (r1, r2, d2)) ≤ γ} is achievable by the scheme in [50]. Note

that dE is just the Euclidean distance in the three dimensional space. Note that for a given

ε and n we showed that (r′1, r′2, 0, d′2) = (1− hb(δ) + θn, hb(p ∗ δ)− hb(δ1), 0, δ1 ∗ ((1− (1−

ε)n)(δ + ε
(1−(1−ε)n) ∗ δ)) is achievable by our scheme. We have:

dE((r′1, r′2, d′2), (r1, r2, d2)) = (6.5)√
θ2

n + (δ1 ∗ ((1 − (1 − ε)n)(δ +
ε

(1 − (1 − ε)n)
δ)) − δ1)2

Since θn is converging to 0, one can take n to be large enough so that θn is less than γ

2 .

Since (6.5) is a continuous function of ε which is less than γ

2 as ε goes to 0, there exists non-

negative ε for which (r′1, r′2, 0, d′2) ∈ B((r1, r2, 0, d2) for n described as above. Hence the

point (r′1, r′2, 0, d′2) is achievable by the scheme purposed here while it is not achievable

by [50]. This shows that the rate-distortion region in theorem VI.2 strictly contains the one
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in [50] for non-zero ε. �

6.3 Large blocklength Quantization of Binary Variables

In this section, we show that minimum distance quantization of two highly correlated

BSS’s using linear codes results in quantization noises that behave similar to independent

random variables. We prove the result for linear codes since the congruence of the Voronoi

regions of a linear code facilitates our analysis. This is a special case of the results proved

in the previous chapter. Consider two strings of binary random variables {xi} and {xi +

ei} generated by sources X and X + E described in section 4. Choose a family of linear

codes {C(n)
G
} randomly and uniformly with blocklength n and rate 1

nb(1 − hb(δ))c. It is well

known that as n approaches infinity the average distortion of a this linear coding scheme

approaches δ. We show that as n goes to infinity for any fixed ε, the average Hamming

distance between the quantization noises approaches the ε-vicinity of δ ∗ δ ∗ ε. Let Q(x(1 :

n)) = argminc∈Cn
G
(dH(x(1 :n), c)) be the quantized version of x(1 :n) and let s(1 :n) = Q(x(1 :

n)) + x(1 :n) and t(1 :n) = Q((x + e)(1 :n)) + (x + e)(1 :n) be the quantization noises. Let the

Voronoi region for the 0 codeword be P0. It is relatively straightforward to show that:

p(S (1 :n) = s(1 :n),T (1 :n) = t(1 :n))→ (6.6)

1
2nhb(δ) P((s + t + E)(1 :n) ∈ C(n)

G
), (s, t)(1 :n) ∈ P0 × P0,

as n goes to infinity. The proof is omitted because of space limitations. Then we have:

E(wH((S +T )(1 :n)))→=
1

2nhb(δ)

∑
(s,t)∈P0×P0,c∈C

(n)
G

wH((s+t)(1 :n))P(E(1 :n) = (s+t+c)(1 :n)) (6.7)
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Define u = t+c, then Q(u(1 :n)) = c(1 :n) and (u + Q(u))(1 :n) = t(1 :n). (6.7) becomes:

1
2nhb(δ)

∑
t∈P0,u(1:n)∈{0,1}n

wH((s+u)(1 :n) + Q(u(1 :n)))P(E(1 :n) = (s+u)(1 :n)).

It can be shown that Equations (6.6) and (6.7) yield:

∣∣∣ 1
2nhb(δ)

∑
t∈P0,u(1:n)∈{0,1}n

wH(Q((s+u)(1 :n)))P(E(1 :n)=u(1 :n)) − E(wH((S + T )(1 : n)))
∣∣∣ ≤ nε

(6.8)

Using (6.6) and (6.8) we get:

∣∣∣E(wH(Q((S +E)(1 : n))))−E(wH((S +T )(1 : n)))
∣∣∣ ≤ nε.

(S + E)(1 : n) has average weight n(δ ∗ ε) as n goes to infinity. The probability distribution

of Q((S + E)(1 : n)) is given by P(Q(s+e)(1 : n) = q(1 : n))→ 1
2nhb(δ) , q(1 : n) ∈ B(s+e, nδ)

as n → ∞. Taking the average weight of Q((S + E)(1 : n)) gives δ ∗ δ ∗ ε. Therefor, the

scheme in [50] would give quantization noise in ε vicinity of δ1∗δ∗δ∗ε which is worse than

what finite length quantizers would achieve. Also, the average Hamming distance between

the quantization noises is not continuous in ε. If ε is 0, the distance would be 0, since both

quantizers are quantizing the exact same sequence. However, if ε , 0 then the distance is

bigger than δ ∗ δ.

6.4 Simulations for Hamming codes

In this section, we present our results for the case where the first encoder uses a Ham-

ming code as its finite blocklength quantizer. Hamming codes are perfect codes of block-

length 2r − 1 and rate 1 − r
2r−1 . They have minimum distance of 3. Using (6.4), one can

compare the performance of the scheme presented here for ε , 0 with (6.1). As stated
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Figure 6.4: Comparison of the new scheme using Hamming codes and [50], δ1 = 0.1, p =

0.3, ε = 10−10

before, (6.1) contains the rate-distortion region of the binary one-help-one problem for any

ε. Figure 6.4 shows the two bounds along with the time-sharing bound which is described

next. One strategy in this setting is for the first encoder to transmit X + E losslessly and the

other encoder to send a quantized version of Z and for the decoder to add them together.

Another strategy is for the second encoder to quantize X + Z and transmit it while the first

encoder does not send anything. The third bound in Figure 6.4 illustrates the bound result-

ing from time-sharing between these two strategies. This time-sharing strategy seems to be

a good strategy for the Berger-Tung approach since if we use independent quantization for

two encoders simultaneously the quantizations noises will add to each other and we will

get a worse distortion than the time-sharing strategy. It can be seen from the plot that when

we use finite blocklength Hamming codes for quantization, we achieve better results than

the time-sharing bound.

6.5 The New Coding Strategy

In this section, we derive a new coding strategy for the general DSC based on finite

blocklength codes. Let X1 and X2 be two correlated DMS’s. Assume there exist functions

f1 : X1 → Z and f2 : X2 → Z, such that P( f1(X1) , f2(X2)) ≤ ε′, ε′ ∈ (0, 0.5). Here

Xi and Z are the underlying alphabets for Xi and Z. Let ε = 1 − (1 − ε′)n. Also define

S i = fi(Xi), i ∈ {1, 2}. The next theorem presents the main result of this chapter:
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Theorem VI.7. The following RD vectors are achievable:

R1 ≥ I(X1; U1|U2W) + En,ε + 2|X1||U1| log(
p1

p1 − ε
),

R2 ≥ I(X2; U2|U1W) + 2En,ε + 2|X2||U2| log(
p2

p2 − ε
),

R1 + R2 ≥ I(X1X2; U1U2W) + 3En,ε + 2|X1||U1| log(
p1

p1 − ε
) + θn,

Di ≥ E{di
(
hi(U1,U2,W), Xi

)
}.

For every distribution PX1,X2,W,U1,U2 satisfying the following constraints:

1)U1 ↔ (X1,W)↔ (X2,W)↔ U2,

2)W ↔ S 1 ↔ (X1, X2),

3)pi > ε, i = 1, 2,

Also pi and En,ε are defined as follows:

p1 = min
x1,w,u1,u2

({PU1 |X1,W,U2}, {PU1 |W,U2}),

p2 = min
x2,w,u1,u2

({PU2 |X2,W,U1}, {PU2 |W,U1}),

En,ε =
h(ε)

n
+ ε log |W|.

In the above formulas, θn is a sequence approaching 0 which depends on PS ,W . Also Ui

andW are the alphabets for Ui and W.

Remark 8. The above RD region reduces to the CC region when ε = 0 (i.e when S 1 = S 2).

Also if S 1 and S 2 are taken to be trivial, the bound reduces to the BT region.

Remark 9. As n becomes larger, ε increases, which in turn causes En,ε to increase. On

the other hand, θn is a decreasing function of n. This illustrates the trade-off between rate-

loss due to application of small blocklength codes θn, and the gains from preservation of
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correlation between the sources En,ε .

Remark 10. Finding the achievable rate-distortion region involves sweeping over all pos-

sible choices of f1 and f2. However log( p1
p1−ε

) increases as f1 and f2 become less corre-

lated (i.e. as ε increases). This suggests choosing highly correlated functions gives larger

achievable regions.

Remark 11. The above inner bound is not symmetric with respect to the two encoders, one

can symmetrize the region by swapping the indices for encoders 1 and 2 in the theorem and

taking the union of the two resulting regions.

To prove theorem VI.7, an achievable RD region using finite-length coding schemes is

derived, then it is shown that the region contains the inner bound in the theorem.

Let W1 be a random variable with alphabetW1. Take an arbitrary probability distribu-

tion PS 1,W1 . Also let I be a random variable uniformly distributed on {1, 2, 3, ..., n}. Consider

Qn, an n-length quantizer which quantizes S n
1 to Wn

1 such that:

PS 1(I),W1(I) =
1
n

∑
i∈[1:n]

PS 1(i),W1(i) = PS 1,W1 .

There exists a Qn with rate Rn = IPS 1 ,W1
(S 1; W1) + θn, where θn can be bounded given the

distribution PS 1,W1 and approaches 0 as n goes to infinity [19]. Let Wn
2 = Qn(S n

2). Wn
2 can

be perceived as the second encoder’s “estimate” of Wn
1 . We have:

PXn
1 ,X

n
2 ,W

n
1 ,W

n
2

=
∑
sn

1,s
n
2

PXn
1 ,X

n
2 |S

n
1,S

n
2
PS n

1,S
n
2,W

n
1 ,W

n
2
.

Define PX1,X2,W1,W2 = PX1(I),X2(I),W1(I),W2(I). Also define P as the set of all probability distri-

butions on X1, X2,W1,W2,U1,U2 such that PX1,X2,W1,W2 is produced by the above process

and U1 and U2 satisfy U1 ↔ (X1,W1) ↔ (X2,W2) ↔ U2. The ensuing theorem states the

n-letter achievable bound for the new coding strategy.
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Theorem VI.12. RD vectors satisfying the following bounds are achievable:

R1 ≥ I(X1; U1|U2W1W2) + En,ε ,

R2 ≥ I(X2; U2|U1W1W2) + En,ε ,

R1 + R2 ≥ I(W1; S 1) + I(X1; U1|W1,W2) + I(X2; U2|W1,W2) − I(U1; U2|W1W2) + θn + En,ε ,

Di ≥ E{di
(
hi(U1,U2,W1,W2), Xi

)
}.

For every probability distribution PX1,X2,W1,W2,U1,U2 chosen form P. Here hi : W1 ×W2 ×

U1 ×U2 → Xi are the reconstruction functions at the decoder.

Remark 13. Qn completely determines PX1,X2,W1,W2 , also from the Markov chain PU1 |X1,W1 ,

PU2 |X2,W2 and Qn fix the induced joint probability distribution PX1,X2,W1,W2,U1,U2 . Hence, deter-

mining the RD region given in theorem 2 involves taking the union of RD vectors satisfying

the above bounds for some given fi, hi, Qn, PU1 |X1,W1 and PU2 |X2,W2 .

Proof. First we present a summary of the proof. Fix fi, hi, Qn, PU1 |X1,W and PU2 |X2,W2 .

Using Qn the encoders quantize S n
i to Wn

i . If multiple realizations of Wn
1 ’s are available

at the decoder, encoder 2 can transmit the corresponding sequence of Wn
2 ’s using rate at

most 1
n H(Wn

2 |W
n
1 ). So the encoders transmit the sequences of Wi’s with sum-rate less than

Rn + 1
nmax{H(Wn

2 |W
n
1 ),H(Wn

1 |W
n
2 )}. Since S i’s are highly correlated, the vectors S n

i are

almost always equal. Consequently the quantizations Wn
i are almost always equal, and us-

ing this the term 1
nmax{H(Wn

2 |W
n
1 ),H(Wn

1 |W
n
2 )} can be bounded. In the next step (Wi, Xi)

is transformed into a DMS by applying the interleaving method explained in [7]. The rest

of the problem can be viewed as distributed source coding with sources (Wi, Xi) and side-

information (W1,W2) available at the decoder. A more rigorous proof is presented next.

Codebook Generation: Three codebooks are used for the quantization. Cn is the under-

lying codebook for Qn. The other two codebooks Cm
i , are constructed by choosing each of

their elements from Ui based on distribution PUi . Cm
i have rates I(Xi,Wi; Ui) + λm where

λm → 0. Let Qi,m be the quantizers associated with these codebooks. Each of the code-
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books Cm
i are randomly binned at rate I(Xi; Ui|W1,W2)−ri, where r1+r2 = I(U1; U2|W1,W2).

Given t ∈ [0, 1], randomly and uniformly bin the space of all vectors W tnm ∈ Wtnm with rate

En,ε , and define B1 as the binning function. Also, bin the space of all vectors W (1−t)nm using

the same rate, let B2 be the binning function. Finally, choose m permutations π j, j ∈ [1 : m]

randomly and uniformly from the set of all n-length permutations S n.

Encoding: Communication is carried out over blocks of length mn. Denote the source

sequence in one block as the matrix Xi(1 : m, 1 : n). The ith encoder calculates Wi( j, 1:n) =

Qn(S i( j, 1 : n)) for all j. The encoder wishes to utilize the codebooks Cm
i for quantizing

(Xi,Wi), however the source (Xi,Wi) is not a DMS since Wi is produced by a finite-length

quantizer. To overcome this difficulty we use the method explained in [7]. Let X̃i( j, 1 :

n) = π j(X( j, 1 : n)), define W̃i in the same manner. As shown in [7], (X̃i, W̃i)(1 : m, l)

would behave like a DMS with probability distribution PXi,Wi . Each encoder calculates

Ũi(1 :m, l) = Qi,m((X̃i, W̃i)(1 :m, l)). For rows (1 : tm), the first encoder transmits W1( j, 1 :n)

while the second encoder sends the bin index B1(W2(1 : tm, 1 : n)). For the rest of the rows

encoder 1 sends the bin index B2(W1(tm + 1:m, 1:n)) while encoder 2 sends W2( j, 1:n). In

other words, the encoders time-share between two strategies. In the first strategy encoder

1 transmits W1 while encoder 2 only sends the bin number for the sequence of W2, in the

second strategy the encoders reverse roles. For every column l, the ith encoder also sends

the bin index of Ũi(1 :m, l) in Cm
i . The resulting rates are:

R1 = tRn + (1 − t)En,ε + I(X1; U1|W1W2) − r1

R2 = (1 − t)Rn + tEn,ε + I(X2; U2|W1W2) − r2.

The achievability of these rates would complete the proof, since they include both corner

points of the region in theorem VI.12.

Decoding: The decoder first decodes Wi(1 :m, 1:n). For elements (1 : tm, 1:n), W tmn
1 are

available, while only the bin index of W tmn
2 is available. Since m is going to infinity, W tmn

2
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is losslessly recovered as long the binning rate is more than 1
n H(Wn

2 |W
n
1 ). By the following

lemma, we have 1
n H(Wn

2 |W
n
1 ) ≤ En,ε .

Lemma 14. Let S 1 and S 2 be two DMS’s such that P(S 1 , S 2) ≤ ε′ for some ε′ > 0. Also

Let Wn
i = fi(S n

i ) be n-letter functions of S n
i to alphabetWn. Let ε = 1 − (1 − ε′)n. Then the

following are true:

1) P(Wn
1 , Wn

2 ) ≤ ε,

2) 1
n H(Wn

2 |W
n
1 ) ≤ h(ε)

n + ε log |W2|

Proof. In the appendix. �

By the same argument (W1,W2) are recovered losslessly for the rest of the rows.

The bin size for each vector Ũ1(1 :m, l) is:

I(X1,W1; U1) − I(X1; U1|W1,W2) + r1 = I(X1,W1,W2; U1) − I(X1; U1|W1,W2) + r1

= I(W1,W2; U1) + r1

The long Markov chain is used in the second equation. By the same calculations the bin size

for Ũ2 is I(W1,W2; U2)+r2. Using typicality arguments for these bin sizes, there is a unique

pair (U1,U2)(1 : m, l), jointly typical with (W1,W2)(1 : m, l). We present a summary of the

proof. The decoder first creates two ambiguity sets Li from the sequences of Ui(1 : m, l)’s

in the corresponding bins. Each of these sets contains all sequences Ui(1 : m, l) in the

bin, which are typical with (W1,W2)(1 : m, l). There is roughly one such sequence in each

2mI(W1,W2;Ui) vectors. So the size of Li is close to 2mri . The decoder finds a pair of vectors

in the two ambiguity sets which are typical with each other. Since all these vectors are

typical with W1 and W2, as long as r1 + r2 ≤ I(U1; U2|W1,W2) there is no more than one

pair (U1,U2)(1 :m, l) typical with respect to PU1,U2 |W1,W2 . This completes the proof. �

The calculation of the RD region in the theorem requires taking union over all possible

n-length quantizers. This renders the characterization practically incomputable. The next
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proof shows that the RD region in theorem VI.7 is contained in the one in theorem VI.12.

Proof. In the next step, W2 is removed from the mutual information terms:

I(X1; U1|U2,W1,W2) = H(U1|U2,W1,W2) − H(U1|X1,W1,U2) ≤ I(U1; X1|W1,U2).

Also,

I(X2; U2|U1,W1,W2) ≤ I(X2; W2,U2|W1,U1) ≤ I(X2; U2|W1,U1) + H(W2|W1)

≤ I(X2; U2|W1,U1) + En,ε .

W2 in the terms I(X1; U1|W1,W2) and I(X2; U2|W1,W2) in the sum-rate bound can be re-

moved using the same method. For I(U1; U2|W1,W2) an upper-bound is necessary:

I(U1; U2|W1,W2) ≥ I(U1; U2|W1) − H(W2|W1) ≥ I(U1; U2|W1) − En,ε .

Also, I(W1; S 1) = I(W1; X1). This gives the following inner bound:

R1 ≥ I(X1; U1|W1,U2) + En,ε ,

R2 ≥ I(X2; U2|W1,U1) + 2En,ε ,

R1 + R2 ≥ I(W1; X1) + 3En,ε + I(X1; U1|W1),

+ I(X2; U2|W1) − I(U1; U2|W1) + θn,

Di ≥ E{di
(
hi(U1,U2,W1), Xi

)
}.

Qn is still playing a role in the calculation of the RD region by determining PX1,X2,W1,W2 ,

which in turn affects PU2 |X1,X2,W1 . The following lemma provides the means to eliminate this

dependency on Qn.

Lemma 15. Consider a probability distribution PX1,X2,W1,U1,U2 satisfying the Markov chains
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U1 ↔ (X1,W1) ↔ (X2,W1) ↔ U2 and W1 ↔ S 1 ↔ (X1, X2), where S 1 and S 2 are as

defined previously. let PS 1,W1 be the marginal distribution of (S 1,W1), take a quantizer

Qn from QPS ,W . Assume P′X1,X2,W1,W2 is the probability distribution induced by Qn. Let

P′U1 |X1,W1 = PU1 |X1,W1 and P′U2 |X2,W2 = PU2 |X2,W1 . Define:

P′X1,X2,W1,W2,U1,U2 = P′X1,X2,W1,W2 P′U1 |X1,W1 P′U2 |X2,W2 .

The following hold:

1)P′X1,X2,W1,U1,U2=̇PX1,X2,W1,U1,U2 ± ε

2)IP(X1; U1|W1,U2)=̇IP′(X1; U1|W1,U2) ± 2|X1||U1| log (
p1

p1 − ε
)

3)IP(X2; U2|W2,U1)=̇IP′(X2; U2|W2,U1) ± 2|X2||U2| log (
p2

p2 − ε
).

In the above equations, a=̇b±ε means a ∈ [b−ε, b+ε]. Also, IP(A; B|C) denotes the mutual

information with respect to P.

Proof. In the appendix. �

The lemma shows that for every probability distribution in theorem VI.7, there is a prob-

ability distribution in theorem VI.12, for which the above bounds are well-approximated

when calculated using one of the distributions instead of the other. Hence we can provide

an inner bound for the above rates by considering the distributions from the first theorem

and bounding the estimation error using lemma 15. Applying the estimation bounds gives

the region presented in theorem VI.7.

�

Finally, we show that the RD region in theorem VI.12 strictly contains the CC rate-

distortion region.
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Theorem VI.16. For the BOHO problem in [7], the RD region in theorem VI.12 achieves

points outside of the CC rate-distortion region.

Proof. Take U1 = φ, U2 = Z + X + W + Nδ0 and W = X + Nε + Nδ, where Nδ is Be(δ),Nδ0

is Be(δ0), and the quantization noises are independent of the sources and each other. The

reconstruction function is U2 + W = X + Z + Nδ0 . Consider the corner point where encoder

1 is transmitting W by itself and encoder 2 is binning its correlated quantization at rate

En,ε . The resulting RD vector approaches (R1,R2,D) = (1 − hb(δ), hb(p ∗ δ) − hb(δ0), δ0) as

ε′ → 0 and n → ∞. In [50] it was shown that these RD vectors are not achievable by the

CC scheme when ε′ , 0. By the same argument as in [7], it can be proved that there exist

n and ε′ for which the resulting rates are not achievable by the CC scheme. �

There can be highly correlated components between the sources given W1 and W2. In

this case, there must be several finite-length codebooks super-imposed on each other, one

for each of the highly correlated components. The inner bound presented here can be

extended to include these new layers.

145



APPENDICES

146



APPENDIX A

Proofs for Chapter II

A.1 Proofs for Section 2.4

A.1.1 Proof of Lemma 17

Proof. Let (Ri,DN)i∈L,N∈L ∈ RDS S C(PU,X) and (R′i ,D
′
N)i∈L,N∈L ∈ RDS S C(P′U,X). Without

loss of generality, assume U{1},{2},{3} = U′
{1},{2},{3}. Let Ũ{1},{2},{3} be defined on U{1},{2},{3}×{0, 1}.

Also let ŨM = UM ifM , {{1}, {2}, {3}λ}. For λ ∈ [0, 1], define a new distribution P̃Ũ,X as

follows:

P̃Ũ,X(ũ, x) =


λPU,X(u, x) ũ{1},{2},{3} = (u{1},{2},{3}, 0)

(1 − λ)P′U,X(u, x) ũ{1},{2},{3} = (u{1},{2},{3}, 1)

Then it is straightforward to check that λ(Ri,DN)i∈L,N∈L+(1−λ)(R′i ,D
′
N)i∈L,N∈L ∈ RDS S C(P̃Ũ,X).

�
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A.1.2 Proof of Lemma 19

Proof. We provide an outline of the proof. Fix M′ ∈ L. Consider a new scheme where

the reconstruction function at decoder M′ is defined as fM′ :
∏
M∈MM′

UM → X with

the rest of the reconstruction functions defined as in Theorem II.16. Let the RD vec-

tor (Ri,DN)i∈L,N∈L be achievable in the new scheme using the distribution PUSL ,X
and re-

construction functions fM′ , gM,M ∈ L\{N}. We provide a new probability distribution

PU′SL
,Xand reconstruction functions g′M : UM → X,M ∈ L to shows that the RD region given

in Theorem II.16 contains (Ri,DN)i∈L,N∈L. To construct the probability distribution define

U′
M

= UM,M ∈ SN\{{M′}}, and U′M′ = (UM′ , fM′(UMM′
)). As for the reconstruction func-

tions define g′M(UM) = gM(UM),M ∈ L\{N} and g′M′(U
′
M′) = fM′(UMM′

). It is straightforward

to check that with these parameters, the RD region in theorem II.16 contains (Ri,DN)i∈L,N∈L.

Intuitively, since the reconstruction functions are the same, the same distortion is achieved

by both schemes. As for the rates, in the first scheme, wherever UM′ is decoded, all of the

random variables UMM′
are also decoded. So, adding a function of these random variables

to UM′ does not require additional rate. �

A.1.3 Proof of Lemma 26

Proof. Let U{1} = Ŵ, U{1,2},{3} = W, U{1,2} = X̂1, U{3} = X̂2, where X̂i are the reconstructions

at decoder {i} in the two user problem in Example 14. Then it is straightforward to check

that the RD vector is achievable from Theorem II.16. Next, assuming the codebook C{1,2},{3}

is empty, we consider all of the remaining 16 codebooks in the SSC scheme and show that

the RD vector is not achievable.

Step 1: In this step, we argue that the only non-trivial codebooks are C{1}, C{3}, C{1},{3},C{1,2}

and C{2},{3}. Due to the structure of the problem, a number of the codebooks are functionally

equivalent, meaning they are decoded at exactly the same decoders. So we can merge these

codebooks without any loss. For example, description {2} is only received by decoders

{1, 2} and {1, 2, 3}, hence we can merge C{2} into C{1,2} without any loss. C{1,3},{23}, C{1,3}, C{2,3}
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and C{1,2,3} are only decoded at decoder {1, 2, 3} so they are redundant from the results in

[51]. C{1},{2} can be merged into C{1} since decoder {2} is not present. C{1},{2},{3} is equivalent

to C{1},{3} and can be eliminated. C{1,2},{1,3},{2,3}, C{1,2},{1,3} and C{1,2},{2,3} can be merged into

C{1,2}. Finally C{2,3},{1} can be merged with C{1}. Also C{1,2} can be merged with C{1,2,3} and

is eliminated. So we are left with four codebooks C{1}, C{3}, C{1},{3},C{1,2} and C{2},{3}.

Step 2: In this step, we show that if we set U{1},{3} = Ŵ and U{1} = φ , there would be no loss

in terms of RD function. The codebooks C{1} and C{1},{3} are decodable using description 1.

Since decoder {1} is at PtP optimality, these codebooks only carry Ŵ. To be more precise

there is a Markov chain
(
U{1},U{1},{3}

)
↔ Ŵ ↔ X, which we prove in the following lemma.

Lemma 1. In a PtP setup assume the decoder is at optimal PtP RD. It receives variables

UM, and the reconstruction function is f (UM). Then the following Markov chain holds

UM ↔ f (UM)↔ X.

Proof.

R ≥ I(UM; X)
(a)
= I( f (UM),UM; X) = I( f (UM); X) + I(UM; X| f (UM))

(b)
≥ R + I(UM; X| f (UM))⇒ I(UM; X| f (UM)) = 0,

where in (a) we used the fact that f (UM) is a function of UM and in (b) we used the PtP

optimality. �

Since Ŵ is decoded both at decoder {1} and {3}, if we replace U{1},{3} with (U{1},{3}, Ŵ),

the decoders decode the same random variables as before, so no extra rate is required. Also,

from the lemma
(
U{1},U{1},{3}

)
↔ Ŵ ↔ X. Hence, we conclude that we can set U{1},{3} = Ŵ

and U{1} = φ without any loss in terms of distortion.

Step 3: Assume there are random variables U{1},{3} and U{2},{3} = (W,U′{2},{3}) such that

the RD vector is achievable in the SSC scheme. From the Markov chain Ŵ ↔ W ↔ X,

description 1 is not used in the reconstruction in decoders {1, 2}, {3} and {1, 2, 3}. If we set
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U{1} = φ, the distortions constraint in decoders {1, 2}, {3} and {1, 2, 3} are satisfied. So we

have constructed a scheme to send the descriptions at a lower rate (by setting U{1} = φ)

without any loss in terms of distortion in these three decoders. This contradicts optimality

of the random variables chosen for the two user scheme.

A.1.4 Proof of Lemma 24 for l>3

We have proved that if C{12},{3} = φ, the RD vector is not achievable but if the constraint

is lifted the scheme can achieve this RD vector, so the codebook is non-redundant. For

the general l-descriptions problem, we provide an outline of the non-redundancy proof for

CH ,H ∈ SL. Let {a1,i, a2,i, . . . , ani,i}, i ∈ [1, k] be the elements of H . Then to construct an

example where CH is non-redundant, first consider a set up where for any i, each set of

three decoders {a1,i, a2,i, . . . , ani,i} and {a1,i+1, a2,i+1, . . . , ani+1,i+1} and

{a1,i, a2,i, . . . , ani,i, a1,i+1, a2,i, . . . , ani+1,i+1} are as in the two user setup in Example 14. Then

there should be a common component between each two of the descriptions. It is straight-

forward to show that the common components must be the same for all of the decoders,

otherwise since the codebooks are independent there would be a rate-loss as explained

in the previous section. We ensure that the common component can be decoded only

when all descriptions a1,ia2,i, . . . ani,ia1,i+1a2,i . . . ani+1,i+1 are received and not when a sub-

set of the descriptions is received. This is done by adding decoders {a1,i}, {a1,i, a2,i} through

{a1,i, a2,i, . . . ani,i, a1,i+1, a2,i+1, . . . ani+1,i+1} such that each of them would be at PtP optimality

by receiving a refined version of W (i.e {a1,i} would receive Ŵ and {a1,i, a2,i} would receive

a refinement of Ŵ and so on). In this way the only codebook that can carry W without

rate-loss is CH . �

A.1.5 Proof of Lemma 28

Proof. Let ρ{1,2},{1,3},2 + ρ{1,2},{1,3},3 > 0, description 1 carries Ŵ to decoder {1} with rate

I(Ŵ; X). Descriptions 2 and 3 send W to decoders {1, 2} and {1, 3} by sending a refinement

150



on C{1,2},{1,3}. In other words U{1} = Ŵ, U{1,2},{1,3} = W, U{1,2} = X̂1 and U{1,2} = X̂2 similar

to the proof of Lemma 26. Then one can check that the RD vector is achievable using the

SSC scheme. Next, assume ρ{1,2},{1,3},2 + ρ{1,2},{1,3},3 = 0, then ρ{1,2},{1,3},i = 0, i ∈ {2, 3}. As in

the previous section, we begin by eliminating the redundant codebooks for this communi-

cations setting.

Step 1: In this step we argue that only the codebooks C{1,3}, C{1,2} C{1} and C{1,2},{1,3} are

non-trivial. Due to the structure of this communications setting many of the codebooks are

functionally the same and can be merged together. The codebooks C{1},{2},{3}, C{1},{3}, C{1},{2},

C{2,3},{1} are decoded at all four of the decoders and can be merged with C{1}. C{1,3},{2,3} can

be merged with C{1,3} since decoder {2, 3} is not present, by the same argument C{1,2},{1,3},{2,3}

is concatenated with C{1,2},{1,3}, also C{1,2},{2,3} and C{1,2},{3} are merged with C{1,2}. C{1,3},{2}

and C{2},{3} are combined with C{1,2},{2,3}. Lastly since decoders 2 and 3 are not present, C{2}

and C{3} can be merged into C{1,2} and C{1,3}, respectively. So only the four codebooks C{1,3},

C{1,2} C{1} and C{1,2},{1,3} remain.

Step 2: By the same arguments as in step 2 of Lemma 26, we can set U{1} = Ŵ.

Step 3: By assumption, the codebook C{1,2},{1,3} is only carried by the first description. How-

ever, the codebook is not decoded at decoder {1}. Since the decoder is at PtP optimality,

C{1,2},{1,3} can’t be sent through the first description either (i.e ρ{1,2},{1,3},1 = 0 and C{1,2},{1,3}

can be eliminated.).

Step 4: After Fourier-Motzkin elimination, the covering and packing bounds for the re-

maining three codebooks give the following inequality,

R1 + R2 + R3 ≥ I(U{1,2},U{1,3}; X|Ŵ) + I(U{1,3}; U{1,2}|Ŵ) + I(Ŵ; X) (A.1)

By the definition of Ŵ we have Ŵ ↔ W ↔ X and I(Ŵ; X) < I(W; X), so the bound above

is strictly larger than the case when Ŵ is replaced by W (i.e. when U{1,2},{1,3} = W.). This

concludes the proof.
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�

A.2 Proofs for Section 2.5

A.2.1 Proof of Lemma 31

Proof.

1
n

E(dH(X̂n ⊕2 Ẑn, Xn ⊕2 Zn)) =
1
n

E(wH(X̂n ⊕2 Ẑn ⊕2 Xn ⊕2 Zn))

=
1
n

E(wH(Xn ⊕2 X̂n ⊕2 Zn ⊕2 Ẑn))

=
1
n

E(dH(Xn ⊕2 X̂n,Zn ⊕2 Ẑn)).

Note that Xn⊕2 X̂n is the quantization noise of quantizing Xn and Zn⊕2 Ẑn is the quantization

noise of quantizing Zn. Since the source vectors are independent, the noise vectors are also

independent and the summation converges to δ ∗ δ (The arguments are similar to the ones

given in [7].).

�

A.2.2 Proof of Lemma 32

Proof. We assume that there exists a probability distribution P on X and USL for which the

RD vector is achievable using the SSC scheme and arrive at a contradiction. Since all of

the decoders are present in this setup, we need to consider the SSC with all the codebooks

present, so the proof is more involved than the proofs in the previous section.

Step 1: In this step we show that description i, where i = 1, 2, does not carry any bin

indices for codewords from codebook CM if M < M{i}. Descriptions 1 and 2 only carry

indices which are used in the reconstruction at decoders {1} and {2}, respectively. This is

true since these two decoders are receiving information at optimal PtP rate-distortion. Note

that this does not mean the corresponding codebooks are empty, we can only conclude
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that no bin indices for the codewords are sent through these descriptions. For example if

M = {{2}, {1, 3}} and i = 1, then ρM,i = 0.

Lemma 2. For i ∈ {1, 2}, andM such that {i} <M, ρM,i = 0.

Proof. From optimality at decoder {1} we have the following equality:

Ri = I(UM{i}; X,Z) (A.2)

Consider the following covering bound on the random variables UM{i}:

H(UM{i} |X,Z) ≥
∑
M∈M{i}

(H(UM)−rM), (A.3)

also we have the following packing bound at decoder {i}:

H(UM{i}) ≤
∑
M∈M{i}

(H(UM) + ρM,i − rM), (A.4)

adding (A.3) and (A.4) we get:

∑
M∈M{i}

ρM,i ≥ I(UM{i}; X,Z), (A.5)

Ri =
∑
M∈SL

ρM,i, comparing this equality with (A.2) completes the proof. �

Step 2: In this step, we show that there are no common codebooks decoded at decoders

{1} and {2}. Since decoder {1, 2} receives descriptions 1 and 2 at optimal RD from a PtP

perspective, the random variables decoded at decoder {1} must be independent of those

decoded at decoder {2}. From the next lemma we have that if M ∈ M{1}
⋂

M{2} then

rM = 0.

Lemma 3. Consider the setup in Figure 2.1, let (R1,R2,D1,D2,D{1,2}) be such that R1+R2 =

RDd{1,2}(D{1,2}), where RDd(D) is Shannon’s optimal PtP RD function for distortion function
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d at point D. For any distribution PU{1},U{2},U{1,2},U{1},{2} which achieves this RD vector, the

following conditions must hold: 1)U{1} y U{2} and C{1},{2} = φ

2)If in addition Ri = RDd{i}(Di), i ∈ {1, 2} then, U{1,2} ↔ (U{1},U{2})↔ X.

Proof. Consider the following packing bounds:

Dec {1} : H(U{1},{2},U{1}) ≤ H(U{1},{2})+H(U{1}) +ρ{1},{2},1+ρ{1},1−r{1},{2}−r{1} (A.6)

Dec {2} : H(U{1},{2},U{2}) ≤ H(U{1},{2})+H(U{2}) +ρ{1},{2},2+ρ{2},2−r{1},{2}−r{2} (A.7)

Dec {1, 2} : H(U{1,2}|U{1},{2},U{1},U{2}) ≤ H(U{1,2}) +ρ{1,2},1 +ρ{1,2},2−r{1,2} (A.8)

Also the mutual covering bound:

H(U{1,2},U{1},U{2},U{1},{2}|X) ≥ (A.9)

H(U{1,2}) + H(U{1}) + H(U{2}) + H(U{1},{2}) − r{1,2} − r{1} − r{2} − r{1},{2} (A.10)

Now we add inequalities (A.6-A.8) and subtract (A.10), we get:

I(U{1,2},U{1},U{2},U{1},{2}; X) + I(U{1}; U{2}|U{1},{2}) ≤ R1 + R2 − r{1},{2}

Using the condition R1 + R2 = RDd12(D{1,2}) we conclude:

I(U{1}; U{2}|U{1},{2}) + r{1},{2} ≤ 0 (A.11)

From (A.11) one may deduce C{1},{2} = φ and U{1} y U{2}. Furthermore we get:

R1 + R2 = I(U{1,2},U{1},U{2}; X) = I(U{1}; X)+I(U{2}; X)+I(U{1}; U{2}|X) +I(U{1,2}; X|U{1},U{2}),
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where the right-hand side of the second equality is the sum-rate of the two-descriptions

problem. Using the conditions Ri = RDdi(Di), i ∈ {1, 2}, we have:

I(U{1}; U{2}|X)+I(U{1,2}; X|U{1},U{2}) = 0.

So I(U{1,2}; X|U{1},U{2}) = 0, which gives the desired Markov chain in (2). �

Assuming the original scheme achieves the RD vector in the theorem, we give a new

scheme which also achieves the RD vector. We propose that the encoder operates as before,

but decoder {1, 2} decodes UM only ifM ∈M{1} orM ∈M{2}. It needs to be shown that the

RD vector is the same. First we consider the resulting rates. The covering bounds are not

changed. The packing bounds are the same at all decoders other than decoder {1, 2} since

the same variables are being decoded at those decoders. M{1}∩M{2} = φ. Let M̃{1} and M̃{2}

be subsets of M{1} and M{2}. We need to show that the following packing bound is satisfied:

H(UM{1} ,UM{2} |UM̃{1} ,UM̃{2}) ≤
∑

M∈M{1}∪M{2}\M̃{1}∪M̃{1}

(H(UM) + ρM,1 + ρM,2 − rM) (A.12)

We have the following two packing bounds from decoders {1} and {2}:

H(UM{1} |UM̃{1}) ≤
∑

M∈M{1}\M̃1

(H(UM) + ρM,1 − rM) (A.13)

H(UM{2} |UM̃{2}) ≤
∑

M∈M{2}\M̃1

(H(UM) + ρM,2 − rM) (A.14)

Note that from arguments in Lemma 3, UM{1} is independent of UM{2} . Hence adding

(A.13) and (A.14), we get (A.12). This proves that the packing bounds are also the same.

From lemma 3, we have UM{1,2} ↔ UM{1} ,UM{2} ↔ X,Z. Lemma 4 shows that the new

scheme achieves the same distortions as the previous one.

Lemma 4. Let the random variables U,V, X be such that U ↔ V ↔ X. Then for an

arbitrary distortion function f : X× X̂→ R+, there is an optimal reconstruction of X using
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U and V which is a only function of V.

Proof. We know that the optimal reconstruction function for X given U and V is given by:

g(u, v) = arg min
x̂∈X̂

E( f (x̂, X)|u, v) = arg min
x̂∈X̂

E( f (x̂, X)|v),

which is only a function of V . �

By these arguments, codebook UM is eliminated ifM ∈ M{1,2}\M̃{1,2}. Also in the new

scheme, U{1,2},{1,3},{2,3} and U{1,3},{2,3} are functionally similar since by the same arguments

as in this step U{1,2},{1,3},{2,3} is not used in the reconstruction in decoder {1, 2} , so we can

eliminate C{1,2},{1,3},{2,3}. In summary, thus far we have eliminated 7 codebooks.

Step 3: We have the following lemma:

Lemma 5. From optimality of rate and distortion at decoders {1, 3}, {2, 3} we have:

ρ{2,3},3 = ρ{1,3},3 = ρ{2,3},{1},3 = ρ{1,3},{2},3 = 0

Proof. First we argue that ρ{2,3},3 = 0. If this is not true, it contradicts optimality at decoder

{1, 3}. U{2,3} is not decoded at decoder {1, 3}, but its bin index is carried through description

3. So if the bin index is non-zero, one could reduce R3 by setting the bin index equal to 0

without increasing distortion at decoder {1, 3}, this contradicts optimality at that decoder.

By the same arguments ρ{1,3},3 = 0. Now assume ρ{2,3},{1},3 , 0. We show that this contradicts

optimality at decoder {1, 3}. U{2,3},{1} is decodable using description 1 (since it is decodable

at decoder {1}). Hence, if we set ρ{2,3},{1}},3 to 0 (i.e. do not send the bin index on description

3), then decoder {1, 3} can still decode U23,1 using description 1. So the distortion is the

same at this decoder, but the rate R3 is reduced which contradicts optimality. By the same

arguments, ρ{13,2},3 = 0. �

Step 4: We proceed by showing that r{1,3} = r{2,3} = 0. So far we have shown that none of

the descriptions carry the bin indices for these codebooks.Consider the following packing
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bounds in decoders {1}, {2, 3} and {1, 3}:

H(U{1}U{1},{3}U{2,3},{1}) ≤ H(U{1}) + H(U{1},{3}) + H(U{2,3},{1}) + R1 − r{1} − r{1},{3} − r{2,3}{1}

H(U{2}U{3}U{1},{3}U{2},{3}U{2,3}U{1,3},{2}U{2,3},{1}U{1,3}{2,3}) ≤ H(U{2}) + H(U{3}) + H(U{1},{3})+

H(U{2}{3}) + H(U{2,3}) + H(U{1,3},{2}) + H(U{2,3},{1}) + H(U{1,3},{2,3}) + R2 + R3 − r{2}

− r{3} − r{1}{3} − r{2},{3} − r{2,3} − r{1,3}{2} − r{2,3}{1} − r{1,3}{2,3}

H(U{1,3}|U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3}{2,3}) ≤ H(U{1,3}) − r{1,3}

We add the above inequalities and subtract the mutual covering bound on all RV’s, we get:

H(U{1}U{1},{3}U{2,3},{1}) + H(U{2}U{3}U{1},{3}U{2},{3}U{2,3}U{1,3},{2}U{2,3},{1}U{1,3}{2,3})

+ H(U{1,3}|U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3}{2,3})

− H(U{1},U{2},U{3},U{1},{3},U{2},{3},U{1,3},{2},U{2,3},{1},U{2,3},U{1,3},{2,3},U{1,3}|X,Z)

≤ H(U{1,3}) + H(U{2,3},{1}) − r{1,3} − r{2,3},{1} + R1 + R2 + R3

⇒ I(U{1,3}|U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3}{2,3}; X,Z) + I(U{1},U{1},{3}U{2,3},{1}; X,Z)+

I(U{1,3}; X,Z|U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3}{2,3}) ≤ R1 + R2 + R3

⇒ I(X,Z; U{1,3}|U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3}{2,3}) = 0.

This imposes the Markov chain U{1,3} ↔ U{1}U{3}U{1},{3} U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3}{2,3} ↔

X,Z. Hence by the same arguments as in step 2, we can eliminate C{1,3}. Also by the same

arguments C{2,3} can be eliminated.

Step 5: In this step we eliminate C{1},{3} and C{2},{3}.

Lemma 6. The following equality holds:

ρ{1},{3},1 = ρ{1},{3},3 = ρ{2},{3},2 = ρ{2},{3},1 = 0

Proof. Assume ρ{1},{3},1 > 0. We claim this contradicts optimality at decoder {1, 3}, since

157



U{1},{3} can readily be decoded from the bin number carried by description 3, so setting

ρ{1},{3},1 to 0 would decease rate without increasing distortion. The rest of the proof follows

by the same argument. �

Now consider the following packing bounds at decoders {1}, {3} and {1, 3} and the

mutual covering bound:

H(U{1}U{1},{3}U{2,3},{1}) ≤ H(U{1}) + H(U{1},{3}) + H(U{2,3},{1}) + R1 − r{1} − r{1},{3} − r{2,3}{1}

H(U{3}U{1},{3}U{2},{3}) ≤ H(U{3}) + H(U{1},{3}) + H(U{2}{3}) + R3 − ρ{1,3}{2,3},3 − r{3} − r{1}{3} − r{2},{3}

H(U{1,3},{2,3},U{1,3}{2}|U{1}U{3}U{1},{3}U{2},{3}U{2,3},{1}) ≤

H(U{1,3},{2,3}) + H(U{1,3},{2}) + ρ{1,3}{2,3},3 − r{1,3},{2,3}

H(U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3},{2,3}|X,Z) ≥

H(U{1}) + H(U{3}) + H(U{1},{3}) + H(U{2},{3}) + H(U{1,3}{2}) + H(U{2,3},{1}) + H(U{1,3},{2,3})

− r{1} + r{3} − r{1},{3} − r{2},{3} − r{1,3},{,2} − r{2,3},{1} − r{1,3},{2,3}.

Adding the above packing bounds and subtracting the mutual covering bound we get:

H(U{1}U{1},{3}U{2,3},{1}) + H(U{3}U{1},{3}U{2},{3})

+ H(U{1,3},{2,3},U{1,3}{2}|U{1}U{3}U{1},{3}U{2},{3}U{2,3},{1})

− H(U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3},{2,3}|X,Z) ≤ R1 + R3 + H(U{1}{3} − r{1},{3}

⇒ I(U{1}U{1},{3}U{2,3},{1}; U{3}U{1},{3}U{2},{3})+

I(U{1}U{3}U{1},{3}U{2},{3}U{1,3}{2}U{2,3},{1}U{1,3},{2,3}|X,Z) − H(U{1},{3}) ≤ R1 + R3 − r{1},{3}

⇒ I(U{1}U{2,3},{1}; U{3}U{2},{3}|U{1},{3}) + r{1},{3} ≤ 0.

Particularly r{1},{3} = 0, by the same arguments r{2},{3} = 0.

Step 6: So far we have shown that only C{1},C{2},C{3},C{1,3},{2},C{2,3},{1} and C{1,3}{2,3} can be

non-trivial. From optimality at decoders {1} and {1, 3} we have the following equalities:
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R1 = I(U{1},U{2,3},{1}; X,Z),R1 + R3 = I(U{1},U{2,3},{1},U{3},U{1,3},{2},U{1,3},{2,3}; X,Z) (A.15)

Hence we have:

R3 = I(U{3},U{1,3},{2},U{1,3},{2,3}; X,Z|U{1},U{2,3},{1}) (A.16)

Define the following:

N1
δ , X + h{1}(U{1},U{2,3},{1}) (A.17)

N3
δ∗δ , X + Z + h{3}(U{3}) (A.18)

N1,3
δ , Z + h{1,3}(U{1},U{2,3},{1},U{3},U{1,3},{2},U{1,3},{2,3}), (A.19)

where h{1} is the reconstruction of X at decoder {1}, h{3} is the reconstruction of X + Z at

decoder {3}, and h{1,3} is the reconstruction of Z at decoder {1, 3}. Then from (A.16):

R3 ≥ I(h{1,3}(.), h{3}(U{3}); X,Z|U{1},U{2,3},{1}h{1}(.))

⇒ R3 ≥ I(Z + N1,3
δ , X + Z + N3

δ∗δ; X,Z|U{1},U{2,3},{1}, X + N{1}δ ))

⇒ R3 ≥ H(Z|U{1},U{2,3},{1}, X + N{1}δ )

− H(Z|Z + N1,3
δ , X + Z + N3

δ∗δ,U{1},U{2,3},{1}, X + N{1}δ )

⇒ R3
(a)
≥ 1 − H(Z|Z + N1,3

δ , X + Z + N3
δ∗δ,U{1},U{2,3},{1}, X + N{1}δ )

⇒ R3 ≥ 1 − H(Z|Z + N1,3
δ )

⇒ R3 ≥ 1 − H(N1,3
δ |Z + N1,3

δ )

(b)
⇒ R3 ≥ 1 − hb(δ)
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All the above inequalities must be equality. In particular we have:

(a)⇒ Z ↔ Z + N1,3
δ ↔ X + Z + N3

δ∗δ, X + N{1}δ

⇒ N1,3
δ ↔ Z + N1,3

δ ↔ Z + N3
δ∗δ + N{1}δ

⇒ N1,3
δ ↔ Z + N1,3

δ ↔ N1,3
δ + N3

δ∗δ + N{1}δ

Note that from (b), we can conclude that Z is independent of N1,3
δ , we have N1,3

δ and N1,3
δ +

N3
δ∗δ + N{1}δ are independent. Define N′ , N3

δ∗δ + N{1}δ . We have:

P(N{1,3}δ + N′ = 0)
(a)
= P(N{1,3}δ + N′ = 0|N{1,3}δ = 0) = P(N′ = 0|N{1,3}δ = 0)

(b)
⇒ P(N′ = 0,N{1,3}δ = 0) = (1 − δ)(P(N′ = 0,N{1,3}δ = 0) + P(N′ = 1,N{1,3}δ = 1))

⇒ P(N′ = 0,N{1,3}δ = 0) =
1 − δ
δ

P(N′ = 1,N{1,3}δ = 1)

(a) holds since N1,3
δ and N1,3

δ +N3
δ∗δ+N{1}δ are independent. In (b) we have replaced P(N{1,3}δ +

N′ = 0) by P(N′ = 0,N{1,3}δ = 0) + P(N′ = 1,N{1,3}δ = 1).

Define a , P(N′ = 1,N{1,3}δ = 1), then by the same calculations P(N′ = 1,N{1,3}δ = 0) =

(1 − δ)(1 − 1
δ
a), so P(N′ = 1) = 1 − δ + 2δ−1

δ
a. Note a = P(N′ = 1,N{1,3}δ = 1) ≤ P(N{1,3}δ =

1) = δ, hence using P(N′ = 1) = 1 − δ + 2δ−1
δ

a, we get P(N′ = 1) ≤ δ with equality if and

only if a = δ. Also note that Z + N′ is available at decoder {1, 3} so P(N′ = 1) = δ and

a = δ, otherwise there is a contradiction with optimality of h{1,3}. If a = δ, then N{1,3}δ is

equal to N′. So by the same arguments we have:

N{3}δ∗δ = N{1,3}δ + N{1}δ = N{2,3}δ + N{2}δ ,
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where

N2
δ , Z + h{2}(U{2},U{1,3},{2}) (A.20)

N2,3
δ , Z + h{2,3}(U{2},U{1,3},{2},U{3},U{2,3},{1},U{1,3},{2,3}) (A.21)

Since N{1}δ y N{2}δ , N{1} y N{1,3} and N{2} y N{2,3}, we have:

N{1,3}δ = N2
δ ,N

{2,3}
δ = N{1}δ ,N

{3}
δ∗δ = N1

δ + N2
δ

We argue that C{1,3},{2},C{2,3},{1} and C{1,3}{2,3} can be taken eliminated without any loss in RD.

To prove this assume we have a scheme with PU{1,3},{2},U{2,3},{1},U{1,3}{2,3},U{1},U{2},U{3} . Construct new

random variables Ũ{1} = X + N{1}δ ,U{1},U{1},{2,3}, Ũ{2} = Z + N{2}δ ,U{2},U{2},{1,3} and Ũ3 = U{3}

and eliminate the rest of the codebooks. From the independence relations above, the pack-

ing bounds would stay the same. Since we have merged codebooks, the covering bounds

would loosen, and it is straightforward to see that the reconstructions at each decoder are

still the same. We are left with four codebooks, C{1},C{2} and C{3}. Note that since decoder

{1} is only decoding C{1} we must have ρ{1},1 = r{1} = R1. This is deduced from the packing

bound in decoder {1}:

H(U{1}) ≤ H(U{1}) + ρ{1},1 − r{1} ⇒ r{1} ≤ ρ{1},1

But ρ{1},1 ≤ r{1} so they are equal. The same argument gives ρ{2},2 = r{2} = R2, and ρ{3},3 =

r{3} = R3. Also, from optimality at the joint decoders and lemma 3, we have Ui y U j,∀i ,

j.

H(U{1},U{2},U{3}|X,Z) ≥ H(U{1} + H(U{2} + H(U{3} − R1 − R2 − R − 3

⇒ I(U{1},U{2},U{3}; X,Z) + I(U{3}; X,Z,U{1},U{2}) ≤ R1 + R2 + R3

⇒ I(U{3}; X,Z,U{1},U{2}) ≤ R3 (A.22)
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Note that R1 + R3 = I(U{1},U{3}; X,Z) and R1 = I(U{1}; X) from optimality at decoders {1}

and {1, 3}. So R3 = I(U{3}; X,Z|U{1}). Replacing R3 into (A.22), we get I(U{3}; U{2}|U{1}, X,Z) =

0. So we have the Markov chain U{3} ↔ U{1}, X,Z ↔ U{2}. By the same arguments

we can derive the Markov chain U{3} ↔ U{2}, X,Z ↔ U{1}. Using lemma 7 and the

previous two Markov chains we get U{3} ↔ X,Z ↔ U{1},U{2}. Take the Markov chain

U{3} ↔ X,Z ↔ U{1}, along with Z y X,U{1} we get U{3},Z ↔ X ↔ U{1}. Also from the

optimality of the reconstruction of X at decoders {1} and {1, 3}, we have:

I(U{1}; X) = I(U{1},U{3}; X)⇒ I(U{3}; X|U{1}) = 0.

From the above and Z y X,U{1}, we conclude U{3},Z ↔ U{1} ↔ X. Applying Lemma 7 we

get Z,U{3} y X,U{1}.

Lemma 7. Let A,B,C and D be RV’s such that A ↔ B,C ↔ D and A ↔ B,D ↔ C, and

also assume there is no b ∈ B for which given B = b there are non-constant functions fb(C)

and gb(D) with fb(C) = gb(D) with probability 1. Then A↔ B↔ C,D.

Proof. This lemma is a generalization of the one in [50]. We need to show that p(A =

a|B = b,C = c,D = d) = p(A = a|B = b,C = c′,D = d′) for any a, b, c, c′, d, d′.

Note since functions fb and gb do not exist, it is straightforward to show that there is a

finite sequence of pairs (ci, di) such that (c1,D{1}) = (c, d) and (cn, dn) = (c′, d′) with the

property that either ci = ci+1 or di = di+1 and that p(B = b,C = ci,D = di) , 0. Then

from the first Markov chain if di = di+1, we have p(A = a|B = b,C = ci,D = di) =

p(A = a|B = b,C = ci+1,D = di+1), also if ci = ci+1 the second Markov chain gives this

result. So p(A = a|B = b,C = ci,D = di) is constant on all of the sequence particularly

p(A = a|B = b,C = c,D = d) = p(A = a|B = b,C = c′,D = d′). �
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Let g(U{1},U{3}) be the reconstruction of Z at decoder {1, 3}. We have:

∑
z,u{1},u{3}

p(z, u{1}, u{3})dH(g(u{1}, u{3}), z) ≤ δ⇒
∑
u{1}

p(u{1})
∑
z,u{3}

p(z, u{3})dH(g(u{1}, u{3}), z) ≤ δ

So there is at least one u{1} ∈ U{1} such that
∑

z,u{3} p(z, u{3})dH(g(u{1}, u{3}, z) ≤ δ. Let

gu{1}(U{3}) = g(u{1},U{3}) be the reconstruction of Z using U{3}. By the same argument

we can find a reconstruction of X using U{3}, then I(U{3}; X,Z) ≥ 2(1 − hb(δ)) from a PtP

perspective which is a contradiction. �

A.2.3 Proof of Lemma 35

Proof. We provide an outline of the proof here, the arguments are similar to the ones in the

previous proofs.

Step 1: I Any codebook which is not decoded at decoders {1}, {1, 2}, {2, 3}, {3, 4} and

{4} is redundant. This implies that there are at most only 17 codebooks which are non-

redundant. These codebooks are C{1} , C{1},{2,3}, C{1},{3,4}, C{1},{4} ,C{1},{2,3},{3,4}, C{1},{4},{2,3},C{4},

C{4},{2,3},C{4},{1,2}, C{4},{2,3},{1,2},C{1,2},C{2,3}, C{3,4}, C{1,2},{2,3} ,C{1,2},{3,4}, C{2,3},{3,4} andC{1,2},{2,3},{3,4}.

Step 2: In this step we prove that the only non-trivial codebook decoded at decoder {i} is C{i}

for i = 1, 4. All possible codebooks decoded at decoder {1} are C{1}, C{1},{2,3}, C{1},{3,4},C{1},{4},

C{1},{2,3},{3,4} and C{1},{2,3},{4}. From optimality at decoder {1, 2}, C{1},{2,3} is redundant. The

reason is ρ{1},{2,3},2 = 0 otherwise we can set it to zero without any loss in distortion at

decoder {1, 2} which contradicts optimality, also any random variable that description {3}

carries must be used in reconstructing Z at decoder {3, 4} because that decoder is at op-

timality, which means ρ{1},{2,3},3 = 0 so the codebook is decoded at decoder {2, 3} but not

sent through either description {2} or {3}, from similar arguments as before the codebook

is redundant. Same arguments can be provided to deduce redundancy of C{1},{3,4}, C{2,3},

C{1},{2,3},{3,4} and C{1},{2,3},{4}. This implies that only C{1} is decoded at decoder {1} and C{4} at

163



decoder {4}.

Step 3: We proceed with eliminating C{1,2},{3,4} and C{1,2},{2,3},{3,4}. Using the PtP optimality

of decoder {1, 2} we have:

I(U{1},U{1,2},U{1,2},{2,3},U{1,2},{3,4},U{1,2},{2,3},{3,4}; X) =

R1 + R2
(a)
≥ I(U{1},U{1,2},U{1,2},{2,3},U{1,2},{3,4},U{1,2},{2,3},{3,4}; X,Z)

where (a) follows from the usual PtP source coding results. Comparing the LHS with the

RHS we conclude the Markov chain U{1},U{1,2},U{1,2},{2,3},U{1,2},{3,4},U{1,2},{2,3},{3,4} ↔ X ↔

Z. In particular we are interested in U{1,2},{3,4},U{1,2},{2,3},{3,4} ↔ X ↔ Z. By the same argu-

ments and using the optimality at decoder {3, 4}, we get U{1,2},{3,4},U{1,2},{2,3},{3,4} ↔ Z ↔ X.

These two Markov chains along with lemma 7 prove U{1,2},{3,4},U{1,2},{2,3},{3,4} y X,Z. So

these two variables are not used in reconstructing the source and the corresponding code-

books are eliminated.

Step 4: The only remaining codebooks are C{1}, C{4}, C{1,2}, C{3,4}, C{1,2},{2,3} and C{2,3},{3,4}.

From optimality at decoders {1, 2} and {3, 4}we must have U{1},U{1,2},U{1,2},{2,3} ↔ (X,Z)↔

U{4},U{3,4},U{2,3},{3,4}, also U{1},U{1,2},U{1,2},{2,3} ↔ X ↔ Z and X ↔ Z ↔ U{4},U{3,4},U{2,3},{3,4}.

From lemma 8, we get U{1},U{1,2},U{1,2},{2,3} ↔ X ↔ Z ↔ U{4},U{3,4},U{2,3},{3,4}.

Lemma 8. For random variables A,B,C,D, the three short Markov chains A ↔ (B,C) ↔

D, A↔ B↔ C and B↔ C ↔ D are equivalent to the long Markov chain A↔ B↔ C ↔

D.

Proof. We only need to show that A ↔ B ↔ D, the rest of the implications of the long

Markov chain are either direct results of the three short Markov chains or follow by sym-
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metry. For arbitrary a, b, d we have:

P(D = d|B = b, A = a)=
∑
c∈C

P(C = c|B = b, A = a)P(D = d|A = a, B = b,C = c)

=
∑
c∈C

P(C = c|B = b)P(D = d|B = b,C = c) = P(D = d|B = b)

�

We get an inner bound for R2 + R3 at decoder {2, 3}:

R2 + R3 ≥ min I(U,V; X,Z) = H(X,Z) = 1 + hb(p),

where the minimum is taken over all PU,V |X,Z for which the long Markov chain U ↔ X ↔

Z ↔ V is satisfied and (U,V) produce a lossless reconstruction of X + Z. This resembles

the distributed source coding problem in [18]. So the RD vector can’t be achieved using

random codes. �

A.2.4 Proof of Lemma 39

Proof. In this proof we use bold letters to denote vectors and matrices. Fix integers n, l, l′

and k. Choose the elements of the matrices ∆Gl×n, ∆G′k′×n and Gk×n and vectors Bn and B′n

randomly and uniformly from Fq. The codebooks Cn
o and C′no are defined as follows:

Co = {aG + m∆G + B|a ∈ Fk
q,m ∈ F

l
q}

C′o = {bG + m′∆G′ + B′|b ∈ Fk
q,m

′ ∈ Fl′
q }
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For a typical sequence x with respect to PX, we define θ(x) as the function which counts

the number of codewords in Co and C′o jointly typical with respect to PXUV :

θ(x) =
∑

u∈C′o,v∈Co

I{(u, v) ∈ An
ε (U,V |x)}

=
∑
m,m′

∑
a,b∈Fk

q

∑
(u,v)∈An

ε (U,V |x)

I{aG + m∆G + B = u,bG + m′∆G′ + B′ = v}

Our goal is to find bounds on n, l, l′ and k such that P(θ(x) = 0)→ 0 as n→ ∞.

For a ∈ Fk
q and m ∈ Fl

q, we denote the corresponding codeword as g(a,m) := aG +

m∆G + B. Similarly define g′(b,m′) := bG + m′∆G′ + B′ for any b ∈ Fk
q and m′ ∈ Fl′

q . The

following lemma proves several results on the pairwise independence of the codewords.

Lemma 9. The following hold:

1. g(a,m) and g′(b,m′) are distributed uniformly uniform over Fn
q.

2. If a , ã, then g(a,m) is independent of g(ã,m).

3. If b , b̃, then g′(b,m′) is independent of g′(b̃,m′).

4. If B and B′ are chosen independently and uniformly over Fn
q, then g(b,m′) and

g′(a,m) are independent.

Proof. Follows from [29], and the fact that B,B′ are independent and uniform. �

We intend to use Chebyshev’s inequality to obtain:

P{θ(X) = 0} ≤
4var{θ(X)}
E{θ(X)}2

→ 0
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Lemma 10. For X ∈ A(n)
ε (X) we have the following bound on var{θ(X)}

E{θ(X)}2 :

var{θ(X)}
E{θ(X)}2

≤
q2n

ql+l′q2k 2−n(H(U,V |X) +
qn

ql+l′qk 2−n(H(U |X))

+
qn

ql+l′qk 2−n(H(V |X)) +
qn

ql+l′qk 2−n(H(U,V |X)−maxi,0 H(U,V |X,V+iU))

+
qn

qlqk 2−n(H(U |X)) +
qn

ql′qk 2−n(H(V |X)) +
1
ql +

1
ql′ +

1
ql+l′ . +

1
ql+k +

1
ql′+k

Proof. We calculate the expected value of θ(X) for any X ∈ A(n)
ε (X):

E{θ(X)} =
∑

x∈An
ε (X)

∑
m∈Fl

q

m′∈Fl′
q

∑
a,b

∑
(u,v)∈An

ε (U,V |x)

P(x) P{g(a,m) = u, g′(b,m′) = v}

=
∑
m,m′

∑
x∈A(X)

∑
a,b

|An
ε (U,V |x)|P(x)

1
q2n =

ql+l′q2k

q2n 2n(H(U,V |X)+O(ε))

Also:

E{θ(X)2} =
∑
m,m̃

m′,m̃′

∑
a,ã

∑
b,b̃

∑
(u,v)

∑
(ũ,ṽ)∈An

ε (U,V |x)

P{g(a,m) = u, g(ã, m̃) = ũ, g′(b,m′) = v, g′(b̃, m̃′) = ṽ}

(A.23)

Using Lemma 9:

PS , P{g(a,m) = u, g(ã, m̃) = ũ, g(b,m′) = v, g(b̃, m̃′) = ṽ}

=
1

q2n × P{g0(a − ã,m − m̃) = u − ũ, g′0(b − b̃,m′ − m̃′) = v − ṽ}

At this point we have to consider several different cases for the values of a, ã,b, b̃,m, m̃,m′, m̃′.

1) m = m̃,m′ = m̃′

1.1: a = ã,b = b̃⇒ Ps = 1
q2n δ(u − ũ)δ(v − ṽ)

1.2: a = ã,b , b̃⇒ Ps = 1
q3n δ(u − ũ)

1.3: a , ã,b = b̃⇒ Ps = 1
q3n δ(v − ṽ)
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1.4: a , ã,b , b̃⇒ Ps =
∑
α∈Fq

1
q3n δ(u− ũ−α(v− ṽ))+ 1

q4n (1−
∑
α∈Fq

δ(u− ũ−α(v− ṽ)))

2) m , m̃,m′ = m̃′

2.1: a = ã,b = b̃⇒ Ps = 1
q3n δ(v − ṽ)

2.2: a = ã,b , b̃⇒ Ps = 1
q4n

2.3: a , ã,b = b̃⇒ Ps = 1
q3n δ(v − ṽ)

2.4: a , ã,b , b̃⇒ Ps = 1
q4n

Cases when m = m̃,m′ , m̃′ and m , m̃,m′ , m̃′ are similarly considered but the

derivations are omitted for brevity. Considering cases 1.1−4:

E{θ(x)2|m = m̃,m′ = m̃′} =
∑
m,m′

[∑
a=ã

∑
b=b̃

∑
(u,v)∈An

ε (U,V |x)

1
q2n +

∑
a=ã

∑
b,b̃

∑
(u,v),(u,ṽ)

1
q3n (A.24)

+
∑
a,ã

∑
b=b̃

∑
(u,v),(ũ,v)

1
q3n +

∑
α∈Fq\{0}

∑
a,ã

∑
b,b̃

b−b̃=α(a−ã)
α∈Fq\0

∑
(u,v),(ũ,ṽ)

v−ṽ=α(u−ũ)

1
q3n +

∑
α∈Fq−{0}

∑
a,ã

∑
b,b̃

b−b̃,α(a−ã)
α∈Fq\0

∑
(u,v),(ũ,ṽ)

v−ṽ,α(u−ũ)

1
q4n

]

(A.25)

Consequently:

E{θ(X)2|m′ = m̃,m′ = m̃′}

≤
ql+l′q2k

q2n 2n(H(U,V |X)) +
ql+l′q3k

q3n 2n(H(U,V |X)+H(V |X,U)) +
ql+l′q3k

q3n 2n(H(U,V |X)+H(U |X,V))+

ql+l′q3k

q3n 2n(H(U,V |X)+maxα,0 H(U,V |X,V+αU)) +
ql+l′q4k

q4n 22n(H(U,V |X)),

where we have used Lemma 8 in [47] to get the fourth term. After considering all the cases,

the only non-redundant bounds are the ones mentioned in the lemma. �
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So, the following bounds need to be satisfied:

ro + r′o ≥ 2 log q − H(U,V |X)

ro + r′o − ri ≥ log q −min{H(U |X),H(V |Z)}

ro + r′o − ri ≥ log q − H(U,V |X) + max
α,0

H(U,V |X,V + αU)

ro ≥ log q − H(U |X))

r′o ≥ log q − H(V |X))

min{ro, r′o} ≥ ri

Observe that

H(U,V |X,V+ αU) = H(U,V,V+αU |X) − H(V+αU |X) = H(U,V |X) − H(V + αU |X)

�

A.2.5 Proof of Lemma 42

Proof. The proof follows the same arguments as that of Lemma 39. We provide an outline

of the proof. Define the probability of error Pe as follows:

Pe = P({(x,u, v) ∈ Xn × C1 × C2|∃(u′, v′) ∈ An
ε (U,V) ∩ B2(u) × B2(v)})

We define a new conditional probability of error for any triple x,u, v ∈ Aε(X,U,V):

Pe|x,u,v = P(∃(u′, v′) ∈ An
ε (U,V) ∩ B2(u) × B2(v)|X = x, (u, v) ∈ C1 × C2)
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Clearly if Pe|x,u,v goes to 0 for all x,u, v ∈ Aε(X,U,V) as n → ∞, then Pe goes to 0. Also

define: Px,u,v = P((x,u, v) ∈ Xn × C1 × C2), and Pe,x,u,v = Pe|x,u,vPx,u,v. We have:

Px,u,v =
∑

x∈An
ε (X)

∑
m∈Fl

q

m′∈Fl′
q

∑
a,b

∑
(u,v)∈An

ε (U,V |x)

P(x)P{g(a,m) = u, g′(b,m′) = v}

=
∑
m,m′

∑
x∈A(X)

∑
a,b

|An
ε (U,V |x)|P(x)

1
q2n =

ql+l′q2k

q2n 2n(H(U,V |X)+O(ε))

Pe,x,u,v =
∑
m,m̃

m′,m̃′

∑
x

∑
a,ã

∑
b,b̃

∑
(u,v)∈

An
ε (U,V |x)

∑
(ũ,ṽ)∈

An
ε (U,V)

∑
b1∈[1,2nρ1 ]

∑
b2∈[1,2nρ2 ]

P(x)

P{g(a,m) = u, g(ã, m̃) = ũ, g′(b,m′) = v, g′(b̃, m̃′) = ṽ}P{B1(u) = B1(ũ) = b1, B2(u) = B2(ũ) = b2}

Note that the binning is done independently and uniformly, so P{B1(u) = B1(ũ) = b1, B2(u) =

B2(ũ) = b2} = 2−2(ρ1+ρ2). The rest of the summations are the ones which were present in the

proof of Lemma 39. Again we have to do a case by case investigation of the summation.

The only new bond comes from the case when m = m̃ and m′ = m̃′, a , ã, b , b̃ and

a − ã = i(b − b̃). We have:

A =
∑
m,m̃

∑
a,ã
a,ã

∑
b,b̃

a−ã=i(b−b̃)

∑
(u,v)∈

An
ε (U,V |x)

∑
(ũ,ṽ)∈

An
ε (U,V)

u−ũ=i(v−ṽ)

q−3n2−n(ρ1+ρ2)

=
ql+l′

q3n q3k2nH(U,V |X)2nH(U,V |U+iV)2−n(ρ1+ρ2)

Dividing this last term by Px,u,v:

A
Px,u,v

=
qk

qn 2nH(U,V |U+iV)2−n(ρ1+ρ2)
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which goes to 0 if the following is satisfied:

ri − ρ1 − ρ2 ≤ log q − H(U,V |U + iV) (A.26)

However as shown in the next lemma the new bound in (A.26) is redundant.

Lemma 11. The inequality (A.26) in Lemma 42 is redundant.

Proof. Assume there is a distribution PX,U,V for which (A.26) is violated, we show that

either (2.17) or (2.20) is also violated. Conversely, as long as (2.17) and (2.20) are satisfied,

(A.26) is also satisfied. Assume we have:

(ro − ρ1) + (r′o − ρ2) ≤ 2 log q − H(U,V)

ri − ρ1 − ρ2 > log q − H(U,V |U + iV),∀i ∈ Fq.

Adding the two bounds we get:

ro + r′o − ri < log q − H(U,V) + H(U,V |U + iV)

= log q − H(U + iV) ≤ log q − H(U + iV |X)

which contradicts (2.17).

�

�

A.2.6 Proof of Lemma 43

Proof. The proof follows the same arguments as in the previous two examples. First we

assume there exists a joint distribution PUX such that the SSC scheme achieves the RD

vector, then we arrive at a contradiction by eliminating all codebooks. First note that from

our definition of PX,V{1},V{2} , direct calculation shows that R1 + R2 = I(V{1},V{2}; X) = 1 −
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hb(D0). This means that decoder {1, 2} is at PtP optimality. Also by the definition of the

distortion function D{3}, decoder {3} is at optimal RD.

Step 1: From the optimality of decoder {1, 2} and Lemma 3, there can’t be any code-

book common between decoders {1} and {2}. So C{1},{2} and C{1},{2},{3} are eliminated.

Step 2: From optimality of decoder {3}, description 3 can’t carry the bin number of

any codebook which is not decoded at that decoder. Also description 1 and 2 can’t carry

the bin numbers of codebooks which are not decoded at {1, 2} because of optimality at this

decoder. So codebooks C{1,3},{2,3}, C{1,3} and C{2,3} are not sent on any description and are

redundant.

Step 3: The codebook C{1},{2,3} is not binned by description 2 or 3. Description 3 can’t

bin the codebook since it is not decoded at decoder {3}, and that decoder is at PtP optimality.

Note C{1},{2,3} can be decoded using description 1, so any bin information for this codebook

that is carried by description 2 is not used at decoder {1, 2}, since decoder {1, 2} is at PtP

optimality we must have ρ{1},{2,3},2 = 0. The codebook is not sent on description 2 or 3,

so by the same arguments as in the previous proofs it can’t help in the reconstruction at

decoder {2, 3} and is redundant. By the same arguments C{2},{1,3} is redundant.

Step 4: In this step we show that there is no refinement codebook decoded at decoder

{1, 2}. This would eliminate C{1,2},C{1,2},{3},C{1,2},{1,3},C{1,2},{2,3} and C{1,2},{1,3},{2,3}. More pre-

cisely we show that the reconstruction at decoder {1, 2} is a function of the reconstructions

at decoders {1} and {2}. This means that sending a refinement codebook to decoder {1, 2}

will not help in the reconstruction, so the codebook is redundant.

To prove this claim we consider the two user example depicted in Figure [54]. Here

all distortions are Hamming distortions. We are interested in achieving the rate distortion

vector (R1,R2,D{1},D{2},D{1,2}) given in (4.14). Let PX,U{1,2},U{1},U{2},U{1},{2} be a distribution on

the random variables in the two user SSC achieving this RD vector. Define X̂1, X̂2 and X̂12

as the reconstructions at the corresponding codebooks.

Lemma 12. There are only two choices for the joint distribution PX,X̂1,X̂2,X̂12
, furthermore in
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both choices, X̂12 is a function of X̂1 and X̂2.

Proof. As in step 1, from optimality of decoder {1, 2}, C{1,2} is redundant. Also U{1} and

U{2} are independent from Lemma 3. Note that X̂1 is a function of U{1} and X̂2 is a function

of U{2}, so X̂1 y X̂2. We proceed by characterizing PX,X̂12
. Note that decoder {1, 2} is at PtP

optimality. It is well-known result that when quantizing a BSS to Hamming distortion D0

with rate 1 − hb(D0), the reconstruction is uniquely given by X̂12 = X + N0,N0 ∼ Be(D0)

where N0 y X. X̂1, X̂2 and X̂12 are available at decoder {1, 2}, from optimality at this decoder

we must have:

1 − hb(D0) = I(X̂1, X̂2, X̂1,2; X) ≥ I(X̂12, X) = 1 − hb(D0).

So the inequality must be equality, which means I(X̂1, X̂2; X|X12) = 0. In other words the

Markov chain X̂1, X̂2 ↔ X̂12 ↔ X must hold. Using the three facts 1) X̂12 = X ⊕2 N0,

2) X̂1 y X̂2 and 3) X̂1, X̂2 ↔ X̂12 ↔ X, we can characterize all possible distributions on

PX,X̂12,X̂1,X̂2
. Let X̂1 ∼ Be(a1) and X̂2 ∼ Be(a2). Then from X̂1 y X̂2, PX̂1,X̂2

is fixed. Assume

the distribution PX̂12,X̂1,X̂2
is as given below: As shown on the table there are 5 independent

X̂12
X̂1, X̂2 00 01 10 11 Sum

0 P000 P001 P010 P011
1
2

1 P100 P101 P110 P111
1
2

Sum (1 − a1)(1 − a2) (1 − a1)a2 a1(1 − a2) a1a2

Table A.1: Joint probability distribution of PX̂12,X̂1,X̂2
.
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linear constraints on Pi jk’s. We have:

P011 =
1
2
− P000 − P001 − P010, P100 = (1 − a1)(1 − a2) − P000, P101 = (1 − a1)a2 − P001,

P110 = (1 − a1)a2 − P010, P111 = a1a2 −
1
2

+ P000 + P001 + P010

a1 ∈ [0, 1], a2 ∈ [0, 1], P000 ∈ [0, (1 − a1)(1 − a2)], P001 ∈ [0, (1 − a1)a2], P010 ∈ [0, a1(1 − a2)]

P000 + P001 + P010 ∈ [
1
2
− a1a2,

1
2

]

Using the Markov chain X̂1, X̂2 ↔ X̂12 ↔ X, we have PX,X̂1,X̂2
=

∑
x̂12

PX|X̂12
PX̂1,X̂2,X̂12

. So

PX,X̂1,X̂2
is as follows: We can minimize the resulting distortion at decoders 1 and 2 by

X
X̂1, X̂2 00 01 10 11

0 (1 − D0)P000 +

D0((1 − a1)(1 −
a2) − P000)

(1 − D0)P001 +

D0((1 − a1)a2 −

P001)

(1 − D0)P010 +

D0(a1(1 − a2) −
P010)

(1 − D0)(1
2 − P000 −

P001−P010) + D0(a1a2−
1
2 + P000 + P001 + P010)

1 D0P000 + (1 −
D0)((1 − a1)(1 −

a2) − P000)

D0P001 + (1 −
D0)((1 − a1)a2 −

P001)

D0P010 + (1 −
D0)(a1(1 − a2) −

P010)

D0(1
2 − P000 − P001 −

P010) + (1 − D0)(a1a2 −
1
2 + P000 + P001 + P010)

Table A.2: Joint probability distribution of PX,X̂1,X̂2

choosing P000, P001 and P010 optimally. Let P∗
X,X̂1,X̂2

be the optimal joint distribution, we

will show that there are two choices for P∗
X,X̂1,X̂2

. We have:
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E(dH(X̂1, X)) + E(dH(X̂2, X)) = P(X̂1 , X) + P(X̂2 , X)

= (PX,X̂1,X̂2
(0, 0, 1) + PX,X̂1,X̂2

(1, 0, 1)) + (PX,X̂1,X̂2
(0, 1, 0)+

PX,X̂1,X̂2
(1, 1, 0)) + 2(PX,X̂1,X̂2

(0, 1, 1) + PX,X̂1,X̂2
(1, 0, 0))

= P001 + (1 − a1)a2 − P001 + P010 + (1 − a2)a1 − P010+

2D0(P000 + a1a2 −
1
2

+ P000 + P001 + P010)

+ 2(1 − D0)(
1
2
− P000 − P001 − P010 + (1 − a1)(1 − a2) − P000)

= (2D0 − 1)a1 + (2D0 − 1)a2 + 4(2D0 − 1)P000 + 2(2D0 − 1)P001 + 2(2D0 − 1)P010 − 4D0 + 3.

This is an optimization problem on a1, a2, P000, P001, P010 with respect to the constraints:

a1 ∈ [0, 1], a2 ∈ [0, 1], P000 ∈ [0, (1 − a1)(1 − a2)], P001 ∈ [0, (1 − a1)a2], P010 ∈ [0, a1(1 − a2)]

P000 + P001 + P010 ∈ [
1
2
− a1a2,

1
2

].

Also note that for fixed a1 and a2 the problem becomes a linear optimization problem (oth-

erwise the constraints are not linear). So we fix a1 and a2 and optimize P000, P001 and P010

for each value of a1 and a2. In this case the simplex algorithm provides a straightforward

solution. We investigate the solution in several different cases:

Case 1: (1 − a1)(1 − a2) ≥ 1
2 : Note that in the simplex algorithm, the variable with

smallest (most negative) coefficient takes its maximum possible value first.Since D0 <
1
2 ,

(2D0 − 1) < 0, so the algorithm would first maximize the value of P000. Since (1 − a1)(1 −

a2) ≥ 1
2 , we have P∗000 = 1

2 . This along with constraint P000 + P001 + P010 ∈ [ 1
2 − a1a2,

1
2 ] sets
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P∗001 = 0 and P∗010 = 0. So in this case:

E(dH(X̂1, X)) + E(dH(X̂2, X)) = (2D0 − 1)a1 + (2D0 − 1)a2 + 2(2D0 − 1) − 4D0 + 3

= 1 + (2D0 − 1)(a1 + a2).

Now we optimize on a1, a2 such that (1− a1)(1− a2) ≥ 1
2 . Increasing a1 or a2 decreases the

distortion so the optimal value is achieved when (1 − a1)(1 − a2) = 1
2 , so a2 = 1 − 1

2(1−a1) .

We have:

E(dH(X̂1, X)) + E(dH(X̂2, X)) = 1 + (2D0 − 1)(a1 + 1 −
1

2(1 − a1)
)

Optimizing the value of a1, we get a∗1 = a∗2 = 1−
√

2
2 . These values give PX,X̂1,X̂2

= PX,V{1},V{2} .

Also replacing the values in PX̂12,X̂1,X̂2
, we get: which shows that X̂12 is a function of X̂1

X̂12
X̂1, X̂2 00 01 10 11

0 1
2 0 0 0

1 0
√

2−1
2

√
2−1
2

3−2
√

2
2

Table A.3: The optimal joint distribution

and X̂2. Case 2: (1 − a1)(1 − a2) < 1
2 , a1 ≤

1
2 : In this case the simplex method yields the

following set of optimal distributions:

P∗000 = (1 − a1)(1 − a2), P∗001 = α, P∗010 =
1
2
− (1 − a1)(1 − a2) − α, P∗011 = 0

P∗100 = 0, P∗101 = (1 − a1)a2 − α, P∗010 = (1 − a2)a1 −
1
2

+ (1 − a1)(1 − a2) + α, P∗111 = a1a2.

Where α ∈ [a2 −
1
2 ,

1
2 − (1 − a1)(1 − a2)] is an auxiliary variable that does not play a role in

the distortion since the coefficients of P∗001 and P∗010 are equal in the distortion formula. We

get:
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E(dH(X̂1, X)) + E(dH(X̂2, X)) = 1 + (2D0 − 1)((1 − a1)(1 − a2) + a1a2).

Note that since a1 < 1
2 , the term (1 − a1)(1 − a2) + a1a2 is decreasing with a2, so the

distortion is increasing with a2 and the optimal values are a∗2 = max(0, 1 − 1
2(1−a1) ), since

a1 ≤
1
2 , a∗2 = 1 − 1

2(1−a1) , replacing a∗2 we have:

E(dH(X̂1, X)) + E(dH(X̂2, X)) = 1 + (2D{1} − 1)(
1
2

+ a1(1 −
1

2(1 − a1)
)).

Solving for a1 we get a1 = 1 − 1
√

2
and in tun a2 = 1 − 1

√
2

as in the previous case.

Case 3: (1 − a1)(1 − a2) < 1
2 , a1 >

1
2 , a1a2 <

1
2 : The probabilities are as in the last case

with α ∈ [0, 1
2 − (1 − a1)(1 − a2)]. The distortion is similar to the last case. Since a1 >

1
2 ,

the distortion is decreasing in a2. So a∗2 = 1
2a1

. Which yields:

E(dH(X̂1, X)) + E(dH(X̂2, X)) = 1 + (2D{1} − 1)((1 − a1)(1 −
1

2a1
) +

1
2

).

This would have no solution for optimizing a1 at the given range.

Case 4: a1a2 >
1
2 : By the same arguments the optimal solution is

P∗000 = (1 − a1)(1 − a2), P∗001 = (1 − a1)a2, P∗010 = (1 − a2)a1, P∗011 = 0

P∗100 = 0, P∗101 = 0, P∗010 = 0, P∗111 =
1
2
.

Then P∗
X̂12,X̂1,X̂2

is: which is the second choice for the optimal joint distribution. Note that

again X̂12 is a function of X̂1 and X̂2. �

Step 5: We are left with C{1},{3}, C{2},{3}, C{1} ,C{2} and C{3}. Let Xi be the reconstruction

at decoder {i} for i ∈ {1, 2, 3}.
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X̂12
X̂1, X̂2 00 01 10 11

0 3−2
√

2
2

√
2−1
2

√
2−1
2 0

1 0 0 0 1
2

Table A.4: The optimal joint distribution

Lemma 13. The following Markov chains hold:

U{1},{3},U{1}, X1 y U{2},{3},U{2}, X2 (A.27)

U{1},U{2},U{1},{3},U{2},{3} ↔ X1, X2 ↔ X (A.28)

U{1},{3},U{1} ↔ X1 ↔ X,U{2},{3},U{2} (A.29)

U{2},{3},U{2} ↔ X2 ↔ X,U{1},{3},U{1} (A.30)

U{1},{3},U{2},{3},U{3} ↔ X3 ↔ X (A.31)

X1, X2,U{1},U{2} ↔ U{1},{3}U{2},{3}, X ↔ U{3}, X3 (A.32)

U{1} ↔ U{1},{3}U{2},{3}, X1,U{3} ↔ X (A.33)

U{2} ↔ U{1},{3}U{2},{3}, X2,U{3} ↔ X (A.34)

U{3} ↔ U{1},{3},U{2},{3}, X3, X1 ↔ X (A.35)

U{3} ↔ U{1},{3},U{2},{3}, X3, X2 ↔ X (A.36)

Proof. (A.27) holds from Lemma 3. From the optimality at decoder {1, 2} and step 4 we

have:

I(U{1},{3},U{2},{3},U{1},U{2}, X1, X2; X) = I(X1, X2; X) = 1 − hb(D0),
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which proves (A.28). Next we prove (A.29):

P(U{1},{3},U{1},U{2},{3},U{2}, X1, X)
(a)
=

∑
X2

P(U{1},{3},U{1}, X1)P(X2,U{2},{3},U{2})P(X|X1, X2)

= P(U{1},{3},U{1}, X1)P(U{2},{3},U{2})
∑
X2

P(X2|U{2},U{2},{3})P(X|X1, X2)

= P(U{1},{3},U{1}, X1)P(U{2},{3},U{2})P(X|X1,U{2},U{2},{3})

b
= P(U{1},{3},U{1}, X1)P(U{2},U{2},{3}, X|X1)

In (a) we have used (A.27) and the Markov chain (A.28), in (b), we have used (A.27).

(A.30) follows by symmetry. (A.31) can be proved using optimality at decoder {3} and the

argument given in the proof of (A.27). We proceed with the proof of (A.32). Consider the

following packing bounds at decoder {1, 2} and {3}:

H(U{1},U{2},U{1},{3},U{2},{3}) ≤ H(U{1}) + H(U{2}) + H(U{1},{3}) + H(U{2},{3})

− r1 − r2 − r1,3 − r2,3 + R1 + R2

H(U{1},{3},U{2},{3},U{3}) ≤ H(U{1},{3}) + H(U{2},{3}) + H(U{3}) − r1,3 − r2,3 − r3 + R3

And the following covering bounds:

H(U{1},U{2},U{3},U{1},{3},U{2},{3}|X) ≥ H(U{1}) + H(U{2}) + H(U{3})

+ H(U{1},{3}) + H(U{2},{3}) − r1 − r2 − r3 − r1,3 − r2,3

H(U{1},{3},U{2},{3}|X) ≥ H(U{1},{3}) + H(U{2},{3}) − r1,3 − r2,3
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Adding all the bounds and simplifying we get:

R1 + R2 + R3 ≥ I(U{1},U{2},U{1},{3},U{2},{3}; X)

+ I(U{1},{3},U{2},{3},U{3}; X) + I(U{1},U{2}; U{3}|U{1},{3},U{2},{3}, X)

This resembles the two user sum-rate bound when the first user is sending descriptions 1

and 2 while the second user transmits description 3. From optimality at decoder {1}2, R1 +

R2 = I(U{1},U{2},U{1},{3},U{2},{3}; X) and optimality at decoder {3} yields R3 = I(U{1},{3},U{2},{3},U{3}; X).

So I(U{1},U{2}; U{3}|U{1},{3},U{2},{3}, X) = 0. This proves (A.32). We have:

P(U{1},{3},U{1}, X1,U{2},{3},U{3}, X)

=P(U{1},{3},U{2},{3}, X1)P(U1|U{1},{3},U{2},{3}, X1)

P(X|U{1},{3},U{2},{3}, X1,U{1})P(U{3}|U{1},{3},U{2},{3}, X1,U{1}, X)

(a)
= P(U{1},{3},U{2},{3}, X1)P(U1|U{1},{3},U{2},{3}, X1)P(X|U{1},{3},U{2},{3}, X1)

P(U{3}|U{1},{3},U{2},{3}, X1,U{1}, X)

(b)
= P(U{1},{3},U{2},{3}, X1)P(U1|U{1},{3},U{2},{3}, X1)P(X|U{1},{3},U{2},{3}, X1)P(U{3}|U{1},{3},U{2},{3}, X)

where (a) follows from (A.29) and Lemma 14 given below. (b) follows from (A.32). So we

have shown that U{1} ↔ U{1},{3},U{2},{3}, X1 ↔ X,U{3}, using Lemma 14 we conclude (A.33).

(A.34) follows by symmetry. Lastly we prove (A.35):

P(X, X1,U{3}|U{1},{3},U{2},{3}, X3)

=P(X|U{1},{3},U{2},{3}, X3)P(U{3}|U{1},{3},U{2},{3}, X3, X)P(X1|U{1},{3},U{2},{3}, X,U{3}, X3)

a
= P(X|U{1},{3},U{2},{3}, X3)P(U{3}|U{1},{3},U{2},{3}, X3, X)P(X1|U{1},{3},U{2},{3}, X, X3)

=P(U{3}|U{1},{3},U{2},{3}, X3, X)P(X, X1|U{1},{3},U{2},{3}, X3)

b
= P(U{3}|U{1},{3},U{2},{3}, X3)P(X, X1|U{1},{3},U{2},{3}, X3)
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where (a) follows form A.32. (b) holds because of (A.31). (A.35) follows from lemma 14.

Lemma 14. For random variables A, B,C and D if we have A, B ↔ C ↔ D then A ↔

B,C ↔ D.

Proof. We have:

P(A,D|B,C) =
P(A, B,C,D)

P(B,C)
=

P(C)P(A, B|C)P(D|C)
P(C)P(B|C)

= P(A|BC)P(D|C) = P(A|BC)P(D|BC)

�

�

Next we argue that if we set U{1} to be equal to X1 there would be no change in distortion

and the rate does not increase. First consider decoder {1, 3}. The optimal reconstruction

function is given by

argmaxx(PX|U{1},{3}U{2},{3}U{1}U{3}(x|u1,3, u23, u{1}, u{3})). We have:

argmaxx(PX|U{1},{3}U{2},{3}U{1}U{3}(x|u1,3, u23, u{1}, u{3}))

(a)
= argmaxx(PX|U{1},{3}U{2},{3}U{1}U{3}X1(x|u1,3, u23, u{1}, u{3}, x1))

(b)
= argmaxx(PX|U{1},{3}U{2},{3}U{3}X1(x|u1,3, u23, u{3}, x1))

where in (a) we used the fact that x1 is a function of U{1},U{1},{3} and in (b) we use (A.33).

So the distortion won’t change at decoder {1, 3}. Also the reconstruction at decoder {1} is

X1 so setting U{1} = X1 won’t change the reconstruction at this decoder. At decoder {1, 2}

we showed in step 4 that X12 is a function of X1, X2 where X2 is a function of U{2},{3},U{2},

so setting U{1} = X1 does not change the distortion at this decoder either. The rest of

the decoders do not receive U{1}. As for the rate, note that X1 was reconstructed at all

decoders reconstructing U{1}. So replacing U{1} with X1 does not require sending any extra

information. So we set U{1} = X1 without any loss in distortion and with a potential gain
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in rate. The same argument combined with the Markov chains (A.34) sets U{2} = X2, also

using Markov chains (A.35) and (A.36) we set U{3} = X3.

Lemma 15. The following constraints hold:

PXX1X2 is fixed and equal to PX,V{1},V{2} in the previous step. (A.37)

PXX3 is fixed and equal to PX,V3 which is the optimizing distribution for decoder {3}.

(A.38)

U{1},{3} ↔ X1 ↔ U{2},{3}, X, X2 (A.39)

U{2},{3} ↔ X2 ↔ U{1},{3}, X, X1 (A.40)

U{1},{3},U{2},{3} ↔ X3 ↔ X (A.41)

X1, X2 ↔ X,U{1},{3},U{2},{3} ↔ X3 (A.42)

Proof. (A.37) was proved in the step 4. (A.38) follows from PtP optimality at decoder

{3}. (A.39) follows from (A.29), (A.40) follows from (A.30). (A.41) follows from (A.31).

(A.42) follows from (A.32). �

We proceed by bounding the cardinality of U{1},{3} and U{2},{3}. Using Lemma 15, the

joint distribution between the random variables is given as follows:

P(U{1},{3},U{2},{3}, X1, X2, X3, X) = P(U{1},{3}, X1)P(U{2},{3}, X2)P(X|X1, X2)P(X3|U{1},{3},U{2},{3}, X)

= P(U{1},{3}, X1)P(U{2},{3}, X2)P(X|X1, X2)
P(U{1},{3}U{2},{3}X3X)

P(U{1},{3}U{2},{3}X)

= P(U{1},{3}, X1)P(U{2},{3}, X2)P(X|X1, X2)
P(U{1},{3}U{2},{3}|X3)P(X3X)∑

X1,X2
P(U{1},{3}, X1)P(U{2},{3}, X2)P(X|X1, X2)

(A.43)
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Also note that we have the following equality:

P(U{1},{3},U{2},{3}, X) =
∑
X3

P(X, X3)P(U{1},{3}U{2},{3}|X3)

=
∑
X1,X2

P(U{1},{3}|X1)P(U{2},{3}|X2)P(XX1, X2)

Denote P(X, X1, X2) = Pxx1 x2 and P(U{1},{3} = θ|X1 = i) = αi(θ), θ ∈ U1,3, i ∈ {0, 1} and

P(U{2},{3} = γ|X2 = i) = βi(γ), γ ∈ U2,3, i ∈ {0, 1}. We have:

PU{1},{3}U{2},{3} |X3(θ, γ|0)PX3,X(0, 0) + PU{1},{3}U{2},{3} |X3(θ, γ|1)PX3,X(1, 0)

= α0(θ)β0(γ)P000 + α0(θ)β1(γ)P001 + α1(θ)β0(γ)P010 + α1(θ)β1(γ)P011.

PU{1},{3}U{2},{3} |X3(θ, γ|0)PX3,X(0, 1) + PU{1},{3}U{2},{3} |X3(θ, γ|1)PX3,X(1, 1)

= α0(θ)β0(γ)P100 + α0(θ)β1(γ)P101 + α1(θ)β0(γ)P110 + α1(θ)β1(γ)P111.

Using the values given in Table (A.3), we solve the system of equations:

PU{1},{3}U{2},{3} |X3(θ, γ|0) = α0(θ)β0(γ),

PU{1},{3}U{2},{3} |X3(θ, γ|1) =

√
2 − 1
2

(α1(θ)β1(γ) − α0(θ)β0(γ)) +
1
2

(α0(θ)β1(γ) + α1(θ)β0(γ)).

Hence the distribution in A.43 is completely determined by αi and βi, i ∈ {0, 1}.

Lemma 16. Assume there exists αi and βi, such that D{1,3} ≤ D0, then I(U{1},{3}U{2},{3}X1X3; X) ≥

1 − hb(D0).

Proof. The proof follows from Shannon’s rate distortion function for PtP source coding.

�
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Based on the previous lemma it is enough to show that for every αi and βi, I(U{1},{3}U{2},{3}X1X3; X) <

1−hb(D0), in that case we have a contradiction. We need to maximize I(U{1},{3}U{2},{3}X1X3; X)

as a function of αi and βi. We use the following lemma:

Lemma 17. [14] Let X be a finite set and U be an arbitrary set. Let P(X) be a set of pmfs

on X and p(x|u) be a collection of pmfs on X for every u ∈ U. Let g j, j ∈ [1, d] be real-

valued continuous functions on P(X). Then for every U ∼ F(u) defined on U, there exists

random variable U′ ∼ p(u′) with cardinality |U′| ≤ d and a collection of conditional pmfs

p(u′|x) on X for every u′ ∈ U′ such that for every j ∈ [1, d]:

∫
U

g j(pX|U(x|u))dF(u) =
∑

u′
g j(pX|U′(x|u′))p(u′)

1.37
1

1.375

1.38

0.8

1.385

1

1.39

I 1
+I
2

0.6 0.8

1.395

P(U13=0|X1=1)

1.4

0.6

P(U13=0|X1=0)

0.4

1.405

0.40.2 0.2
0 0

Figure A.1: Maximum value of I(U{1},{3},U{2},{3}, X1, X3; X) +I(U{1},{3},U{2},{3}, X2, X3; X)

We want to use the lemma to bound cardinality of U1,3. Take g1(pU{2},{3},X1,X2,X3,X |U{1},{3}) =

pX1 |U{1},{3}(1|u13) and g2(pU{2},{3},X1,X2,X3,X |U{1},{3}) = H(X|U{2},{3}, X1, X3, X,U{1},{3} = u1,3). Note
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that fixing the expectation on g1 fixes the joint distribution in (A.43) and fixing the expecta-

tion of g2 fixes the term we want to minimize. So for any U{1},{3} minimizing I(U{1},{3}U{2},{3}X1X3; X)

, there exists U′1,3 with cardinality at most 2, such that the joint distribution and I(U{1},{3}U{2},{3}X1X3; X)

are the same. So it is enough to search over U{1},{3} with cardinality 2. The same arguments

hold for bounding the cardinality of U2,3. For this size of random variables, computer-

assisted calculation shows that I(U{1},{3},U{2},{3}, X1, X3; X) + I(U{1},{3},U{2},{3}, X2, X3; X) <

1.42 < 2(1 − hb(D0)) = 1.58 as shown in Figure A.1. So we have a contradiction and the

SSC does not achieve the RD vector. �

A.3 Proofs for Section 2.6

A.3.1 Proof of lemma 46

Proof. Index the inequalities in the SSC from 1 to K. For every inequality in the linear

coding region (LCR), there exists a unique inequality in the SSC with the same left hand

side, index this inequality with the same index used in the RCR. Let I1 > R be a bound

resulting from applying FME on the SSC. Assume the bound results from adding inequali-

ties indexed i1, i2, . . . , ik, it is straightforward to show that adding inequalities with the same

indices in the LCR gives the same bound. The reason is that by our construction, the left-

hand sides would be the same. In the right-hand side, due to the FME, the terms involving

rA would be eliminated. Define r′A = rA − H(UA) and r′o,A = ro,A − log(q), eliminating rA is

equivalent to eliminating r′A or r′o,A. �
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APPENDIX B

Proofs for Chapter III

B.1 Proofs for Chapter III

B.1.1 Proof of Lemma 13

Proof. We have shown that LCR and RCR are equal. So it is enough to show that the

bounds in RCR can be written in terms of mutual informations. But that is obvious since

each packing bound and covering bound in RCR can be rewritten in terms of mutual infor-

mations. let L = {M1,M2, ...,ML}. Then for any packing bound in RCR we have:

H(UM) −
∑
M∈L

H(UM) ≤
∑
M∈M

(
∑

i∈[1:L]

ρM,i − rM)

→ −
∑

j∈[1,L]

I(UM j; UM1 ,UM2 , ...,UM j−1) ≤∑
M∈M

(
∑

i∈[1:L]

ρM,i − rM)

And for any covering bound we have:
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H(UM|X) −
∑
Mi∈M

H(UMi)≥ −
∑
Mi∈M

rMi

→ −
∑

j∈[1,L]

I(UM j; UM1 ,UM2 , ...,UM j−1)

− I(UM; X) ≥
∑
Mi∈M

−rMi

Note after the FME, the rM terms would be eliminated and only the mutual information

terms would remain. �

B.1.2 Proof of Theorem III.14

Proof. For a fixed q and γ, generate a linear code for quantizing the discrete version of

the source to mean squared distortion P. Use this linear construction to quantize Xq,γ to

U and Zq,γ to V . Note that since the source is not symmetric, the linear code needs to be

binned. The rate of the linear code is rl = log(q) − H(U |X) and the code is binned with

rate bl = log(q) − H(U). The third description needs to bin the code in a way that U + V is

uniquely reconstructed at decoder 3, so it bins at rate b3 = log(q) − H(U + V). Using this

scheme as q→ ∞ and qγ → 0, we have:

R1 = R2 = log(q) − H(U |X) − (log(q) − H(U))

=
1
2

log(2πe(1 − p)) −
1
2

log(2πe(1 − p)p) =
1
2

log(
1
p

)

R3 = log(q) − H(U |X) − (log(q) − H(U + V)) =
1
2

log(
2
p

)

One can check that the distortion constraints are also satisfied. �
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C{1},{2},{3}

C{12},{13},{23}

C{1},{3}

C{1},{2}

C{1,2}

C{2},{3}

C{2,3}

C{1,3}

C{2}

C{1}

C{3}

C{12},{23}

C{12},{13}

C{13},{23}C{12},{3}

C{13},{2}

C{23},{1}

Figure B.1: Three-Descriptions Codebook Structure

B.1.3 Proof of Theorem III.15

Proof. For convenience of notation, we denote codebook CMσ
by CMs throughout the ex-

amples in this chapter. The proof is very similar to the one given in example A [40]. Here

we give a brief summary. The codebook structure for the scheme in the three descriptions

case is shown in figure B.1. Note that decoders 1,2, 12, 13 and 23 are receiving their respec-

tive descriptions at optimal PtP rate distortion. So by the same arguments as in steps one

through five in [40], all the codebooks except C{1},{23},C{2},{13},C{3},{12},C{1},C{2},C{3},C{13},{23}

can be eliminated. Note that since decoders 1 and 2 are operating at optimal PtP rate-

distortion, descriptions 1 and 2 can’t carry any bin number for C{3},{12}, so this codebook

is not used in reconstruction at decoder 12 and it can be sent on C{3}. Also description 3

can’t carry any bin number for C{1},{23} because of optimality at 13 (if the bin number is not

sent, the codebook is still decodable using the bin number from description 1, so sending

a bin number on description 3 would cause sub-optimality), so C{1},{23} can be eliminated.

Same argument works for C{2},{13}. We are left with C{1},C{2},C{3},C{13},{23}. Since decoder

1 receives only C{1}, it is straightforward to show that U{1} = X + N1, also U{2} = Z + N2,

where N1 and N2 are independent Gaussian random variables. Then Ŷ{13} = Y + N1 + N4 and

Ŷ{23} = Y + N2 + N5, also if Ŷ{3} = Y + N3, then this reconstruction of Y is also available at

decoder {13}, since this decoder is at optimality, we must have Y ↔ Y + N1 + N4 ↔ Y + N3

and Y ↔ Y + N1 + N4 ↔ Y + N3. Since N3 has power 2P, it must equal N1 + N4 and N2 + N5,
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for the Markov chain to hold. This is a contradiction since in that case U3 = U1 + U2, the

rate R3 required to send U3 exceeds the rates given in the rate vector.

B.1.4 Proof of Lemma 18

Proof. We calculate the difference between the new bound and the previous ones and show

that it can be written in terms of mutual informations.

H(αU+βV |X) − H(U |X) (B.1)

= H(αU+βV |X) − H(U,V |X) + H(V |X,U) (B.2)

= H(αU+βV |X) − H(αU+βV,V |X) + H(V |X,U) (B.3)

= −H(V |X, αU+βV) + H(V |X,U) (B.4)

= I(αU+βV; V |X) − I(U; V |X) (B.5)

�
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APPENDIX C

Proofs for Chapter IV

C.1 Proofs for chapter IV

C.1.1 Proof of Lemma 26

Assume the family (n,M1,M2,M3, e,d), n ∈ N achieves the rate-triple. Let Mi, i ∈

{1, 2, 3} be uniform random variables defined on sets Mi. In the first step, we argue that the

size of the set C1 ⊕ C2 ⊕ C3 ⊕ An
ε (N3) is close to |C1 ⊕ C2 ⊕ An

ε (N3)||C3|. More precisely, we

prove the following claim:

Claim 1. For every ε ∈ R+, there exists a sequence of numbers αn,ε ∈ R
+, n ∈ N such that

the following inequality holds:

1
n

log |C1 ⊕ C2 ⊕ C3 ⊕ An
ε (N3)| ≥

1
n

log (|C1 ⊕ C2 ⊕ An
ε (N3)||C3|) − αn,ε ,

and αn,ε goes to 0 as n→ ∞ and ε → 0.

Proof. Intuitively, if the size of C1 ⊕ C2 ⊕ C3 ⊕ An
ε (N3) is much smaller than |C1 ⊕ C2 ⊕

An
ε (N3)||C3|, that means there exists a large number of sets of vectors c1, c2, c3,n3, with

different c3’s for which the sum is equal. This causes a large error probability in decoder 3
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since the decoder is unable to distinguish between these sets of vectors. More precisely, let

nt be a type on vectors in An
ε (N3), and let c3 ∈ C3, define Bc3,nt as follows,

Bc3,nt = {c1⊕c2⊕n3|∃c′1, c
′
2, c
′
3,n

′
3 ∈ C1×C2×C3×Pt, such that c′1⊕c′2⊕c′3⊕n′3 = c1⊕c2⊕c3⊕n3, c′3 , c3},

where Pt is the set of all vectors n3 ∈ An
ε (N3) with type nt. That is Bc3,nt is the set of

(c1, c2,n3)’s for which the decoder has non-zero error probability for decoding c3 or another

codeword c′3. From set theory, we have the following:

|C1 ⊕ C2 ⊕ C3 ⊕ An
ε (N3)| ≥ |C1 ⊕ C2 ⊕ C3 ⊕ Pt| (C.1)

= |
⋃

c3

C1 ⊕ C2 ⊕ c3 ⊕ Pt| (C.2)

≥ |
⋃

c3

C1 ⊕ C2 ⊕ c3 ⊕ Pt −
⋃

c′3,c3

C1 ⊕ C2 ⊕ c′3 ⊕ Pt

 | (C.3)

=
∑

c3

|C1 ⊕ C2 ⊕ c3 ⊕ Pt −
⋃

c′3,c3

C1 ⊕ C2 ⊕ c′3 ⊕ Pt| (C.4)

=
∑

c3∈C3

(|C1 ⊕ C2 ⊕ Pt| − |Bc3,nt |) (C.5)

= |C1 ⊕ C2 ⊕ Pt||C3| −
∑

c3∈C3

|Bc3,nt | (C.6)

= |C1 ⊕ C2 ⊕ Pt||C3| − |C3|
∑

c3∈C3

|Bc3,nt |

|C3|
(C.7)

=
(
|C1 ⊕ C2 ⊕ Pt| − E(|Bc3,nt |)

)
|C3| (C.8)

=

(
|C1 ⊕ C2 ⊕ Pt|(1 −

E(|Bc3,nt |)
|C1 ⊕ C2 ⊕ Pt|

)
)
|C3|. (C.9)

On the other hand, as n→ ∞, the error probability at decoder 3 goes to 0. This means that

P (d3(c1 ⊕ c2 ⊕ e(M3) ⊕ n3) , M3) goes to 0. Consequently, there exists a family of types

type nt such that P (d3(c1 ⊕ c2 ⊕ e(M3) ⊕ n3) , M3|nt) goes to 0. There exists a sequence
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δn which approaches 0 at the limit such that:

δn ≥ P (d3(c1 ⊕ c2 ⊕ e(M3) ⊕ n3) , M3|nt)

≥
1
2

P
(
c1 ⊕ c2 ⊕ n3 ∈ Be(M3),nt |nt

)
≥

1
2

∑
c3∈C3

|Bc3,nt |

|C3||C1 ⊕ C2 ⊕ Pt|

=
1
2

E(|Be3(M3),nt |)
|C1 ⊕ C2 ⊕ Pt|

Inserting this last inequality in (C.9) we have,

|C1 ⊕ C2 ⊕ Pt||C3| −
∑

c3∈C3

|Bc3 |

≥ (|C1 ⊕ C2 ⊕ Pt|(1 − 2δn)) |C3|

�

Observe that Pt and An
ε (N3) have the same exponential rate. Note that |C1 ⊕ C2 ⊕

An
ε (N3)| ≥ |C1 ⊕ An

ε (N3)| and since decoder 1 can decode X1 with probability of error ap-

proaching 0, we can use the same argument to show the following:

1
n

log |C1⊕ An
ε (N3)|→

1
n

log |C1||An
ε (N3)| → log q−H(N1) ⊕ H(N3)

⇒
1
n

log |C1 ⊕ C2 ⊕ C3 ⊕ An
ε (N3)| ≥ (C.10)(

log q − H(N1) + H(N3)
)

+ (H(N1) − H(N3)) = log q.

But we know that 1
n log |C1 ⊕ C2 ⊕ C3 ⊕ An

ε (N3)| ≤ log q. So, we should have equality at

all of the inequalities. Hence, 1
n logq |C1 ⊕ C2 ⊕ An

ε (N3)| → 1
n logq |C1 ⊕ An

ε (N3)|. In order to

have |C1 ⊕ C2| close to |C1|, we must have the properties stated in the lemma.
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C.1.2 Proof of Lemma 29

We provide a coding scheme based on NQLC’s which achieves the rate vector. Consider

two ternary random variables V1 and V2 such that H(V1⊕V2) > H(2V1⊕V2). We will show

the achievability of the following rate-triple:

R1 = log q − H(N1 ⊕ N2 ⊕ N3)

R2 = (
H(V1 ⊕ V2)

H(V1)
− 1)(log q − H(N1 ⊕ N2 ⊕ N3))

R3 = log q − H(N3) −
H(2V1 ⊕ V2)

H(V1)
(
log q − H(N1 ⊕ N2 ⊕ N3)

)
.

Then, R2 + R3 = H(N1 ⊕ N2 ⊕ N3) − H(N3) +
(H(V1⊕V2)−H(2V1⊕V2))

H(V1)

(
log q − H(N1 ⊕ N2 ⊕ N3)

)
.

Choose random variable V3 such that R3 = H(V3 ⊕ N3) − H(N3).

Codebook Generation: Construct a family of pairs NQLC’s with length n and parameters

m = 1, k1 =
(log q−H(N1⊕N2⊕N3))

H(V1) n, U1 = V1, and U′1 = V2 by choosing the dither b and

generator matrix G1 randomly and uniformly on Fq. For a fixed n ∈ N, Let Cn
1 and Cn

2 be

the corresponding pair of NQLC’s. Let Φi = 2nRi for i ∈ {1, 2}. Choose Φi of the codewords

in Cn
i randomly and uniformly, and index these sequences using the indices [1,Φi]. Also,

generate an unstructured codebook C3 randomly and uniformly with rate R3 based on the

single-letter distribution PV3 . Index C3 by [1, 2nR3].

Encoding: Upon receiving message index Mi encoder i sends the sequence in C1 which

is indexed Mi for i ∈ {1, 2}. Let the codewords sent by encoder i, i ∈ {1, 2} be denoted by

viG1 ⊕ bi. Encoder 3 sends the codeword in C3 indexed by M3. Let the codeword sent by

the third decoder be denoted by c3.

Decoding: Decoder 1 receives Xn
1 ⊕ Nn

1 ⊕ Nn
2 ⊕ Nn

3 . Using typicality decoding, the decoder

can decode the message as long as k1
n H(V1) ≤ log q−H(N1 ⊕ N2 ⊕ N3). Decoder 2 receives

Xn
1 ⊕ Xn

2 ⊕ Nn
2 ⊕ Nn

3 = (v1 ⊕ v2)G1 ⊕ b1 ⊕ b2 ⊕ Nn
2 ⊕ Nn

3 . It can decode v1, v2 jointly as

long as 1) k1
n H(V1 ⊕ V2) < log q − H(N1 ⊕ N3), and 2) R1 + R2 ≤

k1
n H(V1 ⊕ V2). The

first condition ensures that v1 ⊕ v2 can be recovered with probability of error going to 0 as
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n → ∞. After recovering v1 ⊕ v2, the decoder needs to jointly decode v1, v2 (for reasons

explained in Lemma 27). This is a noiseless additive MAC problem and condition 2 ensures

errorless decoding. Note that in condition 2, the coefficient k1
n is present since v1 is of length

k1. Also, The term H(V1 ⊕ V2) is the capacity of the MAC channel. Decoder 3 receives

Xn
1 ⊕ Xn

2 ⊕ Xn
3 ⊕ Nn

3 = (2v1 ⊕ v2)G1 ⊕ b1 ⊕ b2 ⊕ cn
3 ⊕ Nn

3 . The decoder can recover 2v1 ⊕ v2

as long as k1
n H(2V1 ⊕ V2) < log q − H(X3 ⊕ N3). Then, the decoder subtracts 2Xn

1 ⊕ Xn
2 to

get Xn
3 ⊕ Nn

3 . It can decode X3 as long as R3 ≤ H(V3 ⊕ N3) − H(N3). It is straightforward to

check the rate given at the beginning satisfy all of these bounds.
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APPENDIX D

Proofs for Chapter V

D.1 Proofs for Chapter V

D.1.1 Proof of Proposition 15

Proof. By definition, any element of Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin satisfies the conditions in the

proposition. Conversely, we show that any function satisfying the conditions (1) and (2) is

in the tensor product. Let f̃ =
∑

j f̃j, f̃j ∈ G j1 ⊗ G j2 ⊗ · · · ⊗ G jn . Assume ik = 1 for some

k ∈ [1, n]. Then:

0
(2)
= EXn |X∼ik

(
∑

j

f̃j|X∼ik)
(a)
=

∑
j

EXn |X∼ik
( f̃j|X∼ik)

(1)
=

∑
j, jk=0

EXn |X∼ik
( f̃i|X∼ik)

(2)
=

∑
j, jk=0

f̃j,

where we have used linearity of expectation in (a), and the last two equalities use the fact

that f̃j ∈ G j1 ⊗G j2 ⊗ · · · ⊗G jn which means it satisfies properties (1) and (2). So far we have

shown that f̃ =
∑

j≥i f̃j. Now assume ik′ = 1. Then:

∑
j≥i

f̃j = f̃
(1)
= EXn |X∼ik′

(
∑
j≥i

f̃j|X∼ik′ ) =
∑
j≥i

EXn |X∼ik′
( f̃j|X∼ik′ ) =

∑
j≥i, jk′=1

f̃j ⇒
∑

j≥i, jk′=0

f̃j = 0.

So, f̃ =
∑

i≥j≥i f̃j = f̃i. By assumption we have f̃i ∈ Gi1 ⊗ Gi2 ⊗ · · · ⊗ Gin . �
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D.1.2 Proof of Proposition 16

Proof. 1) We use induction. Let i j, j ∈ [1, n] be the jth element of the standard basis.

Then ẽi j = EXn |X j(ẽ|X j). By the smoothing property of expectation, EXn(ẽi j) = EXn(ẽ) = 0.

Assume that ∀j < i, EXn(ẽj) = 0. Then,

EXn(ẽi) = EXn

EXn |Xi(ẽ|Xi) −
∑
j<i

ẽj

 = EXn(ẽ) −
∑
j<i

EXn(ẽj) = 0 −
∑
j<i

0 = 0.

2) This statement is also proved by induction. EXn |Xi(ẽ|Xi) is a function of Xi, so by induction

ẽi = EXn |Xi(ẽ|Xi) −
∑

j<i ẽk is also a function of Xi.

3) Let ik, k ∈ [1, n] be defined as the kth element of the standard basis, and take j, j′ ∈

[1, n], j , j′. We have:

EXn(ẽi j ẽi j′ ) = EXn(EXn |X j(ẽ|X j)EXn |X j′ (ẽ|X j′))
(a)
= EXn(EXn |X j(ẽ|X j))EXn(EXn |X j′ (ẽ|X j′))

(b)
= E2

Xn(ẽ) = 0,

where we have used the memoryless property of the source in (a) and (b) results from the

smoothing property of expectation. We extend the argument by induction. Fix i,k. Assume

that EXn(ẽjẽj′) = 1(j = j′)EXn(ẽ2
j ),∀j < i, j′ < k.

EXn(ẽiẽk) = EXn


EXn |Xi(ẽ|Xi) −

∑
j<i

ẽj


EXn |Xk(ẽ|Xk) −

∑
j′≤k

ẽj′




= EXn

(
EXn |Xi(ẽ|Xi)EXn |Xk(ẽ|Xk)

)
−

∑
j<i

EXn

(
ẽjEXn |Xk(ẽ|Xk)

)
−

∑
j′≤k

EXn

(
ẽj′EXn |Xi(ẽ|Xi)

)
+

∑
j<i,j′<k

EXn(ẽjẽj′).
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The second and third terms in the above expression can be simplified as follows. First, note

that:

ẽi = EXn |Xi(ẽ|Xi) −
∑
j<i

ẽj ⇒
∑
j≤i

ẽj = EXn |Xi(ẽ|Xi). (D.1)

Our goal is to simplify EXn(ẽjEXn |Xj′ (ẽ|Xj′)). We proceed by considering two different cases:

Case 1: i � k and k � i:

EXn(ẽjEXn |Xj′ (ẽ|Xj′))
(D.1)
= EXn(ẽj

∑
l≤j′

ẽj)) =
∑
l≤j′

EXn(ẽjẽl)

=
∑
l≤j′

1(j = l)EXn(ẽ2
j ) = 1(j ≤ j′)EXn(ẽ2

j ).

Replacing the terms in the original equality we get:

EXn(ẽiẽk) = EXn
(
EXn |Xi(ẽ|Xi)EXn |Xk(ẽ|Xk)

)
−

∑
j<i

1(j ≤ j′)EXn(ẽ2
j )

−
∑
j′<k

1(j′ ≤ j)EXn(ẽ2
j′) +

∑
j<i,j′<k

1(j = j′)EXn(ẽ2
j )

= EXn
(
EXn |Xi(ẽ|Xi)EXn |Xk(ẽ|Xk)

)
−

∑
j≤i∧k

EXn(ẽ2
j )

(a)
= EXn(E2

Xn |Xi∧k
(ẽ(Xn)|Xi∧k)) −

∑
j≤i∧k

EXn(ẽ2
j )

(b)
= EXn(E2

Xn |Xi∧k
(ẽ(Xn)|Xi∧k)) − EXn

(∑
j≤i∧k

ẽj)2

 (D.1)
= 0.
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Where in (b) we have used that ẽi’s are uncorrelated, and (a) is proved below:

EXn
(
EXn |Xi(ẽ|Xi)EXn |Xk(ẽ|Xk)

)
=

∑
xi∧k

P(xi∧k)


∑

x|i−k|+

P(x|i−k|+)EXn |Xi(ẽ|Xi)


∑

x|k−i|+

P(x|k−i|+)EXn |Xk(ẽ|Xk




=
∑
xi∧k

P(xi∧k)E2
Xn |Xi∧k

(ẽ|xi∧k)

= EXn(E2
Xn |Xi∧k

(ẽ(Xn)|Xi∧k)).

Case 2: Assume i ≤ k:

EXn(ẽiẽk) = EXn
(
EXn |Xi(ẽ|Xi)EXn |Xk(ẽ|Xk)

)
−

∑
j<i

1(j ≤ j′)EXn(ẽ2
j )

−
∑
j′≤k

1(j′ ≤ j)EXn(ẽ2
j′) +

∑
j<i,j′<k

1(j = j′)EXn(ẽ2
j )

= EXn(E2
Xn |Xi

(ẽ|Xi)) −
∑
j<i

EXn(ẽ2
j ) −

∑
j′≤i

EXn(ẽ2
j′) +

∑
j≤i

EXn(ẽ2
j )

= 0.

Case 3: When k ≤ i the proof is similar to case 2.

4) Clearly when |i| = 1, the claim holds. Assume it is true for all j such that |j| < i. Take

i ∈ {0, 1}n and t ∈ [1, n], it = 1 arbitrarily. We first prove the claim for k = i − it:

EXn |Xk(ẽi|Xk) = EXn |Xk


EXn |Xi(ẽ) −

∑
j<i

ẽj

 |Xk

 = EXn |Xk

(
EXn |Xi(ẽ|Xi)|Xk

)
−

∑
j<i

EXn |Xk(ẽj|Xk)

(a)
= EXn |Xk(ẽ|Xk) −

∑
j<i

EXn |Xk(ẽj|Xk)
(5)
=

∑
j≤i−it

ẽj −
∑
j<i

EXn |Xk(ẽj|Xk)

(b)
=

∑
j≤i−it

EXn |Xk(ẽj|Xk) −
∑
j<i

EXn |Xk(ẽj|Xk) =
∑
s,t

EXn |Xk(ẽi−is |Xk)
(c)
=

∑
s,t

EXn |Xk−is
(ẽi−is |Xk−is)

(d)
= 0.
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Where in (a) we have used i > k, also (b) follows from j < k, (c) uses k∧(i−is) = k−is, and

finally, (d) uses the induction assumption. Now we extend the result to general k < i. Fix

k. Assume the claim is true for all j such that k < j < i (i.e ∀k < j < i,EXn |Xk(ẽXj |Xk) = 0).

We have:

EXn |Xk(ẽi|Xk) = EXn |Xk

EXn |Xi(ẽ|Xi) −
∑
j<i

ẽj|Xk

 = EXn |Xk

(
EXn |Xi(ẽ|Xi)|Xk

)
−

∑
j≤k

EXn |Xk(ẽj|Xk)

= EXn |Xk(ẽ|Xk) −
∑
j≤k

ẽj
(D.1)
= 0.

�

D.1.3 Proof of Lemma 25

Proof. Let the functions be given as follows:

g(X) =


α , X = 0

β , X = 1.
, h(Y) =


γ Y = 0

δ Y = 1.

Also, let P(X = 1) = p, and P(Y = 1) = r. The 0 mean condition enforces the following

equalities:

α(1 − p) + βp = 0⇒ β =
−(1 − p)α

p
, γ(1 − q) + δq = 0⇒ δ =

−(1 − q)γ
q

.

Next, we calculate the joint distribution of PXY . Let Pi, j , P(X = i,Y = j), i, j ∈ {0, 1}. We

have the following:

P0,0 + P0,1 = P(X = 0) = 1 − p, P0,0 + P1,0 = P(Y = 0) = 1 − q,

P0,0 + P1,1 = P(X = Y) = 1 − ε, P0,0 + P0,1 + P1,0 + P1,1 = 1.
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Solving the system of equations yields:

P0,0 = 1 −
p + q + ε

2
, P0,1 =

q + ε − p
2

, P1,0 =
p + ε − q

2
, P1,1 =

p + q − ε
2

.

(D.2)

With the following constraint on the variables:

p + ε ≥ q, p + q ≥ ε, q + ε ≥ p, p + q + ε ≤ 2.

We have:

EX,Y(gh)

E
1
2
X(g2)E

1
2
Y (h2)

=
αγ

(
P0,0 − P0,1

(1−q)
q − P1,0

(1−p)
p + P1,1

(1−q)(1−p)
pq

)
αγ

((
(1 − p) +

(1−p)2

p

) 1
2
(
(1 − q) +

(1−q)2

q

) 1
2

)
=

P0,0 − P0,1
(1−q)

q − P1,0
(1−p)

p + P1,1
(1−q)(1−p)

pq

( 1−p
p )

1
2 ( 1−q

q )
1
2

=
P0,0 pq − P0,1(1 − q)p − P1,0(1 − p)q + P1,1(1 − q)(1 − p)

(pq(1 − p)(1 − q))
1
2

(D.2)
=

(1 − p+q+ε

2 )pq − ( q+ε−p
2 )(1 − q)p − ( p+ε−q

2 )(1 − p)q + ( p+q−ε
2 )(1 − q)(1 − p)

(pq(1 − p)(1 − q))
1
2

=
pq + ( p+q

2 ) ((1 − p)(1 − p) − pq) + ( q−p
2 ) (q(1 − p) − p(1 − q)))

(pq(1 − p)(1 − q))
1
2

+

ε
2 (pq + p(1 − q) + q(1 − p) + (1 − p)(1 − q))

(pq(1 − p)(1 − q))
1
2

=
pq +

p+q
2 (1 − p − q) − p−q

2 (q − p) − ε
2

(pq(1 − p)(1 − q))
1
2

=
p + q − 2pq − ε

2 (pq(1 − p)(1 − q))
1
2

. (D.3)

We calculate the optimum point by taking partial derivatives:

200



δ

δp
EX,Y(gh)

E
1
2
X(g2)E

1
2
Y (h2)

= 0

⇒ 2(1 − 2q)(pq(1 − p)(1 − q))
1
2 −

(1 − 2p)√
p(1 − p)

√
q(1 − q)(p + q − 2pq − ε) = 0

(a)
⇒ 2(1 − 2q)p(1 − p) − (1 − 2p)(p + q − 2pq − ε) = 0

⇒ 2p(1 − p)(1 − 2q) − p(1 − 2p)(1 − 2q) − (1 − 2p)q + (1 − 2p)ε = 0

⇒ p(1 − 2q) − (1 − 2p)q + (1 − 2p)ε = 0

⇒ p − q + (1 − 2p)ε = 0. (D.4)

Where in (a) we have used p, q < {0, 1} to multiply by
√

pq(1 − p)(1 − q). Taking the

partial derivative with respect to q, by similar calculations we get:

δ

δq
EX,Y(gh)

E
1
2
X(g2)E

1
2
Y (h2)

= 0→ q − p + (1 − 2q)ε. (D.5)

In order for (D.4) and (D.5) to be satisfied simultaneously, we must have ε = 0, p = q, or

ε = p + q = 1, or p = q = 1
2 . For ε < {0, 1}, we must have p = q = 1

2 in which case the

value in (D.3) is:

EX,Y(gh)

E
1
2
X(g2)E

1
2
Y (h2)

= 1 − 2ε.

This completes the proof. �
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APPENDIX E

Proofs for Chapter VI

E.1 Proofs for Chapter VI

E.1.1 Proof of Lemma 5

First note that for i , i′ since S̃ (i, 1 : n) is a function of (X(i, 1 : n),Z(i, 1 : n)) and

S̃ (i′, 1 : n) is a function of (X(i′, 1 : n),Z(i′, 1 : n)), S̃ (i, 1 : n) and S̃ (i′, 1 : n) are independent

of each other. So we only need to prove that S (i, j) are identically distributed for all i, j.

We have:

P(S̃ (i, j)=1) = P(X(i, πi( j))+V̂(i, πi( j))+Z(i, πi( j))=1)

a
= p ∗ P(X(i, πi( j)) + V̂(i, πi( j)) = 1)

b
= p ∗

1
n

n∑
j′=1

E(wH(X(i, j′) + V̂(i, j′)))

c
= p ∗ δ

(a) is true because Z(1 : m, 1 : n) is independent of X(1 : m, 1 : n) and X(i, πi( j)) + V̂(i, πi( j))

is a function of X(1 : m, 1 : n), (b) is true since the choice of πi is independent of the source

sequences, and (c) is correct since the average distortion of C(n)
f is δ.

202



E.1.2 Proof of Lemma 14

Proof. 1)

P(Wn
1 = Wn

2 ) ≥ P(S n
1 = S n

2) = 1 − ε.

The first inequality is true since if S n
1 = S n

2, then Wn
1 = Wn

2 .

2) Let 1A be the indicator function of event A. We have:

H(Wn
2 |W

n
1 ) = H(1{Wn

1 =Wn
2 }
,Wn

2 |W
n
1 ) ≤ H(1{Wn

1 =Wn
2 }

) + H(Wn
2 |W

n
1 , 1{Wn

1 =Wn
2 }

)

≤ hb(ε) + P(Wn
1 , Wn

2 )H(Wn
2 |W

n
1 , 1{Wn

1 =Wn
2 }

= 0) ≤ hb(ε) + P(Wn
1 , Wn

2 )H(Wn
2 )

≤ hb(ε) + εn log |W2|.

�

E.1.3 Proof of Lemma 15

Proof. 1)

P′X1,X2,W1,U1,U2 =
∑
w2

P′X1,X2,W1,W2,U1,U2 ≥
∑
w2

1{W1=W2}P
′
X1,X2,W1,W2,U1,U2

=
∑
w2

1{W1=W2}P
′
X1,X2,W1,W2 PU1 |X1,W1 PU2 |X2,W1 = PU1 |X1,W1 PU2 |X2,W1

∑
w2

1{W1=W2}P
′
X1,X2,W1,W2

a
≥ PU1 |X1,W1 PU2 |X2,W1(PX1,X2,W1 − ε) ≥ PX1,X2,W1,U1,U2 − ε.

Where part (a) results from the following:

PX1,X2,W1 = P′X1,X2,W1 =
∑
w2

P′X1,X2,W1,W2 ≤
∑
w2

1{W1=W2}P
′
X1,X2,W1,W2 + P(1W1,W2).

203



Now we prove the other side of the inequality:

P′X1,X2,W1,U1,U2 =
∑
w2

P′X1,X2,W1,W2,U1,U2 ≤
∑
w2

1W1=W2 P′X1,X2,W1,W2,U1,U2 + ε

≤ PX1,X2,W1 PU1 |X1,W1 PU2 |X1,W1 + ε = PX1,X2,W1,U1,U2 + ε.

2) and 3) follow from 1 in a straightforward manner by expanding the mutual informations,

the maximum difference between the terms in the mutual informations is 2 log pi
pi−ε

, for the

sake of brevity we omit the proofs for these parts. �

204



BIBLIOGRAPHY

205



BIBLIOGRAPHY

[1] Ahlswede, R. (1985), The rate-distortion region for multiple descriptions with-
out excess rate, IEEE Transactions on Information Theory, 31(6), 721–726, doi:
10.1109/TIT.1985.1057102.

[2] Akyol, E., K. Viswanatha, and K. Rose (2012), Combinatorial message sharing
and random binning for multiple description coding, in Information Theory Pro-
ceedings (ISIT), 2012 IEEE International Symposium on, pp. 1371–1375, doi:
10.1109/ISIT.2012.6283485.

[3] Anderson, I. (1987), Combinatorics of Finite Sets, The Clatendon Press Oxford Uni-
versity, New York.

[4] Bogdanov, A., and E. Mossel (2011), On extracting common random bits from cor-
related sources, IEEE Transactions on Information Theory, 57(10), 6351–6355, doi:
10.1109/TIT.2011.2134067.

[5] C. Nair, K. X., and M. Yazdanpanah (2015), Sub-optimality of the han–kobayashi
achievable region for interference channels, arXiv preprint arXiv:1502.0258.

[6] Cadambe, V. R., and S. A. Jafar (2008), Interference alignment and degrees of free-
dom of the -user interference channel, IEEE Transactions on Information Theory,
54(8), 3425–3441, doi:10.1109/TIT.2008.926344.

[7] Chaharsooghi, F. S., A. G. Sahebi, and S. S. Pradhan (2013), Distributed
source coding in absence of common components, in Information Theory Pro-
ceedings (ISIT), 2013 IEEE International Symposium on, pp. 1362–1366, doi:
10.1109/ISIT.2013.6620449.

[8] Costa, M., and A. E. Gamal (1987), The capacity region of the discrete memoryless
interference channel with strong interference (corresp.), IEEE Transactions on Infor-
mation Theory, 33(5), 710–711, doi:10.1109/TIT.1987.1057340.

[9] Csiszár, I., and J. Korner (1981), Information Theory: Coding Theorems for Discrete
Memoryless Systems, Academic Press Inc. Ltd.

[10] Csiszar, I., and P. Narayan (2000), Common randomness and secret key genera-
tion with a helper, IEEE Transactions on Information Theory, 46(2), 344–366, doi:
10.1109/18.825796.

206



[11] Gacs, P., and J. Körner (1972), Common information is far less than mutual informa-
tion, Problems of Control and Information Theory, 2(2), 119–162.

[12] Gallager, R. G. (1968), Information Theory and Reliable Communication, Wiley, New
York.

[13] Gamal, A. E., and T. Cover (1982), Achievable rates for multiple de-
scriptions, IEEE Transactions on Information Theory, 28(6), 851–857, doi:
10.1109/TIT.1982.1056588.

[14] Gamal, A. E., and Y. H. Kim (2011), Network Information Theory, Cambridge Uni-
versity Press.

[15] Goyal, V. K. (2001), Multiple description coding: compression meets the network,
IEEE Signal Processing Magazine, 18(5), 74–93, doi:10.1109/79.952806.

[16] Han, T., and K. Kobayashi (1981), A new achievable rate region for the inter-
ference channel, IEEE Transactions on Information Theory, 27(1), 49–60, doi:
10.1109/TIT.1981.1056307.

[17] Kleitman, D., and G. Markowsky (1975), On dedekind’s problem: the number of
isotone boolean functions. ii, Trans. Amer. Math. Soc., 213, 373–390.

[18] Korner, J., and K. Marton (1979), How to encode the modulo-two sum of binary
sources (corresp.), IEEE Transactions on Information Theory, 25(2), 219–221, doi:
10.1109/TIT.1979.1056022.

[19] Kostina, V., and S. Verdu (2012), Fixed-length lossy compression in the finite block-
length regime, IEEE Transactions on Information Theory, 58(6), 3309–3338, doi:
10.1109/TIT.2012.2186786.

[20] Krithivasan, D., and S. S. Pradhan (2011), Distributed source coding using abelian
group codes: A new achievable rate-distortion region, IEEE Transactions on Infor-
mation Theory, 57(3), 1495–1519, doi:10.1109/TIT.2010.2103852.

[21] Lalitha, V., N. Prakash, K. Vinodh, P. V. Kumar, and S. S. Pradhan (2011), A nested
linear codes approach to distributed function computation over subspaces, in Commu-
nication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference
on, pp. 1202–1209, doi:10.1109/Allerton.2011.6120304.

[22] Loeliger, H. A. (1991), Signal sets matched to groups, IEEE Trans. Inform. Theory,
37(6), 1675–1682.

[23] Maddah-Ali, M. A., A. S. Motahari, and A. K. Khandani (2008), Communica-
tion over mimo x channels: Interference alignment, decomposition, and perfor-
mance analysis, IEEE Transactions on Information Theory, 54(8), 3457–3470, doi:
10.1109/TIT.2008.926460.

207



[24] Mahajan, A., A. Nayyar, and D. Teneketzis (2008), Identifying tractable decentral-
ized control problems on the basis of information structure, in 2008 46th Annual
Allerton Conference on Communication, Control, and Computing, pp. 1440–1449,
doi:10.1109/ALLERTON.2008.4797732.

[25] Marton, K. (1979), A coding theorem for the discrete memoryless broad-
cast channel, IEEE Transactions on Information Theory, 25(3), 306–311, doi:
10.1109/TIT.1979.1056046.

[26] Nazer, B., and M. Gastpar (2007), Computation over gaussian multiple-access chan-
nels, in 2007 IEEE International Symposium on Information Theory, pp. 2391–2395,
doi:10.1109/ISIT.2007.4557577.

[27] Ozarow, L. (1980), On a source-coding problem with two channels and three re-
ceivers, The Bell System Technical Journal, 59(10), 1909–1921, doi:10.1002/j.1538-
7305.1980.tb03344.x.

[28] Padakandla, A., and S. S. Pradhan (2013), Achievable rate region for three user
discrete broadcast channel based on coset codes, in Information Theory Pro-
ceedings (ISIT), 2013 IEEE International Symposium on, pp. 1277–1281, doi:
10.1109/ISIT.2013.6620432.

[29] Padakandla, A., A. G. Sahebi, and S. S. Pradhan (2012), A new achievable rate re-
gion for the 3-user discrete memoryless interference channel, in Information Theory
Proceedings (ISIT), 2012 IEEE International Symposium on, pp. 2256–2260, doi:
10.1109/ISIT.2012.6283913.

[30] Philosof, T., and R. Zamir (2009), On the loss of single-letter characterization: The
dirty multiple access channel, IEEE Transactions on Information Theory, 55(6),
2442–2454, doi:10.1109/TIT.2009.2018174.

[31] Philosof, T., R. Zamir, U. Erez, and A. J. Khisti (2011), Lattice strategies for the dirty
multiple access channel, IEEE Transactions on Information Theory, 57(8), 5006–
5035, doi:10.1109/TIT.2011.2158883.

[32] Pinsker, M. S. (1964), Information and information stability of random variables and
processes, first edition ed., Holden-Day.

[33] Pradhan, S. S., R. Puri, and K. Ramchandran (2004), n-channel symmetric multi-
ple descriptions - part i: (n, k) source-channel erasure codes, IEEE Transactions on
Information Theory, 50(1), 47–61, doi:10.1109/TIT.2003.821998.

[34] Reed, M., and B. Simon (1972), Methods of Modern Mathematical Physics, I: Func-
tional Analysis, Academic Press Inc. Ltd., New York.

[35] Sahebi, A. G. (2014), Group, lattice and polar codes for multi-terminal communica-
tions, Ph.D. thesis, Univeristy of Michigan, Ann Arbor, MI.

208



[36] Sahebi, A. G., and S. S. Pradhan (2012), Nested lattice codes for arbitrary continuous
sources and channels, in Information Theory Proceedings (ISIT), 2012 IEEE Interna-
tional Symposium on, pp. 626–630, doi:10.1109/ISIT.2012.6284268.

[37] Sato, H. (1981), The capacity of the gaussian interference channel under strong inter-
ference (corresp.), IEEE Transactions on Information Theory, 27(6), 786–788, doi:
10.1109/TIT.1981.1056416.

[38] Shannon, C. E. (1948), A mathematical theory of communication, The Bell System
Technical Journal, 27, 379–423.

[39] Shannon, C. E. (1959), Coding theorems for a discrete source with a fidelity criterion,
IRE Nat. Cov. Rec., 7(4), 142–163.

[40] Shirani, F., and S. S. Pradhan (2014), An achievable rate-distortion region for the
multiple descriptions problem, in 2014 IEEE International Symposium on Informa-
tion Theory, pp. 576–580, doi:10.1109/ISIT.2014.6874898.

[41] Shirani, F., and S. S. Pradhan (2016), An achievable rate-distortion region for multiple
descriptions source coding based on coset codes, http://arxiv.org/abs/1602.01911.

[42] Shirani, F., M. Heidari, and S. S. Pradhan (2015), New lattice codes for multiple-
descriptions, in 2015 IEEE International Symposium on Information Theory (ISIT),
pp. 1580–1584, doi:10.1109/ISIT.2015.7282722.

[43] Sridharan, S., A. Jafarian, S. Vishwanath, S. A. Jafar, and S. Shamai (2008), A lay-
ered lattice coding scheme for a class of three user gaussian interference channels, in
Communication, Control, and Computing, 2008 46th Annual Allerton Conference on,
pp. 531–538, doi:10.1109/ALLERTON.2008.4797604.

[44] Tian, C., and J. Chen (2010), New coding schemes for the symmetric -description
problem, IEEE Transactions on Information Theory, 56(10), 5344–5365, doi:
10.1109/TIT.2010.2059651.

[45] Tung, S. Y. (1978), Multiterminal source coding, Ph.D. thesis, Cornell University,
Ithaca, NY.

[46] Venkataramani, R., G. Kramer, and V. K. Goyal (2003), Multiple description coding
with many channels, IEEE Transactions on Information Theory, 49(9), 2106–2114,
doi:10.1109/TIT.2003.815767.

[47] Vinodh, K., V. Lalitha, N. Prakash, P. V. Kumar, and S. S. Pradhan (2010), On the
achievable rates of sources having a group alphabet in a distributed source coding
setting, in Communication, Control, and Computing (Allerton), 2010 48th Annual
Allerton Conference on, pp. 479–486, doi:10.1109/ALLERTON.2010.5706945.

[48] Viswanatha, K., E. Akyol, and K. Rose (2011), Combinatorial message sharing
for a refined multiple descriptions achievable region, in Information Theory Pro-
ceedings (ISIT), 2011 IEEE International Symposium on, pp. 1312–1316, doi:
10.1109/ISIT.2011.6033750.

209



[49] Viswanatha, K. B., E. Akyol, and K. Rose (2016), Combinatorial message sharing and
a new achievable region for multiple descriptions, IEEE Transactions on Information
Theory, 62(2), 769–792, doi:10.1109/TIT.2015.2506586.

[50] Wagner, A. B., B. G. Kelly, and Y. Altug (2011), Distributed rate-distortion with
common components, IEEE Transactions on Information Theory, 57(7), 4035–4057,
doi:10.1109/TIT.2011.2145570.

[51] Wang, J., J. Chen, L. Zhao, P. Cuff, and H. Permuter (2011), On the role of the refine-
ment layer in multiple description coding and scalable coding, IEEE Transactions on
Information Theory, 57(3), 1443–1456, doi:10.1109/TIT.2011.2104650.

[52] Wang, Y., A. R. Reibman, and S. Lin (2005), Multiple description coding for video
delivery, Proceedings of the IEEE, 93(1), 57–70, doi:10.1109/JPROC.2004.839618.

[53] Wirsenhausen, H. S. (1975), On sequences of pair of dependent random variables,
SIAM Journal of Applied Mathematics, 28(1), 100–113.

[54] Zhang, Z., and T. Berger (1987), New results in binary multiple de-
scriptions, IEEE Transactions on Information Theory, 33(4), 502–521, doi:
10.1109/TIT.1987.1057330.

210


