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Abstract 

Prostate cancer is the most common malignancy in U.S. men, accounting for 

nearly 30,000 deaths annually. While the majority of prostate cancers are 

indolent, a subset of patients has aggressive disease. However, the molecular 

basis for this clinical heterogeneity remains incompletely understood. 

 

Long noncoding RNAs (lncRNAs) are an emerging class of regulatory molecules 

implicated in a diverse range of human malignancies. Here, SChLAP1 is 

identified as a novel, highly prognostic lncRNA that is expressed in 15-30% of 

prostate cancers. Functionally, SChLAP1 coordinates cancer cell invasion in vitro 

and metastatic spread in vivo. Mechanistically, SChLAP1 interacts with and 

antagonizes the tumor-suppressive SWI/SNF nucleosome-remodeling complex. 

 

While deleterious SWI/SNF mutations occur in 20% of all cancers, they are 

relatively rare in prostate cancer. Within prostate cancer, SWI/SNF mutations are 

associated with low SChLAP1 expression, suggesting that high SChLAP1 

expression may represent a mutation-independent modality of SWI/SNF 

inhibition. Employing a previously described antagonistic model between 

SWI/SNF and Polycomb Repressive Complex 2 (PRC2), SChLAP1 is found to 

enhance PRC2 function in prostate cancer. Additionally, SChLAP1-expressing 

cells are more sensitive to pharmacologic EZH2 inhibition. 
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Further characterization of SChLAP1 reveals a 250bp region near the 3’-end that 

mediates its invasive phenotype and coordinates its interaction with SWI/SNF. 

Additionally, SChLAP1 interacts with BRG1-containing but not BRM-containing 

SWI/SNF complexes, and knockdown of BRM in SChLAP1-expressing cells 

exposes a synthetic lethal vulnerability in prostate cancer. 

 

Finally, the largest biomarker discovery project to date in prostate cancer 

identifies SChLAP1 as one of the best genes for predicting metastatic 

progression. Characterization of SChLAP1 expression by in situ hybridization 

shows that SChLAP1 expression is enriched in metastatic samples. Additionally, 

SChLAP1 can be detected in patient urine samples and may be useful as a non-

invasive biomarker. Lastly, targeting SChLAP1 with antisense oligonucleotides 

(ASO) suggests that directly targeting SChLAP1 may be an effective therapeutic 

strategy in prostate cancer. 

 

Taken together, this work defines an essential role for SChLAP1 in aggressive 

prostate cancer, uncovers novel aspects of lncRNA biology, and has broad 

implications for cancer biology.
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Chapter 1:  

A rationale to study long noncoding RNAs in prostate cancer 

 

Prostate Cancer 

Epidemiology 

Prostate cancer is the most common non-cutaneous cancer in U.S. men and the 

second-leading cause of cancer-related death in U.S. men, behind only lung 

cancer1. Approximately 221,000 men will be diagnosed with prostate cancer this 

year and about 28,000 men will die from prostate cancer this year alone1. While 

1 in 7 men will be diagnosed with prostate cancer in their lifetime, the majority of 

men have indolent disease that requires no treatment at all2. In fact, nearly 3 

million U.S. men are living with prostate cancer today3, and autopsy studies have 

found that up to 40% of all men, and over 70% of men over the age of 70, have 

latent prostate cancer4,5. 

 

The overall relative survival rates for prostate cancer are very good: 100% at 5 

years, 99% at 10 years, and 94% at 15 years6. However, as the previous 

statistics suggest, the public health burden and disease-specific death of prostate 

cancer are substantial. Therefore, a better understanding of the biological basis 

behind aggressive, lethal prostate cancer is necessary, and treating those 
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patients with serious, life-threatening illness at an early stage is a major goal in 

the clinical management of the disease7,8. 

 

Risk factors 

While one predominant risk factor has not been identified in prostate cancer (akin 

to smoking and lung cancer), several demographic and lifestyle factors have 

been associated with an increased risk of disease9,10. Age is the most important 

risk factor:  the majority of prostate cancers are found in men above 65 years of 

age, and very rarely do men under the age of 40 have prostate cancer11. 

 

Additionally, race is a major factor, as African-American men are more likely to 

acquire and twice as likely to die from prostate cancer compared to Caucasian 

men12-14. In contrast, Asian-American and Hispanic men are least likely to 

develop prostate cancer15,16. However, the molecular basis behind these racial 

differences remains unclear17,18, and differences in access to healthcare do not 

account for the observed variation19. Finally, a family history of prostate cancer 

increases the odds of developing the disease, with 5-10% of prostate cancers 

thought to be primarily caused by inherited factors20-22. 

 

Screening 

While digital rectal exams were used for decades to detect prostate cancer, 

variability in clinician assessment and the predominance of advanced cancer 

upon detection made it an unsuitable tool for screening23-25. The introduction of 
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the prostate-specific antigen (PSA) serum test in the 1980s led to an increase in 

detected cases of prostate cancer (Fig. 1.1), but also increased risks (see below) 

without clear evidence of decreased mortality23,26. Additionally, PSA is not 

specific to cancer and can be elevated for a variety of reasons, including benign 

prostatic hyperplasia (BPH) and infection (prostatitis)23,26. Furthermore, the 

cutoffs used for PSA screening were far from perfect, with approximately 15% of 

men in the normal range (less than 4ng/mL) actually having prostate cancer and 

approximately 75% of men in the elevated range (4-10ng/mL) not having any 

sign of prostate cancer upon further testing29,32. While the U.S. Preventive 

Services Task Force (USPSTF) recommends against routine PSA-based 

prostate cancer screening27, most clinicians suggest implementing PSA testing 

on an case-by-case basis23,26. In combination with physical exam and overall 

clinical assessment, an elevated PSA most often requires prostate tissue biopsy 

for further evaluation. 

 

Precancerous lesions 

Prostate cancer develops primarily from the glandular cells in the prostate that 

secrete fluids and are therefore called adenocarcinomas28-31. While cancers can 

arise from other cells in the prostate, they are extremely rare32. In this thesis, the 

term prostate cancer refers to prostate adenocarcinomas (PRAD). 

 

Several precancerous conditions of the prostate may be detected on initial tissue 

biopsy (Fig. 1.2)30,33. Proliferative inflammatory atrophy (PIA) is a condition 
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where prostate cells look smaller than normal and are surrounded by signs of 

inflammation. Prostatic intraepithelial neoplasia (PIN) is a condition where 

prostate cells have an abnormal pattern under the microscope, but do not display 

other characteristics of cancer. Approximately 20% of patients with high-grade 

PIN will have a cancerous lesion in another region of the prostate and these 

patients should be more actively monitored34. 

 

Gleason score 

The Gleason method for grading prostate tissues was developed in the 1960s 

and is based entirely on histologic patterns of carcinoma cells (Fig. 1.3)35. The 

Gleason grade ranges from 1 (normal) to 5 (abnormal), and the Gleason score is 

calculated as the sum of the two regions that account for the majority of a cancer. 

A Gleason score of 6 or below is considered low-grade and less aggressive. A 

Gleason score of 8-10 is considered high-grade, more likely to develop 

metastatic, lethal tumors, and should be treated aggressively36,37. The Gleason 

grade has stood the test of time as a prognostic indicator of prostate cancer, with 

direct relationships to histopathologic and clinical end points, including tumor 

size, margin status, progression to metastatic disease, and survival35-38. 

 

Molecular aberrations 

Although prostate cancer genomes are relatively less mutated compared to other 

cancers39, molecular characterization studies have revealed a complex, 

heterogeneous landscape of somatic mutations, gene deletions, gene 
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amplifications, and chromosomal rearrangements that define the disease40-44. 

SPOP has the highest rate of point mutations in prostate cancers, with 5-15% of 

cases altered in localized disease40,43,45,46. TP53, the most commonly mutated 

tumor suppressor in cancer, is deleted in 25-40% of prostate cancers and 

harbors point mutations in 5-40% of cases40-42,44,46,47. The PI3K pathway, which 

is also frequently altered in human cancer, is affected in 25-70% of prostate 

cancers39. PTEN, a tumor suppressor that regulates the PI3K pathway, is deleted 

in 40% of prostate cancers and mutated in 5-15% of cases40-42,44,47. 

 

In 2005, the discovery that approximately half of all prostate cancers harbor 

recurrent ETS (E26 transformation-specific) gene fusions revolutionized the 

molecular categorization of prostate cancers48. Typically, the 5’ region of an 

androgen-regulated gene is fused to a member of the ETS transcription factor 

family. Most commonly, TMPRSS2 is fused to ERG. SPINK1, a secreted 

protease, is overexpressed in a subset of ETS-positive prostate cancers and is 

typically associated with more aggressive disease49. Additionally, EZH2, the 

catalytic subunit of PRC2, is overexpressed in prostate cancer and associated 

with aggressive and metastatic disease50. 

 

As androgen signaling plays such a crucial role in prostate development and 

cancer progression51, the mainstay of therapy targets the androgen signaling axis 

(see below). Following treatment, metastatic, castrate-resistant prostate cancers 

(CRPC) show genetic abnormalities in the androgen receptor (AR) gene52-54. 
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While amplifications and point mutations are frequently found in treated, 

metastatic tumors, they are absent in localized disease40,41,44, suggesting AR 

aberrations appear as a mechanism of resistance to these therapies. 

 

Treatment Modalities 

In addition to standard chemotherapeutic agents, several options are available 

for the initial management of prostate cancer. Radical prostatectomy, a surgical 

procedure to completely remove the prostate, is commonly used as first-line 

curative treatment for localized prostate cancer, although its benefit versus 

watchful waiting for localized disease is uncertain55. Radiation therapy is also 

implemented at early stages of the disease, and the combination of radiotherapy 

with androgen deprivation therapy (ADT, see below) has become the standard of 

care for men receiving either treatment56. Immunotherapy has recently emerged 

as an effective treatment modality for prostate cancer, and in 2011, Sipuleucel-T 

was the first FDA-approved vaccine for the management of cancer57. 

Additionally, bone targeting therapies, such as bisphosphonates and radium-223, 

have been extremely helpful as the majority of prostate cancer patients will 

develop bone metastases, leading to pain, deteriorated quality of life, and other 

serious complications58. 

 

The basis of therapy for recurrent, incurable metastatic prostate cancer is 

focused on targeting the androgen signaling pathway59,60. The goal of androgen 

deprivation therapy (ADT) is to reduce the level of androgen signaling in prostate 
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cells. This can be achieved using several approaches. Overall levels of androgen 

in the body can be reduced by surgical castration (orchiectomy), decreasing 

levels of gonadotropin-releasing hormone (LHRH) with drugs such as 

leuprolide61, or inhibiting CYP17, an enzyme necessary for androgen 

biosynthesis, with abiraterone62. Drugs targeting the androgen receptor, such as 

bicalutamide, prevent androgen binding at the receptor63. Finally, the nuclear 

translocation of androgen receptor within cells can be blocked by enzalutamide64.  

 

Clinical challenges 

While the utility of PSA testing for the detection of prostate cancer remains 

debatable, abnormal PSA tests lead to tissue biopsies, which may cause adverse 

effects such as pain, bleeding, or infection65,66. Additionally, undergoing biopsy 

can lead to psychological stress and cause anxiety in men67. 

 

Additionally, indolent prostate cancer continues to be widely overdiagnosed and 

overtreated68-70, and the discrimination of aggressive from indolent prostate 

cancer remains one of the most important areas of research for this disease8,71. 

In particular, the ability to stratify patient outcomes at the time of prostate cancer 

screening or diagnosis has proven to be challenging. To distinguish between 

aggressive and indolent tumors, current clinical paradigms rely mainly on pre-

operative PSA levels, tumor stage, and Gleason score in order to estimate 

patient risk36,38,72-74. Yet, these remain imperfect tools that inaccurately classify 

some patients75-78. Aggressive treatment of these indolent cancers is associated 
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with unnecessary risks of urinary, sexual, and bowel dysfunction, which can 

adversely affect a patient’s quality of life79. 

 

Finally, although several drugs have recently been FDA-approved for the 

treatment of prostate cancer, therapies for lethal, metastatic disease continue to 

target the androgen signaling pathway. While decades of research have 

improved our understanding of the molecular basis underlying aggressive 

prostate cancer, there have been minimal changes in overall patient outcomes 

(Fig. 1.1). The majority of efforts to address these clinical challenges have 

focused on proteins; thus, exploration beyond protein-coding genes warrants 

further study. 

 

The Genome 

Definition of a gene 

The central dogma of molecular biology states that DNA is transcribed into 

messenger RNAs, which serve as templates for protein synthesis80. For decades, 

proteins have been studied as the key players in cellular biology and disease 

pathogenesis. However, the completion of the Human Genome Project in 2001 

showed that a surprisingly small number of approximately 25,000 “genes” coded 

for proteins in human DNA, accounting for only 1.5% of the entire genome81. The 

purpose of these noncoding regions of the genome remained unclear. 
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Characterizing the genome 

In 2007, the Encyclopedia of DNA Elements (ENCODE) Consortium directed a 

comprehensive sequencing and annotation analysis to find that 60-70% of the 

genome was transcribed into RNA82. With only a small fraction of transcribed 

RNAs coding for proteins, uncovering the function of the myriad of noncoding 

transcripts became a major area of investigation. The development of Next-

Generation Sequencing (NGS) allowed global, unbiased RNA sequencing (RNA-

seq), and several groups began producing large amounts of RNA-seq data to 

study the transcriptome83-85. These efforts revealed that thousands of previously 

unannotated, noncoding RNAs existed within cells. While the study of noncoding 

RNAs has been ongoing for decades, the abundance of novel transcripts 

transformed our understanding of molecular biology and cellular function. 

 

Long noncoding RNAs 

Long noncoding RNAs (lncRNAs) are one class of noncoding transcripts. 

LncRNAs are RNA species >200bp in length commonly characterized by splicing 

of multiple exons, H3K4me3 promoter methylation, and transcription by RNA 

polymerase II86,87. Efforts to characterize long noncoding transcripts initially relied 

on these characteristics to define transcribed regions of the genome87. As 

bioinformatics tools improved and RNA-seq data became more readily available, 

computational tools were used to identify novel, unannotated transcripts88. 
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LncRNA function 

LncRNA-mediated biology has been implicated in a wide variety of cellular 

processes, including pluripotency in stem cells89 and X chromosome 

inactivation90. While some lncRNAs, such as Xist, appear to operate exclusively 

in the nucleus as regulators of gene expression90,91, other lncRNAs appear to 

function predominantly in the cytoplasm where they can regulate the stability of 

mRNAs92-94.  

 

Several mechanisms of lncRNA activity have been described (Fig. 1.4)95. Most 

prominently, lncRNAs have been shown to collaborate with protein partners to 

form ribonucleoprotein complexes. For example, Xist interacts with the Polycomb 

repressive complex 2 (PRC2), resulting in PRC2 recruitment and H3 lysine 27 

trimethylation (H3K27me3) of the inactive X chromosome96. Air and Kcnq1ot1 

bind to G9a, a histone H3 lysine 9 methylase, to regulate gene expression97,98. 

ANRIL associates with PRC1 to regulate the INK4a locus99. Linc-p21 and 

PANDA are two p53-regulated lncRNAs that interact with hnRNPK and NF-Y to 

regulate transcription. Given this propensity to engage protein complexes, 

lncRNAs are emerging as decoys, scaffolds, and guides100. 

 

Cancer-associated lncRNAs 

In cancer, lncRNAs are emerging as a prominent layer of previously 

underappreciated transcriptional regulation, often by collaborating with epigenetic 

complexes such as Polycomb Repressive Complex 199,101 (PRC1) and Polycomb 
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Repressive Complex 2 (PRC2)91,96,101-103, among others.  Mechanistically, 

cancer-associated lncRNAs commonly serve as molecular scaffolds that enable 

recruitment of these complexes to specific genomic loci, allowing for specificity of 

function103,104.  Clinically, overexpression of the HOTAIR lncRNA has been 

shown to correlate with aggressive breast102, colon105, hepatocellular106, and 

gastrointestinal stromal tumors107, suggesting that lncRNA-mediated biology 

plays a prominent role in cancer progression. 

 

However, lncRNAs frequently display lineage-specific expression patterns88,108, 

making generalizations about their functional contributions to a variety of 

contexts difficult. For example, HOTAIR, while an important component of breast 

cancer102, is virtually absent in prostate cancer108. Additionally, in non-disease 

states, a muscle-specific lncRNA was recently reported as a lineage-specific 

regulator of muscle differentiation109. Therefore, our group sought to uncover the 

lncRNAs that mediate prostate cancer. 

 

Prostate Cancer Associated Transcripts (PCATs) 

Using RNA-seq on a panel of 102 prostate cancer samples and cell lines, our 

laboratory identified approximately 1,800 lncRNAs expressed in prostate 

tissues108. The majority of the transcripts corresponded to annotated protein 

coding genes and noncoding RNAs, but a substantial percentage (19.8%) lacked 

any overlap with previously discovered genes (Fig. 1.5a). Differential expression 

analysis identified 121 lncRNAs, termed PCATs (Prostate Cancer Associated 
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Transcripts), whose expression patterns distinguished benign, localized cancer 

and metastatic cancer samples (Fig. 1.5b). In that study, experimental work 

focused on PCAT-1, a 1.9-kb polyadenylated lncRNA comprising two exons and 

located in the Chr8q24 gene desert. While PCAT-1 showed tissue-specific 

expression and was selectively upregulated only in prostate cancer, we wanted 

to identify those lncRNAs with high expression in the subset of aggressive 

cancers. The highest-ranked lncRNA candidate identified by outlier analysis was 

SChLAP1. 

 

Goals of this thesis 

In this thesis, we aim to elucidate the role of long noncoding RNA SChLAP1 in 

prostate cancer. We begin by characterizing the transcript and identifying its 

function in prostate cancer progression. Then, we uncover its mechanism of 

action and interrogate aspects of SChLAP1 biology to reveal several therapeutic 

vulnerabilities in prostate cancer. Finally, we explore translational opportunities of 

SChLAP1 in aggressive prostate cancer, with the goal of addressing some of the 

clinical challenges in prostate cancer. 
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Figures 

 

Figure 1.1 Age-Adjusted Incidence of and Mortality from Prostate Cancer in 
the United States, 1975–2007. 
 
*Reproduced with permission from Hoffman, N Engl J Med, 2011. Copyright 
Massachusetts Medical Society. 
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Figure 1.2 Proliferative Inflammatory Atrophy as a Precursor to Prostatic 
Intraepithelial Neoplasia and Prostate Cancer 
 
*Reproduced with permission from Nelson et al., N Engl J Med, 2003. Copyright 
Massachusetts Medical Society.  
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Figure 1.3 Gleason grades: standard drawing 
 
*Reprinted by permission from Macmillan Publishers Ltd: Modern Pathology 
(Humphrey PA, Gleason grading and prognostic factors in carcinoma of the 
prostate), copyright 2004 
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Figure 1.4 Models of lncRNA mechanisms 
LncRNAs can act as decoys that titrate away DNA-binding proteins such as 
transcription factors, scaffolds to bring two or more proteins into a complex or 
spatial proximity, guides to recruit proteins, such as chromatin modification 
enzymes, to DNA, or function through chromosome looping in an enhancer-like 
model. 
 
*From Rinn & Chang, Genome regulation by long noncoding RNAs, Annu Rev 
Biochem, 2012 
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Figure 1.5 Prostate cancer transcriptome sequencing reveals dysregulation 
of novel transcripts 
(a) A global overview of transcription in prostate cancer. The left pie chart 
displays transcript distribution in prostate cancer. The upper and lower right pie 
charts display unannotated or annotated ncRNAs, respectively categorized as 
sense transcripts (intergenic and intronic) and antisense transcripts. (b) 
Unsupervised clustering analyses of differentially expressed or outlier 
unannotated intergenic transcripts clusters benign samples, localized tumors and 
metastatic cancers. Expression is plotted as log2 fold-change relative to the 
median of the benign samples. The four transcripts detailed in the study are 
indicated on the side. 
 

*Reprinted by permission from Macmillan Publishers Ltd: Nature Biotechnology 
(Prensner et al., Transcriptome sequencing across a prostate cancer cohort 
identifies PCAT-1, an unannotated lincRNA implicated in disease progression), 
copyright 2011 
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Chapter 2:  

The long noncoding RNA SChLAP1 promotes aggressive 

prostate cancer and antagonizes the SWI/SNF complex1 

 

Abstract 

Prostate cancer is a clinically heterogeneous disease in which only a subset of 

patients has aggressive cancer whereas others have indolent disease1-3. 

However, the molecular basis for this heterogeneity remains incompletely 

understood4-6. Here, we characterize a novel lncRNA termed SChLAP1 (Second 

Chromosome Locus Associated with Prostate-1) overexpressed in a subset of 

prostate cancers.  SChLAP1 levels independently predicted for poor patient 

outcomes, including metastasis and prostate cancer specific mortality. In vitro 

and in vivo gain-of-function and loss-of-function experiments confirmed that 

SChLAP1 is critical for cancer cell invasiveness and metastasis. Mechanistically, 

SChLAP1 antagonized the genome-wide localization and regulatory functions of 

the SWI/SNF chromatin-modifying complex. These results suggest that 

SChLAP1 is a lncRNA that contributes to the development of lethal cancer at 

1 This chapter was previously published as the following manuscript: Prensner JR*, Iyer MK*, 
Sahu A*, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Ehro N, Ghadessi M, Jenkins RB, 
Triche TJ, Malik R, Bedenis R, McGregor N, Ma T, Chen W, Han S, Jing X, Cao X, Wang X, 
Chandler B, Yan W, Siddiqui J, Kunju LP, Dhanasekaran SM, Pienta K, Feng FY, Chinnaiyan 
AM.  The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes 
the SWI/SNF complex. Nat Genet, 45(11):1392-8, 2013. *These authors contributed equally 
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least in part by antagonizing tumor-suppressive functions of the SWI/SNF 

complex. 

 

Introduction 

Prostate cancer is the most common non-cutaneous cancer in U.S. men, with 

over 200,000 prostate cancer diagnoses per year1. However, while 1 in 6 men 

are diagnosed with prostate cancer, only 1 in 32 men die from this disease2,5, 

and it is estimated that only 20% of prostate cancer patients have a high-risk 

cancer3. Thus, most prostate cancer patients die with their disease, but not from 

it. While mutational events in key genes characterizes a subset of lethal prostate 

cancers4,6,7, the molecular basis for aggressive disease remains poorly 

understood. 

 

Long non-coding RNAs (lncRNAs) are polyadenylated RNA species >200bp in 

length commonly characterized by splicing of multiple exons, H3K4me3 promoter 

methylation, and transcription by RNA polymerase II8,9.  lncRNA-mediated 

biology has been implicated in a wide variety of cellular processes, including 

pluripotency in stem cells10 and X chromosome inactivation11. In cancer, lncRNAs 

are emerging as a prominent layer of previously underappreciated transcriptional 

regulation, often by collaborating with epigenetic complexes such as Polycomb 

Repressive Complex 112,13 (PRC1) and Polycomb Repressive Complex 2 

(PRC2)12,14-17, among others. 
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Here, we hypothesized that prostate cancer aggressiveness was governed by 

uncharacterized lncRNAs and sought to discover lncRNAs whose expression 

characterized the subset of prostate cancer patients with aggressive disease. 

 

Results 

We previously used RNA-Seq to describe 121 novel lncRNA loci (out of >1,800) 

that were aberrantly expressed in prostate cancer tissues (Fig. 2.1a)18. Because 

only a fraction of prostate cancers present with aggressive clinical features3, we 

performed cancer outlier profile analysis18 (COPA) to nominate intergenic 

lncRNAs selectively upregulated in a subset of cancers (Fig. 2.1b). We observed 

that only two, PCAT-109 and PCAT-114, which are both located in a “gene 

desert” on Chromosome 2q31.3, showed striking outlier profiles and ranked 

among the best outliers in prostate cancer18 (Fig. 2.1b).  

 

Of the two, PCAT-114 was expressed at higher levels in prostate cell lines, and 

in the PCAT-114 region we defined a 1.4 kb, polyadenylated gene composed of 

up to seven exons and spanning nearly 200kb on Chromosome 2q31.3 (Fig. 

2.1c). We named this gene Second Chromosome Locus Associated with 

Prostate-1 (SChLAP1) after its genomic location.  Published prostate cancer 

ChIP-Seq data19 confirmed that the transcriptional start site (TSS) of SChLAP1 

was marked by H3K4 trimethylation (H3K4me3) and its gene body harbored 

H3K36 trimethylation (H3K36me3) (Fig. 2.1c), an epigenetic signature consistent 

with lncRNAs9. We observed numerous SChLAP1 splicing isoforms of which 
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three (termed isoforms #1, #2, and #3, respectively) constituted the vast majority 

(>90%) of transcripts in the cell (Fig. 2.1d). 

 

Using quantitative PCR (qPCR), we validated that SChLAP1 was highly 

expressed in ~25% of prostate cancers (Fig. 2.2a). SChLAP1 prevalence was 

more frequent in metastatic compared to localized prostate cancers in this cohort 

(Fig. 2.2b). Next, we found that SChLAP1 transcripts were located in the nucleus 

(Fig. 2.2c). We confirmed the nuclear localization of SChLAP1 in human 

samples using an in situ hybridization (ISH) assay in formalin-fixed paraffin-

embedded (FFPE) prostate cancers (Fig. 2.2d). Additionally, a computational 

analysis of the SChLAP1 sequence suggested no coding potential, which was 

confirmed experimentally by in vitro translation assays of three SChLAP1 

isoforms (Fig. 2.3). 

 

Next, we performed a network analysis of prostate cancer microarray data in the 

Oncomine20 database using signatures of SChLAP1-correlated or -anti-correlated 

genes, given that SChLAP1 is not measured by expression microarrays. We 

found a remarkable association with enriched concepts related to prostate cancer 

progression (Fig. 2.4a). For comparison, we next incorporated disease 

signatures using prostate RNA-seq data as well as additional known prostate 

cancer genes: EZH2, a metastasis gene21, PCA3, a lncRNA biomarker5, 

AMACR, a tissue biomarker5, and β-actin (ACTB) as a control. A heat-map 

visualization of significant comparisons confirmed a strong association of 
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SChLAP1-correlated genes, but not PCA3- and AMACR-correlated genes, with 

high-grade and metastatic cancers (Fig. 2.4b). Kaplan-Meier analysis similarly 

showed significant associations between the SChLAP1 signature and 

biochemical recurrence22 and overall survival23 (Fig. 2.4c,d). 

 

To evaluate SChLAP1 levels with clinical outcomes directly, we next used 

SChLAP1 expression to stratify 235 radical prostatectomy localized prostate 

cancer patients from the Mayo Clinic24. Samples were evaluated for three clinical 

endpoints: biochemical recurrence (BCR), clinical progression to systemic 

disease (CP), and prostate cancer-specific mortality (PCSM). At the time of this 

analysis, patients had a median follow-up of 8.1 years.   

 

SChLAP1 was a powerful single-gene predictor of aggressive prostate cancer 

(Fig. 2.5a-c). SChLAP1 expression was highly significant when distinguishing CP 

and PCSM (p = 0.00005 and p = 0.002, respectively) (Fig. 2.5b,c).  For the BCR 

endpoint, high SChLAP1 expression was associated with a rapid median time-to-

progression (1.9 vs 5.5 years for SChLAP1 high and low patients, respectively) 

(Fig. 2a).  We further confirmed that this association with rapid BCR using an 

independent cohort (data not shown). Multivariable and univariable regression 

analyses of the Mayo Clinic data demonstrated that SChLAP1 expression is an 

independent predictor of prostate cancer aggressiveness with highly significant 

hazard ratios for predicting BCR, CP, and PCSM (HR of 3.045, 3.563, and 4.339, 
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respectively, p < 0.01) which were comparable to other clinical factors such as 

advanced clinical stage and the Gleason histopathological score (Fid. 2.5d-i).  

 

To explore the functional role for SChLAP1, we performed siRNA knockdowns to 

compare the impact of SChLAP1 depletion to that of EZH2, which is essential for 

cancer cell aggressiveness21.  Remarkably, knockdown of SChLAP1 (Fig. 2.6a) 

dramatically impaired cell invasion and proliferation in vitro at a level comparable 

to EZH2 (Fig. 2.6b). SChLAP1 knockdown also impaired cell proliferation (Fig. 

2.6c). Overexpression of a siRNA-resistant SChLAP1 isoform rescued the in vitro 

invasive phenotype of 22Rv1 cells treated with siRNA-2 (Fig. 2.6d,e). Next, we 

overexpressed the three most abundant SChLAP1 isoforms in RWPE benign 

immortalized prostate cells at physiologic levels similar to the LNCaP cell line 

(Fig. 2.7a). We found that overexpression of SChLAP1 dramatically increased 

the ability of RWPE cells to invade in vitro but did not impact cell proliferation 

(Fig. 2.7b,c). 

 

To test SChLAP1 in vivo, we performed intracardiac injection of 22Rv1 cells 

stably knocking down SChLAP1 (Fig. 2.8a) and observed that SChLAP1 

depletion impaired metastatic seeding and growth by luciferase signaling at both 

proximal (lungs) and distal sites (Fig. 2.8b,c). Indeed, 22Rv1 shSChLAP1 cells 

displayed both fewer gross metastatic sites overall as well as smaller metastatic 

tumors when they did form (Fig. 2.8c,d). Histopathological analysis of the 

metastatic 22Rv1 tumors, regardless of SChLAP1 knockdown, showed uniformly 
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high-grade epithelial cancer (Fig. 2.8e).  Interestingly, shSChLAP1 subcutaneous 

xenografts displayed slower tumor progression (Fig. 2.9a); however this was due 

to delayed tumor engraftment rather than decreased tumor growth kinetics with 

no change in Ki67 staining observed between shSChLAP1 and shNT cells (Fig. 

2.9b-g).  

 

Next, using the chick chorioallantoic membrane (CAM) assay25, we found that 

22Rv1 shSChLAP1 #1 cells, which have depleted expression of both isoforms 1 

and 2, demonstrated a greatly reduced ability to invade, intravasate and 

metastasize distant organs (Fig. 2.10a-c). Additionally, shSChLAP1 cells also 

showed decreased tumor growth (Fig. 2.10d). Importantly, overexpression of 

RWPE-SChLAP1 isoform #1 cells partially recapitulated these results, displaying 

a markedly increased ability to intravasate (Fig. 2.10e). RWPE-SChLAP1 cells 

did not generate distant metastases or cause altered tumor growth in this model 

(data not shown). Together, the murine metastasis and CAM data strongly 

implicate SChLAP1 in tumor invasion and metastasis through cancer cell 

intravasation, extravasation, and subsequent tumor cell seeding.  

 

To elucidate mechanisms of SChLAP1 function, we profiled 22Rv1 and LNCaP 

SChLAP1-knockdown cells, which revealed 165 upregulated and 264 

downregulated genes (q-value < 0.001) (Fig. 2.11a).  After ranking genes 

according to differential expression26, we employed Gene Set Enrichment 

Analysis (GSEA)27 to search for enrichment across the Molecular Signatures 
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Database (MSigDB)28. Among the highest ranked concepts we noticed genes 

positively or negatively correlated with the SWI/SNF complex (Fig. 2.11b)29, 

which was independently confirmed using gene signatures generated from our 

RNA-Seq data (Fig. 2.11c-e). Importantly, SChLAP1-regulated genes were 

inversely correlated with these datasets, suggesting that SChLAP1 and SWI/SNF 

function in opposing manners. 

 

The SWI/SNF complex regulates gene transcription as a multi-protein system 

that physically move nucleosomes at gene promoters30.  Loss of SWI/SNF 

functionality promotes cancer progression and multiple SWI/SNF components 

are somatically inactivated in cancer30,31.  SWI/SNF mutations do occur in 

prostate cancer albeit not commonly4,  and down-regulation of SWI/SNF complex 

members characterizes subsets of prostate cancer29,32.  Thus, antagonism of 

SWI/SNF activity by SChLAP1 is consistent with the oncogenic behavior of 

SChLAP1 and the tumor suppressive behavior of the SWI/SNF complex. 

 

To directly test whether SChLAP1 antagonizes SWI/SNF-mediated regulation, 

we performed siRNA knockdown of SNF5 (also known as SMARCB1) (Fig. 

2.12a), an essential subunit that facilitates SWI/SNF binding to histone 

proteins30,31,33. A comparison of genes regulated by knockdown of SNF5 to 

genes regulated by SChLAP1 demonstrated an antagonistic relationship where 

SChLAP1 knockdown affected the same genes as SNF5 but in the opposing 

direction (Fig. 2.12b). We used GSEA to quantify and verify the significance of 
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these findings (FDR < 0.05) (Fig. 2.12c-e).  Furthermore, a shared SNF5-

SChLAP1 signature of co-regulated genes was highly enriched for prostate 

cancer clinical signatures for disease aggressiveness (Fig. 2.13).  

 

Mechanistically, although SChLAP1 and SNF5 mRNA levels were comparable 

(Fig. 2.14a), SChLAP1 knockdown or overexpression did not alter SNF5 protein 

abundance (Fig. 2.14b), suggesting that SChLAP1 regulates SWI/SNF activity 

post-translationally. To explore this possibility, we performed RNA 

immunoprecipitation assays (RIP) for SNF5. We found that endogenous 

SChLAP1, but not other cytoplasmic or nuclear lncRNAs8,34, robustly co-

immunoprecipitated with SNF5 in both native (Fig. 2.14c) and UV-crosslinked 

conditions (data not shown) as well as with a second SNF5 antibody (data not 

shown). In contrast, SChLAP1 did not co-immunoprecipitate with androgen 

receptor (Fig. 2.14c). Furthermore, both SChLAP1 isoform #1 and isoform #2 co-

immunoprecipitated with SNF5 in RWPE overexpression models (Fig. 2.14d).  

SNRNP70 binding to the U1 RNA was used as a technical control in all cell lines 

(data not shown).  Finally, pulldown of the SChLAP1 RNA in RWPE-SChLAP1 

isoform #1 cells robustly recovered SNF5 protein, confirming this interaction (Fig. 

2.14e,f). 

 

To address whether SChLAP1 modulated SWI/SNF genomic binding, we 

performed ChIP-Seq of SNF5 in RWPE-LacZ and RWPE-SChLAP1 cells and 

called significantly enriched peaks with respect to an IgG control.  Western blot 
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validations confirmed SNF5 pull-down by ChIP. After aggregating called peaks 

from all samples, we found 6,235 genome-wide binding sites for SNF5 (FDR < 

0.05), which were highly enriched for sites near gene promoters (data not 

shown), supporting previous studies of SWI/SNF binding35-37. 

 

A comparison of SNF5 binding across these 6,235 genomic sites demonstrated a 

dramatic decrease in SNF5 genomic binding as a result of SChLAP1 

overexpression (Fig. 2.15a,b). Of the 1,299 SNF5 peaks occurring within 1kb of 

a gene promoter, 390 decreased ≥2-fold in relative SNF5 binding (Fig. 2.15c). To 

verify these findings independently, we performed ChIP for SNF5 in 22Rv1 sh-

SChLAP1 cells, with the hypothesis that knockdown of SChLAP1 should 

increase SNF5 genomic binding compared to controls. We found that 9 of 12 

target genes showed a substantial increase in SNF5 binding (Fig. 2.15d), 

confirming our predictions.   

 

Finally, we used expression profiling of RWPE-LacZ and RWPE-SChLAP1 cells 

to characterize the relationship between SNF5 binding and SChLAP1-mediated 

gene expression changes.  After identifying a gene signature with highly 

significant expression changes, we intersected this signature with the ChIP-Seq 

data. We observed that a significant subset of genes with ≥2-fold relative 

decrease in SNF5 genomic binding were dysregulated when SChLAP1 was 

overexpressed (data not shown). Decreased SNF5 binding was primarily 

associated with downregulation of target gene expression, although the SWI/SNF 
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complex is known to regulate expression in either direction30,31. An integrative 

GSEA analysis of the microarray and SNF5 ChIP-Seq data demonstrated a 

significant enrichment for genes that were repressed when SChLAP1 was 

overexpressed (q-value = 0.003, Fig. 2.15e). Overall, these data argue that 

SChLAP1 overexpression antagonizes SWI/SNF complex function by attenuating 

the genomic binding of this complex, thereby impairing its ability to regulate gene 

expression properly. 

 

Discussion 

Here, we have discovered SChLAP1, a highly prognostic lncRNA that is 

abundantly expressed in 15-30% of prostate cancers and aided the 

discrimination of aggressive from indolent forms of this disease. Mechanistically, 

we find that SChLAP1 coordinates cancer cell invasion in vitro and metastatic 

spread in vivo.  Moreover, we characterize an antagonistic SChLAP1-SWI/SNF 

axis in which SChLAP1 impairs SNF5-mediated gene expression regulation and 

genomic binding (Fig. 2.16). Thus, while other lncRNAs such as HOTAIR and 

HOTTIP are known to assist epigenetic complexes such as PRC2 and MLL by 

facilitating their genomic binding and enhancing their functions14,15,17,38, 

SChLAP1 is the first lncRNA, to our knowledge, that impairs a major epigenetic 

complex with well-documented tumor suppressor function29-31,39-41. Taken 

together, our discovery of SChLAP1 has broad implications for cancer biology 

and provides supporting evidence for the role of lncRNAs in the progression of 

aggressive cancers. 
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Materials and Methods 

Experimental studies 

Cell lines 

All cell lines were obtained from the American Type Culture Collection 

(Manassas, VA).  Cell lines were maintained using standard media and 

conditions.  Specifically, VCaP and Du145 cells were maintained in DMEM 

(Invitrogen) plus 10% fetal bovine serum (FBS) plus 1% penicillin-streptomycin. 

LNCaP and 22Rv1 were maintained in RPMI 1640 (Invitrogen) plus 10% FBS 

and 1% penicillin-streptomycin.  RWPE cells were maintained in KSF media 

(Invitrogen) plus 10ng/mL EGF (Sigma) and bovine pituitary extract (BPE) and 

1% penicillin-streptomycin.  All cell lines were grown at 37°C in a 5% CO2 cell 

culture incubator.  All cell lines were genotyped for identity at the University of 

Michigan Sequencing Core and tested routinely for Mycoplasma contamination. 

 

SChLAP1 or control-expressing cell lines were generated by cloning SChLAP1 or 

control into the pLenti6 vector (Invitrogen) using pcr8 non-directional Gateway 

cloning (Invitrogen) as an initial cloning vector and shuttling to pLenti6 using LR 

clonase II (Invitrogen) according to the manufacturer’s instructions.  Stably-

transfected RWPE and 22Rv1 cells were selected using blasticidin (Invitrogen) 

for one week.  For LNCAP and 22Rv1 cells with stable knockdown of SChLAP1, 

cells were transfected with SChLAP1 or non-targeting shRNA lentiviral constructs 
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for 48 hours. GFP+ cells were selected with 1ug/mL puromycin for 72 hours.  All 

lentiviruses were generated by the University of Michigan Vector Core. 

 

Tissue Samples 

Prostate tissues were obtained from the radical prostatectomy series and Rapid 

Autopsy Program at the University of Michigan tissue core42.  These programs 

are part of the University of Michigan Prostate Cancer Specialized Program Of 

Research Excellence (S.P.O.R.E.). All tissue samples were collected with 

informed consent under an Institutional Review Board (IRB) approved protocol at 

the University of Michigan.  (SPORE in Prostate Cancer (Tissue/Serum/Urine) 

Bank Institutional Review Board # 1994-0481).  

 

RNA isolation and cDNA synthesis 

Total RNA was isolated using Trizol and an RNeasy Kit (Invitrogen) with DNase I 

digestion according to the manufacturer’s instructions.   RNA integrity was 

verified on an Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, 

CA).  cDNA was synthesized from total RNA using Superscript III (Invitrogen) 

and random primers (Invitrogen). 

 

Quantitative Real-time PCR 

Quantitative Real-time PCR (qPCR) was performed using Power SYBR Green 

Mastermix (Applied Biosystems, Foster City, CA) on an Applied Biosystems 

7900HT Real-Time PCR System. All oligonucleotide primers were obtained from 
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Integrated DNA Technologies (Coralville, IA) and are listed in Table 2.1. The 

housekeeping genes, GAPDH, HMBS, and ACTB, were used as loading 

controls. Fold changes were calculated relative to housekeeping genes and 

normalized to the median value of the benign samples. 

 

Reverse-transcription PCR 

Reverse-transcription PCR (RT-PCR) was performed for primer pairs using 

Platinum Taq High Fidelity polymerase (Invitrogen).  PCR products were 

resolved on a 1.0% agarose gel.  PCR products were either sequenced directly 

(if only a single product was observed) or appropriate gel products were 

extracted using a Gel Extraction kit (Qiagen) and cloned into pcr4-TOPO vectors 

(Invitrogen).  PCR products were bidirectionally sequenced at the University of 

Michigan Sequencing Core using either gene-specific primers or M13 forward 

and reverse primers for cloned PCR products.  All oligonucleotide primers were 

obtained from Integrated DNA Technologies (Coralville, IA) and are listed in 

Table 2.1. 

 

RNA-ligase-mediated rapid amplification of cDNA ends (RACE) 

5’ and 3’ RACE was performed using the GeneRacer RLM-RACE kit (Invitrogen) 

according to the manufacturer’s instructions.  RACE PCR products were 

obtained using Platinum Taq High Fidelity polymerase (Invitrogen), the supplied 

GeneRacer primers, and appropriate gene-specific primers indicated in Table 

2.1. RACE-PCR products were separated on a 1.5% agarose gels.  Gel products 
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were extracted with a Gel Extraction kit (Qiagen), cloned into pcr4-TOPO vectors 

(Invitrogen), and sequenced bidirectionally using M13 forward and reverse 

primers at the University of Michigan Sequencing Core.  At least three colonies 

were sequenced for every gel product that was purified. 

 

siRNA knockdown studies 

Cells were plated in 100mM plates at a desired concentration and transfected 

with 20uM experimental siRNA oligos or non-targeting controls twice, at 8 hours 

and 24 hours post-plating.  Knockdowns were performed with Oligofectamine in 

OptiMEM media.  72 hours post-transfection, cells were trypsinized, counted with 

a Coulter counter, and diluted to 1 million cells/mL. Knockdown efficiency was 

determined by qPCR.  siRNA sequences (in sense format) for knockdowns were 

as follows: 

SChLAP1 siRNA 1: CCAAUGAUGAGGAGCGGGA 
SChLAP1 siRNA 2: CUGGAGAUGGUGAACCCAA 
SNF5 siRNA 5: GUGACGAUCUGGAUUUGAA 
SNF5 siRNA 7: GAUGACGCCUGAGAUGUUU 

 

Overexpression studies 

SChLAP1 full length transcript was amplified from LNCaP cells and cloned into 

the pLenti6 vector (Invitrogen) along with LacZ controls.  Insert sequences were 

confirmed by Sanger sequencing at the University of Michigan Sequencing Core.  

Lentiviruses were generated at the University of Michigan Vector Core.  The 

benign immortalized prostate cell line RWPE was infected with lentiviruses 

expressing SChLAP1 or LacZ and stable pools and clones were generated by 
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selection with blasticidin (Invitrogen).  Similarly, the immortalized cancer cell line 

22Rv1 was infected with lentiviruses expressing SChLAP1 or LacZ and stable 

pools were generated by selection with blasticidin (Invitrogen). 

 

Cell proliferation assays 

72 hours post-transfection with siRNA, cells were trypsinized, counted with a 

Coulter counter, and diluted to 1 million cells/mL. For proliferation assays, 10,000 

cells were plated in 24-well plates and grown in regular media.  48 and 96 hours 

post-plating, cells were harvested by trypsinizing and counted using a Coulter 

counter.  All assays were performed in quadruplicate. 

 

Basement Membrane Matrix Invasion Assays 

For invasion assays, cells were treated with the indicated siRNAs and 72 hours 

post-transfection, cells were trypsinized, counted with a Coulter counter, and 

diluted to 1 million cells/mL. Cells were seeded onto the basement membrane 

matrix (EC matrix, Chemicon, Temecula, CA) present in the insert of a 24 well 

culture plate.  Fetal bovine serum was added to the lower chamber as a chemo-

attractant. After 48 hours, the non-invading cells and EC matrix were gently 

removed with a cotton swab. Invasive cells located on the lower side of the 

chamber were stained with crystal violet, air-dried and photographed. For 

colorimetric assays, the inserts were treated with 150 μl of 10% acetic acid and 

the absorbance measured at 560nm using a spectrophotometer (GE Healthcare). 
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shRNA knockdown 

The prostate cancer cell lines LNCaP and 22Rv1 were seeded at 50-60% 

confluency and allowed to attach overnight.  Cells were transfected with 

SChLAP1 or non-targeting shRNA lentiviral constructs as described previously 

for 48 hours.  GFP+ cells were drug-selected using 1 ug/mL puromycin for 72 

hours.  48 hours post-selection cells were harvested for protein and RNA using 

RIPA buffer or trizol, respectively.  RNA was processed as described above.   

 

Gene expression profiling 

Expression profiling was performed using the Agilent Whole Human Genome 

Oligo Microarray (Santa Clara, CA), according to previously published 

protocols43.  All samples were run in technical triplicates comparing knockdown 

samples treated with SChLAP1 siRNA compared to treatments with non-

targeting control siRNA.  Expression data was analyzed using the SAM method 

as described previously26. 

 

Murine intracardiac and subcutaneous in vivo models 

All experimental procedures were approved by the University of Michigan 

Committee for the Use and Care of Animals (UCUCA). Intracardiac injection 

model: 5 x 105 cells from one of three experimental cell lines (22Rv1 shNT, 

22Rv1 shSChLAP1 #1, shSChLAP1 #2, all with luciferase constructs 

incorporated) were introduced to CB-17 severe combine immunodefiecient mice 

(CB-17 SCID) at 6 weeks of age.  Female mice were used to minimize 

41 
 



endogenous androgen production that may stimulate xenografted prostate cells.  

15 mice were used per cell line in order to ensure adequate statistical power to 

distinguish phenotypes between groups.  Mice used in these studies were 

randomized by double-blind injection of cell line samples into mice and were 

monitored for tumor growth by researchers blinded to the study design. 

Beginning one week post injection, bioluminescent imaging of mice was 

performed weekly using a CCD IVIS system with a 50-mm lens (Xenogen Corp.) 

and the results were analyzed using LivingImage software (Xenogen). When the 

mice reached determined endpoint, whole body region of interest (ROI) of 1 x 

1010 photons, or became fatally ill, the animal was euthanized and the lung and 

liver resected. Half of the resected specimen was put in an 

immunohistochemistry cassette and placed in 10% buffered formalin phosphate 

(Fisher Scientific) for 24 hours, and then transferred to 70% ethanol until further 

analysis. The other half of each specimen was snap frozen in liquid nitrogen and 

stored in -80⁰C. A specimen was disregarded if the tumor was localized to the 

heart only.  After accounting for these considerations, there were 9 mice 

analyzed for 22Rv1 shNT cells, 14 mice each analyzed for 22Rv1 shSChLAP1 

#1 and #2 cells.  Subcutaneous injection model: 1 x 106 cells from one of the 

three previously described experimental cell lines were introduced to mice (CB-

17 SCID), ages 5-7 weeks, with a Matrigel scaffold (BD Matrigel Matrix, BD 

Biosciences) in the posterior dorsal flank region (n = 10 per cell line). Tumors 

were measured weekly using a digital caliper, and endpoint was determined as a 

tumor volume of 1000 mm3. When endpoint was reached, or the animal became 
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fatally ill, the mouse was euthanized and the primary tumor resected. The 

resected specimen was divided in half: one half in 10% buffer formalin and the 

other half snap frozen.  For histological analyses, FFPE-fixed mouse livers and 

lungs were sectioned on a microtome into 5uM sections onto glass slides.  Slides 

were stained with hematoxalyn and eosin using standard methods and analyzed 

by a board-certified pathologist (LPK). 

 

Immunoblot Analysis 

Cells were lysed in RIPA lysis buffer (Sigma, St. Louis, MO) supplemented with 

HALT protease inhibitor (Fisher).  Western blotting analysis was performed with 

standard protocols using Polyvinylidene Difluoride membrane (GE Healthcare, 

Piscataway, NJ) and the signals visualized by enhanced chemiluminescence 

system as described by the manufacturer (GE Healthcare). 

 

Protein lysates were boiled in sample buffer, and 10 µg protein was loaded onto 

a SDS-PAGE gel and run for separation of proteins.  Proteins were transferred 

onto Polyvinylidene Difluoride membrane (GE Healthcare) and blocked for 90 

minutes in blocking buffer (5% milk, 0.1% Tween, Tri-buffered saline (TBS-

T)).  Membranes were incubated overnight at 4C with primary antibody. 

Following 3 washes with TBS-T, and one wash with TBS, the blot was incubated 

with horseradish peroxidase-conjugated secondary antibody and the signals 

visualized by enhanced chemiluminescence system as described by the 

manufacturer (GE Healthcare). Primary antibodies used were:  
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SNF5 (1:1000, Millipore, ABD22, rabbit) 
SNF5 (1:1000, Abcam, ab58209, mouse) 
ACTB (1:5000, Sigma, rabbit) 
AR (1:1000. Millipore, 06-680, rabbit) 

 

RNA immunoprecipitation 

RIP assays were performed using a Millipore EZ-Magna RIP RNA-Binding 

Protein Immunoprecipitation kit (Millipore, #17-701) according to the 

manufacturer’s instructions.  RIP-PCR was performed as qPCR, as described 

above, using total RNA as input controls. 1:150th of RIP RNA product was used 

per PCR reaction. Antibodies used for RIP were Rabbit polyclonal IgG (Millipore, 

PP64), SNRNP70 (Millipore, CS203216), SNF5 (Millipore, ABD22), SNF5 

(Abcam, ab58209), and AR (Millipore, 06-680, rabbit), using 5 – 7 µg of antibody 

per RIP reaction.  All RIP assays were performed in biological duplicate.  For UV-

crosslinked RIP experiments, cells were subjected to 400J of 254nM UV light 

twice and then harvested for RIP experiments as above. 

 

Chromatin immunoprecipitation 

ChIP assays were performed as described previously18,19, using antibodies for 

SNF5 (Millipore ABD22) and Rabbit IgG (Millipore PP64B).  Briefly, 

approximately 10^6 cells were crosslinked per antibody for 10-15 minutes with 

1% formaldehyde and the crosslinking was inactivated by 0.125M glycine for 5 

minutes at room temperature.  Cells were rinsed with cold PBS three times and 

cell pellets were resuspended in lysis buffer plus protease inhibitors.  Chromatin 

was sonicated to an average length of 500bp, centrifuged to remove debris, and 
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supernatants containing chromatin fragments were incubated with protein A/G 

beads to reduce non-specific binding.  Then, beads were removed and 

supernatants were incubated with 6µg of antibody overnight at 4C.  Beads were 

added and incubated with protein-chromatin-antibody complexes for 2 hours at 

4C, washed twice with 1X dialysis buffer and four times with IP wash buffer, and 

eluted in 150 µl IP elution buffer.  1:10th of the ChIP reaction was taken for 

protein evaluation for validation of ChIP pull-down.  Reverse crosslinking was 

performed by inclubating the eluted product with 0.3 M NaCl at 65C overnight.  

ChIP product was cleaned up with the USB PrepEase kit (USB).  ChIP 

experiments were validated for specificity by Western blotting. 

 

ChIP-Seq experiments 

Paired-end ChIP-Seq libraries were generated following the Illimuna ChIP-Seq 

protocol with minor modifications.  The ChIP DNA was subjected to end-repair 

and A base addition before ligating with Illumina adaptors.  Samples were 

purified using Ampure beads (Beckman Coulter Inc., Brea CA) and PCR-

enriched with a combination of specific index primers and PE2.0 primer under the 

following conditions: 98C (30 sec), 65C (30 sec), and 72C (40 sec with a 4 sec 

increment per cycle).  After 14 cycles of amplification a final extension at 72C for 

5 minutes was carried out.  The barcoded libraries were size-selected using a 3% 

NuSieve Agarose gele (Lonza, Allendale, NJ) and subjected to an additional 

PCR enrichment step.  The libraries were analyzed and quantitated using Bio-

45 
 



Analyzer (Agilent Technologies, Santa Clara, CA) before subjecting it to paired-

end sequencing using the Illumina Hi-Seq platform. 

 

CAM assays 

CAM assays were performed as previously described44.  Briefly, fertilized eggs 

were incubated in a rotary humidified incubator at 38°C for 10 days. CAM was 

released by applying mild amount of low pressure to the hole over the air sac and 

cutting a 1 cm
2 
window encompassing a second hole near the allantoic vein. 

Approximately 2 million cells in 50µl of media were implanted in each egg, 

windows were sealed and the eggs were returned to a stationary incubator.  

 

For local invasion and intravasation experiments, the upper and lower CAM were 

isolated after 72hr. The upper CAM were processed and stained for chicken 

collagen IV (immunofluorescence) or human cytokeratin (immunohistochemistry) 

as previously described44. 

 

For metastasis assay, the embryonic livers were harvested on day 18 of 

embryonic growth and analyzed for the presence of tumor cells by quantitative 

human Alu-specific PCR. Genomic DNA from lower CAM and livers were 

prepared using Puregene DNA purification system (Qiagen) and quantification of 

human-Alu was performed as described44. Fluorogenic TaqMan qPCR probes 

were generated as described above and used to determine DNA copy number. 
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For xenograft growth assay with RWPE cells, the embryos were sacrificed on 

day 18 and the extra-embryonic xenograft were excised and weighed.  

 

In situ hybridization 

ISH assays were performed as a commercial service from Advanced Cell 

Diagnostics, Inc.  Briefly, cells in the clinical specimens are fixed and 

permeablized using xylenes, ethanol, and protease to allow for probe access.  

Slides are boiled in pretreatment buffer for 15 min and rinsed in water.  Next, two 

independent target probes are hybridized to the SChLAP1 RNA at 40C for 2 

hours, with this pair of probes creating a binding site of a preamplifier.  After this, 

the preamplifier is hybridized to the target probes at 30C and amplified with 6 

cycles of hybridization followed by 2 washes.  Cells are counter-stained to 

visualize signal.  Finally, slides are H&E stained, dehydrated with 100% ethanol 

and xylene, and mounted in a xylene-based mounting media. 

 

In vitro translation 

Full length SChLAP1, PCAT-1, or GUS positive control were cloned into the 

PCR2.1 entry vector (Invitrogen).  Insert sequences were confirmed by Sanger 

sequencing at the University of Michigan Sequencing Core.  In vitro translation 

assays were performed with the TnT Quick Coupled Transcription/Translation 

System (Promega) with 1mM methionine and Transcend Biotin-Lysyl-tRNA 

(Promega) according to the manufacturer’s instructions. 
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ChIRP Assay 

ChIRP assays were performed as previously described45. Briefly, antisense DNA 

probes targeting the SChLAP1 full-length sequence were designed using the 

online designer at http://www.singlemoleculefish.com. Fifteen probes spanning 

the entire transcript and unique to the SChLAP1 sequence were chosen. 

Additionally, ten probes were designed against TERC RNA as a positive control 

and twenty-four probes were designed against LacZ RNA as a negative control. 

All probes were synthesized with 3’ biotinylation (IDT). Sequences of all probes 

are listed in Table 2.2. RWPE cells overexpressing SChLAP1 isoform 1 were 

grown to 80% confluency in 100mm cell culture dishes. Two dishes were used 

for each probe set. Prior to harvesting, the cells were rinsed with 1xPBS and 

crosslinked with 1% glutaraldehyde (Sigma) for 10 min at room temperature. 

Crosslinking was quenched with 0.125M glycine for 5 min at room temperature. 

The cells were rinsed twice with 1xPBS, collected and pelleted at 1500xg for 5 

min. Nuclei were isolated using the Pierce NE-PER Nuclear Protein Extraction 

Kit.  The nuclear pellet was resuspended in 100mg/ml cell lysis buffer (50 mM 

Tris, pH 7.0, 10 mM EDTA, 1% SDS, and added before use: 1 mM dithithreitol 

(DTT), phenylmethylsulphonyl fluoride (PMSF), protease inhibitor and Superase-

In (Invitrogen)). The lysate was placed on ice for 10 min and sonicated using a 

Bioruptor (Diagenode) at the highest setting with 30 sec on and 45 sec off cycles 

until lysates were completely solubilized. Cell lysates were diluted in twice the 

volume of hybridization buffer (500 mM NaCl, 1% SDS, 100 mM Tris, pH 7.0, 

10 mM EDTA, 15% formamide, and added before use: DTT, PMSF, protease 
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inhibitor, and Superase-In) and 100pmol/ml probes were added to the diluted 

lysate. Hybridization was carried out by end-over-end rotation at 37°C for 4 

hours. Magnetic streptavidin C1 beads were prepared by washing three times in 

cell lysis buffer and then added to each hybridization reaction at 100µl per 

100pmol of probes. The reaction was incubated at 37°C for 30 min with end-

over-end rotation. Bead–probe–RNA complexes were captured with magnetic 

racks (Millipore) and washed five times with 1mL wash buffer (2×SSC, 0.5% 

SDS, fresh PMSF added). After the last wash, 20% of the sample was used for 

RNA isolation and 80% of the sample was used for protein isolation. For RNA 

elution, beads were resuspended in 200μl of RNA proteinase K buffer (100 mM 

NaCl, 10 mM Tris, pH 7.0, 1 mM EDTA, 0.5% SDS) and 1mg/ml proteinase K 

(Ambion). The sample was incubated at 50°C for 45 min and then boiled for 

10 min. RNA was isolated using 500µl of Trizol reagent using the miRNeasy kit 

(Qiagen) with on-column DNase digestion (Qiagen). RNA was eluted with 10µl 

H2O and then analyzed by qRT–PCR for the detection of enriched transcripts. 

For protein elution, beads were resuspended in 3x the original volume of DNase 

buffer (100 mM NaCl and 0.1% NP-40), and protein was eluted with a cocktail of 

100 ug/ml RNase A (Sigma-Aldrich), 0.1 Units/microliter RNase H (Epicenter), 

and 100 U/ml DNase I (Invitrogen) at 37°C for 30 min. The eluted protein sample 

was supplemented with NuPAGE® LDS Sample Buffer (Novex) and NuPAGE® 

Sample Reducing Agent (Novex) to a final concentration of 1x each and then 

boiled for 10 min before SDS-PAGE Western blot analysis using a SNF5 

antibody (Millipore). 
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RNA-Seq Library Preparation 

Total RNA was extracted from healthy and cancer cell lines and patient tissues, 

and the quality of the RNA were assessed with the Agilent Bioanalyzer. 

Transcriptome libraries from the mRNA fractions were generated following the 

RNA-Seq protocol (Illumina). Each sample was sequenced in a single lane with 

the Illumina Genome Analyzer II (with a 40- to 80-nt read length) or with the 

Illumina HiSeq 2000 (with a 100-nt read length) according to published 

protocols18,46.  For strand-specific library construction, we employed the dUTP 

method of second-strand marking as described previously47.  

 

Statistical analyses for experimental studies 

All data are presented as means ± S.E.M.  All experimental assays were 

performed in duplicate or triplicate.  Statistical analyses shown in figures 

represent Fisher’s exact tests or two-tailed t-tests, as indicated.  For details 

regarding the statistical methods employed during microarray, RNA-Seq and 

ChIP-Seq data analysis, see Bioinformatic analyses. 

 

Bioinformatics Analysis 

Nomination of SChLAP1 as an outlier using RNA-Seq data 

We nominated SChLAP1 as a prostate cancer outlier using the methodology 

detailed in Prensner JR et al., Nature Biotechnology 2011.  Briefly, a modified 

COPA analysis was performed on the 81 tissue samples in the cohort.  RPKM 

50 
 



expression values were used and shifted by 1.0 in order to avoid division by zero. 

The COPA analysis had the following steps: 1) gene expression values were 

median centered, using the median expression value for the gene across the all 

samples in the cohort. This sets the gene’s median to zero. 2) The median 

absolute deviation (MAD) was calculated for each gene, and then each gene 

expression value was scaled by its MAD. 3) The 80, 85, 90, 98 percentiles of the 

transformed expression values were calculated for each gene and the average of 

those four values was taken. Then, genes were rank ordered according to this 

“average percentile”, which generated a list of outliers genes arranged by 

importance. 4) Finally, genes showing an outlier profile in the benign samples 

were discarded.  

 

LNCaP ChIP-Seq data 

Sequencing data from GSE14097 were downloaded from GEO.  Reads from the 

LNCAP H3K4me3 and H3K36me3 ChIP-Seq samples were mapped to human 

genome version hg19 using BWA 0.5.948. Peak calling was performed using 

MACS 49 according to the published protocols50.  Data was visualized using the 

UCSC Genome Browser 51. 

 

RWPE ChIP-Seq data 

Sequencing data from RWPE SNF5 ChIP-Seq samples were mapped to human 

genome version hg19 using BWA 0.5.948. Although we performed paired-end 

sequencing, the ChIP-Seq reads were processed as single-end to adhere to our 
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preexisting analysis protocol. Peak calling was performed respect to an IgG 

control using the MACS algorithm49. We bypassed the model-building step of 

MACS (using the ‘--nomodel’ flag) and specified a shift size equal to half the 

library fragment size determined by the Agilent Bioanalyzer (using the ‘--shiftsize’ 

option). For each sample we ran the CEAS program and generated genome-

wide reports52. We retained peaks with an false discovery rate (FDR) less than 

5%. We then aggregated SNF5 peaks from the RWPE-LacZ, RWPE-SChLAP1 

Isoform #1, and RWPE-SChLAP1 Isoform #2 samples using the “union” of the 

genomic peak intervals. We intersected peaks with RefSeq protein-coding genes 

and found that 1,299 peaks occurred within one kilobase of transcription start 

sites (TSSs).  We counted the number of reads overlapping each of these 

promoter peaks across each sample using a custom python script and used the 

DESeq R package version 1.6.153 to compute the normalized fold change 

between RWPE-LacZ and RWPE-SChLAP1 (both isoforms). We observed that 

389 of the 1,299 promoter peaks had at least a 2-fold average decrease in SNF5 

binding. This set of 389 genes was subsequently used as a gene set for Gene 

Set Enrichment Analysis (GSEA). 

 

Microarray experiments 

We performed two-color microarray gene expression profiling of 22Rv1 and 

LNCaP cells treated with two independent siRNAs targeting SChLAP1 as well as 

control non-targeting siRNAs. These profiling experiments were run in technical 

triplicate for a total of 12 arrays (6 from 22Rv1 and 6 from LNCaP). Additionally, 
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we profiled 22Rv1 and LNCaP cells treated with independent siRNAs targeting 

SWI/SNF protein SNF5 (SMARCB1) as well as control non-targeting siRNAs. 

These profiling experiments were run as biological duplicates for a total of 4 

arrays (2 cell lines x 2 independent siRNAs x 1 protein). Finally, we profiled of 

RWPE cells expressing two different SChLAP1 isoforms as well as the control 

LacZ gene. These profiling experiments were run in technical duplicate for a total 

of 4 arrays (2 from RWPE-SChLAP1 isoform #1 and 2 from RWPE-SChLAP1 

isoform #2). 

 

Processing to determine ranked gene expression lists 

All of the microarray data were represented as base-2 log fold-change between 

targeting versus control siRNAs. We used the CollapseDataset tool provided by 

the GSEA package to convert from Agilent Probe IDs to gene symbols. Genes 

measured by multiple probes were consolidated using the median of probes. We 

then ran one-class SAM analysis from the Multi-Experiment Viewer application 

and ranked all genes by the difference between observed versus expected 

statistics. These ranked gene lists was imported to GSEA version 2.07. 

 

SChLAP1 siRNA knockdown microarrays 

For the 22Rv1 and LNCaP SChLAP1 knockdown experiments we ran the 

GseaPreRanked tool to discover enriched gene sets in the Molecular Signatures 

Database (MSigDB) version 3.028. Lists of positively and negatively enriched 

concepts were interpreted manually. 
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SNF5 siRNA knockdown microarrays 

For each SNF5 protein knockdown we nominated genes that were altered by an 

average of at least 2-fold. These signatures of putative SNF5 target genes were 

then used to assess enrichment of SChLAP1-regulated genes using the 

GseaPreRanked tool. Additionally, we nominated genes that changed by an 

average 2-fold or greater across SNF5 knockdown experiments and quantified 

the enrichment for SChLAP1 target genes using GSEA. 

 

RWPE SChLAP1 expression microarrays 

The RWPE-SChLAP1 versus RWPE-LacZ expression profiles were ranked using 

SAM analysis as described above.  A total of 1,245 genes were significantly 

over- or under-expressed.  A q-value of 0.0 in this SAM analysis signifies that no 

permutation generated a more significant difference between observed and 

expected gene expression ratios. The ranked gene expression list was used as 

input to the GseaPreRanked tool and compared against SNF5 ChIP-Seq 

promoter peaks that decreased by >2-fold in RWPE-SChLAP1 cells. Of the 389 

genes in the ChIP-Seq gene set, 250 were profiled by the Agilent 

HumanGenome microarray chip and present in the GSEA gene symbol 

database. 
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RNA-Seq data 

We assembled an RNA-Seq cohort from prostate cancer tissues sequenced at 

multiple institutions. We included data 12 primary tumors and 5 benign tissues 

published in GEO as GSE2226054, 16 primary tumors and 3 benign tissues 

released in dbGAP as study phs000310.v1.p155, and 17 benign, 57 primary, 14 

metastatic tumors sequenced by our own institution and released as dbGAP 

study phs000443.v1.p1. 

 

RNA-Seq alignment and gene expression quantification 

Sequencing data were aligned using Tophat version 1.3.156 against the Ensembl 

GRCh37 human genome build.  Known introns (Ensembl release 63) were 

provided to Tophat. Gene expression across the Ensembl version 63 genes and 

the SChLAP1 transcript was quantified by HT-Seq version 0.5.3p3 using the 

script htseq-count (www-huber.embl.de/users/anders/HTSeq/). Reads were 

counted without respect to strand to avoid bias between unstranded and strand-

specific library preparation methods. This bias results from the inability to resolve 

reads in regions where two genes on opposite strands overlap in the genome. 

 

RNA-Seq differential expression analysis 

Differential expression analysis was performed using R package DESeq version 

1.6.153. Read counts were normalized using the estimateSizeFactors function 

and variance was modeled by the estimateDispersions function. Differentially 

expression statistics were computed by the nbinomTest function. We called 
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differentially expressed genes by imposing adjusted p-value cutoffs for cancer 

versus benign (padj < 0.05), metastasis versus primary (padj < 0.05), and 

gleason 8+ versus 6 (padj < 0.10). 

 

RNA-Seq correlation analysis 

Read count data were normalized using functions from the R package DESeq 

version 1.6.1. Adjustments for library size were made using the 

estimateSizeFactors function and variance was modeled using the 

estimateDispersions function using the parameters “method=blind” and 

“sharingMode=fit-only”. Next, the raw read count data was converted to pseudo-

counts using the getVarianceStabilizedData function. Gene expression levels 

were then mean-centered and standardized using the scale function in R. 

Pearson correlation coefficients were computed between each gene of interest 

and all other genes. Statistical significance of Pearson correlations was 

determined by comparison to correlation coefficients achieved by 1,000 random 

permutations of the expression data. We controlled for multiple hypothesis 

testing using the qvalue package in R. The 253-gene SChLAP1 correlation 

signature was determined by imposing a cutoff of q < 0.05. 

 

Oncomine Concepts Analysis of SChLAP1 Signature 

We separated the 253 genes with expression levels significantly correlated to 

SChLAP1 into positively and negatively correlated gene lists. We imported these 

gene lists into Oncomine as custom concepts. We then nominated significantly 
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associated Prostate Cancer concepts with Odds Ratio > 3.0 and p-value < 10-6. 

We exported these results as nodes and edges of a concept association network, 

and visualized the network using Cytoscape version 2.8.2. The node positions 

were computed using the Force Directed Layout algorithm in Cytoscape using 

the odds ratio as the edge weight. Node positions were subtly altered manually to 

enable better visualization of node labels. 

 

Association of Correlation Signatures with Oncomine Concepts 

We applied our RNA-Seq correlation analysis procedure on the genes SChLAP1, 

EZH2, PCA3, AMACR, ACTB.  For each gene we created signatures from the 

top 5 percent of positively and negatively correlated genes. We performed a 

large meta-analysis of these correlation signatures across Oncomine datasets 

corresponding to disease outcome (Glinsky Prostate, Setlur Prostate), metastatic 

disease (Holzbeierlein Prostate, Lapointe Prostate, LaTulippe Prostate, Taylor 

Prostate 3, Vanaja Prostate, Varambally Prostate, and Yu Prostate), advanced 

gleason score (Bittner Prostate, Glinsky Prostate, Lapointe Prostate, LaTulippe 

Prostate, Setlur Prostate, Taylor Prostate 3, and Yu Prostate), and localized 

cancer (Arredouani Prostate, Holzbeierlein Prostate, Lapointe Prostate, 

LaTulippe Prostate, Taylor Prostate 3, Varambally Prostate, and Yu Prostate). 

We also incorporated our own concept signatures for metastasis, advanced 

Gleason score, and localized cancer determined from our RNA-Seq data. For 

each concept we downloaded the gene signatures corresponding to the Top 5 

Percent of genes up- and down-regulated. Pairwise signature comparisons were 
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performed using a one-sided Fisher’s Exact Test. We controlled for multiple 

hypothesis testing using the qvalue package in R. We considered concept pairs 

with q < 0.01 and odds ratio > 2.0 as significant.  In cases where a gene 

signature associates with both the over- and under-expression gene sets from a 

single concept, only the most significant result (as determined by odds ratio) is 

shown. 

 

Analysis of SChLAP1-SNF5 expression signatures 

The siSCHLAP1 and siSNF5 gene signatures were generated from Agilent gene 

expression microarray datasets. For each cell line we obtained a single vector of 

per-gene fold changes by averaging technical replicates and then taking the 

median across biological replicates. We merged the individual cell line results 

using the median of the changes in 22Rv1 and LNCaP. Venn diagram plots were 

produced using the BioVenn website (http://www.cmbi.ru.nl/cdd/biovenn/)57.  We 

then compared the top 10% up-regulated and down-regulated genes for 

siSChLAP1 and siSNF5 to gene signatures downloaded from the Taylor Prostate 

3 dataset in the Oncomine database. We performed signature comparison using 

one-sided Fisher's Exact Tests and controlled for multiple testing using the R 

package "qvalue". Signature comparisons with q < 0.05 were considered 

significantly enriched. We plotted the odds ratios from significant comparison 

using the "heatmap.2" function in the "gplots" R package. 
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Kaplan-Meier Survival Analysis Based on SChLAP1 Gene Signature 

We downloaded prostate cancer expression profiling data and clinical 

annotations from GSE8402 published by Setlur et. al.23. We intersected the 253-

gene SChLAP1 signature with the genes in this dataset and 80 genes in 

common. We then assigned SChLAP1 expression scores to each patient sample 

in the cohort using the un-weighted sum of standardized expression levels 

across the 80 genes. Given that we observed SChLAP1 expression in 

approximately 20% of prostate cancer samples, we used the 80th percentile of 

SChLAP1 expression scores as the threshold for “high” versus “low” scores. We 

then performed 10-year survival analysis using the survival package in R and 

computed statistical significance using the log-rank test. 

 

Additionally, we imported the 253-gene SChLAP1 signature into Oncomine in 

order to download the expression data for 167 of the 253 genes profiled by the 

Glinsky prostate dataset22. We assigned SChLAP1 expression scores in a similar 

fashion and designated the top 20% of patients as “high” for SChLAP1. We 

performed survival analysis using the time to biochemical PSA recurrence and 

computed statistical significance as above. 

 

PhyloCSF Analysis 

46-way multi-alignment FASTA files for SChLAP1, HOTAIR, GAPDH, and ACTB 

were obtained using the "Stitch Gene blocks" tool within the Galaxy 

bioinformatics framework (usegalaxy.org). We evaluated each gene for its 
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likelihood to represent a protein-coding region using the PhyloCSF software 

(version released 2012-10-28). Each gene was evaluated using the phylogeny 

from 29 mammals (available by default within PhyloCSF) in any of the 3 reading 

frames. Scores are measured in decibans and reflect the likelihood that a 

predicted protein coding sequence is preferred over its non-coding counterpart. 

 

Mayo Clinic Cohort Analyses 

Study Design 

Patients were selected from a cohort of high-risk radical prostatectomy (RP) 

patients from the Mayo Clinic. The cohort was defined as 1010 high-risk men that 

underwent RP between 2000 -2006, of which 73 patients developed clinical 

progression (defined as patients with systemic disease as evidenced by positive 

bone or CT scan)58. High-risk of recurrence was defined as pre-operative PSA 

>20 ng/ml, pathological Gleason score 8-10, seminal vesicle invasion (SVI), or 

GPSM score >=10 59. The sub-cohort incorporated all 73 CP progression patients 

and a 20% random sampling of the entire cohort (202 men including 19 with CP). 

The total case-cohort study was 256 patients, of which tissue specimens were 

available for 235 patients. The sub-cohort was previously used to validate a 

genomic classifier (GC) for predicting Clinical Progression58.  

 

Tissue Preparation  

Formalin-fixed paraffin embedded (FFPE) samples of human prostate 

adenocarcinoma prostatectomies were collected from patients with informed 
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consent at the Mayo Clinic according to an institutional review board-approved 

protocol. Pathological review of H&E tissue sections was used to guide 

macrodissection of tumour from surrounding stromal tissue from three to four 10 

µm sections. The index lesion was considered the dominant lesion by size.  

 

RNA Extraction and Microarray Hybridization 

For validation cohort, total RNA was extracted and purified using a modified 

protocol for the commercially available RNeasy FFPE nucleic acid extraction kit 

(Qiagen Inc., Valencia, CA). RNA concentrations were calculated using a 

Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Rockland, DE). 

Purified total RNA was subjected to whole-transcriptome amplification using the 

WT-Ovation FFPE system according to the manufacturer’s recommendation with 

minor modifications (NuGen, San Carlos, CA). For the validation only the 

Ovation® FFPE WTA System was used. Amplified products were fragmented 

and labelled using the Encore™ Biotin Module (NuGen, San Carlos, CA) and 

hybridized to Affymetrix Human Exon (HuEx) 1.0 ST GeneChips following 

manufacturer’s recommendations (Affymetrix, Santa Clara, CA).  

 

Microarray Expression Analysis 

The normalization and summarization of the microarray samples was done with 

the frozen Robust Multiarray Average (fRMA) algorithm using custom frozen 

vectors. These custom vectors were created using the vector creation methods 

as described previously60. Quantile normalization and robust weighted average 
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methods were used for normalization and summarization, respectively, as 

implemented in fRMA. 

 

Statistical Analysis 

Given the exon/intron structure of isoform 1 of SChLAP1, all probe selection 

regions (or PSRs) that fall within the genomic span of SChLAP1 were inspected 

for overlapping with any of the exons of this gene. One PSR, 2518129, was 

found fully nested within the third exon of SChLAP1 and was used for further 

analysis as a representative PSR for this gene.  The PAM (Partition Around 

Medoids) unsupervised clustering method was used on the expression values of 

all clinical samples to define two groups of high and low expression of SChLAP1.  

 

Statistical analysis on the association of SChLAP1 with clinical outcomes was 

done using three endpoints (i) Biochemical Recurrence, defined as two 

consecutive increases of >=0.2ng/ml after RP, (ii) Clinical Progression, defined 

as a positive CT or bone scan and (iii) Prostate Cancer Specific Mortality (or 

PCSM).  

 

For CP end point, all patients with CP were included in the survival analysis, 

whereas the controls in the sub-cohort were weighted in a 5-fold manner in order 

to be representative of patients from the original cohort. For PCSM end point, 

patients from the cases who did not die by PCa were omitted, and weighting was 

applied in a similar manner. For BCR, since the case-cohort was designed based 
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on CP endpoint, resampling of BCR patients and sub-cohort was done in order to 

have a representative of the selected BCR patients from the original cohort. 
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Tables 

 
 
Table 2.1 Primers used in this study 
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Table 2.2 ChIRP probe sequences  
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Figures 

 
 
Figure 2.1 Discovery of SChLAP1 as a prostate cancer lncRNA. 
(a) Unsupervised clustering analyses of differentially expressed or outlier 
unannotated intergenic transcripts clusters benign samples, localized tumors and 
metastatic cancers. Expression is plotted as log2 fold-change relative to the 
median of the benign samples. (b) Cancer outlier profile analysis (COPA) for 
intergenic lncRNAs. (c) A representation of the SChLAP1 gene and its 
annotations in current databases.  An aggregated representation of current gene 
annotations for Ensembl, ENCODE, UCSC, Ref-Seq, and Vega shows no 
annotation for SChLAP1.  ChIP-Seq data for H3K4me3 and H3K36me3 show 
enrichment at the SChLAP1 gene.  Also, RNA-Seq data showing an outlier 
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sample for SChLAP1 illustrates its expression. Prominent peak between exons 5 
and 6 correspond to a pseudogene. (d) A schematic summarizing the observed 
SChLAP1 isoforms.  A total of 8 isoforms were observed, with isoform #1 and 
isoform #2 accounting for >90% of transcripts. 
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Figure 2.2 Characterization of SChLAP1 expression. 
(a) qPCR for SChLAP1 on a panel of benign prostate (n=33), localized prostate 
cancer (n=82), and metastatic prostate cancer (n=33) samples. qPCR data is 
normalized to the average of (GAPDH + HMBS) and represented as 
standardized expression values. (b) Prevalence of SChLAP1 expression in 
localized prostate cancer tissues and metastatic prostate cancer tissues. P-value 
was determined by one-sided Fisher’s exact test. (c) Fractionation of prostate 
cell lysates demonstrates nuclear expression of SChLAP1. U1 is a positive 
control for nuclear gene expression. (d) In situ hybridization of SChLAP1 in 
human prostate cancer. SChLAP1 staining is shown for both localized and 
metastatic tissues. 
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Figure 2.3 SChLAP1 is a noncoding gene. 
(a) Analysis of the coding potential for the SChLAP1 sequence across 29 
mammals in all 3 reading frames using PhyloCSF. HOTAIR serves as a control 
non-coding gene. GAPDH and B-actin serve as control coding genes. Scores 
above 0 suggest coding potential whereas scores below 0 suggest no coding 
potential. (b) In vitro translation assays for SChLAP1. Three isoforms of 
SChLAP1 were cloned and tested for protein-coding capacity using an in vitro 
translation assay. GUS is used as a positive control. PCAT-1 and water serve as 
negative controls. Non-specific bands are indicated with an asterisk. SChLAP1 
isoforms do not generate a protein in this assay. 
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Figure 2.4 SChLAP1 expression characterizes aggressive prostate cancer. 
(a) Network representation of genes positively or negatively correlated with 
SChLAP1 in localized prostate cancers using Oncomine concepts analysis and 
visualized with the Force Directed Layout algorithm in the Cytoscape tool. Node 
sizes reflect the number of genes that comprise each molecular concept and 
node names are labeled according to the author of the primary study. The nodes 
are colored according to the concept categories indicated in the figure legend. 
Edges are drawn between nodes with statistically significant enrichment (p-value 
< 1e-6, odds ratio > 3.0) and darker edge shading implies higher odds ratio. (b) 
Heatmap representation of comparisons between co-expression gene signatures 
and molecular concepts. Comparisons to positively (top portion) and negatively 
correlated (bottom portion) gene signatures are shown separately. Comparisons 
that do not reach statistical significance (q > 0.01 or odds ratio < 2) are shown in 
grey. Associations with over-expression concepts are colored red, and under-
expression concepts blue. (c) Kaplan-Meier analysis of prostate cancer 
outcomes. Patients were stratified according to their SChLAP1 signature score. 
Signature scores at or above the 80th percentile were deemed ‘High’, and the rest 
‘Low’. Statistical significance was determined by the log rank test. Analysis of the 
10-year overall survival probability for prostate cancer patients from the Setlur et 
al. study. (d) As in (c), Analysis of the biochemical recurrence probability for 
prostate cancer patients from the Glinksy et al. study. 
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Figure 2.5 SChLAP1 expression is an independent predictor of patient 
clinical parameters. 
(a-c) Kaplan-Meier analyses of prostate cancer outcomes in the Mayo Clinic 
cohort. SChLAP1 expression was measured using Affymetrix exon arrays and 
patients were stratified according to their SChLAP1 expression. Patient 
outcomes were analyzed for biochemical recurrence (a), clinical progression to 
systemic disease (b), and prostate cancer-specific mortality (c). The shaded 
regions represent the 95% confidence interval. (d-i) Multivariate and univariate 
analyses for SChLAP1 and disease outcomes. (d-f) Multivariate survival 
analyses demonstrate that SChLAP1 is an independent predictor of prostate 
cancer biochemical recurrence (d), clinical progression (e), and prostate cancer-
specific mortality (f) following radical prostatectomy. (g-i) Univariate survival 
analyses for SChLAP1 for biochemical recurrence (g), clinical progression (h), 
and prostate cancer-specific mortality (i) as in (d-f). For these analyses, clinical 
significance was adjusted for confounding adjuvant treatment, and Gleason 
score was dichotomized between those samples ≤7 ≥8. Red diamonds indicate 
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the median hazard ratio for each factor and blue lines indicate the 95% 
confidence interval.) 
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Figure 2.6 In vitro knockdown of SChLAP1 impairs cell invasion and 
proliferation. 
(a) 22Rv1, LNCaP, and Du145 cells were treated with siRNAs against SChLAP1.  
qPCR indicates relative knockdown efficiency in these cell lines. Error bars 
represent S.E.M. (b) siRNA knockdown of SChLAP1 in vitro in three prostate cell 
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lines (LNCaP, 22Rv1, Du145) impairs cellular invasion through Matrigel in a 
Boyden chamber assay. EZH2 siRNA serves as a positive control. (c) Cell 
proliferation assays for LNCaP, 22Rv1, and Du145 treated with SChLAP1 
siRNAs or non-targeting negative controls. EZH2 siRNA serves as a positive 
control. Error bars indicate S.E.M. An asterisk (*) indicates p < 0.05 by Student’s 
t-test. Error bars represent S.E.M. (d) Expression of SChLAP1 in 22Rv1 cells 
treated with non-targeting, siRNA #2 for SChLAP1, or siRNA #2 with exogenous 
overexpression of SChLAP1 isoform 2. (e) Boyden chamber invasion assay data 
for 22Rv1 cells treated with non-targeting, siRNA #2 for SChLAP1, or siRNA #2 
with exogenous overexpression of SChLAP1 isoform 2. Data are represented as 
absorbance at 560nM. Error bars represent S.E.M. 
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Figure 2.7 Overexpression of SChLAP1 enhances cell invasion. 
(a) Overexpression of SChLAP1 isoforms 1-3 in RWPE cells was confirmed 
using qPCR, which demonstrated that the overexpression resulted in comparable 
levels of SChLAP1 transcript to LNCaP cells that express this gene 
endogenously. HMBS serves as a negative control. Error bars represent S.E.M. 
(b) Cell proliferation assays for RWPE cells overexpressing SChLAP1 isoforms.  
No significant change in cell proliferation is observed.  Error bars represent 
S.E.M. (c) Overexpression of SChLAP1 in RWPE cells results in increased 
cellular invasion through Matrigel in Boyden chamber assays.  
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Figure 2.8 SChLAP1 coordinates metastatic seeding in vivo.  
(a) Knockdown efficiencies for the shRNA knockdown of SChLAP1 in LNCAP 
and 22Rv1 cells. Error bars indicate S.E.M. (b) Intracardiac injection of 22Rv1 
cells with stable SChLAP1 knockdown in severe combined immunodeficient 
(SCID) mice. Example luciferase bioluminescence images from 22Rv1 shNT, 
shSChLAP1 #1, and shSChLAP1 #2 mice five weeks following intracardiac 
injection. Mouse IDs are given above each image. (c) The relative intensity of 
whole-mouse luciferase signal is plotted for 22Rv1 shNT (n=9), shSChLAP1 #1 
(n=14) and shSChLAP1 #2 (n=14) intracardiac injection experiments. (d) The 
number of gross metastatic sites observed by luciferase signal in 22Rv1 
shSChLAP1 cells or shNT controls. Independent foci of luciferase signal were 
averaged for shNT (n=9), shSChLAP1 #1 (n=14) and shSChLAP1 #2 (n=14) 
mice. (e) Histolopathology of murine tumors formed by intracardiac injection of 
22Rv1 shNT or 22Rv1 sh-SChLAP1 cells. Images are taken from the lungs and 
livers or mice with tumors. Slides are stained with H&E. 
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Figure 2.9 Knockdown of SChLAP1 delays tumor engraftment but not 
tumor growth kinetics. 
(a) The fraction of mice surviving following subcutaneous injection of the 22Rv1 
cell lines. This plot represents tumor-specific death of mice sacrificed when the 
tumor volume reached the maximum allowable volume. (b) 22Rv1 cells infected 
with lentivirus for shNT, sh-SChLAP1 #1, and sh-SChLAP1 #2 were injected 
subcutaneously in mouse flanks and tumor growth was monitored by caliper 
measurements. N = 10 mice for shNT cells, n = 12 mice for sh-SChLAP1 #1 
cells, n = 9 mice for sh-SChLAP1 #2 cells. Absolute tumor volume for 22Rv1 
shNT, sh-SChLAP1 #1 and sh-SChLAP1 #2 cells. Error bars represent S.E.M. 
(c) Percent of mice with tumor engraftment over time. Knockdown of SChLAP1 
delays the onset of tumor engraftment. (d) The percent change in tumor volume 
per cell line normalized to the time of tumor engraftment. Error bars represent 
S.E.M. (e) Tumor volume normalized to the time of tumor engraftment. Error bars 
represent S.E.M. (f) Immunohistochemistry staining for Ki67 in 22Rv1 shNT and 
sh-SChLAP1 liver metastases. (g) Summary of Ki67 tumor staining for 22Rv1 
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shNT and sh-SChLAP1 murine tumors show significant difference in Ki67 
staining intensity. 
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Figure 2.10 Knockdown of SChLAP1 decreases tumor growth, invasion, 
and metastasis in vivo. 
(a) Invasion of 22Rv1-shNT and 22Rv1 shSChLAP1 cells in the chick 
chorioallantoic membrane (CAM) assay. 22Rv1 cells are labeled with GFP. The 
image is counterstained with chicken collagen IV for vasculature (RFP) and DAPI 
for nuclei. (b-e) Using the CAM assay, 22Rv1 shSChLAP1 cells demonstrate 
decreased intravasation (b), metastatic spread to the liver and lungs (c), and 
reduced tumor weight (d). (e) Quantification of intravasation of RWPE-LacZ and 
RWPE-SChLAP1 cells in the CAM assay. All data in this figure are represented 
as mean +/- S.E.M. Statistical significance was determined by a two-tailed 
Student’s t-test. An asterisk (*) indicates a p-value < 0.05. 
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Figure 2.11 Nomination of SWI/SNF concept as a mechanism of SChLAP1 
action. 
(a) Transcriptome profiling following SChLAP1 knockdown in vitro. Differentially 
expressed genes were determined by SAM analysis and represented as a 
heatmap. (b-c) Gene set enrichment analysis (GSEA) of LNCaP and 22Rv1 cells 
treated with SChLAP1 siRNAs. GSEA results indicate that SChLAP1 knockdown 
results are inversely correlated with SWI/SNF-associated genes using data from 
Shen et al. (b) or using RNA-seq data (c). (d) Comparison of positively correlated 
BRM-associated gene signatures in prostate cancer. The BRM-derived signature 
from RNA-seq samples was compared to the Shen et al. signature by GSEA. A 
highly significant overlap between the signatures is observed. (e) Comparison of 
negatively correlated BRM-associated gene signatures in prostate cancer. The 
BRM-derived signature from RNA-seq samples was compared to the Shen et al. 
signature by GSEA. A highly significant overlap between the signatures is 
observed. 
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Figure 2.12 SChLAP1 and the SWI/SNF complex regulate gene expression 
in an opposing manner. 
(a) Knockdown efficiency of SNF5 siRNAs in 22Rv1 and LNCaP. Error bars 
represent S.E.M. (b) Heatmap results for SChLAP1 or SNF5 knockdown in 
LNCaP and 22Rv1 cells. (c) GSEA analysis of SChLAP1 and SNF5 knockdowns. 
Across two cell lines (LNCaP and 22Rv1), SChLAP1 knockdown had the 
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opposite effect on gene expression as knockdown of SNF5. Here, a positive 
GSEA normalized enrichment score (NES) indicates genes up-regulated upon 
SChLAP1 knockdown, and a negative GSEA NES indicates genes down-
regulated upon SChLAP1 knockdown. (d) GSEA results from comparisons of 
SChLAP1 and SNF5 knockdown in 22Rv1 cells. SChLAP1 was knocked-down 
using siRNAs in 22Rv1 cells. Gene expression changes were compared using 
GSEA to expression changes observed using SNF5 siRNAs in LNCaP or 22Rv1 
cells. The enrichment plots of these comparisons are shown. (e) GSEA results 
from comparisons of SChLAP1 and SNF5 knockdown in LNCaP cells. SChLAP1 
was knocked-down using siRNAs in LNCaP cells. Gene expression changes 
were compared using GSEA to expression changes observed using SNF5 
siRNAs in LNCaP or 22Rv1 cells. The enrichment plots of these comparisons are 
shown. 
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Figure 2.13 SChLAP1 and SNF5 co-regulate genes associated with prostate 
cancer aggressiveness. 
The top 10% of up- or down-regulated genes for SNF5-knockdown or SChLAP1-
knockdown microarrays in 22Rv1 and LNCaP were intersected to generate an 
overlapping gene signature for these knockdown experiments. This signature 
was analyzed for overlap with the Taylor Prostate 3 Oncomine Concept for 
disease aggressiveness. Left, Venn diagrams demonstrating overlap of 
SChLAP1 and SNF5-knockdown experiments. Right, a heatmap visualization 
showing statistical (q < 0.05) overlap of gene signatures from the SNF5 and 
SChLAP1 knockdowns with prostate cancer aggressiveness concepts from 
Oncomine. Odds ratios from the comparisons with q-values <0.05 are shown.  
One-sided Fisher’s exact tests were used for significance.  
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Figure 2.14 SChLAP1 interacts with SNF5. 
(a) Relative abundance of SChLAP1 compared to the SWI/SNF complex in 
human prostate tissues. qPCR cycle threshold (Ct) values for SChLAP1, SNF5, 
GAPDH, and HMBS are shown. SChLAP1-positive samples display Ct values in 
the low 20s, which is consistent with the abundance of SNF5. (b) Western blot 
analysis of SNF5 protein abundance in prostate cancer cells either 
overexpressing SChLAP1 (RWPE) or with stable knockdown of SChLAP1 
(22Rv1, LNCaP). (c) RNA immunoprecipitation (RIP) of SNF5 or AR in 22Rv1 
and LNCaP cells. Inset Western blots demonstrate pulldown efficiency. (d) RIP 
analysis of SNF5 in RWPE cells overexpressing LacZ, SChLAP1 isoform #1, or 
SChLAP1 isoform #2. Inset Western blots demonstrate pulldown efficiency. (e) 
Pulldown of SChLAP1 RNA.  RWPE-SChLAP1 isoform #1 cells were treated with 
biotinylated SChLAP1, TERC or LacZ RNA probes according to the ChIRP 
protocol. Quantification of RNA pulldown efficiency by qPCR is shown. Error bars 
indicate S.E.M. (f) Pulldown of SChLAP1 RNA using Chromatin Isolation by RNA 
Purification (ChIRP) recovers SNF5 protein in RWPE-SChLAP1 isoform 1 cells.  
LacZ and TERC serve as controls. 
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Figure 2.15 SChLAP1 expression disrupts genomic binding of SNF5. 
(a) A global representation of SNF5 genomic binding over ±2kb window 
surrounding each SNF5 ChIP-Seq peak in RWPE-LacZ, RWPE-SChLAP1 
isoform 1, and RWPE-SChLAP1 isoform 2 cells. (b) A heatmap representation of 
SNF genomic binding at target sites in RWPE-LacZ, RWPE-SChLAP1 isoform 1, 
and RWPE-SChLAP1 isoform 2 cells. A ±1kb interval surrounding the called 
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SNF5 peak is shown. (c) Example ChIP-Seq binding sites for SNF5 on gene 
promoters. SNF5 binding is higher at gene promoters in RWPE-LacZ cells and 
decreased upon SChLAP1 overexpression. (d) ChIP for SNF5 in 22Rv1 shNT 
and 22Rv1 sh-SChLAP1 #2.  ChIP-PCR for 9 of 12 target genes of SNF5 in 
RWPE demonstrates an increase in SNF5 binding upon SChLAP1 knockdown. 
KIAA0841, Chr6 Alu, and Chr 2 Alu serve as negative controls. Data are 
represented as percent change in genomic binding relative to shNT after being 
normalized to IgG controls. The inset western blot indicates immunoprecipitation 
efficiency for SNF5. (e) Gene set enrichment analysis results showing significant 
enrichment of ChIP-Seq promoter peaks with >2-fold loss of SNF5 binding for 
underexpressed genes in RWPE-SChLAP1 cells. 
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Figure 2.16 A schematic of SChLAP1 function in prostate cancer. 
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Chapter 3:  

The long noncoding RNA SChLAP1 enhances PRC2 activity and 

sensitizes cells to pharmacologic EZH2 inhibition2 

 

Abstract 

A major challenge in the clinical management of prostate cancer is distinguishing 

aggressive, lethal tumors from indolent disease1,2. Recently, we identified a long 

noncoding RNA (lncRNA) termed SChLAP1 that is expressed highly in 15-30% 

of prostate cancers and significantly associated with metastatic and lethal 

disease3-6. SChLAP1 enhances cell invasiveness in part by interacting with and 

abrogating genome-wide binding of the tumor-suppressive SWI/SNF 

nucleosome-remodeling complex7. Approximately 20% of all cancers harbor a 

mutation in the SWI/SNF complex8-11, and several recent studies have identified 

various therapeutic opportunities arising from SWI/SNF inactivation12-15. In 

particular, an antagonistic relationship between the SWI/SNF complex and 

Polycomb complexes revealed pharmacologic EZH2 inhibition as a promising 

strategy to target SWI/SNF-mutated cancers16-18. Here, we show that SChLAP1 

enhances PRC2 activity and genome-wide binding in prostate cells. Additionally, 

2 This chapter has been prepared as a manuscript for submission with the following authors: 
Anirban Sahu, Matthew K. Iyer, John R. Prensner, Benjamin Chandler, Xuhong Cao, Saravana 
M. Dhanasekaran, Yashar S. Niknafs, Nithin Edara, Udit Singhal, Shuang G. Zhao, Yi-Mi Wu, 
Dan R. Robinson, Rohit Malik, Felix Y. Feng, and Arul M. Chinnaiyan. 
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SChLAP1-expressing prostate cancer cells are more sensitive to EPZ-6438, a 

highly specific small molecule inhibitor of EZH2 currently in clinical trials19. 

Furthermore, EPZ-6438 decreased cell growth in SChLAP1-overexpressing, but 

not control, prostate epithelial cells. Our findings indicate that lncRNA-mediated 

SWI/SNF inhibition may function similarly to SWI/SNF mutation, exposing similar 

therapeutic opportunities. Moreover, SChLAP1 expression may identify prostate 

cancer patients that are more likely to respond to pharmacologic EZH2 inhibition. 

 

Introduction 

Prostate cancer is the second-most deadly type of cancer in U.S. men, 

accounting for nearly 30,000 deaths annually20. However, most men diagnosed 

with prostate cancer have indolent disease, and distinguishing this subset of 

patients from those with more aggressive, lethal cancer remains a challenge1,2. 

 

Recently, our group identified a prognostic, prostate cancer-specific long non-

coding RNA (lncRNA) termed SChLAP1 that promotes tumor cell invasion and 

metastasis to mediate aggressive disease3. SChLAP1 is significantly prognostic 

for metastatic progression and poor outcomes in prostate cancer4-6. 

Mechanistically, SChLAP1 functions in part by interacting with the tumor-

suppressive SWI/SNF complex to abrogate its genome-wide binding7. 

 

The multi-subunit SWI/SNF complex acts as a nucleosome-remodeler to 

influence chromatin architecture and regulate gene expression9,21. While 
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approximately 20% of all cancers harbor a deleterious mutation in the SWI/SNF 

complex8-11, SWI/SNF mutations are not common in prostate cancer22,23. In fact, 

among all datasets available on the cBioPortal24,25, mutations in any of five 

commonly-mutated SWI/SNF subunits (SMARCB1 (also known as SNF5), 

SMARCA2 (also known as BRM), SMARCA4 (also known as BRG1), ARID1A, 

and ARID1B) are present in less than 5% of prostate cancers (Fig. 3.1a, gray 

bars, and Table 3.1). In contrast, SChLAP1 expression, measured by RNA-seq 

and obtained from the MiTranscriptome portal26, is highly specific to prostate 

cancer, with little to no expression in other types of malignant or benign tissues 

(Fig. 3.1a, red dots). Therefore, we hypothesized that SChLAP1 expression may 

mimic SWI/SNF mutations in prostate cancer. 

 

Results 

To explore this possibility, we assessed SWI/SNF mutations and SChLAP1 

expression across a cohort of prostate adenocarcinomas obtained and 

sequenced through the Michigan Oncology Sequencing Project (MI-

ONCOSEQ)27. SWI/SNF mutations were present in 12 of 86 samples (Fig. 3.1b, 

blue boxes). Using 40 FPKM (Fig. 3.1b, dashed gray line) as a cutoff for high 

(n=28) versus low (n=58) SChLAP1 expression (Fig. 3.1b, barplot), we found 

that SWI/SNF mutations are significantly associated with low SChLAP1 

expression (p-value<0.05, Fisher’s exact, Fig. 3.1b). Additionally, when we 

stratified samples by SWI/SNF mutation status, we found that SChLAP1 

expression was decreased in mutant SWI/SNF samples compared to wild-type 
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SWI/SNF samples (p-value<0.05, Mann-Whitney U test, Fig. 3.1c). Taken 

together, these results suggest that SWI/SNF mutations correlate with low 

SChLAP1 expression while high SChLAP1 expression may represent a mutation-

independent, but clinically equivalent, modality of SWI/SNF inhibition. 

 

To investigate this hypothesis, we utilized a previously described model of 

epigenetic antagonism between the SWI/SNF complex and Polycomb 

complexes28-30. Prior studies have shown enhanced PRC2 (Polycomb 

Repressive Complex 2) histone methyltransferase activity in cancers with 

SWI/SNF inactivation16. This is particularly intriguing given the well-characterized 

role of PRC2 in prostate cancer progression31. Moreover, using the top 5% of 

genes negatively correlated to SChLAP1 in primary prostate tumors, we found 

that 6 of the top 10 molecular concepts identified by Oncomine Concepts 

Analysis32 were associated with PRC2 (odds ratio>4.0 and p-value<5x10-12, Fig. 

3.2a), providing further evidence of a relationship between SChLAP1 and PRC2. 

 

To determine whether this antagonistic SWI/SNF – PRC2 axis exists in prostate 

cancer, we performed siRNA knockdown of SMARCB1, a core subunit of the 

SWI/SNF complex that facilitates binding to histone proteins33, and confirmed a 

predicted increase in H3K27 trimethylation (H3K27me3) (Fig. 3.2b, left), the 

epigenetic signature of PRC2 methyltransferase activity34,35. There was also a 

subtle increase in H3K9 trimethylation (H3K9me3) upon siRNA knockdown of 

SMARCB1, which may have been due to loading variation or could possibly 
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suggest that SWI/SNF also regulates other epigenetic complexes. Next, we 

found that overexpression of two SChLAP1 isoforms in RWPE benign prostate 

epithelial cells increased levels of H3K27me3 (Fig. 3.2b, right), consistent with 

an antagonistic effect of SChLAP1 on SWI/SNF. Furthermore, shRNA 

knockdown of SChLAP1 in 22Rv1 prostate cancer cells decreased levels of 

H3K27me3 (data not shown). 

 

To directly test whether SChLAP1 enhances PRC2-mediated gene regulation, 

we performed siRNA knockdown of EZH2 (Fig. 3.3a), the catalytic subunit of 

PRC234, and ranked genes according to differential expression36. A comparison 

of genes regulated by knockdown of SChLAP1 to genes regulated by EZH2 

demonstrated a cooperative relationship where EZH2 knockdown affected the 

same genes as SChLAP1 and in the same direction (Fig. 3.3b). This was in 

contrast to SMARCB1 knockdown which demonstrated an antagonistic 

relationship by regulating the same genes but in the opposite direction (Fig. 

3.3b). We used Gene Set Enrichment Analysis (GSEA)37 to quantify and verify 

the significance of these findings (FDR<0.0001, Fig 3.3c). Genes down-

regulated by SChLAP1 knockdown were enriched in genes down-regulated by 

EZH2 knockdown and up-regulated by SMARCB1 knockdown. By contrast, 

genes up-regulated by SChLAP1 knockdown were enriched in genes up-

regulated by EZH2 knockdown and down-regulated by SMARCB1 knockdown. 
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To address whether SChLAP1 modulated PRC2 genomic binding, we performed 

ChIP-seq of SUZ12, a core component of PRC234, in RWPE-LacZ and RWPE-

SChLAP1 cells and called significantly enriched peaks with respect to an IgG 

control. A SUZ12 antibody was used for technical reasons, as it had previously 

been verified for use in ChIP experiments. Western blot validations confirmed 

SUZ12 pull-down by ChIP (Fig. 3.4a). After aggregating called peaks from all 

samples, we found 30,251 genome-wide binding sites for SUZ12 (FDR < 0.05) 

which were highly enriched for sites near gene promoters (data not shown). 

 

A comparison of SUZ12 binding across these 30,251 genomic sites 

demonstrated a dramatic increase in SUZ12 genomic binding as a result of 

SChLAP1 overexpression (Fig. 3.4b,c). Furthermore, of the 245 most 

differentially bound SUZ12 peaks occurring within 1kb of a gene promoter, 233 

peaks showed increased SUZ12 binding as a result of SChLAP1 overexpression 

(3.4d,e). Taken together, these results establish an antagonistic role of SWI/SNF 

on PRC2 in prostate cells, and suggest that SChLAP1 enhances PRC2 function 

in part by inhibiting SWI/SNF activity. 

 

EZH2 is overexpressed and functions as an oncogenic driver in several types of 

cancers31,38-40, making it an attractive therapeutic target to treat malignancy. 

Many small molecule inhibitors have been developed to specifically target EZH2 

and inhibit its methyltransferase activity17,41. However, these inhibitors have been 

largely ineffective against cells with EZH2 overexpression, but rather have shown 

99 
 



enhanced effectiveness in cells with activating SET domain mutations19,41,42. 

While this is surprising, it suggests that only a certain subset of EZH2-

overexpressing tumors become dependent on EZH2 as a driver of the cancer, 

and therefore respond to EZH2 inhibitors, while EZH2 overexpression functions 

as a passenger aberration in other cancers. More recently, two studies have 

shown that EZH2 inhibitors are also effective in SWI/SNF-mutated cancers17,18. 

Therefore, we hypothesized that EZH2 inhibition may be an effective therapeutic 

strategy in prostate cancer cells with high SChLAP1 expression. 

 

To test this hypothesis, we treated a panel of prostate cell lines with EPZ-6438, a 

highly specific small molecule inhibitor of EZH2 currently in clinical trials for 

patients with advanced solid tumors or with relapsed or refractory B-cell 

lymphoma17,19. After confirming that EPZ-6438 targets EZH2 to decrease 

H3K27me3 (Fig. 3.5a), we performed a cell viability assay (Fig. 3.5b) and found 

that cell lines with high SChLAP1 expression were more sensitive to EPZ-6438 

compared to cell lines with little to no SChLAP1 expression (Fig. 3.5c-e). 

Importantly, overexpression of SChLAP1 in RWPE cells increased sensitivity to 

EPZ-6438 (Fig. 3.5d). These data suggest that SChLAP1-expressing cell lines 

are more sensitive to EPZ-6438 (Fig. 3.5e). Furthermore, we found that 

treatment of RWPE-SChLAP1 cell lines with EPZ-6438 induced strong anti-

proliferative effects, whereas control RWPE-LacZ cells were minimally affected 

(Fig. 3.6a-c). Overall, these data argue that SChLAP1 overexpression 
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antagonizes SWI/SNF complex function, resulting in enhanced PRC2 activity and 

increased sensitivity to pharmacologic EZH2 inhibition (Fig. 3.7). 

 

Discussion 

In summary, we have shown that SWI/SNF mutations are associated with low 

SChLAP1 expression in prostate cancer, suggesting that high SChLAP1 

expression may represent a mutation-independent, but clinically equivalent, 

modality of SWI/SNF inhibition. Additionally, we establish an antagonistic 

relationship between SWI/SNF and PRC2 in prostate cells, and find that 

SChLAP1 enhances PRC2 function and genome-wide binding, which may be 

partly due to SWI/SNF inhibition. Finally, SChLAP1 expression is one factor that 

affects EPZ-6438 sensitivity and may be useful in identifying prostate cancer 

patients that are more likely to respond to pharmacologic EZH2 inhibition. Thus, 

while mutations in the SWI/SNF complex have been used to reveal specific 

vulnerabilities in cancer, our work suggests that mechanisms other than 

mutations, including lncRNA-mediated repression, can inhibit the SWI/SNF 

complex to expose similar therapeutic opportunities in malignancy. Taken 

together, our findings have broad implications for cancer biology and provide a 

rationale for the use of EZH2 inhibitors for therapeutic treatment of prostate 

cancer. 
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Materials and Methods 

cBioPortal SWI/SNF mutations 

Mutation frequency for SMARCB1, SMARCA2, SMARCA4, ARID1A, and 

ARID1B in various cancer cohorts were obtained from the cBioPortal (Table 

3.1)24,25. Only those cohorts for which we had corresponding RNA-seq data to 

assess SChLAP1 expression were included in this study. 

 

MiTranscriptome SChLAP1 expression 

Expression levels for SChLAP1 were measured by RNA-seq and obtained from 

the MiTranscriptome web portal (www.mitranscriptome.org)26. 

 

MI-ONCOSEQ SChLAP1 expression and SWI/SNF mutations 

SChLAP1 expression and SWI/SNF mutations (SMARCB1, SMARCA2, 

SMARCA4, ARID1A, and ARID1B) were assessed in a cohort of prostate 

adenocarcinomas (86 tissue samples: 5 primary tumors, 79 metastatic samples, 

2 unknown) obtained and sequenced through the Michigan Oncology 

Sequencing Project (MI-ONCOSEQ)27. Gene expression was measured by 

Cufflinks from poly(A)+ transcriptome RNA libraries. Somatic mutations were 

called by Varscan from exome capture DNA libraries. Because previous studies 

have found high SChLAP1 expression in approximately one-third of all prostate 

cancers4, we used 40 FPKM as a cutoff for high (n=28) versus low (n=58) 

SChLAP1 expression in this cohort. For statistical analysis of SWI/SNF mutation 

occurrence in SChLAP1 high and low samples (Fig. 3.1b), a one-sided Fisher’s 
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exact test was employed with a null hypothesis that SWI/SNF mutations occur 

equally in high and low SChLAP1 samples and an alternative hypothesis that 

SWI/SNF mutations are enriched in low SChLAP1 samples. For statistical 

analysis of SChLAP1 expression in SWI/SNF wildtype and mutant samples (Fig. 

3.1c), a Mann-Whitney U test was used. 

 

Oncomine Concepts Analysis of SChLAP1 Signature 

A SChLAP1 gene correlation signature was determined as previously described3. 

We imported the top 5% of genes negatively correlated with SChLAP1 into 

Oncomine as a custom concept. We then nominated significantly associated 

molecular concepts with Odds Ratio > 4.0 and p-value < 5x10-12 (Fig. 3.2a). 

Cell lines 

All cell lines were obtained from the American Type Culture Collection. Cell lines 

were maintained using standard media and conditions. Specifically, LNCaP, 

22Rv1, C4-2B, and PC3 cells were maintained in RPMI 1640 plus 10% FBS and 

1% penicillin-streptomycin. RWPE cells were maintained in KSF media plus 

10ng/mL EGF and bovine pituitary extract (BPE) and 1% penicillin-streptomycin. 

All cell lines were grown at 37C in a 5% CO2 cell culture incubator. All cell lines 

were genotyped for identity at the University of Michigan Sequencing Core and 

tested routinely for Mycoplasma contamination. 

 

SChLAP1 or LacZ control cell lines were generated as previously described3. 

Briefly, SChLAP1 full-length transcript was amplified from LNCaP cells and 
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cloned into the pLenti6 vector along with LacZ controls. The benign immortalized 

prostate cell line RWPE was infected with lentiviruses expressing SChLAP1 or 

LacZ. Stably-transfected RWPE cells were selected using blasticidin for one 

week. All lentiviruses were generated by the University of Michigan Vector Core. 

 

siRNA knockdown 

Cells were plated in 100mM plates at a desired concentration and transfected 

with 20nM experimental siRNA oligos or non-targeting controls twice, at 12 hours 

and 24 hours post-plating. Knockdowns were performed with Lipofectamine 

RNAiMAX in OPTI-MEM I media. 72 hours post-transfection, cells were 

harvested. Knockdown efficiency was determined by qPCR. siRNAs used in this 

study are listed below: 

SMARCB1 siRNA #1; ON-TARGETplus SMARCB1; J-010536-05 
SMARCB1 siRNA #2; ON-TARGETplus SMARCB1; J-010536-07 
EZH2 siRNA #1; Custom ON-TARGET plus; 5′-GAGGUUCAGACGAGCUGAU-3′ 
EZH2 siRNA #2; Custom ON-TARGET plus; 5′-AGACUCUGAAUGCAGUUGC-3′ 

 

Immunoblotting 

Cells were lysed in RIPA lysis buffer supplemented with HALT protease inhibitor. 

Protein lysates were boiled in sample buffer, and 5-10µg protein was loaded onto 

a SDS-PAGE gel and run for separation of proteins. Proteins were transferred 

onto Polyvinyl Difluoride membranes and blocked for 30 minutes in blocking 

buffer (5% milk, 0.1% Tween, Tri-buffered saline (TBS-T)). Membranes were 

incubated overnight at 4C with primary antibody. After 3 washes with TBS-T, 

membranes were incubated for 30 minutes at room temperature with horseradish 
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peroxidase-conjugated secondary antibody. Following 3 washes with TBS-T and 

one wash with TBS, the signals were visualized by enhanced 

chemiluminescence system from GE Healthcare. Primary antibodies used in this 

study are listed below: 

SMARCB1; Millipore ABD22; 1:1,000 
H3K27me3; Cell Signaling 9733S; 1:1,000 
H3K9me3; Abcam ab8898; 1:1,000 
Total H3; Abcam ab1791; 1:10,000 
B-Actin; Sigma A5316; 1:10,000 
SUZ12; Abcam ab12073; 1:1,000 

 

RNA isolation and cDNA synthesis 

Total RNA was isolated using Trizol and a miRNeasy Kit with DNase I digestion 

according to the manufacturer’s instructions. RNA integrity was verified on an 

Agilent Bioanalyzer 2100. cDNA was synthesized from total RNA using 

Superscript III and random primers. 

 

Quantitative Real-time PCR 

Quantitative Real-time PCR (qPCR) was performed using Power SYBR Green 

Mastermix on an Applied Biosystems 7900HT Real-Time PCR System. All 

oligonucleotide primers were obtained from Integrated DNA Technologies and 

are listed below: 

SChLAP1 Sense: TGGACACAATTTCAAGTCCTCA 
SChLAP1 Antisense: CATGGTGAAAGTGCCTTATACA 
EZH2 Sense: TGCAGTTGCTTCAGTACCCATAAT 
EZH2 Antisense: ATCCCCGTGTACTTTCCCATCATAAT 
ACTB Sense: AAGGCCAACCGCGAGAAG 
ACTB Antisense: ACAGCCTGGATAGCAACGTACA 
GAPDH Sense: TGCACCACCAACTGCTTAGC 
GAPDH Antisense: GGCATGGACTGTGGTCATGAG 
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Microarray Gene Expression Analysis 

Expression profiling was performed using the Agilent Whole Human Genome 

Oligo Microarray, according to previously published protocols43. All samples were 

run in technical replicates and gene expression was compared between siRNA 

treatment and non-targeting control. Expression data was analyzed using the 

SAM method as described previously36. 

 

Microarray experiments 

We performed two-color microarray gene expression profiling of LNCaP and 

22Rv1 cells treated with two independent siRNAs targeting EZH2 as well as 

control non-targeting siRNAs. These profiling experiments were run in technical 

duplicate for a total of 8 arrays (4 from LNCaP and 4 from 22Rv1). We also 

analyzed microarray expression data from SChLAP1 knockdown in LNCaP and 

22Rv1 cells (GSE40383), and SMARCB1 knockdown in LNCaP and 22Rv1 cells 

(GSE40384). 

 

Microarray data processing to determine ranked gene expression lists 

All of the microarray data were represented as base-2 log fold-change between 

targeting versus control siRNAs. Genes measured by multiple probes were 

consolidated using the median of probes. We then ran one-class SAM analysis 

from the R package ‘samr’ and ranked all genes by the difference between 

observed versus expected statistics. Additionally, we nominated the top 5% of 
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changed genes across SChLAP1 knockdown experiments and quantified the 

enrichment for EZH2 and SMARCB1 target genes using Gene Set Enrichment 

Analysis (GSEA)37. 

 

Chromatin Immunoprecipitation 

ChIP assays were performed as previously described3,44,45 using antibodies for 

SUZ12 (Abcam ab12073) and Rabbit IgG (Millipore PP64B). Briefly, 

approximately 10^6 cells per antibody were cross-linked for 10-15 minutes with 

1% formaldehyde and the cross-linking was inactivated by 0.125M glycine for 5 

minutes at room temperature. Cells were rinsed with ice-cold PBS three times 

and cell pellets were resuspended in lysis buffer plus protease inhibitors. 

Chromatin was sonicated to an average length of 500bp, centrifuged to remove 

debris, and supernatants containing chromatin fragments were incubated with 

protein A/G beads to reduce non-specific binding. Then, beads were removed 

and supernatants were incubated with 6µg of antibody overnight at 4C. Fresh 

protein A/G beads were added and incubated with protein-chromatin-antibody 

complexes for 2 hours at 4C, washed twice with 1X dialysis buffer and four times 

with IP wash buffer, and eluted in 150µl IP elution buffer. 1:10th of the ChIP 

reaction was taken for protein evaluation for validation of ChIP pull-down. 

Reverse crosslinking was performed by incubating the eluted product with 0.3M 

NaCl at 65C overnight. ChIP product was cleaned up with the USB PrepEase kit. 

ChIP experiments were validated for specificity by Western blotting. 
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ChIP-seq experiments 

Paired-end ChIP-Seq libraries were generated following the Illumina ChIP-Seq 

protocol with minor modifications. The ChIP DNA was subjected to end-repair 

and A base addition before ligating with Illumina adaptors. Samples were purified 

using Ampure beads and PCR-enriched with a combination of specific index 

primers and PE2.0 primer under the following conditions: 98C (30 sec), 65C (30 

sec), and 72C (40 sec with a 4 sec increment per cycle). After 14 cycles of 

amplification a final extension at 72ºC for 5 minutes was carried out. The 

barcoded libraries were size-selected using a 3% NuSieve Agarose gel and 

subjected to an additional PCR enrichment step. The libraries were analyzed and 

quantified using Agilent Bioanalyzer 2100 before subjecting to paired-end 

sequencing using the Illumina Hi-Seq platform. 

 

ChIP-Seq data analysis 

Sequencing data from RWPE SUZ12 ChIP-Seq samples were mapped to human 

genome version hg19 using BWA 0.5.943. Although we performed paired-end 

sequencing, the ChIP-Seq reads were processed as single-end to adhere to our 

preexisting analysis protocol. Peak calling was performed respect to an IgG 

control using the MACS algorithm46. For each sample we ran the CEAS program 

and generated genome-wide reports47. We retained peaks with a false discovery 

rate (FDR) less than 5%. We then aggregated SUZ12 peaks from the RWPE-

LacZ, RWPE-SChLAP1 Isoform 1, and RWPE-SChLAP1 Isoform 2 samples 

using the “union” of the genomic peak intervals. We intersected peaks with 
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RefSeq protein-coding genes and found that 8,528 peaks occurred within one 

kilobase of transcription start sites (TSSs). We counted the number of reads 

overlapping each of these promoter peaks across each sample using a custom 

python script and used the DESeq R package version 1.6.3 to compute 

differential binding between RWPE-LacZ and RWPE-SChLAP1 (both isoforms). 

We observed that 245 promoter peaks had a significant change in SUZ12 

binding (adjusted p-value <0.1), with 233 peaks showing increased SUZ12 

binding. 

 

Cell Viability Assays 

Cells were plated in a 12-well dish on day 0 and treated the following day with 

desired concentrations (20μM, 3.2μM, 512nM, 82nM, 13nM, and 2nM) of EPZ-

6438 (Selleckchem) or vehicle control (DMSO). During days 2-11, cells were 

replated as necessary, maintaining cell ratios across various drug 

concentrations, and treated on the following day. On day 12, cells were plated 

into a 96-well plate (4 wells per treatment), maintaining cell ratios across various 

drug concentrations, and treated the following day. On day 14, WST-1 cell 

proliferation reagent (Roche) was added to each well. Following 2 hours of 

incubation at 37C, the absorbance of the wells was measured at 450nm. Data 

was normalized to vehicle control and background signal was removed prior to 

analysis. GraphPad Prism was used to perform nonlinear regression 

(log(inhibitor) vs. normalized response) and calculate the IC50. 
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Cell Proliferation assays 

Cells were plated in a 12-well dish on day 0 and treated the following day with 

either 8μM EPZ-6438 (Selleckchem) or vehicle control (DMSO). During days 2-5, 

cells were replated as necessary and treated the following day. On day 6, cells 

were plated into a 96-well plate (4 wells per treatment) at an equal density of 

1000 cells per well for each treatment group. On day 7, the cells were treated 

with EPZ-6438 or vehicle control and the plates were placed in an Incucyte for 

live-cell imaging to obtain cell confluence data at 12-hour intervals. 
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Tables 

 

Table 3.1 SWI/SNF mutation frequency in the cBioPortal 
The number of cases in the cBioPortal with an alteration in any of five commonly-
mutated SWI/SNF subunits (SMARCB1, SMARCA2, SMARCA4, ARID1A, and 
ARID1B) is shown. Only cancer types with corresponding RNA-seq data in the 
MiTranscriptome Portal are shown. 
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Figures 

 

Figure 3.1 Integrated landscape of SWI/SNF mutations and SChLAP1 
expression in cancer. 
(a) Gray bars indicate mutation frequency of SWI/SNF across 22 cancer types 
from the cBioPortal. Bars show the percent of cases with an alteration in at least 
one of five SWI/SNF subunits (SMARCB1, SMARCA2, SMARCA4, ARID1A or 
ARID1B). Red dots indicate SChLAP1 expression across these cancer types 
from the MiTranscriptome portal. Dots show SChLAP1 expression in each 
sample. The black bar represents mean expression within each cancer type. (b) 
Analysis of the MI-ONCOSEQ prostate adenocarcinoma cohort (86 tissue 
samples: 5 primary tumors, 79 metastatic samples, 2 unknown) for SWI/SNF 
mutation and SChLAP1 expression. Blue boxes represent a mutation in one of 
five SWI/SNF subunits (SMARCB1, SMARCA2, SMARCA4, ARID1A or 
ARID1B). SChLAP1 expression is shown in the barplot. Samples are ordered 
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according to SChLAP1 expression. Co-occurence of SWI/SNF mutation and 
SChLAP1 expression is shown in the inset. P-value was determined by a 
Fisher’s exact test. (c) SChLAP1 expression in samples wild-type (n=74) and 
mutant (n=12) for SWI/SNF mutation in the MI-ONCOSEQ prostate 
adenocarcinoma cohort. Expression is represented as the z-score. P-value was 
determined by a Mann-Whitney U test.  
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Figure 3.2 SChLAP1 is associated with PRC2-related concepts and 
enhances PRC2 histone methyltransferase activity. 
(a) Top ten molecular concepts nominated by Oncomine Concepts Analysis 
using the top 5% of genes negatively correlated to SChLAP1 in primary prostate 
tumors. Red bars indicate PRC2-related concepts. (b) Knockdown of SMARCB1 
(left) and overexpression of SChLAP1 (right) in RWPE cells followed by 
immunoblotting for SMARCB1, H3K27me3, H3K9me3, total H3, and B-Actin. 
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Figure 3.3 SChLAP1 enhances PRC2-mediated gene regulation and 
antagonizes SWI/SNF-mediated gene regulation. 
(a) LNCaP and 22Rv1 cells were treated with siRNAs against EZH2. qPCR 
indicates relative knockdown efficiency in these cell lines. Error bars represent 
S.E.M. (b) Heatmap results for SChLAP1, EZH2 or SMARCB1 knockdown in 
LNCaP and 22Rv1 cells. The numbers above the heatmap indicate the specific 
siRNA and microarray replicates. (c) GSEA results from comparisons of 
SChLAP1, EZH2 and SMARCB1 knockdown in LNCaP and 22Rv1 cells. 
SChLAP1 was knocked-down using siRNAs in both cells lines. Gene expression 
changes (down- and up-regulated) across both cell lines were compared using 
GSEA to expression changes observed using EZH2 and SMARCB1 siRNAs. The 
enrichment plots of these comparisons are shown. ES, enrichment score. 
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Figure 3.4 SChLAP1 enhances SUZ12 genome-wide binding. 
(a) ChIP for SUZ12 protein followed by Western blot. (b) A heatmap 
representation of SUZ12 genomic binding at target sites in RWPE-LacZ, RWPE-
SChLAP1 isoform 1 and RWPE-SChLAP1 isoform 2 cells. A ±2kb interval 
surrounding the called SUZ12 peak is shown. (c) A global representation of 
SUZ12 genomic binding over ±2kb window surrounding each SUZ12 ChIP-Seq 
peak in RWPE-LacZ, RWPE-SChLAP1 isoform 1 and RWPE-SChLAP1 isoform 
2 cells. (d) Volcano plot showing the relative log2 fold-change in SUZ12 binding 
between RWPE-LacZ and RWPE-SChLAP1 (average of both isoforms). 
Significant peaks are shown in red. (e) Example ChIP-Seq binding sites for 
SUZ12 on gene promoters. SUZ12 binding is lower at gene promoters in RWPE-
LacZ cells and increased upon SChLAP1 overexpression. 
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Figure 3.5 SChLAP1 increases sensitivity to pharmacologic EZH2 
inhibition. 
(a) LNCaP cells were treated with 1µM EPZ-6438 or vehicle control for 4 days. 
Western blot for H3K27me3 shows effective drug targeting. (b) Experimental 
design for cell survival assays. Cells were plated at equal density in a 12-well 
dish and treated with various concentrations of EPZ-6438 or vehicle control. 
Cells were re-plated as necessary, maintaining cell ratios across conditions. After 
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12 days of treatment, cells were plated in a 96-well dish, maintaining cell ratios 
across conditions. On day 14, WST-1 reagent was added to the wells and O.D. 
at 450nm was measured after 2 hours of incubation at 37C. (c) Viability of PC3, 
RWPE, C4-2B and LNCaP prostate cells at different concentrations of EPZ-6438. 
Normalized data is represented as the percent of viable cells compared to 
vehicle control. Cells were treated with EPZ-6438 for 14 days prior to data 
collection. IC50 values of EPZ-6438 in PC3, RWPE, C4-2B and LNCaP cells are 
indicated on the graph. (d) Viability of RWPE-LacZ, RWPE-SChLAP1 isoform 1 
and RWPE-SChLAP1 isoform 2 cells at different concentrations of EPZ-6438. 
Normalized data is represented as the percent of viable cells compared to 
vehicle control. Cells were treated with EPZ-6438 for 14 days prior to data 
collection. IC50 values of EPZ-6438 in RWPE-LacZ, RWPE-SChLAP1 isoform 1 
and RWPE-SChLAP1 isoform 2 cells are indicated on the graph. (e) IC50 values 
and SChLAP1 expression for several prostate cell lines. SChLAP1 expression is 
represented as log2 fold change relative to the average SChLAP1 expression in 
this cell line cohort. Table summarizing EPZ-6438 IC50 and SChLAP1 expression 
across cell lines is shown to the right. 
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Figure 3.6 EPZ-6438 decreases proliferation in SChLAP1-expressing cells. 
(a) Experimental design for cell proliferation assays. Cells were plated at equal 
density in a 100mm dish and treated with 8µM EPZ-6438 or vehicle control. Cells 
were re-plated as necessary, maintaining equal densities across conditions. After 
6 days of treatment, cells were plated in a 96-well dish at equal densities (1000 
cells per well). The following day, drug was added and the plates were placed in 
an Incucyte machine. (b) Cell proliferation of RWPE-LacZ (left), RWPE-
SChLAP1 isoform 1 and RWPE-SChLAP1 isoform 2 (right) cells treated with 
EPZ-6438 or vehicle control. Cells were pre-treated with EPZ-6438 for 7 days 
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then replated at equal densities at time 0h on the graph. Cell proliferation assays 
were performed by Incucyte live-cell imaging. Data shown are fold change in cell 
confluence vs. time at 12-hour intervals. Each data point is the mean of 
quadruplicates. P-value was determined by a Student's t-test. (c) Sample images 
from cell proliferation assays on day 12 of treatment (day 5 of proliferation 
assay).  
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Figure 3.7 Working model of SChLAP1 in prostate cancer. 
In normal cells, SWI/SNF antagonizes PRC2 activity (black line). In the presence 
of SChLAP1, SWI/SNF-mediated repression of PRC2 is lost, leading to 
oncogenic transformation of cells (gray lines). In this scenario, pharmacologic 
EZH2 inhibition may be a promising therapeutic strategy. *Figure adapted from 
Wilson et al., Cancer Cell, 2010. 
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Chapter 4:  

Characterization of the SChLAP1 – SWI/SNF interaction reveals 

a therapeutic opportunity in prostate cancer3 

 

Abstract 

Prostate cancer is the most common and second-most deadly type of cancer in 

U.S. men1. Identifying those patients with aggressive, lethal disease remains a 

clinical challenge2-4. Recently, we identified a long noncoding RNA (lncRNA) 

termed SChLAP1 that is expressed in a subset of prostate cancers5. SChLAP1 

mediates cell invasion and metastasis in part by interacting with and abrogating 

genome-wide binding of the tumor-suppressive SWI/SNF nucleosome-

remodeling complex6. However, the nature of this relationship remains poorly 

understood. Also, several recent studies have identified various therapeutic 

vulnerabilities arising from SWI/SNF subunit mutations7-13. Here, we further 

characterize SChLAP1 to identify a 250bp region near the 3’-end of the transcript 

necessary to its function. Additionally, we find that SChLAP1 interacts with 

BRG1-, but not BRM-, containing SWI/SNF complexes. Furthermore, BRM 

knockdown decreased cell invasion and proliferation in SChLAP1-

overexpressing, but not control, prostate epithelial cells. Our findings indicate that 

3 This chapter has been prepared as a manuscript for submission with the following authors: 
Anirban Sahu, John R. Prensner, Benjamin Chandler, Qi Cao, Nithin Edara, Udit Singhal, Sumin 
Han, Matthew K. Iyer, Rohit Malik, Felix Y. Feng, and Arul M. Chinnaiyan. 

126 
 

                                            



specific regions of SChLAP1 are crucial to its function and may warrant further 

investigation for therapeutic development. These data also provide a rationale for 

the development and use of BRM-specific small molecule inhibitors. Moreover, 

lncRNA-mediated SWI/SNF inhibition may expose therapeutic opportunities in 

residual complexes similar to those arising from subunit mutations. 

 

Introduction 

Prostate cancer is the most common type of malignancy in U.S. men, with over 

200,000 new diagnoses this year1. Furthermore, prostate cancer is the second-

most lethal type of malignancy in U.S. men, accounting for nearly 28,000 deaths 

this year1. However, as these statistics suggest, most men diagnosed with 

prostate cancer die with the disease and from unrelated causes rather than from 

the disease4. Identifying the subset of patients with prostate cancer who will 

progress to aggressive, lethal disease remains a clinical challenge3. 

 

Recently, our group identified a prognostic, prostate cancer-specific long non-

coding RNA (lncRNA) termed SChLAP1 that is overexpressed in a subset of 

aggressive prostate cancers5. Subsequent studies found that SChLAP1 is 

significantly prognostic for metastatic progression and lethal disease14-16. 

SChLAP1 mediates cell invasiveness, in part, by interacting with and abrogating 

genome-wide binding of the tumor suppressive SWI/SNF nucleosome-

remodeling complex6. However, the nature of this relationship is poorly 
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understood. Here, we sought to further characterize the regions of SChLAP1 and 

components of SWI/SNF most crucial to this collaboration in prostate cancer. 

 

Results 

To characterize specific regions of SChLAP1 essential for its function, we 

generated deletion constructs tiling every 250bp and overexpressed these in 

RWPE cells (Fig. 4.1a,b). Deletion of a single 250bp region (deletion construct 

#5, bp 1001 – 1250 for SChLAP1 isoform 1) shared by all three major isoforms of 

the RNA abrogated SChLAP1-mediated cell invasion in RWPE cells (Fig. 4.1c). 

 

To test whether this region is important for SWI/SNF binding, we performed RNA 

immunoprecipitation (RIP) for SNF5, a core subunit of the SWI/SNF complex that 

facilitates binding to histone proteins17, in RWPE cells overexpressing SChLAP1 

isoform 1, SChLAP1 isoform 2, and SChLAP1 deletion construct #5, which failed 

to induce cell invasion. We observed that overexpression of both SChLAP1 

isoform 1 and isoform 2 robustly bound to SNF5, whereas deletion construct #5 

failed to bind SNF5 (Fig. 4.2a). As controls, we also measured AK093002 and 

LOC145837, two lncRNAs upregulated in subsets of prostate cancer (Fig. 4.2b) 

that are endogenously expressed in RWPE cells (Fig. 4.2c). Control RIP 

experiments for SNRNP70 protein demonstrated uniformly strong binding to U1 

spliceosomal RNA, which is a well-characterized protein-RNA interaction in the 

spliceosome ribonucleoprotein complex (Fig. 4.2d). 
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To exclude the possibility that this deletion construct produced an unstable RNA, 

we performed 5-ethinyl uridine (EU) incorporation assays, which demonstrated 

that the deletion construct RNA was equally stable when compared to full-length 

SChLAP1 RNA (Fig. 4.3a). In silico modeling with RNAfold18 of the SChLAP1 

RNA structure suggested the presence of a RNA hairpin in this region that is lost 

specifically in deletion construct #5 (Fig. 4.3b), potentially implicating this 

secondary structure in the function of the molecule. 

 

The SWI/SNF complex is a multi-subunit epigenetic modifier that regulates gene 

expression by reorganizing nucleosomes to alter chromatin architecture19,20. 

Each individual SWI/SNF complex contains either BRG1 (also known as 

SMARCA4) or BRM (also known as SMARCA2) as its enzymatic component, but 

not both19,21,22. While redundancy between these ATPase subunits does exist, 

there are well-described functional differences between BRG1- and BRM-

containing SWI/SNF complexes19,21,23,24, and this remains an active area of 

research investigation. 

 

To determine whether SChLAP1 binds specifically to either type of complex, we 

performed RIP for BRG1 and BRM in 22Rv1 and LNCaP prostate cancer cells. 

We found that endogenous SChLAP1, but not other prostate-cancer associated 

lncRNAs 25,26, robustly coimmunoprecipitated with BRG1 but not BRM (Fig. 

4.4a). To ensure the BRM antibody is able to retrieve intact SWI/SNF complexes, 

we performed immunoprecipitation followed by immunoblotting for a SMARCD1, 
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a core component of SWI/SNF17,19,21 (Fig. 4.4b). To extend this analysis further, 

we assessed the impact of SChLAP1 expression on BRG1 and BRM genomic 

binding. Using ChIP-PCR for four target genes of SNF55, we found that 

SChLAP1 overexpression in RWPE cells preferentially decreased BRG1 binding 

from SNF5 target promoters by ChIP-PCR, whereas the effect on BRM was 

markedly more mild  (Fig. 4.4c). Taken together, these results suggest that 

SWI/SNF complexes utilizing BRG1 as the enzymatic subunit are the primary 

target for SChLAP1. 

 

The SWI/SNF complex is mutated in approximately 20% of all cancers19,21,27,28. 

Several recent studies have identified various therapeutic opportunities arising 

from SWI/SNF inactivation7,9-13. In particular, targeting the residual relative of a 

mutated subunit has been shown to result in a synthetic lethal phenotype8. For 

example, BRM has been identified as a synthetic lethal target in BRG1-mutated 

cancers11-13, and ARID1B has been identified as a synthetic lethal target in 

ARID1A-mutated cancers7. Furthermore, lncRNAs have been implicated in 

mediating SWI/SNF biology5,29,30, and have also been shown to specifically 

interact with BRG1 to inhibit its chromatin binding29. Given SChLAP1’s specific 

interaction with BRG1, we hypothesized that BRM may be a synthetic lethal 

target in SChLAP1-expressing cells. 

 

To test this hypothesis, we performed siRNA knockdown of BRM in RWPE-LacZ, 

RWPE-SChLAP1 isoform 1, and RWPE-SChLAP1 isoform 2 cells (Fig. 4.5a,b). 
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We found that BRM knockdown slightly increased cell invasion in RWPE-LacZ 

cells but significantly decreased cell invasion in RWPE-SChLAP1 cells (Fig. 

4.5c). Additionally, while BRM knockdown slightly increased cell proliferation in 

RWPE-LacZ cells, consistent with previous studies identifying BRM as a 

proliferative gatekeeper in prostate cells31, BRM knockdown significantly 

decreased cell proliferation in RWPE-SChLAP1 cells (Fig. 4.5d). Interestingly, 

BRG1 knockdown resulted in decreased cell viability regardless of SChLAP1 

expression (data not shown). While one may hypothesize that BRG1 knockdown 

should not have any additional effect on SChLAP1-overexpressing cells, this 

could suggest a dose-dependent effect of BRG1 inactivation in either creating a 

synthetic lethal environment or killing the cell completely. Taken together, these 

results suggest that BRM can be targeted in SChLAP1-expressing cells to 

decrease cell viability. 

 

To explore the mechanistic basis of this synthetic lethality, we sought to 

determine whether targeting BRM in SChLAP1-expressing cells destabilizes 

residual SWI/SNF complexes, as previously suggested in SWI/SNF synthetic 

lethal models7,11. While BRM knockdown in RWPE-LacZ cells affected the 

expression of some subunits and their incorporation into the SWI/SNF complex, 

BRM knockdown in RWPE-SChLAP1 cells reduced the expression and 

incorporation of additional components (Fig. 4.6). Although further 

experimentation is necessary to uncover the nature of the SWI/SNF complex 

under these conditions, these results suggest that SWI/SNF destabilization may 
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be one of several mechanisms that could explain why targeting BRM in 

SChLAP1-expressing, but not RWPE-LacZ control cells, results in decreased cell 

invasion and proliferation. 

 

Discussion 

In summary, we have shown that a 250bp region near the 3’-end of SChLAP1 

mediates its invasive phenotype and coordinates its interaction with the SWI/SNF 

complex. Additionally, we found that SChLAP1 interacts with BRG1-containing 

but not BRM-containing SWI/SNF complexes and preferentially decreases BRG1 

genomic binding. Interestingly, our model of SChLAP1 action shares several 

similarities to the lncRNA Mhrt, a cardioprotective transcript that functions by 

directly interacting with the helicase domain of BRG1, resulting in decreased 

chromatin binding by BRG129. Finally, SChLAP1’s preference for BRG1 may 

expose BRM as a therapeutic target in prostate cancer (Fig. 4.7). Thus, while 

mutations in SWI/SNF subunits have been used to reveal specific vulnerabilities 

in cancer, our work suggests that lncRNA-mediated BRG1-inactivation may 

uncover similar therapeutic opportunities in malignancy. Taken together, our 

findings have broad implications for cancer biology and provide additional 

rationale for the development and use of BRM-specific inhibitors as therapeutic 

treatment in cancer. 
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Materials and Methods 

Cell lines 

All cell lines were obtained from the American Type Culture Collection. Cell lines 

were maintained using standard media and conditions. Specifically, LNCaP and 

22Rv1 cells were maintained in RPMI 1640 plus 10% FBS and 1% penicillin-

streptomycin. RWPE cells were maintained in KSF media plus 10ng/mL EGF and 

bovine pituitary extract (BPE) and 1% penicillin-streptomycin. All cell lines were 

grown at 37C in a 5% CO2 cell culture incubator. All cell lines were genotyped for 

identity at the University of Michigan Sequencing Core and tested routinely for 

Mycoplasma contamination. 

 

SChLAP1 or LacZ control cell lines were generated as previously described. 

Briefly, SChLAP1 full-length transcript was amplified from LNCaP cells and 

cloned into the pLenti6 vector along with LacZ controls. The benign immortalized 

prostate cell line RWPE was infected with lentiviruses expressing SChLAP1 or 

LacZ. Stably-transfected RWPE cells were selected using blasticidin for one 

week. All lentiviruses were generated by the University of Michigan Vector Core. 

 

Basement Membrane Matrix Invasion Assays 

For invasion assays, stably-transfected RWPE cells were trypsinized, counted 

with a Coulter counter, and diluted to 1.5 million cells/mL. 100µL of the cell 

solution were seeded onto the basement membrane matrix present in the insert 

of a 24 well culture plate. Fetal bovine serum was added to the lower chamber as 
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a chemo-attractant. After 48 hours, the non-invading cells and basement 

membrane matrix were gently removed with a cotton swab. Invasive cells located 

on the lower side of the chamber were stained with using a Diff-Quik staining kit, 

air-dried and photographed. The number of invaded cells were counted in 4 

different microscopic fields per insert and extrapolated to determine the number 

of invaded cells per well. 

 

RNA immunoprecipitation 

RIP assays were performed using a Millipore EZ-Magna RIP RNA-Binding 

Protein Immunoprecipitation kit from Millipore according to the manufacturer’s 

instructions. RIP-PCR was performed as qPCR, as described above, using total 

RNA as input controls. 1:150th of RIP RNA product was used per PCR reaction. 

Antibodies used for RIP were Rabbit polyclonal IgG (Millipore, PP64), SNRNP70 

(Millipore, CS203216), SNF5 (Millipore, ABD22), BRG1 (Abcam ab4081), BRM 

(Abcam ab15597) and AR (Millipore, 06-680, rabbit), using 5 – 7 µg of antibody 

per RIP reaction.  All RIP assays were performed in biological duplicate. 

 

siRNA knockdown 

Cells were plated in 100mM plates at a desired concentration and transfected 

with 20nM experimental siRNA oligos or non-targeting controls twice, at 12 hours 

and 24 hours post-plating. Knockdowns were performed with Lipofectamine 

RNAiMAX in OPTI-MEM I media. 72 hours post-transfection, cells were 
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harvested. Knockdown efficiency was determined by qPCR. siRNAs used in this 

study are listed below: 

BRM siRNA #1: CAAAGCAGAUGAACGCUAU 

BRM siRNA #2: GAAAGGAGGUGCUAAGACA 

BRG1 siRNA #1: GCACACCGCUGCAGAACAA 

BRG1 siRNA #2: GCGACUCACUGACGGAGAA 

 

Immunoblotting 

Cells were lysed in RIPA lysis buffer supplemented with HALT protease inhibitor. 

Protein lysates were boiled in sample buffer, and 5-10µg protein was loaded onto 

a SDS-PAGE gel and run for separation of proteins. Proteins were transferred 

onto Polyvinyl Difluoride membranes and blocked for 30 minutes in blocking 

buffer (5% milk, 0.1% Tween, Tri-buffered saline (TBS-T)). Membranes were 

incubated overnight at 4C with primary antibody. Primary antibodies used in this 

study are listed in Table 4.1. After 3 washes with TBS-T, membranes were 

incubated for 30 minutes at room temperature with horseradish peroxidase-

conjugated secondary antibody. Following 3 washes with TBS-T and one wash 

with TBS, the signals were visualized by enhanced chemiluminescence system 

from GE Healthcare. 

 

RNA isolation and cDNA synthesis 

Total RNA was isolated using Trizol and a miRNeasy Kit with DNase I digestion 

according to the manufacturer’s instructions. RNA integrity was verified on an 
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Agilent Bioanalyzer 2100. cDNA was synthesized from total RNA using 

Superscript III and random primers. 

 

Quantitative Real-time PCR 

Quantitative Real-time PCR (qPCR) was performed using Power SYBR Green 

Mastermix on an Applied Biosystems 7900HT Real-Time PCR System. All 

oligonucleotide primers were obtained from Integrated DNA Technologies and 

are listed in Table 4.2. 

 

Tissue Samples 

Prostate tissues were obtained from the radical prostatectomy series and Rapid 

Autopsy Program at the University of Michigan tissue core32. These programs are 

part of the University of Michigan Prostate Cancer Specialized Program Of 

Research Excellence (S.P.O.R.E.). All tissue samples were collected with 

informed consent under an Institutional Review Board (IRB) approved protocol at 

the University of Michigan.  (SPORE in Prostate Cancer (Tissue/Serum/Urine) 

Bank Institutional Review Board # 1994-0481). 

 

EU pulse chase RNA stability assay 

5-ethinyl-uridine RNA stability assays were performed using the Click-iT Nascent 

RNA Capture Kit (Life Technologies) according to manufacturer instructions. 

Briefly, RWPE-SChLAP1 isoform 1 cells or RWPE-SChLAP1 deletion #5 cells 

were treated with 5-ethinyl-uridine and RNA was harvested post-chase. Relative 
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RNA fraction remaining compared to pulse is plotted in the bar graph.  Error bars 

indicate S.E.M. 

 

Chromatin Immunoprecipitation 

ChIP assays were performed as previously described5,26,33 using antibodies for 

BRG1 (Abcam ab4081), BRM (Abcam ab15597) and Rabbit IgG (Millipore 

PP64B). Briefly, approximately 10^6 cells per antibody were cross-linked for 10-

15 minutes with 1% formaldehyde and the cross-linking was inactivated by 

0.125M glycine for 5 minutes at room temperature. Cells were rinsed with ice-

cold PBS three times and cell pellets were resuspended in lysis buffer plus 

protease inhibitors. Chromatin was sonicated to an average length of 500bp, 

centrifuged to remove debris, and supernatants containing chromatin fragments 

were incubated with protein A/G beads to reduce non-specific binding. Then, 

beads were removed and supernatants were incubated with 6µg of antibody 

overnight at 4C. Fresh protein A/G beads were added and incubated with 

protein-chromatin-antibody complexes for 2 hours at 4C, washed twice with 1X 

dialysis buffer and four times with IP wash buffer, and eluted in 150µl IP elution 

buffer. 1:10th of the ChIP reaction was taken for protein evaluation for validation 

of ChIP pull-down. Reverse crosslinking was performed by incubating the eluted 

product with 0.3M NaCl at 65C overnight. ChIP product was cleaned up with the 

USB PrepEase kit. ChIP experiments were validated for specificity by Western 

blotting. 
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Proliferation Assays 

72 hours post-transfection with siRNA, cells were trypsinized, counted with a 

Coulter counter, and plated into a 96-well plate (4 wells per experimental group) 

at a density of 4000 cells per well. The plates were placed in an Incucyte for live-

cell imaging to obtain cell confluence data at 3-hour intervals. Error bars indicate 

S.E.M. 

 

Immunoprecipitation Assay 

Immunoprecipitation assays were performed as previously described7. Briefly, 60 

million cells per reaction were harvested and nuclear pellets isolated with the NE-

PER Nuclear Extraction kit (Pierce). The nuclear pellets were resuspended in 

500µl of lysis buffer (20mM Tris pH 7.5, 150mM NaCl, 1% Triton-X, protease 

inhibitor cocktail), frozen, thawed, then sonicated for 6 cycles of 30 sec on/30sec 

off on the highset setting of a BioRuptor XL. Lysates were cleared by centrifuging 

12,000xg  for 10min at 4C. Protein concentration was measured by Bradford 

reagent. 1mg of protein was used per pulldown. Lysates were precleared with 

25µl protein A/G beads. 10% of the precleared lysate was saved as input. 5µg of 

SMARCC1 antibody (Santa Cruz)  was added to each reaction tube and 

incubated at 4C overnight with end-over-end rotation. Antibody-protein 

complexes were capture with 45µl of protein A/G beads for 2 hrs at 4C with end-

over-end rotation. Bead complexes were washed 4 times with lysis buffer and 

protein complexes were eluted by boiling beads in 25µl 1xSDS loading buffer 
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plus 2µl B-mercaptoethanol at 98C for 5 min. Proteins were separated by SDS-

PAGE. Antibodies used for immunoblotting are listed in Table 4.1. 
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Tables 

 

Table 4.1 Antibodies used in this study 
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Table 4.2 Primers used in this study 
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Figures 

 

 
Figure 4.1 A 250bp region of SChLAP1 is necessary for its invasive 
phenotype. 
(a) Schematic of deletion constructs made for SChLAP1 and their impact on cell 
invasion. (b) Overexpression of SChLAP1 deletion constructs in RWPE cells.  
qPCR for full-length SChLAP1 and the SChLAP1 deletion constructs after 
overexpression in RWPE. (c) Deletion constructs of SChLAP1 were 
overexpressed in RWPE cells and the resulting cells were assayed for invasion 
in a Boyden chamber assay.  Data are represented as normalized mean +/- 
S.E.M. Images to the right show representative Boyden chamber membranes 
following invasion. All images were captured at the same magnification. 
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Figure 4.2 A 250bp region of SChLAP1 is necessary for its interaction with 
SNF5. 
(a) RIP analysis of SNF5 in RWPE cells overexpressing LacZ, SChLAP1 isoform 
1, SChLAP1 isoform 2, or SChLAP1 deletion construct #5.  Inset, protein blots 
showing pulldown efficiency. AK093002 and LOC145837 serve as negative 
controls.  Data are mean +/- S.E.M. (b) Expression of AK093002 and 
LOC145837 in a cohort of benign, localized cancer, and metastatic prostate 
cancers. Expression was measured by qPCR and data are represented as 
standardized z-score values. Red lines indicate median values for each group. 
(c) Expression of AK093002 and LOC145837 in prostate cancer cell lines. qPCR 
data were normalized to the average of GAPDH + ACTB and compared to PREC 
primary non-immortalized prostate cells. Error bars indicate S.E.M. (d) Control 
SNRNP70 experiments in the RWPE-SChLAP1 overexpression models. 
Enrichment of U1 is shown for SNRNP70 IP experiments and serves as a 
positive technical control for the experiment. Error bars indicate S.E.M.  
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Figure 4.3 SChLAP1 deletion construct #5 is stable but lacks a hairpin loop. 
(a) RNA stability assays using incorporation of 5-ethinyl-uridine to monitor RNA 
decay. RWPE-SChLAP1 cells or RWPE-SChLAP1 deletion #5 cells were treated 
with 5-ethinyl-uridine and RNA was harvested post-chase. Relative RNA fraction 
remaining is plotted.  Error bars indicated S.E.M. (b) In silico structural 
predictions of SChLAP1 isoform 1 and deletion construct #5 by RNAfold. Arrows 
identify a structural hairpin that may be lost in SChLAP1 deletion construct #5. 
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Figure 4.4 SChLAP1 interacts with and abrogates genomic binding of 
BRG1. 
(a) RIP of BRG1 or BRM in 22Rv1 and LNCaP cells. Inset, protein blots showing 
pulldown efficiency. PCA3 and PCAT-1 serve as negative controls. Data are 
mean +/- S.E.M. (b) Immunoprecipitation for BRM followed by immunoblotting in 
LNCaP cells. (c) ChIP for BRG1 and BRM in RWPE-SChLAP1 and RWPE-LacZ 
cells. ChIP-PCR for 4 target genes of SNF5. KIAA0841 and Chr6 Alu serve as 
negative controls. Data are represented as percent change in genomic binding 
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relative to LacZ after being normalized to IgG controls.  The inset western blot 
indicates immunoprecipitation efficiency for BRG1 and BRM.  
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Figure 4.5 BRM knockdown in SChLAP1-expressing cells decreases cell 
invasion and proliferation. 
(a) Knockdown efficiency of BRM siRNA in RWPE-LacZ, RWPE-SChLAP1 
isoform 1, and RWPE-SChLAP1 isoform 2 cells. qPCR shows BRM knockdown 
relative to non-targeting control. Error bars represent S.E.M. (b) Knockdown 
efficiency of BRM siRNA in RWPE-LacZ, RWPE-SChLAP1 isoform 1, and 
RWPE-SChLAP1 isoform 2 cells. Western blot for BRM is shown. B-Actin serves 
as a loading control. (c) Cell invasion through Matrigel in a Boyden chamber 
assay of RWPE-LacZ, RWPE-SChLAP1 isoform 1, and RWPE-SChLAP1 
isoform 2 with or without BRM knockdown. Data are represented as normalized 
mean +/- S.E.M. Images to the right show representative Boyden chamber 
membranes following invasion. All images were captured at the same 
magnification. (d) Cell proliferation of RWPE-LacZ, RWPE-SChLAP1 isoform 1, 
and RWPE-SChLAP1 isoform 2 with or without BRM knockdown. Cell 
proliferation assays were performed by Incucyte live-cell imaging. Data shown 
are fold change in cell confluence vs. time at 3-hour intervals. Each data point is 
the mean of quadruplicates +/- S.E.M.   
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Figure 4.6 BRM knockdown in SChLAP1-expressing cells may destabilize 
the SWI/SNF complex. 
Immunoprecipitation for SMARCC1 followed by immunoblotting in RWPE-LacZ 
and RWPE-SChLAP1 cells treated with non-targeting control siRNA or BRM 
siRNA. 
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Figure 4.7 Working model of SChLAP1 in prostate cancer 
A 250bp region near the 3’-end of SChLAP1 mediates its invasive phenotype and 
interaction with SWI/SNF. SChLAP1 specifically interacts with and represses 
BRG1-containing SWI/SNF complexes, exposing BRM as a therapeutic target in 
prostate cancer. 
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Chapter 5:  

Clinical utility and translational opportunities of the long 

noncoding RNA SChLAP1 in prostate cancer4 

 

Abstract 

Improved clinical predictors for disease progression are needed for localized 

prostate cancer, where only a minority of patients experience poor outcomes. 

Long noncoding RNAs (lncRNAs) are an emerging class of oncogenic molecules 

implicated in a diverse range of human malignancies. Here, we undertake an 

unbiased large-scale analysis of genes associated with aggressive clinical 

course by analyzing gene expression in 1,008 prostate cancer samples using a 

clinical-grade, high-density Affymetrix GeneChip platform. Among all known 

genes (coding and noncoding), the lncRNA SChLAP1 ranked first for elevated 

expression in patients with metastatic progression. On multivariate modeling, 

4 Parts of this chapter have been previously published in the following manuscripts: 
 
Prensner JR, Zhao S, Erho N, Schipper M, Iyer MK, Dhanasekeran SM, Magi-Galluzzi C, Mehra 
R, Sahu A, Siddiqui J, Davicioni E, Den RB, Dicker AP, Karnes RJ, Wei JT, Klein EA, Jenkins 
RB, Chinnaiyan AM, Feng FY.  Nomination and validation of SChLAP1 as an independent risk 
factor for metastatic prostate cancer progression. Lancet Oncol, 15(13):1469-80, 2014. 
 
Mehra R, Shi Y, Udager AM, Prensner JR, Sahu A, Iyer MK, Siddiqui J, Cao X, Wei J, Jiang H, 
Feng FY, Chinnaiyan AM. A novel RNA in situ hybridization assay for the long noncoding RNA 
SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate 
cancer. Neoplasia, 16(12):1121-7, 2014. 
 
Antisense oligonucleotide (ASO) experiments were performed by Lanbo Xiao. 
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SChLAP1 expression independently predicted metastasis, overall survival, and 

biochemical recurrence with odds ratios comparable to Gleason score. Next, we 

sought to develop an RNA in situ hybridization (ISH) assay for SChLAP1 to 

investigate the spectrum of SChLAP1 expression by ISH from benign prostatic 

tissue to metastatic castration-resistant prostate cancer (mCRPC). Our results 

demonstrate that SChLAP1 expression increases with prostate cancer 

progression. To test the feasibility of a non-invasive test to detect SChLAP1, we 

measured SChLAP1 expression in 230 urine sediment samples with either 

biopsy-confirmed cancer or biopsy-negative tissue. Our results show increased 

incidence and expression of SChLAP1 RNA in patients at a higher risk for 

disease progression. Finally, to determine whether directly targeting SChLAP1 is 

a viable therapeutic strategy, we evaluate clinical-grade SChLAP1 anti-sense 

oligonucleotides (ASOs) and find that two independent ASOs targeting SChLAP1 

robustly reduce SChLAP1 expression, decrease cell invasion, and reduce PRC2 

activity. Taken together, these results establish several translational opportunities 

for SChLAP1 in prostate cancer. 

 

Introduction 

While a majority of localized prostate cancer patients harbor slow-growing, non-

lethal tumors, a smaller fraction of patients experience disease recurrence 

following definitive first-line therapies, which may lead to metastasis and death1-6. 

Current clinical paradigms rely mainly on pre-operative prostate specific antigen 

(PSA) levels, tumor stage, and biopsy Gleason score, which assesses cancer 
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cell histology, in order to estimate patient risk7-11, yet, these remain imperfect 

tools that inaccurately classify some patients12-15. Thus, characterization of novel 

prognostic biomarkers, especially ones suitable for non-invasive detection, 

represents an important research focus for improving patient management. 

 

To date, the majority of biomarker efforts have focused on protein-coding genes, 

which comprise only 2-3% of all transcribed genes 16,17. Among the non-coding 

genes, long non-coding RNAs (lncRNAs) most closely resemble protein-coding 

genes, in that they are transcribed by RNA polymerase II, polyadenylated, and 

associated with specific epigenetic signatures (i.e., H3K4me3 at the promoter 

and H3K36me3 throughout the gene length) 18,19. Recently, we and others have 

used next-generation sequencing to define long noncoding RNAs (lncRNAs) as 

potential biomarkers in prostate cancer20,21. Our work led to the analysis of the 

SChLAP1 lncRNA as an oncogenic factor in prostate cancer that associates with 

poor patient outcomes22. Furthermore, our preliminary data indicate that 

SChLAP1 expression levels can be detected in formalin-fixed, paraffin-

embedded (FFPE) tissue sections by RNA in situ hybridization (ISH). Taken 

together, these results suggest a potential utility of SChLAP1 as a prostate 

cancer biomarker. 

 

Here, we undertake an analysis of 1,008 prostate cancer samples using 

unbiased approaches to define RNA biomarkers associated with metastatic 

progression. Next, we evaluate SChLAP1 expression by ISH on FFPE tissue in a 
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large cohort of patients with clinically localized prostate cancer and lethal 

metastatic castration-resistant prostate cancer (mCRPC). Then, we measure 

SChLAP1 expression in patient urine samples to determine if SChLAP1 is 

detectable non-invasively. Finally, we explore the utility of clinical-grade 

antisense oligonucleotides (ASOs)23 as a modality to directly target SChLAP1 as 

a therapeutic strategy. 

 

Results 

We designed a retrospective biomarker discovery analysis according to PROBE 

criteria24,25 in which prostate cancer patients who developed metastases were 

compared to those who did not (Fig. 5.1a). We employed 1,008 radical 

prostatectomy specimens from three academic institutions, comprising four 

independent patient cohorts (Fig. 5.1a and Fig. 5.2a). Three cohorts represented 

case-control study designs; one study was a case-cohort design. Patients were 

defined as at-risk for recurrence (e.g., pT2 tumor with positive margins or pT3 

disease) by current clinical guidelines. Patient characteristics are detailed in 

Table 5.1. All cohorts with available information had mean patient follow-up 

between seven and fourteen years. 

 

A clinical-grade microarray platform, which contains 5 million probes against 1.4 

million unique probeset regions (PSRs), was used to measure global gene 

expression in an unbiased fashion. Tissue samples from three of four cohorts 

(not for EMC) were processed in a CLIA-certified laboratory, representing 95% 
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(960/1,008) of specimens. We analyzed all known protein-coding genes and 

lncRNAs previously identified in prostate cancer (PCATs).20 We used metastasis 

as the primary endpoint. Whereas localized and locally-recurrent disease is 

potentially curable,26,27 metastatic disease is incurable, requiring intensive 

treatment such as next generation anti-androgens and chemotherapy, and 

frequently progresses to mortality.6,28-33 

 

Nomination of SChLAP1 by unbiased expression profiling 

Using the MCI cohort (n=545), we performed a global assessment of gene 

expression differences between tumors from patients who experienced 

metastasis (n=212) and those who did not (n=333). Mean follow-up was 14 

years. We derived median expression values for all genes in each group and 

compared the relative change in expression between groups. Surprisingly, the 

top-ranked gene was SChLAP1, which was recently characterized as an 

oncogenic prostate cancer lncRNA (Fig. 5.1b).22 Overall, there were 230 genes 

whose expression associated with metastasis at a false discovery rate (FDR) or 

q ≤0·01 (Table S1). 

 

SChLAP1 demonstrated the largest gene expression change between tumors 

with and without metastatic progression (Fig. 5.1b). High SChLAP1 expression 

was associated with a markedly higher risk for biochemical recurrence, 

metastasis, death from prostate cancer, and death from any cause at ten years 
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post-prostatectomy (p=0·043, p<0·0001, p<0·0001, p<0·0001, respectively, 

Fisher’s exact) (Fig. 5.1c-f). 

 

Validation of SChLAP1 

For initial validation of SChLAP1, we employed a case-cohort MCII set (n=232) of 

high-risk localized prostate cancer patients (Table 5.1) who underwent radical 

prostatectomy. We observed that SChLAP1 was again a powerful predictor of 

time to biochemical recurrence, metastatic progression, and prostate cancer-

specific mortality (p=0·002, p=0·0002, p=0·004, respectively, Cox model), with a 

strong trend for significance in predicting worse overall survival (p=0·066) (Fig. 

5.2b-e). 

 

We next incorporated data from a third independent cohort of radical 

prostatectomy tissues from high-risk patients at the CC (n=183, Table 1). 

Confirming our prior observations, we found a strong association between 

SChLAP1 expression and metastatic progression in the CC set (OR=3·1, 

p=0·021, Fig. 5.2f). 

 

Lastly, we searched for additional publicly-available cohorts with clinical 

annotation that used the Affymetrix HuEx platform and reported a ≥10% 

metastasis event rate for statistical robustness. We found one cohort from the 

Erasmus Medical Center (EMC, n=48)34 and processed these data for SChLAP1 

expression as above (Table 5.1). Here, SChLAP1 expression was again highly 
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associated with metastases, the only reported outcome in the EMC dataset 

(p=0·0022, Fig. 5.2g), with all metastatic events occurring in patients with high 

SChLAP1 expression (data not shown). Together, these four datasets represent 

1,008 patients, and all cohorts support a strong association between SChLAP1 

expression and metastasis. 

 

A global comparison of SChLAP1 to other genes 

To compare SChLAP1 to other genes, we measured the receiver-operator-curve 

(ROC) area-under-the-curve (AUC) metric for metastatic disease progression 

across all annotated protein-coding genes and PCATs using the MCI and MCII 

cohorts. These cohorts were most enriched for high-risk patients and adverse 

outcomes. We plotted the AUC values for both cohorts for the top 1,000 genes 

(Fig. 5.3), of which a small minority displayed substantially higher AUC values in 

both cohorts (Fig. 5.3, box). A focused analysis of the top genes defined 

SChLAP1 as the second best single-gene predictor of metastasis (Fig. 5.3, 

right). 

 

SChLAP1 expression by ISH 

To determine the utility of SChLAP1 as a tissue biomarker, we examined 

SChLAP1 expression by ISH in large TMA cohorts of patients with clinically 

localized prostate cancer or lethal mCRPC. Benign prostate glands, clinically 

localized prostate cancer, and mCRPC demonstrated a spectrum of SChLAP1 

expression by ISH (Fig. 5.4). When present, SChLAP1 staining was 
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predominantly nuclear (Fig. 5.4). Overall, there were significant differences in 

SChLAP1 expression between benign prostatic glands, clinically localized 

prostate cancer, and lethal mCRPC (P < 0.001; Fig. 5.5a). Benign prostatic 

glands were available for evaluation in 74 patients with clinically localized 

prostate cancer and, overall, showed absent to low SChLAP1 expression (mean 

ISH product score = 13.8; range = 0-100). Out of a total of 208 patients with 

clinically localized prostate cancer, tissue from 160 patients (76.9%) was 

available for SChLAP1 expression evaluation. Of these, 58 (36.3%) showed no 

SChLAP1 expression (ISH product score = 0), while the remaining 102 (63.7%) 

demonstrated a wide spectrum of SChLAP1 expression (overall mean ISH 

product score = 44.5; range = 0-337; Fig. 5.4). 

 

Relative to benign prostatic glands, SChLAP1 expression was significantly 

increased in clinically localized prostate cancer (P < 0.001; Fig. 5.5a). In addition, 

high SChLAP1 expression was associated with an increased proportion of 

clinically localized tumors with high Gleason score (GS≥8; Fig. 5.5b). Rapid 

autopsy material from a total of 28 patients with lethal mCRPC was available for 

SChLAP1 expression evaluation, and a large proportion of the patients (15 

cases, 53.6%) demonstrated high SChLAP1 expression at one or more tissue 

site. Relative to benign prostatic glands (P < 0.001) and clinically localized 

prostate cancer (P < 0.001), SChLAP1 expression was significantly increased in 

lethal mCRPC (mean ISH product score = 136.4; range = 0-370; Fig. 5.5a). 
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Overall, these data indicate that SChLAP1 expression is associated with prostate 

cancer progression. 

 

Non-invasive detection of SChLAP1 in urine sediments 

Next, we sought to evaluate SChLAP1 expression non-invasively in prostate 

cancer patients early in their disease course. We employed a University of 

Michigan cohort of 230 patient urine sediments35,36 obtained post-digital rectal 

examination at the time of PSA screening for asymptomatic men. All men 

subsequently received a diagnostic prostate biopsy to determine whether cancer 

was present. Although urine sediments also contain bladder cells, SChLAP1 

expression is specific to prostate cells (see Chapter 3).  

 

We then measured SChLAP1 expression in our cohort of urine sediment 

samples. We observed high SChLAP1 expression only in a subset of patients 

(Fig. 5.6a), which is consistent with the SChLAP1 expression profile seen in all 

previous tissue cohorts22. Among patients with biopsy-confirmed cancer, 

expression of SChLAP1 was both more frequent and more highly elevated in 

Gleason 7 patients compared to Gleason 6 patients (p=0·029, Fisher’s exact, 

Fig. 5.6b). We were unable to evaluate Gleason ≥8 due to low numbers of 

patients. Finally, we stratified patients into low, intermediate, and high-risk 

categories according to standard PSA and Gleason thresholds. We found that 

SChLAP1 expression was significantly elevated in intermediate and high risk 

patients compared to low risk patients (p=0·0022, Mann Whitney U test, Fig. 
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5.6c). These data provide proof-of-principle analyses that SChLAP1 expression 

is detectable non-invasively in prostate cancer patient urine samples. However, 

additional validation is needed to confirm the utility of a urine-based SChLAP1 

test. 

 

Direct targeting of SChLAP1 with antisense oligonucleotides 

Finally, we used clinical-grade antisense oligonucleotides (ASOs) designed 

against SChLAP1 to determine whether directly targeting SChLAP1 could be 

pursued as a therapeutic strategy in prostate cancer. ASOs function by basepair 

hybridizing to target RNAs, resulting in transcript-specific RNAse H-mediated 

catalytic degradation37. Antisense technology has gained considerable traction 

over the past few years as several ASOs have been introduced into clinical trials 

and some have been FDA-approved for clinical use38-41. ASOs are a particularly 

attractive therapeutic modality for several reasons, including predictable human 

pharmacokinetics, prolonged tissue elimination half-lives, enhanced specificity 

compared to small molecule inhibitors, and lack of cytochrome P450 enzyme 

metabolism23,37,42-44. These characteristics are thought to make ASOs safer for 

patients and also more suitable for combination therapies with other drugs. 

 

We tested two independent SChLAP1 ASOs in 22Rv1 prostate cancer cells, 

which have moderate to high levels of endogenous SChLAP1. Cationic lipid-

mediated transfection delivery of the ASOs resulted in significantly decreased 

SChLAP1 expression, reduced cell invasion, as well as decreased PRC2 activity 
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indicated by a reduction in levels of H3K27 trimethylation (H3K27me3) (Fig. 5.7). 

While further experimentation is necessary to determine the in vivo effects of 

SChLAP1 ASOs, these results suggest that directly targeting SChLAP1 may be 

an effective therapeutic modality in the treatment of aggressive prostate cancer. 

 

Discussion 

Here, we perform the largest biomarker discovery project to date in prostate 

cancer, employing over 1,000 patients with one discovery cohort and three 

validation cohorts. Our study is the first of its kind to: (1) nominate and validate 

using a high-throughput clinical-grade assay in a CLIA-certified laboratory; (2) 

use distant metastasis as the primary endpoint; and (3) systematically evaluate 

non-coding elements in the transcriptome. We find that SChLAP1 is one of the 

best genes for predicting metastatic progression. This association between 

SChLAP1 and metastasis is robust across multiple independent cohorts. 

 

Next, we characterize SChLAP1 expression by ISH in a hospital-based cohort of 

American men treated for clinically localized prostate cancer, as well as a rapid 

autopsy cohort of patients with lethal mCRPC, using a novel ISH assay. We 

confirm that SChLAP1 is predominantly a nuclear RNA transcript, which supports 

in vitro studies of SChLAP1 in prostate cancer cells and preliminary in situ data 

22. We, also find that SChLAP1 expression is enriched in metastatic samples, 

suggesting that expression of this lncRNA may be preferentially selected for 

during prostate cancer progression. Additionally, we find that, in clinically 
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localized prostate cancer, SChLAP1 expression is enriched in samples from 

tumors with high Gleason scores (GS≥8) compared to tumors with lower Gleason 

scores, which also suggests an association with aggressive disease. 

 

One essential aspect of SChLAP1 is that its expression is specific to prostate 

cancer, with minimal expression in all other tumor and tissue types. SChLAP1, 

therefore, is uniquely suitable as a non-invasive biomarker. To this end, we show 

proof-of-principle data of SChLAP1 in patient urine samples. Although formalized 

optimization of urine biomarker assays requires substantial investment and 

resources,45 we are encouraged by these data and argue that prioritization of 

SChLAP1 during future biomarker development studies may be appropriate. 

 

Finally, we explore the therapeutic efficacy of directly targeting SChLAP1 using 

ASOs. Our preliminary in vitro data shows effective down-regulation of SChLAP1 

gene expression, decreased cell invasion, and reduced PRC2 activity upon 

treatment with SChLAP1 ASOs, suggesting that development of SChLAP1-

targeted therapies warrants further investigation.  

 

Overall, our work provides compelling evidence that SChLAP1 expression is 

highly prognostic and an independent risk factor for metastasis. As such, this 

study provides insight into the pathogenesis of aggressive prostate cancer and 

identifies SChLAP1 as a potential new clinical biomarker for metastatic 

progression and direct therapeutic target in advanced prostate cancer. Our work 
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contributes to the growing body of literature suggesting that lncRNAs are major 

drivers of cancer biology and, therefore, clinically important molecular entities. 

 

Materials and methods 

Study Design and Tissue Samples 

Banked or archived tumor samples were obtained from three prostatectomy 

patient cohorts enrolled at the Mayo Clinic or the Cleveland Clinic under informed 

consent protocols approved by local Institutional Review Board (IRB). Analyses 

were designed in accordance with PROBE criteria.24 The Mayo Clinic I (MCI) 

cohort included 212 patients with metastatic progression and a total of 333 

patients without metastatic progression as described.46 For the Mayo Clinic II 

(MCII) patients, a case-cohort study design was employed to randomly sample 

20% of patients for analysis, in addition to all who developed metastases, from a 

cohort of 1,010 high-risk men who underwent radical prostatectomy between 

2000-2006 as described.47 The MCII cohort and its outcomes data represent a 

modified set of patients overlapping with our previously published report of 

SChLAP1 with more stringent data quality control filters.22 

 

Patients from the Cleveland Clinic (CC) were obtained from a case-control study 

design sampled from 2,317 conservatively treated radical prostatectomy patients 

with high-risk features who received no adjuvant or neo-adjuvant therapy from 

1987-2008. Patients were sampled to achieve a three:one ratio for non-

metastatic (n=134) versus metastatic progression (n=49) patients (Figure S3).  
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Patient cohorts were designed in accordance with STROBE recommendations 

for case-control and case-cohort studies.48,49 

 

Microarray Hybridization and Gene Expression 

RNA extraction from formalin-fixed paraffin embedded (FFPE) samples and 

microarray hybridization was performed for Mayo Clinic and Cleveland Clinic 

samples using clinical-grade techniques in a CLIA-certified (Clinical Laboratory 

Improvement Amendments) laboratory facility. CLIA certification was obtained 

through the Centers for Medicare and Medicaid Services (CMS) through 

standard procedures, and laboratory facilities satisfied all criteria required by the 

CMS for certification. Details regarding the CLIA requirements can be found 

online at: http://www.cms.gov/Regulations-and-

Guidance/Legislation/CLIA/index.html. RNA purification, hybridization to 

Affymetrix Human Exon (HuEx) 1.0 ST GeneChips, and gene expression 

calculations are detailed in the Supplementary Methods. Partition-Around-

Medoids unsupervised clustering was used to define expression subgroups in the 

MCI cohort. This expression threshold was applied to the other cohorts without 

additional modification. Microarray data are available on the NCBI Gene 

Expression Omnibus (GEO) as accession numbers GSE46691 (MCI) and 

GSE62116 (MCII). The GEO accession number for the CC cohort is pending. 
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Additional Raw Datasets 

We obtained raw Affymetrix HuEx 1.0 ST GeneChip expression data and sample 

clinical information for Boormans et al.34 (Erasmus Medical Center; EMC) from 

the NCBI Gene Expression Omnibus (GSE41408). Gene expression was 

calculated as above. 

 

Nomination of metastasis-associated genes 

We calculated the mean expression of each gene in patients experiencing 

metastasis versus non-metastatic patients. Fold expression change was 

calculated with the following formula: (log2(median_expression_metastatic)–

log2(median_expression_no_metastasis)) / 

(log2(median_expression_all_samples) + four). The constant four was used to 

uniformly increase all expression values above zero to avoid a negative 

denominator. 

 

Tissue microarray (TMA) construction 

TMAs comprised of surgical pathology material from 208 patients with clinically 

localized prostate cancer were constructed using tumor and benign tissue from 

radical prostatectomy specimens; all patients had undergone radical 

prostatectomy at the University of Michigan Health System as primary 

monotherapy (i.e., no neoadjuvant hormonal or radiation therapy). This radical 

prostatectomy series is part of the University of Michigan Prostate Cancer 

Specialized Program of Research Excellence (SPORE) Tissue Core. Three 
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tissue cores (each 0.6 mm in diameter) were obtained from representative FFPE 

tissue blocks for each included patient sample. Detailed clinicopathologic data for 

this cohort (summarized in Table 1) are updated and maintained on a secure 

relational database. 

 

Similarly, TMAs comprised of rapid autopsy material from 60 patients with lethal 

mCRPC were constructed; this material was obtained as part of the University of 

Michigan Prostate Cancer SPORE Rapid Autopsy Program, as described 

previously 50. All patients received multimodal therapy, including a combination of 

radical prostatectomy, hormone deprivation, radiation, and/or chemotherapy; 

detailed clinicopathologic data for a portion of this cohort has been reported 

previously 51. As described above, three tissue cores (each 0.6 mm in diameter) 

were obtained from representative FFPE tissue blocks all metastatic tumor sites, 

as well as primary tumor within the prostate (when present at the time of autopsy; 

i.e., no prior radical prostatectomy). 

 

SChLAP1 ISH 

SChLAP1 ISH was performed on thin (approximately 4 micron thick) TMA 

sections (Advanced Cell Diagnostics, Inc., Hayward, CA), as described 

previously 22; in parallel, SChLAP1 ISH was performed on previously identified 

positive and negative control FFPE tissue sections, and all controls worked 

adequately (data not shown). All slides were examined for SChLAP1 ISH signals 

in morphologically intact cells and scored manually by a study pathologist (R.M.). 
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Specific SChLAP1 ISH signal was identified as brown, punctate dots, and 

expression level was scored as follows: 0 = no staining or less than 1 dot per 10 

cells; 1 = 1-3 dots per cell; 2 = 4-9 dots/cell (few or no dot clusters); 3 = 10-14 

dots/cell (less than 10% in dot clusters); and, 4 = greater than 15 dots/cell (more 

than 10% in dot clusters). For each evaluable tissue core, a cumulative ISH 

product score was calculated as the sum of the individual products of the 

expression level (0-4) and percentage of cells (0-100) [i.e., (A% x 0) + (B% x 1) + 

(C% x 2) + (D% x 3) + (E% x 4); total range = 0-400]. For each tissue sample, the 

ISH product score was averaged across evaluable TMA tissue cores. 

 

SChLAP1 Antisense Oligonucleotides 

ASOs were designed by ISIS pharmaceuticals. 22Rv1 cells were plated in a 6-

well dish at a desired concentration and transfected with 50nM experimental 

ASO or non-targeting control. Knockdowns were performed with Lipofectamine 

RNAiMAX in OPTI-MEM I media. 72 hours post-transfection, cells were 

harvested for RNA, protein, or plated for invasion assay. 

 

Urine quantitative PCR 

Urine samples were collected from 256 patients with informed consent at the 

time of PSA screening, following a digital rectal exam, and prior to subsequent 

needle biopsy at the University of Michigan with IRB approval as described.35 

RNA processing and quantitative PCR was performed as described.52 Data 

quality control, normalization, and expression calculation were performed 
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according to standard parameters. A total of 230 urine samples passed quality 

control metrics and were included for data analysis. 

 

Statistical Analyses 

The primary endpoint of metastatic progression was defined as a positive CT 

scan or bone scan within 10 years of treatment. Fisher’s exact test and logistic 

regression models were used to analyze the relation between each of the three 

clinical outcomes and clinical factors and biomarkers. To calculate a 10-year 

event rate, men followed for less than 10 years, and who did not have an event 

during follow-up, were excluded. In MCI, the original definition of cases and 

controls were used for fold change and AUC calculation.53 The association 

between SChLAP1 and clinical outcomes was assessed separately for each 

study and overall in a single logistic regression model stratified by study. 

Multivariate analyses were performed to assess whether SChLAP1 was able to 

increase the predictive ability of standard clinical factors. All clinical covariates 

were included in the multivariate models. Details on statistical analyses are found 

in the Supplementary Methods. A p-value <0·05 was considered statistically 

significant. Kaplan-Meier curves and weighted Cox regression comparing time to 

metastases between groups defined by SChLAP1 expression are shown only for 

the MCII case-cohort study and utilize the weighting method as described 

previously.54 The case-control study design of MCI and CC cohorts allows for 

assessment of relative, but not absolute, incidence of events. Time to event data 

for EMC was not available. Nonparametric AUC values (equivalent to C 
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statistics) were calculated separately for each study. Overall values were 

calculated as the weighted average of the study-specific values with weights 

proportional to sample size. Testing for improved AUC value between the full 

model without SChLAP1 and the full model with SChLAP1 was done using the 

likelihood ratio test for SChLAP1 in the full model with SChLAP1.24 AUC values 

were analyzed for statistical differences as described previously.55 For ISH 

analysis, all statistical analyses were performed using R (version 3.0.2). Mean 

SChLAP1 expression for benign prostatic glands, clinically localized prostate 

cancer, and mCRPC were compared using the Student’s t-test and ANOVA. To 

test for association between SChLAP1 expression and specific clinicopathologic 

features in clinically localized prostate cancer, Fisher’s exact test and the 

Student’s t-test were used for categorical and continuous data, respectively. 
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Tables 

  Mayo Clinic I 
(n=545) 

Mayo Clinic II 
(n=232) 

Cleveland 
Clinic (n 

=183) 

Erasmus 
Medical 

Center (n = 
48) 

Age (Years, mean ± SD) 65·3 ± 6·4 63·1 ± 7·4 61·6 ± 6·3 NA 
Follow-up (Months, mean ± SD) 160·7 ± 56·2 80·6 ± 30·1 116·6 ± 50·1 NA 
      
Metastatic progression     
 No 333 (61%) 157 (68%) 134 (73%) 39 (81%) 
 Yes 212 (39%) 75 (32%) 49 (27%) 9 (19%) 
      
Pre-operative PSA     
 <10 282 (52%) 126 (54%) 127 (69%) 21 (44%) 
 10 to 20 117 (22%) 62 (27%) 41 (23%) 17 (35%) 
 >20 131 (24%) 44 (19%) 12 (7%) 8 (17%) 
 Not available 15 (3%) 0 (0%) 3 (1%) 2 (4%) 
      
Gleason score     
 5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 6 60 (11%) 17 (7%) 25 (17%) 23 (48%) 
 7 271 (49%) 117 (50%) 113 (62%) 16 (33%) 
 8 68 (13%) 39 (17%) 23 (13%) 8 (17%) 
 9 134 (24%) 57 (25%) 22 (12%) 1 (2%) 
 10 9 (2%) 1 (1%) 0 (0%) 0 (0%) 
 Not available 3 (1%) 1 (1%) 0 (0%) 0 (0%) 
      
Clinical stage     
 I 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 II 219 (40%) 97 (42%) 0 (0%) 16 (33%) 
 III 253 (46%) 102 (44%) 0 (0%) 26 (54%) 
 IV 0 (0%) 0 (0%) 0 (0%) 6 (13%) 
 Not available 73 (13%) 33 (14%) 183 (100%) 0 (0%) 
      
Extracapsular extension     
 Negative 272 (50%) 136 (59%) 51 (28%) 0 (0%) 
 Positive 273 (50%) 96 (41%) 132 (72%) 0 (0%) 
 Not available 0 (0%) 0 (0%) 0 (0%) 48 (100%) 
      
Seminal vesicle invasion     
 Negative 369 (68%) 149 (64%) 152 (83%) 0 (0%) 
 Positive 176 (32%) 83 (36%) 31 (17%) 0 (0%) 
 Not available 0 (0%) 0 (0%) 0 (0%) 48 (100%) 
      
Lymph node invasion     
 Negative 472 (87%) 199 (86%) 183 (100%) 0 (0%) 
 Positive 73 (13%) 33 (14%) 0 (0%) 0 (0%) 
 Not available 0 (0%) 0 (0%) 0 (0%) 48 (100%) 
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Surgical margin status     
 Negative 279 (51%) 99 (43%) 92 (50%) 0 (0%) 
 Positive 266 (49%) 133 (57%) 91 (50%) 0 (0%) 
 Not available 0 (0%) 0 (0%) 0 (0%) 48 (100%) 

 
Table 5.1 Clinical cohort characteristics 
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Figures 

 

 
Figure 5.1 Nomination of SChLAP1 as a top-ranked prognostic gene. 
(a) A schematic overview of the patient specimens in the discovery cohort. (b) A 
global view of gene expression changes associated with metastatic progression.  
In the Mayo Clinic I cohort (n = 545), gene expression was determined with 
Affymetrix Exon microarrays and differential expression analysis was performed 
for patients who experienced metastatic progression compared to those who did 
not.  Ranking all genes according to the fold change of expression between 
metastatic and non-metastatic samples nominates SChLAP1 as the top-ranked 
outlier gene associated with metastatic progression. Log10 false discovery rate 
(FDR) values for each corresponding gene are displayed below. (c-f) Patient 
outcomes in the Mayo Clinic I cohort (n = 545) were stratified by SChLAP1 
expression for biochemical recurrence (c), progression to metastatic disease (d), 
prostate cancer-specific mortality (e), and overall survival (f). P values in c-f  
were determined by a two-tailed Fisher’s exact test.  
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Figure 5.2 Validation of SChLAP1 as a top-ranked prognostic gene.  
(a) A schematic overview of the patient specimens in the validation cohorts. (b-e) 
Patient outcomes in the Mayo Clinic II cohort (n = 232) were stratified by 
SChLAP1 expression for biochemical recurrence (b), progression to metastatic 
disease (c), prostate cancer-specific mortality (d), and overall survival (e). (f,g) 
Patient outcomes for metastasis were stratified by SChLAP1 expression in the 
Cleveland Clinic (f) and Erasmus Medical Center (g) datasets. P values in f-g 
were determined by a two-tailed Fisher’s exact test.  
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Figure 5.3 A global analysis of SChLAP1 in the Mayo Clinic I and II cohorts. 
The Mayo Clinic I and II cohorts were independently analyzed to determine the 
receiver-operator-curve (ROC) area under the curve (AUC) metric for all genes 
for the development of metastatic disease. This global analysis generated 
independent AUC values for each cohort. AUC values for the top 1000 genes in 
both cohorts were plotted (left). A small subset of genes demonstrated superior 
AUC values in both cohorts (see outlined box). A detailed analysis of these top-
20 genes is plotted (right) using the averaged AUC value between both cohorts. 
SChLAP1 ranks #2 overall for prediction of metastatic spread.  
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Figure 5.4 Spectrum of SChLAP1 expression in benign prostatic glands, 
clinically localized prostate cancer, and lethal mCRPC by ISH. 
SChLAP1 expression by chromogenic brown staining in (a) benign prostatic 
glands, (b) low and (c) high Gleason score clinically localized prostate cancer, 
and (d) lethal mCRPC. SChLAP1 expression varies from negative to low in 
benign prostatic glands and low grade clinically localized prostate cancers to high 
expression in a subset of high grade clinically localized prostate cancers and 
lethal mCRPC. 100x magnification. Inset in a, b, c, and d = 400x magnification.  
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Figure 5.5 SChLAP1 expression increases with prostate cancer 
progression. 
(a) Histogram representation of mean SChLAP1 ISH product score for benign 
prostatic glands (Benign), clinically localized prostate cancer (PCA), and lethal 
mCRPC (METS) in a large TMA cohort. Error bars represent standard deviation. 
SChLAP1 expression is significantly associated with prostate cancer 
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progression, from benign glands to clinically localized prostate cancer to mCRPC 
(P < 0.001). (b) Histogram representation of proportion of clinically localized 
prostate cancer with negative (ISH product score = 0), low (ISH product score >0 
and <100), or high (ISH product score ≥ 100) SChLAP1 expression, stratified by 
Gleason score (GS). High SChLAP1 expression is associated with increasing GS 
in clinically localized prostate cancer. 
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Figure 5.6 Detection of SChLAP1 in patient urine samples. 
(a) Detection of SChLAP1 RNA in patient urine sediments. Samples are ordered 
according to SChLAP1 expression. Expression is represented as the z-score. (b) 
The fraction of Gleason 6 (n = 44) and Gleason 7 (n = 49) urine sediments that 
demonstrate positive SChLAP1 expression. P value was determined by a two-
tailed Fisher’s exact test. (c) SChLAP1 expression in urine sediments from low 
risk (n = 37) and intermediate/high risk patients (n = 68). P value was determined 
by a Mann Whitney U test.  
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Figure 5.7 The effect of SChLAP1 ASOs in vitro 
(a) Knockdown efficiencies for ASO knockdown of SChLAP1 in 22Rv1 cells. 
Error bars indicate S.E.M. (b) ASO knockdown of SChLAP1 in vitro in 22Rv1 
prostate cell lines impairs cellular invasion through Matrigel in a Boyden chamber 
assay. (c) ASO knockdown of SChLAP1 in 22Rv1 cells followed by 
immunoblotting for H3K27me3 and total H3.  
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Chapter 6:  

Future directions for investigation 

 

Summary of work 

In this thesis, we have discovered SChLAP1, a highly prognostic lncRNA that is 

abundantly expressed in 15-30% of prostate cancers and aided the 

discrimination of aggressive from indolent forms of this disease. Mechanistically, 

we find that SChLAP1 coordinates cancer cell invasion in vitro and metastatic 

spread in vivo. Moreover, we characterize an antagonistic SChLAP1-SWI/SNF 

axis in which SChLAP1 impairs SNF5-mediated gene expression regulation and 

genomic binding (Fig. 6.1, upper left). 

 

Furthermore, we have shown that SWI/SNF mutations are associated with low 

SChLAP1 expression in prostate cancer, suggesting that high SChLAP1 

expression may represent a mutation-independent, but clinically equivalent, 

modality of SWI/SNF inhibition. We establish an antagonistic relationship 

between SWI/SNF and PRC2 in prostate cells and find that SChLAP1 enhances 

PRC2 function in part by inhibiting SWI/SNF activity. Additionally, SChLAP1 

expression is one factor that affects EPZ-6438 sensitivity and may be useful in 
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identifying prostate cancer patients that are more likely to respond to 

pharmacologic EZH2 inhibition (Fig. 6.1, bottom right). 

 

Further characterization of the SChLAP1 – SWI/SNF interaction revealed a 

250bp region near the 3’-end of SChLAP1 that mediates its invasive phenotype 

and coordinates its interaction with the SWI/SNF complex. Additionally, we found 

that SChLAP1 interacts with BRG1-, but not BRM-, containing SWI/SNF 

complexes and preferentially decreases BRG1 genomic binding. Moreover, 

SChLAP1’s preference for BRG1 may expose BRM as a therapeutic target in 

prostate cancer (Fig. 6.1, bottom left). 

 

Finally, we perform the largest biomarker discovery project to date in prostate 

cancer, finding that SChLAP1 is one of the best genes for predicting metastatic 

progression. We characterize SChLAP1 expression by ISH to confirm that 

SChLAP1 is predominantly a nuclear RNA transcript and find that SChLAP1 

expression is enriched in metastatic samples as well as in tumors with high 

Gleason scores (GS≥8) compared to tumors with lower Gleason scores. As a 

non-invasive biomarker, we show proof-of-principle data that SChLAP1 can be 

detected in patient urine samples. Lastly, we explore the effects of SChLAP1 

ASOs and find effective down-regulation of SChLAP1 expression, reduced PRC2 

activity, and decreased cell invasion, suggesting that direct SChLAP1 targeting 

may be an effective therapeutic strategy in prostate cancer (Fig. 6.1, upper 

right). 
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While we believe this work defines an essential role for SChLAP1 in aggressive 

prostate cancer, uncovers novel aspects of lncRNA function, and has broad 

implications for cancer biology, this study has several limitations that warrant 

further investigation. 

 

Unexplored areas of study 

Characterization of the SChLAP1 – SWI/SNF interaction 

Our results describe a 250bp region near the 3’-end of SChLAP1 that mediates 

its invasive phenotype as well as interaction with the SWI/SNF complex. It 

remains unclear whether the 250bp segment alone is sufficient to promote cell 

invasion and also facilitate an interaction with SWI/SNF. Additionally, it would be 

useful to determine whether an even smaller region of the SChLAP1 transcript 

can recapitulate its full-length function. Several methods have been developed 

over the last few years to reveal protein-binding sites on RNA transcripts at 

nucleotide resolution, including PAR-CLIP1,2, HITS-CLIP3, including iCLIP4. 

These techniques utilize various cross-linking methods followed by one of 

several chemistries to modify each protein-bound nucleotide. Sequencing 

analysis can then be used to identify exactly which nucleotides are participating 

in an RNA-protein interaction. Uncovering the specific region(s) and nucleotide(s) 

essential to SChLAP1 function may reveal areas of the transcript most suitable 

for direct therapeutic targeting with antisense technology as well as the exact 

segment that should be utilized for downstream RNA-protein structural analysis. 

 

188 
 



We have also shown that SChLAP1 preferentially interacts with BRG1-containing 

SWI/SNF complexes, resulting in decreased BRG1 genomic binding. Our 

observations were particularly exciting in light of a recently published manuscript 

describing a cardioprotective lncRNA termed Mhrt that binds to BRG1 to also 

prevent its interaction with chromatinized DNA5. In the paper, the authors 

assessed the Mhrt-BRG1 interaction using in vitro biochemical binding assays to 

show that Mhrt directly binds to the BRG1 helicase domain. While it was 

encouraging to see a shared mechanism of lncRNA function in an independent 

disease system, the paper revealed several avenues for further interrogation of 

the SChLAP1 – SWI/SNF interaction. 

 

First, as our interaction studies were performed using cell-based assays, it is 

unclear whether SChLAP1 directly or indirectly binds to SWI/SNF. Additionally, 

while our results suggest a specificity of SChLAP1 for BRG1-containing 

complexes, we are yet to determine if other proteins are involved in this 

interaction. Based on our findings and the recent manuscript by Han et al., we 

hypothesize that SChLAP1 binds directly to the SWI/SNF complex, specifically 

engaging the BRG1 helicase domain. In vitro biochemical RNA-protein binding 

assays are currently underway to test this hypothesis as well as assess if other 

SWI/SNF proteins are involved in this relationship. These findings may identify 

novel targets for the development of small molecule inhibitors that could disrupt 

this interaction. Furthermore, a precise understanding of the RNA regions and 
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protein domains involved in the SChLAP1 – SWI/SNF interaction will be helpful 

for subsequent structural analyses. 

 

Effect of SChLAP1 on SWI/SNF enzymatic function 

Our working model suggests that SChLAP1 functions, in part, by interacting with 

and abrogating the function of the SWI/SNF complex. SChLAP1 overexpression 

leads to decreased SNF5 genome-wide binding. As a nucleosome-remodeling 

complex, SWI/SNF must engage chromatin to function. Additionally, SChLAP1-

expressing cells lose SWI/SNF-mediated PRC2 repression6 and also are more 

sensitive to EZH2 inhibitors, similar to SMARCB1-mutant cells7. While this data 

suggests that SChLAP1 does indeed inhibit SWI/SNF function, we have not 

determined if SChLAP1 affects SWI/SNF enzymatic activity. 

 

One assay to assess SWI/SNF enzymatic activity is micrococcal nuclease 

sequencing (MNase-seq)8. This method uses MNase to digest nucleosome-free 

regions of DNA, leaving behind a footprint of nucleosome-protected fragments. 

Sequencing analysis can then be used to reveal nucleosome positions 

throughout the genome. Dysregulation of SWI/SNF function leads to 

disorganization of nucleosomes9-12 and can be detected by MNase-seq10,13,14. 

We performed MNase-seq using RWPE cells with SChLAP1 overexpression and 

found that compared to control cells, SChLAP1-expressing cells showed 

differences in nucleosome signal at gene promoters (Fig. 6.2a) and also 

increased fuzziness (a measure of nucleosome phasing and overall organization) 
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throughout the genome (Fig. 6.2b). Although promising, these preliminary results 

cannot be properly interpreted without comparison to SWI/SNF knockdown as a 

positive control in our cells. These experiments and subsequent sequencing 

analysis are currently underway and we hope to soon establish with direct 

experimental evidence that SChLAP1 affects SWI/SNF enzymatic activity. 

 

SChLAP1 cellular localization 

While cell fractionation assays have shown that SChLAP1 is predominantly 

nuclear by qPCR analysis, we do not understand much else about where 

SChLAP1 resides within a cell. One technique to directly visualize SChLAP1 in 

cells is single-molecule RNA FISH (fluorescence in situ hybridization). This 

method allows simultaneous detection, localization, and quantification of 

individual RNA molecules at sub-cellular levels in fixed samples using widefield 

fluorescence microscopy15. Pools of antisense complementary oligonucleotide 

probes with a fluorescent label are used to visualize target transcripts. We 

collaborated with Biosearch Technologies to perform RNA FISH for SChLAP1 in 

LNCaP prostate cancer cells and found that SChLAP1 is predominantly nuclear, 

with strong signal coming from three nuclear clouds in each cell (Fig. 6.3). While 

consistent with our previous observations, there are many questions that remain 

to be answered. Because LNCaP cells have three copies of chromosome 2 

(where the SChLAP1 genomic locus is located), it is likely that these clouds 

represent bursts of active transcription. The proper experiment with intron- and 

exon-specific probes to distinguish nascent versus mature RNA needs to be 
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performed. Additionally, RNA-FISH for SChLAP1 followed by DNA-FISH for the 

SChLAP1 genomic locus will be able to confirm whether these nuclear clouds 

represent areas of active transcription. 

 

Furthermore, due to the multiplexing capabilities and technical flexibility of RNA 

FISH, it is possible to simultaneously perform protein immunofluorescence to 

measure RNA and protein co-localization. For our purposes, it will be useful to 

perform SChLAP1 RNA FISH followed by SNF5 immunofluorescence to 

determine whether SChLAP1 and SWI/SNF do indeed co-localize in cells. 

Additionally, we will be able to assess if SChLAP1 sequesters SWI/SNF to a 

specific nuclear compartment. Also, these results will show what proportion of 

total SChLAP1 engages SWI/SNF and whether determining an alternative 

mechanism of action for unbound SChLAP1 transcripts is necessary. Finally, we 

could perform immunofluorescence with antibodies targeting various SWI/SNF 

components to discover and verify SChLAP1 binding specificity. 

 

SChLAP1 interactome analysis 

Our mechanistic model has assessed the interaction of SChLAP1 with the 

SWI/SNF complex. We have not yet determined whether SChLAP1 also interacts 

with and functions through other molecules to cause aggressive prostate cancer. 

LncRNAs function in a variety of ways, including interacting with multiple protein 

partners to act as a scaffold, directly engaging DNA to regulate transcription or 

alter chromatin conformation, and forming complexes with other RNA transcripts 
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to form a ribonucleoprotein complex16,17. Several methods have been recently 

developed to determine the interactome of lncRNAs in an unbiased manner18. 

 

Chromatin isolation by RNA purification (ChIRP)19 is a method that uses 

biotinylated antisense oligonucleotide probes targeting an RNA transcript to 

endogenously pulldown the RNA as well as any associated molecules. Following 

pulldown, RNA is isolated and analyzed by qPCR to ensure efficient target RNA 

retrieval and probe specificity. Interacting DNA can be analyzed by sequencing 

(ChIRP-seq) to determine the RNA’s genomic binding sites. Proteins can also be 

isolated and analyzed by western blot to identify RNA-protein interactions. 

 

We performed this technique for SChLAP1 in RWPE cells with SChLAP1 

overexpression to confirm the interaction between SChLAP1 and SWI/SNF (Fig. 

2.14e,f). Additionally, following SChLAP1 pulldown we isolated a DNA fraction 

and performed sequencing analysis to find several SChLAP1 genomic binding 

sites (Fig. 6.4a,b). MEME analysis of these binding sites uncovered two 

predominant SChLAP1 DNA binding motifs (Fig. 6.4c)20. However, several 

issues remain unresolved. First, it is unclear whether the ChIRP probes 

themselves are interacting with DNA. Performing this experiment in a cell line 

with no SChLAP1 expression will serve as a control for non-specific probe 

interactors. Second, determining the SChLAP1 interactome in a cell line with 

endogenous SChLAP1 expression rather than in an overexpression cell line 

model may provide more biologically relevant results. These experiments are 
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currently underway and sequencing analysis will provide new insights into 

SChLAP1 biology. 

 

Additionally, identification of novel protein partners may reveal alternative 

pathways of SChLAP1 function. While ChIRP is suitable for protein analysis by 

western blot, cross-linking methods used in the protocol make it unsuitable for 

unbiased mass spectrometry analysis. Other methods have been developed to 

overcome this limitation. RNA antisense purification (RAP) uses longer (~100-

150bp) antisense oligonucleotide probes to retrieve endogenous RNA complexes 

from cell extracts to map RNA interactions with chromatin and also allows mass 

spectrometry analysis of the isolated protein fraction. We are exploring this 

technique as well as others to identify novel SChLAP1 protein partners in an 

unbiased manner. 

 

Finally, hybrid endogenous and in vitro methods can be used to identify RNA-

bound proteins. In one technique called Ribotrap (MBL International), the RNA of 

interest is in vitro synthesized and labeled with 5-bromo-UTP (BrUTP) followed 

by incubation with a cell lysate. After incubation, anti-BrdU monoclonal antibody 

is used to retrieve the RNA-protein complexes. RNA-bound proteins can then be 

identified by immunoblotting or mass spectrometry. We have performed Ribotrap 

for SChLAP1 with LNCaP cell lysate and analyzed the protein fraction by silver 

stain and western blot (Fig. 6.5). LacZ RNA served as a negative control. This 
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experiment is currently being repeated and biological replicates will be submitted 

for mass spectrometry analysis. 

 

SChLAP1 regulation 

While SChLAP1 is highly expressed in a subset of aggressive, lethal prostate 

cancers, it remains unclear what drives SChLAP1 expression in cells and 

tissues. Although androgen signaling plays a major role in mediating prostate 

cancer development and progression, SChLAP1 is not regulated by androgen 

(Fig. 6.6a). It is unlikely that a single transcription factor could be driving 

SChLAP1 expression, as the entire SChLAP1 locus is transcriptionally active 

(see below). A more global mechanism, such as hypomethylation, acetylation, or 

chromatin architecture, is more likely to influence transcription at the SChLAP1 

locus and account for increased gene expression. Preliminary results from 5-

azacytidine (DNA methylation inhibitor) and Trichostatin A (HDAC inhibitor) 

treatment suggest that broad regulatory mechanisms may regulate SChLAP1 

expression (Fig. 6.6b). More complex experiments such as 3C-based methods21 

may help uncover whether chromatin architecture also plays a role in SChLAP1 

regulation. A thorough analysis of the SChLAP1 promoter and nearby enhancers 

may also provide a better understanding of the factor(s) responsible for 

SChLAP1 expression and also identify novel therapeutic targets for prostate 

cancer treatment. 
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Furthermore, SChLAP1 expression is specific to human prostate cancer, with 

little to no expression in other types of malignant or benign tissues or across 

other species. This suggests that prostate-specific factors are responsible for 

SChLAP1 regulation and also warrants the investigation of lncRNAs in other 

tissues and diseases that may mediate SWI/SNF function. Although lncRNAs are 

less conserved than protein-coding genes, the lack of conservation of SChLAP1 

across species suggests that other lncRNAs may serve a similar purpose in 

regulating SWI/SNF and mediating cancer progression, as well. 

 

SChLAP1 transcript specific functions 

An emerging area of RNA biology is the effect of transcript specific function16,22. 

While our studies have interrogated SChLAP1 function and mechanism at the 

gene level, we have not evaluated isoform-specific differences. We also have not 

looked for other SChLAP1 variants such as transcripts with SNPs (single 

nucleotide polymorphisms) or fused, chimeric, or truncated versions of the RNA. 

These analyses may reveal novel aspects of SChLAP1 crucial to prostate cancer 

biology. 

 

Additionally, transcription around the SChLAP1 locus warrants further 

investigation. We have observed high transcriptional activity in this area and a 

comprehensive de novo assembly of cancer-associated lncRNAs22 identified 

several unannotated transcripts in this region (Fig. 6.7a). Furthermore, there is 

evidence of an antisense transcript originating from the SChLAP1 transcription 
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start site, suggesting that it is a bidirectional promoter (Fig. 6.7b)23,24. These 

transcripts may also play a crucial role in aggressive prostate cancer and open 

up new translational opportunities. 

 

Development of SChLAP1 as a biomarker and therapeutic target 

While our results have defined SChLAP1 as one of the most powerful prognostic 

predictors for aggressive and metastatic prostate cancer, our work has 

limitations. First, we perform extensive retrospective studies, but not prospective 

studies. We also have not evaluated SChLAP1 in the context of androgen-

deprivation therapy or radiotherapy. For the SChLAP1 ISH studies, we analyzed 

a relatively small number of patients in a single cohort from a one institution. 

Larger, multi-cohort evaluations will be needed to confirm our findings. Also, 

further study regarding the relationship between SChLAP1, serum PSA, and 

Gleason score will be needed to establish more specific implementation of 

SChLAP1 ISH as an assay in the clinical decision-making algorithm for routine 

patient care. In addition, our urine PCR assay for SChLAP1 is a preliminary 

analysis which does not qualify as a clinical-grade test according to established 

criteria25. Finally, our SChLAP1 ASO studies were performed in cell line models 

with cationic lipid-mediated delivery. We need to assess the ability of these ASOs 

to perform similarly by free-uptake cellular delivery and also show efficacy using 

in vivo experimental models. 
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Concluding remarks 

We live in a very exciting era of science and medicine. New tools have enabled 

the discovery of novel molecular entities and allowed high-resolution views of 

cellular activity. Improvements in next-generation sequencing technology and 

analysis have allowed the implementation of personalized medicine in the clinic. 

Although prostate cancer remains a devastating disease, advances in prognostic 

markers and therapeutic agents have greatly improved patient outlook over the 

last few years. Less than a decade ago, lncRNAs were mostly ignored, often 

attributed to leaky transcription or sequencing artifacts. Now, entire labs are 

devoted to the study of lncRNAs, and new techniques are being developed 

specifically to interrogate lncRNA biology. While SChLAP1 has proven to be an 

essential player in aggressive prostate cancer, enhanced bioinformatics analyses 

have identified thousands of cancer-associated lncRNAs that are likely to play 

equally important roles across all cancers. Given the tissue- and disease-specific 

nature of these transcripts, their abundance throughout the genome, and the 

relatively recent discovery of the majority of these transcripts, it is likely that 

lncRNAs hold the answer to scientific and medical mysteries that have eluded us 

for decades. I look forward to what the future holds. 
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Figures 

 

Figure 6.1 Summary of thesis 
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Figure 6.2 MNase-seq shows changes in nucleosome organization in cells 
with SChLAP1 overexpression 
MNase-seq was performed using RWPE-LacZ, RWPE-SChLAP1 isoform 1, and 
RWPE-SChLAP1 isoform 2 cells. Average signal at gene promoters (a) and 
global levels of genome-wide fuzziness (b) are shown. 
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Figure 6.3 SChLAP1 RNA FISH 
Single-molecule RNA FISH (Biosearch) was performed for SChLAP1 in LNCaP 
cells using a pool of singly labeled oligonucleotide probes designed to hybridize 
along the SChLAP1 transcript. Blue staining (DAPI) represents cell nucleus. 
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Figure 6.4 ChIRP-seq reveals SChLAP1 genomic binding sites and a 
putative DNA-binding motif 
(a) Pulldown of SChLAP1 RNA. RWPE-SChLAP1 isoform #1 cells were treated 
with biotinylated SChLAP1, TERC or LacZ RNA probes according to the ChIRP 
protocol. Quantification of RNA pulldown efficiency by qPCR is shown. Error bars 
indicate S.E.M. (b) Example SChLAP1 genomic binding sites. (c) MEME motif 
analysis identified two SChLAP1 DNA-binding motifs. 
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Figure 6.5 Ribotrap for SChLAP1 
Ribotrap was performed using BrU-labeled SChLAP1 incubated with LNCaP 
prostate cancer cell line nuclear lysate followed by silver staining (a) and western 
blot for SNF5 (b). 
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Figure 6.6 SChLAP1 regulation 
(a) Expression of SChLAP1 in LNCaP prostate cancer cells after DHT 
(dihydrotestosterone) treatment for 6, 12, and 24 hours. KLK3 and TMPRSS2 are 
androgen-regulated genes that serve as positive controls. (b) Expression of 
SChLAP1 in PrEC prostate epithelial cells after treatment with Trichostatin A 
(TSA), 5-azacytidine (5-aza), or both. 
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Figure 6.7 Visualization of the SChLAP1 genomic locus 
(a) The UCSC genome browser was used to visualize transcripts from the 
MiTranscriptome assembly near the SChLAP1 genomic locus. Top track shows 
annotated genes from RefSeq. Bottom track shows the myriad of unannotated 
lncRNA transcripts around SChLAP1. (b) Strand-specific GRO-seq was 
performed in LNCaP cells and shows active sense and anti-sense transcription 
from the SChLAP1 promoter. 
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