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Nomenclature of

Electrochemical Variables

This nomenclature contains only the electrochemical variables. The variables for the

control and estimation purposes either follow the conventions in the control literature

or are explained within the context.

0r the coordinate at the center of particles along r direction, m

0j/Lj the coordinate at the starting/ending point of an electrode along the x

direction, m

A total area of sections, m2

as,j specific surface area of porous electrodes, m−3

ch,j Li-ion concentration, mol m−3

cs,max,j maximum concentration in the solid phase, mol m−3

cse,j The Li-ion concentration in the solid phase at the surface of particles,

mol m−3

Dh,j diffusion coefficient, m2 s−1

F Faraday constant, 96487 C mol−1

fj activity coefficient

I current, A

i0,j/sd intercalation/side reaction exchange-current density, A m−2

ih/total phasic/total superficial current density, A m−2

J1/sd/total,j intercalation/side reaction/total current density, A m−3

kj reaction rate, A m4 mol−2

MSEI molecular weight, mol kg−1
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R universal gas constant, 8.314 J mol−1

r coordinate along the radius of particles, m

Rfilm solid-electrolyte-interphase film resistance, Ω m2

Rj radius of electrode particles, m

RSEI initial film thickness, Ω m2

T temperature, K

t time, s

t+ transference number

Uref,j/sd equilibrium potential for intercalation/side reaction, V

V voltage, V

x coordinate along the thickness of the anode-separator-cathode sandwich,

m

Greek Symbols

αa/c,j anodic/cathodic transfer coefficients of electrochemical reaction

θ̄j,0% θ̄j corresponding to a depleted battery

θ̄j,100% θ̄j corresponding to a fully charged battery

θ̄j the percentage of the average solid Li-ion concentration with respect to

the theoretical maximal Li-ion concentration

δfilm film thickness, m

ηj/sd overpotential for intercalation/side reaction, V

κeff/σeff
j conductivity of electrolyte/solid phase, S m−1

φh,j potential, V

ρSEI film density, kg m−3

θj the percentage of the solid Li-ion concentration at the surface of particles

with respect to the theoretical maximal Li-ion concentration

εh,j volume fraction

Subscripts

h Phase name, where s and e stand for solid phase and electrolyte phase,

respectively.
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j Section name, where p, n and sep stand for cathode, anode and separator,

respectively.
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Abstract

This dissertation explores and compares the effectiveness of estimating two health-

relevant electrochemical variables, the side reaction current density and the number

of cyclable Li-ions, as indicators of battery state of health (SOH) in battery man-

agement systems of electric vehicles (EV) and hybrid electric vehicles (HEV). The

choice of these two electrochemical variables is based on the assumption that battery

degradation is mainly caused by consumption of cyclable Li-ions. This assumption is

valid for the two widely-used types of EV/HEV batteries considered herein, namely

LiFePO4 and LMO-based mixture batteries.

This dissertation provides formulations to estimate these two electrochemical vari-

ables from measurements of battery terminal voltage and current. Estimation is

necessary here because the electrochemical variables cannot be measured on-board.

Estimation of the side reaction current density is formulated as a subsystem identifi-

cation problem and is solved using retrospective-cost subsystem identification. A new

subsystem identification algorithm, the two-step filter, is also developed to improve

the estimation accuracy of the side reaction current density under the presence of

state of charge (SOC) estimation errors. On the contrary, the number of cyclable

Li-ions is estimated as an unknown battery parameter using the extended Kalman

filter.

This dissertation also analyzes the robustness of estimation of the two electro-

chemical variables by providing a framework to obtain the lower bound of relative

estimation errors of each of the two variables under non-ideal conditions for algo-

rithms that estimate the variable by minimizing the error between measured voltage

and estimated voltage. This framework determines that the lower bound of the rela-
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tive estimation error of a variable is proportional to the error in either measurement

or estimate of battery terminal voltage caused by non-ideal conditions, and inversely

proportional to the sensitivity of the voltage to the variable and the magnitude of the

variable itself. This framework also yields the same lower bound for the covariance

of unbiased estimates as given by the Fisher information.

The effectiveness of estimating the side reaction current density and the number of

cyclable Li-ions as SOH indicators is also discussed through comparison. Compared to

the number of cyclable Li-ions or other SOH indicators such as capacity and internal

resistance, the side reaction current density is a more ideal SOH indicator when it can

be estimated accurately, because it can instantaneously indicate battery degradation

rate. However, estimation of the side reaction current density under practical non-

ideal conditions is fundamentally difficult due to the fact that the sensitivity of the

voltage to the side reaction current density and the magnitude of the side reaction

current density are both low. On the other hand, the number of cyclable Li-ions

is a promising SOH indicator for battery management systems in practice because

it provides an indication of the remaining capacity from the first principles, can be

estimated using a standard algorithm and simple models, and demonstrates high

robustness to non-ideal conditions.

Future extensions of this work include i) studying the impact of temperature on

estimation of health-relevant electrochemical variables by including thermal dynamics

in the model, ii) validating experimentally estimation of the number of cyclable Li-

ions, and iii) extending estimation of the side reaction current density to other side-

reaction-based battery degradation and safety problems such as Lithium plating and

dendrite formation.
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Chapter 1

Introduction

1.1 Background and Literature Review

1.1.1 Battery State of Health Monitoring

The battery management system (BMS) is an essential component for development of

a variety of battery-powered systems, such as electric vehicles (EV) and hybrid electric

vehicles (HEV), underwater vehicles, aircrafts, portable electronic devices, medical

implant devices, and power grid [4, 5, 6]. Among all the functionalities of the BMS,

state of health (SOH) monitoring provides critical information for balancing the trade-

off between maximizing system performance and minimizing battery degradation [7,

8]. The SOH refers to the ability in delivering energy and power of a used battery

compared to a fresh battery [9]. A battery reaches the end of its service life when its

health degrades to a pre-defined level. A short battery life is a significant limitation

for the battery-powered systems because it greatly increases the cost and reduces

the durability and reliability of the overall system. By monitoring battery health,

controllers can better manage the use of the battery to minimize its degradation,

thereby elongating its service life.

This dissertation focuses on the SOH monitoring of EV/HEV batteries. The cost

of EV/HEV batteries can take up to 20% of the price of the vehicle itself [10] and

thus elongating the battery life is essential to reducing the cost of the EV and HEV,
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and further facilitates the market penetration of the EV and HEV. Furthermore, a

battery in good health is also a necessary component for the safety, reliability, and

comfort of the EV and HEV [4]. Hence, the SOH monitoring is a major focus for the

development of the EV and HEV.

1.1.2 Battery Chemistries

The EV/HEV batteries are always Li-ion batteries with certain cathode materials.

This dissertation focuses on two types of cathode materials that are popular in the

EV/HEV industry.

The first type of the cathode materials is LiFePO4. LiFePO4 is one of the primary

materials for EV/HEV batteries for its flat voltage profile, low material cost, abundant

material supply and better environmental compatibility compared with other cathode

materials [11, 12, 13, 14, 15]. Some example EVs that uses LiFePO4 batteries on the

market include BYD F3DM, F6DM, and E6 [16], and EV-Fleet electric pickup trucks.

LiFePO4 is also a very popular battery chemistry for electric motorcycles and scooters.

The second type of the cathode material is LiMn2O4 (LMO) mixed with other Li-

compounds. This group of materials is referred to as LMO-mixture materials herein.

LMO battery material is favored by the HEV/EV industry because of its high specific

energy and power, low cost, and high thermal stability [12, 17]. However, a battery

with LMO alone as the cathode material is not suitable for HEV/EV applications

because of its short life span [17], which is mainly a result of dissolution of Mn

[18, 19]. Adding other Li-ion compounds, such as LiCoO2 (LCO), LiNiO2 (LNO), and

LiNiMnCoO2 (NMC), to LMO-cathode can increase the battery life by reducing Mn

dissolution [20]. Some examples of LMO-mixture materials in the HEV/EV industry

include the Nissan Leaf and the Renault Kangoo that use LMO mixed with LNO as

the cathode material, as well as the Chevrolet Volt that uses LMO mixed with NMC

as the cathode material.

These two types of cathode materials cover most of the EV/HEV batteries avail-

able in the market. Other materials that are not as widely used, such as LiNiCoAlO2

(NCA) that is reported to be used by Tesla Motor Company, are not considered in
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this dissertation.

1.1.3 Battery Degradation Effects and Mechanisms

The degradation of battery health is always reflected in effects such as i) capacity

fade [21] and ii) internal impedance rise, which leads to power fade [22].

These effects are caused by a variety of degradation mechanisms, in the anode,

separator, and cathode, as well as collectors. These degradation mechanisms can be

classified as electrochemical, such as solid-electrolyte interface (SEI) film formation

[23], binder decomposition, lithium plating [24, 25], dendrite formation [26], and

electrolyte decomposition, and structural, such as crack formation, porosity change,

contact loss, and current collector corrosion [27]. For both LiFePO4 and LMO-mixture

batteries, the electrochemical degradation mechanisms that consume cyclable Li-ions

in the anode are the primary degradation mechanisms under normal use conditions

[28, 29, 30].

These Li-ion consuming degradation mechanisms are caused by side reactions in

the battery [28, 31]. The side reactions are irreversible and they consume the cyclable

Li-ions in the battery and lead to the decrease in the total number of the cyclable

Li-ions. The rate of the consumption of the cyclable Li-ions by side reactions is

quantified by the side reaction current density. Integrating the side reaction current

density across the width of the battery anode-separator-cathode and over time yield

the decrease of the total number of cyclable Li-ions. The decreasing cyclable Li-

ions leads to the effect of capacity fade. In some degradation mechanisms, the side

reactions also form by-products. For example, for the degradation mechanism that

forms SEI film, the SEI film is the by-product that the side reaction forms. The

increase in the by-products such as the SEI film leads to the rising internal impedance

and thus lead to the power fade.
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1.1.4 SOH Indicators

In the context of battery management, the SOH, which is an abstract concept, needs

to be deduced from other quantities that are correlated with battery health. This

dissertation refers to these quantities as SOH indicators. Monitoring of the SOH in

battery management systems is equivalent to monitoring the changes in the values of

certain SOH indicators.

Based on the choice of the SOH indicator, the SOH monitoring literature can be

divided into two categories. Most of the literature uses battery degradation effects,

such as capacity fade [32, 33, 34, 21, 35, 36, 37, 38] and power fade [39, 40], as

the SOH indicator. Empirical models, such as equivalent circuit models, are often

sufficient for these applications as the mapping between the SOH indicator and the

battery voltage, current, and temperature. The simplicity of these models is the key

advantage to these techniques.

The second category uses health-relevant electrochemical variables as the SOH

indicator. Some example electrochemical variables used as SOH indicators are the

number of cyclable Li-ions [41], the SEI film resistance [42, 43, 44, 45, 46, 8], and

Lithium deposition [47]. First-principle models, or electrochemical models, are re-

quired to estimate these electrochemical variables.

Compared to the first category of SOH indicators, the second category of SOH in-

dicators have several benefits. First, compared to the effects, which are not concerned

with the mechanisms causing the effects, the electrochemical variables can give more

insight on degradation from the first principles. Secondly, the values of electrochem-

ical variables can be less sensitive to changes in environmental conditions and use

patterns. If an electrochemical variable is measured [48], its measurement is expected

to be unique under different environmental conditions and use patterns. In contrast,

the measurements of effects such as the capacity are affected by the temperature

and C-rate under which the measurements are taken [49]. When the electrochemical

variables are estimated, due to the use of first-principle models, their estimates have

taken the influence of environmental conditions and use patterns under consideration.
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For estimation of the degradation effects, where the empirical models are used, the

parameters of the empirical models are subject to change under different environmen-

tal conditions and use patterns under consideration and can yield different estimates

of the capacity and internal resistance under different environmental conditions and

use patterns.

However, compared to the wide use of the effects-based SOH indicators in bat-

tery management systems, using the electrochemical variables as SOH indicators for

battery management purpose is a relatively new and less explored area. There has

not been a comprehensive study that explores a variety of electrochemical-based SOH

indicators and investigates their effectiveness in indicating the SOH for battery man-

agement purpose.

1.2 Research Objective

The research objective of this dissertation is to fill the gap in literature by explor-

ing and comparing the effectiveness of a group of electrochemical variables as SOH

indicators for the purpose of EV/HEV battery management.

The effectiveness explored herein is threefold. First, the effectiveness of using an

electrochemical variable as the SOH indicator concerns how useful the information

carried by the variable is regarding the SOH, including i) how generally the vari-

able can be applied to indicate the changes of the SOH due to different degradation

mechanisms and ii) how the information can be applied to facilitate different func-

tionalities of battery management. Second, the effectiveness concerns the availability

of the variable, through either measurements or estimation. To evaluate this aspect

of the effectiveness, the following questions need to be answered. i) Can the variable

be measured? ii) Is the procedure easy to operate? Is there any special equipment re-

quired? iii) How long does it take to take the measurements? Can the measurements

obtained in-situ and in real time? iv) Is it costly to make the measurements? v) If a

measurement that is at the same time accurate, easy, and inexpensive is not available,

estimation can be considered as an alternative. Is the variable observable? vi) Is it
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possible to design an algorithm with reasonable complexity to estimate the variable?

vii) Is the algorithm computationally efficient? viii) How accurate the estimates can

be under ideal conditions? Finally, the effectiveness concerns how accurately the vari-

able can be obtained in practice. If the variable is obtained via measurements, the

resolution and accuracy of the measurements are concerned. If the variable is obtained

via estimation, the robustness of the estimation under practical non-ideal conditions

is concerned. The non-ideal conditions include measurement noise, estimation errors

of other signals, and modeling errors.

1.3 Methodology

1.3.1 Selection of SOH Indicators

For the Li-ion consuming electrochemical mechanisms that are identified to be the

primary degradation mechanisms for the two popular EV/HEV battery types under

normal use, two electrochemical variables are identified as candidates for the general

SOH indicator for EV/HEV batteries. The first one is the side reaction current

density, which measures the rate of the consumption of the cyclable Li-ions. The side

reaction current density indicates the SOH by providing instantaneous information

regarding how fast the battery is degrading. This information is useful for the control

modules in the battery management system so that health-conscious control decisions

can be made as soon as a high degradation rate is detected to avoid further degrading

the battery inadvertently. Moreover, the side reaction current density is a general

SOH indicator because it widely exists in all electrochemical degradation mechanisms

that consume cyclable Li-ions [31]. The second general SOH indicator candidate is

the number of cyclable Li-ions. All the electrochemical degradation mechanisms that

consume cyclable Li-ions cause decrease of the number of cyclable Li-ions, so the

number of cyclable Li-ions can serve as a general SOH indicator for the EV/HEV

batteries.

For degradation mechanisms that produce by-products, the quantity of the by-
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products can also be a valid SOH indicator. For example, for the SEI film formation,

the SEI film thickness or the SEI film resistance can be a useful SOH indicator [42, 43,

44, 45, 46, 8]. However, these by-products are mechanism-specific and not generally

applicable to all the degradation mechanisms of interest. Moreover, for the SEI film

thickness/resistance, there have been arguments questioning its monotonic growth

during the overall life of the batteries [30, 29, 50]. Therefore, these electrochemical

by-products such as the SEI film are not the primary focus of this dissertation as

SOH indicators.

1.3.2 Estimation

The unavailability of the electrochemical variables through common non-invasive mea-

surements makes their estimation necessary for in-situ SOH monitoring. Therefore,

in this dissertation, different estimation algorithms are applied to estimate the side

reaction current density and the number of cyclable Li-ions individually based on the

different role they play in the battery system. The estimation of the side reaction

current density is formulated as an inaccessible subsystem identification problem,

where the battery health subsystem is treated as an inaccessible subsystem with the

side reaction current density as the output. Inaccessibility in this context refers to

the fact that the inputs and outputs of the subsystem are not measurable in-situ.

This subsystem is identified using retrospective-cost subsystem identification (RCSI)

algorithm, and the output of the identified battery health subsystem provides an es-

timate for the side reaction current density. This formulation is due to the need to

track the instantaneous value of the side reaction current density. Identification of

the subsystem that produces the side reaction current density provides a way to track

the dynamics of the side reaction current density instantaneously. On the other hand,

the number of cyclable Li-ions is considered as an unknown parameter of the battery

system. This is because the number of cyclable Li-ions has much slower dynamics

than the battery charging and discharging dynamics, and thus can be considered a

constant during the time scope of estimation. Therefore, the number of cyclable Li-

ions is estimated using estimation methods such as the extended Kalman filter (EKF)
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that estimate parameters in nonlinear systems.

1.4 Research Questions

The rest of this dissertation focuses on exploring and comparing the effectiveness of

estimating the side reaction current density and the number of cyclable Li-ions as the

SOH indicator. In particular, the following research questions are posed.

• Can the estimation of the side reaction current density be formulated as an in-

accessible subsystem identification problem and solved with RCSI? How robust

can the estimation be?

• Can the estimation of the number of cyclable lithium-ions be formulated as a

parameter estimation problem and solved with nonlinear estimation methods

such as the EKF? How robust can the estimation be?

• Given the methods used to estimate the side reaction current density and the

number of cyclable Li-ions, which variable can be more effectively estimated as

an SOH indicator?

• Compared to the effects-based SOH indicators, do the estimates of the side

reaction current density and the number of cyclable Li-ions provide new insight

in degradation? Are the side reaction current density and the number of cyclable

Li-ions promising alternatives to the degradation effects as SOH indicators in

battery management systems?

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 summarizes three

electrochemical battery models in the literature to prepare for the development of

the estimation algorithms in Chapter 3 – 5. Chapter 3 presents estimation of the

side reaction current density using RCSI and its robustness to non-ideal conditions
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such as measurement noise, state of charge (SOC) estimation errors, and modeling

errors. Chapter 4 develops a new subsystem identification algorithm, the two-step

filter (TSF), to improve the accuracy of estimating the side reaction current density

when SOC estimation errors are present. Chapter 5 presents estimation of the number

of cyclable Li-ions using the EKF and its robustness to non-ideal conditions. Chapter

6 gives a comparison between the effectiveness of the side reaction current density

and the number of cyclable Li-ions as SOH indicators, as well as a comparison of

these electrochemical-based SOH indicators against the effects-based SOH indicators.

Chapter 7 provides the summary and conclusions of the dissertation. The future work

that can potentially extend the work in this dissertation is also briefly summarized

in Chapter 7.
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Chapter 2

Battery Models

2.1 Introduction

A battery model is necessary in this study for two reasons. First, the estimation

algorithms require a map relating the electrochemical variables that are unavailable

from measurements to the signals that are measurable in practice. In this work, this

map is a battery model that relates the side reaction current density/the number of

cyclable Li-ions to the battery terminal voltage and current. Second, a battery model

is required to represent a battery in simulations.

This chapter presents the battery models used in this work. The electrochemical

models are adopted to support the use of an electrochemical SOH indicator. These

battery models contain two categories: the SOC models and the SOH models. The

SOC models represent the charge and discharge dynamics of the battery that governs

the battery SOC evolution, and determine the battery voltage as its output. Notice

that the SOC models contain not only the SOC dynamics, but also the dynamics

regarding the Li-ion concentration in the electrolyte phase and potential. However,

for simplicity, this model is referred to as the SOC model herein to differentiate it

from the SOH model. The SOH models represent a health subsystem of the battery

that governs the instantaneous decreasing of the number of cyclable Li-ions. For each

of the models, the electrochemical form, which includes the electrochemical equations,

is presented first, and then the electrochemical form is simplified to obtain a form
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that is suitable for estimation purpose. This form is referred to as the estimation

form.

2.2 Battery SOC Models

2.2.1 Doyle-Fuller-Newman (DFN) Model

The Doyle-Fuller-Newman (DFN) model [51, 52] as depicted in Figure 2.1 is a well-

accepted electrochemical model for Li-ion batteries. In the DFN model, the structure

of the solid phase in each electrode is modeled with a series of spherical particles,

leading to spatial discretization along the thickness of the anode-separator-cathode

sandwich, which is defined as the x dimension. The r dimension represents the

direction along the radius of each spherical particle. The SOC is measured by the

Li-ion concentration in the solid particles.

2.2.1.1 The Electrochemical Form

This section briefly summarizes the electrochemical equations of the DFN model.

More detailed descriptions can be found in [51, 52, 53].

Diffusion of Li-ions inside each electrode particle is governed by Fick’s law along

the r dimension, while diffusion within the electrolyte is along the x dimension; i.e.,

∂cs,j

∂t
= ∇r(Ds,j∇rcs,j), (2.1)

∂ce

∂t
=

∂

∂x

[
De,j

∂ce

∂x
+

1− t+
εe,jF

ie

]
, (2.2)
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Figure 2.1: The schematic of the DFN model of Li-ion batteries.

with the boundary conditions

∂cs,j

∂r
(0r, t) = 0, (2.3)

∂cs,j

∂r
(Rj, t) = − J1,j(Rj)

Ds,jFas,j

, (2.4)

∂ce

∂x
(0j, t) = 0, (2.5)

εe,nDe,n
∂ce

∂x
(Ln, t) = εe,sepDe,sep

∂ce

∂x
(0sep, t) , (2.6)

εe,sepDe,sep
∂ce

∂x
(Lsep, t) = εe,pDe,p

∂ce

∂x
(Lp, t) , (2.7)

ce (Ln, t) = ce (0sep, t) , (2.8)

ce (Lsep, t) = ce (Lp, t) . (2.9)

The SOC is computed from cs,n through

θ̄n =
c̄s,n

cs,max,j

, (2.10)

which measures the percentage of the average solid concentration c̄s,n with respect to
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the theoretical maximal Li-ion concentration. Then the SOC is computed as

SOC =
θ̄n − θ̄n,0%

θ̄n,100% − θ̄n,0%

× 100%, (2.11)

where θ̄n,100% and θ̄n,0% are θ̄n at the full-charge and depleted states, respectively [54].

The distributions of the potential in the solid and electrolyte phases are both

along the x dimension,

∂φs,j

∂x
=
ie − itotal

σeff
j

, (2.12)

∂φe,j

∂x
=

2RT

F

(
1− t+

)(
1 +

d ln fj
d ln ce,j

)
∂ ln ce,j

∂x
− ie
κeff

j

, (2.13)

with the boundary conditions

∂φs,j

∂x
(Lj) = 0, (2.14)

φe (0n, t) = 0, (2.15)

φe (Ln, t) = φe (0sep, t) , (2.16)

φe (Lsep, t) = φe (Lp, t) . (2.17)

The total superficial current density itotal in (2.12) is obtained by averaging the current

I over the total area of electrodes A,

itotal =
I

A
, (2.18)

where positive I indicates discharge. The superficial current density ie is governed by

∂ie
∂x

= Jtotal,j, (2.19)

ie (0j, t) = 0, (2.20)

where Jtotal,j represents the sum of the current densities of all electrochemical reactions

in the battery, including the intercalation reaction that governs the SOC process and
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the side reactions that govern the SOH process. Notice that there is neither an

intercalation reaction nor a side reaction in the separator, i.e., Jtotal,sep = 0, and thus

ie (x, t) = itotal ∀ x ∈ [0sep, Lsep] . (2.21)

The exchange of Li-ions between the solid electrodes and electrolyte is referred to

as the intercalation reaction (represented by the double-sided arrows in Figure 2.1).

The intercalation reaction is reversible, and thus the Li-ions used in this reaction

can be recycled for future reactions. This reaction is governed by the Butler-Volmer

equation

J1,j = i0,jas,j

[
exp(

αa,jF

RT
ηj)− exp(−αc,jF

RT
ηj)

]
, (2.22)

where

i0,j (x, t) = kj (cs,j (Rj, t))
αc,j

[ce (x, t) (cs,max,j − cs,j (Rj, t))]
αa,j , (2.23)

ηp = φp,s − φp,e − Uref,p(θp), (2.24)

ηn = φn,s − φn,e − Uref,n(θn)− Jtotal,n

as,j

Rfilm, (2.25)

where the reference potentials Uref,j are functions of the Li-ion concentration at the

surface of the particle through the ratio θj defined as

θj
4
=

cse,j

cs,max,j

, (2.26)

where

cse,j = cs,j|r=Rj
. (2.27)

The particular reference potential functions depend on the materials of the electrodes.

The intercalation current density J1,j indicates the speed of the charge and discharge
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process. The SEI film, whose resistance is captured by Rfilm in (2.25), is assumed to

accumulate only on the anode [28].

The total current density Jtotal,j is split into the intercalation current density J1,j

and the side reaction current density Jsd,j, which is the current density for the side

reactions that consume cyclable Li-ions and lead to battery degradation; i.e.,

Jtotal,j = J1,j + Jsd,j. (2.28)

Hence, the side reactions affect the SOC process by reducing the available current

density for the intercalation.

By assuming a uniform distribution of the initial Li-ion concentration in both

electrodes, the total number of cyclable Li-ions nLi in the battery can be computed

as in [41]

nLi = εs,pLpAc̄s,p(0) + εs,nLnAc̄s,n(0)

= εs,pLpAcs,max,pθ̄p(0) + εs,nLnAcs,max,nθ̄n(0)

= εs,pLpAcs,max,pθp(0) + εs,nLnAcs,max,nθn(0). (2.29)

The final equality in (2.29) holds because θj = θ̄j when the Li-ion concentration is

uniformly distributed.

2.2.1.2 The Estimation Form

The electrochemical form of the DFN model is simplified into the state space form

with two inputs and two outputs. First, the partial differential equations (PDEs)

contained in the SOC model are reduced to finite dimension as a group of ordinary

differential equations (ODEs). The PDE (2.1) governing diffusion in the solid phase

is reduced to finite dimension through a second-order Padé approximation of the

Laplace transformation of (2.1) [55]. The result of the Padé approximation is

cse,j

J1,j

(s) = − 5(21Ds,j + 2R2
j s)

3Fεs,j(35Ds,j +R2
j s)s

. (2.30)
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The spatial dimension of the PDE (2.2) governing diffusion in the electrolyte phase

is discretized with the central difference method. Therefore, the state equations of

the SOC model are obtained by stacking the ODEs reduced from PDEs (2.2) for all

discretization nodes in the x dimension and the ODEs from state space realization

of the transfer function (2.30) for all particles. Therefore, the number of the states

in the resulting state space model depends on how fine the discretization of the x

dimension is. If there are N particles per electrode and M discretization nodes in the

separator, with the last node in the anode being also the first node in the separator,

and the last node in the separator being also the first node in the cathode, then the

total number of the states is 6N +M − 2.

The inputs to the SOC model are reformulated to be the exogenous input I and

the side reaction current density Jsd,j herein. In the electrochemical form of the DFN

model, the inputs are J1,j and I. However, in the simplified form, by applying (2.28)

combined with the fact that Jtotal,j can be calculated from the current I alone, J1,j is

expressed as a function of Jsd,j and I.

Finally, two outputs are calculated from the DFN model, namely the exogenous

output V and the input yφ to the SOH model. The exogenous output V is the

difference between the potential of the solid phases of the two electrodes, i.e.,

V (t) = φs,p (0p, t)− φs,n (0n, t) . (2.31)

The input yφ to the SOH model is an optional output that is only required when the

SOC model is integrated with the SOH model, and thus it is defined in (2.58) in the

development of the SOH model in Section 2.3.

The equations for the DFN model are then put into the discrete form for compu-

tation purpose, i.e.,

x(k + 1) = f (x(k), u(k), w(k)) , (2.32)

y(k) = g (x(k), u(k), w(k)) , (2.33)

y0(k) = g0 (x(k), u(k), w(k)) , (2.34)
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where states x(k) ∈ Rn reflect the battery SOC, the electrolyte concentration, and

the potential distribution in the solid and electrolyte phase, the input w and output

y0 are the current I and the voltage V , respectively, the input u to the SOC model

is the side reaction current density Jsd,j, and the output y of the SOC model is yφ.

The function f(·) in (2.32) represents (2.1) and (2.2), while g(·) in (2.33) and g0(·) in
(2.34) are static relationships represented by (2.58) and (2.31), respectively.

2.2.2 Single Particle Model (SPM)

Anode (n) Separator Cathode (p)

Solid Spheres 

Electrolyte

Solid Spheres

Load

n
J

p
J

x

r

I I

+Li

n0x = n sepL 0x = = sep pL Lx = = p0x =

0r =

r R=

Figure 2.2: The schematic of the SPM of Li-ion batteries.

The Single Particle Model (SPM) [56, 54] is a simplified version of the DFN model,

where the solid phase of each electrode is represented with only one spherical particle

(as depicted in Figure 2.2) and the distribution of concentration and current density

along the width of anode-separator-cathode sandwich are ignored. This simplification

eliminates all the states that represent the concentration and potential distribution

in the x dimension, which results in a system with fewer states than the DFN model.

The SPM can represent the battery charge and discharge dynamics accurately when

the current C-rate is low (usually ≤ 1 C).
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2.2.2.1 The Electrochemical Form

The main focus of the section is how the electrochemical form of the SPM can be

simplified from the electrochemical form of the DFN model presented in Section

2.2.1.2 based on the assumptions made in the SPM. More detailed description about

the SPM can be found in [54].

The SPM represents each electrode with only one particle, thus eliminating the

representation of the distribution of Li-ions along the x direction, i.e., only one group

of (2.1), (2.3), and (2.4) is needed for each electrode.

Moreover, uniform and constant distribution of the electrolyte concentration is as-

sumed in the SPM, and thus (2.2) and (2.5) – (2.9) can be eliminated. The electrolyte

concentration is instead modeled by

ce(x, t) = c̄e, (2.35)

where c̄e is a constant. Therefore, (2.13) is simplified as

∂φe,j

∂x
= −itotal

κeff
j

. (2.36)

Furthermore, Jtotal,j is assumed to be uniformly distributed along the x dimension

of each electrode, and thus (2.19) is simplified as

Jtotal,nLn = ie(Ln)− ie(0n), (2.37)

Jtotal,pLp = ie(0p)− ie(Lp), (2.38)

Substituting the (2.18), (2.20) and (2.21) into (2.37) and (2.38) yields

Jtotal,n =
I

ALn

, (2.39)

Jtotal,p =
I

ALp

. (2.40)

Assuming uniform distribution of the initial Li-ion concentrations in both elec-
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trodes as in the DFN model, the number of cyclable Li-ions is computed as in [41]

nLi = εs,pLpAcs,max,pθp(0) + εs,nLnAcs,max,nθn(0). (2.41)

2.2.2.2 The Estimation Form

The state equation of the SPM is obtained from (2.1) for the anode and cathode

through similar manner as in the DFN model. The number of the states in the

SPM is significantly reduced compared to the DFN model with multiple particles per

electrode. The number of the states for the SPM herein is 4 because the second-order

Padé approximation is used. The SPM is discretized herein using first-order hold to

expedite the simulation. cs,j is obtained through the discretized equations

xj(k + 1) = Ajxj(k) +BjJ1,j, (2.42)

cse,j(k + 1) = Cjxj(k) +DjJ1,j, (2.43)

where

Aj =

 1 0

0 e
−

35Ds,jTs

R2
j

 , (2.44)

Bj =


R2

j Ts

35Ds,j

e

−
70Ds,jTs

R2
j

−1+e

35Ds,jTs

R2
j


2

R4
j

1225Ds,j
2Ts

 , (2.45)

Cn =
[
− 105Ds,j

2

R3
j Fas,jDs,j

− 7Ds,j

RjFas,jDs,j

]
, (2.46)

Dj =


2−2e

−
35Ds,jTs

R2
j

R4
j−70Ds,jR

2
j Ts−525D2

s,jT
2
s

350D2
s,jRjTsFas,j

 . (2.47)

where Ts is the sampling time. The input to (2.42) – (2.43) is J1,j. As in the DFN

model, J1,j is reformulated herein as the linear combination of two inputs, namely the

exogenous input I and the side reaction current density Jsd,j, based on (2.28). The

final state equation for the SPM is obtained by stacking (2.42) for both anode and
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cathode.

Unlike the DFN model where the outputs are solved numerically, the two outputs,

the voltage and the input yφ to the SOH model of the SPM can be solved analytically.

The output voltage, namely the potential difference between the solid phase of the two

electrodes, is obtained by solving (2.22) and (2.36). When the degradation is ignored,

namely when Jsd,j = 0, Jtotal,j = J1,j, and the voltage can be solved analytically as

[54]

V = φs,p(0p, t)− φs,n(0,n, t)

= Uref,p(θp)− Uref,n(θn) +
RT

αF
ln
(
ξp +

√
ξ2

p + 1
)
− RT

αF
ln
(
ξn +

√
ξ2

n + 1
)

− I

ALnas,n

Rfilm −
I

2A

(
Ln

κeff
n

+ 2
Lsep

κeff
sep

+
Lp

κeff
p

)
, (2.48)

where

ξj =
Jtotal,j

2as,ji0,j
. (2.49)

When the degradation is considered, the analytical solution needs to take the SOH

model into account, and thus is presented in (2.73) in Section 2.3. Similarly as in the

DFN model, the input yφ is defined in the SOH model as (2.68).

The system above is a discrete system with a linear state equation and two non-

linear outputs. With the same definition of the signals as in the DFN model, the

state space model of the SPM is

x(k + 1) = Ax(k) +Bu(k) + Fw(k), (2.50)

y(k) = g(x(k), u(k), w(k)), (2.51)

y0(k) = g0(x(k), u(k), w(k)), (2.52)

where A, B, and F is obtained from (2.42) for both electrodes, g(·) represents (2.68),
and g0(·) represents (2.48) or (2.73) depending on whether the degradation is consid-

ered.
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2.3 Battery SOH Model

The Arora model [31] is used to model the SOH subsystem in this work due to its

ability to capture all electrochemical-based degradation mechanisms that consume

cyclable Li-ions. The health model in [42, 43] adopted from [28] is an example of the

Arora model used specifically for the SEI film formation mechanism. The form of the

Arora model also provides insight on how to choose the form of the subsystem model

in RCSI.

2.3.1 The Electrochemical Form

In the Arora model, each degradation mechanism is captured by the Butler-Volmer

equation for the corresponding irreversible side reaction [31] (represented by the one-

way arrow in Figure 2.1). The irreversibility of the side reactions leads to the con-

sumption of cyclable Li-ions, causing capacity fade of the battery. The rate of the

side reaction is captured with the side reaction current density Jsd,j. For LiFePO4

batteries, degradation is assumed to happen only in the anode [28]. Hence, in the

cathode,

Jsd,p = 0; (2.53)

while in the anode,

Jsd,n = −i0,sdas,n exp

(
−αc,nF

RT
ηsd

)
, (2.54)

where the overpotential ηsd can be obtained by

ηsd = φs,n − φe,n − Uref,sd −
Jtotal,n

F
Rfilm, (2.55)

where Jtotal,j is the total current density, whose distribution is determined only by I,

as shown in (2.18) - (2.20).
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2.3.2 The Estimation Form

Since degradation is assumed to occur only in the anode [28], the side reaction current

density in the cathode is always zero. Hence, the side reaction current density in only

the anode, Jsd,n, is considered and is represented with a shorter notation, Jsd.

The electrochemical equations of the SOH model can be simplified into a linear

static equation with only one parameter and one input yφ, which is computed in the

SOC model. Substituting (2.55) into (2.54) yields

Jsd = KSOHyφ, (2.56)

where

KSOH
4
= −i0,sdas,n exp

(
αc,nF

RT
Uref,sd

)
, (2.57)

yφ
4
= exp

(
−αc,nF

RT

(
φs,n − φe,n −

Jtotal,n

as,n

Rfilm

))
. (2.58)

Note that KSOH is a function of the parameters of the battery model, among which

i0,sd and Uref,sd are associated with the SOH process.

One of the benefits of the linear static formulation of the SOH model is that

under the presence of several side-reaction-based degradation mechanisms, the total

side reaction current density can be easily obtained by summing all the side reaction

current densities. Assume a total of κ side reactions happen simultaneously. Then

each side reaction follows

Jsd,ι = KSOH,ιyφ, ι = 1, . . . , κ, (2.59)

where Jsd,ι and KSOH,ι are the side reaction current density and the health parameter

for the ιth side reaction, respectively. Because the input yφ is computed in the SOC

model, all side reactions share the same yφ. Therefore, the total side reaction current
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density is

Jsd =
κ∑
ι=1

Jsd,ι =
κ∑
ι=1

KSOH,ιyφ = KSOHyφ, (2.60)

where KSOH =
κ∑
ι=1

KSOH,ι. Therefore, (2.60) is the counterpart of (2.56) when several

side reactions are present.

For the DFN model that has multiple particles per electrode, the SOH model has

the form

Jsd(k) = KSOHYφ(k), (2.61)

where the vectors Jsd (k) and Yφ (k) are constructed by stacking Jsd and yφ for every

particle in the anode. Assuming the anode contains N particles, Jsd and Yφ are given

by

Jsd
4
=


J1

sd

...

JNsd

 , Yφ 4=


y1
φ

...

yNφ

 . (2.62)

The gain KSOH is the diagonal matrix

KSOH
4
=


K1

SOH

. . .

KN
SOH

 , (2.63)

where the superscripts 1, . . . , N in (2.62) and (2.63) are the particle indices.

If K1
SOH = · · · = KN

SOH
∆
= Kunif

SOH, then KSOH can be reduced to the scalar gain

Kunif
SOH. In this case, there is no need to differentiate the degradation processes in

different particles, and the SOH model can be simplified from (2.61) to

Jave
sd = Kunif

SOHy
ave
φ , (2.64)
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where

Jave
sd

4
=

1

N

N∑
m=1

Jmsd , yave
φ

4
=

1

N

N∑
m=1

ymφ . (2.65)

In (2.64), the average of the side reaction current densities among all particles is used

instead of Jsd to represent the total degradation rate of the battery.

For the SPM, N = 1 in (2.62), and thus (2.56), (2.61), and (2.64) are the same.

For consistency, the SOH model is expressed using (2.56) when integrated with the

SPM.

Furthermore, for the SPM integrated with the SOH model, both the voltage, Jave
sd ,

and yave
φ can be solved analytically. Define dφn

∆
= φs,n−φe,n− Jtotal,n

as,n
Rfilm. Substituting

(2.25) and (2.24) into (2.22) yields

J1,n =
as,ni0,n

exp
(
αF
RT
Uref,n

) 1

exp
(
−αF
RT
dφn

) − as,ni0,n exp

(
αF

RT
Uref,n

)
exp

(
−αF
RT

dφn

)
.

(2.66)

Similarly, (2.54) can be written as

Jsd = −i0,sdas,n exp

(
αF

RT
Uref,sd

)
exp

(
−αF
RT

dφn

)
. (2.67)

Solving (2.66) and (2.67) yields

yφ = exp

(
−αF
RT

dφn

)
=
k4 −

√
k2

4 − 4k1 (k2 + k3)

2 (k2 + k3)
, (2.68)
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where

k1 =
as,ni0,n

exp
(
αF
RT
Uref,n

) , (2.69)

k2 = −as,ni0,n exp

(
αF

RT
Uref,n

)
, (2.70)

k3 = −i0,sdas,n exp

(
αF

RT
Uref,sd

)
, (2.71)

k4 = Jtotal,n. (2.72)

k1 – k4 are all functions of signals available from the SOC model or the parameters

of the SOC and SOH models. Then, the voltage is

V = φs,p(0p, t)− φs,n(0,n, t)

= Uref,p (θp) +
RT

αF
ln
(
ξp +

√
ξ2

p + 1
)

+ dφn −
I

ALnas,n

Rfilm

− I

2A

(
Ln

κeff
n

+ 2
Lsep

κeff
sep

+
Lp

κeff
p

)
. (2.73)

where

dφn = −RT
αF

ln (yφ) . (2.74)

Finally, Jsd is available by substituting (2.68) in (2.56).

The SOH model is a linear static equation in the form of (2.56), (2.61), or (2.64).

(2.56), (2.61), and (2.64) can all be written as

u = θTφ, (2.75)

where u, θ and φ represent Jsd, KSOH and Yφ in (2.61), or Jave
sd , Kunif

SOH and yave
φ in

(2.64).
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Figure 2.3: The architecture of the battery model.

2.4 Combining SOC Model and SOH Model

Figure 2.3 shows the combined battery model that contains both the SOC and SOH

models. The SOC and SOH models are connected in a feedback form. The signals

in Figure 2.3 are defined as follows: i) the measurable input w and output y0 of the

overall model are the current I and the voltage V , respectively; ii) the output of the

SOH model u is the side reaction current density Jsd; and iii) the input y to the SOH

model is yφ. Notice that the SOC model and the SOH model interact with each other

through the signals u and y.

2.5 Summary and Conclusions

This chapter presents three widely used electrochemical battery models in the liter-

ature. The three models are partitioned into i) the SOC models, which include the

DFN model [51, 52] and its simplification, the SPM [56, 54], and ii) the SOH model,

which is the Arora model herein [31]. For each of the models, the electrochemical

form is first presented, followed by the simplifications and modifications made to the

models that yield forms suitable for estimation.

Even though these models are obtained from the literature, two modifications

presented herein are original. First, the Arora model is modified to one linear static

equation with all parameters lumped into one. This formulation provides a simple

representation of the complicated SOH process, which in turn simplifies the design
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of the identification algorithm and facilitates the accurate identification of the SOH

subsystem. The linearity of the subsystem model also allows easy combination of

several degradation mechanisms. Second, this chapter provides an analytical solution

of the current densities in the SPM integrated with the Arora model. These two

modifications are developed in this work to facilitate the estimation of the side reaction

current density in Chapter 3 and 4.

27



Chapter 3

Estimation of Side Reaction Current

Density

3.1 Introduction

In this chapter, the side reaction current density is estimated as the SOH indica-

tor. The side reaction current density is a measure of the rate of cyclable Li-ion

consumption, which contributes to capacity fade in all electrochemical-based degra-

dation mechanisms that consume cyclable Li-ions [31].

Although the side reaction current density is known to be associated with the

degradation process [31, 28], it has not been used to directly indicate the battery

health in battery management applications. This chapter argues that the side reac-

tion current density is a logical choice as a direct SOH indicator in various situations

because the side reaction current density provides information regarding both the

degradation rate and the overall degradation level through its integral. In situations

where the instantaneous degradation rate is concerned, for example where controllers

are designed with avoiding a dramatic degradation rate as an objective or constraint

[7], the side reaction current density provides the direct measure of the degradation

rate. In situations where the overall degradation level over time is concerned, such

as the estimation of remaining mileages of EV batteries, the integral of the side re-

action current density across the whole battery and over time provides the total loss
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in cyclable Li-ions, which is an electrochemical measure of the capacity loss. For

degradation mechanisms that result in byproducts such as SEI film, the aforemen-

tioned integral is also proportional to the growth in internal resistance. Therefore,

this chapter proposes the idea of using the side reaction current density as a direct

indicator of the SOH, and provides a method to estimate the side reaction current

density directly.

Compared to the other electrochemical SOH indicators [41, 42, 43], the side re-

action current density has two advantages. First, the side reaction current density

measures the rate of Li-ion consumption, thus giving an instantaneous sense of how

fast a battery is degrading at each instant in time. Secondly, as opposed to the SEI

film resistance and Lithium deposition, which are mechanism-specific indicators that

apply only to the degradation mechanism of SEI film formation and Lithium plating,

respectively, the side reaction current density can be applied to all Li-ion-consuming

degradation mechanisms [31].

A major challenge of estimating the side reaction current density is that it is not

directly measurable in-situ. This dissertation addresses this challenge by treating the

battery health system as an inaccessible subsystem of the overall battery system, and

using retrospective-cost subsystem identification (RCSI) [57, 58, 59, 60] to identify

this subsystem and estimate its output, namely, the side reaction current density.

In this chapter, the estimation of the side reaction current density is primarily

simulated using a parameter set for a LiFePO4 battery as an example. The proposed

estimation technique, including the method for estimating the side reaction current

density using RCSI and the framework analyzing its robustness, can also be applied

to other parameter sets and other battery chemistries to monitor the SOH change

resulting from any electrochemical-based degradation mechanism that consumes cy-

clable Li-ions. To show the applicability of the estimation technique to other types

of Li-ion battery chemistries with different parameters, the same technique is later

applied to a few example cases using a parameter set for an LMO-mixture battery.

This chapter focuses on the following research questions:

1. Can the side reactions that consume cyclable Li-ions and thus degrade battery
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health be formulated as an inaccessible subsystem in the battery?

2. Is it possible to estimate the side reaction current density as the output of the

inaccessible subsystem using RCSI?

3. How robust is this estimation against various non-ideal conditions?

3.2 Retrospective-Cost Subsystem Identification

3.2.1 Problem Setup

Main System

SOC System

Main System Model

SOC Model

Subsystem

SOH Subsystem

Subsystem Model

SOH Model

−
+

True System

System Model

 
 
 
ŷaveφ

ŷ
 
  
 
Ĵave
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û

 
 
 
 
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sd
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 
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 
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Yφ
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u

w y0

y

ŷ0
(V̂ )

(V )(I)

z

Figure 3.1: The architecture of retrospective-cost subsystem identification for esti-
mation of the side reaction current density. Note that the output of the SOH model
is the side reaction current density Jsd.

Figure 3.1 presents the architecture of RCSI formulated for the proposed battery

health estimation problem. The true system in the upper block contains a known main
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system and an unknown subsystem. The subsystem output, u, is the inaccessible sig-

nal to be estimated. This representation of the true system has the same architecture

as the battery model in Figure 2.3. The lower block, labelled “system model”, is the

model of the true system. The main system model is based on knowledge of the

main system. The form of the subsystem model is assumed to be a mathematical

approximation of the form of the true subsystem. The difference between the output

of the true system and the system model is computed to identify the subsystem model

parameter and thus estimate the subsystem output, the inaccessible signal of interest.

In the context of the battery health estimation problem, the true system is a

battery, where the main system represents the battery SOC system, which is assumed

to be known, and the unknown subsystem represents the battery SOH system to be

identified. For the simulation study presented herein, the true system is represented

by the battery model. The main system is the SOC model represented by (2.32)

– (2.34), while the subsystem is the SOH model represented by (2.75), where θ is

assumed to be unknown.

Similarly, the system model is the battery model, where the main system model

is the SOC model and the subsystem model is the SOH model. The SOC model in

the main system model has the form

x̂(k + 1) = f̂ (x̂(k), û(k), w(k)) , (3.1)

ŷ(k) = ĝ(x̂(k), û(k), w(k)), (3.2)

ŷ0(k) = ĝ0(x̂(k), û(k), w(k)). (3.3)

If accurate knowledge of the main system is assumed, then the number of particles

per electrode, which determines the number of states in (2.32) – (2.34), and the

parameters in the main system model are identical to those of the main system. In

this case, f̂(·) and f(·), ĝ(·) and g(·), and ĝ0(·) and g0(·) are identical. When modeling

error between the main system model and the main system is considered, f̂(·) and

f(·), ĝ(·) and g(·), and ĝ0(·) and g0(·) are not identical.

For simplification in estimation, the SOH parameters for all of the particles in the
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subsystem model are assumed to be identical; thus the form of the subsystem model

is assumed to be a linear static equation as (2.64),

Ĵave
sd = K̂unif

SOHŷ
ave
φ , (3.4)

where Ĵave
sd and ŷave

φ are the estimates of the average of Jsd and Yφ, respectively; and
K̂unif

SOH is an estimate of the average of KSOH weighted by the subsystem input in each

particle. When the SOH parameters are assumed identical for all of the particles in

the true subsystem as well, that is, Km
SOH are identical and (2.64) is used to represent

the true SOH system, Ĵave
sd , K̂unif

SOH and ŷave
φ are the estimates of Jave

sd , Kunif
SOH and yave

φ .

Define the output and input of the subsystem model as

û
4
= Ĵave

sd , (3.5)

ŷ
4
= ŷave

φ . (3.6)

Then the subsystem model can be expressed in the ARMAX form

û(k) = θ̂T(k)ŷ(k), (3.7)

where θ̂(k) ∈ Rlu×ly is the parameter of the subsystem model,

θ̂(k)
4
= K̂unif

SOH (k) , (3.8)

where lu and ly are the dimension of û and ŷ, respectively. Here θ̂ and φ̂ are both

scalars, and thus lu = 1 and ly = 1.

3.2.2 Algorithm Development

RCSI is developed under the assumption that both the main system and the subsys-

tem are in discrete-time linear form. However, with a proper choice of parameters, the

algorithm can also be applied to discrete-time nonlinear systems [59, 42, 43]. In this

section, the development of RCSI is presented in the linear context with guidelines
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to choose the parameters in nonlinear applications.

A two-stage Kalman-filter version of RCSI is presented in this section, which is a

variation of [59, 61, 42, 43]. This version of RCSI operates recursively, where each time

step contains two stages. In the first stage, the estimates of the inaccessible signal u in

past time steps are constructed from the difference between the measurable signal y0

and its estimate ŷ0 using knowledge of the main system. These constructed estimates

of u in the past time steps are referred to as retrospective-cost signals, and this stage

is called retrospective-cost-based signal construction. Although the full model of the

main system is assumed available, only the Markov parameters of this model are used

in the signal construction, which simplifies the algorithm. In the second stage, the

subsystem parameter is identified with the constructed estimates of u in past time

steps using the Kalman filter. This identified subsystem parameter is then used in

the subsystem model to generate û as a prediction of u in the next time step. These

two stages are described next in detail.

3.2.2.1 Retrospective-Cost-Based Signal Construction

The main system is assumed to be linear and discrete-time with the form

x(k + 1) = Ax(k) +Bu(k) + Fw(k), (3.9)

y(k) = Cx(k) +Du(k) + Jw(k), (3.10)

y0(k) = E1x(k) + E2u(k) + E3w(k)), (3.11)

where x(k) ∈ Rn is the state, w(k) ∈ Rlw is the external input, u(k) ∈ Rlu is the

output of the subsystem, y(k) ∈ Rly is the input to the subsystem, and y0(k) ∈ Rly0

is the measurable output.

The main system is assumed known, and thus the model of the main system is
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constructed as

x̂(k + 1) = Âx̂(k) + B̂û(k) + F̂w(k), (3.12)

ŷ(k) = Ĉx̂(k) + D̂û(k) + Ĵw(k), (3.13)

ŷ0(k) = Ê1x̂(k) + Ê2û(k) + Ê3w(k), (3.14)

z(k) = ŷ0(k)− y0(k), (3.15)

where x̂(k) ∈ Rn, ŷ(k) ∈ Rly , z(k) ∈ Rlz , ŷ0(k) ∈ Rly0 , û(k) ∈ Rlu . The known

information of the main system is reflected through matrices Â, . . . , Ê3. If there is no

modeling error in the main system model, then Â, . . . , Ê3 are identical to A, . . . , E3,

respectively. For nonlinear systems such as (2.32) – (2.34), the linear equations (3.9),

(3.10) and (3.11) are specializations of (2.32), (2.33) and (2.34), respectively. Simi-

larly, (3.12), (3.13) and (3.14) are specializations of (3.1) (3.2) and (3.3), respectively.

The main system model relates the subsystem model output û to the estimated

output signal ŷ0 using the Markov parameters between û and ŷ0, which are defined

as

Ĥi
4
=

 Ê2, i = 0

Ê1Â
i−1B̂, i ≥ 1

. (3.16)

Markov parameters reflect the impact of the past input û on the current output ŷ0 as

in

ŷ0(k) = Ê1Â
kx̂(0) + Ê3w(k) +

k−1∑
i=0

Ê1Â
iF̂w(k − i− 1)

+
k∑
i=0

Hiû(k − i). (3.17)

For nonlinear systems, the Markov parameters serve as tunable parameters in the

algorithm, which also reflects the influence of û(k − i) on ŷ0(k). One way to tune Ĥi

for nonlinear applications is to linearize the system around an operating point and

use the linearization to determine Ĥi.
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A set of dominant Markov parameters is defined that corresponds to the set of

û(k − i) that has the largest impact on the output ŷ0(k). The dominant Markov

parameters and the corresponding û(k − i) can be put into the matrix form

H 4
=
[
Hi0 · · · Hir

]
∈ Rlz×rlu , (3.18)

U(k − 1)
4
=
[
ûT(k − i0) · · · ûT(k − ir)

]T
, (3.19)

where r is a positive integer indicating the size of the set of dominant Markov param-

eters, and i0, · · · , ir are indices of the dominant Markov parameters.

Combining (3.15), (3.17), (3.18) and (3.19) yields

z(k) = S(k) +HU(k − 1), (3.20)

where

S(k)
4
= Ê1Â

kx̂(0) + Ê3w(k) +
k−1∑
i=0

Ê1Â
iF̂w(k − i− 1)

− y0(k) +H′U ′(k − 1). (3.21)

H′ is the matrix containing all the Markov parameters Hi except the dominant ones

and U ′(k − 1) is the matrix containing the u(k − i) corresponding to the entries in

H′.
To utilize the information from several time steps, (3.20) can be rewritten with a

delay of kj time steps in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (3.22)

where 0 ≤ j ≤ s and 0 ≤ k1 < k2 < · · · < ks. Notice that the dominant Markov

parameters can be different for different steps, i.e., Hj is not a constant with respect
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to j. The extended performance is defined by stacking z(k − k1), . . . , z(k − ks) into

Z(k)
4
=
[
zT(k − k1) · · · zT(k − ks)

]T ∈ Rslz . (3.23)

Therefore,

Z(k)
4
= S̃(k) + H̃Ũ(k − 1), (3.24)

where

S̃(k)
4
= [S(k − k1) · · · S(k − ks)]T ∈ Rslz , (3.25)

H̃ ∈ Rslz×lŨ , and Ũ(k − 1) ∈ RlŨ . Ũ(k − 1) is formed by stacking U1(k − k1 −
1), . . . , Us(k− ks− 1) and removing repetitions in the components. H̃ consists of the

entries of H1, . . . ,Hs arranged according to the structure of Ũ(k − 1).

The extended retrospective performance is defined by

Z∗(k)
4
= Z(k)− H̃Ũ(k − 1) + H̃Ũ∗(k − 1), (3.26)

where the actual past outputs Ũ(k−1) of the subsystem model in (3.24) are replaced

by the retrospectively optimized subsystem outputs Ũ∗(k−1). Since the retrospective

subsystem outputs serve as estimates of the true subsystem outputs in corresponding

past steps, replacing Ũ(k−1) with Ũ∗(k−1) is expected to yield the smallest extended

retrospective performance at the past steps. Therefore, the retrospective subsystem

outputs can be found by minimizing the retrospective cost function defined as

J̄(k)
4
= Z∗T(k)RZ(k)Z∗(k)

+ Ũ∗T(k − 1)RU(k)Ũ∗(k − 1), (3.27)

where RZ(k) ∈ Rlz×lz and RU(k) ∈ Rlu×lu are positive-definite weightings. In (3.27),

Ũ∗T(k)RU(k)Ũ∗(k) is the regularization term, which is included in J̄(k) to ensure
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that A(k) is invertible.

The unique global minimizer of (3.27) is

Ũ∗(k − 1) = −1

2
A−1(k)B(k), (3.28)

where

A(k)
4
= H̃TRZ(k)H̃ +RU(k), (3.29)

B(k)
4
= 2H̃TRZ(k)[Z(k)− H̃Ũ(k − 1)]. (3.30)

3.2.2.2 Kalman Filter Update of the Subsystem Parameter

Denote the component in Ũ∗(j− 1) that estimates u(k), where k ≤ j, with ũ∗(k). By

replacing û(k) in (2.61) with ũ∗(k), identification of the subsystem becomes identifi-

cation of the parameters in the ARMAX model

ũ∗(k) = θ̂T(k)ŷ(k), (3.31)

where θ̂(k) is defined in (3.8). If there are multiple choices of j such that Ũ∗(j − 1)

contains a component that estimates u (k), then the selection of ũ∗(k) is chosen to be

the latest estimate.

The Kalman filter updating law for the ARMAX model parameters is

θ̂(k + 1) = [1− a(k)][θ̂(k) + (P (k + 1) +Q)ŷ(k + 1)

[Rk + ŷ(k + 1)T (P (k + 1) +Q)ŷ(k + 1)]−1

(u∗(k + 1)− ŷ(k + 1)θ̂(k))] + a(k)θ̂(0). (3.32)
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The error covariance P is updated by

P (k + 1) = [1− a(k)][(P (k) +Q)− (P (k) +Q)

(Rk + ŷ(k + 1)(P (k) +Q)ŷT(k + 1))−1 +R1]

+ a(k)P (0), (3.33)

where Q, Rk and R1 are the pre-set parameters. a(k) ∈ {0, 1} is an algorithm reset,

that is, θ(k) and P (k) are reset to their initial values when a(k) = 1, otherwise

a(k) = 0. The error covariance matrix is initialized as P (0) = βI, where β > 0.

3.3 Simulation Results under Ideal Conditions

This section presents simulation results of RCSI-based estimation of the side reaction

current density under ideal conditions. The ideal conditions refer to the following

conditions: i) measurements of the input current and the output voltage contain no

noise; ii) exact knowledge of the battery SOC is assumed, and thus the initial SOC

in the true system and the system model are set to be exactly the same; and iii) no

modeling error exists in both the main system model and the subsystem model.

The simulation results are obtained using two types of excitation signals. The

first type is the constant current charge and discharge (CCCD) cycles. In every cycle,

the battery model operates under the constant current charge (CCC) mode followed

immediately by the constant current discharge (CCD) mode. The mode switches from

CCD to CCC when the voltage reaches 2.0 V and from CCC to CCD at 3.6 V. Since

the charge and discharge current for EVs is below 10 C, 1-C and 10-C CCCD cycles

are chosen to test the slow and fast charge/discharge cases, respectively [32]. For both

cases, the SOC is initialized at 0%. Constant voltage modes are not included because

the battery degradation is insignificant during constant voltage modes, which results

in the unidentifiability of the SOH indicator [42, 43].

The second type of excitation signals is the current profile generated from an EV

following the Urban Dynamometer Driving Schedule (UDDS). This current profile
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evaluates the effectiveness of the algorithm under dynamic battery loading conditions

typical for EV applications. The UDDS current profile presented herein is generated

by the Advisor software [62] with the default EV settings. The Li-ion battery in

Advisor has a capacity of 7 Ah, while the rated capacity of the battery model herein

is 2.5 Ah. Therefore, the current magnitude is scaled down to match the C rates and

ensure that the battery is not overdischarged. The initial battery voltage is set to 3.6

V.

The parameters of the SOC model are adopted from [63, 64], where the parameters

are identified from the cycling data of commercial LiFePO4 batteries. The parameters

of the SOH model are adopted from [28]. The number of particles in each electrode is

obtained by increasing the number starting from 10 at increments of 10 until a further

increment yields a voltage response difference less than 5 mV for the 10-C CCC mode.

The number of particles is selected to be 50 per electrode. A sampling time of 0.2 s

is chosen because the chemical reaction has slow dynamics. The results below also

confirm that this sampling rate is fast enough to achieve accurate simulation and

estimation.

For RCSI, the weights in the retrospective cost function (3.27) are set as RU = 0

and RZ = 1, and the parameters for Kalman filter update (3.32) and (3.33) are set as

Q = 0.1, Rk = 0.5, and R1 = 0. The parameter estimate and error covariance matrix

are initialized at θ(0) = 0 and P (0) = 100, respectively. The Markov parameter is

set as H̃ = H0 = 2× 10−7 Ω m3.

The performance of RCSI is determined by the relative estimation errors of the

side reaction current density and the subsystem parameter defined as

εJsd
4
=
Jsd − Ĵsd

Jsd

, (3.34)

εθ
4
=
θ − θ̂
θ

, (3.35)

where Jsd and Ĵsd are the true and estimated values of the side reaction current

density, respectively; θ and θ̂ are the true and estimated values of the subsystem

parameter, respectively.
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Figure 3.2: The estimates and relative estimation errors ε of the subsystem parameter
θ and the side reaction current density Jsd under ideal conditions with three input
currents: (a) a 1-C constant current charge and discharge (CCCD) cycle, (b) a 10-C
CCCD cycle, and (c) a simulated current profile generated by an EV following an
Urban Dynamometer Driving Schedule (UDDS).

To begin with, it is assumed that no discrepancy exists between the forms of

the subsystem and subsystem model. Therefore, the SOH parameters Km
SOH are set

identical among all anode particles in the subsystem, and the form of the subsystem

also follows (2.64). In this case, the variables to be estimated are Kunif
SOH and Jave

sd ,

whose estimates are K̂unif
SOH and Ĵave

sd , respectively. Therefore, the variables in (3.34)

and (3.35) are named as follows,

Jsd = Jave
sd , Ĵsd = Ĵave

sd , (3.36)

θ = Kunif
SOH, θ̂ = K̂unif

SOH, (3.37)

y = yave
φ , ŷ = ŷave

φ . (3.38)

3.3.1 Constant Current Charge and Discharge Cycles

Figure 3.2 (a) shows the estimates obtained with one 1-C CCCD cycle. The estimated

parameter θ̂ converges to the true parameter θ in less than 1000 s after initialization

at zero. Meanwhile, the estimated side reaction current density also converges to the
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true value. The relative estimation errors εJsd and εθ are bounded within ±2×10−4%

after the transient phase.

Figure 3.2 (b) presents the estimates obtained with one 10-C CCCD cycle. The

estimates of the subsystem parameter and the side reaction current density converge

to their true values in less than 100 s. The relative estimation errors are bounded

within ±1% after the transient phase.

The relative estimation errors show that the estimates diverge from their true

values during the discharge mode. This divergence is due to the fact that the side

reaction current density is near zero during the discharge mode, which is consistent

with the assumption in [28] that the degradation is negligible during discharge. As a

result, the impact of the subsystem output on the output voltage is negligible; hence

the identifiability of the subsystem parameter is weak. The divergence is more evident

under the 10-C discharge rate, because the side reaction current density is smaller

under the higher discharge C rate. During the 1-C discharge mode, the side reaction

current density is on the order of 100 A/m3, while it is on the order of 10 A/m3 during

the 10-C discharge mode. This divergence agrees with the conclusions in [42, 43, 65].

It can be concluded from Figure 3.2 (a) and Figure 3.2 (b) that accurate esti-

mates of the side reaction current density and health subsystem parameter can be

obtained in both slow (1-C) and fast (10-C) constant current charge modes under

ideal conditions. However, during the discharge modes, the estimates slowly diverge

from their true values, due to the weak identifiability caused by the negligible side

reaction current density.

3.3.2 The Urban Dynamometer Driving Schedule Test Cycles

Figure 3.2 (c) shows the parameter estimates with the UDDS current profile. With

θ̂(0) = 0, the parameter estimate θ̂ converges to the true parameter θ within 10 s. The

estimate of the side reaction current density can also track the true value throughout

the cycle. The relative estimation errors of both the side reaction current density

and the subsystem parameter are bounded within ±0.1% after the transient phase.

This result suggests that RCSI can estimate both the side reaction current density
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and the subsystem parameter effectively under the dynamic operating condition of

EVs under ideal conditions. The estimation errors show fluctuations when the true

side reaction current density is small and the degradation is negligible, which agrees

with the results in Section 3.3.1. The relative estimation errors also diverge at the

end of the UDDS cycle. This divergence is due to the decrease of the battery SOC

throughout the UDDS cycle except several brief moments of charging by regenerative

braking. The SOC level drops to only 14% by the end of the cycle. The true side

reaction current density is small when the battery SOC is low, which also leads to

the weak identifiability.

In Figure 3.2, the relative estimation errors in the side reaction current density

and the health subsystem parameter are similar. On the one hand, x and x̂ are close

under ideal conditions. On the other hand, it can also be observed from Figure 3.2

that convergence of the estimated side reaction current density is fast, so that û and

u are close after the transient phase. Then, according to (2.33) and (3.2), ŷ and y are

close when both x and x̂, and u and û are close. Therefore,

εJsd =
θy − θ̂ŷ
θy

≈ θy − θ̂y
θy

=
θ − θ̂
θ

= εθ. (3.39)

Note that (3.39) holds as long as ŷ(k) ≈ y(k). Hence, (3.39) may be true, even

without assuming the ideal conditions, when the differences between y and ŷ caused

by the discrepancies between x and x̂, and Jsd and Ĵsd are small. However, if there

is large measurement noise, or state or modeling errors that lead to a large difference

between y and ŷ, the relative estimation errors in the side reaction current density

and the health subsystem parameter may be different.

3.4 Robustness to Non-Ideal Conditions

In this section, robustness of the algorithm to non-ideal conditions is examined. First,

it is shown that the voltage difference between the true system and the system model

caused by non-ideal conditions (e.g., measurement noise, SOC estimation errors, main
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system modeling errors, and form discrepancy between the subsystem and the sub-

system model) degrades the performance of the algorithm. Then, robustness against

measurement noise, SOC estimation errors and modeling errors are examined in Sec-

tion 3.4.2, 3.4.3 and 3.4.4, respectively. Discussions of the simulation results are given

next. Expectations about the performance of RCSI in practice based on the analysis

of the simulation results are highlighted.

3.4.1 The Relationship between the Estimation Accuracy and

Voltage Errors

It can be observed from (3.27) that the goal of RCSI is to drive the optimal voltage

difference, which corresponds to Z∗(k) in (3.26), to zero, assuming that this zero

voltage difference indicates that the optimal subsystem output Ũ∗(k − 1) is identical

to the true subsystem output. This assumption is not valid in the presence of a

voltage difference caused by additional sources.

The impact of the side reaction current density on the output voltage is mainly

through the intercalation reaction, and is manifested as an instantaneous impact.

Because this instantaneous impact is small, the SOH estimation is sensitive to non-

ideal conditions that cause errors in the voltage. These non-ideal conditions are the

additional sources that cause an additional voltage difference, and this additional

voltage difference is denoted by Vas.

Assuming (3.24) is corrected with Vas, it follows that

Z(k) = S̃(k) + H̃Ũ(k − 1) + Vas. (3.40)

Therefore, (3.26) is updated to

Z∗(k) = S̃(k) + H̃Ũ∗(k − 1) + Vas. (3.41)

According to the definition of dominant Markov parameters, H̃Ũ(k − 1) dominates
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S̃(k); thus S̃(k) is considered negligible. Hence, (3.41) can be approximated as

Z∗(k) ≈ H̃Ũ∗(k − 1) + Vas. (3.42)

When the impact of Vas on Z∗(k) is large, driving Z∗(k) to zero induces an offset

in Ũ∗(k − 1) that compensates for the impact of Vas, which leads to an additional

estimation error.

The additional relative estimation error αas caused by Vas is given by

αas = VasVJsd
−1, (3.43)

where

VJsd
4
= H̃Ũ∗(k − 1), (3.44)

When Z∗(k) is zero, the relative estimation error achieves its lower bound, which

is determined by the additional estimation error; i.e.,

|ε|bd = |αas| , (3.45)

Therefore, when the relative estimation error is required to be within a bound αas,bd,

Vas needs to be within the bound

Vas,bd = αas,bdVJsd . (3.46)

Here Z∗(k), H̃ = H0 and Ũ∗(k − 1) are scalars. Then,

VJsd = H0Jsd (k) . (3.47)

For the parameter values used herein, H0 = 2× 10−7 Ω m3; and for 1-C CCC mode,

|Jsd| is on the order of 103 A m−3 for most of the operating time. Therefore, |VJsd | =
|H0Jsd| is on the order of 10−4 V (0.1 mV) for most of the operating time. Then,

44



according to (3.46), if a bound of ±10% for αas is required, then Vas,bd needs to be on

the order of 0.01 mV. Similarly, when Vas,bd is given, the corresponding αas,bd can be

computed from

αas,bd = Vas,bd/VJsd . (3.48)

In the rest of this section, the above analyses are verified by testing the robustness

to measurement noise, SOC estimation errors, and modeling error, respectively. The

1-C CCCD cycle is used for excitation in this section except in the cases shown in

Figure 3.8 (b) and (c) in Section 3.4.4.2. Based on the observation that the side

reaction current density is less identifiable in the CCD mode, only the estimation

results during the CCC mode are examined. Other excitations, such as 10-C CCCD

cycles and UDDS cycles, can be analyzed in a similar manner.

The voltage differences between different battery models or different simulation

situations are denoted as follows.

δVmod1/mod2
4
= Vmod2 − Vmod1, (3.49)

δVsit1/sit2
4
= Vsit2 − Vsit1, (3.50)

where the subscripts mod1 and mod2 denote two different models, while sit1 and sit2

denote two different simulation situations.

For simplicity, the names of different models are denoted as follows. The name

DFNn denotes the DFN model with n particles per electrode. For example, the DFN

model with 50 particles per electrode, which is the model used in Section 3.3, is

denoted by DFN50. The name SPM denotes the single particle model.

3.4.2 Robustness to Measurement Noise

In this section, the input and output measurement noise levels are determined indi-

vidually based on the desired relative estimation error bounds.

As an example, normal distributions with zero mean and tunable standard devi-
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ation are assumed for both the input and output measurement noise, i.e.,

Inoise ∼ N
(
0, σ2

In

)
[mA], (3.51)

Vnoise ∼ N
(
0, σ2

Vn

)
[mV]. (3.52)

σIn and σVn can be tuned based on the analysis in Section 3.4.1 and the desired

relative estimation error bound. Here a relative estimation error bound on the order

of 10% is chosen as the desired estimation accuracy, and thus |Vas| must be on the

order of 0.01 mV.

Computing the effect of current measurement noise on voltage analytically is dif-

ficult because of the nonlinearity of the battery model. Hence, σIn is selected numer-

ically based on the simulated voltage response of DFN50 driven by a constant charge

current that is 1 C with a perturbation ∆I. The battery model is simulated 11 times

with ∆I set to 0 mA, ±100 mA, ±10 mA, ±1 mA, ±0.1 mA, and ±0.01 mA. The first

simulation with ∆I = 0 mA is the nominal case that records the voltage response of

1-C CCC mode without any perturbation in the input current. ∆Vi (i = 2, . . . , 11)

is defined as the absolute voltage difference between the ith simulation and the first

simulation, that is,

∆Vi(k)
4
= |Vi(k)− V1(k)| . (3.53)

Figure 3.3 presents the box-and-whisker plots of ∆Vi corresponding to different ∆I.

It can be observed that, in the cases that ∆I = ±1 mA, ∆V6,7 (k) are generally on

the order of 0.01 mV. Therefore, σIn is chosen to be 1 mA.

Figure 3.4 (a) shows the estimation results in the presence of input measurement

noise with σIn = 1 mA. The relative estimation errors are both bounded within ±12%

after the initial transient phase, which is on the desired order of 10% for the relative

estimation error bound.

The standard deviation of output measurement noise can be directly set to the

level of required |Vas|, in this case 0.01 mV. Figure 3.4 (b) presents the estimation
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Figure 3.3: The voltage difference ∆V of the DFN50 model caused by the current
perturbation ∆I during the 1-C constant current charge mode.

results under output measurement noise with σVn = 0.01 mV. The relative estimation

errors are both bounded within ±18% after the initial transient phase, which is also

on the desired order of 10%.

Therefore, assuming that the input and output measurement noise are zero mean,

Gaussian, and white, the standard deviation for input and output measurement noise

must be on the order of 1 mA and 0.01 mV, respectively, in the case where a relative

estimation error bound on the order of 10% is required. For other relative estimation

error bounds, the tolerable levels of measurement noise can be obtained in the same

manner.

3.4.3 Robustness to SOC Estimation Errors

The estimation error in the SOC corresponds to the difference between the state of the

main system and the state of the main system model. Because of the energy storage

nature of batteries, the dynamics of solid concentration in each electrode contains a

single integrator, hence the battery system is marginally stable with one eigenvalue

at 1 for each electrode. Moreover, the states are not significantly affected by the

subsystem, because the feedback from the side reaction current density on the main

system dynamics is negligible. Therefore, the difference in the states that correspond
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θ and the side reaction current density Jsd under the presence of (a) input and (b)
output measurement noise. The bounds of the relative estimation errors are on the
order of 10% as required.

to eigenvalues at 1 are persistent. The persistent state difference also causes a voltage

difference between the true system and the system model, which causes error in the

estimates of the side reaction current density and health subsystem parameter.

In this section, a 1% SOC estimation error is assumed because an error on this

level is often expected in the SOC estimation [34, 54, 40]. The SOC in the true

system is initialized at 0% as in Section 3.3, while the SOC in the system model is

initialized at 1%. The estimation results are presented in Figure 3.5 (a). Both εJsd

and εθ are on the order of 1000% for most of the operating time. Figure 3.5 (b)

presents the difference between the cases with 0% and 1% initial SOC levels in the

voltage responses of DFN50 during the 1-C CCC mode. It can be observed that the

voltage difference is on the order of 1 mV for most of the operating time. This level

of voltage difference leads to a value of αas on the order of 1000%, which agrees with

the estimation results. The results indicate that the presence of an SOC estimation

error can degrade the performance of RCSI in the estimation of side reaction current

density. Therefore, an accurate estimation of the SOC is required to minimize the

estimation error of the side reaction current density. Alternatively, co-estimation of

the SOC and the side reaction current density can be pursued. An example method

for the co-estimation of the SOC and the side reaction current density is the TSF
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that is discussed in Chapter 4.
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Figure 3.5: (a) The relative estimation errors ε of the subsystem parameter θ and the
side reaction current density Jsd and (b) the voltage difference under the presence of
a 1% SOC error. The bound of the relative estimation errors in (a) is on the same
order as expected from the voltage difference in (b).

3.4.4 Robustness to Modeling Error

3.4.4.1 Modeling Error in Main System Model

Many factors can contribute to the modeling error in the main system model, such as

the truncation errors caused by approximating an infinite dimensional system with

a finite-dimensional system, parameter uncertainties and discrepancies between the

physical effects included in the mathematical model and the true physics.

I. Error in Model Structure

In this section, the impact of the main system modeling errors caused by the finite-

dimensional approximation is analysed as an example of the error in model structure.

DFN50 is used as the true main system in the simulation, while either SPM or the

DFN model with fewer particles per electrode (e.g., DFN30 and DFN10) is used

as the main system model. The estimation errors caused by these modeling errors
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main system model. The differences in the voltage responses during 1-C constant
current charge mode between DFN50 and (d) DFN30, (e) DFN10, and (f) SPM. The
bounds of the relative estimation errors in (a), (b), and (c) are on the same orders as
expected from the voltage differences in (d), (e), and (f), respectively.

are compared with the anticipated estimation errors based on the voltage differences

between different models to confirm the analysis in Section 3.4.1.

Figure 3.6 (a), (b) and (c) present the relative estimation errors in cases with

DFN30, DFN10, and SPM as the main system model, which are on the order of

100%, 1000% and 104% for most of the operating time, respectively. Figure 3.6 (d),

(e) and (f) show the voltage difference under 1-C CCC mode between DFN50 and

DFN30, DFN10, as well as SPM, which are on the order of 0.1 mV, 1 mV and 10

mV for most of the operating time, respectively. Based on these voltage differences,

according to (3.48), the anticipated estimation errors in the three cases are on the

order of 100%, 1000% and 104%, respectively. Therefore, the levels of anticipated

estimation errors from the voltage differences in the three cases are all in accordance

with the observed levels of the corresponding relative estimation errors.

Unlike all the other examples herein, Figure 3.6 (c) shows an appreciable discrep-

ancy between εJsd and εθ. This is an example where a large modeling error in the
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main system model yields different relative estimation errors in the side reaction cur-

rent density and health subsystem parameter by causing a large difference between

y and ŷ. This result illustrates that the accuracy of the identified health subsystem

parameter and of the estimated side reaction current density are not necessarily the

same.

The results show that the modeling errors in the main system models degrade

the accuracy of the estimated side reaction current density. The estimation is less

accurate with a smaller number of particles per electrode in the main system model.

Therefore, the estimation of the side reaction current density using RCSI requires a

high fidelity battery model with very small voltage difference from the real battery.

A competing requirement for a high fidelity model is low computation complexity

for real-time simulation and on-line estimation. For the DFN50 model used herein,

the simulation is five times faster than the real time on average. This time difference

indicates that the computation required by the estimation algorithm designed herein

can be done within a much shorter time than required for on-line estimation. The

simulations herein are performed using Matlab 2014a on a 64-bit computer with 2.7-

GHz processor. Although practical applications may not have this computational

power, the computational speed gained by switching to a compiled language can

partially offset the loss in the computational power. Methods also exist to significantly

reduce the computational complexity of numerically solving the DFN model [55, 66].

Therefore, even with the requirement of using a high fidelity model, the proposed

method is still potentially suitable for on-line estimation.

II. Error in Model Parameters

In this section, the impact of parametric error caused by battery degradation on

the estimation accuracy is studied. Two parameters, Rfilm andDs,n, are selected as the

example parameters with error because they are reported to change as the LiFePO4

battery degrades [46, 44]. In particular, [46] reports 100% and 560% increase in Rfilm

and diffusion coefficients Ds, respectively, after 600 hybrid pulse power characteriza-

tion cycles at 25 ◦C. For the diffusion coefficients, only the one at the anode, namely

Ds,n, is increased because changes in the diffusion coefficient are caused by accumu-
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lation of the SEI film [46] and the SEI is herein assumed to grow only at the anode

[28]. The parameters for the fresh battery are used in the system model and Rfilm and

Ds,n in the true system are increased according to the percentages reported in [46]

to simulate the estimation of the side reaction current density in a degraded battery

using the parameters for the fresh battery in the model.

Figure 3.7 (a) – (c) shows the estimation results when the errors in Rfilm and

Ds,n are considered. It can be observed that the estimates Ĵsd and θ̂ stay close to

their true values after 1000 seconds, and the relative estimation errors εθ and εJsd are

both bounded within [-15, 0]% after 1200 seconds. Figure 3.7 (d) shows the voltage

difference, δVDegraded/Fresh, between the DFN50 model with values of Rfilm and Ds,n

in fresh and degraded batteries during 1-C CCC mode. It can be observed that

δVDegraded/Fresh starts on a level as high as 20 mV at the beginning of 1-C CCC mode,

52



which corresponds to the region where the estimation errors are large. After 1200

seconds, when the relative estimation errors are on the order of 10% in Figure 3.7 (a)

– (c), δVDegraded/Fresh is on the order of 0.01 to 0.1 mV. Hence, the relative estimation

error is on the same order as (when δVDegraded/Fresh is on the order of 0.01 mV) or one

order of magnitude more accurate than (when δVDegraded/Fresh is on the order of 0.1 mV)

what is expected from the analysis in Section 3.4.1. This is because Jsd and Rfilm are

highly correlated, while the analysis in Sec. 3.4.1 assumes independence between Jsd

and additional sources. Hence, δVDegraded/Fresh is a combined effect of the parametric

errors and the change in Jsd caused by the parametric errors, which is larger than the

voltage difference caused by the parametric errors alone. At the end of the 1-C CCC

mode, although the voltage difference δVDegraded/Fresh increases to slightly over 1 mV,

neither the magnitude nor the duration of this increase is significant enough to cause

large changes in the estimates and thus the relative estimation errors stays below

10%. This result shows that the estimation of the side reaction current density is still

accurate even under the considered parametric errors in Ds,n and Rfilm introduced by

battery ageing.

3.4.4.2 Form Discrepancy between Subsystem and Subsystem Model

It is hitherto assumed that the forms of the subsystem and the subsystem model

are exactly the same. However, this assumption is usually not satisfied in practice.

Moreover, representing a subsystem with a subsystem model of different form causes

difficulty in subsystem identification, and results in less accurate estimates of the side

reaction current density.

In this section, the performance of RCSI is examined when the form of the subsys-

tem model is different from the form of the true subsystem. In particular, an example

is provided to show how a subsystem model with identical SOH parameters can be

used to estimate a true subsystem with non-identical SOH parameters. Hence, the

true subsystem follows the form as in (2.61), while the form of the subsystem model

still follows (3.4). The following distribution of Km
SOH is arbitrarily chosen for the true
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subsystem as an example.

kmSOH ∼ N
(
k0, 25k2

0

)
, (3.54)

Km
SOH = |kmSOH| , (3.55)

where k0 equals to the value of Kunif
SOH in Section 3.3. Simulations show that distribu-

tions with higher covariances can lead to larger estimation error.

Furthermore, after removing the assumption in (3.36)-(3.38) that no form discrep-

ancy exists between the subsystem and the subsystem model, the following variables

are re-defined in this section,

Jsd
4
=

1

N

N∑
m=1

Jmsd , Ĵsd
4
= Ĵave

sd , (3.56)

θ
4
=

N∑
m=1

Km
SOHy

m
φ

N∑
m=1

ymφ

, θ̂
4
= K̂unif

SOH, (3.57)

y
4
=

1

N

N∑
m=1

ymφ , ŷ
4
= ŷave

φ . (3.58)

Figure 3.8 (a) presents the estimation results with 1-C CCC mode. Both εJsd and

εθ are within ±20% after the transient phase. Simulations show that the voltage dif-

ference is generally on the order of 10−3 V between DFN50 with the health subsystem

parameters following the distribution in (3.54) to (3.55) and DFN50 with the health

parameters all equal to the weighted average of the true parameters. This indicates

that the relative estimation errors are expected to be on the order of 10%, which

agrees with the ±20% bound in the estimates.

Besides the 1-C CCC mode, the UDDS cycle is also used as the excitation to

examine the impact of form discrepancy in the subsystem model. Figure 3.8 (b)

presents the estimation results with the UDDS cycle, where the relative estimation

errors are both within ±20% during the whole cycle. Oscillations during the whole

cycle and divergence at the end of the cycle are present due to the weak identifiability
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Figure 3.8: The relative estimation errors ε of the subsystem parameter θ and the
side reaction current density Jsd under (a) the 1-C constant current charge (CCC)
mode and (b) the urban dynamometer driving schedule (UDDS) cycle under the
presence of form discrepancy between the subsystem and the subsystem model. (c)
presents the relative estimation errors under the same UDDS cycle as in (b), but with
the estimation algorithm shut down whenever discharge current is above 5 C. Note
that shutting down the estimation algorithm during high-C-rate discharge reduces
estimation errors.

caused by high discharge C-rate and low SOC level as in Figure 3.2 (c).

The estimation errors can be reduced by shutting down the estimation algorithm

during high-C-rate discharge when the true side reaction current density is small. In

this case, the algorithm operates only when the input current can produce a large

true side reaction current density, which is also the time when an estimate of the side

reaction current density is needed. The threshold of the discharge C-rate for which

the algorithm is shut down is chosen based on the particular current profile to balance

the number of effective data points for estimation and the identifiability. Figure 3.8

(c) presents the estimation results of the same case as in Figure 3.8 (b), but with

the algorithm shut down whenever the discharge current is above 5 C. Comparison

between Figure 3.8 (b) and Figure 3.8 (c) shows an improvement in the bound for

the relative estimation errors from ±20% to [−15, 10]%. This improvement in the

estimation accuracy can be more significant when the excitation current is more

aggressive.

Similarly, to address the identifiability issue associated with low SOC, limiting the

SOC region during which the estimation algorithm is operated can further improve
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the estimation accuracy near the end of the UDDS cycle. Because a low-accuracy

SOC estimate suffices to determine the time to shut down the estimation algorithm,

a possible method to estimate the true SOC level is Coulomb counting.

3.4.5 Discussions and Extensions of the Simulation Results

For all the results in this section, similar results can be obtained for other types of

excitation current. The numerical results depend on VJsd for the particular excitation

type and the voltage errors caused by additional sources. Notice that even if one

excitation type has a higher VJsd , it does not necessarily yield more robust estimation

results, because the voltage difference caused by additional sources also varies among

different excitation types. For example, in 10-C CCC mode, VJsd is generally 10 times

higher than that for 1-C CCC mode. However, the expected bound for the relative

estimation error in the 10-C case is not 1/10 of the bound for the 1-C case when there

is modeling error in the main system model, because the voltage differences among

the SPM and the DFN models are also larger for high C rate. Therefore, the expected

bound for the relative estimation error for one excitation type cannot be extrapolated

to other excitation types. The robustness level for an excitation type can be obtained

by following the framework developed in Section 3.4.1.

Furthermore, the expected performance of RCSI on real-life battery cycling data

can be deduced by analyzing the difference between voltage responses of battery

models and real-life battery measurement data. The result in [63], which identifies

the parameter set used herein from experimental data, shows that the absolute error

between the voltage measurements and the simulated voltage of the DFN model with

this parameter set is below 40 mV for 80% of the time. This voltage error is about

103 larger than the Vas,bd identified in Section 3.4.1 that corresponds to the relative

estimation error bound of 10%. This analysis indicates that estimation of the side

reaction current density for the same battery under the same experimental condition

in [63] is expected to be difficult given that the modeling error is relatively large

compared to the voltage difference caused by the side reaction.

However, this does not mean that the side reaction current density cannot be esti-
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mated in practice. The results from the numerical analyses in Section 3.4 is applicable

only to this particular battery parameter set, with this particular cycling profile, un-

der this particular experimental condition. The side reaction current density could

still be estimated successfully in other cases with different battery parameter sets, cy-

cling profiles, or experimental conditions as long as they can make the corresponding

Vas below the desired Vas,bd. Meanwhile, according to (3.46), given a desired αas,bd,

Vas,bd is a function of VJsd . Therefore, the side reaction current density can be suc-

cessfully estimated within a reasonable αas,bd even under the presence of practical

non-ideal conditions for scenarios where the battery parameters or the cycling profile

yield a large VJsd .

The main generalizable conclusion that can be drawn from Section 3.4 is that the

side reaction current density can be very sensitive to non-ideal conditions that cause

errors in the measurement or estimation of the voltage, because the side reaction

current density is a small value that has a limited impact on the voltage. When this

algorithm is applied to battery experiment data to estimate the side reaction current

density, the analysis in Section 3.4.1 needs to be followed in order to predict the

margin of the robustness.

Various methods can be applied to improve the robustness in estimation of the side

reaction current density. To improve the robustness to the presence of measurement

noise and modeling errors, very accurate sensors and models with higher fidelity are

needed to obtain a value of Vas that satisfies the required Vas,bd. Under the presence

of SOC estimation errors, the TSF, an inaccessible subsystem estimation algorithm

modified from RCSI, is developed in Chapter 4 to improve the estimation accuracy

of the side reaction current density.
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3.5 A Framework to Obtain Lower Bound of Rela-

tive Estimation Errors for Voltage-Error-Based

Algorithms

The analyses in Section 3.4.1 can be easily generalized to other estimation algorithms

that estimate the side reaction current density by minimizing the error between the

measured voltage and the voltage estimate of a battery model. In this section, a

general framework is developed to obtain the lower bound of the relative estimation

error of the side reaction current density when estimation is based on minimizing

voltage errors. This framework also gives the same lower bound of the covariance of

the estimates as given by the Fisher information [67, 68], which is a method used in

the field of information theory to obtain the lower bound of covariance of unbiased

estimates. Notice that, unlike the lower bound of the covariance that applies only to

unbiased estimates, the lower bound of the relative estimation error provided by this

framework does not require the estimate to be unbiased.

Define the sensitivity of the voltage to the side reaction current density as

s(V |Jsd)
4
=

∂V

∂Jsd

. (3.59)

It can be observed that H̃ in RCSI is a realization of s(V |Jsd) through the Markov

parameters. Then, the voltage caused by Jsd is

VJsd
4
= s(V |Jsd)Jsd. (3.60)

Then the error z between the measured voltage and the estimated voltage can be

decomposed into

z = V̂ − V = s(V |Jsd)(Ĵsd − Jsd) + Vas. (3.61)

For any estimation algorithm whose goal is to minimize the voltage error, the relative
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estimation error of the side reaction current density achieves its lower bound when

z = 0. It can be deduced from (3.61) that when z = 0,

Ĵsd − Jsd =
Vas

s(V |Jsd)
. (3.62)

Combing (3.60) and (3.62) yields that the lower bound of the relative estimation error

is

|εJsd| =
∣∣∣∣∣ Ĵsd − Jsd

Jsd

∣∣∣∣∣ =

∣∣∣∣ Vas

VJsd

∣∣∣∣ , (3.63)

which is the same as the result shown in (3.43) and (3.45).

The equivalence between (3.63) and (3.43) and (3.45) demonstrates that the lower

bound of the relative estimation error under non-ideal conditions that cause errors

in either voltage measurements or voltage estimates is determined by the sensitivity

s(V |Jsd) of the voltage to the side reaction current density, the magnitude of the side

reaction current density Jsd, and the voltage error Vas caused by non-ideal conditions.

This lower bound is also independent of the estimation algorithm as long as the

algorithm estimates the side reaction current density by minimizing the voltage error.

Therefore, all the results and discussions in Section 3.4 that are obtained in the

context of RCSI can also be applied to estimation of the side reaction current density

using other estimation algorithms based on minimization of voltage error. It can also

be concluded that the estimation results obtained using RCSI in Section 3.4 have

achieved the lower bound of the relative estimation errors of the side reaction current

density.

The lower bound for the relative estimation error deduced in (3.63) also yields

the same lower bound of the covariance of unbiased estimates as given by the Fisher

information, a quantity that measures how easily one can observe parameters in a

probability density function from collected data [64]. The Cramér-Rao bound of the

variance of an unbiased parameter estimator is equal to the inverse of the Fisher
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information [67, 68]. The Fisher information is defined as [67, 64]

I(ζ) =
s(y|ζ)Ts(y|ζ)

σ2
, (3.64)

where s is the sensitivity matrix of the output y to ζ, the variable to estimate, and

σ2 is the covariance of the noise in the output measurement. Then the lower bound

of the covariance of the estimate of ζ is [67]

cov(ζ̂) =
1

I(ζ)
. (3.65)

In estimation of the side reaction current density, the sensitivity of the output

voltage to the side reaction current density is s(V |Jsd) and σ2 is the covariance of Vas.

Then according to the Fisher information, the covariance of an unbiased estimate of

the side reaction current density satisfies

cov(Ĵsd) ≥ 1

I(Jsd)
=

cov(Vas)

s(V |Jsd)2
=

E(V 2
as)

s(V |Jsd)2
. (3.66)

The final equality is because the noise in the Fisher information is assumed to be zero

mean, and thus cov(Vas) = E(V 2
as).

On the other hand, when Ĵsd is an unbiased estimate of Jsd, E(Ĵsd) = Jsd, and

thus

cov(Ĵsd) = E
[(
Ĵsd − Jsd

)2
]
. (3.67)

The lower bound of the covariance of the estimate is achieved with the relative esti-

mation error achieving its lower bound. Substituting (3.62) into (3.67), the covariance

of the estimate Ĵsd when the lower bound of the relative estimation error is achieved

can be expressed as

cov(Ĵsd) =
E [V 2

as]

s(V |Jsd)2
, (3.68)
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which is the lower bound of the covariance of an unbiased Ĵsd.

Comparing (3.66) and (3.68), it can be observed that the analyses of the lower

bound of the relative estimation error and the Fisher information yield the same lower

bound for the covariance of the estimate of the side reaction current density. This

equality is due to the fact that both the lower bound of the relative estimation error

deduced herein and the Fisher information are obtained by comparing the sensitivity

of the output voltage to the side reaction current density and the voltage error caused

by additional sources.

3.6 Simulation Results with LMO-Mixture Battery

Parameters

In this section, the estimation technique is applied to a different parameter set for a

different battery chemistry, namely the LMO-mixture chemistry. The estimation is

performed under example cases such as ideal conditions and SOC estimation errors

through simulations. The goal of this section is to demonstrate that the estimation

technique, including RCSI-based estimation algorithm and the robustness analysis in

Section 3.5, is not restricted to the parameter set of the LiFePO4 battery used in

Section 3.3 and 3.4, but is generally applicable to various Li-ion battery types and

chemistries to monitor degradation caused by side reactions that consume cyclable

Li-ions.

The parameters of the SOC model are adopted from [3], where the parameters

are identified from experimental data of an LMO-mixture battery. Due to lack of

parameters for the side reactions in LMO-mixture batteries, the parameters of the

SOH model are again adopted from [28]. The number of particles is selected to

be 50 per electrode. The sampling time is 0.2 s. For RCSI, the weights in the

retrospective cost function (3.27) are set as RU = 0 and RZ = 1, and the parameters

for Kalman filter update (3.32) and (3.33) are set as Q = 0.1, Rk = 0.5, and R1 = 0.

The parameter estimate and error covariance matrix are initialized at θ(0) = 0 and
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Figure 3.9: The estimates and relative estimation errors ε of the subsystem parameter
θ and the side reaction current density Jsd using a parameter set for an LMO-mixture
battery under ideal conditions with two input currents: (a) a 1-C constant current
charge (CCC) cycle and (b) a simulated current profile generated by an EV following
an Urban Dynamometer Driving Schedule (UDDS).

P (0) = 100, respectively. The Markov parameter is set as H̃ = H0 = 4× 10−7 Ω m3.

The side reaction current density is first estimated under ideal conditions using

both 1-C CCC and the UDDS cycles. The initial SOC is set at 0% and 100% for

1-C CCC and the UDDS cycle respectively. Figure 3.9 shows the estimates θ̂ and

Ĵsd, and the relative estimation errors εθ̂ and εĴsd under ideal conditions. It can

be observed that the estimates converge to their respective true values within 500

seconds under both the 1-C CCC and UDDS cycles. The final relative estimation

errors εθ̂ and εĴsd are bounded within ±0.1% and ±1% for the 1-C CCC and UDDS

cycles, respectively. It can also be observed that the magnitude of Jsd is larger during

the UDDS cycle than during the 1-C CCC cycle. This result indicates that the

unidentifiability observed during high C-rate discharge for the LiFePO4 battery does

not apply to this parameter set for the LMO-mixture battery. On the contrary, the

observability of θ and Jsd is expected to be stronger during the UDDS cycle because

of the larger Jsd. The bound of relative estimation errors during the UDDS cycle is

still larger than the 1-C CCC cycle because the dynamic Jsd trajectory makes the

estimates more difficult to converge.
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Figure 3.10: The relative estimation errors ε of the subsystem parameter θ and the
side reaction current density Jsd using a parameter set for an LMO-mixture battery
under 1% SOC estimation error during 1-C constant current charge (CCC) cycle.

Then, a simulation is performed to estimate the side reaction current density

under the 1-C CCC cycle under 1% SOC estimation error as an example. All the

other parameters and settings of the models and RCSI are the same as under the

ideal conditions. Figure 3.10 presents the relative estimation errors εJsd and epsilonθ

under the 1% SOC estimation error. It can be seen that the relative estimation errors

are on the order of 103%.

The result shown in Figure 3.10 can be explained using the framework developed

in Section 3.5. In the nonlinear battery model, the sensitivity of the nonlinear voltage

to the side reaction current density can be approximated by comparing the change in

the output voltage caused by perturbing the side reaction current density from the

nominal value by a small amount while all other parameters remain unperturbed [69].

To this end, the DFN50 model is simulated three times using 1-C constant current

charge. The first time is with the value of all parameters being the same as in the

LMO-mixture parameter set used in the true system. The voltage simulated from

the first time is denoted as V100%Jsd . Then the DFN50 model is simulated with ±1%

perturbation in the value of i0,sd, and thus Jsd is perturbed by ±1% as well. The

voltage responses in the final two simulations are denoted with V99%Jsd and V101%Jsd ,
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Figure 3.11: (a) The sensitivity of the voltage to the side reaction current den-
sity, s(V |Jsd), and (b) the voltage difference under the presence of a 1% SOC error,
δV0%SOC/1%SOC using the LMO-mixture parameter set.

respectively. Then, the sensitivity of the voltage to the side reaction current density

is approximated by

s(V |Jsd) ≈ |V100%Jsd − V99%Jsd |+ |V100%Jsd − V101%Jsd|
2× 1%Jsd

. (3.69)

Figure 3.11 (a) depicts s(V |Jsd) obtained using (3.69). It can be observed that

s(V |Jsd) is on the order of 10−7 V m3 A−1. This result agrees with the fact that H0

in RCSI, which is also a measure of the sensitivity of the voltage to the side reaction

current density, is also set at O(10−7). Figure 3.11 (b) shows the voltage difference

δV0%SOC/1%SOC for the LMO-mixture battery. It can observed that δV0%SOC/1%SOC

is on the order of 10−3 V. In addition, Figure 3.9 shows that Jsd is on the order of

103 A m−1. According to (3.63), the lower bound of the relative estimation errors is

expected to be on the order of 103%, which agrees with the relative estimation errors

observed in Figure 3.10. This result shows that RCSI has achieved the lower bound

of the relative estimation errors.
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This section demonstrates that the estimation technique, including RCSI-based

estimation algorithm and the robustness analysis in Section 3.5, is also applicable to

a parameter set for an LMO-mixture battery to estimate the side reaction current

density and analyze the robustness of the estimation. The fact that the technique

can be applied to both parameter sets for LiFePO4 and LMO-mixture batteries shows

that the technique developed in Chapter 3 is not restricted to certain parameters or

certain battery chemistries.

3.7 Summary and Conclusions

In this chapter, the effectiveness of RCSI in estimation of the side reaction current

density is explored. The side reaction current density is estimated directly for the

first time as the SOH indicator. The battery SOH process that produces the side

reaction current density is formulated as an inaccessible subsystem in the battery.

The estimate of the side reaction current density is obtained by identifying the inac-

cessible battery SOH subsystem using RCSI. Robustness of the side reaction current

density estimation is examined under various non-ideal conditions, such as measure-

ment noise, SOC estimation errors, modeling errors in the main system model, and

the form discrepancy between the subsystem and the subsystem model.

When the ideal condition (i.e., no measurement noise, no SOC estimation error

and no modeling error) is assumed, the results show that RCSI can accurately and

quickly estimate the side reaction current density as well as identify the battery

health subsystem when the degradation effect is significant. Using a parameter set

for a LiFePO4 battery, an accurate estimation can be made throughout slow (1-C)

and fast (10-C) CCCD cycle, and the UDDS cycle, with relative estimation errors

bounded within ±0.1%, ±1% and ±0.3%, respectively.

This chapter also develops a framework to obtain the lower bound of relative esti-

mation error under non-ideal conditions for algorithms that estimate the side reaction

current density by minimizing the error between measured voltage and estimated volt-

age. This framework determines that the lower bound of the relative estimation error
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of the side reaction current density is proportional to the voltage error caused by non-

ideal conditions, and inversely proportional to the sensitivity of the voltage to the side

reaction current density and the magnitude of the side reaction current density itself.

Simulations verify that RCSI can achieve the lower bound of the relative estima-

tion error of the side reaction current density provided by this framework under the

presence of measurement noise, SOC estimation errors, modeling errors in the main

system model, and the form discrepancy between the subsystem and the subsystem

model. With the LiFePO4 parameter set used herein, the threshold for the voltage

error caused by non-ideal conditions is identified to be O(0.01) mV so that the bound

of the relative estimation errors is on the order of ±10% under 1-C CCC mode. Based

on this small threshold value, the algorithm is expected to be sensitive to non-ideal

conditions, which is a result of the side reaction current density having a small impact

on the battery output voltage. Based on the results obtained, high fidelity models

and accurate sensors would be needed in practice. However, these numerical results

are specific to the particular parameter set and the cycling profiles considered herein.

For other scenarios where the combination of the battery parameters and the cycling

profile yield a larger VJsd or a smaller Vas, the side reaction current density can be

estimated with a smaller αas,bd even under the presence of non-ideal conditions.

The proposed method for estimating the side reaction current density is generally

applicable to various Li-ion battery types and chemistries to monitor degradation

caused by side reactions that consume cyclable Li-ions. Although most of the numer-

ical results herein are obtained from simulations using a parameter set for a LiFePO4

battery, the proposed estimation technique, including the method for estimating the

side reaction current density using RCSI and the framework analyzing its robustness,

can also be applied to other parameter sets and other battery chemistries to monitor

the SOH change resulting from any electrochemical-based degradation mechanism

that consumes cyclable Li-ions. A few simulation examples using a parameter set

of an LMO-mixture battery is provided to verify the generality of this estimation

technique.

In summary, this chapter makes three main contributions. First, the side reaction
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current density is estimated as a direct SOH indicator for the first time. Second, the

side reaction current density and the SOH subsystem parameter are estimated using

RCSI. Finally, a framework is provided to analyze the robustness of estimating the

side reaction current density to non-ideal conditions that cause errors in the mea-

surement or estimate of the voltage. The analyses from the framework are confirmed

with simulation results, based on which predictions are made on the robustness of

estimating the side reaction current density in practice.
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Chapter 4

Two-Step Filter

4.1 Introduction

Chapter 3 frames the battery SOH monitoring problem as an inaccessible subsystem

identification problem and conceives an approach to monitor SOH by estimation of

the side reaction current density when SOC is perfectly known. However, an SOC

estimation error on the level of 1% is often expected in practice [54, 34, 40].

Simulation results in Chapter 3 show that estimation of the side reaction current

density is sensitive to SOC estimation errors. RCSI can correct for state estimation

errors when the system is both controllable through the feedback of the subsystem

output and observable. However, due to the negligible feedback from the side reaction

current density to the battery electrochemical dynamics, the controllability of the

battery system is very weak. Furthermore, the fact that there is a feedthrough from

the side reaction current density to the terminal voltage [65] and that a battery is a

marginally stable system due to its energy storing nature makes the SOC estimation

errors persistent. Hence, a new approach is needed that can track the side reaction

current density under SOC estimation errors.

In this chapter, a new inaccessible subsystem identification technique called the

two-step filter (TSF) is introduced for SOH monitoring to overcome the problems

caused by persistent SOC estimation errors. Similar to RCSI, the system is divided

into two parts: the Main System represents the part of the system that is known and
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the Subsystem refers to the part that is unknown and to be identified. In the battery

case, they correspond to the electrochemical dynamics and the health subsystem,

respectively. SOC estimation error is caused by an initialization error in the states

of the Main System that correspond to eigenvalues of 1. Thus, the first step in the

TSF is a modification of RCSI to take into account the Main System state error.

In the second step, the estimation goal is expressed as a nonlinear function of both

the battery health subsystem parameter and the Main System state initialization

error. Then, the modified extended Kalman filter (MEKF) [70] is used to estimate

the unknown subsystem parameter and the Main System state error. In essence, the

TSF minimizes the impact of the SOC estimation errors on estimation accuracy of

the side reaction current density by evaluating the voltage error caused by the SOC

estimation errors and then eliminating this voltage error in estimation of the side

reaction current density.

The rest of the chapter first demonstrates the performance of the TSF using a time

varying linearized battery model. Then the application of the TSF on the nonlinear

battery model is discussed.
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4.2 The Development of the Two-Step Filter

4.2.1 Problem Setup

Figure 4.1: The architecture for the two-step filter.

Figure 4.1 shows the generic framework for the TSF. The True System consists of a

known Main System and an unknown Subsystem. The dynamic equations and the

output equations of the Main System are considered separately, because the Subsys-

tem is in a closed-loop with only the output equations due to the assumption that

the Subsystem output u (k) does not affect the dynamics, but only the the system

output y0 (k) via direct feedthrough. The Main System Dynamics block is driven by

the external excitation signal w (k). The Main System Output block is coupled with

the Subsystem via the variables y (k) and u (k).

The System Model part consists of the Main System Model and the Subsystem

Model. The Main System Model block is assumed to be identical to the Main System

block of the True System with the exception that there may be initialization errors

in the states. The Subsystem Model block, on the other hand, has the same form as

the Subsystem block in the True System, but its parameters are unknown.

Note that the input and output of the Subsystem are not directly measurable; i.e.,
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the Subsystem is inaccessible. Instead, the output error z (k) = ŷ0 (k)− y0 (k) is used

to estimate the Subsystem parameters; hence, this is an inaccessible subsystem iden-

tification problem. The goal of the algorithm is to identify the unknown Subsystem

under the presence of the Main System state estimation error x̂ (k)− x (k).

4.2.2 The System

The equations of the Main System are

x (k + 1) = Ax (k) + Fw (k) , (4.1)

y (k) = Cx (k) +Du (k) + Jw (k) , (4.2)

y0 (k) = E1x (k) + E2u (k) + E3w (k) , (4.3)

whereas the Subsystem is described by the equation

u (k) = θy (k) , (4.4)

where the parameter θ is unknown.

The features of this framework that are important for the context of this work are

as follows:

1. There is no feedback from the Subsystem output, u (k), into the Main System

Dynamics. This architecture is motivated by the battery health problem where

the health subsystem in a battery has a negligible impact on the SOC dynamics

(i.e., Main System Dynamics).

2. The output y0 (k) is a function of the Main System state x (k) and the Subsystem

output u (k). This is motivated by the approximation in battery health problem

that the effect of the health subsystem on the terminal voltage can be considered

as a direct feedthough.

3. The Main System is marginally stable where matrix A is diagonal with at least

one eigenvalue being 1. This property is due to the battery being an energy
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storage device.

4.2.3 Estimation Setup

It is assumed that the Main System is known and can be modeled accurately. Hence,

the Main System Model is described by the following set of equations:

x̂ (k + 1) = Ax̂ (k) + Fw (k) , (4.5)

ŷ (k) = Cx̂ (k) +Dû (k) + Jw (k) , (4.6)

ŷ0 (k) = E1x̂ (k) + E2û (k) + E3w (k) , (4.7)

The Subsystem Model is assumed to have the same form as (4.4), but with an

unknown parameter; i.e.,

û (k) = θ̂ (k) ŷ (k) . (4.8)

Therefore, the goal is to estimate the true Subsystem parameter θ with θ̂ (k) so

that the Subsystem output u (k) can be estimated.

Estimating θ and u (k) with θ̂ using the structure of Figure 4.1 is a challenge due

to two reasons:

1. Due to the features 1) and 3) above, the main system state error x̂ (k) − x (k)

is persistent, which affects the estimation of u (k).

2. Due to the feature 2), the difference z (k) = ŷ0 (k) − y0 (k) can be caused by

either the difference between û (k) and u (k) or the state difference x̂ (k)−x (k).

The unique determination of u (k) from only the measurement of y0 (k) is not

possible given that x (k) is not measured.

These difficulties make the estimation of θ using RCSI challenging under the

presence of main system state error. Hence, a new approach is described below.
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4.2.4 The Two-Step Filter

Assume that A ∈ Rn×n is organized as

A =

 Im 0

0 Λ

 (4.9)

where Im represents the identity matrix of dimension m (m ≤ n) and

Λ =


λ1

λ2

. . .

λn−m

 (4.10)

with λi < 1 for all i.

The main system state vector is x =
[
x1 (k) · · · xn (k)

]T

where the states

x1, x2, · · · , xm are such that their initialization errors are persistent. Define the per-

sistent state vectors ζ (k) and ζ̂ (k) as

ζ
∆
=
[
x1 · · · xm

]T

, (4.11)

ζ̂
∆
=
[
x̂1 · · · x̂m

]T

. (4.12)

Let d represent the constant main system state difference vector,

d
∆
= ζ̂ (k)− ζ (k) =


x̂1 (k)− x1 (k)

...

x̂m (k)− xm (k)

 ∈ Rm. (4.13)

Let E1 and C consist of the elements of E1 and C, respectively, that correspond

to the persistent states:
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E1
∆
=
[
E1,1 · · · E1,m

]
∈ Rly0×m, (4.14)

C ∆
=
[
C1 · · · Cm

]
∈ Rly×m. (4.15)

where ly0 and ly are the length of y0 and y, respectively.

4.2.4.1 The First Step

Assume that the initial estimation errors in all the asymptotically stable main system

states diminish when time step is larger than a constant T . For any k > T , the error

z (k) is expressed as a function of u (k), û (k) and d:

z (k) = ŷ0 (k)− y0 (k)

= E1

[
ζ̂ (k)− ζ (k)

]
+ E2 [û (k)− u (k)]

= E1d+ E2 [û (k)− u (k)] . (4.16)

Next, a cost function is formulated:

J (us (k)) = zsT (k)Rzz
s (k) + usT (k)Ruu

s (k) , (4.17)

where Rz and Ru are tunable positive semi-definite weights; the substituted z (k),

zs (k), is defined such that û (k) in z (k) is replaced by any substitute us (k),

zs (k)
∆
= z (k)− E1d− E2û (k) + E2u

s (k) . (4.18)

The optimal u, u∗ (k), is defined to be the minimizer of J (us (k)). When Ru = 0,

the minimizer of J (us (k)) also minimizes zs (k) given that the effect of d in z (k) is

not compensated by u∗ (k). Let z∗ (k) denote the zs (k) that corresponds to u∗ (k);
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i.e.,

z∗ (k) = z (k)− E1d− E2û (k) + E2u
∗ (k) . (4.19)

Substitute (4.18) into (4.17) and find u∗ (k):

∂J

∂us

∣∣∣∣
us=u∗(k)

= 2u∗T (k)
(
E2

TRzE2 +Ru

)
+

2 (z (k)− E1d− E2û (k))TRzE2 = 0. (4.20)

Note that z (k) ∈ Rly0 and E2
TRzE2 +Ru is symmetric.

The solution to (4.20) is

u∗ (k) = −
(
E2

TRzE2 +Ru

)−1
E2

TRz

[z (k)− E1d− E2û (k)] . (4.21)

The terms that can be constructed from the measurable signal z (k) and estimated

signal û (k) are lumped into the variable ũ (k):

ũ (k)
∆
= −

(
E2

TRzE2 +Ru

)−1
E2

TRz

[z (k)− E2û (k)] . (4.22)

Therefore,

ũ (k) = u∗ (k)−
(
E2

TRzE2 +Ru

)−1
E2

TRzE1d. (4.23)

The goal of the first step is to calculate ũ (k) from z (k) and û (k) as in (4.22).

4.2.4.2 The Second Step

Ideally it is desired that z∗ (k) converges to zero. By substituting (4.16) into (4.19),

it can be shown that u∗ (k) = u (k) when z∗ (k) = 0. Therefore, u∗ (k) in (4.23) can
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be constructed as

u∗ (k) = θy (k) . (4.24)

For k > T , express y (k) using the estimated signals ŷ (k) and û (k):

y (k) = Cx (k) +Du (k) + Jw (k)

= ŷ (k)− Cd−D (û (k)− u (k))

= [ŷ (k)−Dû (k)]− Cd+Dθy (k) . (4.25)

Therefore,

y (k) =
(
Ily −Dθ

)−1
[ŷ (k)−Dû (k)]

−
(
Ily −Dθ

)−1 Cd. (4.26)

Substitute (4.24) and (4.26) into (4.23) to obtain

ũ (k) = θ
(
Ily −Dθ

)−1
(ŷ (k)−Dû (k))

− θ
(
Ily −Dθ

)−1 Cd

−
(
E2

TRzE2 +Ru

)−1
E2

TRzE1d. (4.27)

(4.27) constructs ũ (k) with the unknown parameters θ and d. Now, any nonlinear

estimation method can be used to estimate θ and d from ũ (k) calculated in the first

step. In this paper, the Modified Extended Kalman Filter (MEKF) [70] is used in

the second step to estimate θ and d.

When the subsystem is SISO and only one of the eigenvalues of A is 1, the MEKF

algorithm for (4.27) is as presented below.

Define the parameter vector as ω ∆
=
[
θ d

]T

. The estimation of the parameter

vector is defined to be ω̂ (k)
∆
=
[
θ̂ (k) d̂ (k)

]T

. Let P (k) be the covariance matrix
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of ω̂ (k). Then,

ω̂ (k + 1) = ω̂ (k) +K (k)
[
ũ (k)− ˆ̃u (ω̂ (k))

]
, (4.28)

P (k + 1) = (α + 1) [P (k)−K (k)H (k)P (k) +Q (k)] , (4.29)

where

ˆ̃u (ω̂ (k)) =
θ̂ (k)

1−Dθ̂ (k)
(ŷ (k)−Dû (k))− C θ̂ (k) d̂ (k)

1−Dθ̂ (k)

−
(
E2

TRzE2 +Ru

)−1
E2

TRzE1d̂ (k) , (4.30)

H (k) =
∂ũ (ω)

∂ω

∣∣∣∣
ω=ω̂(k)

=

 1

(1−Dθ̂(k))
2

(
ŷ (k)−Dû (k)− Cd̂ (k)

)
− Cθ̂(k)

1−Dθ̂(k)
−
(
ET

2 RzE2 +Ru

)−1
E2

TRzE1

T

, (4.31)

K (k) = P (k)HT (k)
(
H (k)P (k)HT (k) +Rt (k)

)−1
. (4.32)

Q (k) is the process noise covariance matrix. Rt (k) is the output noise covariance

matrix. α ∈ [0, 1] acts like a forgetting factor with α+1 = 1
λ
where λ is the forgetting

factor.

4.2.5 Estimation of the Subsystem Output

Because there is a persistent difference between x̂ (k) and x (k), the input to the sub-

system model ŷ (k) will not converge to the true subsystem input y (k). Therefore,

even when θ̂ (k) converges to θ, the output of the subsystem model û (k) will not con-

verge to the subsystem output u (k) unless a correction based on d̂ (k) is introduced.

To estimate the subsystem output u (k), ŷ (k) should be corrected with d̂ (k). Let

û′ (k) and ŷ′ (k) denote the corrected estimates of the subsystem output u (k) and

subsystem input y (k), respectively, which can be derived as follows.
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The difference between ŷ (k) and y (k) is given as

ŷ (k)− y (k) = Cd+D (û (k)− u (k))

= Cd+D
(
θ̂ (k) ŷ (k)− θy (k)

)
(4.33)

Solving for y (k) yields

y (k) =
(
Ily −Dθ

)−1
[(
Ily −Dθ̂ (k)

)
ŷ (k)− Cd

]
. (4.34)

Replacing d and θ with their estimates d̂ and θ̂, we obtain

ŷ′ (k) = ŷ (k)−
(
Ily −Dθ̂ (k)

)−1

Cd̂ (k) . (4.35)

Then,

û′ (k) = θ̂ŷ′ (k)

= θ̂ (k)

[
ŷ (k)−

(
Ily −Dθ̂ (k)

)−1

Cd̂ (k)

]
. (4.36)

4.3 Application to Estimation of Side Reaction Cur-

rent Density

4.3.1 Modified Battery Model

The goal of this section is to find a model structure that is suitable as the System

Model in estimation of the side reaction current density. To achieve this goal, the

SPM presented in Section 2.2.2 is first modified so that i) the feedback of the side

reaction current density to the charge and discharge dynamics is removed, and ii) only

one eigenvalue of the dynamics of the model is 1. This modification can significantly

simplify the application of the TSF in estimation of side reaction current density.

Then the modified SPM is augmented with the SOH model to serve as the System

Model.
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First, because the feedback of the side reaction current density to the battery

charge and discharge dynamics is negligible compared with the influence of the ex-

ternal input, namely the current, the term Bu(k) in (2.50) can be removed.

Then, to minimize the number of the eigenvalues that are 1, the SPM is modi-

fied by removing the state equation for the solid concentration in the cathode and

computing cse,p using cse,n and the number of cyclable Li-ions instead. In this mod-

ification, the distribution of Li-ion concentration inside the particles is assumed to

be uniform for every instant. Even though solid Li-ion concentration is not always

uniformly distributed in practice, the assumption of uniform distribution is a valid

approximation when the C-rate is low to allow enough time for the diffusion of Li-ions

inside particles. Under this approximation, (2.41) is modified into

nLi = εs,pLpAcs,max,pθp(k) + εs,nLnAcs,max,nθn(k), (4.37)

and thus cse,p(k) can be computed from

θp(k) =
nLi(k)− εs,nLnAcs,max,nθn(k)

εs,pLpAcs,max,p

. (4.38)

Therefore, the state space model of the SPM in this chapter is modified from (2.50)

– (2.52) into

x(k + 1) = Ax(k) + FI(k), (4.39)

V (k) = g0(x(k), I(k)), (4.40)

where A and F are obtained from (2.42) for the anode, and g0(·) represents (2.48)

where cse,p is obtained from (4.38). Therefore, under the second-order Padé approx-

imation, x (k) =
[
x1 x2

]T

∈ R2 and A is diagonal with the eigenvalue associated

with the first state being 1. There is no term containing the subsystem output u (k)

in (4.39). Hence, the initialization error in the first state is persistent. Furthermore,

the system presented in (4.39) and (4.40) have the same form as the System Model

in Figure 4.1.
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Therefore, the nonlinear battery model, including the modified SPM and the SOH

model, can be written as

x (k + 1) = Ax (k) + FI (k) , (4.41)

y (k) = g (x (k) , Jsd (k) , I (k)) , (4.42)

V (k) = g0 (x (k) , Jsd (k) , I (k)) , (4.43)

Jsd (k) = θy (k) . (4.44)

In this section, the parameters of the model are obtained from [3], which identifies

parameters of an HEV battery that is of the LMO-mixture chemistry. The technique

developed in this section is also applicable to other parameter values for other battery

chemistries.

4.3.2 Application on Time Varying Linearized Battery Model

In this section, the TSF is applied in a time varying linearization of the modified

SPM to estimate the side reaction current density, subsystem parameter and the

persistent main system state error that pertain to SOC estimation error. Although

this time varying linear battery model is far from sufficient in representing the battery

dynamics, this section serves as a preparation for the next section in discussion of

application of the TSF in nonlinear battery model.

In this section, the True System is

x (k + 1) = Ax (k) + FI (k) , (4.45)

y (k) = C(k)x (k) +D(k)Jsd (k) + J(k)I (k) , (4.46)

V (k) = E1(k)x (k) + E2(k)Jsd (k) + E3(k)I (k) , (4.47)

Jsd (k) = θy (k) , (4.48)

where (4.45) is (4.41), and (4.46) – (4.48) are linearization of (4.42) – (4.44) around
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x(k), I(k), and Jsd(k). Therefore,

C(k) =
∂g(x, Jsd, I)

∂x

∣∣∣∣
x=x(k),I=I(k),Jsd=Jsd(k)

, (4.49)

D(k) =
∂g(x, Jsd, I)

∂Jsd

∣∣∣∣
x=x(k),I=I(k),Jsd=Jsd(k)

, (4.50)

J(k) =
∂g(x, Jsd, I)

∂I

∣∣∣∣
x=x(k),I=I(k),Jsd=Jsd(k)

, (4.51)

E1(k) =
∂g0(x, Jsd, I)

∂x

∣∣∣∣
x=x(k),I=I(k),Jsd=Jsd(k)

, (4.52)

E2(k) =
∂g0(x, Jsd, I)

∂Jsd

∣∣∣∣
x=x(k),I=I(k),Jsd=Jsd(k)

, (4.53)

E3(k) =
∂g0(x, Jsd, I)

∂I

∣∣∣∣
x=x(k),I=I(k),Jsd=Jsd(k)

. (4.54)

Then, the System Model is

x̂ (k + 1) = Ax̂ (k) + FI (k) , (4.55)

ŷ (k) = C(k)x̂ (k) +D(k)Ĵsd (k) + J(k)I (k) , (4.56)

V̂ (k) = E1(k)x̂ (k) + E2(k)Ĵsd (k) + E3(k)I (k) , (4.57)

Ĵsd (k) = θ̂ (k) ŷ (k) . (4.58)

The matrices C(k), D(k), J(k), E1(k), E2(k), and E3(k) are also used as the matrices

C, D, J , E1, E2, and E3 in the TSF. It is shown in (2.44) that only the first state

corresponds to eigenvalue 1, d = x̂1 (1)−x1 (1), and thus the parameter vector in the

TSF is ω =
[
θ d

]T

.

The Main System state is initialized at x (1) =
[
−1.6218× 1010 0

]T

. This

state corresponds to 0% SOC, which is the same SOC level as in Chapter 3. The

Main System Model state is initialized at x̂ (1) =
[
−1.6926× 1010 0

]T

. This state

corresponds to 1% SOC, and thus there is 1% SOC error between the True System

and the System Model. Therefore, d = x̂1 (1) − x1 (1) = −7.0793 × 108, which is

due to the 1% SOC error. The input to the system is 1-C constant current, which

simulates the fast charge of EVs.
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The estimated parameter vector with the TSF is initialized at ω̂ (1)

=
[
θ̂ (1) d̂ (1)

]T

=
[

0 0
]T

. The parameters in the TSF are set as follows: the

weights in the cost function of the first step are set to be Rz = I1 and Ru = 0; the

initial covariance matrix is set to be P0 = 103I2; the parameters in the MEKF are set

to be Q (k) = 10I2, Rt (k) = I1 and α = 0.01.
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Figure 4.2 shows the estimates of the side reaction current density Jsd, the Main

system state error d, and the subsystem parameter θ in the time-varying linearized

battery model using the TSF. All three estimates converge to their true values in

600 seconds. Figure 4.3 shows the relative estimation errors, εJsd , εd, and εθ, in the

time-varying linearized battery model. All the relative estimation errors converge

to 0 after 600 seconds. This result shows that the TSF can estimate both the side

reaction current density and the state error caused by the SOC estimation error in a

time varying linearized battery model.

4.3.3 Application on Nonlinear Battery Model

In this section, the TSF is applied to the nonlinear battery, which contains the SPM

and the SOH model, to estimate the side reaction current density under the presence

of SOC estimation error. Both the True System and System Model are the nonlinear

SPM with the SOH model.

Because the TSF is developed under linear discrete context, when the TSF is

applied to the nonlinear system, the matrices C, D, J , E1, E2, and E3 are obtained

through linearization. Define

Ĉ(k)
∆
=
∂g(x, Jsd, I)

∂x

∣∣∣∣
x=x̂(k),I=I(k),Jsd=Ĵsd(k)

, (4.59)

D̂(k)
∆
=
∂g(x, Jsd, I)

∂Jsd

∣∣∣∣
x=x̂(k),I=I(k),Jsd=Ĵsd(k)

, (4.60)

Ĵ(k)
∆
=
∂g(x, Jsd, I)

∂I

∣∣∣∣
x=x̂(k),I=I(k),Jsd=Ĵsd(k)

, (4.61)

Ê1(k)
∆
=
∂g0(x, Jsd, I)

∂x

∣∣∣∣
x=x̂(k),I=I(k),Jsd=Ĵsd(k)

, (4.62)

Ê2(k)
∆
=
∂g0(x, Jsd, I)

∂Jsd

∣∣∣∣
x=x̂(k),I=I(k),Jsd=Ĵsd(k)

, (4.63)

Ê3(k)
∆
=
∂g0(x, Jsd, I)

∂I

∣∣∣∣
x=x̂(k),I=I(k),Jsd=Ĵsd(k)

. (4.64)

Then Ĉ(k), D̂(k), Ĵ(k), Ê1(k), Ê2(k), and Ê3(k) are used as the matrices C, D, J ,

E1, E2, and E3 in the TSF.
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As in Section 4.3.2, the Main System state is initialized at 0% SOC while the Main

System Model state is initialized at 1% SOC to introduce 1% initial SOC estimation

error. The true parameter vector is defined as ω (1) =
[
θ d

]T

. The estimated

parameter vector with the TSF is initialized at ω̂ (1) =
[
θ̂ (1) d̂ (1)

]T

=
[

0 0
]T

.

The parameters in the TSF are set as follows: the weights in the cost function of the

first step are set to be Rz = I1 and Ru = 0; the initial covariance matrix is set to be

P0 = 103I2; the parameters in the MEKF are set to be Q (k) = 10I2, Rt (k) = I1 and

α = 0.01. The input is 1-C constant current.
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Figure 4.4: The relative estimation errors of the side reaction current density (εJsd),
the subsystem parameter (εθ), and the Main system state error (εd) in the nonlinear
battery model using the two-step filter.

Figure 4.4 shows the relative estimation errors, εJsd , εθ, and εd, in the nonlinear

battery model using the TSF. It can be seen that both εJsd and εθ are on the order

of 106%, and εd is on the order of 100%. This result indicates that the TSF with

matrices obtained by linearization cannot estimate the side reaction current density

Jsd accurately under 1% SOC estimation error. Furthermore, in the first 2500 s, εd

remains very close to the 100%, which corresponds to the initial estimate. This means

that the estimate of the Main system state error d adapts only slightly and d̂ remains

close to 0 during the first 2500 s. It is only during the last 1100 s that εd grows

rapidly until 222%. This result indicates that the TSF is not working as expected to
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reduce estimation errors of Ĵsd and θ̂ by estimating d. Without adaptation of d̂, the

TSF should give similar estimation errors of Ĵsd and θ̂ as using the RCSI, which has

no mechanism to adapt d in this situation.
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NL(k) and ∆yu
L(k).

The large estimation errors in Figure 4.4 are caused by the inaccurate approxi-

mation of the nonlinear voltage function with linearization. Specifically, the matrix

E1, which indicates the sensitivity of the output voltage V (k) to the state x(k), can-

not be accurately evaluated by E1(k) in (4.52), and thus not by Ê1(k), which is an
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approximation of E1(k). To compare the nonlinear model and the linearization, define

∆V d
NL(k) = Vx̂,Jsd(k)− Vx,Jsd(k), (4.65)

∆V d
L (k) = E1(k)d, (4.66)

∆V u
NL(k) = Vx,Ĵsd(k)− Vx,Jsd(k), (4.67)

∆V u
L (k) = E2(k)(Ĵsd(k)− Jsd(k)), (4.68)

∆yd
NL(k) = yx̂,Jsd(k)− yx,Jsd(k), (4.69)

∆yd
L(k) = C(k)d, (4.70)

∆yu
NL(k) = yx,Ĵsd(k)− yx,Jsd(k), (4.71)

∆yu
L(k) = D(k)(Ĵsd(k)− Jsd(k)), (4.72)

where x(k) and Jsd(k) indicate the state and side reaction current density in the True

System in the example shown in Figure 4.4, respectively. x̂(k) and Ĵsd(k) indicate the

state and side reaction current density in the System Model in the example shown in

Figure 4.4, respectively. Vi,j(k) is the voltage response of the nonlinear battery model

whose trajectories of the state and side reaction current density follow the trajectories

of i and j, respectively. yi,j(k) is the input to subsystem y of the nonlinear battery

model whose trajectories of the state and side reaction current density follow the

trajectories of i and j, respectively. C(k), D(k), E1(k), and E2(k) are defined in (4.49,

(4.50), (4.52), and (4.53), respectively. Therefore, how well the trajectory of ∆VL(k)

and ∆yL(k) match the trajectory of ∆VNL(k) and ∆yNL(k) with the same superscripts,

respectively, shows how accurate the linearization approximates the nonlinearity of

the outputs V (k) and y(k). Specifically, the pair ∆V d
NL(k) and ∆V d

L (k) indicates

the accuracy of using E1(k) to evaluate the sensitivity of the output voltage V (k) to

x(k), the pair ∆V u
NL(k) and ∆V u

L (k) indicates the accuracy of using E2(k) to evaluate

the sensitivity of the output voltage V (k) to Jsd(k), the pair ∆yd
NL(k) and ∆yd

L(k)

indicates the accuracy of using E1(k) to evaluate the sensitivity of y(k) to x(k), and

the pair ∆yu
NL(k) and ∆yu

L(k) indicates the accuracy of using E2(k) to evaluate the

sensitivity of y(k) to Jsd(k).
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Figure 4.5 compares (a) ∆V d
NL(k) and ∆V d

L (k), (b) ∆V u
NL(k) and ∆V u

L (k), (c)

∆yd
NL(k) and ∆yd

L(k), and (d) ∆yu
NL(k) and ∆yu

L(k). It can be observed from Figure

4.5 that the trajectories of (b) ∆V u
NL(k) and ∆V u

L (k), (c) ∆yd
NL(k) and ∆yd

L(k), and

(d) ∆yu
NL(k) and ∆yu

L(k) match well with each other, which indicates that E2(k),

C(k), and D(k) can evaluate the sensitivities accurately. On the other hand, ∆V d
L (k)

is significantly larger than ∆V d
NL(k) before 2500 s. This means that linearization

significantly overestimates the sensitivity of the output voltage V (k) to x(k) before

2500 s.

In estimation, because the true x(k) and Jsd(k) are unknown, Ĉ(k) – Ê2(k) are

used to approximate C(k) – E2(k). Because Ĉ(k) – Ê2(k) are obtained by linearizing

the nonlinear functions around the estimates, they are only an approximation of the

sensitivities at the true operating point. Therefore, it is expected that evaluating

the sensitivities using Ĉ(k) – Ê2(k) is less accurate than using C(k) – E2(k). Hence,

it can be concluded that it is inaccurate to evaluating the sensitivity of the output

voltage V (k) to x(k) using Ê1(k).

The overestimation observed in Figure 4.5 agrees with the behavior observed for

εd in Figure 4.4. Because linearization significantly overestimates the sensitivity of

the output voltage V (k) to x(k) before 2500 s, the estimate d̂(k) is expected to be

significantly smaller than the true d during the same range, which is in accordance

with to the close to 100% εd that corresponds to small adaptation of d̂(k) before 2500

s observed in Figure 4.4.

This overestimation also explains the large estimation errors for the side reaction

current density and the subsystem parameter. It can be concluded from Figure 4.5

(b) that the sensitivity of the voltage V (k) to the side reaction current density Jsd can

be accurately evaluated using E2(k). With the parameter set used in this chapter,

E2 is on the order of 10−10 and the side reaction current density Jsd is on the order of

103 A m−3. Similar to the analysis in Section 3.4.1, the additional relative estimation

error αas caused by voltage errors introduced by additional sources Vas is given by

αas = VasV
−1
Jsd

= Vas(E2Jsd)−1 = O(107Vas). (4.73)
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When d̂ has almost no adaptation and stays close to 0, Vas is the voltage difference

caused by the state error, namely ∆V d
NL. Figure 4.5 (a) shows that ∆V d

NL is on the

order of 10−3 V. Therefore, in the example in Figure 4.4,

αas = O(107Vas) = O(104) = O(106%). (4.74)

This result shows that the additional relative estimation error is on the order of 106%,

which agrees with εJsd and εθ shown in Figure 4.4.

To show that the inaccurate evaluation of the sensitivity of the output voltage

V (k) to x(k) using Ê1(k) is the only reason for the large estimation errors shown in

Figure 4.4, the estimation is performed using the same nonlinear model but with a

E1 that is directly obtained from the voltage difference. Define

E1,non(k)
∆
=

∆V d
NL(k)

d
, (4.75)

where d is the state difference corresponds to 1% SOC estimation error as in the

example shown in Figure 4.4. Then E1,non(k) is the sensitivity of the voltage to the

state approximated directly from the nonlinear function.

Figure 4.6 shows the estimates Ĵsd, d̂, and θ̂ using the TSF with E1 approximated

by E1,non(k). The initialization of the estimates and all the parameters are set the

same as in the example shown in Figure 4.4. It can be observed that all the esti-

mates track their respective true values accurately after 500 s. This result shows that

the TSF can estimate Jsd, d, and θ accurately if an accurate evaluation of E1, the

sensitivity of the voltage to the state, is available.

4.3.4 Evaluating the Sensitivity of the Voltage to the States

In this section, the method to obtain an accurate evaluation of E1 for the estimation of

the side reaction current density is discussed. In particular, E1 is evaluated with the

trajectory of E1,non(k) defined in (4.75) that is constructed directly from the voltage

responses of different initial SOC levels.
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Figure 4.6: The estimates of the side reaction current density Jsd, the Main system
state error d, and the subsystem parameter θ in the time-varying linearized battery
model using the two-step filter with E1,non(k) approximating E1.

However, this method faces two challenges in practice. The first challenge is that

E1,non(k) is a function of d, which is a function of the initial SOC estimation error.

In practice, the initial SOC estimation error is unknown, and thus d is unknown.

Hence, E1,non(k) cannot be obtained exactly. Define E1,non,d(k) as the E1,non(k) that

corresponds to a particular d. Notice that ∆V d
NL(k) should also be obtained using

the same d. Figure 4.7 (a) compares the first entry of E1,non,d(k) obtained using d

that correspond to 10%, 1%, 0.1%, and 0.01% SOC estimation errors. To better

illustrate the difference in E1,non,d(k), Figure 4.7 (b) shows the difference between

the first entry of E1,non,d(k) corresponding to 1% SOC estimation error and i) 0.1%

as well as ii) 0.01% SOC estimation errors. The reason that only the first entry of

E1,non,d(k) is shown is that in estimation of the side reaction current density only the

first component of x(k) corresponds to eigenvalue 1, and thus only the first entry of

E1 is required in the TSF. Figure 4.7 confirms that E1,non,d(k) changes with d.

With only the first challenge, it seems possible to approximate E1,non,d(k) that

corresponds to any d for SOC estimation errors lower than 1% with E1,non,d(k) that

corresponds to a particular d among them. As shown in Figure 4.7 (b), the differences

among E1,non,d(k) for d corresponding to 1%, 0.1%, and 0.01% SOC estimation errors
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are insignificant, which is about 1% of E1,non,d(k) for all three d. Therefore, it seems

possible to simply obtain E1,non,d(k) that corresponds to a particular d (for example

E1,non,d(k) corresponding to d that is caused by 1% SOC estimation error) and use

it to approximate E1,non,d(k) corresponding to any d for SOC estimation errors lower

than 1%.

However, this possibility is invalid in presence of the second challenge with this

method, which is that the accuracy for the evaluation of E1 needs to be very high to

accurately estimate the side reaction current density. It can be inferred from (4.73)

that, for this particular parameter set and current profile, Vas has to be on the order

of 10−8 V for αas to be on the order of 10%. This required level of Vas is 10−3% of

∆Vas. Therefore, the error in evaluation of E1 has to be within ±10−3% of E1,non so

that the relative estimation error of Jsd is within ±10%. This requirement is difficult
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to achieve in practice because it requires i) accurate voltage measurement and ii)

accurate knowledge of d. The second requirement is especially difficult because the

unknown d is the reason that the TSF, as well as the accurate evaluation of E1 is

needed.

The following simulation is to demonstrate that it is inaccurate to estimate Jsd,

θ, and d using the TSF with E1 approximated by E1,non,d corresponding to a different

d than the actual d. Figure 4.8 shows εJsd , εθ, and εd obtained by approximating

E1 with E1,non,d corresponding to d for 0.1% SOC estimation error when the true

d corresponds to 1% SOC estimation error, which is the same as in Figure 4.4 and

in Figure 4.6. All the initial estimates and the parameters in the TSF are set the

same as in Figure 4.4 and in Figure 4.6. It can be observed from Figure 4.8 that

εJsd and εθ are on the order of 105%. These relative estimation errors are less than
1
10

of the relative estimation errors shown in Figure 4.4, which corresponds to almost

no adaptation of d̂. This result indicates that the TSF can improve the estimation

accuracy of Jsd and θ. However, the relative estimation errors on the order of 105%

is still very large. Therefore, the estimates of Jsd and θ are still very inaccurate even

when E1,non used in the TSF can be approximated within ±1% error.

On the other hand, it can also be observed from Figure 4.8 that εd is within ±12%

even though εJsd and εθ are on the order of 105%. This is because the sensitivity of the

voltage to d is much higher than to Jsd. With small error in evaluating E1, the error

in estimating d is also small, but the small error between d̂ and d can create a voltage

difference Vas that is still too high to accurately estimate Jsd. This result shows that

even when the SOC estimation error can be estimated to a reasonable accuracy by

the TSF, the improvement in the accuracy of estimating Jsd and θ is limited.

4.3.5 Discussion

Simulation results in this chapter demonstrate that accurate estimation of the side

reaction current density requires high evaluation accuracy of the sensitivity of the

voltage to the SOC. It can be observed from the simulation results shown in Section

4.3.3 – 4.3.4 that Jsd, θ, and d can be estimated when the sensitivity to states is
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Figure 4.8: The relative estimation errors of the side reaction current density (εJsd),
the subsystem parameter (εθ), and the Main system state error (εd) when E1 in the
TSF is approximated using E1,non,d for d corresponding to 0.1% SOC estimation error
while the true d corresponds to 1% SOC estimation error.

accurately evaluated in E1, but even an evaluation of E1 with an error that is as

small as 1% is not accurate enough to obtain a reasonable estimation accuracy for

Jsd, θ, and d. Because the states here represent the battery SOC, it can be concluded

that accurate evaluation of the sensitivity of the voltage to the SOC is required for

accurate estimation of the side reaction current density using the TSF under the

presence of SOC estimation errors.

This requirement on high evaluation accuracy of the sensitivity of the voltage to

the SOC is caused by the low impact of Jsd on the voltage. As discussed in Sec. 3.4,

the low impact of Jsd on the voltage is the reason behind large estimation errors in

estimating the side reaction current density under non-ideal conditions. In Chapter

3, this low impact makes it necessary to have accurate SOC estimation. In the TSF,

because the SOC estimation error is taken into account in the estimation algorithm,

the requirement for accuracy is transferred from the SOC estimation to the evaluation

of the sensitivity of the voltage to the SOC, namely E1. Obtaining highly accurate

evaluation of E1 is also difficult in practice because of the inaccurate models and

measurements, as well as the unknown d. This difficulty is due to the nature of the
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problem that the side reaction current density is a small value that has a limited

impact on the voltage, but not due to the incapability of the algorithm or of the

method to approximate E1. Therefore, the challenges discussed in Section 4.3.4 for

approximating E1 is the effect of the same reason behind the weak robustness observed

in Sec. 3.4. Although the TSF is developed to improve the estimation accuracy of the

side reaction current density under SOC estimation errors, any difficulty caused by

the nature of the problem itself cannot be solved by twisting the estimation algorithm.

It can also be extrapolated from the results in this section and in Section 3.4.4 that

the estimation of Jsd, θ, and d using the TSF with the True System being the DFN

model or a real battery can be very inaccurate. The voltage difference Vas created by

the modeling errors can i) make it very difficult to approximate E1 accurately and

ii) cause very large relative estimation errors in Jsd and θ. Similarly, other non-ideal

conditions that can cause additional voltage difference, such as measurement noise,

is also not considered in this chapter.

However, similar to the discussion in Section 3.4.5, this does not mean that the

side reaction current density cannot be estimated in practice. The numerical analysis

in this section is applicable only to this particular battery parameter set, with this

particular cycling profile, under this particular experimental condition. The side

reaction current density could still be estimated successfully in other cases with other

battery parameter sets, cycling profiles, or experimental conditions as long as they

can make the voltage difference Vas caused by inaccurate measurements, models, and

approximation of E1 below a desired bound.

4.4 Summary and Conclusions

In this chapter, a new subsystem identification algorithm, the TSF, is developed.

The TSF can estimate both the subsystem parameter and the persistent main system

state estimation error simultaneously for marginally stable systems as exemplified by

the SOH monitoring problem in batteries when SOC estimation errors are present. In

this chapter, MEKF is used in the second step as the nonlinear estimation method.
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Other nonlinear estimation methods, such as the Unscented Kalman Filter (UKF)

[71], can also be used as alternatives.

The TSF is applied to a battery model that is the modified SPM integrated with

the Arora model to estimate the side reaction current density when SOC estimation

errors are present. The TSF is first applied to a linear time varying model that is

obtained via linearization of the battery model. The simulation results show that the

side reaction current density, SOH subsystem model, and the SOC estimation error

can be accurately estimated in the time varying linearized battery model. The TSF

is then applied to the nonlinear battery model. All the matrices in the TSF except

the matrix E1 that represents the sensitivity of the voltage to the SOC are obtained

through linearization around the estimates. The simulation results show that the

side reaction current density, SOH subsystem model, and the SOC estimation error

can be estimated when E1 is accurately evaluated. Finally, the method to evaluate

E1 is discussed. In particular, E1 is evaluated through comparing voltage responses

with different initial SOC. Two challenges are identified with this method. First,

the sensitivity of the voltage to the states depends on the unknown SOC estimation

error, and thus E1 cannot be evaluated accurately without knowing the exact SOC

estimation error. Second, to accurately estimate the side reaction current density

and the SOH subsystem parameter, the requirement for the accuracy of evaluation of

E1 is very high. These two challenges make it difficult to estimate the side reaction

current density using the TSF in practice. This difficulty is due to the nature of the

low impact of the side reaction current density to the voltage, but not due to the

incapability of the TSF algorithm or of the method to evaluate E1.

It can be concluded that accurate evaluation of the sensitivity of the voltage

to the SOC is required for accurate estimation of the side reaction current density

using the TSF under the presence of SOC estimation errors. This conclusion agrees

with the fact that the TSF improves estimation accuracy of the side reaction current

density by evaluating the voltage error caused by the SOC estimation errors and

then eliminating this voltage error in estimation of the side reaction current density.

Because the evaluation of the sensitivity of the voltage to the SOC determines the
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evaluation of the voltage error caused by the SOC estimation errors, it also affects the

estimation accuracy of the side reaction current density using the TSF. It can also be

deduced that similar requirements for the sensitivity of the voltage to the SOC is also

expected for other estimation algorithms that improve estimation accuracy of the side

reaction current density under the presence of SOC estimation errors by evaluating

the voltage errors caused by the SOC estimation errors through the sensitivity of the

voltage to the SOC. Similarly, other estimation algorithms that improve estimation

accuracy of the side reaction current density under the presence of other non-ideal

conditions by evaluating the voltage errors caused by the non-ideal conditions through

the sensitivities of the voltage would also require accurate evaluation of the sensitivity

of the voltage to the non-ideal conditions.

In summary, this chapter makes four main contributions. First, a new subsystem

identification algorithm, the TSF, is developed based on RCSI used in Chapter 3.

The TSF can be applied to estimate the subsystem parameter and output, as well

as the persistent main system state estimation error simultaneously in any system

that is marginally stable and with weak feedback of the subsystem output. Second,

the TSF is applied to estimate the side reaction current density in the battery under

the presence of the SOC estimation error when the sensitivity of the voltage to the

state can be accurately evaluated. Third, the method for obtaining approximation

of the sensitivity of the voltage to the state through voltage responses is presented.

Fourth, the challenges for applying the TSF in practice to estimate the side reaction

current density with E1 evaluated using this method are identified. The challenges are

mainly because accurate estimation of the side reaction current density requires highly

accurate evaluation of the sensitivity of the voltage to the SOC. These challenges

verify the analyses in Chapter 3 that the high sensitivity of the estimate of the side

reaction current density to SOC estimation error is a fundamental problem caused

by the fact that the side reaction current density has low impact on the voltage, and

cannot be solved by changing estimation algorithms.
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Chapter 5

Estimation of the Number of

Cyclable Li-ions

5.1 Introduction

In this chapter, the number of cyclable Li-ions is estimated as the SOH indicator.

In a Li-ion battery, the number of cyclable Li-ions is a measure of the charge that

moves between the electrodes during charge and discharge of the battery. Therefore,

the number of cyclable Li-ions is a measure of the capacity of Li-ion batteries [28,

72]. During the process of Li-ion-consuming electrochemical degradation, cyclable

Li-ions are consumed through side reactions, which results in capacity fade [31, 72].

Therefore, the remaining number of cyclable Li-ions reflects the remaining capacity

after degradation; thus this remaining number can be used as an SOH indicator.

The number of cyclable Li-ions has the following advantages compared with other

electrochemical SOH indicators. i) Compared with the SEI film resistance that can

be applied only to the SEI-film-formation mechanism, the number of cyclable Li-ions

is a general SOH indicator for all electrochemical-based mechanisms that consume

Li-ions. ii) Compared with the side reaction current density, the number of cyclable

Li-ions is expected to be more robust to uncertainties, because it results from the

integration of the side reaction current density over time and space.

In this chapter, SOH monitoring is investigated using LMO-mixture battery as
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an example. With Mn dissolution reduced by adding other Li-compounds, Li-ion

consumption dominates Mn dissolution and becomes the main ageing mechanism for

batteries with LMO-mixture cathode materials [73, 74]. Therefore, the number of

cyclable Li-ions becomes a suitable SOH indicator for these batteries. However, the

estimation technique developed in this chapter can also be applied to other parameter

sets and other battery chemistries to monitor the SOH change resulting from any

electrochemical-based degradation mechanism that consumes cyclable Li-ions.

Compared with [41], which also estimates the number of cyclable Li-ions as the

SOH indicator, albeit for a battery with different cathode material, this chapter pro-

poses three novel approaches to take practical conditions into account in simulations.

i) In this chapter, the system model used in the algorithm is the single particle model

(SPM) [56, 54], a simplified battery electrochemical model that contains only two

states, which yields a computational complexity suitable for on-line estimation. To

verify the sufficiency of using the SPM in the algorithm, the true system (the battery)

is represented with the Doyle-Fuller-Newman (DFN) model [51], an electrochemical

model with higher fidelity than the SPM, in the simulations. In contrast, the simu-

lations in [41] are based on the SPM completely. ii) In practice, parameters of the

battery are not directly available, and are typically estimated from the input-output

signal pairs of the battery, which is referred to as parameterization. Therefore, unlike

[41] that assumes the parameters other than the ones subject to on-line estimation are

known and identical to the ones of the true battery, in this chapter the process of pa-

rameterization is also simulated as a preparation stage for estimation of the number of

cyclable Li-ions. This preparation stage brings the simulation study closer to practice

by considering the effect of the inevitable modeling error introduced by parameteri-

zation. iii) This chapter provides a robustness analysis of estimating the number of

cyclable Li-ions under a variety of non-ideal conditions (i.e., with the SOC estimation

error, modeling error, and measurement noise) to consider the impact of un-modeled

non-ideal conditions on estimation accuracy. Furthermore, unlike [41] that uses an

adaptive PDE observer with nonlinear least squares, this chapter uses the EKF as

the estimation algorithm. The EKF is chosen instead of the method in [41] because
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Figure 5.1: The block diagram for estimation of the number of cyclable Li-ions using
the extended Kalman filter (EKF). The true system is a battery in practice but is
represented with a battery model, namely the Doyle-Fuller-Newman (DFN) model, in
the simulation study presented herein. The system model is the single particle model
(SPM), a simplification of the DFN model.

this chapter mainly focuses on exploring the effectiveness of estimating the number

of cyclable Li-ions as the SOH indicator, while [41] focuses on co-estimation of the

SOC and the SOH.

This chapter mainly addresses the following research questions:

1. Is it possible to estimate the number of cyclable Li-ions as a parameter of the

battery system using the EKF?

2. How robust is this estimation against various non-ideal conditions?

3. Is the number of cyclable Li-ions robust enough to be an effective SOH indicator

in practice?

5.2 Problem Setup

The goal of this chapter is to estimate the number of cyclable Li-ions at a given point

of time through the current and voltage trajectories during battery charge/discharge.

By comparing estimates at different points of time throughout battery service life,

the trend of degradation can be obtained. Because the dynamics of the number of

cyclable Li-ions is significantly slower than the charge and discharge dynamics, the
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change in the number of cyclable Li-ions during a short period of charge/discharge

can be ignored. Therefore, within the scope of this chapter, the number of cyclable

Li-ions is considered as a parameter of the battery, a nonlinear system. Figure 5.1

presents the block diagram used in this paper for estimation of the number of cyclable

Li-ions as a parameter estimation problem in nonlinear systems. In this section, the

overall structure of the diagram is explained.

5.2.1 True System

In practice, the true system is a battery; while for the simulation study presented

herein, the true system is represented with the DFN model.

Notice that the SOH model is not included in the true system. This is because

i) the influence of the side reaction current density to the voltage is insignificant

as shown in Section 3.4 and ii) the dynamics of the number of cyclable Li-ions is

significantly slower than the charge and discharge dynamics, and thus the influence

of the side reaction current density on the number of cyclable Li-ions during a short

period of time can be ignored. Furthermore, the side reactions are also ignored in the

charge and discharge dynamics here. Therefore, in this chapter, the DFN model has

the form

x(k + 1) = f (x(k), I(k)) , (5.1)

V (k) = g0 (x(k), I(k)) , (5.2)

where f(·) and g0(·) represent (2.32) and (2.34), respectively, with Jsd = 0.

The input I(k) and output V (k) of the true system are the current and voltage,

respectively. The measurements of I(k) and V (k) are Ĩ(k) and Ṽ (k), which are

corrupted by measurement noise Inoise(k) and Vnoise(k), respectively.
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5.2.2 System Model

The system model acts as an estimate of the true system. The modeling information

used by estimation algorithms is based on the system model. This paper assumes

that the parameters/signal in the system model that estimates a parameters/signal

ζ in the true system is denoted with ζ̂. This notation convention applies to all

parameter/signals in the system model except the measurement Ĩ(k) and known

constants F , R, α and Ts. The input and output of the system model are the current

measurement Ĩ(k) and the voltage estimate V̂ (k), respectively. The SPM is chosen

as the system model. Compared with the DFN model, the SPM has fewer states

and simpler model structure, which yields lower computational complexity that is

beneficial for on-line estimation.

To incorporate the number of cyclable Li-ions as a parameter in the system model,

the SPM is modified in this chapter using the similar technique in Section 4.3.1, i.e.,

removing the state equation for the solid concentration in the cathode and computing

cse,p using cse,n and the number of cyclable Li-ions instead. Therefore, the state space

model of the SPM in this chapter is the same as (4.39) – (4.40), i.e.,

x̂(k + 1) = Âx̂(k) + F̂ Ĩ(k), (5.3)

V̂ (k) = ĝ0(x̂(k), Ĩ(k)), (5.4)

where Â and F̂ are obtained from (2.42) for the anode, and g0(·) represents (2.48)

where ĉse,p is obtained from (4.38).

5.2.3 Estimation Technique

The EKF, an estimation technique for nonlinear systems, is chosen as the estimation

algorithm in this chapter. The benefit of using the EKF lies in the particular structure

of the SPM, which feeds modeling information to the EKF, and is discussed in detail

in Section 5.3. The EKF receives the error z(k) between the measurement Ṽ (k) and

estimate V̂ (k) of the voltage as the input and yields the estimate of the state, x̂(k),
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and the estimate of the number of cyclable Li-ions, n̂Li(k).

5.2.4 Estimation Process

The estimation process in this chapter is composed of two stages: i) the preparation

stage and ii) the estimation stage. The preparation stage, which is not presented

in Figure 5.1, does not involve estimation of the number of cyclable Li-ions using

the EKF, but prepares for the estimation by parameterizing the system model from

charging/discharging current and voltage data of the true system. This stage is to

simulate the process in practice where the parameters used in the system model need

to be determined from cycling data from the battery. The estimation stage estimates

the number of cyclable Li-ions using the scheme from Figure 5.1 with the parameters

of the system model from the preparation stage.

5.3 The Extended Kalman Filter

The goal of this chapter is to estimate the number of cyclable Li-ions, which translates

into a parameter estimation problem in a nonlinear system. This problem can be

solved by nonlinear extensions of the Kalman filter. In this chapter, the EKF is

chosen. The linear dynamics (5.3) in the SPM eliminate the need for linearization of

the state equation. Moreover, with the second-order Padé approximation, the SPM

has only two states. These two facts simplify the design of the EKF, which is the

main reason that the EKF is chosen herein.

The extended estimated state X̂(k) of the SPM is defined by treating n̂Li as the

third state. Then,

X̂(k)
4
= (x̂T(k), n̂Li)

T ∈ R3. (5.5)

101



Then the evolution of the SPM using the extended state X̂(k) follows

X̂(k + 1) = ÂeX̂(k) + B̂eĨ(k), (5.6)

V̂ (k) = f̂e(X̂(k), Ĩ(k)), (5.7)

where

Âe =

 Â 0

0 1

 , B̂e =

 F̂

0

 , (5.8)

and f̂e(X̂(k), Ĩ(k)) satisfies f̂e(X̂(k), Ĩ(k)) = f̂(x̂(k), Ĩ(k)).

Then, the algorithm for the EKF in this chapter is summarized as follows.

X̂−(k) = ÂeX̂
+(k − 1) + B̂eĨ(k − 1), (5.9)

P̂−(k) = ÂeP̂
+(k − 1)ÂT

e + Pω, (5.10)

L(k) = P̂−(k)ĈT(k)[Ĉ(k)P̂−(k)ĈT(k) + Pν ]
−1, (5.11)

X̂+(k) = X̂−(k) + L(k)[Ṽ (k)− V̂ (k)], (5.12)

P̂+(k) = (Ilx − L(k)Ĉ(k))P̂−(k). (5.13)

where

Ĉ(k) =
∂f̂e

(
X̂, Ĩ

)
∂X̂

∣∣∣∣∣∣
X̂=X̂−(k),Ĩ=Ĩ(k)

, (5.14)

V̂ (k) = f̂e(X̂
−(k), Ĩ(k)), (5.15)

I3 refers to the identity matrix of size 3. Pω ∈ R and Pν ∈ R represent the covariance

matrices for the process and measurement noise, respectively. Here, Pω and Pν are

two tunable parameters.

X̂−(k) and P̂−(k) are the predictions of the state X(k) and the covariance of

the error X̂−(k) − X(k) obtained from previous estimates. Notice that (5.9) and

(5.15) in this prediction step are obtained from the SPM, which occurs in the system
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model block in Figure 5.1. X̂+(k) and P̂+(k) are the EKF estimates of X(k) and the

covariance of the estimation error X̂+(k)−X(k). For this application,

x̂(k)
4
= (X̂+

1 (k), X̂+
2 (k))T, (5.16)

n̂Li(k)
4
= X̂+

3 (k), (5.17)

where X̂+
i denotes the ith component in X̂+.

5.4 The Preparation Stage: Parameterization

In this section, the preparation stage for estimation of the number of cyclable Li-ions,

namely parameterization of the SPM, is discussed. To this end, the genetic algorithm

is used to identify 16 parameters in the SPM that contribute to the voltage response.

Notice that this stage is used to obtain a set of parameters for the estimation stage and

it is not the purpose of this chapter to discuss how to parameterize a battery model.

Therefore, a comparison between different parameterization methods is beyond the

scope of this chapter and is not discussed herein.

5.4.1 Parameterization using Genetic Algorithm

In this section, the process of parameterizing the SPM using the genetic algorithm is

discussed. The benchmark of parameterization is the DFN model with 50 particles

per electrode, which is the model that is used for the true system. The parameters

of the DFN model are obtained from [3] where an HEV battery with LMO-mixture

cathode material is identified with experimental data.

The DFN model is cycled with two current trajectories to obtain the output

voltage trajectories to be used in the genetic algorithm. One trajectory is 1-C (6-

A) constant current charge (CCC) between stoichiometry at 0% and 100% SOC (θn

between 0.126 and 0.676). The other trajectory is the current trajectory generated

from an EV following the UDDS. Similar to Chapter 3, this UDDS current trajectory

is generated by the Advisor software [62] with the default EV settings. The Li-ion
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battery in Advisor has a capacity of 7 Ah, while the rated capacity of the battery

model in this chapter is 6 Ah. Therefore, the current magnitude is scaled down to

match the C-rates and to ensure that the battery is not overdischarged.

In the genetic algorithm, the same input current trajectories are given to the SPM

to generate voltage trajectories. The goal of the genetic algorithm is to minimize the

mean squared error between the voltage responses of the SPM and the DFN model;

i.e., the fitness function is

fGA =
1

N1 +NU√
‖VDFN,1 − VSPM,1‖2 + ‖VDFN,U − VSPM,U‖2, (5.18)

where N1 and NU are the total numbers of data points in the 1-C CCC and UDDS

trajectories, respectively. VDFN and VSPM are the voltage response trajectories from

the DFN model and the SPM, respectively. The subscripts 1 and U denotes the 1-C

CCC and UDDS trajectories, respectively.

This chapter assumes that i) the function of the reference potential with respect

to the stoichiometry for both electrodes, namely Ûref,p(θ̂p) and Ûref,n(θ̂n), are known;

and ii) the stoichiometry of both electrodes at the beginning and end of the 1-C CCC

and UDDS modes are known. The first assumption is valid in practice because the

reference potentials can be determined using half cells. The second assumption is

valid in practice because the stoichiometry can be obtained from the measurement of

the open circuit voltage after resting. Therefore, the reference potential function and

the stoichiometry at the beginning and the end of the two modes in the SPM are set

the same as in the DFN model.

This chapter further applies the assumption that the number of cyclable Li-ions

remains the same throughout the 1-C CCC mode to establish the relationship between

ĉs,max,p and ĉs,max,n. Based on (2.41),

ε̂s,pL̂pÂĉs,max,pθ̂p(0) + ε̂s,nL̂nÂĉs,max,nθ̂n(0)

= ε̂s,pL̂pÂĉs,max,pθ̂p(N1) + ε̂s,nL̂nÂĉs,max,nθ̂n(N1), (5.19)

104



where θ̂p(0), θ̂n(0), θ̂p(N1), and θ̂n(N1) are the same as in the DFN model and obtained

from [3]. Therefore,

ĉs,max,p =
ε̂s,nL̂n[θ̂n(N1)− θ̂n(0)]

ε̂s,pL̂p[θ̂p(0)− θ̂p(N1)]
ĉs,max,n. (5.20)

In the SPM, ĉs,max,n is identified from the genetic algorithm, while ĉs,max,p is calculated

from ε̂s,n, ε̂s,p, L̂n, L̂p, and ĉs,max,n identified by the genetic algorithm.

Because the radiusRn andRp of particles are available from the electrode materials

and the anode material is universal among different Li-ion battery chemistries, this

chapter assumes that Rn is known and fixes R̂n to 10−6 given in [3] to accelerate the

genetic algorithm but identifies R̂p within the range of [10−7, 10−5] to allow enough

freedom for voltage matching.

Initial parameters in the genetic algorithm are obtained from the literature. Here

the initial parameters are set as the same as in the DFN model, which is presented in

the column Originial in Table 5.1. GA1+U,1 and GA1+U,2 in Table 5.1 represent two

identified parameter sets from two independent runs of genetic algorithm identifica-

tion using both a 1-C CCC current trajectory and a UDDS current trajectory. Figure

5.2 presents the voltage responses of the SPM with the parameter sets from GA1+U,1,

GA1+U,2, and Original, and the DFN model under the 1-C CCC and UDDS trajecto-

ries. It can be observed that the two parameter sets are different from each other but

can produce similar voltage responses, which also match the voltage response of the

DFN model better than the SPM using the same parameters as in the DFN model.

5.4.2 Discussions about Parameterization

First, notice that the number of cyclable Li-ions can be deduced from the identified

parameter set by first deducing ĉs,max,p using (5.20) and then deducing n̂Li using
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Variable Original GA1+U,1 GA1+U,2 GA10+U

A [m2] 1.0452 1.235 1.026 1.529
Ln [m] 5.00E-5 4.559E-5 1.284E-5 1.382E-5
Lp [m] 2.54E-5 1.178E-5 4.062E-5 1.952E-5
Lsep [m] 3.64E-5 4.738E-5 2.993E-5 3.247E-5
Rp [m] 1.00E-6 1.836E-6 1.069E-6 6.263E-6
εs,n 0.58 0.4674 0.4862 0.3780
εs,p 0.50 0.2312 0.2873 0.7450
εe,n 0.332 0.5659 0.3637 0.5477
εe,p 0.33 0.3788 0.3760 0.4414
εe,sep 0.50 0.2704 0.2421 0.2485
Ds,n [m2s−1] 2.00E-16 3.771E-16 3.759E-16 4.379E-16
cs,max,n [mol m−3] 1.61E+4 1.855E+4 7.613E+4 5.855E+4
i0,n [A m−2] 36 50.00 11.53 11.14
i0,p [A m−2] 26 11.69 12.15 12.82
Rfilm [Ω m2] 0.002 1.000E-3 4.900E-3 4.700E-3
ce [mol m−3] 1.20E+3 1.747E+3 1.367E+3 1.217E+3

Table 5.1: The identified parameter sets from the genetic algorithm. The parameter
set in the column labelled Original is from [3]. The parameter sets in the columns
labelled GA1+U,1 and GA1+U,2 are obtained from two independent runs of genetic
algorithm identification using current trajectories including a 1-C constant current
charge (CCC) trajectory and a Urban Dynamometer Driving Schedule (UDDS) tra-
jectory. The parameter set in the column labelled GA10+U is obtained from genetic
algorithm identification using current trajectories including a 10-C CCC trajectory
and a UDDS trajectory.
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Figure 5.2: Comparison among the voltage responses of the SPM with the parameter
sets from GA1+U,1, GA1+U,2, and Original, and the DFN model.
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Deduced Variables Original GA1+U,1 GA1+U,2 GA10+U

cs,max,p [mol m−3] 4.1E+4 1.616E+5 4.534E+4 2.341E+4
nLi [mol] 5.7E-1 5.700E-1 5.694E-1 5.460E-1

Table 5.2: The variables deduced from the parameter sets in [3] (Original), two
independent runs of genetic algorithm identification using input current trajectories
including a 1-C CCC trajectory and a UDDS trajectory (GA1+U,1 and GA1+U,2), and
a run of genetic algorithm identification using input current trajectories including a
10-C charge trajectory and a UDDS trajectory (GA10+U).

(2.41), which yields

n̂Li = ε̂s,nL̂nÂĉs,max,n(
θn(N1)− θn(0)

θp(0)− θp(N1)
θp(0) + θn(0)

)
. (5.21)

Therefore, for each identified parameter set, it is possible to deduce the value of the

number of cyclable Li-ions associated with this parameter set. During estimation,

this value for the number of cyclable Li-ions is the value that is being estimated.

In this section, the following two questions are addressed regarding deducing the

number of cyclable Li-ions from identified parameter sets as shown in (5.21):

(1) Does the deduced number of cyclable Li-ions change with respect to different

runs of parameterization?

(2) With this deduced value for the number of cyclable Li-ions, why is it still

needed to estimate the number of cyclable Li-ions using the EKF?

A well-known feature with genetic-algorithm-based parameterization is that the

parameter sets that the algorithm converges to can vary even using the same data,

initial conditions, algorithm settings, and fitness function [75]. This feature can be

seen from GA1+U,1 and GA1+U,2 in Table 5.1, which gives different identified parameter

sets from two independent runs of genetic algorithm identification under the same

conditions. This feature gives a certain level of randomness as to the precise value of

each individual parameter. A natural question to ask under this situation is whether

this “randomness" in the value of identified parameter set affects the deduced value

of the number of cyclable Li-ions. It is presented below that the deduced number
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of cyclable Li-ions is unchanged as long as the identified parameter set can yield

well-matched voltage responses between the true system and the SPM.

The parameterization results support the previous argument that the deduced n̂Li

remains unchanged among different parameterization runs. Table 5.2 presents the

deduced ĉs,max,p and n̂Li for Originial, GA1+U,1, and GA1+U,2. It can be observed that

even though the values of ĉs,max,p are different (difference can be as high as 300% of

the Original value) between GA1+U,1 and GA1+U,2, the values of n̂Li are very close

(vary within 0.2% of the Originial value) for the two cases.

To explain why the deduced nLi remains the same, first note that under the

previous assumptions, θ̂p and θ̂n have a one-to-one relationship. Based on (5.20)

and (5.21), for the SPM,

θ̂p(k) =

(
θ̂p(0) +

θ̂p(0)− θ̂p(N1)

θ̂n(N1)− θ̂n(0)
θ̂n(0)

)

− θ̂p(0)− θ̂p(N1)

θ̂n(N1)− θ̂n(0)
θ̂n(k). (5.22)

Because θ̂n(0), θ̂n(N1), θ̂p(0), and θ̂p(N1) are known from [3], θ̂p(k) and θ̂n(k) have a

one-to-one relationship.

Then, it can be shown that the objective of matching the voltage response of the

SPM to a certain trajectory forces θ̂n to evolve according to certain dynamics. Because

θ̂p and θ̂n have a one-to-one relationship, Ûref,p and Ûref,n are both functions of θ̂n.

Therefore, Ûref,p − Ûref,n is a function of only θ̂n. The voltage is primarily dominated

by the reference potentials, namely, Ûref,p− Ûref,n: within the operating stoichiometry,

Ûref,p − Ûref,n ranges between [3.38, 3.89] V while the other voltage components only

amount to about 2.5 × 10−3 V. Therefore, regulating the voltage response of the

SPM, which is essentially the objective of genetic algorithm identification, results in

regulating Ûref,p− Ûref,n, which results in the regulating θ̂n at every sampling instant.

This enforces certain dynamics on θ̂n to match this θ̂n trajectory.

Next, it can be shown that this requirement on the dynamics of θ̂n enforces n̂Li

to be deduced to a certain value, regardless of the values of other parameters. Sub-
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stituting (2.26) and (2.39) into (2.30) yields the transfer function between θ̂n and Ĩ,

namely,

θ̂n

Ĩ
=

5

3F (ÂL̂nε̂s,nĉs,max,n)

2R̂2
ns+ 21D̂s,n

R̂2
ns

2 + 35D̂s,ns
. (5.23)

This transfer function governs the dynamics of θ̂n. Because the trajectory for current

Ĩ is predetermined, a fixed θ̂n trajectory means a fixed transfer function, with respect

to different parameter set. Because the radius R̂n is fixed and F is a constant, the

fixed transfer function requires ÂL̂nε̂s,nĉs,max,n to be fixed, too. Therefore, according to

(5.21), the value of the deduced n̂Li is also fixed, which agrees with the identification

results in GA1+U,1 and GA1+U,2.

Notice that this fixed n̂Li only comes with genetic algorithm identification that uses

current trajectories mainly composed of low C-rate current. Because the SPM ignores

the concentration distribution along the thickness of the anode-separator-cathode and

is accurate only when the C-rate is low, the genetic algorithm is unable to match the

trajectory of θ̂n with that of the DFN model when the current trajectories are mainly

composed of high C-rate current. Therefore, the deduced n̂Li is not accurate and is

not the same among different runs of the genetic algorithm in the high C-rate case.

Indeed, the current trajectories used in GA1+U,1 and GA1+U,2 consist mostly of the

1-C CCC trajectory. Therefore, the deduced n̂Li is accurately matching nLi deduced

from the originial parameter set and the same between GA1+U,1 and GA1+U,2. On the

other hand, GA10+U in Table 5.1 is identified with current trajectories including a 10-C

CCC trajectory and a UDDS trajectory. As a result of the high C-rates, the deduced

n̂Li in GA10+U is different from the deduced n̂Li in the other three cases. The voltage

is also not as accurately matched when the C-rate is high, which can be observed from

the higher fitness value of the genetic algorithm. The fitness value for GA1+U,1 and

GA1+U,2 are both 0.0053, while the fitness value for GA10+U is 0.0089, which is almost

twice as high as GA1+U,1 and GA1+U,2. Therefore, in order for parameterization of

the SPM to facilitate the estimation stage, the current trajectories should be designed

so that they are at low C-rates at most of the time.
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From this point on, this section answers the second question: with this deduced

n̂Li, why is it needed to estimate nLi using the EKF? Although parameterization and

the EKF-based estimation can both serve the purpose of providing an estimate for nLi,

the two methods differs dramatically in efficiency. Parameterization is time consum-

ing. Collecting the data including the necessary battery resting periods and running

the genetic algorithm need to take the battery off-line and can easily take a time on

the order of a day. Meanwhile, the EKF-based estimation can be conducted on-line

within seconds (as can be seen in Section 5.5). In order to monitor loss of cyclable

Li-ions, nLi is required to be estimated as frequently as the change of nLi throughout

the service life. Therefore, it is more efficient to use the EKF-based algorithm that

estimates nLi with much fewer resources than to go through parameterization every

time a new estimate of nLi is required.

However, it can still be beneficial if parameterization is not conducted only once at

the beginning of the service life, but a few times throughout the life time, though less

frequently than estimation of nLi. Re-parameterizations influence the performance of

the EKF-based estimation of nLi by regulating the errors in model parameters caused

by other degradation mechanisms (e.g., loss of active material, structural change).

The influence of re-parameterization on the accuracy of estimation of nLi is investi-

gated in detail in Section 5.6.2. The fact that it can be performed less frequently than

estimation of nLi is a result of the assumption that the dominant degradation mech-

anism is the consumption of cyclable Li-ions and thus nLi has a faster dynamics than

other parameters of the battery. Therefore, a preferred model of operation is to per-

form parameterization just enough times throughout the battery service life to capture

the changes of the values of parameters caused by other degradation mechanisms, and

to use more efficient estimation algorithms such as the EKF-based algorithm herein

to track the changes in the cyclable Li-ions between the times of parameterization.
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5.5 The Estimation Stage: Estimation under Ideal

Conditions

In this section, simulation results are provided to estimate the number of cyclable

Li-ions using the EKF under the ideal conditions. The ideal conditions are defined

as follows.

1. No noise in input and output measurements, which means Ĩ(k) = I(k) and

Ṽ (k) = V (k).

2. No additional errors in modeling. Notice that by using the SPM in the EKF

as a model for the true system that is either a real battery or the DFN model,

and by using the parameter set identified by the genetic algorithm in the SPM,

there are already differences in model structure and parameters under this prob-

lem formulation. Here, under ideal conditions, this chapter assumes that these

differences are present, but there are no additional differences between the struc-

ture and parameters of the True System and System Model blocks in Figure

5.1.

3. No error in the initial estimation of the SOC. Here the SOC refers to θn defined

in (2.26). Therefore, no initial SOC estimation error implies θ̂n(0) = θn(0).

When there is no modeling error, ĉs,max,n = cs,max,n. Then ĉse,n(0) = cse,n(0).

The parameters of the true system are obtained from [3] (listed as Original in

Table 5.1) while the parameters of the system model is GA1+U,2 in Table 5.1, which

is obtained from parameterization. The parameters for the EKF are set as follows.

The noise covariance matrices are Pω = 1 and Pν = 10. The initial estimate of the

extended state is X̂+(0) = (x̂(0)T, n̂Li(0))T, where x̂(0) yields the same initial SOC

as in the true system given by x(0) and n̂Li(0) = 0. The initial estimate for the error

covariance matrix is P̂+(0) = 104Ilx+1.

Both the 1-C CCC trajectory and the UDDS trajectory used in parameteriza-

tion are used as the excitation in this section. The 1-C CCC trajectory simulates
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Figure 5.3: The estimate n̂Li and relative estimation error εnLi
of the number of

cyclable Li-ions nLi under the ideal conditions for two current trajectories: (a) 1-C
constant current charge (CCC) trajectory and (b) an EV current trajectory for the
Urban Dynamometer Driving Schedule (UDDS).

the fast charge of HEV/EV batteries. The UDDS trajectory evaluates the effective-

ness of the algorithm under dynamic battery loading conditions typical for HEV/EV

applications.

The performance of the algorithm is indicated by the accuracy of estimating the

number of cyclable Li-ions. This accuracy is measured by the relative estimation

error εnLi
(k).

εnLi
(k)

4
=
n̂Li(k)− nLi

nLi

× 100%. (5.24)

Figure 5.3 (a) and (b) present the estimation results under the ideal conditions for

1-C CCC trajectory and the UDDS trajectory, respectively. In both Figure 5.3 (a)

and (b), n̂Li(k) converges close to nLi in 5 seconds after initializing at 0. Under the

1-C CCC trajectory, the relative estimation error εnLi
is bounded within [−1, 0.2]%

during the overall simulation, and converges to a bound within ±0.2% after half of

the total simulation time. Under the UDDS trajectory, the relative estimation error

is bounded within [−1.2, 1]%. The fact that the estimate n̂Li does not converge to the

true value nLi is due to the difference between the voltage responses of the DFN model
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and the SPM with different parameters. The small bounds of the relative estimation

error εnLi
indicate that the level of this difference in the voltage response is small

enough to have limited impact on estimation of the number of cyclable Li-ions. The

results in Figure 5.3 show that the number of cyclable Li-ions can be accurately and

quickly estimated under both 1-C CCC and UDDS current trajectories using the EKF

under the ideal conditions.

The overall time taken to simulate the SPM, compute Ĉ(k), and conduct esti-

mation using the EKF at each step, which corresponds to 0.2 s in the true system,

is 0.01 s in this simulation. This time difference indicates that the computation re-

quired by the estimation algorithm designed in this chapter can be done within a

much shorter time than required for on-line estimation. Although this simulation is

conducted using Matlab 2014a on a 64-bit computer with 2.7-GHz processor while

the estimation in vehicles is conducted using C or assembly language on 8- to 32-bit,

1- to 80-MHz micro-processors, this result still shows that the proposed method is

potentially suitable for on-line applications.

5.6 The Estimation Stage: Robustness to Non-Ideal

Conditions

In this section, robustness of the algorithm is examined using simulations by inves-

tigating the effects of three types of non-ideal conditions; namely, SOC estimation

error, additional modeling error, and measurement noise. Only the 1-C CCC trajec-

tory is used as an example for the current excitation. Similar results can be obtained

from performing these robustness exams using the UDDS trajectory. Except Section

5.6.2, the parameters of the true system are the parameters listed as Original in Table

5.1, while the parameters of the system model are from GA1+U,2 in Table 5.1.
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Figure 5.4: (a) The estimate and (b) relative estimation error εnLi
of the number of

cyclable Li-ions nLi under the presence of SOC estimation error.

5.6.1 Robustness to SOC Estimation Error

In this section, the effect of SOC estimation error on the performance of the algorithm

is investigated. Here the initial SOC estimation error is set at ±1%, because an

error on this level is often expected in SOC estimation [34, 54, 40]. Because the

stoichiometry θn is between 0.126 to 0.676, corresponding to 0% to 100% SOC [3], a

difference of 1% in SOC corresponds to a difference of (0.676− 0.126)× 1% = 0.0055

in θn. Therefore, the initial estimation of the state x̂(0) is set so that

θ̂n(0) = θn(0)± 0.0055, (5.25)

where θ̂n(0) and θn(0) are computed from x̂(0) and x(0), respectively. Then, in the

EKF, X̂+(0) = (x̂(0)T, 0)T, where x̂(0) yields a θ̂n(0) that satisfies (5.25). All the

other parameters for the battery model and the EKF are the same as in Section 5.5.

Figure 5.4 presents the estimation results under the initial SOC estimation error

as in (5.25). The relative estimation error εnLi
is bounded within [−1.9,−0.5]% and

[0, 0.4]% for the cases SÔC(0) = SOC(0) + 1% (i.e., θ̂n(0) = θn(0) + 0.0055) and

SÔC(0) = SOC(0) − 1% (i.e., θ̂n(0) = θn(0) − 0.0055), respectively. These bounds
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for εnLi
suggest that an SOC estimation error on the level of ±1% has limited impact

on the estimation accuracy of the number of cyclable Li-ions. The results in Figure

5.4 show that even under an SOC estimation error of ±1%, the number of cyclable

Li-ions can still be estimated accurately.

5.6.2 Robustness to Additional Modeling Error

This section investigates additional modeling error that results from parameter changes

caused by battery degradation. As the number of cyclable Li-ions decreases after bat-

tery degradation caused by consumption of Li-ions, other battery parameters might

also change due to various other degradation mechanisms. These changes in other pa-

rameters impact the voltage response of the battery, and thus impact the estimation

accuracy of the number of cyclable Li-ions.

Besides the loss of cyclable Li-ions, another common degradation mechanism in

batteries with LMO-mixture cathode material is the loss of active materials, which

results in a decrease in the parameters cs,max,n and cs,max,p. [73] reports that after

2000 constant current constant voltage cycles with 0.5 C current under 34◦C, 8%

and 4% active material loss are measured in the cathode and anode, respectively.

Therefore, in this section, cs,max,n and cs,max,p are set at 96% and 92% of the values in

the previous sections, while ĉs,max,n and ĉs,max,p remain at their previous levels. This

setting simulates the situation where the estimation algorithm uses the parameters of

a fresh battery to estimate the number of cyclable Li-ions in a used battery. Therefore,

the modeling error considered herein is the error in model parameters, i.e., cs,max,n =

0.96ĉs,max,n and cs,max,p = 0.92ĉs,max,p.

Figure 5.5 presents the estimation results with parameter errors in cs,max,n and

cs,max,p. It can be observed that under the modeling error considered in this chapter,

εnLi
(k) is bounded within [2.7, 6.2]%. It can be concluded that other battery degrada-

tion mechanisms such as loss of active materials present a challenge to the estimation

accuracy of the number of cyclable Li-ions. Therefore, it is beneficial to perform

several re-parameterizations during the service life of the battery to capture the pa-

rameter changes caused by battery degradation and reduce its impact on estimation
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Figure 5.5: (a) The estimate and (b) relative estimation error εnLi
of the number of

cyclable Li-ions nLi under additional modeling error caused by loss of 4% anode active
material and 8% cathode active material.

of the number of cyclable Li-ions.

Figure 5.6 shows the effect of re-parameterizations on the estimation accuracy

of the number of cyclable Li-ions. The relative estimation errors εnLi
in Figure 5.6

are obtained under the same level of additional modeling error caused by loss of

active materials in the DFN model as in Figure 5.5. However, the parameter set

in the SPM in Figure 5.6 is obtained from re-parameterizations, either when the

active material loss is at the same level or half of the level as in the DFN model;

i.e., the result labelled with 96%n, 92%p in Figure 5.6 uses a parameter set identified

from the current and voltage trajectories of the DFN model with 8% and 4% active

material loss in the cathode and anode, and the result labelled with 98%n, 96%p uses

a parameter set identified with 4% and 2% active material loss in the cathode and

anode. εnLi
are bounded within [0, 2]% and [−1.7,−0.9]% for re-parameterization at

half of the level (98%n, 96%p) and the same level (96%n, 92%p) as in the DFN model,

respectively. Both these relative estimation errors are lower than (approximately

1/3 of) the relative estimation errors in Figure 5.5, which is [2.7, 6.2]%. This result

confirms that re-parameterization can improve the estimation accuracy of the number

of cyclable Li-ions.
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Figure 5.6: The relative estimation errors εnLi
under additional modeling error caused

by loss of 4% anode active material and 8% cathode active material using the pa-
rameter set identified i) at the beginning of the service life (no re-parameterization),
ii) when loss of active material is at half of the level of the modeling error (98%n,
96%p), and iii) when loss of active material is at the same level as the modeling error
(96%n, 92%p).

5.6.3 Robustness to Measurement Noise

In this section, the impact of measurement noise on the estimation accuracy is inves-

tigated by adding noise to the input and output measurements separately.

This chapter assumes that the measurement noise follows a zero-mean Gaussian

distribution,

Inoise ∼ N(0, σ2
I ), (5.26)

Vnoise ∼ N(0, σ2
V), (5.27)

where Inoise and Vnoise are noise added to the input and output measurements, re-

spectively. In this chapter, it is assumed that the standard deviations satisfy σI = 1

A and σV = 0.1 V. These standard deviations are chosen to test the algorithm with

noise levels that exceed what is actually present in most of the equipment available

in the market today; i.e., most equipment available in the market can provide more
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Figure 5.7: The estimate n̂Li and relative estimation error εnLi
of the number of

cyclable Li-ions nLi under the presence of (a) input and (b) output measurement
noise.

accurate current and voltage measurements than this level [76]. For the case with

output measurement noise, the measurement noise covariance matrix Pν is increased

to 105; thus the estimation algorithm takes into account that the measurements are

not accurate and gives less trust to the measurement.

Figure 5.7 (a) and (b) show the simulation results under only input and out-

put measurement noise, respectively. The relative estimation error εnLi
is bounded

within [−1, 0.5]% and [−1.6, 2]% under (a) input and (b) output measurement noise,

respectively. These results demonstrate that the number of cyclable Li-ions can be

accurately estimated even under the presence of very high measurement noise. To

this end, the measurement noise covariance matrix Pν in the EKF might need to be

set to a larger value in the case with output measurement noise.

5.6.4 Combination of Non-Ideal Conditions

This section examines the effect of a combination of the three kinds of non-ideal

conditions considered above on estimation of the number of cyclable Li-ions. In

this section, estimation results are obtained with i) +1% SOC estimation error, ii)

additional modeling error caused by loss of 4% anode active material and 8% cathode
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Figure 5.8: The relative estimation errors εnLi
under a combination of non-ideal condi-

tions in Figure 5.4, 5.5, and 5.7 using the parameter set identified i) at the beginning
of the service life (no re-parameterization), ii) when loss of active material is at half
of the level of the modeling error (98%n, 96%p), and iii) when loss of active material
is at the same level as the modeling error (96%n, 92%p).

active material, and iii) input and output noise with standard deviations of 1 A and

0.1 V included into the simulations simultaneously.

Figure 5.8 shows the relative estimation errors εnLi
under the combination of non-

ideal conditions using the parameter set identified i) at the beginning of the service life

(no re-parameterization), ii) when loss of active material is at half of the level of the

modeling error (98%n, 96%p), and iii) when loss of active material is at the same level

as the modeling error (96%n, 92%p). Without re-parameterization, εnLi
is bounded

within [3.8, 9.5]%. With re-parameterizations, εnLi
is decreased to [−0.2, 3.6]% and

[−2, 1.8]% for re-parameterizations at {98%n, 96%p} and {96%n, 92%p}, respectively.

The results show that estimation of the number of cyclable Li-ions is robust even

when the three non-ideal conditions are present at the same time, and the estimation

accuracy can be further improved with re-parameterizations.
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5.7 Lower Bounds on Relative Estimation Error and

Covariance of Estimates

This section extends the framework developed in Section 3.5 that obtains the lower

bounds of the relative estimation error and of the covariance of the estimates of

the side reaction current density to estimation of the number of cyclable Li-ions.

This extension is possible because estimation of the number of cyclable Li-ions is

also achieved by minimizing the error between the voltage measurement and the

estimated voltage. Using similar analyses as in Section 3.5, the lower bound of the

relative estimation error of the number of cyclable Li-ions is

|εnLi
| =

∣∣∣∣ n̂Li − nLi

nLi

∣∣∣∣ =

∣∣∣∣ Vas

s(V |nLi)nLi

∣∣∣∣ , (5.28)

and the lower bound of the covariance of an unbiased estimate of the number of

cyclable Li-ions is

cov(n̂Li) =
cov(Vas)

s(V |nLi)2
=

E(V 2
as)

s(V |nLi)2
. (5.29)

for unbiased n̂Li and zero mean Vas. s(V |nLi) is the sensitivity of the voltage to the

number of cyclable Li-ions, which is defined as

s(V |nLi)
4
=

∂V

∂nLi

. (5.30)

The rest of this section compares the robustness to the same non-ideal conditions

of the number of cyclable Li-ions and the side reaction current density by comparing

the lower bounds of the relative estimation error and of the covariance of the estimate

under the same non-ideal conditions. According to (3.63) and (5.28,

|εnLi
|

|εJsd|
=
s(V |Jsd)Jsd

s(V |nLi)nLi

(5.31)

under the same Vas. |εnLi
| and |εJsd | are the lower bounds for the relative estima-
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Figure 5.9: The sensitivity of the voltage to the number of cyclable Li-ions, s(V |nLi).

tion errors of the number of cyclable Li-ions and the side reaction current density,

respectively. Similarly, according to (3.68) and (5.29),

cov(n̂Li)

cov(Ĵsd)
=
s(V |Jsd)2

s(V |nLi)2
(5.32)

under the same cov(Vas) for unbiased estimates n̂Li and Ĵsd.

Both (5.31) and (5.32) requires evaluation of s(V |nLi) and s(V |Jsd). Similar to

the method used in Section 3.6, the SPM is simulated three times using 1-C constant

current charge to obtain the sensitivity of the voltage to the number of cyclable Li-

ions. The first time is with the value of all parameters being the same as in the

LMO-mixture parameter set used in the true system. The voltage simulated from the

first time is denoted as V100%nLi
. Then the SPM is simulated with ±1% perturbation

in the value of nLi, and the voltage responses are denoted with V99%nLi
and V101%nLi

.

The SPM is used here instead of the DFN model to keep the distribution of the

Li-ion concentration comparable among the three simulations. This is because the

same nLi level in the DFN model corresponds to various distributions of the Li-ion

concentration inside the battery. This approximation is valid because the voltage

response of the DFN model and the SPM is close under 1-C constant current. Then,

the sensitivity of the voltage to the number of cyclable Li-ions is approximated by

s(V |nLi) ≈
|V100%nLi

− V99%nLi
|+ |V100%nLi

− V101%nLi
|

2× 1%nLi

. (5.33)

Figure 5.9 shows the sensitivity of the voltage to the number of cyclable Li-ions.
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It can be observed that s(V |nLi) = O(100) V mol−1. It can be further observed

from Figure 3.11 (a), Figure 5.3, and Figure 3.9 that s(V |Jsd) = O(10−7) V m3 A−1,

nLi = O(10−1) mol, and Jsd = O(103) A m−3, respectively. Therefore,

|εnLi
|

|εJsd|
=
s(V |Jsd)Jsd

s(V |nLi)nLi

= O(10−3), (5.34)

cov(n̂Li)

cov(Ĵsd)
=
s(V |Jsd)2

s(V |nLi)2
= O(10−14). (5.35)

The result shows that the lower bound of the relative estimation error of the number

of cyclable Li-ions is three orders of magnitude smaller than the lower bound of the

relative estimation error of the side reaction current density, and the lower bound of

the covariance of unbiased estimate of the number of cyclable Li-ions is 14 orders of

magnitude smaller than the lower bound of the covariance of unbiased estimate of

the side reaction current density. This result agrees with the observation that the

number of cyclable Li-ions is significantly more robust than the side reaction current

density to non-ideal conditions.

5.8 Summary and Conclusions

This chaper presents a method to monitor battery SOH by estimating the number of

cyclable Li-ions. The number of cyclable Li-ions is formulated as a battery parameter

that affects the voltage response. This parameter is then estimated using the EKF.

In this chapter, the battery is modeled with the DFN model with 50 particles per

electrode, while the EKF algorithm is designed with the SPM as the model for the

battery. As a preparation stage, parameterization of the SPM is performed before

estimation of the number of cyclable Li-ions.

The effectiveness of the method is demonstrated through simulation. Two current

trajectories for a typical HEV/EV operation cycle is considered in the simulations.

The charge trajectory is 1-C CCC, which simulates the fast charging of EVs. The

second current trajectory is generated by an EV subject to the UDDS cycle, which

simulates the dynamic load condition of HEV/EVs.
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First, the number of cyclable Li-ions is estimated under the ideal conditions, i.e.,

no SOC estimation error, no additional modeling error besides the structural and

parameter discrepancies between the DFN model and the SPM, and no measure-

ment noise. Simulations show promising results in estimating the number of cyclable

Li-ions for both the charge and discharge modes under the ideal condition; the esti-

mated number of cyclable Li-ions converges to the true value quickly and accurately

with relative estimation errors bounded within [−1, 0.2]% and [−1.2, 1]% for the two

current trajectories.

Then, robustness of the method is tested by estimating the number of cyclable Li-

ions under various non-ideal conditions. The performance of the algorithm is tested

under the presence of SOC estimation error, additional modeling error, and measure-

ment noise, both individually and combined. In all the cases tested in this chapter,

the bounds for the relative estimation error εnLi
of the number of cyclable Li-ions are

within ±10%. These results show that estimation of the number of cyclable Li-ions

has high robustness against the three considered non-ideal conditions. The result

regarding additional modeling error also sheds light on the frequency of parameteri-

zation throughout the service life of the battery. Using parameter sets obtained from

re-parameterizations performed during the service life of the battery can improve the

estimation accuracy of the number of cyclable Li-ions when additional modeling error

is introduced by other degradation mechanisms.

Finally, a framework is developed to obtain the lower bounds of the relative esti-

mation error and of the covariance of the estimate of the number of cyclable Li-ions

under non-ideal conditions using the same approach as in Chapter 3. This frame-

work is used to compare the lower bounds of the relative estimation error and of the

covariance of the estimate of the side reaction current density and the number of

cyclable Li-ions under the same non-ideal conditions. This comparison confirms the

observation obtained from simulation results that the estimation of number of cy-

clable Li-ions is significantly more robust than the estimation of side reaction current

density to non-ideal conditions.

This chapter makes the following four contributions. First, the number of cyclable
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Li-ions is estimated using the EKF to monitor the battery SOH. Specifically, the SPM

is used as the system model to simplify the design of the EKF and to balance the

trade-off between the requirement for an electrochemical model and the computational

complexity suitable for on-line estimation. Second, to make the simulation closer

to practice, parameterization of the SPM is performed using the simulation data

from the DFN model as a preparation stage. Third, robustness of estimating the

number of cyclable Li-ions is tested under various non-ideal conditions such as SOC

estimation errors, additional modeling errors, and measurement noise. Finally, a

framework is developed to obtain the lower bounds of the relative estimation error

and the covariance of the estimate of the number of cyclable Li-ions under non-ideal

conditions. Robustness of estimation of the side reaction current density and the

number of cyclable Li-ions to the same non-ideal conditions is also compared using this

framework. The main conclusion of this chapter is that the number of cyclable Li-ions

can be an effective indicator of the battery SOH, because it can i) uniquely indicate

the remaining capacity of the battery regardless of the environmental condition and

use pattern of the battery, and ii) be accurately estimated even under non-ideal

conditions.
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Chapter 6

Comparison of the Effectiveness of

Estimating Side Reaction Current

Density and the Number of Cyclable

Li-ions as SOH Indicators

This chapter compares and comments on the effectiveness of estimating the two elec-

trochemical variables, namely the side reaction current density and the number of

cyclable Li-ions, as the SOH indicators for EV and HEV batteries. The comparison

is first made between the two electrochemical variables. Then the electrochemical-

based SOH indicators are compared to the effects-based SOH indicators. The ef-

fectiveness explored herein concerns i) the information provided regarding the SOH,

ii) the availability via estimation, and iii) the robustness of the estimation under

non-ideal conditions. In this section, the effectiveness of the two electrochemical vari-

ables are discussed and compared. Then, a recommendation for the more effective

electrochemical SOH indicator is made based on the comparison.
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6.1 Comparison between Side Reaction Current Den-

sity and the Number of Cyclable Li-ions as SOH

Indicators

As argued in Chapter 3, the side reaction current density and the number of cyclable

Li-ions are correlated because the integral of the side reaction current density over

time and across the width of battery anode-separator-cathode sandwich is the loss of

the number of cyclable Li-ions. However, this does not mean that the side reaction

current density and the number of cyclable Li-ions are interchangeable in practice.

Admittedly, if the continuous trajectories of the side reaction current density and the

number of cyclable Li-ions are available, the number of cyclable Li-ions can be com-

puted from the side reaction current density and vice versa. However, the continuous

trajectories of the side reaction current density and the number of cyclable Li-ions are

difficult to obtain, even without considering non-ideal conditions present in practice.

Chapter 3 shows that the side reaction current density cannot be estimated accu-

rately during discharge modes. The instantaneous changes of the number of cyclable

Li-ions is also too insignificant to capture using a reasonable resolution. Therefore, it

is assumed that the side reaction current density cannot be obtained indirectly from

the number of cyclable Li-ions, or vice versa.

1. The Information Provided Regarding the SOH

Both the side reaction current density and the number of cyclable Li-ions are

generally applicable to capture the SOH changes caused by electrochemical

degradation mechanisms that consume cyclable Li-ions, which are the primary

degradation mechanisms for EV/HEV batteries such as the LiFePO4 and LMO-

mixture chemistries [31, 27, 28, 73].

The side reaction current density provides more instantaneous information re-

garding the SOH changes than the number of cyclable Li-ions. The side reac-

tion current density measures the rate of Li-ion consumption, thus giving an

instantaneous sense of how fast a battery is degrading at each instant in time.
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Therefore, with the information provided by the side reaction current density,

damages to batteries can be prevented immediately by stopping the abuse of

the batteries as soon as a large side reaction current density is observed. In

contrast, the number of cyclable Li-ions, being the integral of the side reaction

current density, provides only the total level of degradation over a period of

time. As an accumulative quantity, the information provided by the number of

cyclable Li-ions does not provide as immediate a warning of fast degradation as

the side reaction current density.

Therefore, in terms of the information provided regarding the SOH, the side re-

action current density is more effective than the number of cyclable Li-ions be-

cause it provides more instantaneous information on the battery SOH changes.

2. The Availability via Estimation

The simulation results in Chapter 3 – 5 show that both the side reaction cur-

rent density and the number of cyclable Li-ions can be estimated accurately

under ideal conditions. Therefore, there is no difference in the effectiveness the

side reaction current density and the number of cyclable Li-ions as the SOH

indicators from the perspective of the availability via estimation.

3. The Robustness to Non-Ideal Conditions

The number of cyclable Li-ions show large advantage in terms of the robustness

to non-ideal conditions over the side reaction current density. Estimation of the

side reaction current density is shown to be sensitive to non-ideal conditions that

cause errors in the measurement or estimation of the battery voltage. Using the

numerical values of the parameters and the battery use patterns herein, to

bound the relative estimation errors of the side reaction current density within

±10%, the voltage difference caused by non-ideal conditions needs to be less

than 0.01 mV for the example LiFePO4 battery and 10−5 mV for the example

LMO-mixture battery. These required levels of accuracy for the voltage is three

to six orders of magnitude less than what is available in practice. In contrast,

the bound for the relative estimation errors of the number of cyclable Li-ions
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is at most ±10% even under the presence of all practical non-ideal conditions

considered herein. The analysis in Section 5.7 also shows that the lower bound

of the relative estimation error of the number of cyclable Li-ions is three orders

of magnitude smaller than the lower bound of the relative estimation error of the

side reaction current density, and the lower bound of the covariance of unbiased

estimate of the number of cyclable Li-ions is 14 orders of magnitude smaller

than the lower bound of the covariance of unbiased estimate of the side reaction

current density. Moreover, techniques such as re-parameterization can further

improve the estimation accuracy of the number of cyclable Li-ions. Therefore,

the number of cyclable Li-ions is more effective than the side reaction current

density in terms of the robustness to non-ideal conditions.

In conclusion, when only the information provided regarding the SOH and the

availability via estimation are considered, the side reaction current density is the more

ideal SOH indicator because it provides more instantaneous information regarding

the SOH changes and serves as an instant warning for fast degradation, and can be

estimated accurately under ideal conditions. However, the number of cyclable Li-

ions is the more effective SOH indicator in practice because it can be estimated with

reasonable accuracy under practical non-ideal conditions.

6.2 Comparison to Effects-Based SOH Indicators

The electrochemical variables have several benefits when used as SOH indicators com-

pared to the traditional effects-based SOH indicators including providing insights on

degradation from the first principles and being less sensitive to changes in environ-

mental conditions and use patterns as discussed in Section 1.1.4. The discoveries in

this dissertation also demonstrate that the electrochemical variables not only have

the previous discussed benefits but can also be more effective SOH indicators under

certain conditions.

The side reaction current density has the following two advantages over effects-

based SOH indicators if estimated accurately. First, the side reaction current density
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provides indication of instantaneous degradation rate, which is a piece of information

that cannot be provided by either the number of cyclable Li-ions or effects-based SOH

indicators. Second, the estimation technique developed in this dissertation can also

identify the battery health subsystem that produces the side reaction current density.

This identified subsystem model can be further used to predict future degradation

rate. This model can also be used in predictive control algorithms to assist other

battery management functionalities.

The number of cyclable Li-ions is a promising SOH indicator compared to effects-

based SOH indicators. First, the number of cyclable Li-ions indicates the capacity

of the battery from the first principles. Secondly, the number of cyclable Li-ions

can be estimated with reasonable accuracy under non-ideal conditions. Finally, the

number of cyclable Li-ions can be estimated using standard algorithms such as the

EKF and using simple electrochemical models such as the SPM. The SPM used in

this dissertation has only three states. The simplicity of the model and the algorithm

alleviates the common concern regarding electrochemical-based SOH indicators that

the computational complexity of the electrochemical battery model makes on-line

estimation difficult. In particular, the simulations performed in Chapter 5 runs 1000

times faster than real time. Although these simulations is performed with Matlab

R2014a in a laptop with a 2.70 GHz CPU and 16.0 GB RAM, the demonstrated

computational speed is still very promising for on-board applications.
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Chapter 7

Conclusions and Future Work

7.1 Dissertation Summary

This dissertation considers two electrochemical variables, namely the side reaction

current density and the number of cyclable Li-ions, and explores their effectiveness as

the SOH indicators for EV and HEV batteries. Formulations are provided to estimate

these two electrochemical variables from measurements of battery terminal voltage

and current. A framework is also developed to obtain the lower bound of relative

estimation error and the lower bound of the covariance of unbiased estimates for

each of the two variables under non-ideal condition for algorithms that estimate the

variable by minimizing the error between measured voltage and estimated voltage.

Finally, the two electrochemical variables are compared in terms of their effectiveness

both between each other and with effects-based SOH indicators from the aspect of

the information the variables provide regarding the SOH, the availability through

estimation, and the robustness to non-ideal conditions.

Chapter 2 presents three electrochemical battery models in the literature to pre-

pare for the development of estimation algorithms in Chapter 3 – 5. The three models

are categorized into i) the SOC models including the DFN model [51, 52] and the

SPM [56, 54] and ii) the SOH model including the Arora model [31]. The three mod-

els are selected, combined, and modified differently in Chapter 3 – 5 based on the

different requirements of the applications.

130



Chapter 3 presents a formulation to estimate side reaction current density and

identify the health subsystem that produces the side reaction current density using

RCSI. The estimation of the side reaction current density is formulated as an inacces-

sible subsystem identification problem, where the battery health subsystem is treated

as an inaccessible subsystem with the side reaction current density as the output. This

subsystem is identified using RCSI, and the output of the identified battery health

subsystem provides an estimate for the side reaction current density. In this chapter,

the True System is modeled with the DFN model with 50 particles per electrode in-

tegrated with the Arora model, while the System Model is represented by either the

DFN model with 50 or less particles per electrode or the SPM, all integrated with the

Arora model. Simulations are performed to obtain estimates under various current

profiles. These simulations show that both the battery health subsystem and the side

reaction current density can be estimated accurately using RCSI under ideal condi-

tions. Robustness of the algorithm under non-ideal conditions is then analyzed. A

framework is developed to obtain the lower bound of the relative estimation error and

the lower bound of the covariance of unbiased estimate of the side reaction current

density. Estimation of the side reaction current density under non-ideal conditions

that cause errors in the measurement or estimation of the battery voltage is shown to

be fundamentally difficult because of the limited impact of the side reaction current

density to the voltage. Simulation results show that the estimate of the side reaction

current density given by RCSI has achieved the established lower bounds for the rel-

ative estimation error in all tested situations with parameters of both LiFePO4 and

LMO-mixture batteries.

Chapter 4 develops a new subsystem identification algorithm, the TSF, under the

motivation of improving the accuracy of estimating the side reaction current density

when SOC estimation errors are present. The TSF can estimate both the subsystem

parameter and the persistent main system state estimation error simultaneously for

systems that are marginally stable and have weak feedback of the subsystem output.

The battery model used in this chapter is a modified SPM integrated with the Arora

model. The TSF is first applied to a linear time varying model that is obtained via
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linearization of the battery model, and then applied to the nonlinear battery model.

All the matrices in the TSF except the matrix E1 that represents the sensitivity of

the voltage to the states are obtained through linearization around the estimates.

The simulation results show that the side reaction current density, SOH subsystem

model, and the SOC estimation error can be estimated when E1 is accurately eval-

uated. Finally, the method for evaluating E1 for the nonlinear voltage response is

presented, along with a discussion of the potential challenges for accurately evaluat-

ing E1 in practice. When the evaluation of E1 is not accurate, the improvement on

the estimation accuracy of the side reaction current density when SOC estimation

errors are present is limited. The requirement for accurate evaluation of E1 presented

in Chapter 4 is due to the same reason that an accurate SOC estimation is required

in Chapter 3. This chapter shows that the sensitivity of the estimate of the side

reaction current density to non-ideal conditions cannot be reduced by modifying the

estimation algorithm.

Chapter 5 investigates the estimation of the number of cyclable Li-ions using the

EKF. The number of cyclable Li-ions is formulated as a battery parameter that af-

fects the voltage response. This parameter is then estimated using the EKF. In this

chapter, the battery is modeled with the DFN model with 50 particles per electrode,

while the EKF algorithm is designed with the SPM as the model for the battery. As

a preparation stage, parameterization of the SPM is performed before estimation of

the number of cyclable Li-ions. During the estimation stage, the number of cyclable

Li-ions is first estimated under the ideal conditions, i.e., no SOC estimation error,

no additional modeling error besides the structural and parameter discrepancies be-

tween the DFN model and the SPM, and no measurement noise. Simulations show

promising results in estimating the number of cyclable Li-ions for both the charge and

discharge modes under the ideal condition. Then, robustness of the method is tested

by estimating the number of cyclable Li-ions under various non-ideal conditions, both

individually and combined. The bounds of the relative estimation errors of the num-

ber of cyclable Li-ions obtained in simulations under all combinations of non-ideal

conditions are smaller than ±10%. The results indicate that the number of cyclable
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Li-ions can be estimated accurately even under non-ideal conditions. A framework

that obtains the lower bound of the relative estimation error and the lower bound

of the covariance of unbiased estimate of the number of cyclable Li-ions is developed

using the same method as in Chapter 3. This framework is also used to compare the

robustness of the number of cyclable Li-ions and the side reaction current density to

the same non-ideal conditions. Using a parameter set of an LMO-mixture battery, the

lower bound of the relative estimation error of the number of cyclable Li-ions is three

orders of magnitude smaller than the lower bound of the relative estimation error of

the side reaction current density, and the lower bound of the covariance of unbiased

estimate of the number of cyclable Li-ions is 14 orders of magnitude smaller than the

lower bound of the covariance of unbiased estimate of the side reaction current den-

sity. This result agrees with the observation from simulations that the estimation of

number of cyclable Li-ions is more robust to non-ideal conditions than the estimation

of side reaction current density.

Chapter 6 compares and discusses the effectiveness of the side reaction current

density and the number of cyclable Li-ions as SOH indicators. The comparison is

first made between the side reaction current density and the number of cyclable Li-

ions. Then, the advantages of using the two electrochemical-based SOH indicators

are discussed compared to effects-based SOH indicators such as the capacity and the

internal resistance.

7.2 Conclusions and Contributions

The side reaction current density is an ideal SOH indicator if estimated accurately

because it provides indication of instantaneous degradation rate that cannot be indi-

cated by other SOH indicators. The estimation technique developed in this disserta-

tion can also identify the battery health subsystem that produces the side reaction

current density, which can be used to predict and control future degradation rate.

However, estimation of the side reaction current density under practical non-ideal

conditions is fundamentally difficult due to the fact that the sensitivity of the voltage
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to the side reaction current density and the magnitude of the side reaction current

density are both low.

The number of cyclable Li-ions is a promising SOH indicator for battery manage-

ment systems in practice because it provides an indication of the remaining capacity

from the first principles and demonstrates high robustness to non-ideal conditions.

The estimation formulation developed herein also demonstrates that number of cy-

clable Li-ions can be estimated using a standard algorithm and simple models. The

simplicity of the model and the estimation algorithm is beneficial for on-line estima-

tion due to the low computational load.

Nevertheless, note that the numerical results in this dissertation are all based on

the particular parameter sets and current trajectories used herein. Therefore, the

lower bounds of relative estimation errors and of the covariance of unbiased estimate

can change with different parameter sets and current trajectories. In practice, the

framework developed in Section 3.5 and 5.7 needs to be followed to obtain the lower

bound of relative estimation errors and of the covariance of unbiased estimate under

the particular parameter set and current trajectory.

This dissertation makes the following contributions.

1. Two original modifications to the existing battery models are presented. (Chap-

ter 2)

(a) The Arora model is modified to one linear static equation with all parame-

ters lumped into one. This formulation provides a simple representation of

the complicated SOH process. The linearity of the subsystem model also

allows easy combination of several degradation mechanisms [77, 65].

(b) An analytical solution of the current densities in the SPM integrated with

the Arora model is provided [65].

2. Estimation problems of two health-relevant electrochemical variables, the side

reaction current density and the number of cyclable Li-ions, are formulated and

estimation algorithms are designed [77, 65, 78, 79]. (Chapter 3 and 5)
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(a) The side reaction current density is estimated as a direct SOH indicator

for the first time.

(b) The side reaction current density is estimated and the subsystem the pro-

duces the side reaction current density is identified using RCSI.

(c) The number of cyclable Li-ions is estimated using the EKF to monitor the

battery SOH.

(d) To make the simulation closer to practice, parameterization of the SPM

is performed using the simulation data from the DFN model, instead of

using the same parameter values in both the DFN model and the SPM.

3. A new subsystem identification algorithm, the TSF, is developed and applied

to estimation of the side reaction current density under the presence of SOC

estimation errors [80]. (Chapter 4)

(a) The TSF is developed based on RCSI and can be applied to estimate the

subsystem parameter and output, as well as the persistent main system

state estimation error in any system that is marginally stable and with

weak feedback of the subsystem output.

(b) The TSF is applied to estimate the side reaction current density in the bat-

tery under the presence of the SOC estimation error when the sensitivity

of the voltage to the state can be accurately approximated.

(c) The method for obtaining approximation of the sensitivity of the voltage

to the state through voltage responses is presented.

(d) The challenges for applying the TSF in practice to estimate the side re-

action current density with E1 evaluated using this method are identified.

These challenges verify that the high sensitivity of the estimate of the side

reaction current density to SOC estimation error is a fundamental problem

caused by the fact that the side reaction current density has low impact

on the voltage, and cannot be solved by changing estimation algorithms.
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4. A framework is developed to analyze the robustness of estimation of the two

electrochemical variables by obtaining the lower bound of relative estimation

error and the lower bound of the covariance of unbiased estimates under non-

ideal condition for algorithms that estimate the variable by minimizing the error

between measured voltage and estimated voltage. [77, 78, 79]. (Chapter 3 and

5)

(a) The lower bound of the relative estimation error of a variable is determined

to be proportional to the voltage error caused by non-ideal conditions, and

inversely proportional to the sensitivity of the voltage to the variable and

the magnitude of the variable itself.

(b) The framework is shown to provide the same lower bound of the covariance

of unbiased estimate as the bound given by the Fisher information.

(c) Estimation of the side reaction current density under non-ideal conditions

is identified to be fundamentally difficult using this framework because of

the sensitivity of the voltage to the side reaction current density and the

magnitude of the side reaction current density are both low.

(d) The number of cyclable Li-ions is shown to be more robust to the same non-

ideal conditions than the side reaction current density because the lower

bounds of the relative estimation error and the covariance of unbiased

estimates of the number of cyclable Li-ions are significantly lower than the

side reaction current density under the same non-ideal conditions.

5. The effectiveness of estimating the side reaction current density and the number

of cyclable Li-ions as SOH indicators is discussed through comparison. (Chapter

6)

(a) The side reaction current density is identified to be an ideal SOH indica-

tor when it can be estimated accurately, because it can instantaneously

indicate battery degradation rate that cannot be captured by other SOH

indicators.
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(b) The number of cyclable Li-ions is identified to be a promising SOH indi-

cator for battery management systems in practice because it provides an

indication of remaining capacity from the first principles, can be estimated

using a standard algorithm and simple models, as well as demonstrates high

robustness to non-ideal conditions.
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7.4 Future Extensions

7.4.1 Inclusion of Thermal Impact

A potential limitation regarding the results herein is that the simulations are per-

formed under the isothermal condition. In reality, temperature varies as the battery

charges and discharges [81, 82, 83]. Temperature affects the diffusion of Li-ions as well

as intercalation reactions in battery as shown in the DFN model and the SPM, which

further determines the voltage response of the battery. The difference in voltage re-

sponse can affect the estimates of the side reaction current density and the number

of cyclable Li-ions. On the other hand, changes in operating temperature also affect

the degradation process [27, 84, 21, 30], and thus a changing temperature may result

in a changing health subsystem parameter θ in estimation of the side reaction current

density, which can affect the accuracy of the estimation of the side reaction current

density, although given the very fast convergence shown in the results herein it is

expected that the challenge presented by this changing parameter to the estimation

of the side reaction current density is limited. A more complete study can be per-

formed incorporating thermal dynamics and cooling conditions by applying similar

methods to electrochemical-thermal models [85, 86]. Because of the explicit inclusion

of temperature in electrochemical-thermal models, the estimates of electrochemical

variables can take into account distribution and changes of the temperature, and
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achieve better accuracy in indicating battery SOH.

7.4.2 Estimation of Current Densities in Other Battery Degra-

dation and Safety Problems

Some other battery degradation and safety problems are also caused by reactions

in batteries whose rate can also be measured by current densities of corresponding

reactions. For example, Lithium plating [87, 88, 47], a degradation mechanism usually

caused by over-discharge of the battery, and dendrite formation [89, ?, 90, 91], a

serious safety concern of the battery, are both caused by reactions inside the battery.

The RCSI-based technique developed in Chapter 3 can be applied to both Lithium

plating and dendrite formation to estimate the current density of these reactions.

These estimates can be used to instantaneously indicate the rate of the deposition of

Lithium on electrodes and the formation of dendrites inside the battery, which can

be used as an immediate warning to prevent significant or even disastrous damage to

the battery.

7.4.3 Experimental Validation

This dissertation established that the number of cyclable Li-ions is the more effective

electrochemical SOH indicator that can be accurately estimated under both ideal

and non-ideal conditions. An on-going effort that follows the work presented in this

dissertation is to experimentally validate the technique developed in this dissertation

that estimates the number of cyclable Li-ions. This section lays out the procedures

for the experiments conducted to validate the techniques presented in Chapter 5.

Six batteries made by Dr. Greg Less in the Energy Institute at the University of

Michigan are obtained for the experiments.

The experiments are divided into two parts. The first part uses electrochemical

methods to obtain necessary electrochemical information for the parameterization of

the batteries. The second part conducts the battery cycling experiments to obtain

i) dynamic charge and discharge trajectories of the current and voltage for parame-
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terization and ii) charge and discharge trajectories of the current and voltage after

the batteries degrade to different levels to estimate the number of cyclable Li-ions in

different degradation levels.

7.4.3.1 Electrochemical Parts

In order for the parameterization in Section 5.4 to succeed, the two assumptions in

Section 5.4.1 needs to be satisfied; i.e., i) the functions Uref,j(θj) and ii) θj at the

beginning and end of the 1-C CCC and UDDS modes are known. If the functions

Uref,j(θj) and the capacity match of the electrodes are known, θj at the beginning and

end of the 1-C CCC and UDDS modes can be obtained by resting the batteries at the

beginning and end of the cycle for a prolonged period of time and measure the open

circuit voltage (OCV) [92]. Therefore, the electrochemical part of the experiments

focuses on obtaining the functions Uref,j(θj) and the capacity match of the electrodes.

Because cs,max,j can be calculated theoretically, obtaining Uref,j(θj) is equivalent to

obtaining Uref,j(cs,j).

• Method 1: Inductively Coupled Plasma

This method obtains Uref,j(cs,j) in two steps. The first step obtains the point-

wise relationship between cs,j and the SOC using the inductively coupled plasma

(ICP) [93, 94, 95]. Six batteries are charged to 0%, 20%, 40%, 60%, 80%, and

100% SOC levels, respectively. Then, the materials anode and cathode of the six

batteries are harvested and the Li-ion concentrations of the harvested electrode

samples are measured using the ICP. These measurements yields a map between

the Li-ion concentration and the SOC at 0%, 20%, 40%, 60%, 80%, and 100%

SOC levels. A continuous function between the Li-ion concentration and the

SOC in the range of [0%, 100%] SOC can be fit from these six points.

The second step discharges the battery using 1/20 C current and measures the

OCV of the battery [36, 92]. Then with Uref,n(θn) for the graphite anode from

the literature [30, 3], Uref,p(θp) can be computed by subtracting Uref,n(θn) from

the OCV.
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This method has the following disadvantages. First, the capacity match of the

battery cannot be measured, but only estimated empirically or obtained from

the literature. However, different batteries have different capacity match to the

discretion of manufactures, and thus it is difficult to estimate capacity match

from other batteries even if the battery chemistry is the same. Second, the Li-

ion concentrations measured by the ICP using this method can be inaccurate

because the samples contain the Li-ion residue from the electrolyte and the SEI

film that give a bias to the measured Li-ion concentration. Because of these

disadvantages, the second method is introduced.

• Method 2: Three-Electrode T-Type Cell

A three-electrode T-Type cell [96] can be constructed with uncycled battery

anode and cathode samples that are capacity matched and a reference elec-

trode. The Li-ion concentration and the potential of the two electrodes can be

measured simultaneously when this three-electrode cell is discharged with Gal-

vanostatic Intermittent Titration Technique (GITT) [96] or 1/20 C constant

current. These measurements can provide i) the continuous functions Uref,j(cs,j)

and ii) capacity match at the same time. Because the electrode samples are ob-

tained directly from uncycled sheets but not from cycled cells, the samples are

free from the electrolyte residue and SEI film, and thus gives more accurate mea-

surements. Moreover, the actual capacity match is measured in this method,

unlike the first method where the capacity match is estimated empirically or

obtained from the literature.

7.4.3.2 Cycling Part

The second part cycles the batteries to obtain the trajectories of the current and

voltage for parameterization and estimation of the number of cyclable Li-ions. The

trajectories for parameterization is obtained with fresh batteries using 1-C CCC,

pulse series, and UDDS cycles. The batteries are then degraded using CCCV cycles

or cycles designed in [97] to different capacity levels. The number of cyclable Li-ions is
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estimated using trajectories of the current and voltage under different capacity levels.

7.4.3.3 Validation

This study assumes that the electrochemical degradation mechanism that consumes

the cyclable Li-ions is the primary degradation mechanism in the battery. Therefore,

the decrease in the capacity of the battery should follow the same trend as the decrease

of the number of the cyclable Li-ions. Hence, the algorithm is validated when the

capacity and the estimate of the number of the cyclable Li-ions follow the same trend.

Another validation method can be the in-situ measurement of the bulk Li-ion

concentration using the neutron imaging [48]. The measured bulk Li-ion concentration

can then be converted into the number of cyclable Li-ions by multiplying with the

total volume of the battery. However, this method requires a lot of resources and

may not always be applicable in practice.
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Appendix A

The Values of the Electrochemical

Parameters and Functions Used in

the Simulations

The numerical values of the electrochemical parameters and functions in the battery

models are essential for the simulation results and numerical analysis presented in

this dissertation, and are thus included in this Appendix.

A.1 Battery Parameters

The numerical values of the parameters of the SOC model for the LiFePO4 battery

used in Chapter 3 are obtained from [63, 64], while the values for the LMO-mixture

battery used in Chapter 4 and 5 are obtained from [3]. These numerical values are all

obtained through system identification using experimental data for cycling batteries

of the respective chemistry. The parameters of the SOH model is obtained from [28]

for both the LiFePO4 and LMO-mixture batteries. Although the parameters in [28]

are designed for the LiFePO4 battery only, the numerical values of i0,sd and Uref,sd for

the LMO-mixture battery are set the same as the LiFePO4 battery herein because [3]

does not consider the side reactions.
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Variable LiFePO4 [63, 64, 28] LMO-mixture [3]
A [m2] 0.3108 1.0452
Ln [m] 2.8853E-5 5.00E-5
Lp [m] 6.5205E-5 2.54E-5
Lsep [m] 1.6971E-5 3.64E-5
Rn [m] 3.5961E-6 1.00E-6
Rp [m] 1.6371E-5 1.00E-6
εs,n 0.381 0.58
εs,p 0.48 0.50
εe,n 0.619 0.332
εe,p 0.52 0.33
εe,sep 0.3041 0.50
Ds,n [m2s−1] 8.2557E-14 2.00E-16
Ds,p [m2s−1] 1.7362E-14 3.7E-16
t+ 0.2495 0.363
cs,max,n [mol m−3] 2.9482E4 1.61E+4
cs,max,p [mol m−3] 1.0355E4 4.1E+4
Rfilm [Ω m2] 2E-10 0.002
ce [mol m−3] 1.2669E3 1.20E+3
i0,n [A m−2] - a 36
i0,p [A m−2] - a 26
kn [A m4 mol−2] 8.6963E-7 - b

kp [A m4 mol−2] 1.1267E-7 - b

i0,sd [A m−2] 1.5E-6 1.5E-6 c

Uref,sd [V] 0.4 0.4 c

F [C mol−1] 96487 96487
R [J mol−1 K−1] 8.314 8.314
α 0.5 0.5

a For the LiFePO4 battery, i0,j = kj[(cs,max,j − cse,j)cse,jce,j]
α.

b Because i0,j in the LMO-mixture battery is given, there is no need for kj.
c [3] does not consider the side reactions, so the numerical values of i0,sd and Uref,sd for
the LMO-mixture battery are set the same as the LiFePO4 battery herein.

Table A.1: The numerical values of the parameters for the LiFePO4 battery used in
Chapter 3 and the LMO-mixture battery used in Chapter 4 and 5.
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A.2 Functions for Reference Potential

The reference potential functions Uref,p(θp) and Uref,n(θn) depend on the materials of

the electrodes. For the LiFePO4 battery used in Chapter 3, the reference potentials

are [30]

Uref,p(θp) = 3.4323− 0.8428e−80.2493(1−θp)1.3198 − 3.2474× 10−6e20.2645(1−θp)3.8003

+ 3.2482× 10−6e20.2646(1−θp)3.7995 ; (A.1)

Uref,n(θn) = 0.6379 + 0.5416e−305.5309θn + 0.044 tanh
θn − 0.1958

−0.1088

− 0.1978 tanh
θn − 1.0571

0.0854
− 0.6875 tanh

θn + 0.0117

0.0529

− 0.0175 tanh
θn − 0.5692

0.0875
. (A.2)

For the LMO-mixture battery used in Chapter 4 and 5 are [3]

Uref,p(θp) = 85.681θ6
p − 357.7θ5

p + 613.89θ4
p − 555.65θ3

p + 281.06θ2
p − 76.648θp

− 0.30987 exp(5.657θ115.0
p ) + 13.1983; (A.3)

Uref,n(θn) = 8.00229 + 5.0647θn − 12.578θ1/2
n − 8.6322× 10−4θ−1

n + 2.1765× 10−5θ3/2
n

− 0.46016 exp[15.0(0.06− θn)]− 0.55364 exp[−2.4326(θn − 0.92)]. (A.4)
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Appendix B

Robustness of Estimation of SEI Film

Resistance using RCSI

B.1 Introduction

This appendix presents the contents of [43], which is a part of my battery-health-

relevant research but is not included in the main body of this dissertation. This

work extends the work in [42] that estimates the SEI film resistance using RCSI by

studying via simulations the robustness of estimation of SEI film resistance using the

formulation in [42]. In particular, the sensitivity of the estimate to measurement

noise and initialization errors is studied. These contents are not included in the main

body of this dissertation because the SEI film resistance is not a SOH indicator that

is generally applicable to all primary degradation mechanisms as argued in Chapter

1.

SEI film resistance can be considered as a SOH indicator in the degradation mech-

anism of SEI film formation. Direct measurements of the SEI film growth require

invasive methods that destroy the battery and are thus not applicable during the life-

time of the battery. Therefore, similar to the side reaction current density in Chapter

3, the dynamics of SEI film growth constitute an inaccessible subsystem in the bat-

tery, and thus RCSI [57, 58, 59, 60] is used as the algorithm to estimate the SEI film

resistance and identify the subsystem that produces the SEI film as the output.
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The battery model used in this work is the DFN model [51, 52] augmented with the

Ramadass battery-health model [28] (DFN+R). The Ramadass model is an extension

of the Arora model presented in Section 2.3 to the SEI film formation mechanism. The

Ramadass model contains two components: i) the Li-consumption component, which

is the Arora model, and ii) the film-growth component. The film-growth component

models the creation of the SEI film from the side reaction. First, the side reaction

creates the SEI film at a rate proportional to the side reaction current density, that

is,
∂δfilm

∂t
= −JsdMSEI

anρSEIF
(B.1)

The SEI film then adds to the internal resistance of the anode, thereby negatively

affecting battery performance as modeled by

Rfilm = RSEI +
δfilm

κeff
p

. (B.2)

In the formulation presented in [42], the DFN+R model is considered as the true

system, with the DFN model together with the Li-consumption component of the

Ramadass model as the main system, and the film-growth component of the Ramadass

model as the unknown subsystem. Therefore, Jsd is formulated as the input to the

subsystem that is computed in the main system, while RCSI’s task is to identify a

model that represents (B.1) and (B.2) and to estimate the output Rfilm.

[42] has illustrated the applicability of the RCSI method to the film formation

problem; however, a seventh order subsystem model structure was used, which is

relatively high, and it was assumed that there were no noise or modeling errors. Hence,

it is unknown how RCSI will perform with low order subsystem model structures and

under the presence of noise and modeling errors. To address this gap, [43] aims to

study the performance of RCSI in identifying film growth when a first-order model

structure is assumed as the subsystem model, including cases when there is noise in

input or output measurements, or when there are initialization errors in the main

system model.
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B.2 Simulation under Ideal Conditions

This section presents a numerical simulation of the application of RCSI to the

film-growth identification problem. The DFN+R model is simulated under repeated

Constant-Current, Constant-Voltage (CCCV) cycling from 2 to 3.6 V at a 2.5 C-

rate to produce the current and voltage from the true system. The parameters for

the DFN model are taken from [63]. For the Ramadass model the parameters are

assumed to be usd,ref = 0.4, i0,sd = 4 × 10−9, MSEI = 7.3 × 104, ρSEI = 2.1 × 103,

and κeff
p = 1. The film-growth subsystem is then removed from the DFN+R model

in accordance with the assumption that it is unknown. RCSI is then tasked with

identifying the dynamics of the unknown film-growth subsystem. The controller and

tuning parameters are chosen to be P (0) = 5×10−7, and H̃ = [Ĥ1], where Ĥ1 = 0.01.

Finally, α(k) = 1 at the start of each cycle, that is, P (k) and θ(k) are re-initialized

at the start of each charging cycle. The order of the subsystem model is chosen to be

1, which is the same as the order of the subsystem. Note that this is in contrast to

[42], where the order of the subsystem model is 7. In this section, initial conditions

in the truth system and the system model are identical, where the concentration in

the electrolyte is set at ce = 1.2669 × 103 mol m−3 and the concentration in anode

and cathode are chosen to be cs,n = 0.8408 mol m−3 and cs,p = 0.1592 mol m−3,

respectively. The sample time is chosen to be T = 0.2 s.

Figure B.1 shows the true film resistance as given by DFN+R model and the

film resistance as estimated by RCSI. The film resistance estimates show that the

film-resistance subsystem dynamics are not identifiable during the discharging and

constant voltage charging intervals; i.e., intervals of operation within which the inter-

calation side current Jsd is close to zero. However, in the constant current charging

phase when Jsd is large, RCSI produces a useful estimate of the film resistance that

is close to the true film resistance. This is consistent with the previous work [42] that

studied the identifiability of the film growth in different modes in CCCV cycles based

on Fisher information and found that the film resistance is identifiable only during

constant current charging phase. Physically, overpotential between side reaction and
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Figure B.1: True film resistance and the film resistance estimated by RCSI. Shaded
regions 1–4 indicate the constant current discharging mode, constant voltage dis-
charging mode, constant current charging mode, and constant voltage charging mode,
respectively.
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Figure B.2: A magnified view of Figure B.1.
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Figure B.3: Identified θ by RCSI.

intercalation reaction is much higher in charging modes, which leads to a much more

significant film growth in charging modes than discharging modes. Moreover, the film

growth rate in constant voltage charging mode is much smaller than in constant cur-

rent charging mode. Thus, the film resistance is more identifiable in constant current

charging mode. Figure B.2 provides a magnified view of Figure B.1, which shows that

the estimates of film resistance provided by RCSI correspond closely to the true film

resistance during intervals in which Jsd is large. This performance is as good as that

of the seventh-order model considered in [42].

Figure B.3 shows the identified θ in simulation. The identified M1, i.e., the pole,

has an order of magnitude of 10−7, and the identified N1, i.e., the gain, has an order

of magnitude of 10−4. Note that the differential equations in the Ramadass film-

growth model are also describing a first order system, so the true θ can be obtained

as [M1, N1]T = [1,−2.3712 × 10−10]T. Thus, the identified θ is not the same as the

true θ in the subsystem, even though the identified model can track the film resistance

well.

To investigate this parameter convergence issue further, the film-growth subsys-

tem is isolated from the main system and identified through standard recursive least

squares (RLS), which is a special case of the Kalman filter, using the û and ŷ0 recorded

during the simulations with RCSI and using a range of values for P (0). Fig. B.4 shows

150



0 1000 2000 3000 4000 5000 6000

−15
−10
−5
0

x 10−9

Time [s]

N
1 identified value

true value

0 1000 2000 3000 4000 5000 6000
0

0.5

1

Time [s]

M
1 identified value

true value

Figure B.4: Identified θ by RLS when P (0) = 1× 1010.

the identified results using P (0) = 1010 as opposed to the P (0) = 5×10−7 in RCSI in

Figs. B.1 and B.2 . As can be seen in the figure, with P (0) = 1010, RLS can identify

the true parameters accurately. However, when P (0) = 1010 in RCSI, it leads to a

singularity in the battery model. The precise cause of this singularity is currently

unknown, but is subject to future research. When the singularity issue is resolved,

it can be expected that RCSI will also be able to identify the subsystem parameters

accurately.

B.3 Sensitivity to Measurement Noise

The previous section showed that film resistance can be estimated accurately

during the constant current charging mode, when current is the input and voltage is

the output of the Main System. Since the film grows mainly during constant current

charging, it is possible to conceive a use scenario in which RCSI is activated only

during the constant current charging mode and deactivated during the other modes.

Therefore, in this section, the impact of noise is investigated only for the constant

current charging mode.

B.3.1 Sensitivity to Output Measurement Noise

The approach used to analyze the effect of output noise can be briefly summa-
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Figure B.5: Voltage change vs. relative film resistance growth between successive
cycles.

rized as follows. The truth system is simulated first for five successive CCCV cycles

to obtain the relationship between the true voltage change and true film growth. Suc-

cessive cycles are compared pairwise to identify the change in voltage as a function

of the relative change in film resistance. Then, the maximum standard deviation of

noise is set to the same order of magnitude as the voltage change and the performance

of RCSI is analyzed.

Figure B.5 shows how film resistance grows and voltage changes in successive

cycles in the truth system. The film resistance increases by about 1.5%, while the

voltage changes by about 0.1-0.2 mV. This result indicates that if we apply a noise

with standard deviation in the level of 0.1 mV, the noise level will be comparable to the

change in voltage from cycle to cycle that the measurements need to detect. Hence,

0.2 mV is used as an upper limit of the standard deviation of the noise considered in

the output of the system model.

Figure B.6 shows the identification result during five successive cycles after apply-

ing an output measurement noise with standard deviation of 0.02 mV, one tenth of

the upper limit identified above. The conclusion is that an output measurement noise

with standard deviation of 0.02 mV is small enough for an accurate identification.

Figure B.7 shows the identification result during five successive cycles after apply-
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Figure B.6: A magnified view of film resistance identification with output measure-
ment noise when the standard deviation of the noise is 0.02 mV.

0 0.5 1 1.5 2 2.5 3

x 104

3.5

3.6

3.7

3.8

3.9

4
x 10−3

Time [s]

Fi
lm

 re
si

st
an

ce
 [Ω

m
2 ] Estimated value

True value

Figure B.7: A magnified view of film resistance identification with output measure-
ment noise when the standard deviation of the noise is 0.2 mV.
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Figure B.8: The difference in output voltage for various differences in input current.

ing output measurement noise with standard deviation of 0.2 mV. The identified film

resistance varies between the true film resistance of the previous cycle and the next

cycle, with a change that is less than 1.5% of the film resistance of the current cycle.

The result indicates that the film resistance estimates degrade as measurement noise

approaches the magnitude of the voltage change between successive charging cycles;

however, the algorithm can still estimate the film resistance within 1.5% of its true

value.

B.3.2 Sensitivity to Input Measurement Noise

In this section, the sensitivity of output voltage to input current is investigated

first to identify the difference in current that yields a difference in voltage comparable

to the voltage difference in successive cycles found in the previous subsection. This

difference in current is then used to define an upper limit for the standard deviation

of the input noise when the performance of RCSI is simulated with input noise.

Figure B.8 shows the difference in output voltage when different currents are

applied to the truth system. From left to right, the applied currents are 2.4995 A,

2.495 A, and 2.45 A, respectively. The output voltage is compared to the output

voltage when applied current is 2.50 A. The difference between output voltage is
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Figure B.9: A magnified view of film resistance identification with input noise when
the standard deviation of the noise is 0.5 mA.

growing with the input current decreasing from 2.50 A. When applied current is

2.495 A, whose difference from 2.50 A is 5 mA, the difference of output voltage is on

the order of 0.1 mV, which is the same as the output voltage difference between two

successive cycles from the previous subsection. Hence, 5 mA is chosen as the upper

limit of the standard deviation of the noise considered in the input current.

Figure B.9 shows the identification result during five successive cycles after ap-

plying input measurement noise with standard deviation of 0.5 mA, one tenth of the

upper limit identified above. The conclusion is that RCSI can provide an accurate

identification with this level of input measurement noise.

Figure B.10 shows the identification result during five successive cycles after ap-

plying an input measurement noise with standard deviation of 5 mA. The identified

film resistance is between the true film resistance of the previous cycle and the next
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Figure B.10: A magnified view of film resistance identification with input noise when
the standard deviation of the noise is 5 mA.
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cycle, with a change that is less than 1.5% of the film resistance of current cycle.

Hence, to estimate the film resistance within 1.5% of its true value, the standard

deviation of the input measurement noise should not exceed 5 mA.

The noise level provided in this section is for capturing the film resistance differ-

ence between two successive cycles. In practice, SoH may not need to be tracked that

frequently and hence noise levels larger than 5 mA or 0.1 mV may be tolerable.

B.4 Sensitivity to Uncertain Initial Conditions

The initial conditions of the main system comprise the concentration of Li-ions in

the cathode, anode and separator. So far, the initial conditions of the truth system

and the main system model have been assumed to be the same. This section studies

how the identification results are affected if the main system model is not initialized

at the same states as the true system. In the true system, the concentration in

the electrolyte is chosen to be ce = 1.2669 × 103 mol m−3 and the concentration in

anode and cathode are chosen to be cs,n = 0.8408 mol m−3 and cs,p = 0.1592 mol

m−3, respectively. This section considers a ±1% error in the initialization of these

states and investigates how the output error and identified film resistance change

in the simulation. Specifically, a +1% initialization error means the initial states are

ce = 1.2796×103 mol m−3, cs,n = 0.8492 mol m−3 and cs,p = 0.1608 mol m−3; whereas

a −1% initialization error means the initial states are ce = 1.2542 × 103 mol m−3,

cs,n = 0.8324 mol m−3 and cs,p = 0.1576 mol m−3. The value 1% is based on the 95%

confidence interval of the estimation of these parameters as reported in the literature

[63].

Figure B.11 shows the difference in output error during the constant current charg-

ing mode in one cycle for various initial conditions in the Main System Model. This

figure shows a slight error in the output voltage when the initial conditions are per-

turbed by ±1%.

Figure B.12 shows the difference in identified film resistance during constant cur-

rent charging mode in one cycle with initialization errors in the Main System Model.

A 1% error in the initialization causes a 7% change in the identified film resistance.
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Figure B.11: The output error under various initial conditions.
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It is worth noting that in the truth system a ±1% change in the initial conditions

does not cause the film resistance to change by 7%. Figure B.13 shows the difference

of the film resistance in the truth system under different initial conditions. The true

film resistance changes by only 0.004% for a 1% change in the initial conditions.

Figure B.14 shows the difference between the output voltage in the truth system

under various initial conditions. The order of magnitude of the change in output

voltage is 0.1 mV. As mentioned above, the change in the identified film resistance

is expected to be on the order of 10−2(1%) when the change in output voltage is on

the order of 0.1 mV, which corresponds with the result shown in Figure B.12. Thus,

changing the initial conditions affects not only the film resistance but also the output

voltage. This explains why RCSI is sensitive to the initialization errors.

B.5 Conclusions

RCSI is applied to the problem of estimating the SEI film-growth subsystem of

a battery model for which the main system is the DFN model augmented with a

Li consumption model. The method’s performance with a first-order ARX model

form is investigated. Acceptable noise levels for output voltage and input current

measurements are established. RCSI can make a very accurate identification of film

resistance with a measurement noise with standard deviation of 0.02 mV or 0.5 mA

in the output voltage or input current, respectively. A standard deviation of 0.2 mV

in the output or 5 mA in the input leads to about 1.5% error in the identified film

resistance. The influence of initialization errors in the Main System Model is also

studied. Results show that when the initial conditions of the truth system and the

main battery system model used by RCSI differ by 1%, the identified film resistance

changes by about 7%, although the true change in film resistance is 0.004%. These

results will help with selecting the appropriate sensors for the experiments with the

hardware.
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