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ABSTRACT 

 

Although the healthcare delivery system is composed of an array of organizations that are linked 

through important, enduring, and complex ties, the healthcare delivery system is rarely explicitly 

conceptualized or measured as a network. In consequence, we know little about how the 

enduring but often informal relationships between organizations shape their behavior in terms of 

the decisions that they make, the quality of care that they provide, and the efficiency of that care. 

Using techniques developed in the multidisciplinary field of network analysis, I sought to better 

understand two important facets of health care that are intrinsically linked to the network 

perspective: the fragmentation of patients’ treatments between multiple hospitals, and hospitals 

engagement in electronically sharing patient information. By analyzing networks of shared 

Medicare patients treated at multiple hospitals, I first identified dense networks of hospitals that 

are closely interlinked through many high volume shared patient connections and are therefore 

likely linked through complex collaborative and competitive relationships. I then characterized 

these networks to identify arrangements of patient sharing that allowed hospitals to better 

manage care fragmentation. I found that more concentrated networks, in which hospitals shared 

most of their patients with few important partners rather than a large number of other hospitals, 

and more centralized networks, in which the network is arranged in a hub-and-spoke model, 

were associated with more efficient, higher quality care.  

I next described three different approaches to health information exchange and the logic 

of participation in each approach with specific emphasis on the value of the enterprise approach 
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for connecting a smaller number of providers and the community approach for facilitating 

broader connections between more partners. I then investigated whether the choice that hospitals 

made about how to electronically share patient information was shaped by their networks. I 

found that hospitals with and within more concentrated patient sharing networks were more 

likely to engage in enterprise exchange while hospitals with and within less concentrated 

networks engaged in community exchange more frequently. 

Together, these findings offer novel insights into the network features of hospitals and 

how they relate to important healthcare processes and outcomes. More concentrated, centralized 

networks appear to perform better and these features may be one reason for variation in the cost 

and quality of care across the nation. Similarly, policy changes designed to shape how healthcare 

organizations interact and who they interact with—like accountable care organizations, bundled 

payment initiatives and patient center medical homes—may be more successful if they reinforce 

beneficial network attributes. Further, as policy efforts designed to facilitate the sharing of 

information between healthcare providers continue, it will be crucial to allow flexible adoption 

of different approaches to health information exchange and to support hospitals that engage in an 

approach to information exchange that benefits communities. 
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CHAPTER I 

Introduction 

Since the 1960s, sociologists and healthcare scholars have understood that the healthcare 

delivery system can be thought of and measured as a network—that is, as a system of 

interconnected entities (doctors, hospitals and patients) —and that the structure of the network 

and the position of healthcare providers within the network are associated with their behavior (1, 

2). Beginning with work by Coleman, Katz and Menzel in 1966, the vast majority of network 

research in the healthcare field has focused on the network of inter-connected physicians (3, 4). 

While network research investigating physician interactions remains an extremely important area 

of research that can facilitate understanding of how professionals share information, engage in 

care coordination and collaborate, the importance of hospitals and other organizations to the 

functioning of the healthcare delivery system has increased over the last half century (5). As 

such, continued focus on physician networks may overlook other important networks that make 

up the whole healthcare delivery system, including hospitals, clinics, nursing homes, labs and 

other organizations that provide care to patients. Relatively little work has investigated how the 

interconnections between these organizations shape the care their patients receive.  

My goal in this dissertation is to contribute to our limited knowledge of how inter-

organizational networks shape the healthcare delivery system by focusing on the inter-hospital 

network formed by sharing in the care of the same patients. To do so, I begin by defining these 

networks, and investigate the implications of the network as it relates to two important features 
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of the healthcare system that have not been widely studied using a network framework but that 

intuitively relate to the patient sharing network: the fragmentation of patient care between 

hospitals and the decisions about how to electronically share patient health information between 

hospitals. To contextualize the contribution of this dissertation, I first describe network analysis 

and review the literature on healthcare networks. 

A Networked System 

A network, as defined in the broad field of network analysis, is any system made up of entities—

often called nodes—that are connected by some sort of tie (6). The nodes and ties that make up a 

network can take many different forms: perhaps the most commonly studied network is defined 

by the network in which the nodes are individuals and the ties connecting them represent 

friendship between the individuals. However, networks can also be made up of organizations that 

are connected in other ways. For instance, network research has studied advertising firms 

connected through their shared clients and R&D firms connected through alliances (7, 8). This 

flexibility allows the tools of network analysis to be applied to an enormous range of networks 

comprised by many different entities represented by nodes that share many different types of 

affiliation, and this flexibility has led to the application of network analysis in many diverse 

fields, including physics, epidemiology, sociology, ecology, and neurobiology. Across these 

disciplines and research settings, an enormous range of measures have been developed to 

characterize features of networks. 

With this methodological flexibility in mind, it may seem obvious that almost any system 

could be analyzed as a network. It is therefore useful to temper this flexibility with a sense of the 

types of systems and attributes that are most usefully conceptualized and measured as networks. 

Powell (1990) argues that the network organizational form represents a third type of organizing, 

distinct from two contrasting forms previously defined in transaction cost economics: markets 
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and hierarchy (9). Markets occur outside of formal organizations and are based on negotiation 

over the terms of a contract. According to Powell, in a pure market system, the primary means of 

communication is through price, contracting defines the normative basis for relationships, the 

commitment between parties is relatively low, and the tone is precise such that obligations are 

clearly spelled out through the negotiated contract. Hierarchy, in which transactions that might 

occur through a market structure are instead internalized to a formal organization, sits in direct 

contrast to markets: in hierarchies, communication occurs through routines within organizations, 

employment forms the normative basis for relationships, commitment is relatively high, and the 

dominant tone is bureaucratic. Networks function differently from both of these forms. The 

defining attribute of the network form of organizing is that interactions are not (only) bound by 

precise contractual language and are not defined by organizational boundaries and employment 

relationships but instead are defined by open ended, indefinite, mutually beneficial relationships. 

Therefore, in contrast to both other forms, networks allow communication through relationships, 

with a normative basis in complementary strengths, a high level of commitment and a tone 

defined by mutual benefit. Network analysis, then, is best suited to capture the aspect of systems 

made up by repeated interactions that carry content beyond formal contracts or hierarchy. 

However, these three forms of organizing interact to shape one another in a complex system: 

network relationships can inform decisions leading to market transactions, while market 

transactions in turn help to build towards enduring relationships (10). Similarly, network 

relationships can form the rationale for the development of formal hierarchical relationships (7), 

and these hierarchical relationships create parameters for network interactions both within and 

between hierarchies (11).  
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The question then becomes, to what extent is the healthcare field comprised of attributes 

associated with a network form of organization, such that it is important to understand the 

network? Because of the specialized nature of healthcare and the fact that in most cases no one 

individual and, often, no one organization, can or does provide all necessary care to a given 

patient, healthcare providers and organizations are linked together by an enduring relationship: 

shared patients (12). The network of shared patients between providers is important to the 

functioning of the healthcare delivery system because of the fundamental content carried through 

the act of sharing patients, the behavior the resulting network demands and the ways this network 

interacts with other important types of networks. By definition, the shared patient network is 

composed of patients that move between settings who carry information, expectations and 

preferences from prior experiences to new settings, and organizations must respond to these 

views. The flow of patients to an organization from other organizations is also key for its 

financial success because revenue flows with patients. In addition, for the treatment of many 

conditions, a shared patient tie between organizations defines a need for those organization to 

communicate and coordinate in the care of their shared patients lest important information is 

overlooked when providers treat their patients. Nevertheless, the existence of shared patients 

between organizations does not imply that those organizations fulfill this need through 

communication or cooperation—shared patient care may be uncoordinated or lack 

communication, may form a basis for competition for the continued provision of services to the 

patient or may be incidental (13). Finally, in many cases, the shared patient tie may reflect 

intentional referrals between physicians and the organizations at which those physicians practice, 

such that the shared patient network forms and is formed by other types of network such as trust, 

friendship, and reputation based networks (14). In other words, the health care field embodies the 
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network form of organization because providers and organizations are interlinked through shared 

patients and this network shapes and is shaped by patient expectation and preferences, financial 

success, a need for coordination, learning, reputation and behavior. These shared patient links 

persist and likely shape behavior regardless of formal affiliation, hierarchy or contracts that may 

bind individuals and organization. While in an ideal world it would be preferable to discretely 

capture each of these network forms, the shared patient network is likely to be a useful—if 

simplified—model of the relationship between organizations that can be employed at a national 

scale to understand how these relationships shape organizational behavior. 

While the extent to which these network ties are the sole form of organizing varies, the 

importance of the network is likely to persist in many contexts. The solo or small group practice 

physician represents a very pure form of network organization. For a solo practitioner, the extent 

of hierarchy and contractual relationships with other physicians or organizations is very low; 

however, the sustained relationships built on reputation and trust between the solo physician and 

other physicians in their referral network as well as hospitals and organizations where they treat 

their patients are essential for the physician’s success, and the physician’s medical knowledge 

may be closely tied to the information they gain through their network and interacting with other 

specialists and organizations with complementary technologies and knowledge. While the health 

care industry is changing such that fewer providers work in small offices, a large proportion of 

physicians remain employed in these types of environments (15). When these physicians are 

employed by large health systems, their professional status lends them more autonomy and lower 

organizational affiliation than other employees, such that the importance of informal 

relationships remains essential (16). Physician autonomy within a formal organization is likely 

particularly high when practicing within their own clinics in locations that may be rarely visited 
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by the organization’s management. In addition, continuing medical learning and behavior is also 

likely to be shaped by peers and collaborators regardless of official employment structures. For 

physicians within a hierarchical organizations, the importance of their collegial and referral 

network remains high and likely stretches beyond the walls of the formal organization (17).  

Much like physicians, hospitals themselves vary from close formal integration to only 

holding loose, informal affiliations with one another, with an ongoing trend towards 

consolidation into multihospital systems (18). Network forms play a key role for both 

independent hospitals and hospitals in multihospital systems. Independent hospitals rely on often 

informal relationships with physicians in the community for their flow of patients and thereby 

revenue, and rely on other hospitals as sources or destinations for referrals for complex care. The 

importance of networks remains high for hospitals in multihospital systems: early research on 

multihospital systems during the 1980s envisioned these systems as a type of network form of 

organizing in which relatively independent hospitals were linked by membership in a system (19, 

20). In reality, the extent to which multihospital systems act as network connections between 

hospitals as opposed to forming a formal, tightly structured hierarchy likely vary across system 

arrangements. Nevertheless, the vast majority of systems will not isolate the hospitals within the 

system from physicians and organizations in the geographic area. Instead, these hospitals will 

remain connected to the broader ecosystem by caring for patients that are also treated by 

physicians and hospitals outside of the hospital system. As a result, the shift towards formal 

organizations is unlikely to insulate hospitals in these systems from pressures to cultivate referral 

and collaborative networks, as well as competitive advantage, with key outside organizations 

with whom they frequently interact.  
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Another trend in the healthcare system that has altered the role that the network form of 

organizing plays in the organization of the healthcare delivery system is the prevalence of 

insurance contracts specifying different rates for providers that are within the insurer’s 

‘network,’ defined through contracts with providers and provider groups. These contracts could 

reduce the importance of relationships in driving behavior by limiting the extent to which other 

organizations could alter their networks towards preferred partners and away from problematic 

ones (21). However, while it is likely that health maintenance organizations and other insurance 

arrangements shape and curtail the network, cases in which the insurance structure meaningfully 

reduces the importance of the network on the behavior of providers are likely limited because 

many providers and organizations are members of multiple insurance plans.  

In sum, the healthcare delivery system is undoubtedly a hybrid of hierarchical 

organizations, contractual arrangements between insurers and providers, and network 

relationships defined through enduring referral and shared patient relationships. Despite the 

enduring importance of the network form of organizing for the healthcare delivery system, our 

knowledge of how the network influences care remains limited. In the next two sections, I briefly 

review the state of literature on networks in healthcare to provide a framework for the 

contribution I make through this dissertation. 

Physician-Centered Network Research 

As reported in two relatively recent reviews (3, 4), a relatively large volume of work has been 

done on professional’s networks (52 papers (3) and 55 papers are reviewed (3) in each). Much of 

this literature focuses on networks of professionals within hierarchical organizations, indicating 

the ubiquitous importance of the network form even within other forms of organizing. In 

addition, most of studies included in these reviews on professionals have used survey-based data 

collection methods, which limits the potential scope of the network studied due to challenges 
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collecting primary data. Almost all studies are descriptive or associational—only one study has 

investigated the change resulting from an intervention (22). Although this substantial literature 

does exist, an enormous amount about social networks remains unknown because of the potential 

of these networks to interrelate with many important concepts. For instance, Tasseli et al. divides 

research on professionals’ networks into two groups: antecedents of networks (demographic 

attributes, professional groups, organizational arrangements) and consequences of networks 

(satisfaction at work, leadership, professionals’ behavior, knowledge transfer, diffusion of 

innovation, and performance) and these numerous sub-topics indicate the ground to cover. 

Important findings within this literature indicate that closed physician teams may be conducive 

to discussing problem solving techniques, surgeon-surgeon interactions explained the timing of 

adoption of a new treatment and that pro-change organization members use strong interpersonal 

ties to others opposed to change in order to coopt them to accept the change (23-25). While these 

and other findings are provocative, only a few articles exist in any of these domains such that 

much more could be learned and confirmed about the way networks are created and lead to 

provider behavior and patient outcomes. 

In addition to the predominately survey-based work included in these reviews, recent 

work analyzing physician networks has begun to leverage insurance claims data to identify 

physicians that care for the same patient. An early validation study demonstrated that physicians 

frequently identified other physicians that appeared on many of the same patients’ claims as 

important partners and sources of information (26). The validated claims-based approach allows 

the scale of network analysis to be greatly increased from the few physicians targeted by a 

survey towards a national scale in which theoretically all physician relationships can be 

identified through insurance claims data. Several other studies using variations on this method 
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have identified a range of relationships between physician networks, the patient population that 

they serve, and outcomes. Key findings from this work indicate that the network can play an 

important role in the quality of care provided. For instance, one study found that networks in 

which primary care providers are highly central to the overall network—as opposed to being on 

the periphery—featured fewer specialist visits and lower spending on diagnostic tests (27). 

Another paper found that physicians can be assigned to specific communities within the overall 

intertwined healthcare delivery system and that these different communities have different 

performance on ambulatory care sensitive readmissions (28). Interestingly, networks that serve 

disadvantaged populations are more isolated along a range of network measures than networks 

serving other populations (29).  

To be sure, a great deal remains to be learned about physician networks and many 

opportunities exist to improve the current knowledge base. For instance, because of the newness 

of this research, few of these findings have been replicated, and almost all of the existing 

research is observational and associational. Therefore, a key avenue for research is to better 

understand if we can change these networks through targeted interventions and if those changes 

produce higher quality performance. In addition, part of this work might be to identify whether 

we have changed these networks through prior interventions and what the effect of that change 

was on physician performance.  

Health Care Organization-Centered Network Research 

In contrast to the literature on physician networks, which is comprised of a rich survey-based 

literature and a growing literature leveraging claims-based analysis, data on inter-organizational 

networks in healthcare is relatively limited. This is surprising because, as argued above, 

organizations are embedded within a network of relationships with other organizations in much 

the same way that physicians are. As physicians become members of these organizations and the 
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organizations continue to become more important loci of decision making, understanding the 

web of relationships these organizations must work to navigate will likely become even more 

important. 

One line of research has focused on the multihospital systems as a network form of 

organizing, envisioning individual hospitals as nodes connected by formal multihospital system 

affiliation (19, 30, 31). However, the extent to which systems act as networks—where hospitals 

are largely independent but linked through an affiliation—as opposed to more formal hierarchies 

is not clear. More recent scholarship has not as frequently defined system membership as a 

network form, rather considering it to be a merger into a single organization, though the impact 

of system membership on hospital performance remains a topic of research (32, 33). In contrast 

to systems, which share ownerships, hospitals also participate in multihospital networks in which 

ownership is not shared but hospitals join into an alliance or partnership. Network membership 

has been less directly studied than multihospital system membership; however, it is often 

included in models studying hospital behavior.  

While research into formal affiliations between hospitals dates to the 1980s, research 

focused on informal affiliation through transfers and patient sharing has mostly occurred in the 

last decade. Nevertheless, several studies have begun to investigate the role that the inter-hospital 

network of shared patients has on hospital behavior. Two studies investigated the inter-hospital 

transfer of critical care patients and found that patients were frequently transferred towards better 

resourced hospitals, but not solely through a ‘hub and spoke’ model, and that patients were not 

always transferred to the closest, highest quality hospital (34, 35). Lee et al. identified the inter-

hospital network of shared patients in one county, measured both as direct transfer of patients 

and as patients that are treated by both hospitals over an interval of time, and noted that hospitals 



10 

 

were highly interconnected through many shared patients and that larger hospitals and hospitals 

that treated more cancer patients were more influential to the network (36). Further pointing 

towards the ways hospitals are connected through network ties, Pallotti found that hospitals’ 

proximity in the social network was associated with similar performance (37, 38). Mascia and Di 

Vincenzo furthered our understanding of the complexity of these ties by identifying that many 

hospitals that elect to share patients (i.e. cooperate) also treat patients in geographically similar 

areas—that is, are in competition for the same population (13). One paper worked to expand our 

understanding of organizational ties by using community detection methods to identify the 

association between unaffiliated ambulatory surgical centers and hospital systems they share the 

most patients with,(39) while another focused on hospital’s relationships to long-term care 

centers (40). The current research on the inter-hospital network of shared patients indicates 

potential inefficiencies in the naturally developed network, the role that networks play in 

influencing performance, and provides additional insight into the interplay between cooperation 

and competition between hospitals treating a similar population of patients. These provocative 

findings point towards the importance of developing a greater understanding of the way that the 

network of shared patients influences hospital behavior and performance. 

My Contribution in This Dissertation 

In this dissertation, I seek to advance our knowledge of the inter-hospital network of shared 

patients. Better measurement of this network and understanding of its implications can lead to 

designing public policies that effectively adapt the structure of the network to facilitate better 

coordinated care or to employ approaches that are well designed to the existing structure of the 

network. To characterize the network, I first identify the dense sub-networks within the sparse 

overall network of hospitals interlinked through shared patients. These dense networks comprise 

groups of hospitals that are interlinked by many inter-hospital linkages comprised of a high 
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volume of shared patient connections and are therefore likely linked through complex 

collaborative and competitive relationships. Using these networks, I then investigate two 

concepts in health services research that have been widely studied and that inherently relate to 

networks of shared patients but have rarely been studied through a network lens: healthcare 

fragmentation—the extent to which patients’ care is divided between multiple providers, leading 

to the possibility of poor care coordination—and electronic health information exchange (HIE)—

the ongoing effort to develop electronic links between providers that facilitate the effective 

sharing of important patient information. I pursue these goals over the course of five subsequent 

chapters. 

 In the second chapter, I identify the national hospital network of shared patients 

leveraging publicly available network data derived from Medicare claims. I then apply a 

community detection algorithm to identify dense sub-groups within this overall network to 

facilitate identifying salient network boundaries of interconnected hospitals. While other 

methods have been used to identify groups or markets of hospitals, each available method has 

clear limitations. I show that the groups identified through this detection method are reliable over 

time, robust to different assumptions, and insensitive to the use of different algorithms. Finally, I 

demonstrate that these groups are as or more valid than prior methods. Accurately identifying the 

groups of hospitals that are interlinked through shared patients is essential (1) to characterize the 

groups that need to share information and coordinate in the care of these patients to avoid 

fragmentation; (2) to define logical groups for competition over how and where these patients are 

shared; and (3) to identify meaningful variation in the care that patients receive across different 

groups of hospitals. Relative to prior methods of identifying groups of hospitals, this approach 

identifies relatively larger hospital communities, indicating the potential need to consider 
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interactions between hospitals at a higher level of analysis than supported by prior methods. 

However, because of the hierarchical nature of this method, investigation into lower-level 

interactions between the most tightly linked clusters of hospitals is also facilitated, providing a 

level of flexibility to investigate shared features at multiple levels of analysis. 

 In the third chapter, I investigate key characteristics of the networks identified in chapter 

two that capture the extent to which hospitals’ patient sharing relationships are fragmented or 

arranged to facilitate the development of well-functioning information sharing processes and 

collaboration. Prior work has investigated the topic of care fragmentation from the patient’s 

perspective—measuring fragmentation as the extent to which a patient’s care is divided between 

multiple providers. However, the extent to which patients that are seen by multiple providers 

experience fragmented care likely depends on how well those providers collaborate, and the 

structure of the patient sharing network is likely to shape how hospitals develop coordination 

processes with one another. Therefore, I complement existing work on care fragmentation by 

investigating the provider side of fragmentation and find that hospitals with and in highly 

concentrated networks—that is, hospitals that share many patients with few other hospitals, and 

whose partners also share many patients with few other hospitals—have lower spending and 

readmissions than hospitals with and in more dispersed networks. I also find that the degree of 

centralization of the hospital network relates to lower cost and readmissions. In sum, these 

findings indicate that the structure of a hospital’s network is associated with the quality and 

efficiency of care that they offer. Likely more important, the findings indicate that concentrated 

and centralized collective networks of hospitals within which each individual hospital is 

embedded are associated with higher quality and more efficient care, and that this relationship is 

more influential than the hospital’s direct network of shared patient relationships. Because the 
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association between network structure and performance relates specifically to the geography of 

where care is received, the associations identified might explain variation in care offered in 

different geographic areas.  

These findings also point to the type of network that hospitals might seek to create while 

indicating the fundamental importance of considering higher units of analysis to understand 

forces that shape the performance of individual hospitals. The importance of considering the 

collective network structure has implications for designing policy efforts and organizational 

strategic choices: Policy efforts such as accountable care organizations and bundled payment 

initiatives that aim to alter the interaction between hospitals should be designed to account for 

the impact of changes on the collective network, not just the individual participating hospitals. 

Similarly, organizational efforts that only consider the hospital’s direct relationships with others 

may be misguided if these efforts alter the collective network in deleterious ways or do not 

consider the ways in which the collective network might influence the success of the effort. 

In the fourth chapter, I review the literature on HIE and identify three different 

approaches to HIE: community, enterprise and vendor-mediated HIE. I argue that provider 

participation in each type is motivated by different goals—open cooperation, strategic 

cooperation with key partners, and the benefit of electronic health record vendors. I review the 

literature on each type and find that the clear majority of studies on HIE focus on community 

HIE. This review identifies missed opportunity for researchers to further our understanding of 

the empirical impact of each type of HIE on participants and non-participants. Further, my 

findings have important considerations for policymakers as they continue to incentivize 

engagement in HIE by highlighting the tradeoffs involved in allowing each approach to be 

adopted and by identifying the different types of gaps in information sharing created by each 
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approach to HIE. In large part, this discussion sets the groundwork for my later analysis of the 

network structures that are associated with hospital participation in either community or 

enterprise HIE. 

 In the fifth chapter, I investigate how network structure influences hospital participation 

in two types of HIE. Because community HIE is designed to connect all hospitals in a 

geographic region, I hypothesize that it should be more appealing to hospitals with and in more 

dispersed networks, while enterprise HIE might be more appealing to hospitals with and in more 

concentrated networks where hospitals generally share a large proportion of their patients with 

few key partners because it is designed to facilitate connections between key partners. I find 

some support for these hypotheses, and in particular find evidence that the structure of the 

collective network—not just the hospital’s individual network—is important for influencing 

hospital’s selection of HIE approach. This finding is particularly important considering recent 

concerns that hospitals and other providers may be choosing an approach to HIE based on their 

competitive or strategic interests, rather than the needs of their patients. I find that hospitals are 

responsive both to the needs of their patients and to the needs of partner hospitals in their 

networks, indicating a more pro-social orientation than usually ascribed to healthcare providers 

as they approach HIE. This finding supports the current public policy approach, which does not 

actively support specific approaches to HIE by indicating that hospitals may work together as a 

collective to influence one another to adopt the type of health information exchange that most 

benefits one another. 

 Finally, I conclude this dissertation with a review of the implications of my findings for 

our understanding of the healthcare delivery system, for public policy, and for future research. 

This dissertation is a contribution to a larger conceptual goal: to build a stronger understanding 
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of the implications of the healthcare delivery system’s network structure. By revealing the role of 

network structure in the performance and decision making process of hospitals, I contribute to 

our developing knowledge about the healthcare network. In general, my findings build towards 

the somewhat conflicting conclusion that better understanding how the network functions may 

lead policy makers to consider new interventions into the way care is provided to foster high 

performance networks while more nuanced understanding of the ways in which the network 

promotes self-governance and reinforces salutary norms may lead policy makers to avoid policy 

prescription and instead to rely on flexibility guided by social capital to lead to desirable 

outcomes.  
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CHAPTER II 

 Identifying Hospital Networks of Shared Patients 

INTRODUCTION 

The identification of groups of hospitals that provide care for a shared population of patients is 

essential to allow measuring and understanding features of the healthcare system that encompass 

multiple organizations and the population of patients for whom they provide shared care. These 

system-level features, including competition among healthcare delivery organizations, 

collaboration in the accountable care of a population, unwarranted regional variation in 

healthcare prices, quantity and quality, and the interplay between demography and healthcare 

access (41-45), are central to improving the quality, efficiency and equity of the healthcare 

system. As a result, researchers have developed several definitions of hospital groups (7, 46-48) 

that are widely used throughout the literature on health services. 

Despite the usefulness of identifying groups of hospitals, existing strategies have 

important shortcomings. One of the earliest ways to group hospitals was simply to divide them 

by metropolitan statistical area (MSA) or county (for rural hospitals), but while still widely used, 

definitions based on geopolitical lines unrelated to the healthcare system have been shown to 

frequently misrepresent the size of the health care and hospital market (49). In the 1990s, the 

Dartmouth Atlas of Healthcare developed what remains the most prominent method for grouping 

hospitals: Hospital Referral Regions (HRRs). To define HRRs, the Dartmouth Atlas first grouped 

ZIP codes by the city in which the plurality of residents in each ZIP code received acute hospital 

care, thereby creating hospital service areas (HSAs) and then grouped HSAs into HRRs by the
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 city in which the plurality of residents in the HSA received hospital-based neurosurgical and 

cardiovascular surgical care in 1992-1993 (50). This method may misidentify hospital groups by 

focusing on a limited set of patients, by using a potentially arbitrary cut-off rule, or by use of 

data that are now outdated. Recently, researchers have defined local multihospital systems 

(LMS) which identified groups of hospitals that belonged to the same multihospital system (and 

thereby shared a common owner) and were also in close proximity so that they likely 

collaborated in the shared care of patients (51). While this method may be useful to identify the 

role of LMS in shaping the provision of care in an area, it excludes hospitals and providers that 

are not part of a system and therefore cannot be used to identify whole markets.  Although 

widely used, all of these methods for identifying hospital groups have some limitations that may 

curtail their use to special cases or lead to unreliable or invalid groups. Further, little work has 

been done to show that these grouping strategies are reliable over time or to varied assumptions 

about how groups are identified, or that they result in externally valid groups of hospitals. 

New analytic tools generated by studying a variety of naturally occurring networks allow 

for the identification of subgroups of closely intertwined entities in a network (52-54). These 

tools can be applied to hospitals by focusing on the network of shared patients between hospitals, 

which is generated through readmission, intentional facility-to-facility transfers, hospital referral 

choices by physicians, and patient choice—informal processes that are not fully controlled by 

any hospital. In the resulting network, hospitals are represented as individual nodes connected to 

one another through ties formed by the number of patients shared between the two hospitals. 

Densely interconnected communities of hospitals can then be identified from within this overall 

network following a logic used recently to define communities of physicians that share patients 

(28, 55). The interconnection of hospitals through shared patients is a logical basis on which to 
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group hospitals because shared patients may underlie hospital membership in a community to 

learn practices and norms from one another, hospital position in a market to compete for the 

provision of care to these patients, and hospital’s necessity to coordinate in the care of patients 

when the patient moves between care locations. 

In this study, I identified the network of shared patients defined by hospitals (including 

hospital-based clinics) filing inpatient and outpatient Medicare claims for the same patients 

within 30 days of one another. I then applied a hierarchical community detection algorithm, 

developed in the field of network analysis,(56) to the hospital network of shared patients in order 

to define communities of interrelated hospitals, and assessed the reliability and validity of the 

resulting communities. The community detection method holds theoretical advantages over 

previous methods: it uses a mathematically rigorous algorithm to group hospitals into the 

communities with which they are closest in the network of shared patients, leverages data on 

patients undergoing care for all conditions, and can be updated as newer data becomes available. 

Furthermore, due to the hierarchical nature of this method, hospital communities can be 

identified at multiple levels of fidelity allowing for flexible use of different sized communities 

based on the underlying research question.  

To demonstrate the quality of this method, I first generated communities using several 

different underlying assumptions and types of algorithms, and identified the results of one 

algorithm at three levels of fidelity: 38 communities of hospitals nationwide, 150 communities 

and 300 communities. I then measured how similar each community grouping was and identified 

the approach that appeared to be the most similar to all other groupings. Next, I demonstrated the 

reliability of the method over time by comparing communities identified in 2014 to those 

identified in 2012 and 2013. Having shown that the community method identified a reliable 
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grouping of hospitals, I examined summary characteristics and created network graphs and maps 

of the resulting communities. I investigated the performance of the primary method at identifying 

larger and smaller communities by evaluating the distinctiveness of the communities at each 

level of fidelity and the ability of these communities to predict outcomes that vary 

geographically and therefore should be better characterized by methods that identify the correct 

grouping of hospitals: 30 day All-Cause Readmissions and Medicare Spending Per Beneficiary 

(MSPB). Finally, I evaluated the validity of the method by assessing its similarity to the LMS 

method of hospital grouping, assessing the relative predictive power of the community detection 

method and HRRs on these two outcomes, and testing the grouping measure’s ability to create 

meaningful groups by examining the reliability of each outcome measure over time and using the 

split-half reliability method.  

DATA AND METHODS 

For each year beginning in 2009, the Centers for Medicare and Medicaid Services (CMS) has 

released the “Physician Shared Patient Patterns” network data files derived from Medicare 

claims housed in the Integrated Data Repository (57). These files contain information on all 

healthcare providers appearing on Medicare claims, including hospitals and other institutional 

providers appearing on inpatient, outpatient and carrier claims. For a hospital to appear on a 

patient’s claim, that patient must receive care that includes a facility or technical fee for that 

hospital; as a result, this data is unlikely to include patients seen at hospital based clinics who do 

not undergo a test or procedure. 

Each observation in these data consists of three variables: the two providers that share 

patients (i.e., dyads), identified by their National Provider Identifiers (NPIs), and the number of 

patients for whom both providers appeared on a Medicare claim within 30 days, aggregated over 

the course of the year. This data is directed such that the first provider to file a claim for a patient 
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within 30 days is in the first column of the data, allowing some sense of directionality. Provider 

dyads that shared fewer than 11 patients over the course of a year are not included in these files.  

To identify hospital networks, I started with the 2014 American Hospital Association 

(AHA) Annual Survey, 2014 network data from CMS, and the National Plan & Provider 

Enumeration System (NPPES) file (http://download.cms.gov/nppes/NPI_Files.html) which 

contains the National Provider Identifiers and provider information for all Medicare institutional 

and individual providers. Using these data, I sought to identify all 4,634 non-federal, acute care 

hospitals located in the 50 United States and District of Columbia that were listed in the 2014 

AHA database within the network data. I first matched hospitals with NPIs listed in the AHA file 

directly to the network data, resulting in 3,534 (75%) matches. I next matched 863 (18%) 

hospitals with Medicare numbers listed in the AHA to NPIs using Medicare claims that included 

both the Medicare provider number and NPI. In some cases, the Medicare provider number was 

associated with multiple NPIs in claims data (33 hospitals). When this occurred, I selected the 

NPI with the most shared patients in the network data. On average, this NPI accounted for 82% 

of the shared patients associated with that hospital’s Medicare provider number. I was unable to 

match 280 hospitals by Medicare provider number or NPI. To identify these hospitals, I looked 

up NPIs in the NPPES Masterfile using the hospital’s name, address, nine-digit ZIP code, 

latitude and longitude. This resulted in identification of another 252 (5.4%) hospitals. In total, I 

identified 4,602 (99.3%) hospitals in the network data. The hospital network of shared patients is 

very sparse: out of a total of 21,173,802 possible directed links between hospitals, there are only 

91,120 links. 

I used the hospital identifiers found in the 2014 data to identify the hospital network for 

each year from 2012 to 2014. For hospitals that were in the AHA in prior years but not in 2014, I 

http://download.cms.gov/nppes/NPI_Files.html
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repeated the procedure above to match hospitals to the correct network NPI. I validated that 

measures of shared patients were reliable over time, that the number of total patients each 

hospital shared was closely associated with hospital size and teaching status, demonstrating 

validity, and that the number of patients shared between pairs of hospitals was strongly 

associated with the size of each hospital, the distance between hospitals, and membership in the 

same multihospital system, further validating the quality of the data (See Appendix 1). 

Defining the Strength of a Tie 

Each tie between two hospitals is comprised of a specific number of shared patients, which can 

be used as a measure of the strength of the relationship between the hospitals. The distribution of 

the number of shared patients between hospitals is highly right-skewed such that over 75% of 

ties are comprised of 107 patients on average, but that the top 1% of ties is composed of 13,155 

patients on average. I transformed the strength of these ties by taking the natural log of the 

number of shared patients. By doing so, I adjusted increases in the number of shared patients to 

be equivalent to increases in the percentage of shared patients. For example, after taking the 

natural log, the difference between 100 shared patients and 200 shared patients is equal to the 

difference between 200 and 400 shared patients. This approach assumes that there are 

diminishing marginal returns to more shared patients in terms of the influence of each tie 

between hospitals on the hospitals’ behavior and therefore community membership. Further, this 

approach avoids distorting community detection by applying a very high weight to few strong 

ties. In contrast to the HRR method which followed only patients receiving care for two types of 

specialty care, these communities are identified by all patients so that it does not only track the 

movement of patients that might be referred to hospitals with more sophisticated ability to treat 

complex patients but also captures other types of patient sharing that may be more incidental.  
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Defining Communities of Hospitals 

Several approaches have been developed to identify communities within an overall network (58-

60). All of these methods share a common goal of maximizing the distinctiveness of the 

identified communities, but use differing approach to define communities. I used Pons and 

Latapy’s ‘walktrap’ community detection algorithm to identify community structure (56). This 

algorithm has been shown to perform well across a variety of networks, and is fully hierarchical 

so that the resulting structure can be divided into subcomponents (61). The algorithm begins with 

‘random walks’ through the network, a repeated process in which at each step a ‘random walker’ 

is first placed on a hospital in the network and has a chance of moving to any connected hospital 

relative to the strength of the tie between each pair of nodes and the number of other hospitals 

the first hospital is connect to (62). The algorithm then computes a measure of distance between 

each node based on the probability that the two nodes are on the same random walk. Using this 

distance measure, hospitals are first combined into communities by combining individual 

hospitals that are closest together and then initial communities are combined into larger 

communities to minimize the distance between each hospital and the merged community. This 

results in a hierarchical process of combining close hospitals into small communities and then 

close small communities into larger ones at each step. A final grouping is selected that 

maximizes the distinctiveness of the communities in the network using a measure known as 

modularity. I used the igraph software package in R to implement this algorithm and all other 

network analyses (63). I selected this approach because of its intuitive similarity to the process 

by which patients might move between hospitals like the ‘random walker’. In addition, this 

method is likely to be preferable to more commonly used methods designed solely to maximize 

modularity because those methods often do not identify smaller sub-communities even when 

they are present and, given that hospital communities are likely to have reasonable levels of 
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interconnection these methods may not provide optimal solutions (64). One advantage of the 

Walktrap method is that, because of its hierarchical structure, greater numbers of communities 

can be selected than the solution that maximizes community distinctiveness. I adjusted the 

number of communities from the number selected by the algorithm, 38, up to 500 communities 

and observed changes in the communities identified.  

Reliability of Group Identification 

To check the reliability of the communities defined by this method to different underlying 

assumptions, I created five alternative approaches. In the first reliability check, I used the 

untransformed number of shared patients between hospitals as a measure of tie strength rather 

than the log transformation. Next, I redefined the strength of ties between hospitals by weighting 

ties such that two directed ties existed between each pair of hospitals, with each tie weighted by 

dividing the number of patients shared between the two hospitals by the total number of patients 

shared by the sending hospital and all other hospitals. This approach allows for identification of 

the importance of the tie to the sending hospital. I then used an alternative community detection 

algorithm, the Infomap algorithm developed by Rosvall and Bergstrom, to re-identify 

communities based on the untransformed, log transformed, and hospital-proportional shared 

patients (65). While the Infomap algorithm performs well on a variety of tasks (61), unlike 

Walktrap, the Infomap algorithm is not fully hierarchical and therefore cannot simply be divided 

into multiple sub-communities. Finally, I compared the similarity of the main method used—

logged walktrap—with 150 and 300 communities selected with each other method. I compared 

the similarity of the communities identified through these methods with the primary method 

using a measure known as the Normalized Mutual Information (“NMI”). The NMI, based on the 

entropy measure from information theory is a measure of the amount of joint information 
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contained in both community partitions divided by the sum of the information in each 

community partition, and can be considered as analogous to a generalized correlation coefficient 

(66). The NMI varies from 0 when two groupings are independent to 1 when two groupings are 

identical and therefore contain completely mutual information (54, 62).  

Overtime Reliability of Communities 

To determine whether community membership was stable over time, I examined the reliability of 

communities by comparing community membership in 2014 to 2013 and 2012 networks. To do 

so, I focused on the 4,484 hospitals that were identified in the hospital network in all three years. 

I again used the NMI to describe the similarity of the groupings of communities across years. 

While I expected some movement in community definition based on changing relationships 

between hospitals, I would find evidence for reliable communities if the NMI is close to 1.  

The Structure of Hospital Communities 

After examining the reliability of the community method, I characterized the main selected 

community detection method-- the walktrap algorithm on logged patient ties—by the average 

size and range of size of the communities when different numbers of communities are selected as 

well as the proportion of ties and proportion of shared patients that occur within communities. To 

provide a visual sense of the communities selected, I graphed the network and communities 

identified using the walktrap algorithm on logged patient ties using the large graph layout 

projection, an iterative projection using ties as springs exerting force on the placement of nodes 

equivalent to the weight of the ties (67), and display these communities on a map of the United 

States. 

Community Distinctiveness 

To assess the community method’s success at creating distinct communities of hospitals at each 

level of fidelity, I used a common measure of distinctiveness called modularity. This measure 
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represents the proportion of ties between actors that are within each community as opposed to 

between communities, relative to the expected value given randomly drawn communities. In 

networks where ties between actors are weighted, like the hospital network of shared patients, 

the modularity score is weighted by the strength of each tie. In general, the modularity score 

varies from 0, when the communities are no better than random, to 1 when the communities are 

perfectly differentiable. While modularity is a useful summary measure to compare the 

performance of different grouping methods, it does not provide an intuitive sense of how well the 

method performed in an absolute sense. To provide that intuition, I presented the number of ties 

that are within each community (as opposed to crossing between communities) and the number 

of patients shared within each community. In principle, a better grouping of hospitals would have 

more links within each community, balanced for the fact that as there are more communities 

there will be more ties between communities. 

Predictive Power at Different Communities Sizes 

I investigated the performance of the community detection method at each level of fidelity at 

predicting two key outcomes: Readmissions and MSPB. I drew these measures from CMS’s 

Hospital Compare website for 2014. To measure predictive power, I ran a series of ordinary least 

squares regression models predicting each outcome using fixed effects for each community at 

varying levels of community fidelity from 38 to 500 communities. I then compared the adjusted 

R-squared, which alters the standard R-squared to eliminate the tendency to increase even when 

variables that have little explanatory power are added to the model. This procedure allows me to 

determine the number of communities at which further division did not explain additional 

variance and simply created divisions with little meaning. This process allowed for identification 
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of the number of communities that was most parsimonious in this case and may be most 

generally useful in other cases.  

Comparing Communities and Other Definitions of Hospital Communities 

To validate the community detection process, I next assessed the similarity between the hospital 

communities and two other measures of hospital groups: LMS and HRR. The LMS is defined as 

a group of hospitals that are in the same multihospital system and are within 150 miles of the 

same large hospital in the system (61). By comparing the community method with LMS, I 

assessed the ability of the community method to identify nearby hospitals that are preferentially 

linked by formal affiliation through shared ownership. Because not all hospitals are in an LMS, I 

could not compare community membership and LMS membership directly using the NMI; 

instead, I used sensitivity and specificity to describe the performance of the community method 

in predicting whether hospitals within 300 miles of one another (the farthest theoretical distance 

two hospitals could be while belonging in the same LMS) are in fact in the same LMS.  In 

addition, I ran a logistic regression predicting whether or not two hospitals are in the same LMS 

based on their membership in the same community and same HRR. I compare the success of the 

community method at predicting LMS membership to HRRs ability to predict LMS membership 

to provide a grounded sense of how successful the community method is at identifying LMS 

membership—without this comparison it may be challenging to interpret whether the community 

method is successful.  

Next, I compared the result of the community detection approach to the most commonly 

used current definition of hospital groups: HRRs. I compared these methods on the modularity 

and NMI of each method and compared the results of the community detection method at three 

different levels: 38 communities, 150 communities, and 306 communities. I chose 150 
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communities because it performs well on measures of reliability and validity, captures the 

tendency of the community method to detect larger groups than the HRR approach, and provides 

a useful contrast to the smaller groups identified by HRRs. I chose 306 communities to match the 

number of HRRs and because it is close to the point above which no more information about the 

selected outcome is gleaned by further dividing the communities. 

Prediction of Variation in Hospital Expenditures and Readmissions 

Finally, I compared the performance of the community detection method to HRRs in predicting 

variation in two measures of hospital care: Medicare spending per beneficiary and 30-day all 

cause readmissions drawn from CMS’s Hospital Compare quality website. One of the original 

goals in developing hospital groupings was to characterize regions of hospitals with high and low 

spending, outcomes and utilization,(42) and successful grouping methods should group hospitals 

that are similar and therefore explain variation in hospitals’ behavior. The ability of the 

community method to predict outcomes as well as or better than HRRs is therefore an important 

measure of validity. To measure variation, I ran ordinary least squares models with fixed effects 

for each community and compared the resulting adjusted R-squared. 

Reliability of Outcomes 

In classical psychometric test evaluation, the reliability of a set of questions is defined by the 

extent to which they provide consistent answers and are therefore measuring the same underlying 

construct. One way to assess the success of these grouping methods is by testing the reliability of 

outcomes within groups. If hospitals belong to the same ‘true’ community, their performance on 

outcomes should be similar because hospitals in the same community are linked together to a 

sufficient degree that their outcomes are more similar than random, unconnected hospitals. The 

grouping method that identifies hospitals with more reliable scores can then be considered to be 

more successfully identifying the true shared relationship between hospitals than grouping 
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methods with lower reliability. I evaluated reliability in two ways. First, I evaluated the 

reliability of hospitals in the same community or HRR in 2014 over time—that is, in 2013 and 

2014. Next, I randomly split each community or HRR in half and tested the reliability of the 

score on outcomes of the two halves of each community. 

RESULTS 

Reliability of Group Identification 

An important characteristic of group identification is its robustness to alternative specifications. 

The primary approach to community detection identified 38 communities (Table 1), while the 

five alternative approaches to identifying communities (using unlogged patient sharing numbers, 

patient sharing numbers proportional to sending hospital size, and a different detection 

algorithm) all identified more naturally occurring communities than the main method. This 

indicated that 38 is a lower bound on the number of distinct communities but may not be the 

single ‘right’ number of communities. To explore the features of higher numbers of communities 

within my main approach, I divided the 38 communities identified by the primary method into 

larger numbers of communities, and focused on the 150 and 300 community sets. In general, the 

alternative methods of defining communities were more similar to the main Walktrap method 

with 150 communities selected: this method had an NMI over 0.82 in all cases and over 0.90 in 5 

of 7 cases. This high similarity indicates that the methods generated similar communities but that 

the most likely number of highly meaningful communities was in the range of 100-250 

communities.  
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Table 1. Reliability of Group Identification to Alternative Measure of Tie Strength and 

Detection Algorithm 

 Prim 

Walktrap 

Walktrap 

Unlogged 

Walktrap 

Prop. 

Infomap Infomap 

Unlogged 

Infomap 

Prop. 

Main 

Walktrap 

150 

Main 

Walktrap 

300 

Primary Walktrap --        

Walktrap Unlogged 0.83        

Walktrap Proportional 0.88 0.85       

Infomap 0.86 0.90 0.79      

Infomap Unlogged 0.77 0.90 0.85 0.88     

Infomap Proportional 0.77 0.89 0.79 0.87 0.99    

Main Walktrap 150 0.83 0.90 0.82 0.91 0.90 0.90   

Main Walktrap 300 0.77 0.86 0.77 0.87 0.91 0.91 0.94  

# of Communities 38 125 41 92 260 253 150 300 

 

Overtime Reliability of Communities 

Next, I investigated whether the community method produced consistent groupings over time. 

4,484 (97.4%) hospitals in the 2014 network data were also present in the 2013 and 2012 years. 

Using the methods described above, 38 communities were identified in 2014, 39 identified in 

2013 and 41 in 2012. The communities identified were relatively similar, with an NMI of 0.89 

between 2014 and 2013 communities, 0.91 between 2013 and 2012 and 0.92 between 2014 and 

2012. When the number of communities generated in each year was set to 150, the similarity 

between the communities increased to 0.94 between 2014 and 2013, 0.95 between 2013 and 

2012 and 0.95 between 2014 and 2012. As a result, the community structure of the hospital 

network appears stable over time, and this stability was more apparent at higher numbers of 

communities. Longitudinal analyses using the community method might employ an ensemble 

method to combine community structures identified in different year to identify a community 

structure that is consistent over time (68) or may employ a multilayer community structure to 

better depict changes over time (69). 

The Structure of Hospital Communities 
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The community method produced the most distinctive communities of hospitals by dividing the 

whole network into only 38 communities across the United States, rather than identifying smaller 

groups like the HRR method. On average, these communities were comprised of 121 hospitals, 

with the largest community containing 356 hospitals and the smallest containing just 13 (Table 

2). With 38 communities, 88.9% of ties and 94.7% of patients were shared within the 

communities. As this initial identification was divided into a greater number of communities, the 

average number of hospitals in each community decreased and some hospitals were placed into 

single-hospital communities. Similarly, the percentage of ties that occurred within communities 

decreased as more communities were identified, as did the percentage of shared patients.  

Table 2. Descriptive Characteristics of Hospital Communities 

 38 Communities 150 Communities 300 Communities 500 Communities 

Average Size 121 31 15 9 

Minimum 13 1 1 1 

Maximum 356 102 60 55 

% of ties within 88.9% 72.6% 56.6% 42.6% 

% of patients within 94.7% 87.1% 76.8% 64.7% 

 

In the network of hospitals divided into 38 communities (Figure 1a), each community 

was relatively distinct and contiguous within the overall network: there was little overlap in 

communities within this network projection. When 150 communities are graphed (Figure 1b), the 

communities were closer together and in some cases overlapped in the graph, indicating some 

reduction in the ability of the algorithm to divide hospitals into distinctive communities.  
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Figure 1a. The Network of Hospitals Through Shared Patients, 38 Communities 

 

Figure 1b. The Network of Hospitals Through Shared Patients, 150 Communities 

 

When plotted on a map of the United States, the 38 hospital communities clearly fell along 

geographic lines (figure 2a). In some cases, the hospital communities seemed to parallel state 

lines closely, such as in Michigan and Florida. When the 38 communities are separated into 150 

communities, the communities remain geographically contiguous but are by definition of smaller 
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size (figure 2b). In most cases, areas surrounding major urban centers were not divided into 

multiple communities. Instead, major cities and their suburban areas were treated as a single 

community of hospitals. 

Figure 2a. The Network of Hospitals Through Shared Patients, Map of 38 Communities 

 

Figure 2b. The Network of Hospitals Through Shared Patients, Map of 150 Communities 
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Community Distinctiveness 

When 38 communities were identified, the modularity of these communities, a measure of how 

well the network was separated into communities relative to chance, was 0.86. As these 38 

communities were divided into smaller sub-communities, the modularity decreased 

approximately linearly such that when 500 communities were identified, the modularity was 0.46 

(Figure 3). This linear trend indicates no clear cut point or drop off below which the 

identification of communities is much less meaningful but instead points towards a tradeoff 

between identifying more communities and the distinctiveness of communities.  

Figure 3. Change in Modularity Based on # of Communities Identified 

 

Prediction of Variation in Hospital Expenditures and Readmissions 

One of the key goals of defining hospital groupings is to identify the level of variation in 

services, behavior and outcomes across the nation. I examined how well the community 

detection approach explained two hospital-level outcomes: Medicare spending per beneficiary 

(MSPB) and 30-day all-cause readmission rates (Figure 4). Because each additional set of 

communities divided the hospitals into smaller pieces, it is reasonable to expect that the R-
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squared and adjust R-squared would increase as more communities were identified. It is 

therefore notable that, for both MSPB and Readmissions, the increase in adjusted R-squared 

flattens as the number of communities increases, indicating that the ability of small groups to 

explain these outcomes was saturated and additional division into more communities added little 

predictive power. This flattening is most notable around two points corresponding to the number 

of communities chosen as examples: the lines begin to flatten around 150 communities, at which 

18% of variance in readmissions and 32% in spending and again around 275-300 hospitals, at 

which 21% of variance in readmissions and 35% of variance in spending is explained.  Little 

additional variance is explained by increasing beyond 300 communities. In other words, about 

1/3 of variance in the spending of 4,603 hospitals can be explained by grouping them into 150 

communities while only modestly more can be explained by identifying twice as many 

communities. 

Figure 4. Variance Explained as the Number of Communities Increases 
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Comparing Communities and Other Definitions of Hospital Communities 

I next sought to validate the community detection method by assessing the extent to which 

hospitals that shared a formal affiliation, captured using the LMS approach, were also sorted into 

the same community using the community detection algorithm and identifying 150 or 300 

communities. This comparison is interesting because it tests the sensitivity of the community 

method, which is based on a patient sharing network, to identify a different type of network 

formed by formal affiliations that are likely to alter, perhaps indirectly, the patient sharing 

network. 

To make this result more tractable, I compared the odds that the community method 

sorted hospitals with an LMS affiliation into the same community to the odds that the HRR 

method sorted hospitals with an LMS affiliation into the same HRR to provide a baseline for 

whether the community method is successfully identifying LMS affiliation. There are 8,517 

formal links between hospitals created by belonging to the same LMS; 100,129 links between 

hospitals created by belonging to the same community when 150 communities were identified, 

54,244 links created by belonging to the same community when 300 communities are identified, 

and 62,036 links between hospitals created by belonging to the same HRR, relative to 1,028,604 

undirected links between hospitals within 300 miles. The community method was a somewhat 

more sensitive predictor of LMS membership than the HRR method, especially when fewer 

communities were identified (sensitivity=0.63 for 150 communities, 0.46 for 300 communities 

and 0.46 for HRR) and a slightly more specific method when more communities were identified 

(specificity=0.91 for 150 communities, 0.95 for 300 communities and 0.94 for HRR). Perhaps 

most interesting, when both same community membership and same HRR membership were 

included in a logistic regression predicting whether hospitals are in the same LMS, the odds ratio 

associated with hospitals belonging to the same community membership was larger—that is, in a 
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model including an indicator for whether the hospital pair belongs to the same community in the 

150-community group, the odds ratio on this variable was 9.6, while the odds ratio associated 

with belonging to the same HRR was 2.7. When an indicator was included for whether the 

hospital pair belongs to the same community in the 300-community group, the odds ratio on this 

variable was 6.4 and the odds ratio associated with belonging to the same HRR is 4.1. In other 

words, belonging to the same community appears to be a stronger predictor of belonging to the 

same LMS than does belonging to the same HRR. 

I further compared the identified communities and HRRs in several steps beginning with 

visually comparing maps of both grouping strategies. Figures 5a-c show the hospitals in five 

states, Michigan, Ohio, Indiana, Illinois and Wisconsin divided into 150 communities, 306 

communities and 306 HRRs, respectively. In contrast to the HRR approach, the network 

approach using both 150 and 306 communities kept hospitals surrounding the major metropolitan 

areas of Chicago, Cleveland and Detroit in a single community. The network approach also 

largely avoided identifying very small communities in this area: for example, while the HRR 

method divides the western side of Michigan into 5 HRRs, including two very small coastal 

HRRs, the 150 community method treats all of these as a single community and the 306 

community method divides it into two communities. In other areas, such as the areas around 

Indianapolis and Columbus, the groupings identified by the network approach and the HRR 

approach are notably similar. 
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Figure 5a. Map of Hospital Communities in 5 States: 150 Communities 

 

Figure 5b. Map of Hospital Communities in 5 States: 306 Communities 

 

Figure 5c. Map of Hospital HRR Membership in 5 States 
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The similarity between these methods can be described quantitatively using the NMI 

(Table 3). Because this measure is in part dependent on the similarity of the number of 

communities identified, I selected 306 communities to allow for direct comparison with the HRR 

method. At this level, the community detection method and HRRs identified relatively similar 

groupings of hospitals, with an NMI of 0.87; however, this similarity is little better than the 

similarity between the 150-community method and the HRR method.   

The community method appears to provide more distinctive groupings of hospitals than 

the HRR method. At the same number of communities, the community method had a modularity 

of 0.59 and the HRR method had a modularity of 0.55 (Table 3) which is close to the modularity 

of the community detection method with 350 communities. 51.7% of ties between hospitals 

occurred within an HRR and 75.1% of shared patients were shared within an HRR, both of 

which are modestly worse than the performance of the network approach described on Table 1. 

Table 3. Similarity Between Groupings of Hospitals 

 38 

Communities 

150 

Communities 

306 

Communities 

500 

Communities 

HRRs 

(306) 

38 Communities      

150 Communities 0.83     

306 Communities 0.77 0.93    

500 Communities 0.73 0.89 0.95   

HRRs 0.75 0.87 0.88 0.87  

Modularity 0.86 0.74 0.59 0.46 0.55 

 

To better understand the relative ability of these methods to predict variation in outcomes at 

different number of groupings, I examined the variation explained by 150 communities, 300 

communities and the HRR method (Figure 6). I first estimated the performance overall and then 

in separate analyses considered urban and rural hospitals (defined by the type of core based 

statistical area each hospital was located in) because, as observed above, the HRR method 

divided hospitals in urban areas into several regions while the community method often 
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combined these areas into a single community. Relative to HRRs, the 150 communities approach 

explained an approximately equal amount of the variation in MSPB for all, urban and rural 

hospitals and the 300 communities approach predicted significantly more variation than the HRR 

method. While the community method explained greater variation in readmission rates in rural 

areas, HRRs explained modestly more variation for readmissions overall, driven by better ability 

to explain variation in urban areas. This may be due to the HRR approach’s ability to identify 

hospital sub-groups within a larger metropolitan area, which the community method tends to 

group together. Overall, the ability to explain variation in spending by grouping is greater than 

the ability to explain readmissions: about 1/3 of variation in spending is explained while about 

1/6 of variation in readmissions is explained. 

Figure 6. Variance Explained by Grouping Method 

 

I also investigated the reliability of each grouping method over time by comparing the 

correlation between average MSPB and readmission rate in each community or HRR in 2013 to 

the average in 2014. As shown in Table 4, the correlation between 2013 and 2014 readmissions 

is highest in the 150-community partition and approximately equal in the HRR and 306-
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community partition. The correlation between years on MSPB is also highest in the 150-

communities grouping, followed by HRRs and 306-communities, but all correlations are 

extremely high.  

Table 4. Overtime Correlation of Outcomes 

 150 Communities 306 Communities HRRs 

Readmission 2013-2014 Correlation 0.93 0.90 0.90 

MSPB 2013-2014 Correlation 0.97 0.95 0.96 

 

Finally, I compared each grouping strategy using split-half reliability. Grouping methods that 

capture hospitals that truly belong to the same underlying group should have more similar 

performance on outcomes than hospitals that do not belong to the same group. Therefore, better 

grouping methods are likely to have higher split-half reliability. I found that the 150-community 

partition had substantially higher reliability on both measures than the other two groupings 

(Table 5), while the 306-community partition performed better than HRRs on the readmissions 

measure and the HRR partition performed better on the MSPB measure. 

Table 5. Split-Half Reliability 

 150 Communities 306 Communities HRRs 

Readmission Split 

Half Reliability 
0.69 0.53 0.48 

MSPB Split Half 

Reliability 
0.77 0.57 0.63 

 

DISCUSSION 

I proposed an alternative definition of hospital communities based on the principles of social 

network analysis. I then showed that the resulting communities were robust to differing methods 

of community detection and over time, could be divided into smaller groups while retaining the 

ability to identify meaningfully separate groups of hospitals, were valid in that they were closely 

related to two other means of identifying hospital groups and performed as well or better than a 
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commonly used method of hospital grouping in predicting hospital-level outcomes, and that the 

outcomes associated with each community were reliable, indicating that the community method 

was identifying a consistent underlying construct.  

The hierarchical nature of this approach provides an important advantage over other 

methods of grouping hospitals by allowing additional flexibility that may be valuable as 

researchers seek to answer varied questions requiring differing levels of analysis. While it may 

often be useful to leverage the hierarchical nature of the community detection algorithm to 

identify smaller groups of more tightly knit hospitals, under some assumptions the ‘best’ 

solution, which maximizes the distance between communities, created a small number of large 

communities. As a result, it may be useful for researchers and policymakers to conceptualize 

hospital groups at the level of these large communities when thinking about the healthcare 

market and access to uncommon procedures. For instance, larger communities may be useful for 

assessing the interaction between teaching hospitals or multihospital systems that draw patients 

from many hospitals and long distances. On the other hand, researchers interested in 

understanding the role of very local norms in shaping hospital behavior and studying competition 

among small or rural community hospitals may select smaller networks of tightly interconnected 

hospitals (70). The choice of number of communities creates a tradeoff: by selecting fewer 

communities, hospitals are grouped into large but potentially more loosely affiliated 

communities. When these communities are split into sub-communities, the resulting smaller 

groups are more tightly interconnected. However, using smaller communities may result in 

somewhat artificial divisions between hospitals that should be considered members of the same 

community.  
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One of the key advantages of this method is that it can be easily updated from publicly 

available data and as a corollary, is verifiably reliable over time. Other methods of grouping 

hospitals, such as HRRs or geographic definitions unrelated to healthcare (such as metropolitan 

statistical areas) either have not been or could not be updated in response to changes in the 

healthcare delivery system. In contrast, community definitions could change over time in 

response to changing patient sharing patterns or chance, but in this analysis and over a relatively 

short period of time, were largely unchanging from year to year. The demonstrated reliability of 

the community method to different analytic assumptions (how to weight ties between hospitals 

and the algorithm used to identify communities) provides further evidence of the robustness of 

this identification strategy while other methods have not been tested for this type of reliability.  

The community method was closely related to an alternative definition of hospital 

groups, local multihospital systems (LMS). This indicates that the informal networks created by 

shared patients are related to the formal hospital networks generated through shared ownership. 

However, the analyses performed here could not identify the causal mechanism underlying this 

similarity: shared ownership may lead to greater shared patients therefore membership in the 

same community, or shared patients may lead to shared ownership structure. Nevertheless, this 

similarity provides support for the validity of the community detection approach because it 

generates groupings that are sensitive to a distinct type of network connection created by formal 

linkages. While LMS membership was also predictive of HRR membership, the association was 

not as strong, which may lend further support to the validity of the community method.  

Although there were conceptual reasons to suspect that the HRR method did not 

represent the most meaningful grouping of hospitals due to the age of the underlying data and 

focus on a limited subset of patients, HRRs and the identified communities were reasonably 
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similar, perhaps because both methods are derived from analyzing how patients move between 

hospitals. When testing the ability of each grouping to predict hospital outcomes, the HRR 

method and community detection method performed relatively similarly. However, HRRs 

identified more groups than the community detection method and in particular separated urban 

and suburban areas into several HRRs whereas the community detection method did not divide 

these areas. This difference may be due to the HRR’s focus on specific referral patterns for 

specialty diseases which may capture planned transfers and referrals between community 

hospitals and specific quaternary care providers but overlooks important linkages between 

similar hospitals in the care of less acute patients due to geography, patient preference, and 

random occurrence. Even in robustness tests, no version of the community detection method 

identified as many naturally occurring groups as indicated by the HRR method. As a result, it 

seems likely that for most analytic purposes, the best number of groups is lower than that 

identified by the HRR method and closer to 150-200 communities. These large groups 

correspond to work showing that hospital markets are often larger than a single MSA (49). 

This study is subject to several limitations. First, the network of shared patients used to 

identify hospital communities was based only on Medicare patients. The network formed by 

commercially insured patients may be different especially since many of these insurers have 

contracts with certain hospitals and create incentives for patients to visit those hospitals. Second, 

these communities were identified solely from shared patients. More formal ties or ties formed 

by shared physician affiliations may also contribute to the formation of communities. To a 

certain degree, these networks would be reflected in the network of shared patients as noted by 

the association between LMS and communities. Third, the content and motivation underlying the 

sharing of patients is somewhat ambiguous—it may be the basis for either competition or 
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collaboration over those patients. Finally, some very weak ties between hospitals are omitted 

because the publicly available data is censored at a minimum of 11 shared patients. However, 

very few ties included in the data are made up of that low of a number of patients so it is unlikely 

that this is dropping many inter-hospital links. For instance, there are 306 ties comprised of 15 

patients and only 17 ties comprised of 11 patients. 

In this study, I presented a flexible, reliable and valid method of identifying hospital 

communities within the network of shared patients. Researchers interested in studying the 

interaction of multiple hospitals may find this approach useful as they seek to understand 

hospital interaction, competition, and variation in spending or outcomes. Of particular interest, 

the number of naturally identified communities was smaller using this method than previous 

methods. The communities identified here need not be the final word—I plan to make the data 

and R script that led to this grouping scheme publicly available—and I hope that this work will 

form the basis for continued improvement of our understanding of informal multihospital 

relationships. 
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CHAPTER III  

A Network Approach to Care Fragmentation: Association with the Quality and Efficiency 

of Hospital Care 

INTRODUCTION 

Patients often receive care from multiple healthcare providers because of the highly specialized 

nature of healthcare and the preferences of individual patients. However, when patients are 

treated by different providers, their care becomes fragmented, and providers must communicate 

and collaborate to provide high quality care for these shared patients. In consequence, care 

fragmentation can lead to low quality and inefficient care if communication between 

organizations is ineffective and providers do not coordinate in patient management (71). 

Evidence indicates that highly fragmented healthcare delivery systems result in higher costs and 

utilization, and worse patient outcomes including readmissions and mortality (72-74). This 

fragmentation appears to be a common experience (75, 76) and concerns with fragmentation 

have in part motivated recent efforts to reform the delivery system, including the establishment 

of new programs that incentivize better coordination (e.g., accountable care organizations and 

patient centered medical homes) (77, 78). 

Some sharing of patients between healthcare providers and organizations is likely 

unavoidable due to specialization and patient preference, and the benefits of provider 

competition also create pressures to avoid solving fragmentation through consolidation.  Thus, 

the key question is not how to reduce patient sharing, but instead how to avoid the negative
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 consequences of patient sharing.  Negative consequences may be avoided if the inter-

connections between organizations are structured to support high functioning collaboration 

between parts of the system (27). Conceptualizing and measuring healthcare delivery as a 

network of connected organizations can help identify features of the inter-connected network 

associated with successful patient sharing. In particular, two features of the network – 

concentration and centralization – are likely to result in high functioning patient sharing.  

A high level of concentration—such that providers share many patients with relatively 

few partners—may reduce the negative effects of fragmentation because frequent sharing of 

patients may compel partnering organizations to develop processes to exchange information 

about patient’s prior treatment and to keep track of patients that move back and forth. Similarly, 

providers at these organizations with experience working together may develop processes for 

creating coordinated care plans through high quality verbal discussion and shared decision 

making (79). In consequence, networks made up of provider organizations that more frequently 

share patients, while still fragmented, distribute patients in a way that could lead to behaviors 

that more effectively mitigate the negative consequences fragmentation, relative to dispersed 

networks made up of relationships between many organizations that only rarely share patients.  

Second, a centralized system, arranged in a hub and spoke manner around one or a few 

focal hospitals as opposed to a decentralized web of equally connected hospitals, may be 

beneficial because the often large and highly capable central organization has the capacity to 

support information sharing and coordination processes with many smaller partners, whereas in a 

decentralized network, peripheral and less capable organizations may be asked to coordinate 

with a large set of partners, stretching their organizational capacity to develop routines. Further, 

research on the volume-outcome relationship in health care has demonstrated that higher quality 
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and lower costs might result from greater regionalization—that is, care for complex conditions 

should be centralized in large medical centers that others refer patients to, rather than fragmented 

throughout smaller organizations (80-82). Similarly, research on public health organizations 

indicates that the presence of a central organization may facilitate coordination between more 

peripheral actors and set expectations for the whole network (83). As a result of these interlinked 

phenomena, networks with high centralization might exhibit greater coordination and reduced 

fragmentation.  

Prior studies that measure fragmentation have generally assessed the extent to which 

patients were seen by different providers and admitted to different hospitals (72-74). However, 

these approaches have done little to identify the characteristics of relationships between 

providers or the network as a whole. For instance, prior work has not distinguished between 

patients whose care is fragmented between many providers that rarely work together and those 

that frequently share in the care of the same patients. Because care fragmentation creates the 

need for interaction between multiple providers during the care of a patient, the tools of social 

network analysis can be leveraged to characterize the patient sharing relationships that might 

lessen the negative effects of dividing care between multiple providers and organizations. In this 

vein, prior studies have analyzed providers’ patient network to identify a range of relationships 

between network characteristics and patient care (27-29) but have not used these tools to 

investigate fragmentation.  

Using data derived from Medicare claims, I investigated how the structure of hospital 

networks of shared Medicare patients is related to the performance of hospitals in these networks 

on efficiency and patient outcomes. To do so, I measured two aspects of hospital networks 

associated with the structure of patient sharing: the extent of concentration and centralization of 
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the network. I then related these network features to two measures of hospital performance, 

Medicare spending per beneficiary (MSPB) and hospital’s 30-day all-cause readmission rate, a 

commonly used measure of hospital quality that may be particularly sensitive to differences in 

the quality of collaboration between hospitals. 

CONCEPTUAL MODEL 

This study specifically focuses on the relationship between the hospital network of shared 

patients and two outcomes, the level of Medicare spending and 30-day all-cause readmission 

rates. While the hospital network is only one piece of the overall healthcare delivery system, I 

focus on hospitals because a significant amount of prior research on care fragmentation has been 

based on patients seen at multiple hospitals (72, 84, 85). Further, the high cost and high acuity of 

this setting makes hospital outcomes an important driver of the overall performance of the 

healthcare system. I hypothesize that the structure of the inter-hospital network of shared patients 

will relate to both lower spending and lower readmission rates by increasing the sharing of 

information and improving the collaborative decision making processes between hospitals. 

Hospitals in networks that facilitate high levels of communication and collaboration are likely to 

have reduced levels of spending because this communication can decrease the need for 

redundant testing and the rate of costly medical errors. These hospitals are also likely to have 

lower rates of readmission because improved information sharing and collaboration may lead to 

improved outpatient and emergency care when a patient is seen at a new hospital and this 

improvement may reduce the need for a patient to be readmitted. In addition, having more 

information on patient history may reduce emergency department clinician’s uncertainty about 

the status of their patient and make it less likely that they admit a patient in order to perform 

additional diagnostic procedures. 

  



49 

 

 

Two Levels of Networks 

The two main network features characterized in this chapter, network concentration and 

centralization, can be conceptualized and measured at two distinct levels of analysis commonly 

used in the literature on social networks. The first level of analysis, often called the ‘ego-centric’ 

network, focuses on the characteristics of an individual entity—the ego—and its ties to others. A 

rich literature demonstrates that the structure of an ego’s direct relationship with others can 

influence its performance by providing access to information, easing coordination demands or 

placing the individual or organization in a position of influence (86-88).  

The second level of analysis seeks to describe the network as a whole—that is, the 

collective network of linked hospitals—and identifies characteristics such as how centralized the 

network is around a primary actor or the level of interconnectivity in the network. The 

characteristics of the collective network—for instance, the relationship between members of a 

team, or networked R&D firms, have been used to predict the performance of that group (89, 

90). The characteristics of the collective network can also determine the behavior of individual 

actors in the network by creating a structure within which the individual acts. As such, the 

structure of the collective network, unrelated to the individual ego-centric network, can relate to 

the performance of an individual or firm within that network (10, 91).  

In this paper, I investigate the hypotheses that the concentration and centrality of a 

hospital’s ego-centric network, and the concentration and centralization of the broader network 

within which a hospital is embedded, have important consequences for the extent to which 

fragmentation inhibits hospital performance. Figure 7 provides a visual guide to the conceptual 

model, with each node representing a hospital, each line representing shared patients between 
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hospitals and the thickness of the line representing the number of patients shared between the 

hospitals. 

Figure 7. Conceptual Network Schematic 

 
 

Hospital-level Patient Sharing Concentration 

At the ego-centric level, low concentration occurs when a hospital shares a relatively small 

proportion of their patients with each of a large number of partners. For these hospitals, it may be 

challenging to develop robust information sharing routines with each of their partners. High 

functioning coordination requires experience and relationship-specific investment,(83, 92) and 

the ability for hospitals to make that investment in their partners in a way that covers a large 

proportion of shared patients may be a function of how many partners they have and the 

proportion of their shared patients covered by each partner. High proportions of patient sharing 

between partner hospitals may facilitate creation of processes that smooth the transfer of 

information and coordination of care. Achievement of high volumes of specific procedures at 



51 

 

individual hospitals has been shown to be associated with superior health outcomes in individual 

hospitals, and it seems logical that the benefits of high volume in developing successful care 

processes should apply not only within a given hospital but also to how care is coordinated 

between hospitals (93). The ability to develop processes through repeated interactions with 

specific partners may be associated with more efficient and higher quality care. For instance, 

hospital A in Figure 7 can devote the majority of its attention to developing processes with their 

major partner, hospital B, with which they share most patients. In contrast, hospital F, with a less 

concentrated network and ties made up of an equal number of patients, must devote resources to 

all three of its partners, and may therefore either not do so or do so poorly.  

Hypothesis 1a: Hospitals with more concentrated networks provide more efficient care. 

Hypothesis 1b: Hospitals with more concentrated networks provide higher quality care. 

Collective Network-level Patient Sharing Concentration 

Even if an individual hospital’s network is concentrated, the ability of a hospital to develop well-

functioning coordination may depend on the collective network of its partners and their ability to 

commit a similar level of resources to coordinating with the focal hospital. As a result, hospitals 

in networks with low overall concentration may find it challenging to engage their partners in 

devoting resources to the development of information sharing processes because each of their 

partners have many other demands. Further, in networks with low concentration, poorly 

coordinated care may accumulate for patients as they move between hospitals with low 

concentration. Providers practicing at an individual hospital in that network may be challenged to 

identify all relevant patient information because they must seek out that information from 

multiple discrete sources as a result of low concentration at other hospitals and attendant 
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challenges in coordination at those hospitals, which means that no one partner is certain to have 

all information.  

Hypothesis 2a: Hospitals in more concentrated collective networks provide more efficient care. 

Hypothesis 2b: Hospitals in more concentrated collective networks provide higher quality care. 

Hospital Patient Sharing Centrality  

In addition to concentration, hospital centrality and network centralization are likely to influence 

the extent to which patient sharing results in coordination challenges. An individual hospital’s 

centrality within a network—that is, the extent to which the hospital occupies a central, 

coordinating position within the whole network or sits on the periphery of the network—may 

relate to how much work the hospital must do to overcome fragmentation. While the central 

hospital in a network, such as hospital C in figure 7, plays an important role in coordinating the 

network as a whole, that role may be costly for the hospital (6, 94). Like hospitals with networks 

that include many partners and low concentration, in order to reduce challenges faced through 

patient sharing, the central hospital will be required to expend effort developing relationships and 

coordinating with many partner hospitals, which will tax the organization’s resources; further, 

the central hospital is likely to face a coordinating burden in organizing the peripheral hospitals 

and coordinating concordant decision making in the network that may not communicate directly 

and are predominately connected through the central hospital. However, central hospitals are also 

likely to serve as referral centers and to concentrate the treatment of complex patients in a single 

location, and therefore achieve the benefits observed in the volume-outcome literature (93). In 

sum, highly central hospitals may provide less efficient care than their peers due to the 

coordinating role they must play; however, central hospitals may provide higher quality care 

through their ability to function as high volume referral centers. For instance, hospital C in figure 
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7 likely plays a coordinating role for the network as a whole and serves as the primary referral 

center. 

Hypothesis 3a: More central hospitals provide less efficient care. 

Hypothesis 3b: More central hospitals provide higher quality care. 

 

Collective Network Patient Sharing Centralization 

The centralization of the network, defined as the extent to which the network as a whole is 

centralized around a focal hospital, may have important implications for the network’s ability to 

manage fragmentation in the network. In highly centralized networks, hospitals are grouped 

around a single central hospital. In more decentralized networks, no hospital occupies a central 

position and instead hospitals are more equal and the network is more evenly distributed. Highly 

centralized networks look like a ‘hub-and-spoke’ model and resemble notions of regionalization 

of care with community hospitals grouped around a centralized quaternary care hospital, whereas 

decentralized hospitals more closely resemble a web. Centralization may lead to improved care 

by concentrating the provision of advanced procedures in the central hospital rather than 

allowing provision of this type of care to be fragmented throughout the system. Furthermore, in 

centralized networks, the central hospital serves an important coordinating and influencing 

function, and a great deal of information passes through the central hospital, while the 

coordination demands may be lessened for non-central hospitals that can rely on a central 

coordinating organization (95-97). Because hospitals are different sizes and offer complementary 

levels of service, ranging from a small critical access hospital to large medical centers, 

organizing hospitals into a centralized network may reduce coordination burdens on peripheral 

hospitals while allowing a centralized hospital to set ground rules and coordinate effectively with 
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a large number of smaller hospitals. Finally, in the broader research on networks, centralization 

has been shown to positively affect performance when centralized control or coordination is 

beneficial and work is distributed and negatively affect performance when smaller subunits 

should be provided greater autonomy—therefore, centralization may provide a means to organize 

and control the network of hospitals that is beneficial to the extent that key collaboration needs to 

happen between central and peripheral hospitals, not between poorly connected peripheral 

hospitals (83, 98, 99). This seems likely given the differentiation in services provided by 

advanced hospitals likely to occupy the core and small community hospitals likely to occupy the 

periphery. In total, highly centralized networks may feature greater concentration of care into 

central hospitals and a greater degree of coordination between hospitals, resulting in more 

efficient and higher quality care. 

Hypothesis 4a: Hospitals in more centralized collective networks provide more efficient care. 

Hypothesis 4b: Hospitals in more centralized collective networks provide higher quality care. 

DATA AND METHODS 

As in chapter 2, I used the 2014 “Physician Shared Patient Patterns” network data file derived 

from Medicare claims housed in the Integrated Data Repository to identify hospital networks 

(57). The file contains information on all healthcare providers appearing on Medicare claims, 

including hospitals and other institutional providers. Hospital National Provider Identifiers 

(NPIs) were primarily identified using the NPIs listed in the American Hospital Association’s 

Annual Survey. When no NPI was listed in the AHA survey, the hospital Medicare provider 

number was identified and mapped to the associated NPI in claims data. Finally, when no 

Medicare provider number was present, the NPI associated with a hospital was identified using 

the hospital address. Each observation in these data consists of three variables: the two providers 
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that share patients, identified by their NPIs and the number of patients for whom both providers 

appeared on a Medicare claim within 30 days, aggregated over the course of the year. This 

claims based approach captures patients treated at the hospital as both inpatients and outpatients, 

including patients seen in the emergency department. However, these claims are unlikely to 

reliably include patients seen in an outpatient clinic associated with the hospital if they do not 

receive care associated with a facility or technical fee. Pairs of providers that shared fewer than 

11 patients are not included in these files. The population under study includes all non-federal, 

acute care hospitals located within the 50 states and Washington DC as listed in the 2014 

American Hospital Association Annual Survey. I identified these hospitals in the network file as 

described in Chapter 2.  

Network Measures 

In order to characterize the network of hospitals, I first had to define the boundaries of each 

network. To do so I used a hierarchical community detection algorithm designed to identify 

closely linked groups of actors in a network. I chose to identify 150 communities because, as 

described in Chapter 2, this number of communities appeared to perform well in terms of 

reliability over time, validity in relation to other methods of grouping hospitals, and in predictive 

power of outcomes that should be similar among related hospitals. In addition, 150 communities 

is close to the average number of communities identified when using different community 

detection algorithms with different underlying assumptions. Once these networks were 

identified, I defined the characteristics of each network. 

Network Concentration 

I defined network concentration at both the hospital and network levels. To define hospital-level 

network concentration, I first calculated the number of patients the hospital shares with each 

partner hospital in their network and divided by the total number of patients the hospital shared 
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with other hospitals in their network. I then took the sum of squares, generating a measure 

similar to the Herfindahl-Hirschman Index (HHI) commonly used to measure the competition of 

a market. This produced a zero to one scale on which a hospital that shared all patients with a 

single other hospital would be a one while a hospital with many hospital partners each 

comprising a small portion of their total patient population would be closer to zero.  

Following a similar logic, to measure the concentration of each whole network, I 

calculated the fraction of the network accounted for by each tie between hospitals and took the 

sum of the squares. Like the hospital-level measure, in a concentrated network with few strong 

ties, this number would approach one while in dispersed networks with many weaker ties this 

number would be closer to zero. I censored one network that was an extreme outlier and replaced 

its concentration score with the concentration of the next highest network. 

Hospital Centrality and Network Centralization 

I characterized the centrality of each hospital using closeness centrality, which is defined for 

each hospital as the number of steps required to access every other hospital in the network from 

the given hospital. A hospital that is very high on closeness centrality is few steps away from all 

other hospitals in the graph, even if they do not directly share patients with all other hospitals. I 

normalized the centrality for each network by dividing the total number of hospitals in the 

network minus one by the measure of closeness. This produced a measure of centrality with a 

theoretical minimum of 0 and maximum of 1 for each hospital. 

To generate a measure of the centralization of the network, I summed the difference 

between the centrality of the hospital with the highest centrality and each other hospital in the 

network and divided by the difference between a theoretical hospital with the highest possible 

centrality and each other hospital (100). This creates a zero to one index in which a highly 
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decentralized network in which no single point is much more central than any other would be 

near zero and a very centralized network in which there is a single, central point would be a one. 

Outcome Measures 

I drew MSPB and 30-day all cause readmission rates from Medicare’s Hospital Compare data 

files and matched these to the hospitals identified in the network data. The MSPB measure is 

adjusted to account for differences in prices by geography, add-on payments to hospitals, for 

beneficiary age and severity of illness. The readmission measure is similarly adjusted for patient 

characteristics. The MSPB measure was created from hospital data from January 1, 2014-

December 31, 2014 while the readmission measure was created from hospital data from July 1, 

2014-June 30, 2015. 

Control Variables 

Network Controls 

I controlled for the level of competition in the market by creating a HHI of market concentration, 

based on the number of beds within distinct hospital systems, for each of the 150 networks. This 

measure captures the extent to which the network features many hospital systems with relatively 

few beds in each or is more concentrated in fewer systems, which may reflect greater market 

power. I also controlled for the number of hospitals in each network and the number of shared 

patients in each network since these were likely to be correlated with the focal network 

measures.  

Hospital Controls 

I controlled for several hospital-related characteristics that might bias the relationship between 

the characteristics of the network surrounding the hospital and MSPB and readmissions rate. 

First, I controlled for the average strength of ties at a hospital and the variation in tie strength to 

control for the absolute number of patients that they share with others and variation in that 
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measure in order to isolate the effect of sharing different proportions of patients with others. In 

addition, I included the ownership of the hospital (government, non-profit, for-profit), the 

teaching status of the hospital, the hospital’s bed size (<100 beds, 100-399 beds, or 400+ beds), 

the hospital’s membership in a multihospital system or network, whether the hospital was a 

general acute care hospital or some other specialty, and whether the hospital was in an urban area 

or a critical access hospital. Finally, I calculated the proportion of all hospital beds in the 

network comprised by each hospital. 

County Controls 

For each hospital in the data set, I included measures related to the demographics and supply of 

healthcare in the county surrounding the hospital using the Area Health Resource File. I 

controlled for the percentage of the population over 25 without a high school diploma, the 

income per capita, the unemployment rate, the percent of the county that was non-Hispanic 

white, female, and over 65, and the population density. The controls related to the supply of 

healthcare in the county included the number of physicians, primary care providers and 

specialists per 1,000 residents, and the number of hospital beds per 1,000 residents. These 

characteristics are likely to be related to the characteristics of the hospital network and to 

hospital performance.  

Analysis 

I first described the characteristics of the network and hospital characteristics to provide a sense 

of the average and range of each measure. I then assessed the correlation between key network 

measures to better understand how these network features interrelate and whether any 

suppression effects or collinearity issues may be present in the model. To further characterize 

these network measures, I selected four networks from the data and created example network 

diagrams, one high in concentration and centralization, one low in one and high in the other 
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network characteristic, and one low in both. I then examined the relationship between hospital 

concentration and centrality as well as network concentration and centralization and the MSPB 

and readmission outcomes in a multivariate framework. I included network, hospital and county 

controls in multivariate regression models to account for observed factors that may bias the 

relationship between network characteristics and these outcomes. Because the outcomes were 

continuous and at the hospital level while some of the key independent variables were at the 

network level, I used a multilevel mixed effects linear regression model with network-level 

random intercepts to estimate the relationship between the key network measures and outcomes, 

and clustered standard errors at the network level.  

Because both of the outcome measures have been processed by CMS, it is challenging to 

infer the size of any observed association in these values. Similarly, several of the network 

measures do not have intuitive scales. To facilitate interpretation, I standardized both the 

outcome variables and the network measures such that the coefficients on the variables of 

interest in all models represent the proportion of a standard deviation change in the outcome 

variable created by a one standard deviation change in the network measure.  

Finally, because the MSPB measure is a composite of many types of claims, in a 

robustness test I investigated the relationship between network characteristics and three specific 

types of claims: inpatient spending occurring within 30 days after discharge from the index 

hospital, outpatient spending after discharge, and inpatient spending during the admission. I 

would expect to observe that both inpatient and outpatient spending after the visit follows the 

hypotheses I identified for overall spending because the hospital’s ability to coordinate with 

outside hospitals may influence those costs. Similarly, inpatient spending at the focal hospital 

may be sensitive to coordination if the hospital is better able to gather information. 



60 

 

RESULTS 

All identified hospitals were divided into 150 networks using a community detection algorithm; 

however, 6 hospitals were placed into single-hospital networks for which collective network 

characteristics could not be defined and so were subsequently dropped. The resulting final 

analytic sample included 4,294 hospitals for which CMS reported either readmissions or MSPB 

data and were identified in the Medicare network data, and these were divided into 144 total 

networks. Summary statistics for these networks and hospitals are reported in Table 6. Collective 

network concentration was generally low with a long right tail, with an average concentration of 

0.05 and a range from 0 to 0.28. On average individual hospital’s ego-centric networks were 

more concentrated than were collective networks, with a mean of 0.28, but the range of 

concentrations was very wide, covering 0.029 to 0.84. The average network contained 32 

hospitals and nearly 300,000 shared patients.  
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Table 6. Characteristics of the Network and Hospital Sample  

Network-level Variables (144 

Networks) 
mean sd min max 

Network Concentration 0.05 0.065 0 0.28 

Network Centralization 0.33 0.075 0 0.53 

# of Hospitals 32 20 3 102 

# of Shared Patients 289,952 383,346 429 2,890,529 

Herfindahl Index 0.19 0.13 0.042 1 

Hospital-Level Variables (4,294) 

Hospital Concentration 0.28 0.17 0.03 0.84 

Hospital Centrality 0.62 0.12 0.29 1 

Adjusted Readmission Rate* 15.23 0.85 11.3 19.8 

Medicare Spending Per Beneficiary* 0.98 0.084 0.62 1.63 

Average Tie Strength 551.7 606.7 20.8 9,898 

Tie Strength Variation 937.5 1362 0 20,481 

Physicians per 1,000 2.24 2.11 0 35.9 

PCPs per 1,000 0.70 0.32 0 4.67 

Specialists per 1,000 0.71 0.75 0 13.8 

Hospital Beds per 1,000 3.66 3.63 0 78.80 

Proportion Female 0.50 0.015 0.36 0.57 

Proportion over 65 0.16 0.041 0.048 0.377 

Proportion White 0.78 0.17 0.11 0.99 

Population Density 8.45 31.62 0.001 487.1 

Proportion adults w/o high school 

diploma 0.14 0.060 0.026 0.533 

Income per Capita ($) 42,899 12374 21,696 194485 

Unemployment Rate 0.062 0.020 0.012 0.236 

Critical Access Hospital 27%    

System Member 62%    

Teaching Major 5.3%    

Teaching Minor  24%    

No Teaching 61%    

Government Owned 21%    

Not For Profit 60%    

For Profit 19%    

Urban Location 60%    

Small (<100 beds) 50%    

Medium (100-399 beds) 40%    

Large (400+ beds) 10%    

* Medicare Spending Per Beneficiary was not available for all hospitals; N=3,120 

* Readmission Rate not available for all hospitals; N=4,313 
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To better understand the relationship between these collective network measures and 

other features of the network, I identified several important correlations between network 

features (Table 7). Collective network concentration was weakly and positively correlated with 

collective network centralization, modestly and negatively correlated with markers of network 

size including the number of hospitals and total number of shared patients in the network, and 

positively but weakly correlated with hospital market concentration. The degree of network 

centralization was only weakly associated with the number of hospitals, shared patients and 

market competition. The correlation between hospital-level concentration and collective network 

concentration was low, and the correlation between hospital centrality and network centralization 

was negative. 

Table 7. The Correlation between Network Characteristics and Key Community 

Characteristics 

 
Network 

Concentration 

Network 

Centralization 

# 

Hosps 

# 

Patients 

Market 

Conc. 

Hosp. 

Cent. 

Network Concentration 1      

Network Centralization 0.11 1     

# of Hospitals -0.37 0.28 1    

# of Shared Patients -0.22 0.17 0.74 1   

Market Concentration 0.41 -0.05 -0.51 -0.38 1  

Hospital Concentration† 0.13 -0.04 -0.32 -0.19 0.28 1 

Hospital Centrality† 0.09 -0.18 -0.24 -0.09 0.05 -0.36 
 

N=144 unique communities 

† Correlations for these variables use 4,294 hospitals in the sample, not unique communities. 

 

Figure 8 depicts four hospital networks drawn from the data to provide a visual sense of 

how these networks differ on concentration and centralization. The top-left network features a 

few hub hospitals occupying a central position in the graph connected to several smaller 

hospitals through concentrated ties. The top-right network contains highly concentrated ties 

between hospitals but seems to be comprised of two components and therefore has low 

centralization. The bottom-left network has high centralization—i.e., several hub hospitals that 
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are closely tied to one another—and many ties comprising relatively few patients. Finally, the 

bottom right network has both low concentration—i.e., many moderate and weak ties—and low 

centralization created because many hospitals seem to occupy relatively central positions 

creating a less clear hub and spoke system. In each network, the hospitals with the lowest and 

highest concentration and centrality are highlighted. 

Figure 8. Four Example Network Graphs Drawn From Medicare Data 
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When I analyzed the relationship between network structure variables and outcomes in a 

multivariate framework, I found a statistically significant association between greater hospital-

level network concentration and lower MSPB, supporting hypothesis 1a. A one standard 

deviation increase in concentration at the hospital-level was associated with 6.7% of a standard 

deviation lower MSPB (p=0.040) (Table 8 column 1). When I tested hypothesis 2a, I observed a 

stronger association between collective network-level concentration and lower MSPB, such that 

a one standard deviation increase in concentration was associated with 18.0% lower MSPB  

(p<0.001). These two findings indicate that greater concentration is related to more efficient care. 
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Table 8. Multi-Level Regression Models of the Effect of Network Characteristics on MSPB 

and Readmissions 

  Standardized Medicare 

Spending Per Beneficiary 

Standardized 30-day All 

Cause Readmissions  

      

Network Concentration -0.180*** (0.038) -0.127*** (0.024) 

Hospital Concentration -0.067** (0.033) -0.030 (0.024) 

Network Centralization 0.076** (0.030) -0.137*** (0.031) 

Hospital Centrality -0.090*** (0.034) -0.048* (0.025) 

# Hospitals 0.010** (0.004) 0.000 (0.003) 

# Shared Patients -0.000 (0.000) 0.000*** (0.000) 

Market Concentration -0.095 (0.291) 0.491** (0.220) 

Average Tie Strength/1000 0.146** (0.074) -0.073 (0.094) 

Tie Strength Variation/1000 -0.042 (0.034) 0.024 (0.047) 

Ownership (Ref: Government)     

     Not-For Profit  0.044 (0.051) -0.158*** (0.041) 

     For Profit 0.319*** (0.071) 0.195*** (0.067) 

Teaching Status (Ref: None)     

     Major Teaching  -0.231** (0.113) 0.617*** (0.116) 

     Minor Teaching -0.064 (0.070) 0.074* (0.040) 

Size (Ref<100 Beds)     

     Medium (100-399 Beds)  0.202*** (0.042) 0.125*** (0.043) 

     Large (400+ Beds) 0.230*** (0.062) 0.255*** (0.096) 

System Member 0.016 (0.055) -0.039 (0.043) 

Network Member -0.028 (0.035) -0.055* (0.031) 

General Acute Care Hospital 0.211 (0.163) 0.734*** (0.129) 

Urban Location 0.234*** (0.048) -0.024 (0.050) 

Critical Access Hospital   0.196*** (0.045) 

Hospital System Market Share -0.206 (0.167) -0.087 (0.116) 

Proportion w/o High School Diploma 0.001 (0.001) 0.000 (0.000) 

Income Per Capita 0.000 (0.000) -0.000*** (0.000) 

Unemployment Rate -0.003* (0.002) 0.002* (0.001) 

PCPs per 1,000 -0.154 (0.101) -0.148* (0.083) 

Beds per 1,000 -0.013 (0.011) 0.006 (0.004) 

Proportion Female 3.480** (1.609) 0.233 (1.103) 

Proportion over 65 -0.542 (0.787) -0.079 (0.532) 

Proportion White -0.000 (0.000) -0.001** (0.000) 

Population Density -0.002*** (0.000) 0.001** (0.001) 

Specialist per 1,000 0.275** (0.118) 0.544*** (0.137) 

Physicians per 1,000 -0.063 (0.041) -0.159*** (0.047) 

Constant -2.380** -0.837*** -0.468 -1.234*** 

     

Observations 3,119  4,269  

Number of groups 144  144  

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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When I tested hypothesis 3a, that hospital centrality was associated with higher spending, 

I found support for my hypothesis: greater hospital centrality was associated with higher MSPB, 

consistent with the idea that centrality imposed a burden on the central hospital (7.6% of a SD 

higher, p=0.012). Finally, when I examined network centralization, I found that higher levels of 

centralization were associated with lower MSPB (9.0% of a SD lower, p=0.008), which supports 

hypothesis 4a, which stated that centralization led to greater efficiency of the hospitals in the 

network.  

Readmissions 

The pattern of results was somewhat different when examining the relationship between these 

network characteristics and readmissions. I did not find support for hypothesis 1b: concentration 

at the hospital level was not associated with reduced readmission rates (p=0.22 Table 8 column 

2). However, greater collective network concentration was associated with lower readmission 

rates (12.7% of an SD, p<0.001) supporting hypothesis 2b. Hospital centrality was associated 

with lower readmissions (13.6% of an SD, p<0.001), the inverse of the relationship observed for 

MSPB but in line with hypothesis 3b that centrality can improve patient outcomes by focusing 

care in large hospitals. Finally, network level centralization was marginally associated with 

lower readmission rates (4.8% of an SD, p=0.058), indicating marginal support for hypothesis 

4d.  

Robustness 

When I investigated specific types of spending I found results that were generally consistent with 

my primary finding. As in the main results, greater network concentration was associated with 

reduced inpatient spending after discharge (Table 9); however, network concentration was also 

associated with higher inpatient spending during the visit. Greater hospital concentration was 

associated with reduced inpatient spending during the visit. Greater hospital centrality was 
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associated with higher spending in all three categories. Centralization was marginally associated 

with lower inpatient spending after discharge but not outpatient spending or inpatient spending 

during the visit. In sum, with one exception all of the statistically significant relationships were 

consistent with the main MSPB finding; however, not all categories were statistically significant. 

These findings begin to clarify where the hospital network is associated with cost savings; 

however, since these measures are not adjusted by patient severity or other factors it is possible 

that those factors are influencing the observed relationships. 

Table 9. Association Between Network Measures and Specific Spending Types 

  

VARIABLES 

Inpatient 

post-

discharge 

 Outpatient 

post-

discharge 

 Inpatient 

during 

admission 

        

Network Concentration -100.495** 5.972 132.684*** 

 (39.167) (5.904) (48.381) 

Hospital Concentration -16.484 1.742 -126.824** 

 (35.309) (10.493) (53.407) 

Centrality 78.220*** 33.817*** 386.833*** 

 (28.847) (7.420) (56.447) 

Centralization -84.490* 9.288 -21.700 

 (47.078) (7.362) (38.942) 

    

Observations 3,123 3,123 3,123 

Number of groups 144 144 144 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

All Control variables in the main regression models were included in these 

robustness tests but omitted from this table for parsimony. 

 

DISCUSSION 

This study represents one of the first efforts to understand the relationship between the structure 

of the inter-hospital network of shared patient and coordination of care that influences hospital 

performance. I found that the structure of the inter-hospital network of shared patients was 

associated with two important measures of hospital performance: Medicare spending per 

beneficiary and 30-day all cause readmissions. At the network level, both the extent to which 
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hospital patient sharing relationships were concentrated and the degree to which the network was 

centralized were associated with lower Medicare spending and readmissions. At the hospital 

level, greater network concentration was associated with lower spending but not readmissions, 

and this effect was smaller than the effect associated with the network-level measure. Finally, 

hospital centrality was associated with higher costs but lower readmissions, while the 

centralization of the collective network was associated both with lower spending and 

readmissions. The effect on readmissions is consistent with the volume-outcomes literature, 

while the finding that high centrality was associated with higher costs indicates that central 

hospitals may be taking on more of the coordination burden than hospitals in the periphery. In 

combination, these findings signify the importance of understanding not just an individual 

hospital’s structure and capabilities but also the features of their partners, which make up their 

healthcare delivery network. 

Prior studies have measured health care fragmentation either as patient movement 

between hospitals or as the extent to which individual patients are seen by multiple providers or 

organizations (71, 72, 84, 101). While important, those approaches do not capture information 

about the relationship between organizations that might facilitate successful coordination across 

organizations. Other work on the beneficial effects of relational coordination focused only on 

individual provider’s perceived relationships and do not explain the inter-organizational level or 

capture structures that facilitate improved relational coordination (92, 102). My findings indicate 

that the characteristics of the relationship between hospitals matters, and that measures of these 

characteristics should account for both individual hospitals and the whole network. Specifically, 

greater concentration in a network facilitates coordination, perhaps because concentration allows 

for the development of experience and relationship specific investments in well-functioning 
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processes. Centralization also appears to allow for better coordination of care throughout a 

network of shared patients by allowing large hospitals with greater organizational resources to 

coordinate the network as a whole.  

This study also represents a contribution to our understanding of the relationship between 

provider networks and the performance of the healthcare system. A growing body of work has 

identified links between physician networks of shared patients and patient outcomes (27, 28, 

103) as well as other behavior (104). While some work has been done to characterize the inter-

organizational network of shared patients, that work has not explicitly associated these networks 

with outcomes (13, 34, 36, 39). As such, this study extends work focused on the impact of 

network structure on performance by focusing on a different unit of analysis—hospitals instead 

of individual physicians—and extends work on the inter-hospital network by investigating its 

relationship with performance. Specifically, I find that greater concentration in the network is 

associated with more efficient and higher quality hospital care.  

These findings suggest that efforts that drive towards greater concentration and 

centralization will result in improved hospital outcomes. Several trends in the hospital market, 

including consolidation of hospital systems and the rise of Accountable Care Organizations, are 

likely to lead to greater concentration and may therefore result in improved performance through 

changes in the underlying network of hospitals. In addition, the finding that centralization is 

associated with greater performance indicates that regionalization may be associated with 

improved performance through a mechanism beyond the volume-outcome relationship, lending 

additional support to the body of research indicating the potential benefits of regionalization. 

Regionalization could be increased by altering financial incentives for hospitals to provide care 

that may be better provided at other organizations and by increasing the incentive to refer 
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patients out, especially to the highest quality centers. However, as policy changes or private 

initiatives are implemented that implicitly alter the network of inter-linked providers, it is 

important to measure how those policies affect the collective network—that is, the network of 

both hospitals participating in these initiatives and the network of non-participating hospitals 

linked to those that participate through network ties. It could be that well-meaning policies 

disrupt functioning networks in unintended ways.  

Finally, as trends towards organized networks progress, it will be important to ensure that 

central hospitals have the support they need to coordinate other hospitals in the network. Efforts 

to improve relational coordination, such as use of designated care coordinators, support for 

administrative staff working together, and support for clinicians collaborating across 

organizations may be easier to accomplish in well-structured networks; however, these efforts 

remain costly regardless of network structure. In particular, support of health information 

exchange between hospitals will be essential to facilitate greater availability of information 

throughout the network. Policy efforts aimed at rewarding hospitals that engage in coordination 

efforts and continued support for the development of robust health information exchange may 

lead to continued improvements in the quality of care for patients moving between organizations. 

Limitations 

This study is subject to several important limitations. First, it is cross-sectional and associational. 

While I attempted to control for many potential confounders of the relationship between network 

structure and MSPB and readmissions, it is possible that unobserved covariates biased the ability 

to measure the relationships of interest. Second, in this study I only measured the inter-hospital 

network of shared patients. I chose this focus to complement the growing literature on the inter-

physician network; however, there are many important network sharing relationships and this 
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study does not observe the effect of the physician-to-physician, physician-to-hospital network, or 

the many other pieces of the full healthcare delivery system network. Future research should 

work towards a fuller understanding of the important features of this complex network. Third, I 

theorized that the relationships observed between network structure and hospital performance are 

related to communication and coordination practices; however, I do not directly examine the 

relationship between networks and these practices. Further research might empirically 

investigate the idea that certain network structures corresponded to reported improvements in 

coordination. Finally, the publicly available network data contains very little information about 

the conditions for which patients are treated or the treatment received. In consequence, this study 

represents a very high level view of the hospital network and may not capture features of the 

network important for specific conditions, treatments or patient populations. However, prior 

research has focused more closely on specific groups so that this work represents a complement 

to that more focused work which may omit the broader network studied here. 

Conclusion 

By focusing on shared Medicare patients between hospital, I identified and measured salient 

characteristics of inter-hospital networks. Most importantly, I found that the network level is a 

more important contributor to hospital performance than individual hospital relationships with 

key partners, and that a concentrated and centralized network may allow for highest 

performance. These findings point to the important role network structure plays in the 

performance of the healthcare delivery system. Organizational leaders and policy makers should 

more closely consider the likely impact of new initiatives on the network of shared patients. 

Initiatives that are likely to push the structure of networks towards greater concentration and 

centralization, such as acquisition of new organizations and implementation of policy like ACOs 
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and bundled payment initiatives, appear more likely to improve performance by strengthening 

relationships that mitigate the negative consequences of fragmentation. 
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CHAPTER IV 

 The Implications and Impact of Three Approaches to Health Information Exchange: 

Community, Enterprise and Vendor-Mediated HIE 

 

INTRODUCTION 

Policy makers in the United States (U.S.) have long pursued the goal of increasing electronic 

patient health information exchange (HIE) between healthcare organizations, believing that 

increased availability of such information is an essential foundation to facilitate a learning health 

system to improve the quality and efficiency of patient care (105). Despite continued support for 

HIE, growth in its adoption and use by healthcare organizations has been relatively slow (106, 

107).Traditionally, policy efforts have aimed to support the development of third party entities, 

often known as regional healthcare information organizations (RHIOs) or more recently as 

Community HIEs (used hereafter), to coordinate HIE between multiple stakeholders in an area 

(105, 108, 109). However, Community HIEs have struggled to engage healthcare organizations 

and other relevant entities, to create a sustainable business model and to develop a technical 

architecture (106, 110-112). This has led to slow growth among many Community HIEs and to 

the closure of others (108, 113-115). 

These challenges, combined with a shift in policy towards supporting HIE in varied form, 

created the opportunity for new approaches to HIE to emerge.  Specifically, large healthcare 

organizations support health information exchange with other organizations via Enterprise HIE, 
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and electronic health records (EHR) vendors have begun to develop HIE for their customers 

within the EHR (116-118). These different approaches to HIE vary along several dimensions,  

such as their openness to participation by competitive providers and their ability to establish rich 

data exchanges that are integrated with providers’ EHRs. Enterprise and Vendor-based HIE 

provide the underpinning for newer initiatives to expand the reach of HIE, such as the 

CommonWell Health Alliance, and the Sequoia Project’s Carequality and eHealthExchange, 

such that future developments may be imbued with the strengths and weaknesses of each type 

(119, 120). Because the differences characteristic of each type of HIE can impact the ability to 

develop a learning health system and improve patient care (121), it is critical to assess the impact 

that each type of HIE has had on patients and providers to help guide investment decisions by 

healthcare organizations and policy makers as they navigate and try to support the continually 

changing HIE landscape. Further, these differences in types of HIE may have important 

implications for the value of HIE to hospitals with different types of patient sharing networks. 

RESEARCH INTERESTS 

In this study, I build from existing definitions of different types of HIE (116, 122) to better 

characterize types of HIE both conceptually and empirically. Specifically, I address three 

research objectives. First, I define three forms of HIE and identify their key characteristics, 

including who facilitates sharing of data, the rationale of participation in each form, and the 

particular costs and benefits offered by each approach. Second, I identify the current prevalence, 

use and impact on cost and patient outcomes of each type of HIE. Finally, I propose future 

directions for research on HIE that will allow for better assessment of the relative benefits to 

patients and providers from each approach. 

Methods 
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To develop a conceptual understanding of the types of HIE currently in use, I revisited articles 

cited in two recent systematic reviews that summarized the empirical literature on HIE (123, 

124) and surveyed additional works that either cited or were cited in those articles to develop a 

conceptual overview of the available HIE types. Drawing from this literature, I first sought to 

describe HIE types based on core characteristics, including the rationale for participation, role of 

competition, technical barriers, expectation for patient benefit and prospects for growth that 

influence participation, use and success of each HIE tool.  

Next, I categorized the empirical literature by HIE type to capture the extent of the 

evidence, prevalence, usage, usability and impact on utilization and patient outcomes of each 

type of HIE. Because of the varied methods used and results presented in the reviewed studies, I 

qualitatively summarized the literature to describe each facet of HIE. To estimate prevalence, I 

used the most recently available studies on each type of HIE. I summarized the frequency of use 

by drawing on 21 studies from recent reviews and citing publications that described use. To 

summarize usability issues, I synthesized the key conceptual issues from these studies and 

additional articles. Finally, to assess the impact of each type of HIE, I included 25 of the 28 

studies on impact cited in recent reviews as well as one additional study published after these 

reviews. I excluded three studies because I could not categorize them by type of HIE used. 84% 

of included studies focused on HIE efforts in the U.S. while 16% of studies were set outside of 

the U.S. Unless otherwise noted, cited findings come from studies of the U.S. 

RESULTS 

A Taxonomy of Health Information Exchange 

HIE is the process of electronically sharing health data between healthcare organizations (125, 

126). To occur, HIE requires technological and governance structures between unaffiliated 

organizations, both of which require a facilitating convener. Experts believe that HIE will reduce 
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the frequency of medical errors—such as adverse drug events—associated with missing 

information, will improve medical decision making and efficiency, and will reduce redundant 

diagnostic tests.(127-129)  

Despite sharing an overarching definition and set of goals, existing HIE efforts vary 

along several technical and social dimensions. I follow Vest, Campion and Kaushal’s (2013) 

division of HIE into types based on the entity providing the convening role for the HIE effort 

(116). The convening dimension of HIE is essential because each convener establishes the rules 

and rationale for participation by outside organizations in different ways, which may drive 

participation from specific groups, and participation is particularly salient since adoption of HIE 

remains far from complete (106, 130).  

The most studied type of HIE, Community HIEs, are third-party organizations created 

specifically to provide the infrastructure to connect healthcare organizations (131). These 

organizations are expected to build consensus and participation among healthcare organizations 

(113). The Mid-South eHealth Alliance (MSeHA), which covers the metropolitan Memphis area 

and connects 16 of the 17 hospitals in the area, is a frequently studied example of a Community 

HIE. Enterprise HIE is convened by a large healthcare organization like a multihospital system 

to create connections with select providers with whom sharing information is in the convening 

organizations’ interest (116). Enterprise HIE can involve ‘rolling out’ the convener’s EHR 

system to unaffiliated healthcare organizations, creating an interface between different EHRs, or 

sharing a portal that allows others to view their information. Finally, EHR Vendor-Mediated 

HIE is convened by an EHR vendor that offers technical and networking support to establish 

connections between their customers. For instance, Epic Systems’ Care Everywhere platform is 

included as part of their EHR and facilitates information sharing between all of their customers.  
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Along with differing convener, each type of HIE is characterized by varying levels of 

seven key characteristics related to participation and growth. (1) Openness, the extent to which 

the HIE form is designed to allow for participation from a broad group of health care 

organizations (2) The Logic of Participation, the reasons why a healthcare organization might 

be interested in joining each type of HIE, (3) the role of Competitive Motivation in spurring or 

slowing each form of HIE, (4) The Apparent Difficulty of establishing and sustaining each form 

of HIE, (5) The level of Expected Patient Benefit from each form of HIE, which is based on the 

likelihood that the HIE connects necessary organizations in valuable ways, (6) The prospects for 

Growth of each form of HIE in the future and (7) the Scalability of each form of HIE into a 

single unified network.  

The characteristics of each type of HIE are briefly summarized in Table 10. In general, 

Community HIEs are appealing due to their openness and the possibility that they will lead to a 

nationwide, inclusive system of HIE; however, other options may be more appealing to key 

stakeholders, fulfill different needs and face fewer technical barriers.
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Table 10. Key Characteristics and Differences Between Community HIEs, Enterprise HIE and Vendor-Mediated HIE 

 Convener 

Community Neutral Third Party Organization 

Enterprise Large Healthcare Organizations 

Vendor EHR Vendor 

 
Openness 

Community Open view of HIE available to all participants, regardless of affiliation, or competitive interests (110, 132). 

Enterprise More closed-system HIE than Community HIEs (132). Specifically include key partners of convening organizations 

and may exclude competitors (116, 133). 

Vendor Designed to facilitate exchange within a vendors’ customers. Few incentives encourage HIE across vendors. 

 
Logic of Participation 

Community Driven by geographic proximity and shared patients. 

Enterprise Gathers participants from healthcare organizations that are either already officially affiliated, such as physician 

offices and hospitals owned by the same healthcare system, or are close informal partners that privately agree to 

collaborate. 

Vendor Driven in large part by provider choice of vendor, which may not relate strongly to vendor HIE capability or other 

participating organizations. Vendors may be effective conveners because they hold the technical expertise to support 

infrastructure development, and build close relationships with multiple healthcare organizations as part of the 

implementation process (134). 

 Competitive Motivation 

Community Due to the high level of openness, Community HIEs have struggled to deal with healthcare organizations’ reluctance 

to share information with their competitors. 

Enterprise Development may be a competitive advantage because it can provide efficiency gains to providers within a large 

organization or can tie loosely affiliated outside healthcare organizations closer to the organization (117, 135). 

Vendor EHR vendors may find it in their competitive interest to facilitate HIE within their customer base, the vendors may 

also block information sharing with healthcare organizations using other vendors to increase the appeal of selecting 

their system (136). 

 
Apparent Difficulty 

Community In part due to their openness and intended wide participation, Community HIEs have faced many challenges 

including cost to join; technical and usability issues; security, privacy and liability issues ; and concerns about loss 

of market competitiveness (110, 132, 137). 
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Enterprise Because enterprise HIE usually involves a participants with a history of collaboration, increasing participation 

among collaborators may be easier than other HIE approaches which may connect competitors or unaffiliated 

organizations. 

Vendor Simplified because each implementation of the same vendor’s EHR system share similar—though not necessarily 

identical—data structures. 

 
Expected Patient Benefit 

Community Could logically extend to all healthcare organizations in an area, offering relatively high potential value to patients. 

However, many community HIEs share a limited set of data. 

Enterprise May provide lower benefit to the local community as a whole because it can exclude some healthcare organizations, 

limiting the extent to which patient data is shared. However, it may connect the most frequent healthcare provider 

partners together, supporting the sharing of information necessary for collaboration-based initiatives like bundled 

payments and accountable care organizations.  

Vendor May provide less value to the community of patients than a more open approach to the extent that vendors block 

information sharing across organizations that use different vendors. Relative to Enterprise HIE, vendor HIE may 

connect providers that happen to share vendors, but may not connect the most frequent collaborators. Vendors may 

provide highly functional systems. 

 
Growth 

Community Given the difficulties encountered by many Community HIEs, their future growth seems in doubt.  

Enterprise Likely to grow as more organizations gain sophistication in IT support through their own EHR implementation. 

Vendor An increasing number of vendors offer easily implemented vendor-mediated HIE, and many vendors are developing 

these tools (138, 139). 

 
Scalability 

Community As Community HIEs grow they may be logically combined into a single network (125). 

Enterprise Growth may be driven by increases in the number of enterprise HIEs, rather than growth towards an interlinked 

network. 

Vendor Vendor networks may result in silos of information unless vendors and healthcare organizations can overcome 

important competitive barriers to cross-vendor HIE, and transfer technical benefits from enabling HIE on a single 

vendor system towards sharing across vendors. Several cross-vendor initiatives are being developed but not yet 

widely used (119, 120). 
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Does HIE Type Matter?  

Although the evidence on vendor-mediated and enterprise HIE is relatively limited, it is clear 

that each form of HIE is used by a substantial group of providers and offers key differences in 

usability and impact.  

Community HIE 

Extent of Evidence 

Community HIEs are the most frequently studied form of HIE with two sources of national data 

on Community HIE participation (the American Hospital Association’s (AHA) Information 

Technology survey and annual surveys of Community HIEs), and many studies on their usage 

and impact. However, most existing studies on the impact of HIE have focused on a few large 

Community HIE efforts, including several efforts in New York State, the Integrated Care 

Collaborative (ICC), in the Austin Texas area, and the MSeHA, in the Memphis Tennessee 

metropolitan area. As a result, the generalizability of these studies may be questionable. 

Prevalence 

Since 2008 the AHA Information Technology Supplement has asked hospitals whether they 

actively share data through a Community HIE, and about one third of hospitals reported 

exchanging data and participating in a Community HIE in 2013 (140). In addition, an annual 

survey of Community HIE entities identified 119 active in 2012 and estimated that 30% of 

hospitals and 10% of ambulatory providers participated (106). However, case studies have 

reported the failure of several Community HIEs, and the overall number of community HIEs 

declined in 2014 (108, 114, 115). 

Usage and Usability 

Several studies have reported on the usage and usability of Community HIEs. Five studies on the 

use of Community HIEs found that data from the HIE was used in 2-4% of all visits (141-145). 
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Community HIEs were found to be more frequently used for certain types of visits, and in 

particular repeated ED visits, especially for back pain and headache, have been found to be 

associated with much higher rates of HIE use, ranging from 12.5-21.9% (145-147) A different 

study reported much higher overall rates of HIE use, at 21%,(148) indicating that many 

implementation and social factors including integration with the EHR and success convincing 

providers of the value of HIE, might influence the rate of use of HIE. 

Other studies assessed usage at the physician or patient level. A Study of the ICC 

indicated that 57% of patients had their exchanged information accessed at some point over the 

course of two years (148). In two Community HIEs in New York, 80% of physicians reported 

using the Community HIE (149). Yet again, there is a great deal of variation in use. Within the 

same Community HIE usage rates varied enormously at three sites depending on local 

implementations and policies: 1% of patients at one community and 5% of patients at another 

had their information accessed, while at the third over 50% did (150).  

The low use of Community HIE may be due to several factors related to usability. 

Community HIE systems often relied on web-based portals or read-only documents and rarely 

provided structured data that was integrated with providers’ EHR. As a result, providers report 

that the systems were often slow, disrupted their workflows, needed a separate log-in and 

password from the EHR, and required providers to look up patient’ information in a separate 

system (149, 151, 152). In general, systems lacked advanced functionality like automated 

querying of the HIE from the EHR that might ameliorate these challenges and raise usage rates 

(152). Community HIEs may be unlikely to offer integration with EHRs because they sought to 

function similarly when used by stakeholders using many different EHRs, making investment in 

integration with any one system unlikely (137, 151). Several studies noted providers’ frustration 
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with missing data and that failed attempts to look up patients discouraged future use of the HIE 

(145, 151, 153). Community HIEs may be particularly susceptible to missing data because 

organization participation is voluntary and usually relatively low in an area, so that their 

coverage of the history of any given patient may contain gaps (151, 154). Finally, and somewhat 

paradoxically, when patient data was present, it was often of overwhelming quantity, coming 

from all visits to all organizations, and relevant information was not extracted for easy review 

(149).  

Impact 

Taken together, recent empirical studies have generated ambiguous results. Early estimates of the 

savings generated by MSeHA pointed towards large financial benefits (128) and a later study 

indicated lower, but substantial, benefits from it (155). Several studies have demonstrated that 

Community HIEs can reduce the rate of imaging (146, 147, 156). Community HIE participation 

in Wisconsin that linked 5 competitive systems was shown to save $29 per visit (157). A 

Colorado based Community HIE demonstrated that Community HIE adoption was associated 

with reduced lab testing, but the benefits were smaller than anticipated, and another examination 

of lab testing showed no effect (158, 159). On the other hand, use of the Texas based Community 

HIE was associated with a higher likelihood of admission and little financial benefit (143). Use 

of an HIE in Finland had similarly mixed effects (160). Finally, patient benefit was found in one 

of two studies of similar public-health driven Community HIEs, illustrating the challenge in 

identifying consistent effects in the available literature (161, 162).  

Enterprise HIE 

Extent of Evidence 

In contrast to Community HIEs, there is no clear, national data on the extent of Enterprise HIE 

participation. A few studies using qualitative data or small-group surveys focus on the usability 
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of physician portals and other forms of inter-organizational Enterprise HIE. Most of what is 

known about the impact of Enterprise HIE comes from studying a few specific hospitals or 

systems, most notably the Clarit HMO in Israel (163-165). 

Prevalence 

While there are no clear national assessments of the extent of Enterprise HIE participation, 

available evidence points towards wide prevalence. Unlike Community HIEs, which are 

specifically focused on linking disparate healthcare organizations, Enterprise HIE is used to 

connect both affiliated and unaffiliated organizations, and links between affiliated healthcare 

organizations appear to be more common. For instance, in 2013, 39% of physicians indicated 

that they shared information with other groups within their organization and 15% said they 

shared with outside organizations (107). Many large, multi-hospital systems engage in HIE, 

including Clarit in Israel and Kaiser Permanente, one of the largest healthcare organizations in 

the United States. Both of these systems use HIE tools to exchange data across multiple instances 

of their EHR, and in large part led development of these interfacing tools. 

Enterprise HIE between unaffiliated organizations also appears to be widespread. In 

2012, 58% of US hospitals reported on the AHA IT survey that they exchanged some 

information with outside organizations—approximately twice the percentage that reported 

participating in a Community HIE (166). Similarly, 15% of physician offices reported sharing 

information with outside organizations—50% more than participated in Community HIEs (107). 

It is therefore likely that current studies that only focus on Community HIEs may have 

underestimated the number of organizations engaged in HIE.  

Usage and Usability 

Studies of Clarit’s within-system HIE showed that information generated outside of the site 

where the patient was being seen was viewed 4.3% of the time for the entire referral population, 
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and 7% of the time among patients who received a specific lab test (163-165). A study in 

Sweden found that a hospital-based HIE there was used 7% of the time (167). Finally, a study in 

the US examining use of a physician portal focused on three separate six-month time periods and 

found that only 29% of physicians used the portal in all three periods (168).  

Usability appears to vary across enterprise HIE systems. In cases like Clarit or Kaiser 

Permanente, enterprise HIE is integrated into providers’ EHR, allowing for fewer obstacles than 

Community HIEs. In other cases, because providers have access to multiple different enterprise 

HIEs, any given hospital-provided portal requires yet another password and time consuming 

patient lookup process, likely limiting use (132). Access to multiple enterprise HIEs could be 

challenging because each system contained different information, making it hard to find specific 

information (117, 154). This has the potential to exacerbate problems accessing information or 

logging into systems reported in studies of Community HIEs (169). Enterprise EHRs were also 

sometimes designed using proprietary data structures, making them challenging to scale (170). 

Impact 

Many of the assessments of Enterprise HIE come from international studies. Four studies on 

Clarit’s HIE demonstrated that using HIE was associated with positive outcomes (163-165, 171). 

One randomized control study in the Netherlands showed that use of an HIE was associated with 

improved diabetes care (170). U.S.-based studies showed that an HIE link between two affiliated 

academic hospitals reduced redundant imaging, and that use of a physician portal was associated 

with closer adherence to clinical guidelines (172, 173). Use of the HIE within the VA system of 

hospitals is associated with reduced redundant tests and other utilization (174). However, a 

randomly assigned control study of a link between an ED and associated physicians 

demonstrated no benefit, despite physician’s perception of value (168) and another randomized 

trial, undertaken in Sweden, showed no benefit from a hospital sending information from their 



85 

 

ED to outpatient care(167). In general, observational studies of large integrated systems seem to 

point towards benefits from enterprise HIE; however, smaller scale studies using more 

randomized designs did not find evidence of benefit.  

Vendor Mediated HIE 

Extent of Evidence 

In part because HIE mediated by a shared EHR vendor is relatively new, there are few studies on 

the prevalence, usage or impact of this form of HIE, and no national estimates. 

Prevalence 

While there are no good measures of how much HIE occurs through EHR-vendor based 

solutions, Epic Systems alone reports including 293 healthcare organizations in their Care 

Everywhere Network including many very large healthcare organizations, like Kaiser 

Permanente, Geisinger, and Sisters of Saint Mary(175). In 2013, six other EHR vendors 

announced their commitment to working together to launch a collaboration to foster HIE(120).  

Usage and Usability 

Two studies have evaluated the use of a vendor mediated HIE, and both focused on Epic 

Systems. In one study in the ED, Epic’s HIE was used in 1.46% of patient encounters (134). In a 

second study, the rate of use was measured for multiple types of encounters and ranged from less 

than one half of a percent for specialty care encounters to 3.5% for ED encounters (118). These 

rates are notably lower than those reported for either enterprise or Community HIEs in 

comparable encounters. On the other hand, Epic’s HIE uses the Consolidated Clinical Document 

Architecture, which should provide structured data in a commonly used format (176), and 

usability and perceived value were reported to be quite high in both studies, and appear to be 

higher than for Community HIEs or Enterprise HIE.  

Impact 



86 

 

Only one study has examined Vendor-Mediated HIE (Epic Systems’) (134). This study focused 

on the 1,488 patient encounters in the EDs of four hospitals in an integrated delivery system. 

Through chart review, the investigators found that use of the HIE was associated with 560 

avoided duplicative diagnostic tests and 28 fewer cases of drug seeking behavior within those 

patient encounters. 

The evidence for each type of HIE is summarized in Table 11. As noted in the discussion 

above, much more evidence exists on the prevalence and use of Community HIE, but some 

initial findings are available for the other two types of HIE.
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Table 11. Evidence of Prevalence, Use and Impact of Each Type of HIE 

 Community HIEs Enterprise HIE Vendor Mediated HIE 

Prevalence Estimated 119 Community HIEs 

nationwide. 

30% of hospitals participated in 2012. 

10% of ambulatory providers participated 

in 2012. 

No direct national quantitative estimates. 

Physician portals appear widely used.  

Estimates of overall HIE participation is 

over 50% higher than Community HIE 

estimates alone. 

Leading Vendor attests to 

having 293 participating 

organizations. 

Use Evidence drawn from 14 available 

studies. 

Access ranged from 1-5% overall, much 

higher for ED visits and visits with 

existing information.  

Up to 50% of patients had their data 

accessed at least once. 

Most physicians used the HIE at least 

once, though use was infrequent and 

inconsistent over time. 

Evidence drawn from six available 

studies. 

Patient data accessed in 2-8% of visits. 

Used in only 1.5 and 3.5% of 

ED encounters in only two 

studies available. 

Impact Evidence drawn from 15 available 

studies. 

Mixed evidence of decreased utilization. 

Mixed evidence of patient benefit. 

Evidence drawn from nine available 

studies. 

Evidence for reduced utilization and 

readmissions from studies on large 

systems. 

No benefits from RCTs of individual 

linkages. 

Evidence from only available 

study reports reduced use of 

diagnostic tests. 

Evidence drawn from all studies included in prior systematic reviews or citing included studies. 
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FUTURE DIRECTIONS 

A focused research agenda will help guide organization leaders to the choices that might 

facilitate transformation into part of a learning health system and provide the most benefit for 

their patients and organization. Research may also inform policy developments to encourage 

adoption of HIE that most benefits patients. Such an agenda must start with a better 

understanding of the current prevalence of each type of HIE and the reasons for that prevalence 

to provide a better sense of the prospects for. Research should continue on to issues of usage, 

usability and impact of each type of HIE to provide a comprehensive assessment of the value of 

each type of HIE. 

It may be relatively straightforward to obtain better quantitative estimates of the 

prevalence of vendor-mediated and enterprise HIE. Much of this work might be completed by 

modifying existing surveys, including the AHA IT supplement and National Ambulatory 

Medical Care Survey, to account for adoption of these types of HIE by hospitals and ambulatory 

providers, respectively. Both surveys already include questions related to HIE that could be 

expanded.  

It is likely that the prevalence of each type of HIE is not uniform across organization 

types, and some research has identified organizational characteristics associated with adoption of 

Community HIEs (140). Future research into the prevalence of each type of HIE might focus on 

factors that determine the fit of each type with organizational strategies and goals, which may be 

related to observable hospital characteristic such as ownership, market position, and the network 

of other healthcare organizations surrounding the organization. Identifying trends in engagement 

in each type of HIE would help in understanding the appeal and scalability of each approach.  

A key piece of the prevalence of HIE will be to identify with whom healthcare 

organizations are being connected and where gaps in the emerging network are likely to persist. 
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As HIE becomes more widespread it is likely that some organizations will be well connected and 

others left behind; however, identification of those requiring assistance to connect to the HIE 

network may be challenging because approaches to HIE continue to evolve. For instance, both 

the CommonWell and Carequality collaborative projects offer an opportunity for vendor-

mediated HIE to cross silos created by HIE tools designed to connect providers on the same EHR 

platform. Monitoring the success of programs like this will be essential to evaluating the 

prevalence and connectivity achieved by each type of HIE and the gaps where they occur (119, 

120). 

The first step towards understanding the value offered by HIE is to conduct additional 

research on the relative frequency of use of each type. With the current evidence, it is 

challenging to assess how often systems are used and the drivers of use across studies because of 

differing definitions of use, different units of observation (encounters, providers, patients) and 

different encounter types. Despite these limitations, existing research on vendor-mediated HIE 

indicates that it may be used least frequently, and additional work may provide valuable insight 

into the reasons for this and whether low use significantly limits its patient benefit. A key 

challenge for such analysis is to determine when there is a “need” for HIE. Focusing on care 

transitions as the common denominator would be consistent with the ONC approach and might 

provide a useful baseline.   

Healthcare organizations are likely adopting multiple types of HIE to meet different 

needs, and use these tools to different extents. Research into both the prevalence and use of each 

type of HIE may benefit from understanding when and why healthcare organizations adopt a mix 

of HIE types, which partner organizations each type connects them to, and the frequency with 

which each type of HIE is used when adopted alongside others. Key to this will be recognizing 
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that different types of provider organizations have different networks of exchange partners and 

therefore different needs for HIE connectivity.  Researchers may also be able to leverage sites 

that use multiple types of HIE to compare the benefits offered by each HIE network and how 

they do (or do not) complement one another. 

The next step to understanding the value of different types of HIE is assessing usability 

of each type of HIE. The technical sophistication of each type of HIE may lead to differing levels 

of interoperability, usability and workflow integration. For instance, vendor-mediated HIE is 

likely to be embedded in the provider’s EHR in a familiar format and to use standardized 

structured data, whereas provision of data to providers through community HIE and enterprise 

HIE often occurred through portals, free text and other tools that may provide lower value. 

Higher quality data sharing may offer greater benefits than simpler free text or portal based 

systems, but empirical evidence on this question remains limited. Relatedly, providers have 

complained about the sheer amount of information provided through HIEs. By utilizing better 

structured information, different types of HIE may be successful in allowing easy navigation or 

display of the most relevant items.  

An additional key usability issue may arise when organizations participate in multiple 

HIE networks. Because each HIE network connects the organization to a different set of partners, 

it may be necessary for clinicians and their staff to search through multiple systems to find the 

information that they need. This level of effort may strain providers, discouraging use. As HIE 

approaches become more widespread, the obstacles presented by access to multiple systems are 

likely to be more widely felt unless they are well integrated. 

Existing evidence on the impact of HIE remains ambiguous. In particular, research on 

enterprise HIE and vendor-mediated HIE is underdeveloped. It seems clear that more attention 
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must be paid to the type of HIE being used and the context of its use. Different types of HIE may 

be particularly well suited for supporting different use cases—for instance, enterprise HIE may 

easily connect providers who frequently participate in episodes of care for a patient or who form 

an ACO and want to monitor shared care, while community HIE may be better suited to monitor 

population health among more disparately connected providers. Future research should leverage 

the availability of national and longitudinal data on HIE adoption, allowing for large-scale quasi-

experimental studies that can identify effects with reduced risk of bias relative to purely 

observational studies, and without the sample size and power constraints that may reduce the 

likelihood of finding an effect in purely experimental settings. In addition, continued 

development of more micro-level studies should strive to understand the mechanisms through 

which HIE is having a beneficial impact on care, and the barriers slowing realization of benefits 

from HIE.  

DISCUSSION 

Existing HIE efforts can be divided into three different types based on the convener of the effort: 

Community HIE, Enterprise HIE and vendor-mediated HIE. Each type provides different 

benefits and challenges, including the openness of each effort to broad participation, the 

challenges impeding sustainability, and prospects for the future. Although Community HIEs 

appear best designed to include the most participants and thereby provide the most potential to 

benefit the public, the numerous challenges aligned against their development may make 

investment in other options more appealing.  

This study is subject to a number of limitations. Most importantly, the review aimed to 

synthesize current research into the prevalence, use and impact of each type of HIE and as such 

the conclusions drawn are limited by the studies conducted, which have focused on Community 

HIEs. In addition, I focused on the types of HIE that appear most prevalent based on available 
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information; however, other types of HIE may emerge and gain high use. One key omitted type 

of HIE is Direct Exchange, which is designed to limit the need for a convener (125); however, 

current apparent low use rates, and the changing regulatory environment that de-emphasizes use 

of Direct (177), may limit the importance of this model. It will also be important to monitor 

growth in other types of HIE convened by different entities than those identified here.  

It appears that only about one half of HIE occurs through Community HIEs, with the 

remaining intra- and inter-organizational HIE occurring through enterprise HIE and vendor-

mediated HIE. Based on the current evidence, it is unclear which of the alternatives – alone or in 

combination– will facilitate improved sharing of data necessary to provide opportunities for real-

time learning and care improvement in a learning health system and other collaboration-based 

initiatives. It seems likely that different approaches to HIE will work better for different 

organizations, and the best HIE may depend on the type of patient sharing network that 

organization has. Therefore, continued and increased research focused on understanding which 

entities use each type of HIE, and how well these approaches are working for them, remains 

critically important. Without attention to the presence of these different types of HIE, researchers 

and policymakers will be poorly positioned to guide continued initiatives to increase HIE use 

that build upon these types of HIE. This work may provide the most benefit if it focuses on key 

components of HIE that are likely to influence its use, usability, and ultimately, impact on 

patients and by apply more consistent methodology to allow for clearer inference across studies. 



93 

 

CHAPTER V 

Does Health Information Exchange Meet Hospitals’ Patient Information Needs? 

INTRODUCTION 

Following significant public and private investment over the past decade, adoption of health 

information technology in general and health information exchange (HIE) in particular has 

increased greatly (128, 178, 179). However, there are concerns that use of HIE remains low 

relative to other forms of health IT, and it is not clear that the increase in engagement in HIE is 

leading to the expected improvement in patient care (123, 124). One reason for the slow start to 

HIE benefits may be that, while other types of health IT, such as computerized provider order 

entry, can be implemented and used by an individual organization, HIE is specifically designed 

to foster an inter-organizational network of information. Development of HIE that allows 

information to follow patients across healthcare organizations therefore depends on cooperation 

between organizations. This may not occur because there are multiple available approaches to 

HIE and organizations have to weigh their decision on internal and external factors including 

their need for patient information, desire to share information and develop connectivity with 

outside healthcare organizations, and competition in the local market. This dynamic was 

highlighted in a recent report to Congress that discussed ‘information blocking’—that is, 

healthcare organizations and IT vendors choosing not to share patient information with others 

because of competitive concerns (136). Researchers have found that organizations may not be 

motivated to engage in the approach to HIE that provides the most information on their patients 

because competitive considerations can shape the groups with which each organization would 
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like to share information (180, 181). Because of this ongoing concern, and because public policy 

has provided funding to support HIE without dictating the approach that hospitals take to HIE, it 

is important to assess the extent to which hospitals’ approaches to HIE are sensitive to their 

information needs and the needs of other organizations with which they share patients, rather 

than driven by competitive interests.  

For HIE to provide value, the developing HIE network must match the existing inter-

organizational network formed by the movement of patients between organizations because the 

need for information is defined by sharing in the clinical care of patients. A key dimension on 

which the network of shared patients varies is the extent of dispersion or concentration of the 

network—that is, whether organizations share few patients with each of many partners or share 

many patients with just a few key partners. This dimension relates closely to a key difference 

between two of the prominent types of HIE discussed in chapter four: community and enterprise 

HIE. As third-party organizations, community HIEs are created with the goal of facilitating HIE 

between all providers in a geographic area, thereby providing a wide breadth of connectivity to 

many patients that may be appealing to organizations with dispersed patient sharing networks; 

however, community HIEs often offer limited technological functionality and sophistication 

(182). Enterprise HIE, defined as HIE led by a healthcare organization, is designed to support 

connectivity between the lead organization and the subset of providers with which the 

organization is already formally or informally affiliated, and given this more narrow focus, often 

supports greater functionality (116). In consequence, if organizations select the HIE approach 

that matches their information needs, community HIE may be more appealing to organizations 

with dispersed patient sharing networks and enterprise HIE may be more appealing to 

organizations with concentrated patient sharing networks. 
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An individual organization’s choice of HIE has important repercussions for the collective 

network of organizations in which they are embedded because the decision of an individual 

organization can impact the value of a given HIE approach for its partners (183-185). It is 

therefore likely that the members of the network of organizations surrounding any individual 

organization will exert pressure to conform to their needs. This influence process is likely to 

result in HIE that matches the structure of the collective network as network members as a whole 

push member organizations towards HIE solutions that are best for the majority of members. 

Network members could influence HIE decisions by reinforcing organizational motivation when 

the organization’s network is similar to the network of its partners’ or could lead organizations to 

choose a type of HIE that is not in their individual interest – that is, network members could 

influence HIE by conflicting with the motivation derived from the structure of the organization’s 

own network when that network does not resemble its partners’. However, the level of influence 

that the network exerts on the organization may depend on the extent to which the network is 

structured to support high social capital or alternatively the organization is isolated from its 

network through adversarial competition. Therefore, two key questions are when organizations 

in the whole network are able to sway an individual organization’s decision, and whether this 

depends on contextual factors that alter their ability to apply normative pressure.  

In this study, I combine Medicare data on the network of shared patients between 

hospitals with survey data on hospital HIE approaches to examine the relationship between 

hospitals’ patient information needs and the choice of HIE approach. While many healthcare 

organizations interact to provide patient care, I focus on the relationship between hospital patient 

sharing patterns and hospital choice of HIE approach because hospitals serve as large, influential 

hubs in the overall healthcare delivery system, and information sharing between hospitals 
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promises to positively impact patients during high acuity visits. While the relationship between 

hospitals and their ambulatory providers is also likely to influence hospital HIE decisions, the 

complex relationship between hospitals as both competitors and complementary collaborators is 

likely to be highly influential in driving hospitals’ choice of HIE approach.  

I assess the relationship between patient sharing networks and hospitals approach to HIE 

in multivariate regression models adjusting for factors with the potential to influence hospital 

selection of a particular HIE approach. Specifically, I seek to answer three related research 

questions. First, to what extent do hospitals choose an HIE approach (community HIE versus 

enterprise HIE) that matches their hospital’s patient information needs, defined by their patient 

sharing network structure? Second, are hospitals responsive to the information needs of partner 

hospitals represented by the collective shared patient network? Third, do contextual factors that 

increase or decrease normative pressure to adopt the HIE approach preferred by hospitals in their 

network influence the extent to which hospitals adopt that HIE approach?  

Ultimately, when organizations select the approach to HIE that matches their network of 

shared patients, they may have access to salient health information for their population of 

patients, and this access should increase their ability to make informed clinical decisions. It 

follows that organizations with well-fitting HIE would provide more efficient and effective 

patient care. However, the degree of fit between the patient sharing network and HIE operates on 

two levels: (1) the fit between the hospital’s network of shared patients and choice of HIE, and 

(2) the fit between the collective network of shared patients within which the hospital is 

embedded and the hospital’s choice of HIE. Therefore, in a supplementary analysis, I assess 

whether hospitals that adopt an HIE approach that matches their patient information needs, or the 
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overall needs of the network, have better care processes and outcomes than hospitals that adopt 

an approach that does not match their individual information needs. 

BACKGROUND AND HYPOTHESES 

The fundamental decision I analyze in this study is hospitals’ choice between two approaches to 

HIE: community and enterprise. In interviews of health system leaders, Vest et al. (5) report that 

community HIE is perceived as helpful to connect the hospital to a wide array of providers that 

may be loosely connected to the hospital, so that the hospital has access to patient information 

regardless of where that patient has been previously seen. However, community HIEs also have 

important limitations: because they are outside the control of a single health system they demand 

cooperation and consensus among multiple stakeholders and cannot be designed to the 

specification of any one participant. To minimize complexity, they typically focus on sharing 

only a subset of clinical data and shared data is usually not seamlessly integrated into providers’ 

electronic health records (EHRs) (110, 186). In other words, community HIE may feature a wide 

breadth of connectivity but with some tradeoff in the form of lower functionality and usability. 

Rather than participate in a community HIE, hospitals might develop enterprise HIE. Because it 

features fewer stakeholders and a clear “lead” organization, enterprise HIEs have greater ability 

to customize to best meet the needs of participants;(116) however, it is unlikely that enterprise 

HIE can be expanded to provide the breadth of coverage that community HIE offers. In Vest et 

al.’s interviews, respondents often viewed enterprise HIE as more central to their core strategy 

than community HIE because it created or reinforced strategic links to key partners (5). 

If I therefore conceptualize community HIE as broad connectivity with limited 

functionality, and enterprise HIE as limited connectivity with deep functionality, the value of 

each approach should be determined by the structure of the hospital’s patient sharing network 
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(i.e., the providers with which the hospital needs to be 

able to exchange patient information) (187). Depending on 

their size, market position and other factors, hospitals may 

have dispersed patient sharing networks such that they 

share a small proportion of their patients with many 

partners or they may have more concentrated networks in 

which the majority of their patients are shared with a few 

key partners. When choosing among HIE approaches, the 

appeal of community HIE is likely to be higher for hospitals 

with more dispersed patient sharing relationships and the 

appeal of enterprise HIE is likely to be higher for hospitals 

with more concentrated relationships. For instance, in 

Figure 9, a simple network schematic, hospitals A and C both have relatively dispersed networks 

in that they share patients with six partners (and, for illustrative purposes, assume they share 

equal numbers of patients with each partner). For these hospitals, community HIE may be more 

attractive than enterprise HIE because it promises to provide a single link to each of their 

partners, whereas engaging in enterprise HIE with each of these partners may be costly. In 

contrast, hospitals B and D have relatively concentrated networks made up of one and two 

partners, respectively. For these hospitals, enterprise HIE may be more attractive than 

community HIE because it could easily cover their few partners and is likely to be more 

customized and to feature greater functionality.  

The apparent value of each HIE approach is not the only consideration driving hospitals’ 

decisions about which type of HIE approach to select. Evidence suggests that higher levels of 

Figure 9. Simple Network Schematic 
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competition and strategic interests in forming partnerships may inform engagement in HIE, and 

concerns about this strategic interest imply that providers may be actively slowing the sharing of 

information with some partners (136, 140, 153, 188). While it is possible that these factors are 

sufficiently compelling to drive HIE decision making, when hospitals are deciding which 

approach to HIE to select, I hypothesize that hospitals will be responsive to their network 

structure and need for patient information. 

Hypothesis 1a: Hospitals with dispersed patient sharing networks are more likely to adopt 

community HIE than enterprise HIE relative to hospitals with more concentrated networks, 

which are more likely to select enterprise HIE. 

While the hospital’s individual network may influence their HIE approach, the decision 

to select a specific approach to HIE is also a social process likely influenced by peers (189, 190). 

The importance of the social aspect of HIE adoption is particularly high because one hospital’s 

choice of HIE approach has implications for the value each HIE approach offers to other 

hospitals with which a given hospital shares patients, collaborates or competes (191). Recent 

research points towards the influence of peers’ adoption of HIE on their neighbors in the network 

and finds that the adoption of certain HIE vendors does influence hospital choice of HIE (192). It 

is therefore likely that, overall, the collective hospital network will work to influence members of 

the network to adopt the type of HIE that is in the interest of most members. Returning to Figure 

9, hospitals in the top network may exert pressure on one another to join a community HIE 

because this form can facilitate electronic connections between the many hospitals sharing 

patients with one another; while hospitals in the bottom network will exert pressure to 

collaborate in enterprise HIE with key partners. 
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Hypothesis 1b: Hospitals in networks with dispersed overall patient sharing networks are more 

likely to adopt community HIE than enterprise HIE, relative to hospitals in networks in more 

concentrated overall patient sharing networks. 

Contextual Factors 

While individual hospitals may experience normative and social pressure from their surrounding 

network, it is not obvious how effective that pressure will be. An influential idea in network 

research is that some network structures influence the degree of social capital in a group and 

therefore the group’s ability to influence member behavior. One of the structures commonly 

associated with a greater ability to exert pressure on individuals is the Network Density of the 

group (193, 194). Density is defined as the extent to which all actors are tied to one another, and 

reflects the extent of interconnectivity and intertwined sharing of information. Note that while in 

Figure 9, the extent of overall network dispersion and density are identical, in practice that would 

only be true if hospitals shared an identical proportion of their patients with each of their partner 

hospitals, which is very unlikely. In networks with higher density, group norms are more easily 

communicated and shared, and the ability of the group to exert collective action is higher 

because everyone knows everyone else and therefore non-normative actions are easily observed 

and reported throughout the network (195-197). Therefore, the pressure to adopt the approach to 

HIE that matches the information needs of the overall network may be greatest in networks with 

high density. 

Hypothesis 2: The association between network-level concentration and hospital adoption of 

community HIE in dispersed networks and enterprise HIE in concentrated networks is stronger 

in networks with low density.  
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Competition Between Hospitals in the network is also likely to play a role in the extent to 

which the overall network influences hospitals choice of HIE. Hospitals in highly competitive 

environments may be less interested in cooperating with their competitors than hospitals in 

markets that feature lower overall competition. As a result, pressure from their competitors to 

join an enterprise HIE or community HIE may not be effective at swaying hospital decisions. 

Instead, hospitals in these markets may be primarily self-interested so that they select the HIE 

that appears most useful to their network to achieve a competitive advantage, rather than acting 

in the best interest of hospitals with which they are closely competitive. This may be one reason 

why prior research has found that competition is associated with lower rates of engagement in 

community HIE (180, 188).  

Hypothesis 3: The association between network-level concentration and hospital adoption of 

community HIE in dispersed networks and enterprise HIE in concentrated networks is stronger 

in networks with low competition. 

Reinforcing and Conflicting Collective Networks  

The role that the collective network plays in influencing hospitals decision to engage in HIE 

depends on the extent of similarity between the structure of the hospital’s network and the 

collective network. The influence of the collective network may alter the focal hospital’s 

approach to HIE by reinforcing their initial motivation to select an approach to HIE (“reinforced 

fit”). For instance, hospitals in a dispersed network, such as the top network in Figure 9, are 

likely to view participating in a community HIE system as more appealing than engaging in 

multiple enterprise HIEs. For hospital A in this Figure, which has a dispersed network that 

matches the overall network, their preference for community HIE may be reinforced by their 

network partners because the extent to which community HIE fits their network is reinforced by 
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the collective network level. Similarly, hospitals in more concentrated overall networks may feel 

additional pressure to engage in enterprise HIE to connect with partners if their partners are 

interested in developing enterprise HIE capabilities because not doing so may lead to being 

excluded from those developing networks. Hospitals may also develop enterprise HIE if their 

competitors have begun to develop that capability to avoid losing referrals to a system with 

better information systems. For hospital D, the preferences of the collective network are likely to 

reinforce the hospital’s preferences based on its shared patient network—but in contrast to 

hospital A for which both the hospital and collective network dispersion reinforce motivation to 

engage in a community HIE, in this instance both networks motivate engagement in enterprise 

HIE. 

Hypothesis 4a: Hospitals with dispersed networks that are embedded in reinforcing (i.e. 

dispersed) collective networks are more likely to engage in community HIE than hospitals with 

concentrated networks overall. 

Hypothesis 4b: Hospitals with concentrated networks that are embedded in reinforcing (i.e. 

concentrated) collective networks are more likely to engage in enterprise HIE than hospitals 

with concentrated networks overall. 

In contrast, for some hospitals the collective network of partner hospitals creates pressure to 

adopt an HIE approach that conflicts with what is preferred by the individual hospital 

(“conflicting fit”). For instance, hospitals may feel pressured to participate in a community HIE 

by normative forces—because of their grassroots, local, community-oriented mission, 

community HIEs are viewed as a societal good and hospitals that choose not to participate may 

be viewed as shirking their responsibility to the community of patients and providers (105, 180). 
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In consequence, hospitals with focused patient sharing networks (that would lead them to pursue 

enterprise HIE) may participate in a community HIE due to pressure from their collaborators to 

join the community HIE. Returning to the example in Figure 9, Hospital B is likely to prefer 

enterprise HIE because it has only two ties that can easily be covered by an enterprise system; 

however, the dispersed nature of the collective network may make community HIE more 

appealing to its partners, and they may exert pressure on Hospital B to ‘go along’ with the 

community HIE for their benefit and the benefit of shared patients. Similarly, hospital C is likely 

to prefer a community HIE; however, each of its partners may prefer adopting enterprise HIE 

because their networks--and the collective network as a whole—are concentrated and therefore 

enterprise HIE better fits their information needs. As a result, hospital C in network 2 may 

experience pressure to adopt an enterprise system even if that system covers only part of its 

direct patient sharing network. In sum, the collective network in which a hospital is embedded is 

likely to influence their choice of HIE approach, but it is not clear if this mechanism will be 

more or less effective at reinforcing or contradicting motivation from the hospital’s individual 

network. 

Hypothesis 4c: Hospitals with dispersed networks that are embedded in conflicting (i.e. 

concentrated) collective networks are less likely to engage in community HIE than hospitals with 

dispersed networks overall.  

Hypothesis 4d: Hospitals with concentrated networks that are embedded in conflicting (i.e. 

dispersed) collective networks are less likely to engage in enterprise HIE than hospitals with 

concentrated networks overall.  

DATA & METHODS 

Hospital Network of Shared Patients 
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As described in Chapter 2, I used publicly available data on hospital’s shared Medicare patients 

to define the inter-hospital network of shared patients in 2014. The final network includes 4,602 

hospitals with 91,120 patient sharing links. In order to calculate the network features of each 

hospital, I identified 150 hospital networks using the Walktrap algorithm further described in 

Chapter 2.  

Independent Variables 

Hospital Direct Patient Sharing Concentration 

Network concentration measures the extent to which a hospital has a broad or limited set of 

exchange partners. To define network concentration, I first calculated the number of patients the 

hospital shares with each partner hospital in their network and divided by the total number of 

patients the hospital shares with other hospitals in their network. I then took the sum of squares, 

generating a measure similar to the Herfindahl-Hirschman Index (HHI) commonly used to 

measure the competition of a market. This produced a zero to one scale on which a hospital that 

shared all patients with a single other hospital would be a one while a hospital with many 

hospital partners each comprising a small portion of their total patient population would be closer 

to zero.  

To facilitate interpretation of results, and because the distribution of patient sharing 

concentration was irregular and the relationship between concentration and HIE choice may not 

be linear, I sorted hospitals into three equal-sized tertiles made up of hospitals with dispersed 

networks, moderately concentrated networks, and highly concentrated networks. 

Collective Network Patient Sharing Concentration 

As with measuring an individual hospital’s network concentration, I measured the concentration 

of the collective hospital network by first calculating the fraction of the network accounted for 

by each tie between hospitals—with the denominator set to the number of patients shared in the 
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entire network—and took the sum of the squares. In a concentrated network with few strong ties, 

this number would approach one while in dispersed networks with many weaker ties this number 

would be closer to zero. Like the measure for hospital concentration, I divided this measure into 

tertiles. 

Dependent Variables: Choice of HIE Approach 

I sought to measure whether hospitals that were engaged in HIE chose to participate in 

community or enterprise HIE using the 2014 AHA IT Supplement Survey. Hospitals were 

defined as participating in community HIE if they reported actively sharing data in a regional 

HIE and indicated that they shared one of five types of data with outside providers. I defined all 

hospitals that responded to these two questions about HIE but did not indicate actively 

participating in a community HIE as participating in enterprise HIE. By doing so, in the main 

analysis I consider any hospital engaged in community HIE and some other form of HIE as 

engaged in community HIE because this choice indicates an open, pro-social approach to HIE. 

Meanwhile, I define engagement in enterprise HIE as engagement in *only* enterprise HIE 

because this indicates a limited and more strategic approach to HIE.  

However, it is possible that hospitals that did not participate in community HIE also did 

not have an enterprise HIE and instead engaged in HIE through their EHR vendor. I created an 

alternative measure of HIE choice to account for this possibility and included it in a robustness 

test: I modified the definition of enterprise HIE in my primary HIE choice variable to exclude 

hospitals that used their EHR vendor as their primary HIE vendor.  

Finally, the choice between community and enterprise HIE is only relevant in places 

where a community HIE exists. Since some hospitals are located in areas where no community 

HIE is active, I created an additional measure of HIE choice that excluded hospitals located in 
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networks where no hospitals participated in a community HIE, since these hospitals could not 

have chosen a community HIE. I limited this variable to secondary analyses because the process 

by which a community HIE becomes available in a network may depend on hospital interest, 

competitive forces and other factors analyzed here—in other words, availability might be 

considered a part of the choice to participate in community HIE. 

Contextual Factors 

Network Density 

I measured the network density for each hospital network by counting the number of ties 

between networks and dividing by the total possible ties between hospitals in the network. This 

creates a 0-1, normalized scale where a very sparse network is close to zero and a very dense 

network approaches 1. Like the measures of concentration, I divided this measure into tertiles for 

easier interpretation. 

Network Competition 

To measure the level of competition in each hospital network, I generated a HHI measure of 

market share based on the number of hospital beds in each hospital in the market. This measure 

is commonly used to measure the extent to which a market resembles conditions of perfect 

competition (at very low levels) or is a monopoly (when the HHI reaches 1). The HHI is 

empirically distinct from the measures of network concentration described above because it does 

not take into account links between patients but only considers the aggregate number of hospital 

beds. As a result, a network that is very competitive (i.e. has many equally sized hospitals) could 

be very concentrated if each of those hospitals only shares patients with a small number of other 

hospitals. I also divided this measure into low, medium and high tertiles. 
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Control Variables 

I included two network-level measures intended to account for the differing size of the identified 

networks: the number of hospitals in each network and the number of shared patients in each 

network. I included these because a network with more hospitals and equal concentration per 

hospital would appear to be less concentrated in my measure of network concentration and 

networks with fewer patients may on average appear more concentrated. I also controlled for 

hospital-level characteristics that might be related to HIE participation and network 

characteristics including the total number of physicians with privileges at each hospital (for 

which I replaced missing data with the predicted value generated from regressing the total 

number of physicians on hospital size), general acute care, critical access, teaching status (major 

or minor teaching hospital), system membership, network membership, rural or urban location, 

size (small, medium or large), ownership (for-profit omitted, government-owned, not for profit). 

I also included variables associated with the county the hospital is located in, including measures 

of the supply of healthcare (Physicians per 1000 residents, PCPs per 1000, Specialists per 1000, 

and Hospital Beds per 1000). Finally, I controlled for other area demographics: income per 

capita, unemployment rate, population density, proportion female, proportion over 65, proportion 

white, and proportion without high school. 

Analysis 

I defined a sample of hospitals that indicated on the AHA IT survey that they shared information 

without outside organizations and were identified in the network data. I then compared the 

analytic sample to the overall population of hospitals in key demographic characteristics to 

assess the extent to which the sample resembled the population. Within the analytic sample, I 

examined the distribution of the concentration measures and identified tertiles in histograms to 

provide a sense of the empirical effect of my categorization of hospitals into tertiles. Next, I 
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produced correlation matrices between key variables of interest first using Pearson’s correlation 

and then using Spearman’s rank correlation to assess the extent to which these variables are 

related. I then categorized hospitals by their patient sharing network and choice of HIE approach 

to identify fit, reinforced fit and conflicted fit. Table 12 displays the resulting categories of 

hospitals with the HIE that ‘fits’ the hospital identified by the hospital-level network 

concentration and the presence of reinforcing or conflicting fit determined by whether or not the 

network-level concentration matches the hospital level. 

Because the outcome of interest is a binary choice for hospitals, I used multivariate 

logistic regression models with clustered standard errors to account for the association between, 

and shared network-level properties of, hospitals in the same network. To address hypotheses 1a 

and 1b, I predicted hospital participation in a community HIE as opposed to an enterprise HIE 

based on whether the hospital had a dispersed, moderately concentrated or concentrated network 

of shared patients and was in a dispersed, moderately concentrated or concentrated collective 

network. I then generated predicted probabilities and tested if these probabilities differed. I 

would find evidence supporting hypothesis 1a if overall hospitals with dispersed networks were 

more likely to engage in community HIE than enterprise HIE, relative to hospitals with 

concentrated networks. I would find evidence for hypothesis 1b if overall hospitals in a more 

dispersed network were more likely to engage in community HIE than enterprise HIE, relative to 

hospitals in a concentrated network. To address hypotheses 2 and 3 about whether network and 

market factors increase the influence of collective network concentration on HIE choice, I 

interacted the whole network concentration with density and competition. I would find evidence 

that social factors are guiding hospital decisions if the relationship between the whole network 

concentration and HIE choice was stronger in networks with high network density and weaker in 
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networks with higher competition. To facilitate interpretation of results, I report these findings 

by comparing predicted probabilities of participating in a community HIE as opposed to 

enterprise HIE over the range of network concentration at high and low density and competition. 

To address hypotheses 4a-d, I interacted the hospital-level network concentration variable 

with the collective network concentration variable. I generated adjusted probabilities for each 

category and tested whether these probabilities were statistically significantly different. To test 

hypothesis 4a and 4b, that the network can reinforce hospital preferences, I compared the extent 

to which hospitals that both have and are in a dispersed network are more likely to participate in 

a community HIE than the pooled average of all hospitals with dispersed network, regardless of 

whole network concentration, and I compared hospitals that both have and are in a concentrated 

network to the pooled average of all hospitals that have a concentrated network regardless of the 

collective network concentration. I next investigated hypothesis 4c and 4d, that the network can 

contradict hospital preferences and thereby reduce the extent to which hospitals engage in an 

HIE that fits their individual network.  To do so, I tested whether hospitals with a dispersed 

network that are in concentrated collective networks are less likely to engage in community HIE 

than the pooled average of all hospitals with dispersed collective networks. Similarly, I tested 

whether hospitals with a concentrated network that are in dispersed collective networks are less 

likely to engage in enterprise HIE than the pooled average of hospitals that have more 

concentrated collective networks. 
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Table 12. Relationship between Hospital- and Network-level Network Concentration and 

HIE Fit 

  Network-Level Concentration 

  Pooled Dispersed Concentrated 

Hospital-

Level 

Concentration 

Pooled 

(a) 

Pooled network, 

pooled hospitals 

hospital 

(b) 

Network level supports 

community, all 

hospitals pooled 

(c) 

Network level supports 

enterprise, all hospitals 

pooled 

Dispersed 

(d) 

Hospital 

supports 

community, all 

networks pooled 

(e) 

Hospital-level and 

network level support 

community HIE: 

Reinforced Community 

Fit 

(f) 

Hospital-level supports 

community, network 

supports enterprise HIE: 

Conflicted Community Fit 

Concentrated 

(g) 

Hospital 

supports 

enterprise, all 

networks pooled 

(h) 

Hospital-level supports 

enterprise, network 

supports community 

HIE: Conflicted 

Enterprise Fit 

(i) 

Hospital and network 

levels support enterprise 

HIE: Reinforced 

Enterprise Fit 

Hypothesis 1a: cell d > cell g 

Hypothesis 1b: cell b > cell c 

Hypothesis 4a: cell e > cell d 

Hypothesis 4b: cell f < cell d 

Hypothesis 4c: cell i > cell g 

Hypothesis 4d: cell h < cell g 

 

In robustness tests, I re-examined the first two hypotheses in four different ways: First, I 

redefined enterprise HIE to exclude hospitals that report using their EHR vendor for their HIE 

solution and reran the initial model with this dependent variable. Second, I limited the sample to 

only hospitals in areas where community HIE is available. Third, I redefined the hospital-level 

and community-level networks using a linear concentration measure, and fourth, I used a binary 

measure split at the medians rather than tertiles.  

I consider relationships statistically significant when the likelihood of observing these 

relationships under the null hypothesis is less than 10 percent and report p-values in the text. 

RESULTS 
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Descriptive Statistics 

Out of a total of 4,632 hospitals in the population, 2,764 hospitals responded to the AHA IT 

supplement and 2,092 indicated that they had some form of HIE. Nine of these hospitals were 

not identified in the network data, leaving a final analytic sample of 2,083 hospitals in 141 

hospital networks nationwide. Relative to the hospitals not included in the final sample, included 

hospitals were more likely to be large hospitals, to be teaching hospitals and to have lower 

network concentration (Table 13). Despite statistically significant differences in many measures, 

the practical difference between hospitals in and out of the sample in concentration, density, and 

competition, as well as many control variables, was quite small. 
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Table 13. Descriptive Statistics Relative to Population 

  

In 

Sample 

(n=2,083) 

Out of 

Sample 

(n=2,551) 

p-value 

Hospital-Level 

Concentration 
0.272 0.301 p<0.0001 

Network-Level 

Concentration 
0.036 0.038 p=0.1578 

Network Density 36.40% 36.10% p=0.3609 

Hospital Market Share 11.60% 9.10% p<0.0001 

Market Concentration 0.141 0.145 p=0.074 

# of Hospitals in 

Network 
43.4 46 p=0.0001 

# of Shared Patients in 

Network 
517,448 428,075 p<0.0001 

Hospital Taype    

General Acute Care 98.2% 94.0% p<0.0001 

Critical Access 32.6% 23.0% p<0.0001 

Major Teaching 7.9% 3.0% p<0.0001 

Minor Teaching 27.5% 19.2% p<0.0001 

System Member 64.6% 58.2% p<0.0001 

Network Member 40.0% 29.3% p<0.0001 

Urban 64.2% 55.5% p<0.0001 

Size    

Small 40.8% 60.7% p<0.0001 

Medium 45.2% 33.0% p<0.0001 

Large 14.0% 6.3% p<0.0001 

Ownership    

Government-owned 19.7% 23.6% p=0.0015 

Not for Profit 68.5% 52.0% p<0.0001 

For Profit 11.8% 24.4% p<0.0001 

Healthcare Supply    

Physicians per 1000 2.44 2.04 p<0.0001 

PCPs per 1000 0.73 0.67 p<0.0001 

Specialists per 1000 0.79 0.64 p<0.0001 

Hospital Beds per 1000 3.74 3.77 p=0.81 

Area Demographics    

Income Per Capita 43,487 42,680 p=0.0285 

Unemployment Rate 6.1% 6.3% p=0.0004 

Population Density 8.2% 9.0% p=0.394 

Proportion Female 50.5% 50.3% p=0.004 

Proportion over 65 15.8% 16.2% p=0.0105 

Proportion White 78.9% 76.9% p=0.0001 

Proportion without High 

School 
13.4% 14.8% p<0.0001 

* n=2513 for Network Measures 
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The distribution of patient sharing concentration is right skewed, with most hospitals exhibiting 

relatively low concentration and a few hospitals exhibiting much higher concentration (Figure 

10). Despite this skew, the data is relatively continuous: there are few large break points. The 

distribution of network patient sharing concentration is even more dramatically skewed, with 

most networks exhibiting low concentration and a few networks exhibiting much higher 

concentration (Figure 11). 

Figure 10. Distribution of Hospital-Level Patient Sharing Concentration
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Figure 11. Distribution of Network-Level Patient Sharing Concentration 

 
 

I next examined the bivariate correlation between key variables of interest (Tables 14a and 14b. I 

found relatively weak correlations between hospital-level concentration, network-level 

concentration, and density, and modest relationships between market concentration and each of 

these variables. The number of hospitals and patients in each network was moderately correlated 

with several variables, indicating the need to include them in regression models to ensure results 

are not biased simply by the size of the network. When I repeated this correlation matrix using 

Spearman’s rank correlation I found modestly higher correlations reinforcing my choice to use a 

tertile-based measure of network characteristics rather than a linear approach. 
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Table 14a. Correlation Between Key Network Independent Variables 

  

Hosp 

Conc. 

Net 

Conc. 

Net 

Density 

Hosp 

Mkt 

Share 

Mkt 

Comp. 
# Hosps 

# 

Patients 

Hospital-Level Concentration 1       

Network-Level Concentration 0.1633 1      

Network Density 0.0126 0.1348 1     

Hospital Market Share 0.0607 0.1107 0.2193 1    

Market Competition -0.261 -0.2008 -0.3705 -0.5382 1   

# of Hospitals in Network -0.3016 -0.2071 -0.5498 -0.2601 0.5738 1  

# of Shared Patients in Network -0.185 -0.132 -0.211 -0.2219 0.457 0.7391 1 

  

Table 14b. Correlation Between Key Network Independent Variables: 

Spearman   

  

Hosp 

Conc. 

Net 

Conc. 

Net 

Density 

Hosp 

Mkt 

Share 

Mkt 

Comp. 
# Hosps 

# 

Patients 

Hospital-Level Concentration 1       

Network-Level Concentration 0.1835 1      

Network Density -0.0162 0.1058 1     

Hospital Market Share -0.0282 0.0416 0.1588 1    

Market Concentration -0.2686 -0.1899 -0.3417 -0.3499 1   

# of Hospitals in Network -0.3507 -0.3084 -0.5729 -0.2244 0.655 1  

# of Shared Patients in Network -0.2841 -0.3371 -0.3394 -0.1965  0.597 0.8454 1 

Descriptively, 68% of hospitals that engaged in HIE participated in community HIE, while 32% 

participated in enterprise HIE only. 73% of hospitals with dispersed networks participated in 

community HIE while 63% of hospitals with concentrated networks did so (Table 15). Very 

similar sorting is observed for hospitals in dispersed and concentrated collective networks.  

Table 15. Hospital HIE Choice by the Patient Sharing Network Concentration 

HIE Choice by Hospital Network Approach Enterprise Community 

     Dispersed 204 (27%) 552 (73%) 

     Moderately Concentrated 206 (32%) 432 (68%) 

     Concentrated 258 (37%) 431 (63%) 

 

HIE Choice by Whole Network Approach Enterprise Community 

     Dispersed  185 (27%) 510 (73%) 

     Moderately Concentrated 226 (33%) 468 (67%) 

     Concentrated 257 (37%) 437 (63%) 
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Adjusted Associations with Community HIE Approach 

In regression models accounting for all hospitals in the sample, I observed that hospitals with 

dispersed networks were more likely to engage in community HIE relative to hospitals with 

concentrated networks (71.5% versus 64.8%; p=0.052 Table 16). Hospitals in dispersed whole 

networks were also more likely to engage in community HIE than hospitals in concentrated 

networks (73.5% versus 63.7%, p=0.027). These findings support hypothesis 1a and 1b and are 

evidence that hospitals are selecting HIE strategies that match their patient networks and 

associated information needs.  

I next tested whether the influence of the collective network on HIE choice was 

moderated by contextual factors using a related regression model (Table 17). I found that 77.1% 

of hospitals in dispersed networks with high density participated in a community HIE (with the 

complement engaging in enterprise HIE only) while only 58.6% of hospitals in concentrated 

network with high density participated in a community HIE, a difference of 18.5 percentage 

points (p=0.017). In contrast, 65.7% of hospitals in dispersed networks with low density 

participated in a community HIE while 70% of hospitals in concentrated networks with low 

density participated in community HIE (p=0.58). These results support hypothesis 2, that the 

influence of network concentration is greater at high density, where social norms are stronger.  

When I investigated the mediating effect of competition, I observed that 76.6% of 

hospitals in dispersed networks with high competition participated in community HIE (again 

with the complement engaging in enterprise HIE) while only 57.8% of hospitals in concentrated 

networks with high competition did so (p=0.007). In contrast, 65.4% of hospitals in dispersed 

networks with low competition participated in a community HIE and 66.7% of hospitals in 

concentrated networks with low competition participated in community HIE (p=0.8791). This 

finding provides evidence against hypothesis 3, which argued that hospitals would be less 
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responsive to pressure from the network of peers in highly competitive networks. Instead, it 

points towards hospital HIE decisions being more sensitive to pressure from the network of peers 

in networks with high competition. 

Table 16. Adjusted Marginal Probability of Engagement in Community HIE 

  Hospital-Level Concentration 

  Dispersed Concentrated 

 Pooled 
(a) 

71.5% 

(b) 

64.8 

   

  Network-Level Concentration 
  Dispersed Concentrated 

 Pooled 
(c) 

73.5% 

(d) 

63.7% 

 

Density 

Low 
(e) 

65.7% 

(f) 

70.4% 

High 
(g) 

77.1% 

(h) 

58.6 

Competition 

Low 
(i) 

65.4% 

(j) 

66.7% 

High 
(k) 

76.6% 

(l) 

57.8% 

Hypothesis 1a: cell a > cell b, supported p=0.052 

Hypothesis 1b: cell c > cell d, supported p=0.027 

Hypothesis 2: cell g - cell h > cell e- cell f, supported=0.042 

Hypothesis 3: cell k - cell h > cell I – cell j, marginal support, p=0.103 

 

Finally, I investigated how the whole network was influencing hospitals’ approach to HIE. When 

I tested hypothesis 4a, I did not find support for the hypothesis that hospitals with dispersed 

networks were more likely to engage in community HIE when embedded in dispersed networks: 

hospitals with dispersed networks engaged in community HIE 74% of the time when in 

reinforced fit compared to 71.5% that selected that approach based on hospital fit only. However, 

I did find support for hypothesis 4b, that hospitals with concentrated networks embedded in 

concentrated networks were more likely to select enterprise HIE: 42.7% of hospitals engaged in 
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enterprise HIE when they were in reinforced fit, whereas only 35.2% did so when they were in 

hospital-only fit (p=0.053).  

When I tested hypotheses 4c and 4d, that the collective network could work to contradict 

hospital-only fit, I again found support only for hospitals with concentrated networks. When I 

tested hypothesis 4c, I found that overall 71.5% of hospitals with dispersed networks adopted 

community HIE while 70.2% of hospitals in conflicting fit adopted the fitting HIE (p=0.677). In 

contrast, when I tested hypothesis 4d, I found that 35.2% of hospitals engaged in enterprise HIE 

overall while only 28.8% engaged in enterprise HIE when in conflicted fit (p=0.065). 

Table 17. Adjusted Marginal Probability of Engagement in Community HIE 
  Network-Level Concentration 

  Pooled Dispersed Concentrated 

Hospital-Level 

Concentration 

Dispersed 

(a) 

Hospital supports 

community, all 

networks pooled: 

71.5% 

(b) 

Hospital-level and 

network level support 

community HIE: 

Reinforced Community 

Fit: 

74.0% 

(c) 

Hospital-level supports 

community, network 

supports enterprise 

HIE: Conflicted 

Community Fit: 

70. 2% 

Concentrated 

(d) 

Hospital supports 

enterprise, all 

networks pooled: 

64.8% 

(e) 

Hospital-level supports 

enterprise, network 

supports community 

HIE: Conflicted 

Enterprise Fit: 

71.2% 

(f) 

Hospital and network 

levels support 

enterprise HIE: 

Reinforced Enterprise 

Fit: 

57.3% 

Hypothesis 2a: cell b > cell a, not supported p=0.37 

Hypothesis 2b: cell f > cell d, supported p=0.053 

Hypothesis 2c: cell c < cell a, not supported p=0.677 

Hypothesis 2d: cell e < cell a, supported p=0.065 

 

I conducted four robustness checks to evaluate the relationship between network 

concentration and three closely related HIE choices. My findings were robust to excluding 

hospitals that use their EHR vendor as their HIE vendor from my definition of enterprise HIE 

(Table A1, column 1). I also found effects for hospital and network concentration consistent with 
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my main findings when I limited the sample to hospitals that are in networks in which a 

community HIE is available (Table A1, column 2).  

When I replicated the first two hypotheses using linear or median-divided measures of 

hospital and network concentration, I found that higher levels of both hospital-level and network-

level concentration were associated with a lower likelihood of selecting community HIE 

consistent with my hypotheses (OR=0.38, p=0.015 for hospital concentration and OR=0.02, 

p=0.04 for network concentration). When I used a median split I found that hospital-level 

concentration did not influence HIE selection but that network-level concentration was 

associated with fit (OR=0.80, p=0.19 for hospital concentration and OR=0.64, p=0.029 for 

network concentration). This suggests that hospitals with networks on the margin were less likely 

to select HIE based on the form that was slightly more appealing for their network and the 

network was more influential further from the median. 

SUPPLEMENTARY ANALYSIS: NETWORK STRUCTURE MODERATES HIE 

EFFECTS 

Embedded in the logic of this study is the idea that hospitals that adopt an HIE approach that 

matches their patient sharing network should produce better patient care quality. That is, for 

hospitals with a concentrated network, using an enterprise HIE system will provide greater 

benefits than using a community HIE because it can provide information for a large proportion 

of patients in a more customized and useable way, while for hospitals with a dispersed network, 

using a community HIE will provide greater benefits than using an enterprise HIE because it will 

cover a larger proportion of all patients. It is also possible that these same relationships may hold 

at the collective network level—that is, for hospitals with identical patient sharing networks, the 

hospitals in highly concentrated networks may benefit more from adoption of enterprise HIE 

while for hospitals in dispersed networks community HIE may provide more overall information. 
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This may occur because more partner hospitals in dispersed networks are likely to select the 

community HIE approach so that the community HIE offers more successful connections, while 

enterprise HIE may be easier to establish with key partners if those partners also have 

concentrated networks. Therefore, I conducted a supplementary analysis to investigate whether 

fit between HIE approach and the hospital-level and network-level concentration were associated 

with greater patient care quality. 

To assess these relationships, I used three measures intended to capture diverse and 

important dimensions of hospital quality: hospital efficiency, hospital outcomes and hospital 

processes influenced by HIE. I measured hospital efficiency using Medicare Spending Per 

Beneficiary. Using an HIE approach that fits the hospital’s information needs should result in 

fewer redundant tests and costly errors of omission relative to HIE that does not fit the hospital’s 

information needs and again this may apply both to their direct partners and the accumulation of 

information in the network (126, 127, 164). I used hospital 30-day all cause readmission rates to 

capture hospital outcomes that may be sensitive to HIE. HIE should allow providers outside the 

hospital where the initial admission occurred access to better information, increasing the quality 

of follow-up outpatient care and reducing the likelihood of complications leading to 

readmissions (164). It should also provide clinicians at other hospitals with the information 

necessary to make proper readmission decisions—and potentially avoid unnecessary 

readmissions. To measure hospital processes, I focused on the rate of Mammogram follow-up. 

Hospitals with well-functioning HIE, both in terms of their information sharing with key partners 

and, in turn, their partners’ sharing with their partners, should have easier access to the 

mammogram results from other locations, increasing the likelihood that proper follow-up action 

will be taken.   
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Data and Methods 

I measured the quality of patient care provided by hospitals using publicly available data from 

Medicare’s Hospital Compare program. The MSPB is derived from data created from hospital 

data from January 1, 2014-December 31, 2014 and is adjusted to account for differences in 

prices by geography, add-on payments to hospitals, for beneficiary age and severity of illness. 

The readmission measure was created from hospital data from July 1, 2013-June 30 2014 and is 

similarly adjusted for patient characteristics. The mammography follow-up rate is calculated 

from data gathered July 1, 2013-June 30, 2014. 

I created three linear regression models, one each with MSPB, readmissions, and 

mammogram follow up rate as outcomes, and predicted the level of each outcome based on the 

interaction between the hospital’s choice of HIE approach and the hospital’s patient network 

concentration as well as the collective network’s concentration, controlling for hospital, market 

and network characteristics described above. I then calculated marginal effects for hospital 

choice of community HIE relative to enterprise HIE with and in dispersed and concentrated 

networks. I would find support for the hypothesis that good fit between the hospital’s network 

and HIE leads to improved performance if the effect of using a community HIE (relative to using 

an enterprise HIE) for hospitals with dispersed networks was negative for MSPB and 

readmissions and positive for Mammogram follow-up rate, such that hospitals with more 

dispersed networks achieved greater benefits from using community HIE than enterprise. I 

would find further support if the reverse were true: that using a community HIE resulted in lower 

hospital performance for hospitals with concentrated networks. In total, I would find support for 

the hypothesis that good fit between the collective network of shared patients and the hospital’s 

choice of HIE is associated with improved outcomes if the effect of using a community HIE was 
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associated with improved outcomes for hospitals in dispersed networks and worse outcomes for 

hospitals in concentrated networks. 

Results 

Costs. When I examined the association between HIE, hospital and network concentration and 

patient care costs (Table 18), I observed only one statistically significant relationship: hospitals 

with a dispersed network that participated in community HIE had 17.5% of a standard deviation 

higher MSPB (p=0.010).  

Readmissions. When I tested the relationship with readmissions, hospitals with moderately 

concentrated networks that participated in community HIE had higher readmissions (29.0% of a 

SD higher). Meanwhile, hospitals in dispersed networks that participated in community HIE (i.e. 

hospitals engaged in community HIE when in fit with the overall network) and hospitals in 

moderately concentrated networks that engaged in community HIE both had higher readmissions 

(16.1% (p=0.084) of an SD higher for hospitals in dispersed networks and 16.5% of a SD higher 

for hospital in moderate networks (p=0.029).  

Mammography Follow-Up. Hospitals with dispersed networks that engaged in community HIE 

had 11.9% (p=0.088) of a standard deviation higher mammography follow-up while hospitals 

with concentrated networks that participated in community HIE had 19.1% (p=0.036) of a 

standard deviation lower follow-up.  

In combination these findings provide mixed support for the idea that better HIE fit will 

result in improved performance, but generally point towards greater benefit from use of 

enterprise HIE than community HIE, even for hospitals with and in dispersed networks. 
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Table 18. Adjusted Marginal Estimates of Difference in Standardized Outcomes Between Hospitals 

Choosing Community HIE Over Enterprise HIE 

Hospital level 

MSPB 

(lower is 

beneficial) 

Readmissions 

(lower is 

beneficial) 

Mammography 

F/U 

(higher is 

beneficial) 

Concentrated Network (Expect less beneficial association) 8.9% 3.3% -4.4% 

Moderate Network -14.8% 29.0%*** 0.0% 

Dispersed Network (Expect more beneficial association) 17.5%*** 13.6% -9.8% 

Whole Network level    

Concentrated Network (Expect less beneficial association) 12.9% 12.0% -19.1%** 

Moderate Network -3.8% 16.5%** -10.8% 

Dispersed Network (Expect more beneficial association) 7.0% 16.1%* 11.9%* 

*** p<0.01, ** p<0.05, * p<0.1    

 

DISCUSSION 

In this chapter, I investigated the link between the structure of hospital patient sharing networks 

and the approach to health information exchange that they chose to adopt. In an additional 

analysis I also explored the resulting impact of their choice on patient care. Consistent with the 

hypothesis that hospitals would prefer an HIE approach that ‘fit’ their patient sharing network, I 

found that hospitals with more concentrated patient sharing networks were more likely to engage 

in enterprise HIE rather than community HIE relative to hospitals with more dispersed networks. 

Further, individual hospital choices were also sensitive to the concentration of the collective 

hospital network in which they are embedded. In particular, I found that hospitals with 

concentrated networks could be influenced by the network either through reinforcing fit (when 

the surrounding network was concentrated) or by conflicting fit (when the surrounding network 

was dispersed). Consistent with theories of social capital, the influence of the overall network on 

hospital HIE choice was strongest when network density was high—that is, when normative 

pressure from their peers was high. Contrary to my hypothesis, I also found that the influence of 

the overall network was strongest when competition was highest. Finally, in supplementary 

analyses, I did not find that hospitals engaging in the HIE approach that fit their network 
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structure experienced the highest benefits. Instead, I found mixed results that overall might be 

interpreted as indicating that enterprise HIE provides more benefit than does community HIE, 

regardless of network structures. 

The finding that hospitals pursue HIE solutions that fit their network of shared patients 

indicates that hospitals may be working to select HIE that appears the most beneficial for their 

performance, patients and peers. In particular, the ability of the collective network to influence 

hospitals to engage in community HIE, both when it reinforces the motivation from the 

hospital’s network and when it conflicts with that motivation, indicates that hospitals are 

responsive to the needs of their patients and to the needs of other hospitals in the community. 

This finding contrasts with concerns about strategic information blocking in which hospitals are 

perceived to work to avoid sharing information with others. As a result, the finding that hospitals 

are attempting to select an HIE approach that both meets their needs and reflects the networks’ 

needs supports the current policy approach of facilitating HIE in many forms. 

While hospitals appear responsive to the needs of their peers, the degree of responsivity 

depends on key characteristics of the network. As expected, I found that density was associated 

with a stronger influence of the collective network on the HIE approach that hospitals selected. 

This finding supports the idea that the network of hospitals is working to influence one another 

to select HIE that benefits the group. However, it also indicates that some networks may be less 

successful at influencing the behavior of member hospitals because low network density results 

in reduced normative pressure to adopt HIE that is of benefit to peers. I was surprised to find that 

competition also increased the strength of the association between the collective patient sharing 

network and hospital HIE decisions—I hypothesized that competition would have an insulating 

effect. This hypothesis was informed by prior work that indicated that competition dissuaded 
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hospitals from engaging in community HIE (188). It may be that competition increases the 

influence of the community through a mechanism similar to greater density—that is, the cost of 

acting outside the norm may be higher in areas of greater competition because the hospital’s 

partners may more easily work with a different hospital. Competition may also compel hospitals 

to attend more closely to the behavior of other hospitals in the local market in pursuit of a 

strategic advantage. 

While I did find that hospitals engaged in an HIE approach that fit their patient sharing 

pattern, when I attempted to identify the relationship between fit and outcomes I could not make 

strong conclusions. Instead, I found mixed results and several null associations between choice 

of HIE approach and outcomes at differing levels of network concentration. Still, five of the six 

statistically significant results showed that hospitals engaging in community HIE had worse 

outcomes than hospitals that engaged in enterprise HIE. One of these relationships occurred 

when hospitals had dispersed networks—that is, when I hypothesized that community HIE will 

provide the most benefit. This provides suggestive but inconclusive evidence that community 

HIE may not provide the same degree of patient benefit as other approaches to HIE. As 

discussed in Chapter 4, prior work investigating the benefit associated with HIE has primarily 

focused on community HIE and has generally found an inconsistent relationship between the 

adoption and patient outcomes (123, 124). The inconsistent results of this work may be due to 

particular features of community HIE and suggest that even if it covers more shared patients, the 

downsides to engaging in community HIE, such as worse functionality, may make the 

technology ineffective in its current form.  

Contribution to the Literature 



126 

 

Prior research on hospital engagement in HIE has primarily evaluated factors that influenced 

whether hospitals engaged in any approach to HIE, or defined engagement solely as participation 

in community HIE (130, 140, 153, 188). Studies on community HIE participation found that 

hospital competition and for-profit status was associated with lower participation,(140, 188) but 

that hospitals with larger market shares were more likely to participate (130). Another study 

showed that hospitals in larger systems were less likely to engage in any HIE (153). This chapter 

extends that work by focusing on the choice of HIE approach, not whether or not they chose to 

engage in HIE at all, and adds important nuance to the role that social factors, including 

competition, play in selecting an approach. As more hospitals begin to engage in HIE, it is 

increasingly important to better understand their choices, why they select specific approaches, 

and the benefit their choices have for their patients. However, this analysis does not generalize to 

explain the reasons why some hospitals have not yet decided to engage in any HIE approach. 

This work also extends prior work on social influence in networks to a new empirical 

context. When evaluating the approach to HIE adoption, it is essential to remember that 

technology adoption is a social process and that this social aspect may be particularly important 

for network technologies like HIE. In particular, hospitals with concentrated networks were most 

likely to be influenced by the degree of concentration of the whole network. These hospitals are 

likely to be smaller and less central to the network as a whole than hospitals with more dispersed 

networks, and literature on social networks has found that these types of actors are often 

influenced by their larger, more central peers (100, 198, 199). Similarly, network density 

functioned in a way consistent with the social network literature: it increased social pressure and 

therefore the influence of the needs of the community on individual hospital’s HIE decisions.  
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Finally, this chapter represents a contribution to the literature on inter-organization 

networks in healthcare. While prior work has explored the role of formal relationships in driving 

the diffusion of innovation and of organizational behavior,(20, 200) little work has explored the 

role of informal relationships such as the network of shared patients. I demonstrated that the 

structure of the hospital network of shared patients was an important factor associated with 

organizations’ strategic decisions. Similar network structures may guide other hospital decisions, 

such as mergers and acquisitions, expansions, choice of specialization and other behavior, and 

further work might explore these contexts. I also demonstrated the important role of network 

structure in influencing the ability of the organizations in the network to self-govern and support 

engagement in the approach to HIE that benefited most hospitals in the network. While the role 

of interconnectivity in enforcing norms is one of the best known ideas in network analysis,(201) 

it has not been deeply studied in the inter-organizational context (97). Therefore, the finding that 

density magnified the influence of the network indicates that a phenomenon conceptualized for 

networks of individuals is useful to understand networks of organizations.  

Limitations 

This chapter is subject to several limitations. First, I observe only the hospital network of shared 

patients. The structure of many other networks, most notably the physician network of shared 

patients and the physician-hospital network of shared patients is not observed. These networks 

are likely influential in the HIE decision-making process. While I control for the number of 

affiliated physicians, this represents only a rough measure of this network. However, it does 

indicate that the physician network is likely to act in a similar way to the hospital network—

hospitals with more affiliated physicians appear marginally more likely to engage in community 

HIE in my model. Future work might explore the role of ambulatory networks in more detail. 

Second, this study is associational and cross-sectional. Like most network analysis, I have 
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limited ability to develop a causal or exogenous model and I do not identify change over time. 

Part of this challenge is that, globally, hospital networks change slowly over time, such that an 

analytic model focused only on change is likely to be underpowered. I have done my best to limit 

the influence of confounders by controlling for a wide range of likely confounders to attempt to 

eliminate sources of bias. Third, the measure of HIE used here represents the best currently 

available national data on hospital HIE engagement; however, it does not capture all approaches 

to HIE. To address this concern, I altered the outcome variable to exclude hospitals engaging in 

vendor-medicated HIE, and my findings were generally robust to this variation. However, I was 

not able to identify hospitals that engaged in both community and enterprise HIE and therefore 

conceptualized enterprise engagement as *only* enterprise HIE. Finally, while the patient 

outcomes used here are likely to be influenced by well-functioning HIE, these are aggregate 

measures that include the experience of patients that do not move between hospitals. In 

consequence, the associations with outcomes identified should be interpreted with caution.  

Conclusion 

Hospital choice of HIE approach is associated with the structure of their patient sharing network 

as well as with the structure of the collective inter-hospital network of shared patients that 

surrounds them. These findings indicate that hospitals are pursuing HIE approaches that are most 

useful for their patient networks, and that the collective network appears to exert pressure on 

their peers. The latter dynamics serve to regulate the approach to HIE taken in the network by 

pushing members towards adoption of an HIE approach that fits the structure of the collective 

network (by reinforcing aligned choices or pushing against conflicting choices). The pressure 

from the network is most effective when the network has high social capital, as measured by the 

density of the network. These findings support the US policy approach to let multiple types of 

HIE emerge in the market, rather than preferentially supporting specific approaches to HIE. 
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However, they raise concern that in certain networks—those with low social capital and 

competition—the network may not regulate itself to achieve the best choice of HIE approach. 

Finally, the association between HIE and outcomes was inconsistent—reflecting a broader and 

concerning trend in recent research—and it is not clear that network structure moderates this 

relationship. It is therefore important to prioritize efforts that seek to ensure consistent benefit 

from all forms of HIE.
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CHAPTER VI 

 Conclusion 

I argued in the introduction that the work to understand the healthcare delivery system as a 

network is both very old—dating back at least to Coleman et al.’s studies in the 1960s—and very 

new. That is to say that while the basic insight that healthcare delivery is a network, and studies 

on the diffusion of medical innovations inspired by Coleman, are reasonably commonplace, the 

broader implications of the network features of healthcare delivery system have not been very 

widely explored. This absence marks a missed opportunity. Perhaps a comparison makes the 

point. Coleman’s study, among the first to consider the network implications of the healthcare 

delivery system, is a contemporary of another famous paradigm shift in our understanding of the 

healthcare delivery system: Kenneth Arrow’s “Uncertainty and the Welfare Economics of 

Medical Care”. While the field of health economics is today well developed, rapidly growing and 

successfully applying the methodological tools and theoretical insights from the field of 

economics to inform policy decisions, a field of health network analysis remains scattered and 

limited in scope. And yet the basic insight remains: healthcare is an intrinsically networked field. 

The currently limited investigation into the implications of this network prevents the 

development of insights that might shape practitioners’, organization leaders’, and policy 

makers’ approach to health care in a way that could meaningfully improve human health. With 

that said, the network approach is more widespread than it first appears because many efforts that



131 

 

 are at their core concerned with the healthcare system as a network do not directly invoke a 

network perspective or set of tools. For instance, it seems obvious to conceptualize the 

identification of hospital referral regions, and the specialty care based plurality rule used by 

researchers to identify those regions, as a type of network partitioning. However, by not directly 

identifying with a network approach, work that continues in the vein of network-based 

approaches is not able to capitalize on the tools and insights gathered in the enormous multi-

disciplinary field of network analysis.  

In this dissertation, I have sought to expand the use of network analysis in healthcare in 

two key ways. First, I examine the inter-hospital network of shared patients, while the clear 

majority of existing work focuses on inter-physician networks. Second, I have applied a 

network-based perspective to three areas of ongoing inquiry that have intrinsically network-

based characteristics that have so far not been thoroughly understood: identifying groups of 

hospitals, healthcare fragmentation, and health information exchange (HIE).  

In chapter 2 I identified dense networks of interconnected hospitals using a community 

detection algorithm designed to group hospitals into sub-communities of the overall network of 

shared patients. While many rules have been used to identify hospitals that are related through 

either collaboration or competition, none of these past methods have explicitly invoked a 

network framework. By using tools developed in other fields to identify groups of hospitals, I 

was able to create communities of closely connected hospitals, to test their reliability (both over 

time and to varying underlying assumptions), to test their validity in relation to other methods of 

group identification and to the extent to which the groups combined hospitals with similar 

outcomes, an important goal because these grouping methods are commonly used to characterize 

the performance of regions of hospitals. In total, I have presented a method that is more 
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verifiably reliable and valid than past methods while also demonstrating that the existing HRR 

method performs reasonably well on certain key metrics. 

In chapter 3, I applied network analytic tools to better understand health care 

fragmentation. Fragmentation—the extent to which a patient’s care is divided between multiple 

providers—has been found to be associated with higher spending and worse outcomes. However, 

the implications of the way patient sharing between providers is structured and how that structure 

relates to their success in caring for patients has not been explored. I found that two network 

structures, concentration and centralization, are associated with lower spending and better patient 

outcomes—in other words, that the deleterious effects of fragmentation may be less pronounced 

in areas where the sharing of patient care is concentrated and centralized. Importantly, I found 

that the structure of the collective network of hospitals was more strongly associated with 

outcomes than the structure of individual hospital’s networks. This points to the importance of 

considering the hospital’s environment and peers when considering their quality and ability to 

optimize treatment for their patients. 

Finally, I used network analysis to better understand hospitals engagement in HIE. HIE is 

at core a network phenomenon because the goal of developing well-functioning HIE is to form a 

network of shared information between provider organizations. Therefore, much remains to be 

learned about how well this exchange network is being built to cover the sharing of patients 

between organizations. In chapter 4 I laid out the conceptual distinction between three types of 

HIE and reviewed the available literature on each type of network. I found that far more studies 

have been published on community HIEs than enterprise HIE and vendor-mediated HIE, despite 

these other forms appearing to be relatively wide spread. Then in chapter 5 I investigated 

whether hospitals were choosing the type of HIE that best fit their network of shared patients. I 
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found that hospitals with more concentrated networks were more likely to engage in enterprise 

HIE—which is designed to facilitate exchange between relatively few key partners– while 

hospitals with more dispersed patient sharing networks were more likely to engage in community 

HIE, which is designed to connect a broader array of providers. Further, I found that the 

collective network of hospitals surrounding each individual hospital was influential in driving 

hospital’s HIE decisions, a finding that echoes the importance of the collective network found in 

the study of fragmentation.  

Two important limitations shape the contribution of this study. First, the data source used 

to define networks includes data on all Medicare patients shared by providers; however, it 

contains very limited data on those patients. Importantly, the data does not indicate what 

conditions they are treated for, their co-morbid conditions, socio-demographic characteristics, or 

the extent of their treatment. This limitation shaped the nature of the inquiry throughout this 

dissertation, driving a high-level perspective on all patients shared between hospitals. This low 

level of fidelity led to the choice of associated performance measures in the third chapter, which 

include spending and readmissions due to all causes. The focus on all patients also facilitated 

association of the network with health information exchange in the fifth chapter because HIE is 

conceptually useful to a very wide breadth of shared patients. Future research might usefully 

complement this high-level view by focusing on the shared patients for specific conditions or 

between certain types of clinical departments, where much information sharing and coordination 

occurs. As a corollary to this limitation, the data does not indicate why the patients were shared: 

by coincidence, by referral or by direct transfer. More detail on why the patients were shared 

may influence the type of interventions that appear most useful or how we conceptualize shared 

patients. Again, this limitation shaped the focus of inquiry: regardless of the reason for sharing 
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patients, structures that facilitate coordination and engagement in HIE are important to ensure 

that patients receive optimal care such that the research questions pursued in this dissertation 

could be well addressed with this level of observation.  

The second fundamental limitation to this work is the cross-sectional, associational 

approach taken to assessing the relationship between network structure, performance and HIE. It 

is possible that the causal direction discussed in chapters three and five—that network structure 

leads to coordination and HIE choices—is reversed: successful coordination may lead to network 

structure and HIE choices may also influence network structure. However, as demonstrated in 

Appendix 1, the overall structure of the hospital patient sharing network is reasonably stable over 

time—on average it exhibits little change from year to year. This consistency argues for the 

causal direction described through this dissertation because performance and especially HIE 

likely change faster than network structure. However, this consistency also limits the empirical 

methods that can be adopted because a (short-duration) panel based approach is unlikely to 

identify sufficient variation to drive statistically significant relationships. Similarly, the effect of 

policies are likely to shape the overall network slowly, making identification of clear 

discontinuities unlikely. In consequence, the results of this study should be interpreted with care. 

In particular, it is plausible that the association between network structure and performance 

identified in chapter 3 is representative of a feedback loop in which causation flows in both 

directions. That is, network structure facilitates coordination and coordination reinforces helpful 

network structure. As such, the magnitude of the associations identified in that study should be 

interpreted with caution. However, the identification of a relationship indicates that this feedback 

loop or direct effect may be occurring, and the strong observed association is particularly 

remarkable because the outcomes used include not only patients seen by multiple hospitals (for 



135 

 

whom network structure and coordination are both highly salient) but also patients seen at a 

single hospital for whom these features may be less important. Therefore, it is reasonable to 

believe that for the individuals for whom the network structure and associated ability to 

coordinate is particularly important, its effect is substantial and perhaps larger than estimated 

here. Future research should endeavor to more precisely estimate the causal effect of network 

structure on patients that move through the network. Doing so would require a different data 

resource with information on specific patients and different methods that moved away from the 

global analysis of all hospitals and focused on hospitals for whom policy change or new market 

entrants may have caused an exogenous shock to the network or who are geographically 

proximate to hospitals in other communities that are across state lines, such that their assignment 

to a specific community with network characteristics is plausibly exogenous. 

Notwithstanding these limitations, the findings in this dissertation have important 

implications for organizational leaders and policymakers. Many organizational and policy 

initiatives relate to hospital relationships with one another and other providers outside of the 

hospital’s walls. When dividing hospitals into communities based on the pattern of shared 

Medicare patients, I identified substantially larger hospital groups than found using prior 

methods. For organizational leaders, this highlights the importance of considering the broader 

environment of providers that influence the care that their patients receive—to consider not only 

their partners but also their partners’ partners, and how their strategic decisions will be received 

by the system as a whole collective. For policy makers, this highlights the importance of 

considering broad patterns of interaction when devising policies intended to influence 

coordination and alter variation in the quality of care. These broader patterns may influence 

individual hospital’s ability to react in response to policy initiatives. However, because this 
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approach is hierarchical, smaller sub-groups of hospitals can be identified and these sub-groups 

may be important when organizational leaders and policy makers are interested in identifying the 

most closely tied organizations for targeted strategic action or policy change. 

Several ongoing policy initiatives, such as bundled payments, accountable care 

organizations, patient centered medical homes, readmission reduction programs, and others, are 

implicitly concerned with the way in which hospitals and other providers inter-relate through 

network structures. Despite this, we do not measure how policy efforts change networks, though 

it is likely that these changes will shape the trajectory of the patient sharing network. The finding 

that certain network structures are associated with better performance points towards the 

importance of measuring the effect that policy initiatives—and market change and consolidation 

more generally—have on the inter-organizational network of shared patients. The potential that 

the association between network structure and performance represents a feedback loop highlights 

the potential power of influencing the structure of the network to set off improvements of 

coordination that further reshape the network. However, while it is possible that these changes 

are facilitating improved networks, prescribed policy changes may also be disrupting well-

functioning networks or otherwise negatively impacting organizations that do not participate in 

the program but are closely linked to participating organizations. However, because we do not 

measure these changes—or know which network structures facilitate better care—we are blind to 

how policy change may be causing unintended consequences.  

In combination, the work to identify communities of hospitals and to identify network 

characteristics of these communities has important implications for measuring and explaining 

geographic variation in the cost and quality of care. Because these network structures are related 

to the efficiency and quality of hospital care, variation in these structures by geographic area 
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could form part of the explanation of previously unexplained variation in quality and efficiency 

of care. For instance, hospital service areas primarily served by hospitals on the periphery of 

their network may be associated with lower quality care than hospital service areas primarily 

served by central hospitals, especially when patients on the periphery are not well funneled to 

central hospitals. The usefulness of these structures in explaining variation in quality does not 

depend on a strictly causal relationship, though to the extent that the causal mechanism theorized 

in this study form a plausible accounting of the observed effect, they may motive action aimed to 

alter certain networks. 

The positive association between network concentration, centralization and the efficiency 

and performance of hospital care points towards a potential renewed interest in considering the 

regionalization of care. That is, while the volume-outcome relationship argues for the benefits of 

focusing care of some procedures in certain high volume centers, a broader focus on network 

structure considers the effect of this policy not only on the outcomes offered by individual 

hospitals but also the effect of directing patients to these hospitals on the average performance of 

all participants in a network. In so doing, it strengthens the case that helping to shape the 

network towards a concentrated, centralized structure appears to have benefits for the system 

overall, not just the high-volume hospitals that are the ‘winners’ in traditional studies on the 

volume-outcome relationship. For organizational leaders, this points towards specific designs of 

multihospital systems and for ways in which to design efficient care delivery systems: by 

creating well-functioning community hospitals that funnel patients effectively to large centers of 

excellence rather than attempting to provide treatment for patients beyond their core 

competencies. For policymakers, this finding points towards the logic of incentivizing 

regionalization of care, efforts that have been undertaken more aggressively outside of the 
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United States but may be considered as ways to improve the quality and efficiency of care 

without reducing the overall provision of services. 

The final key policy implication of this work is that hospitals appear to be selecting HIE 

approaches that fit both their own network of shared patients and the collective network of 

hospitals in which they are embedded. This finding is important because of recent concern that 

organizations may be engaging in information blocking—that is, that they may be purposefully 

engaging in HIE approaches that match their strategic priorities and competitive incentives by 

not sharing information with other hospitals with which they compete. The fact that hospitals are 

not only reactive to their own network but also respond to pressure from the collective network 

to adopt a certain type of HIE should mitigate these concerns to some extent. However, the 

insight that hospitals might select an approach to HIE that benefits the network but does not best 

fit their own network of direct shared patients may point towards a need to further support these 

hospitals and ensure that they can both meet their individual needs and the needs of the collective 

network. In the sociologic literature, the idea of social capital as a force that can shape behavior 

by increasing the salience of norms held by the community is widely acknowledge. The 

relationship between the needs of the network and hospitals’ HIE decisions points towards the 

important role that pressure from peers, partners and competitors in the delivery system play in 

driving organizational decisions, and this insight may extend beyond engagement in HIE towards 

adoption of practices that could lead to approval or censure from important sources of reputation 

and revenue. 

In sum, this dissertation represents a substantial step forward in our understanding of the 

implication of network structure for the functioning of the healthcare system. I have 

demonstrated that network analysis can contribute policy- and practice-relevant understanding of 
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the health care delivery and hope to continue to build our understanding of these important 

features of the way care is delivered in order to work towards a high-performing healthcare 

system. 

 



140 

 

APPENDIX A 

Network Data Validity 

Over Time Reliability of Data 

To demonstrate that this data was generating reliable measurement, I compared the 2014 network 

to the 2013 network. Even though the primary analysis conducted throughout this dissertation, 

the reliability of the data is an important measure of the degree to which measurement error may 

be distorting results. Of the 91,120 inter-hospital patient sharing ties in 2014, 81,709 (90%) were 

also present in 2013. The persistence of ties over these two years was strongly associated with 

the strength of the tie: the median tie that was present in 2014 but not 2013 was comprised of 32 

shared patients while the median persistent tie in was comprised of 141 patients. 

For ties that persisted, the correlation between the strength of the time in 2014 and 2013 

was very high, at 0.97 (Figure A1).  

Figure A1. Strength of Ties is Highly Persistent Over Time 
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Validity of Hospital Graph Strength 

To test the validity of the network data I used data from the AHA Annual Survey that was likely 

to be associated with a larger number of shared patients in the network: the number of Medicare 

discharges reported and teaching status. Hospitals with more Medicare discharges are likely to 

have more shared patients, while teaching hospitals are likely to serve as referral centers and 

therefore have more shared patients. Because the number of shared patients is highly skewed, I 

modeled both the raw total number of patients shared and the natural log of patients shared. I 

found that the number of discharges and teaching status were each very strongly associated with 

the total number of shared patients, validating that the data is capturing the quantity of patients 

treated at this hospital. 

Table A1. Predictors of Total Number of Patients Shared 

 Total 

Patients 

Shared 

Log Total 

Patients 

Shared 

Medicare Discharges 1.9  

 (0.06)  

Log Medicare Discharges  0.48 

  (0.0085) 

Major Teaching Hospital 21,576 0.91 

 (1,068) (0.061) 

Constant 3,442 5.07 

 (270) (0.061) 

   

R-Squared 0.36 0.48 

N 4,602 4,602 

 

Validity of Pair Tie Strength 

To further test the validity of the data, I predicted the strength of ties between pairs of hospitals 

that were observed to share at least 11 patients using ordinary least squares regression. I 

predicted these ties based on simple characteristics of the hospitals in the network. Larger 
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hospitals, closer hospitals, and hospitals that are members of the same system should logically be 

associated with stronger ties. Because the number of shared patients is highly skewed, I modeled 

both the raw total number of patients shared and the natural log of patients shared. I found that 

larger hospitals shared more patients, farther away hospitals shared fewer patients and hospitals 

that were members of the same system shared many more patients than hospitals that were not. 

Each of these findings points towards the validity of the measurement of the strength of these 

ties. 

Table A2. Predictors of the Strength of Hospital Ties 

  

Patients 

Shared 

Between 

Hospitals 

Log Patients 

Shared 

Between 

Hospitals 

   

Log Medicare Discharges 

Hospital 1 
95.5 0.093 

 (4.17) (0.033) 

Log Medicare Discharges 

Hospital 2 
87.1 0.08 

 (4.14) (0.033) 

Distance Between Hospitals -1.12 -0.002 

 (0.045) (0.00004) 

Same System Membership 1,029 0.84 

 (21.2) (0.017) 

Constant -938.5 3.68 

 (45.2) (0.036) 

   

R-Squared 0.04 0.07 

N 90,688 90,688 
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APPENDIX B 

 Full Results and Robustness Checks for Chapter 5 

Table B1. Full Regression Results for Effect of Hospital and Network Concentration, 

Density and Competition on HIE Approach 

 

Fit, Reinforcement and 

Conflicting Fit 

 

Moderating Effect 

of Density and 

Competition 

          

Hospital-Level 

Concentration     

Dispersed Network (Omitted: 

Concentrated) 1.861** (0.026) 1.387* (0.058) 

Moderately Concentrated 

Network 1.355 (0.167) 1.196 (0.208) 

Whole Network-Level 

Concentration     

Dispersed Network (Omitted: 

Concentrated) 1.968** (0.037) 0.468 (0.202) 

Moderately Concentrated 

Network 1.451 (0.207) 0.915 (0.881) 

1.concTert#1.concTertComm 0.625 (0.135)   

1.concTert#2.concTertComm 0.672 (0.283)   

2.concTert#1.concTertComm 0.923 (0.805)   

2.concTert#2.concTertComm 0.710 (0.278)   

Network Density     

Moderate Density (Omitted: 

Low Density) 1.132 (0.579) 0.724 (0.405) 

High Density 1.005 (0.984) 0.555 (0.242) 

Dispersed Whole 

Network*Moderate Density   2.541* (0.083) 

Dispersed Whole 

Network*High Density   3.371** (0.043) 

Moderately Concentrated 

Whole Network*Moderate 

Density   0.980 (0.969) 

Moderately Concentrated 

Whole Network*High Density   1.354 (0.614) 

Competition     

Moderate Competition 

(Omitted: Low Competition) 
 

(0.538) 1.112 (0.810) 

High Competition  (0.378) 0.650 (0.423) 
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Dispersed Whole 

Network*Moderate 

Competition 

 

 1.555 (0.446) 

Dispersed Whole 

Network*High Competition 
 

 2.882* (0.086) 

Moderately Concentrated 

Whole Network*Moderate 

Competition   0.662 (0.415) 

Moderately Concentrated 

Whole Network*High 

Competition   1.936 (0.303) 

# of Hospitals in Network 0.985* (0.052) 0.987* (0.064) 

# of Shared Patients in 

Network 1.000*** (0.006) 1.000*** (0.006) 

Hospital Type     

# Affiliated Physicians 1.000* (0.090) 1.000* (0.092) 

Hospital System Market Share 31.572*** (0.000) 29.459*** (0.000) 

General Acute Care 1.827 (0.115) 1.850 (0.113) 

Critical Access 1.034 (0.859) 0.996 (0.981) 

Major Teaching 0.954 (0.865) 0.970 (0.913) 

Minor Teaching 0.952 (0.772) 0.927 (0.658) 

System Member 1.025 (0.886) 1.018 (0.916) 

Network Member 1.273* (0.064) 1.243* (0.092) 

Urban 0.927 (0.664) 0.921 (0.623) 

Size (Large Omitted)     

Small 1.194 (0.481) 1.147 (0.593) 

Medium 1.254 (0.239) 1.248 (0.262) 

Ownership (For-Profit 

Omitted)     

Government-owned 0.971 (0.912) 0.974 (0.920) 

Not for Profit 1.507* (0.065) 1.522* (0.059) 

Healthcare Supply     

Physicians per 1000 1.158 (0.358) 1.152 (0.345) 

PCPs per 1000 0.764 (0.360) 0.683 (0.194) 

Specialists per 1000 0.756 (0.538) 0.811 (0.623) 

Hospital Beds per 1000 1.009 (0.655) 1.007 (0.726) 

Area Demographics     

Income Per Capita 1.000 (0.253) 1.000* (0.069) 

Unemployment Rate 25.093 (0.501) 38.788 (0.428) 

Population Density 1.013** (0.039) 1.010* (0.086) 

Proportion Female 0.103 (0.555) 0.217 (0.679) 

Proportion over 65 0.252 (0.485) 0.349 (0.590) 

Proportion White 2.739 (0.106) 2.472 (0.153) 

Proportion without High 

School 0.046** (0.042) 0.027** (0.021) 

Constant 0.858 (0.943) 1.541 (0.841) 
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Observations 2,083   2,083   

Robust pval in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

Table B2. Robustness Tests for Community HIE exists, Omitting EHR vendor and 

Including Additional HIE Types 

  

Community 

HIE Exists 

Omit EHR 

Vendor 

VARIABLES odds ratios odds ratios 

Hospital-Level Concentration     

Dispersed Network (Omitted: 

Concentrated) 1.364* 1.414 

 (0.082) (0.131) 

Moderately Concentrated 

Network 1.174 1.111 

Whole Network-Level 

Concentration (0.265) (0.512) 

Dispersed Network (Omitted: 

Concentrated) 

1.596** 1.620** 

(0.035) (0.035) 

Moderately Concentrated 

Network 1.113 1.125 

 (0.623) (0.638) 

Network Density   

Moderate Density (Omitted: Low 

Density) 1.256 1.363 

 (0.306) (0.234) 

High Density 0.965 1.010 

 (0.893) (0.977) 

Competition   

Moderate Competition (Omitted: 

Low Competition) 1.125 0.916 

 (0.613) (0.749) 

High Competition 1.252 1.207 

 (0.426) (0.531) 

# of Hospitals in Network 0.983** 0.988 

 (0.025) (0.105) 

# of Shared Patients in Network 1.000*** 1.000** 

 (0.004) (0.019) 

Hospital Type   

# Affiliated Physicians 1.000 1.000 

 (0.122) (0.668) 

Hospital System Market Share 33.437*** 80.427*** 

 (0.000) (0.001) 

General Acute Care 1.869 2.695** 

 (0.104) (0.015) 

Critical Access 1.019 1.250 
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 (0.921) (0.312) 

Major Teaching 0.954 1.255 

 (0.865) (0.601) 

Minor Teaching 0.961 0.848 

 (0.819) (0.425) 

System Member 0.982 0.968 

 (0.917) (0.872) 

Network Member 1.248* 1.131 

 (0.089) (0.460) 

Urban 0.906 1.104 

 (0.569) (0.626) 

Size (Large Omitted)   

Small 1.104 0.807 

 (0.698) (0.571) 

Medium 1.178 0.995 

 (0.399) (0.986) 

Ownership (For-Profit Omitted)   

Government-owned 0.904 0.776 

 (0.711) (0.423) 

Not for Profit 1.475* 1.382 

 (0.085) (0.246) 

Healthcare Supply   

Physicians per 1000 1.135 1.308 

 (0.434) (0.153) 

PCPs per 1000 0.772 0.702 

 (0.371) (0.358) 

Specialists per 1000 0.802 0.534 

 (0.634) (0.273) 

Hospital Beds per 1000 1.007 1.020 

 (0.716) (0.363) 

Area Demographics   

Income Per Capita 1.000 1.000 

 (0.174) (0.442) 

Unemployment Rate 5.531 9.732 

 (0.729) (0.650) 

Population Density 1.013** 1.011 

 (0.037) (0.113) 

Proportion Female 0.009 0.001 

 (0.298) (0.269) 

Proportion over 65 0.446 0.073 

 (0.696) (0.230) 

Proportion White 2.560 2.704 

 (0.132) (0.182) 

Proportion without High School 0.061* 0.053* 

 (0.065) (0.064) 

Constant 4.650 22.442 
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 (0.533) (0.355) 

   

Observations 2,056 1,747 

Robust pval in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

Table B3. Robustness Tests Using Alternative Definitions of Concentration 

  Linear 

Concentration 

Median 

Concentration 

VARIABLES odds ratios odds ratios 

Hospital-Level Concentration     

Linear Network Concentration 0.385**  

(0.015)  

High Concentration (Median Split)  0.799 

  (0.188) 

Whole Network-Level Concentration   

Linear Network Concentration 0.023**  

(0.042)  

High Network Concentration (Median 

Split) 
 0.643** 

 (0.029) 

Network Density   

Moderate Density (Omitted: Low 

Density) 1.106 1.143 

 (0.661) (0.591) 

High Density 0.950 0.876 

 (0.850) (0.642) 

Competition   

Moderate Competition (Omitted: Low 

Competition) 1.154 1.213 

 (0.543) (0.438) 

High Competition 1.275 1.343 

 (0.363) (0.284) 

# of Hospitals in Network 0.986* 0.982*** 

 (0.054) (0.009) 

# of Shared Patients in Network 1.000*** 1.000*** 

 (0.008) (0.004) 

Hospital Type   

# Affiliated Physicians 1.000* 1.000* 

 (0.083) (0.073) 

Hospital System Market Share 32.700*** 27.419*** 

 (0.000) (0.000) 

General Acute Care 1.822 1.389 

 (0.123) (0.415) 

Critical Access 1.026 1.055 

 (0.889) (0.784) 

Major Teaching 0.937 1.039 

 (0.812) (0.902) 
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Minor Teaching 0.946 1.079 

 (0.744) (0.691) 

System Member 1.037 0.989 

 (0.832) (0.952) 

Network Member 1.262* 1.277* 

 (0.068) (0.063) 

Urban 0.916 0.931 

 (0.604) (0.712) 

Size (Large Omitted)   

Small 1.207 1.206 

 (0.457) (0.490) 

Medium 1.262 1.244 

 (0.231) (0.311) 

Ownership (For-Profit Omitted)   

Government-owned 1.014 1.598* 

 (0.956) (0.097) 

Not for Profit 1.551** 2.352*** 

 (0.048) (0.000) 

Healthcare Supply   

Physicians per 1000 1.155 1.102 

 (0.375) (0.568) 

PCPs per 1000 0.742 0.704 

 (0.313) (0.289) 

Specialists per 1000 0.776 0.805 

 (0.580) (0.673) 

Hospital Beds per 1000 1.005 1.018 

 (0.805) (0.477) 

Area Demographics   

Income Per Capita 1.000 1.000 

 (0.214) (0.329) 

Unemployment Rate 40.929 63.649 

 (0.437) (0.419) 

Population Density 1.012** 1.014*** 

 (0.046) (0.009) 

Proportion Female 0.094 0.024 

 (0.552) (0.399) 

Proportion over 65 0.162 0.127 

 (0.376) (0.430) 

Proportion White 2.591 3.110 

 (0.153) (0.106) 

Proportion without High School 0.034** 0.034** 

 (0.025) (0.044) 

Constant 2.604 7.886 

 (0.676) (0.412) 

   

Observations 2,083 1,709 
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Robust pval in parentheses   

*** p<0.01, ** p<0.05, * p<0.1   
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Table B4. Multivariate Regression Testing the Moderating Effect of Network 

Concentration on Relationship Between HIE and Outcomes 

  (1) (2) (3) 

 MSPB 

Readmission

s 

Mammography 

Follow Up 

Community HIE 0.169 0.004 -0.182* 

 (0.120) (0.109) (0.098) 

Whole Network-Level Concentration    

Dispersed Network (Omitted: Concentrated) 0.198 0.079 0.006 

 (0.128) (0.085) (0.126) 

Moderately Concentrated Network 0.451*** 0.096 0.225 

 (0.135) (0.095) (0.194) 

Dispersed Network*Community HIE 0.086 0.103 -0.054 

 (0.116) (0.117) (0.105) 

Moderately Concentrated 

Network*Community HIE -0.237* 0.257** 0.041 

 (0.140) (0.125) (0.120) 

Hospital-Level Concentration    

Dispersed Network (Omitted: Concentrated) 0.183* 0.043 -0.305*** 

 (0.104) (0.104) (0.107) 

Moderately Concentrated Network 0.172* -0.066 -0.053 

 (0.103) (0.087) (0.118) 

Dispersed Network*Community HIE -0.059 0.041 0.310*** 

 (0.123) (0.121) (0.109) 

Moderately Concentrated 

Network*Community HIE -0.167 0.046 0.083 

 (0.127) (0.112) (0.138) 

Network Density    

Moderate Density (Omitted: Low Density) 0.289** -0.027 0.263* 

 (0.123) (0.103) (0.155) 

High Density 0.322** 0.207* 0.208 

 (0.129) (0.112) (0.131) 

Competition    

Moderate Competition (Omitted: Low 

Competition) 

-0.111 0.140* 0.055 

(0.124) (0.083) (0.097) 

High Competition -0.046 0.367*** 0.272*** 

 (0.155) (0.089) (0.099) 

# of Hospitals in Network 0.007* 0.004 0.007 

 (0.004) (0.004) (0.006) 

# of Shared Patients in Network -0.000 -0.000 -0.000* 

 (0.000) (0.000) (0.000) 

Hospital Type    

Hospital System Market Share -0.189 -0.168 -0.272 

 (0.266) (0.249) (0.277) 

General Acute Care 0.178 1.283*** 0.347 

 (0.206) (0.240) (0.254) 
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Critical Access  0.264*** -0.045 

  (0.067) (0.071) 

Major Teaching -0.041 0.701*** 0.257** 

 (0.076) (0.110) (0.105) 

Minor Teaching -0.003 0.046 0.177* 

 (0.050) (0.062) (0.096) 

System Member 0.000 -0.021 -0.123 

 (0.051) (0.057) (0.119) 

Network Member 0.015 -0.068 0.089 

 (0.041) (0.051) (0.089) 

Urban 0.365*** 0.015 -0.035 

 (0.068) (0.058) (0.068) 

Size (Large Omitted)    

Small -0.295*** -0.032 0.187* 

 (0.068) (0.119) (0.112) 

Medium -0.094* -0.086 0.277*** 

 (0.050) (0.096) (0.103) 

Ownership (For-Profit Omitted)    

Government-owned -0.450*** -0.312*** -0.082 

 (0.088) (0.111) (0.103) 

Not for Profit -0.400*** -0.402*** -0.052 

 (0.072) (0.094) (0.081) 

Healthcare Supply    

Physicians per 1000 -0.115* -0.231** -0.329** 

 (0.060) (0.098) (0.155) 

PCPs per 1000 -0.405*** -0.255* -0.052 

 (0.142) (0.137) (0.154) 

Specialists per 1000 0.457** 0.832*** 1.119** 

 (0.179) (0.280) (0.488) 

Hospital Beds per 1000 -0.001 0.020** -0.013 

 (0.014) (0.008) (0.009) 

Area Demographics    

Income Per Capita 0.000 -0.000 0.000 

 (0.000) (0.000) (0.000) 

Unemployment Rate -7.035*** 6.446*** 4.646** 

 (2.065) (2.323) (2.173) 

Population Density -0.001 0.002 -0.002*** 

 (0.001) (0.001) (0.001) 

Proportion Female 7.907*** -0.214 -0.012 

 (2.378) (1.585) (1.989) 

Proportion over 65 0.728 1.340 0.048 

 (1.101) (0.871) (0.880) 

Proportion White 0.114 -0.221 0.773*** 

 (0.280) (0.373) (0.290) 

Proportion without High School 1.779*** 0.490 -0.488 

 (0.668) (0.703) (0.607) 
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Constant -4.648*** -1.625 -1.898 

 (1.254) (0.995) (1.447) 

    

Observations 1,544 2,009 1,641 

R-squared 0.280 0.233 0.140 

Robust standard errors in parentheses    

*** p<0.01, ** p<0.05, * p<0.1    
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