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Abstract	
Rare	variants	are	hypothesized	to	explain	some	genetic	contribution	to	complex	traits.	

However,	using	conventional	case-control	designs	to	identify	rare	variants	associated	with	

traits	has	low	statistical	power.	Family	designs	can	substantially	increase	power	for	these	

studies,	especially	for	rare	variants.	In	this	dissertation,	we	present	innovative	statistical	

methods	that	can	efficiently	use	family	information	to	improve	power.	

In	Chapter	2,	we	present	TRAFIC,	a	rare-variant	association	test	using	affected	sibpairs.	

For	 rare	 risk	 variants,	 two	 affected	 siblings	 would	 share	 the	 variant	 on	 their	 shared	

identity-by-descent	(IBD)	chromosomes.	We	thus	test	the	distribution	of	rare	variants	on	

IBD	 chromosomes	 and	 non-IBD	 chromosomes.	 TRAFIC	 is	 robust	 to	 population	

stratification	as	 “cases”	and	“controls”	are	matched	within	each	sibpair.	We	show	that	

TRAFIC	has	 significant	power	gain	over	 the	population	 case-control	design	 for	 variants	

with	summed	allele	frequency	<	5%.	Considering	allelic	heterogeneity,	where	risk	variants	

have	different	effect	sizes,	TRAFIC	can	double	the	power	of	a	case-control	study.	

In	Chapter	3,	we	present	TRAP	for	testing	the	association	between	rare	variants	and	a	

binary	 trait	 using	 extended	 families.	 Since	 affected	 family	members	 are	more	 likely	 to	

share	risk	variants,	we	propose	to	test	if	rare	variants	are	shared	more	than	expected	given	

the	known	inheritance	vector	and	the	founder	genotypes.	TRAP	is	applicable	from	small	

to	 large	pedigrees	with	multiple	generations,	 including	 families	with	missing	 founders.	

Using	 simulations,	 we	 show	 that	 TRAP	 is	 more	 powerful	 than	 the	 conventional	 case-
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control	design	and	existing	family-based	approaches,	especially	for	rare	variants.	

In	Chapter	4,	we	present	testing	for	rare	variants	associated	with	a	continuous	trait	in	

extended	families	(TRACE).	Given	that	a	rare	variant	increases	the	trait	value,	conditional	

on	inheritance	vectors	and	founder	genotypes,	we	test	if	family	members	with	high	trait	

values	are	more	likely	to	share	the	variant.	Under	non-ascertained	scenarios,	TRACE	can	

be	 more	 powerful	 than	 the	 existing	 family-based	 methods	 for	 large	 pedigrees;	 for	

ascertained	 scenarios,	 TRACE	 outperforms	 the	 existing	 approaches	 throughout	

considered	 pedigree	 structures.	 In	 sum,	 we	 present	 three	 family-based	 methods	

efficiently	using	the	sharing	of	variants	to	increase	the	power	for	detecting	rare	variant	

associations.



1	

	

Chapter	1 	
Introduction	

Many	 human	 diseases	 are	 considered	 complex	 because	 they	 are	 attributable	 to	 a	

combination	of	genetic	and	environmental	factors	(Hunter	2005).	While	numerous	studies	

have	uncovered	genetic	and	environmental	 factors	associated	with	complex	metabolic,	

cardiovascular	and	neurodegenerative	diseases	(McQueen	et	al.	2005;	Burton	et	al.	2007;	

Halocarbon	et	al.	2007;	Sladek	et	al.	2007;	Hampe	et	al.	2007;	McCarthy	et	al.	2008),	the	

etiology	of	complex	diseases	have	not	been	fully	understood	(Manolio	et	al.	2009;	Eichler	

et	al.	2010;	Edwards	et	al.	2013).	Moreover,	these	research	findings	have	not	been	fully	

translated	into	effective	clinical	treatments	(Wheeler	et	al.	2013;	Ashley	2016;	Nelson	et	

al.	2016).	

	One	characteristic	of	complex	diseases	is	their	tendency	to	be	familial,	meaning	an	

individual	often	has	an	elevated	risk	of	developing	the	disease	in	the	presence	of	family	

history	 (McCarthy	 et	 al.	 2008;	 Altshuler,	 Daly,	 and	 Lander	 2008).	 Many	 diseases	 are		

measured	 in	 terms	 of	 their	 “heritability”,	 which	 refers	 to	 the	 proportion	 of	 disease	

variance	that	is	attributable	to	the	genetic	contribution	(Manolio	et	al.	2009;	Tenesa	and	

Haley	2013).	Inherited	genetic	variants	are	therefore	presumed	to	play	a	significant	role	

in	 the	etiology	of	heritable	diseases.	 Thus,	 the	 studies	of	 complex	diseases	have	been	

focusing	on	identifying	genetic	variants	contributing	to	the	disease	heritability.	
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Linkage	analysis	was	the	first	and	predominant	tool	to	map	a	genomic	region	(locus)	

containing	variants	contributing	to	the	disease	risk	(Lander	and	Schork	1994;	Altshuler,	

Daly,	and	Lander	2008).	In	a	linkage	study,	researchers	evaluate	if	there	is	a	co-segregation	

of	susceptible	 loci	and	the	disease	status	 in	families.	Using	 linkage	studies,	researchers	

successfully	 unraveled	 susceptible	 loci	 for	 many	 diseases	 with	 Mendelian	 inheritance	

pattern,	where	a	single	locus	with	large	effect	size	determines	the	occurrence	of	diseases;	

examples	including	Huntington’s	disease	and	cystic	fibrosis	(Pericak-Vance	2001).	Complex	

diseases,	however,	tend	to	have	a	genetic	architecture	inconsistent	with	the	Mendelian	

inheritance	 (Risch	 and	 Merikangas	 1996).	 The	 disease	 risk	 of	 a	 complex	 disease	 is	

hypothesized	to	be	contributed	by	variants	from	many	different	loci,	each	having	weak	to	

modest	effect.	Therefore,	when	applied	to	complex	disease	studies,	linkage	analysis	had	

low	power	and	quickly	lost	its	popularity	(Lander	and	Schork	1994;	Risch	and	Merikangas	

1996;	Altmüller	et	al.	2001;	Ott,	Wang,	and	Leal	2015).	Furthermore,	to	assess	the	genetic	

contribution	 from	 multiple	 loci	 to	 complex	 diseases,	 a	 cost-effective	 genotyping	

technology	was	required	to	be	applicable	in	a	genome-wide	scale.	

With	the	advancement	of	genotyping	array	technology,	which	can	assess	thousands	

to	millions	of	variants	in	large	cohorts,	genome-wide	association	studies	(GWAS)	quickly	

become	the	dominant	choice	for	researchers	to	study	the	genetic	contribution	to	complex	

diseases.	 In	 a	 GWAS,	 a	 sample	 of	 cases	 (i.e.	 people	with	 the	 disease	 of	 interest)	 and	

controls	(people	without	the	disease)	from	a	population	are	genotyped	and	statistically	

tested	to	determine	if	any	variants	are	more	frequently	observed	in	cases	than	controls.	

GWASs	 have	 successfully	 revealed	 numerous	 genetic	 variants	 attributable	 to	 many	

complex	diseases	and	traits,	such	as	diabetes,	psychiatric	disorders,	cancers,	height,	and	
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blood	pressure.	By	the	year	2015,	>	2,000	GWAS	publications	have	 identified	>	15,000	

variants	associated	with	>	600	human	diseases	and	traits	(Welter	et	al.	2014).	Although	a	

large	number	of	associated	variants	have	been	identified,	these	variants	only	collectively	

explain	a	modest	proportion	of	heritability	for	a	given	disease	(Manolio	et	al.	2009);	this	

discrepancy	between	the	observed	and	the	estimated	heritability	 is	 termed	as	missing	

heritability.	 One	 of	 the	 explanations	 for	 the	 missing	 heritability	 is	 that	 the	 variants	

identified	in	GWAS	are	mostly	common	variants	with	frequency	>	5%	in	the	population	

(Manolio	et	al.	2009).	It	is	believed	that	a	risk	variant	reducing	the	fitness	(causing	a	deadly	

disease)	 is	 less	 likely	to	be	transmitted	to	offspring,	resulting	 in	a	 low	frequency	 in	the	

population;	therefore,	it	is	hypothesized	that	rare	variants	undetected	by	array	genotyping	

could	explain	a	substantial	portion	of	the	missing	heritability	(Manolio	et	al.	2009;	Eichler	

et	al.	2010;	Cirulli	and	Goldstein	2010;	Lee	et	al.	2014).	However,	the	discovery	of	rare	

variants	 requires	 much	 denser	 genotyping,	 which	 was	 not	 feasible	 with	 array	

technologies.	

it	was	not	until	the	innovation	of	next-generation	sequencing	technology	in	2005	that	

the	comprehensive	discovery	of	rare	variants	has	become	feasible	(Goodwin,	McPherson,	

and	 McCombie	 2016).	 Using	 next-generation	 sequencing,	 a	 massive	 number	 of	 rare	

variants	have	been	identified.	In	the	1000	Genomes	Project	(The	1000	Genomes	Project	

Consortium	2015),	which	sequenced	the	full	genome	of	>	2,500	individuals	from	world-

wide	populations,	the	majority	of	variants	were	rare:	72%	of	88	million	variants	have	allele	

frequency	 <	 0.5%.	 In	 addition,	 sequencing	 protein-coding	 regions	 (~1%	 of	 the	 human	

genome)	 of	 60,706	 individuals	 of	 diverse	 ancestries	 has	 identified	 99%	 of	 10	 million	

variants	with	allele	frequency	<	1%,	and	54%	are	singleton	variants	(only	observed	in	one	
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individual;	allele	frequency	~0.002%)	(Lek	et	al.	2016).	Identifying	the	association	between	

these	rare	variants	and	diseases	typically	requires	a	large	number	of	samples;	>	10,000	

samples	would	be	necessary	to	statistically	detect	an	associated	variant	with	frequency	

0.1%	and	modest	effect	size	(Manolio	et	al.	2009).	In	addition,	the	sample	size	is	roughly	

quadratic	 to	 the	 inverse	 of	 effect	 size,	 suggesting	 finding	 an	 extremely	 rare	 variant	

association	with	weak	effect	size	will	require	an	enormous	number	of	samples.	Although	

the	cost	of	sequencing	has	dropped	to	~$1,000	per	sample	in	2015	(Goodwin,	McPherson,	

and	McCombie	2016),	it	still	poses	a	substantial	financial	burden	to	collect	such	a	large	

sample	 size.	 Furthermore,	with	 a	 large	 sample	 size,	 the	 heterogeneity	 in	 samples	 can	

easily	confound	results	and	generate	spurious	signals,	known	as	population	stratification,	

in	 which	 samples	 from	 different	 populations	 consist	 of	 different	 allele	 frequency	 and	

disease	 prevalence	 (Zawistowski	 et	 al.	 2014).	 Methods	 that	 controls	 for	 population	

stratification	 for	common	variants	may	also	not	 reliably	 reduce	 the	confounding	effect	

caused	by	population	stratification	for	rare	variants	(Mathieson	and	McVean	2012).	Thus,	

it	is	important	to	develop	new	tools	and	efficient	study	designs	to	facilitate	the	process	of	

untangling	the	rare	variant	contribution	toward	complex	diseases.	

One	possible	solution	to	adjust	for	population	stratification	is	to	use	family	samples	

where	family	members	typically	have	a	matched	genetic	and	environmental	background	

(Ott,	Kamatani,	and	Lathrop	2011).	When	using	only	within-family	information,	a	family-

based	association	test	can	be	robust	to	population	stratification	(Spielman,	McGinnis,	and	

Ewens	1993;	Abecasis,	Cardon,	and	Cookson	2000).	Another	advantage	of	using	 family	

samples	is	to	increase	the	observed	copies	of	risk	variants	in	the	susceptible	loci,	leading	

to	power	 gain	 (Ott,	 Kamatani,	 and	 Lathrop	2011).	 For	 example,	 for	 a	 rare	 risk	 variant,	
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multiple	affected	family	members	in	a	family	are	likely	to	carry	the	same	variant.	Because	

they	can	be	powerful	and	robust	to	population	stratification,	family-based	study	designs	

are	an	attractive	and	tractable	means	of	studying	the	relationship	between	rare	variants	

and	complex	diseases.		

Recently	proposed	family-based	methods	for	rare-variant	associations	typically	extend	

the	 existing	methods	 to	 gene-based	 tests,	which	 combine	 the	 information	 across	 rare	

variants	 in	 a	 gene	 region	 to	 collectively	 assess	 their	 associations	 (H.	Chen,	Meigs,	 and	

Dupuis	2013;	Ionita-Laza	et	al.	2013;	Schaid	et	al.	2013;	De	et	al.	2013);	these	methods	

can	be	categorized	into	two	classes:	The	first	class	separate	extended	families	into	many	

trios	as	proposed	by	FBAT	(Laird,	Horvath,	and	Xu	2000)	and	adapts	the	gene-based	tests	

(Ionita-Laza	et	al.	2013;	De	et	al.	2013).	This	class	of	approaches	loses	efficiency	from	not	

jointly	examining	an	extended	family	and	not	considering	founders’	disease	status	(Laird	

and	Lange	2006).	The	second	class	of	approaches	directly	extends	population	gene-based	

tests	to	adapt	family	samples	by	accounting	for	the	relatedness	(Schifano	et	al.	2012;	H.	

Chen,	Meigs,	 and	Dupuis	 2013;	X.	Wang	et	 al.	 2013).	However,	 the	adjustment	 to	 the	

relatedness	 reduces	 the	 effective	 sample	 size,	 therefore	 not	 efficiently	 using	 the	

information	contained	in	the	family,	offsetting	the	benefit	of	enriching	the	genetic	loading	

at	the	susceptible	loci	(Lin	and	Zöllner	2015).	Furthermore,	existing	family-based	methods	

are	typically	applicable	to	specific	pedigree	structures	or	can	only	apply	to	either	binary	

or	continuous	traits.	 In	this	dissertation,	we	present	efficient	family-based	methods	for	

rare	 variant	 associations	 that	 can	 apply	 to	 both	 binary	 and	 continuous	 traits,	 and	 be	

flexible	 to	 arbitrary	 pedigree	 structures,	 from	 sibling	 pairs	 (sibpairs)	 to	 extended	

pedigrees.	
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In	 Chapter	 2,	we	 present	 a	 new	method	 for	 association	 testing	 based	 on	 affected	

sibpairs.	For	rare	risk	variants,	an	affected	sibpair	 is	more	 likely	 to	share	the	same	risk	

variant	identity-by-descent	(IBD),	i.e.	the	variant	resides	on	the	shared	IBD	chromosomes.	

Based	on	this	observation,	we	test	for	the	association	in	affected	sibpairs	by	comparing	

the	allele	count	on	shared	IBD	chromosome	to	non-shared	IBD	chromosome,	and	develop	

a	statistical	test,	which	we	refer	to	as	test	for	rare-variant	association	with	family-based	

internal	control	(TRAFIC)	(Lin	and	Zöllner	2015).	TRAFIC	is	generally	robust	to	population	

stratification	 as	 “cases”	 and	 “controls”	 are	 matched	 within	 each	 sibpair.	 By	 using	

simulations,	we	show	that	TRAFIC	has	the	most	significant	power	gain	over	the	population	

case-control	 design	 for	 rare	 variants	 with	 summed	 allele	 frequency	 <	 5%	 in	 a	 given	

genomic	region.	Considering	allelic	heterogeneity,	where	risk	variants	have	different	effect	

sizes,	 TRAFIC	 doubles	 the	 power	 of	 a	 case-control	 study	 in	 many	 realistic	 parameter	

settings.		

Many	 recent	 family-based	 studies	 collect	 data	 from	 extended	 families	 (Hunt	 et	 al.	

2005;	 Mahmood	 et	 al.	 2014;	 Sidore	 et	 al.	 2015).	 With	 common	 diseases,	 including	

unaffected	 family	members	can	provide	additional	 information	 (Laird,	Horvath,	and	Xu	

2000).	Using	the	full	information	from	extended	families	can	further	improve	power	(Laird	

and	Lange	2006).	However,	few	methods	have	used	IBD	information	for	extended	families.	

Sul	et	al.	[2016]	proposed	RareIBD	to	evaluate	the	excessive	sharing	of	IBD	variants	among	

affected	 and	 the	 depletion	 of	 sharing	 on	 unaffected	 family	 members.	 To	 reduce	 the	

computational	burden	while	evaluating	the	significance,	RareIBD	assumes	that	only	one	

founder	in	each	family	pedigree	carries	the	risk	variant.	However,	when	multiple	family	

members	are	ascertained	 to	be	affected,	 this	assumption	may	not	be	valid.	Therefore,	
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RareIBD	 has	 inflated	 type	 I	 error	 in	 these	 ascertained	 families	 (Sul	 et	 al.	 2016).	 Thus,	

devising	a	new	and	efficient	family-based	methods	that	can	correctly	harness	extended	

families	is	needed.		

Therefore,	in	Chapter	3,	we	present	testing	for	rare-variant	associations	using	pedigree	

studies	(TRAP).	A	variant	that	increases	disease	risk	is	more	likely	to	be	transmitted	from	

founders	 to	 multiple	 affected	 offspring	 and	 resides	 on	 IBD	 chromosomes.	 Thus,	

conditional	on	the	inheritance	vector,	TRAP	evaluates	the	departure	from	the	expected	

number	of	variants	shared	among	affected	and	among	unaffected	family	members.	TRAP	

is	applicable	to	any	type	of	pedigree	structures,	from	sibpairs	to	multi-generation	families,	

and	can	also	apply	to	families	with	missing	founders.	We	evaluate	TRAP	using	simulations	

with	 realistic	 parameter	 configurations	 and	 show	 that,	 given	 the	 same	 number	 of	

sequenced	 individuals,	TRAP	can	substantially	outperform	the	conventional	population	

case-control	design	and	existing	family-based	methods.		

Both	 TRAFIC	 and	 TRAP	 described	 above	 are	 applicable	 to	 test	 for	 rare	 variant	

association	 with	 binary	 traits.	 However,	 continuous	 traits	 are	 routinely	 and	 readily	

collected	in	many	studies;	for	example,	in	a	diabetes	study,	patients	are	often	measured	

for	their	lipid	level,	glucose	level,	waist/height	ratio,	and	blood	pressure.	Existing	family-

based	methods	 for	 studying	 continuous	 traits	 typically	 face	 the	 same	challenge	as	 the	

methods	for	studying	binary	traits,	namely	not	efficiently	using	the	family	information.	In	

addition,	different	sampling	strategies	can	affect	the	efficiency	of	these	existing	family-

based	methods	for	continuous	traits.	There	are	two	common	ways	of	sampling	families:	

the	first	design	is	to	collect	families	ascertained	to	have	extreme	traits;	if	a	rare	variant	

increases	the	trait	value,	 this	rare	variant	 is	 likely	to	segregate	 in	 family	members	who	
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have	 a	 high-level	 trait.	 Collecting	 such	 ascertained	 families	 can	 increase	 the	 observed	

frequency	 of	 associated	 variants,	 leading	 to	 power	 gain.	 Although	 powerful,	 the	

ascertainment	 requirement	 typically	 increases	 the	 cost	 of	 collecting	 such	 families,	

resulting	in	a	smaller	sample	size	(given	a	fixed	budget),	which	can	offset	the	increased	

copies	 of	 associated	 variants.	 The	 second	 design	 is	 to	 collect	 a	 larger	 sample	 of	

unascertained	families,	 i.e.	randomly	selected	families	in	a	population.	This	design	may	

still	allow	us	to	observe	excessive	copies	of	risk	variants	within	a	family,	described	as	the	

‘Jackpot’	 effect	 (Feng	et	 al.	 2015).	 Thus,	 developing	 a	method	 that	provides	 adequate	

statistical	performance	for	both	scenarios	can	ease	the	process	of	identifying	rare	variant	

associations	and	not	have	to	consider	whether	the	family	is	“ascertained”	or	not.			

In	Chapter	4,	we	present	an	efficient	method	to	test	for	rare	variant	associations	with	

continuous	 traits	 using	 extended	 families	 (TRACE),	which	 can	be	 applied	 to	 both	 non-

ascertained	and	ascertained	scenarios.	TRACE	 is	a	combined	test	that	use	both	within-

family	and	between-family	information.	For	within-family	information,	we	extend	the	idea	

from	TRAP	that	if	a	variant	increases	the	trait	value,	we	test	if	family	members	with	high	

trait	 values	 are	 more	 likely	 to	 share	 the	 variant.	 Equivalently,	 conditional	 on	 the	

inheritance	vector,	the	variant	would	pass	through	the	founder	chromosome	to	include	

many	family	members	with	high	trait	values.	To	exploit	between-family	information,	we	

test	for	the	association	between	the	genetic	loading	and	the	mean	trait	of	a	family.	Using	

simulations,	 we	 show	 that	 including	 between-family	 information	 can	 substantially	

improve	 power	 compared	 to	 only	 using	 within-family	 information.	 Under	 a	 non-

ascertained	scenario,	TRACE	is	more	powerful	than	the	existing	family-based	methods	for	

large	pedigree;	for	ascertained	scenarios,	TRACE	shows	an	advantage	in	power	over	the	
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existing	approaches	in	all	considered	pedigree	structures.	

In	summary,	we	develop	three	innovative	methods	in	this	dissertation	to	efficiently	

test	 for	 rare	 variant	 associations	 with	 complex	 diseases	 by	 using	 family	 samples.	 Our	

methods	provide	practical	sampling	guidelines	for	future	large-scaled	family	studies	which	

can	achieve	the	highest	power	to	detect	associations.	Identifying	associated	rare	variants	

to	 complex	 diseases	 can	 facilitate	 the	 downstream	 steps	 to	 study	 their	 functionality,	

thereby	developing	advanced	strategies	for	early	detection	and	treatments.	
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Chapter	2 	
Robust	and	Powerful	Affected	
Sibpair	Test	for	Rare	Variant	

Associations	

2.1. Introduction	

Rare	variants	with	large	relative	risk	are	hypothesized	to	explain	some	of	the	missing	

heritability	of	complex	diseases	(Manolio	et	al.	2009).	Several	studies	have	identified	rare	

variants	 underlying	 rare	 Mendelian	 diseases	 using	 next-generation	 sequencing	

technology	(Ng	et	al.	2009;	Ng	et	al.	2010).	However,	the	conventional	case-control	design	

has	 low	statistical	power	 to	detect	 the	association	between	 rare	variants	and	complex	

diseases	(B.	Li	and	Leal	2008;	Cooper	and	Shendure	2011).	To	overcome	the	low	power	of	

single-marker	test	on	rare	variants,	researchers	have	proposed	to	combine	variants	in	a	

gene	or	genomic	region	to	test	for	association	(B.	Li	and	Leal	2008;	Zawistowski	et	al.	2010;	

Price	et	al.	2010).	However,	such	gene-based	tests	in	population	samples	may	still	need	

>10,000	 individuals	 to	 identify	 the	 signal	 from	 rare	 variants	 (Nelson	 et	 al.	 2012);	

sequencing	 such	 large	 samples	 is	 still	 very	 expensive.	 Moreover,	 large	 samples	 are	

typically	more	 heterogeneous	 in	 origin,	 increasing	 the	 risk	 of	 population	 stratification	

(Price	et	al.	2006).	 In	such	large	samples,	even	subtle	stratification	causes	substantially	
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increased	false	positive	rate	in	rare	variant	tests	(Zawistowski	et	al.	2014).	While	methods	

to	control	for	population	stratification,	such	as	principal	components	and	genomic	control	

(Devlin	and	Roeder	1999;	Price	et	al.	2006)	have	been	successfully	applied	to	common	

variants,	 it	 is	 unclear	 whether	 such	 methods	 are	 appropriate	 for	 rare	 variant	 tests	

(Mathieson	and	McVean	2012;	Liu,	Nicolae,	and	Chen	2013).		

As	 family	 members	 are	 naturally	 matched	 for	 genetic	 background,	 several	 recent	

gene-based	methods	for	testing	the	association	between	rare	variants	and	the	phenotype	

adapt	family	data	to	control	for	population	stratification	(Guo	and	Shugart	2012;	De	et	al.	

2013)	.	In	addition,	the	allele	frequency	of	rare	risk	variants	in	cases	can	be	substantially	

increased	 by	 collecting	 cases	with	 affected	 relatives	 (Fingerlin,	 Boehnke,	 and	Abecasis	

2004;	 Peng	 et	 al.	 2010;	 Zöllner	 2012).	While	 collecting	 families	with	multiple	 affected	

members	is	challenging,	family-based	studies	of	rare	variants	can	leverage	existing	large	

collections	of	families	that	were	originally	generated	for	linkage	analysis	(Rao	et	al.	2003;	

Howson	et	al.	2009;	Guan	et	al.	2012);	for	example,	International	Type	2	Diabetes	Linkage	

Analysis	Consortium	contains	>	4000	affected	sibpairs	(Guan	et	al.	2012).		

Methods	have	been	proposed	to	extend	the	current	collapsing	tests	to	rare	variants	in	

family	 data.	 Guo	 and	 Shugart	 (2012)	 and	 De	 et	 al.	 (2013),	 extended	 the	 family-based	

association	 test	 (FBAT)	 (Laird,	Horvath,	 and	 Xu	 2000)	 to	 rare	 variants	 in	 the	 style	 of	 a	

collapsing	test.	Schifano	et	al.	(2012)	and	Chen	et	al.	(2013)	used	linear	mixed	models	to	

extend	the	SNP-set	kernel	association	test	(SKAT)	(Wu	et	al.	2011)	to	families.	Shugart	et	

al.	(2012)	and	Fang	et	al.	(2012)	proposed	to	estimate	the	relatedness	between	samples	

and	adjust	the	test	statistics	for	rare	variant	association	accordingly.	However,	none	of	the	

existing	methods	directly	leverage	the	benefit	of	studying	families	where	the	same	rare	
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variant	is	observed	multiple	times.	By	using	such	information,	we	can	increase	power	to	

detect	the	association	between	rare	variants	and	the	phenotype.		

Here,	we	propose	a	powerful	 framework	 for	 testing	 rare	variant	associations	using	

affected	 sibpairs.	We	 create	 a	 matched	 design	 by	 comparing	 the	 allele	 count	 of	 rare	

variants	on	shared	identical	by	descent	(IBD)	chromosome	regions	to	the	allele	count	on	

non-shared	identity	by	descent	chromosome	regions	across	affected	sibpairs	in	a	region	

of	 interest.	 Sharing	 status	 of	 chromosome	 regions	 can	 be	 easily	 estimated	 using	 high	

density	genotype	data	 (Keith	et	al.	2008),	and	sharing	status	of	alleles	can	be	 inferred	

conditional	 on	 the	 known	 chromosome	 region	 sharing	 status.	 Intuitively,	 we	 consider	

shared	chromosome	regions	as	“case”	chromosome	regions	and	non-shared	chromosome	

regions	as	“control”	chromosome	regions.	Under	the	null	hypothesis	of	no	association,	

the	 probability	 of	 a	 shared	 chromosome	 region	 carrying	 an	 allele	 is	 identical	 to	 the	

probability	of	a	non-shared	chromosome	region	carrying	an	allele.	Under	the	alternative	

that	 an	 allele	 increases/decreases	 the	 disease	 risk,	 the	 probability	 of	 a	 shared	

chromosome	 region	 carrying	 that	 allele	 is	 higher/lower	 than	 the	probability	 of	 a	 non-

shared	chromosome	region	carrying	that	allele.	

We	evaluate	this	design	by	calculating	the	analytical	power	for	a	collapsing	gene-based	

test	(B.	Li	and	Leal	2008),	assuming	a	general	model	of	rare	risk	alleles	that	is	specified	by	

the	 summed	 allele	 frequency	 of	 all	 rare	 risk	 variants	 in	 the	 gene	 and	 the	 mean	 and	

variance	 of	 their	 effect	 size	 (Zöllner	 2012).	We	 show	 that	 given	 the	 same	 number	 of	

sequenced	 individuals,	 the	power	of	the	proposed	affected	sibpair	test	 for	rare-variant	

association	with	 family-based	 internal	control	 (TRAFIC)	 is	higher	 than	 the	conventional	

case-control	 design	 for	 rare	 risk	 variants	 (summed	 risk	 allele	 frequency	 <	 0.05).	
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Considering	allelic	heterogeneity,	where	risk	variants	have	different	effect	sizes,	TRAFIC	

doubles	the	power	of	a	case-control	study	in	many	realistic	parameter	values.		We	also	

evaluate	the	power	of	the	proposed	method	under	various	gene-gene	interaction	models	

and	find	that	power	depends	on	the	type	of	interaction	and	the	overall	heritability	of	the	

disease.	Using	simulations,	we	also	show	that	the	proposed	TRAFIC	is	generally	robust	to	

population	stratification.	

2.2. Materials	and	Methods	

2.2.1. Test	 for	 rare-variant	 association	 with	 family-based	 internal	
control	(TRAFIC)		

We	consider	a	set	of	affected	sibpairs	with	known	number	of	chromosome	regions	

shared	identical	by	descent	(IBD).	At	a	locus	of	interest	(for	example	a	gene),	we	compare	

the	 count	 of	 alleles	 of	 rare	 variants	 on	 chromosome	 regions	 shared	 IBD	 between	 the	

siblings	to	the	count	of	alleles	of	rare	variants	on	chromosome	regions	not	shared	 IBD	

(non-IBD	 chromosome	 regions)	 across	 sibpairs.	 Let,	 𝑝./0		be	 the	 frequency	 of	 IBD	

chromosome	region	carrying	at	least	one	allele	and	𝑝123./0	be	the	frequency	of	non-IBD	

chromosome	regions	carrying	at	least	one	allele.	Alleles	without	effect	on	disease	risk	are	

equally	likely	to	occur	on	any	chromosome	region	regardless	of	IBD	status.	Thus,	the	null	

hypothesis	under	no	association	is	𝐻5: 𝑝./0 = 𝑝123./0.	Variants	that	are	associated	with	

the	phenotype	(protective	or	causative)	would	differ	in	frequency	between	IBD	and	non-

IBD	 chromosome	 regions.	 Hence,	 we	 can	 test	 for	 departure	 from	 the	 null	 hypothesis	

either	in	a	collapsing	framework	by	considering	the	alternative	𝐻7:	𝑝./0 ≠ 𝑝123./0	or	in	

a	 dispersion	 framework	where	 this	 alternative	 is	 considered	 for	 each	 variant	 and	 the	
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combined	test	statistic	aggregates	the	evidence	across	all	variants.		

	 0	IBD	chromosome	
region	

1	IBD	chromosome	
region	

2	IBD	chromosome	
regions	

Both	siblings	are	
homozygous	minor	

allele	

4	non-shared	
alleles	

1	shared	and	2	non-
shared	alleles	 2	shared	alleles	

One	homozygous	
minor	allele	and	
one	heterozygote	

3	non-shared	
alleles	

1	shared	and	1	non-
shared	alleles	 N/A	

Both	siblings	are	
heterozygous	

2	non-shared	
alleles	

Ambiguous	
configuration	 1	shared	allele	

Table	2-1.	 Identification	of	 variant	 IBD	status	 conditional	on	chromosome	 region	 IBD	status.	Assuming	chromosome	
region	IBD	status	is	known,	the	number	of	shared	and	non-shared	alleles	can	be	inferred	for	all	but	one	configuration	of	
genotypes	(shaded	cell).	

In	a	sibpair	with	known	IBD	status,	identifying	whether	an	allele	of	a	variant	is	located	

on	 an	 IBD	 or	 a	 non-IBD	 chromosome	 region	 is	 straightforward	 for	most	 genotypes	 as	

shown	in	Table	2-1;	for	example,	when	a	sibpair	does	not	share	the	chromosome	region	

(0	IBD	chromosome	region),	all	observed	alleles	for	that	variant	in	two	siblings	are	non-

shared;	for	a	sibpair	who	shares	1	IBD	chromosome	region,	the	alleles	of	a	homozygous	

sibling	must	be	one	shared	and	one	non-shared.	Only	when	the	sibpair	shares	one	IBD	

chromosome	 region	 and	 the	 genotypes	 are	 heterozygous	 in	 both	 individuals,	 the	 IBD	

status	of	the	allele	is	ambiguous	(shaded	in	Table	2-1):	this	configuration	could	be	either	

the	result	of	a	single	rare	allele	located	on	the	IBD	chromosome	region	or	two	copies	of	

the	rare	allele	inherited	separately	on	the	non-IBD	chromosome	regions	(as	illustrated	in	

Figure	A-1).		

To	resolve	this	ambiguous	configuration,	we	implement	an	imputation	algorithm	and	

use	simulations	to	show	the	false	positive	rate	is	controlled	(see	Appendix	A.1	for	details).		
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2.2.2. Evaluating	TRAFIC	

The	analytical	power	of	the	proposed	TRAFIC	based	on	a	collapsing	gene-based	test	

depends	on	the	difference	between	the	expected	allele	count	on	shared	IBD	chromosome	

regions	 and	 the	 expected	 allele	 count	 on	 non-shared	 IBD	 chromosome	 regions.	 To	

calculate	these	expectations,	we	assume	that	all	rare	variants	evaluated	in	a	locus	occur	

on	 different	 haplotypes.	 Let	 f	 be	 the	 sum	 of	 population	 allele	 frequencies	 of	 all	 risk	

variants	(summed	risk	allele	frequency).	For	each	sibpair,	we	count	the	number	of	alleles	

H; ∈ {0,1,2}		on	 the	 shared	 chromosome	 regions 		and	 the	 number	 of	 alleles	H1; ∈

{0,1,2,3,4}		on	 non-shared	 chromosome	 regions.	 Let	AAB 		be	 an	 affected	 sibpair	 and	

P H;, H1; AAB, S 	be	the	probability	of	H;, H1;	conditional	on	the	number	of	shared	IBD	

chromosome	 regions	 S ∈ {0,1,2}	.	 Using	 Bayes’	 rule,	 we	 can	 write	 this	 conditional	

probability	as	

P H;, H1; AAB, S = P AAE H;, H1; P H;, H1; S P S
1

P AAB, S
,	

where	P AAB H;, H1; 		depends	 on	 the	 underlying	 genetic	 and	 effect	 size	model	 (see	

Appendix	A.3	for	derivations).	Based	on	previous	work	(Zöllner	2012),	we	model	the	effect	

size	(relative	risk)	of	each	risk	haplotype	as	a	random	variable	with	the	first	two	moments	

𝜇	and	σH.	Then,	P H;, H1; AAB, S 	is	fully	determined	by	the	parameters	𝜇,	σH,	and	f.	We	

calculate	 the	power	 for	TRAFIC	based	on	P H;, H1; AAB, S 		for	a	 range	of	 relative	 risk	

parameter	𝜇	and	σH,	and	under	different	𝑓	assuming	a	simple	collapsing	method	(B.	Li	and	

Leal	2008)	to	test	the	association	between	rare	variants	and	the	dichotomous	phenotype	

(more	details	 in	Appendix	A.4).	 To	maintain	 an	overall	 false	positive	 rate	of	 0.05	 after	

testing	20,000	genes	in	the	genome,	we	set	the	false	positive	rate	to	2.5×10-6.	We	compare	

our	 proposed	 TRAFIC	with	 two	 other	 designs:	 (1)	 the	 conventional	 case-control	 study	
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comparing	a	sample	of	cases	to	unaffected	controls.	(2)	A	selected	cases	design	comparing	

cases	that	are	ascertained	to	have	an	affected	sibling	to	unaffected	controls	 (Fingerlin,	

Boehnke,	and	Abecasis	2004;	Zöllner	2012).	All	designs	retain	the	nominal	false	positive	

rate	under	the	null	(Table	A-1).	

2.2.3. Simulation	setup	for	TRAFIC	

To	validate	the	derived	analytical	results,	we	simulate	sibpair	samples	and	apply	our	

proposed	TRAFIC.	We	first	generate	four	independent	parental	haplotypes,	each	carrying	

a	risk	allele	with	probability	f.	Without	considering	recombination,	we	then	generate	two	

descendants,	 each	 randomly	 inheriting	 one	 chromosome	 region	 from	 each	 parent.	

Following	Risch	(1990),	we	define	the	contribution	to	prevalence	K	at	the	locus	of	interest	

as	𝐾K		and	 the	 contribution	 of	 the	 remaining	 genome	 as	𝐾L 	.	 The	 prevalence	 among	

subjects	with	an	affected	relative	with	relation	status	R	is	𝐾B;	the	contribution	to	𝐾B 	at	

the	locus	of	interest	and	the	remaining	genome	are	then	𝐾KB 	and	𝐾LB,	respectively.	We	

adjust	𝐾L𝐾LB 	under	the	multiplicative	model	to	maintain	both	𝐾	and	the	sibling	relative	

risk	(𝑆𝑅𝑅).	

𝑆𝑅𝑅 =
𝐾K𝐾KB𝐾L𝐾LB

𝐾×𝐾 .	

Here	𝐾K𝐾KB 	depends	on	P AAB H;, H1; 	(more	details	in	Appendix	A.3).	The	relative	

risk	 of	 the	 risk	 allele	 follows	 a	 gamma	distribution	with	 specified	𝜇	 and	𝜎H	.	 Thus,	 the	

probability	of	having	both	siblings	in	the	family	affected	is	𝐾K𝐾KB𝐾L𝐾LB 	and	is	set	to	1	if	

the	simulated	probability	exceeds	1.	We	generate	datasets	of	1000	affected	sibpairs	 in	

each	 replicate.	 To	evaluate	 the	performance	of	our	multiple	 imputation	algorithm,	we	

generate	sibpairs	assuming	the	sharing	status	is	known.	Then	we	mask	the	true	location	
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for	the	double-heterozygote	sibpairs	who	share	one	IBD	chromosome	region	and	apply	

our	multiple	imputation	algorithm.	

2.2.4. Population	stratification	

Using	the	simulation	design	described	above,	we	evaluate	the	impact	of	population	

stratification.	We	simulate	two	populations	with	summed	risk	allele	frequency	of	0.01	and	

0.05,	 respectively,	and	assign	a	prevalence	ratio	𝜋	between	two	populations.	Assuming	

two	populations	have	the	same	sibling	relative	risk,	the	ratio	of	frequencies	of	affected	

sibpairs	 between	 the	 two	 populations	 is	 then	 𝜋H	.	 Assuming	 that	 both	 populations	

contribute	 equally,	 we	 generate	 case-control	 samples	 by	 sampling	 1000	 cases,	 a	

proportion	of	𝜋/(1 + 𝜋)		from	population	1	and	1/(1 + 𝜋)		from	population	2.	We	also	

sample	 1000	 controls	 with	 equal	 contribution	 from	 each	 population.	 To	 generate	 a	

stratified	 sample	 for	 TRAFIC,	 we	 generate	 a	 sample	 of	 1000	 affected	 sibpairs	 with	 a	

proportion	 of	𝜋H/(1 + 𝜋H)		from	 population	 1	 and	 a	 proportion	 of	1/(1 + 𝜋H)		from	

population	2.	We	assume	unknown	sharing	status	for	double-heterozygote	sibpairs	who	

share	 one	 IBD	 chromosome	 region	 and	 impute	 the	 sharing	 status	 through	 multiple	

imputation.	To	generate	cases	for	the	selected	cases	design,	we	sample	affected	sibpairs	

with	a	proportion	of		𝜋H/(1 + 𝜋H)	from	population	1	and	1/(1 + 𝜋H)	from	population	2;	

controls	are	sampled	evenly	from	both	populations.	We	generate	1000	datasets	for	each	

value	of	𝜋	and	estimate	the	false	positive	rate.		

2.2.5. 	Gene-gene	interaction	

Interaction	between	the	locus	of	interest	and	the	remaining	genome	can	influence	the	

power	 of	 association	 tests	 in	 family	 samples	 (Zöllner	 2012).	We	model	 gene-genome	
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interaction	as	two	loci,	L	and	G.	L	is	the	locus	of	interest	while	G	represents	genetic	effects	

in	the	remainder	of	the	genome.	We	define	the	joint	effect	as	

𝑃 𝐴 ℎX, ℎ3, 𝑔Z, 𝑔[ ∝ 𝛽K
^_`^a	𝛽L

bc`bd𝛾 ^_`^a bc`bd .						

where	ℎX	and	ℎ3	represent	the	indicator	of	a	risk	allele	at	locus	L;	let	𝑔Z	and	𝑔[	represent	

the	indicator	of	a	risk	allele	at	locus	G.	In	the	absence	of	risk	alleles	at	G,	all	risk	alleles	at	

locus	L	have	the	same	relative	risk	𝛽K	.	Moreover,	we	describe	the	extent	of	interaction	in	

this	model	by	the	parameter	𝛾	as	the	relative	risk	when	risk	alleles	are	present	at	both	loci	

L	and	G,	where	𝛾 = 	1	indicates	no	interaction,	𝛾 < 1	indicates	antagonistic	 interaction,	

and	𝛾 > 1	indicates	synergistic	interaction.	Under	this	model,	the	marginal	relative	risk	at	

locus	L	is			

𝑃(𝐴|ℎX = 1)
𝑃(𝐴|ℎX = 0) =

𝛽K 𝛽K
^a𝑝 ℎ3 (𝛽L𝛾)bc	`bd𝛾^a bc`bd 𝑝(𝑔Z)𝑝(𝑔[)bdbc 	^a

𝛽K
^a𝑝 ℎ3 𝛽L

bc	`bd𝛾^a bc`bd 𝑝(𝑔Z)𝑝(𝑔[)bdbc 	^a

.	

The	marginal	relative	risk	at	locus	G	is	expressed	in	a	similar	fashion.	To	explore	the	

effect	of	gene-gene	interaction,	given	the	sibling	relative	risk,	we	vary	𝛾	while	adjusting	

𝛽K	and	𝛽L 	to	keep	the	marginal	relative	risks	constant	(see	Appendix	A.5).	This	maintains	

a	 constant	 power	 for	 the	 conventional	 case-control	 study.	 We	 then	 calculate	

P H;, H1; AAE 	at	locus	L	and	evaluate	the	power	of	TRAFIC	for	different	values	of	𝛾.		

2.2.6. An	example	to	illustrate	TRAFIC	

To	illustrate	how	to	apply	TRAFIC,	we	simulate	1000	sibpairs	assuming	the	number	of	

shared	IBD	chromosome	region	is	known.	We	simulate	sequence	data	by	using	coalescent-

model	 based	 simulator	 COSI	 (Schaffner	 et	 al.	 2005)	 to	 generate	 a	 population	 of	 ten	

thousand	 1kb	 haplotypes.	 From	 the	 50	 variants	 in	 the	 region,	 we	 randomly	 pick	 10	

variants	with	minor	allele	frequency	(MAF)	<	0.05	and	assign	each	variant	the	relative	risk	
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as	a	function	of	MAF,	-log10(MAF)	(Wu	et	al.	2011).	In	this	setting,	a	variant	with	MAF	=	

0.05	has	relative	risk	of	1.33	and	a	singleton	has	relative	risk	of	4.	We	thus	generate	a	

population	with	𝑓 = 0.025,	𝜇 = 2.52,	and	𝜎H = 0.62;	 then,	we	generate	1000	affected	

sibpairs	and	apply	TRAFIC	to	that	dataset.		

The	 simulated	 data	 contains	 254,	 509	 and	 237	 sibpairs	 who	 share	 0,	 1,	 and	 2	

chromosome	regions,	respectively;	these	equal	to	983	shared	chromosome	regions	and	

2034	 non-shared	 chromosome	 regions.	 Excluding	 42	 sibpairs	 who	 shared	 one	

chromosome	region	with	ambiguous	double-heterozygote	genotypes,	there	are	51	shared	

and	 67	 non-shared	 chromosome	 regions	 carrying	 at	 least	 one	 allele	 (carrier).	 Using	

imputation	to	resolve	the	IBD	status	of	allele	from	42	sibpairs	with	ambiguous	double-

heterozygote	genotypes,	the	mean	count	of	carrier	chromosome	regions	is	91.7	on	shared	

chromosome	regions	and	67.6	on	non-shared	chromosome	regions.	Using	a	𝜒H	test,	we	

reject	the	null	hypothesis	that	IBD	and	non-IBD	chromosome	regions	are	equally	likely	to	

carry	at	least	one	allele	(p = 5.63×10kll)	indicating	the	presence	of	risk	variants	at	this	

locus.	

2.3. Results	

We	proposed	a	new	gene-based	method	for	analyzing	affected	sibpairs	by	comparing	

the	risk	alleles	on	shared	IBD	chromosome	regions	with	the	risk	alleles	on	non-shared	IBD	

chromosome	regions.	We	evaluated	the	proposed	TRAFIC	design	assuming	a	collapsing	

gene-based	 test	 by	modeling	 allelic	 heterogeneity	 at	 the	 locus	 of	 interest	 based	 on	 a	

summed	allele	frequency	of	all	risk	variants	f	and	a	distribution	of	effect	sizes	with	mean	

𝜇		and	 variance	𝜎H	.	 For	 comparison,	 we	 also	 evaluated	 the	 conventional	 cases-control	
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design	 (conventional)	 and	 a	 case-control	 design	 in	 which	 the	 cases	 are	 selected	

conditional	on	having	an	affected	sibling	(selected	cases)	under	the	same	genetic	model.	

For	all	three	designs,	we	assumed	equal	number	of	sequenced	or	genotyped	individuals.	

To	use	consistent	language,	we	referred	to	shared	IBD	chromosome	regions	in	TRAFIC	as	

cases	and	non-shared	IBD	chromosome	regions	as	controls.		

First,	we	compared	the	expected	summed	minor	allele	frequency	(sMAF)	in	cases	and	

controls	with	and	without	allelic	heterogeneity	to	illustrate	how	TRAFIC	behaved	relative	

to	the	conventional	and	selected	cases	designs.	We	then	calculated	the	analytical	power	

of	 three	designs.	We	also	evaluated	 robustness	 to	population	stratification.	Finally,	we	

calculated	the	analytical	power	of	TRAFIC	while	considering	different	directions	of	gene-

gene	interaction.	

2.3.1. Frequency	distribution	of	risk	variants	

To	 quantify	 the	 enrichment	 of	 risk	 variants	 in	 TRAFIC,	we	 calculated	 the	 expected	

summed	minor	allele	frequency	(sMAF)	of	risk	variants	in	cases	and	controls	of	TRAFIC	for	

a	range	of	genetic	models	(see	Appendix	A.4	for	details).	 	 Initially,	we	modeled	a	 locus	

with	constant	genetic	risk	µ	between	1	and	5	for	all	variants	(𝜎H = 0)	(Figure	2-1)	and	a	

disease	 prevalence	 of	 0.01.	 In	 TRAFIC	 (Figure	 2-1a),	 sMAF	 increased	 rapidly	 in	 cases	

(shared	IBD	chromosome	regions)	and	also	increased	roughly	linearly	with	µ	in	controls	

(non-shared	 IBD	chromosome	regions).	 In	 the	conventional	design	 (Figure	2-1b),	sMAF	

increased	in	cases	almost	linearly	with	relative	risk,	only	slightly	faster	than	the	sMAF	in	

controls	of	TRAFIC.	In	the	selected	cases	design	(Figure	2-1c),	sMAF	in	cases	with	affected	

siblings	 increased	 faster	 than	cases	 in	 the	conventional	 case-control	design	but	 slower	

than	sMAF	 in	cases	of	TRAFIC.	Both	 in	 the	conventional	design	and	the	selected	cases	
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design,	sMAF	in	controls	decreased	slightly	as	µ	increased,	especially	for	more	common	

variants	(𝑓 = 0.20).	As	a	result,	TRAFIC	generated	a	larger	difference	in	sMAF	between	

cases	and	controls	than	the	conventional	case-control	design	in	models	with	𝑓 = 0.01	and	

0.05.	This	advantage	of	TRAFIC	reduced	with	increasing	f.		For	µ	=	2,	the	difference	in	sMAF	

of	TRAFIC	compared	to	the	conventional	design	was	190%	(0.019	to	0.010)	at	f	=	0.01	and	

reduced	to	123%	(0.166	to	0.135)	at	f	=	0.20.	For	a	higher	disease	prevalence	of	0.20,	the	

sMAF	in	controls	decreased	more	rapidly	as	µ	increased	and	the	difference	between	cases	

and	 controls	 grew	 further	 in	 the	 conventional	 case-control	 and	 selected	 cases	 design	

(Figure	A-2).	

	
Figure	2-1.	Summed	minor	allele	frequency	(sMAF)	of	risk	variants	in	cases	(solid	lines)	and	controls	(broken	lines)	under	
different	 study	 designs.	We	 show	 sMAF	 as	 a	 function	 of	mean	 relative	 risk	 of	 risk	 variants	 for	 (a)	 TRAFIC,	 (b)	 the	
conventional	case-control	design,	and	(c)	the	selected	cases	design	for	summed	allele	frequencies	(f)	of	0.01,	0.05	and	
0.2	and	fixed	variance	of	relative	risk	𝜎H = 0.		

To	 evaluate	 scenarios	 where	 genetic	 effect	 differs	 between	 risk	 variants,	 we	

considered	a	distribution	of	relative	risks	with	𝜎H > 0	while	maintaining	𝜇 = 1.5	(Figure	

2-2);	for	𝑓 = 0.01,	a	value	𝜎H = 0.1	represents	e.g.	a	scenario	of	20	tested	variants	with	

equal	frequencies	where	6	of	the	tested	variants	are	non-functional	(relative	risk	=	1)	and	

14	of	the	tested	variants	have	a	relative	risk	of	1.71.	A	value	𝜎H = 0.2	would	e.g.	represent	
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9	non-functional	 variants	 and	11	 variants	with	 relative	 risk	 1.91.	 Increasing	𝜎H		did	not	

affect	sMAF	in	cases	or	controls	in	the	conventional	design,	as	in	this	design	sMAFs	only	

depended	on	𝜇	(Figure	2-2b).	In	TRAFIC,	sMAF	in	cases	increased	with	σH	while	the	sMAF	

in	 controls	 remained	 constant.	 Similarly,	 in	 the	 selected	 cases	 design,	 sMAF	 in	 cases	

increased	with	σH	,	 albeit	more	 slowly	 than	 for	 TRAFIC	 (Figure	2-2a	 and	 c).	 Even	 if	 the	

average	effect	of	 risk	 variants	 is	1	 (𝜇 = 1	),	 the	difference	 in	 sMAF	between	cases	and	

control	 increased	with	growing	σH	for	TRAFIC	and	for	 the	selected	cases	design	 (Figure	

A-3).	

	
Figure	2-2.	Summed	minor	allele	frequency	(sMAF)	of	risk	variants	in	cases	(solid	lines)	and	controls	(broken	lines)	under	
different	study	designs.	We	show	sMAF	as	a	function	of	variance	of	relative	risk	between	risk	variants	for	(a)	TRAFIC,	(b)	
the	conventional	case-control	design,	and	(c)	the	selected	cases	design	for	summed	allele	frequencies	(f)	of	0.01,	0.05	
and	0.2	and	fixed	mean	relative	risk	𝜇 = 1.5.	

2.3.2. Power	Analysis	

Based	on	 the	differences	 in	expected	sMAF,	we	calculated	 the	analytical	power	 for	

three	 study	 designs	 for	 the	 same	 number	 of	 individuals	 (n=2000):	 (1)	 1000	 affected	

sibpairs	using	TRAFIC,	(2)	1000	cases	and	1000	controls	in	the	conventional	cases-control	

design,	and	(3)	1000	cases	with	affected	siblings	and	1000	controls	in	the	selected	cases	

design.	Thus,	we	generated	4000	independent	observations	for	the	conventional	and	the	
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selected	design,	and	~3000	independent	observations	(~1000	cases	and	~2000	controls)	

for	 TRAFIC.	We	also	determined	power	empirically	using	 simulations	 and	observed	no	

difference	between	empirical	power	and	analytical	power	(Figure	A-4).	

Assuming	all	risk	variants	had	the	same	relative	risk	between	1	and	5	(𝜎H = 0),	the	

selected	cases	design	was	uniformly	most	powerful	(Figure	2-3a)	while	the	power	ranking	

of	TRAFIC	and	the	conventional	design	depended	on	f.	For	rarer	risk	variants	(𝑓 < 0.05),	

TRAFIC	had	substantially	higher	power	 than	 the	conventional	design	across	all	 relative	

risks	 analyzed.	 For	 example,	 for	𝑓 = 0.01		and	𝜇 = 2.5	,	 the	 power	 of	 the	 conventional	

design	 was	 0.131	 compared	 to	 0.532	 for	 TRAFIC.	 With	 increasing	 𝑓		or	 increasing	

prevalence,	the	power	difference	between	TRAFIC	and	the	conventional	design	reduced.	

For	sets	of	risk	variants	with	𝑓 > 0.05,	the	power	of	the	conventional	design	was	larger	

than	the	power	of	TRAFIC.	The	ranking	of	TRAFIC	with	the	conventional	design	depended	

on	the	prevalence	of	the	disease,	for	prevalence	0.20,	the	conventional	design	was	already	

more	powerful	than	TRAFIC	for	𝑓 > 0.01	(Figure	A-5).	

In	models	with	allelic	heterogeneity	(𝜎H > 0),	power	of	TRAFIC	increased	with	rising	

𝜎H	while	the	power	of	the	conventional	design	was	independent	of	𝜎H	and	only	depended	

on	𝑓	(Figure	2-3b).	For	𝑓 = 0.01	and	0.05	at	𝜇 = 1.5,	the	power	of	TRAFIC	was	uniformly	

greater	 than	 the	 power	 of	 the	 conventional	 design.	 For	𝑓 = 0.2	,	 TRAFIC	 was	 more	

powerful	than	the	conventional	design	for	𝜎H > 0.1.	Even	for	high-prevalence	diseases,	

TRAFIC	 was	 more	 powerful	 than	 the	 conventional	 design	 at	 modest	 levels	 of	

heterogeneity	(Figure	A-5).	Moreover,	the	selected	cases	design	was	no	longer	uniformly	

most	powerful	in	the	presence	of	moderate	allelic	heterogeneity.	For	example,	when	𝑓 =

	0.01	and	𝜎H = 2,	TRAFIC	outperformed	the	selected	cases	design	(with	power	of	0.412	
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and	0.306,	respectively).	For	a	model	with	no	mean	effect	(𝜇 = 1),	TRAFIC	was	uniformly	

the	most	powerful	regardless	of	𝑓	(results	not	shown).	

	
Figure	2-3.	The	analytical	power	curve	 for	TRAFIC,	conventional	case-control,	and	selected	cases	design	 for	different	
summed	allele	frequencies	(f).Row	(a)	displays	the	power	as	a	function	of	mean	relative	risk	evaluated	at	variance	of	
relative	risk	𝜎H = 0.	Row	(b)	shows	the	power	as	a	function	of	variance	of	relative	risk	evaluated	at	mean	relative	risk	
𝜇 = 1.5.	Results	are	shown	for	2000	individuals	(1000	sibpairs	or	1000	cases	and	1000	controls)	at	a	significance	level	
2.5×10-6.	

2.3.3. Population	stratification	

We	 modeled	 the	 level	 of	 population	 stratification	 by	 the	 parameter	 𝜋		which	

represents	 the	 ratio	 of	 prevalence	 between	 two	 populations	 (see	 methods).	 In	 the	

absence	of	true	risk	variants	(𝜇 = 1, 𝜎H = 0),	the	conventional	case-control	design	and	

the	selected	cases	design	only	achieved	the	nominal	false	positive	rate	at	𝜋 = 1	where	

equal	proportion	of	 cases	 and	 controls	were	 sampled	 from	 the	 two	populations.	Both	
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designs	showed	substantially	increased	false	positive	rate	when	moving	away	from	𝜋 =

1.	 Especially	 the	 selected	 cases	design	 showed	a	high	 false	positive	 rate	 for	moderate	

levels	of	stratification.	For	𝜋 = 1.22,	the	false	positive	rate	was	0.064	and	0.107	for	the	

conventional	case-control	and	selected	cases	designs;	the	inflation	increased	to	0.725	and	

0.973	when	π = 4.06.	TRAFIC	maintained	the	false	positive	rate	at	the	nominal	level	of	

0.05	across	the	range	of	𝜋	(Figure	2-4)	as	long	as	we	assumed	either	no	linkage	signal	or	

a	linkage	signal	of	the	same	strength	in	the	two	populations.	When	we	modeled	a	strong	

linkage	 signal	 in	 only	 one	 of	 the	 populations,	 we	 observed	 a	 slightly	 increased	 false	

positive	rate	in	TRAFIC	(Appendix	A.6).	

	
Figure	 2-4.	 False	 positive	 rate	 in	 the	 presence	 for	 population	 stratification	 for	 TRAFIC,	 selected	 cases	 and	 the	
conventional	case-control	design.	The	false	positive	rate	is	shown	as	a	function	of	the	prevalence	ratio	𝜋	between	two	
sampled	 populations.	 Calculations	 are	 based	 on	 a	 summed	 allele	 frequency	 of	 0.01	 in	 population	 1	 and	 0.05	 in	
population	2,	and	a	sample	size	of	2000	individuals	(1000	sibpairs	or	1000	cases	and	1000	controls)	at	a	significance	
level	0.05.	

2.3.4. Gene-gene	interaction	

We	summarized	the	effect	of	the	gene-gene	interaction	in	a	two-locus	model	by	the	

parameter	𝛾		(see	Methods)	 and	quantified	 the	 joint	 effect	 of	 both	 loci	 on	 the	disease	
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heritability	by	sibling	relative	risk	(SRR)	(see	Appendix	A.5).	To	ensure	comparability	across	

values	of	𝛾,	we	fixed	the	marginal	relative	risk	at	the	locus	of	interest,	and	adjusted	the	

marginal	 effect	 at	 the	 “remaining	 genome”	 locus	 to	 maintain	 SRR	 at	 2,	 4	 and	 8.	We	

considered	a	locus	of	 interest	with	f	=	0.01	and	set	the	marginal	relative	risk	to	2.2	for	

models	 with	 no	 interaction	 (𝛾 = 1	)	 or	 synergistic	 interaction	 (𝛾 > 1	),	 and	 to	 2.8	 for	

models	 with	 antagonistic	 interaction	 ( 𝛾 < 1	)	 to	 illustrate	 the	 effect	 of	 antagonistic	

interaction	with	reasonable	power.	The	qualitative	 impact	of	 interaction	on	power	was	

independent	of	these	specific	parameter	choices	(Results	not	shown).	

Because	the	marginal	effect	at	the	locus	of	interest	was	constant,	the	power	of	the	

conventional	case-control	study	was	not	affected	by	the	considered	interaction	or	by	SRR.	

The	 power	 of	 TRAFIC	 increased	 with	 𝛾		regardless	 of	 SRR	 across	 most	 interaction	

parameters	 considered	 (Figure	2-5).	 For	 synergistic	 interaction,	 the	power	 rose	quickly	

with	𝛾;	the	exact	trajectory	depended	on	the	SRR	of	the	model.	The	power	for	models	

with	a	higher	SRR	increased	faster	for	a	lower	𝛾,	but	the	rate	of	increase	also	decreased	

faster	for	a	higher	SRR.	Hence	models	with	a	lower	SRR	reached	maximal	power	faster.	In	

models	of	antagonistic	interaction	(𝛾	<	1),	TRAFIC	rapidly	lost	power	with	decreasing	𝛾.	

This	loss	of	power	was	particularly	pronounced	for	highly	heritable	diseases	(SRR	=	8).		For	

SRR	at	2,	4,	and	8,	TRAFIC	was	less	powerful	than	the	conventional	design	for	𝛾	<	0.52,	

0.74,	and	0.76,	respectively	(Figure	2-5a).	However,	the	power	started	to	increase	when	𝛾	

<	 0.38,	 0.31	 and	 0.26	 for	 SRR=2,	 4,	 and	 8,	 respectively.	 For	 this	 extreme	 model	 of	

antagonistic	interaction,	a	variant	that	was	causal	in	a	population	sample	had	a	protective	

effect	 in	 a	 family	 sample.	 Hence,	 the	 minor	 allele	 frequency	 on	 shared	 chromosome	

regions	 became	 lower	 than	 the	 minor	 allele	 frequency	 on	 non-shared	 chromosome	
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regions,	generating	power	in	a	test	for	association.	

	
Figure	2-5.	Analytical	power	of	TRAFIC	and	the	conventional	case-control	design	under	different	models	of	gene-gene	
interaction.	The	horizontal	axis	displays	 the	 interaction	parameter	𝛾;	gray	and	black	 lines	 represent	different	overall	
heritability	parameterized	as	sibling	relative	risk	(SRR).	Panel	a	represents	the	result	for	antagonistic	interaction	(𝛾 <
1);	panel	b	represents	the	result	of	synergistic	interaction	(𝛾 > 1).	Results	are	shown	for	2000	individuals	(1000	sibpairs	
or	1000	cases	and	1000	controls)	at	a	significance	level	2.5×10-6.	

2.4. Discussion		

We	 introduce	 a	 new	 framework	 for	 gene-based	 association	 tests	 of	 rare	 variants	

leveraging	affected	sibpairs	(TRAFIC).	We	compare	the	number	of	risk	alleles	located	on	

chromosome	regions	shared	IBD	in	an	affected	sibpair	to	the	number	of	risk	alleles	located	

on	chromosome	regions	that	are	not	shared	IBD.	TRAFIC	compares	"cases"	and	"controls"	

within	 a	 sibpair	 as	 a	 matched	 design	 and	 is	 thus	 generally	 robust	 to	 population	

stratification.	The	test	evaluates	the	null	hypothesis	of	no	association	and	can	therefore	

generate	a	signal	only	in	the	presence	of	association	and	is	powerful	 in	the	absence	of	

linkage.			

The	proposed	design	of	taking	shared	chromosome	regions	as	new	“cases”	and	non-

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Po
we

r
a.

γ

TRAFIC SRR=2
TRAFIC SRR=4
TRAFIC SRR=8
Conventional

1.0 1.2 1.4 1.6 1.8 2.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

b.

γ



28	

	

shared	 chromosome	 regions	 as	 new	 “controls”	 can	be	 applied	 to	 any	published	 gene-

based	tests.	In	this	study,	we	evaluated	the	design	for	a	collapsing	gene-based	test	as	the	

power	of	this	test	can	be	calculated	without	specifying	minor	allele	frequency	or	effect	

size	 distribution	 of	 each	 risk	 variant,	 and	 it	 is	 therefore	 easier	 to	 obtain	 general	

conclusions.	However,	TRAFIC	can	also	be	applied	to	dispersion	tests	such	as	SKAT	(Wu	et	

al.	 2011).	We	 calculate	 the	 power	 of	 this	 new	method	 using	 a	 general	model	 for	 risk	

variants,	which	is	specified	by	the	summed	allele	frequency	of	risk	variants,	and	mean	and	

variance	of	relative	risk	for	risk	variants.	We	compared	three	study	designs:	(1)	TRAFIC,	(2)	

the	conventional	design	of	cases	and	controls,	and	(3)	a	design	where	cases	are	enriched	

for	rare	variants	by	selecting	case	individuals	with	affected	relatives,	assuming	the	same	

number	of	sequenced/genotyped	samples.	For	diseases	with	prevalence	~1%	and	in	the	

absence	of	gene-gene	interaction,	TRAFIC	was	more	powerful	than	the	conventional	case-

control	design	for	variants	with	summed	risk	allele	frequency	less	than	0.05,	even	though	

the	 conventional	 case-control	 design	 contained	 more	 independent	 observations.	 This	

power	 gain	 has	 two	 drivers.	 First,	 families	 ascertained	 to	 carry	 multiple	 affected	

individuals	 are	 more	 likely	 to	 segregate	 risk	 variants	 than	 random	 cases	 (Fingerlin,	

Boehnke,	 and	Abecasis	 2004;	 Zöllner	 2012).	 Second,	 if	 such	 risk	 variants	 are	 rare,	 the	

founders	of	the	pedigree	are	likely	to	only	carry	one	copy.	As	the	probability	of	carrying	

the	risk	variant	is	increased	for	each	affected	family	member,	this	variant	is	more	likely	to	

be	located	on	a	shared	chromosome.	With	increasing	allelic	heterogeneity,	the	probability	

for	both	affected	siblings	sharing	an	allele	with	a	large	effect	size	also	rises,	increasing	the	

number	of	risk	alleles	located	on	shared	IBD	chromosome	regions.	Hence	in	the	presence	

of	 allelic	 heterogeneity,	 the	 power	 of	 TRAFIC	 increased,	 while	 the	 power	 of	 the	
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conventional	case-control	design	was	unchanged.		

The	power	of	a	family-based	design	also	depends	on	the	interaction	between	variants	

at	the	locus	of	interest	and	the	remaining	genome.	Sampling	from	families	with	multiple	

affected	individuals	increases	the	overall	genetic	load	for	all	cases.	Hence,	if	the	genetic	

effect	at	the	locus	of	interest	increases	with	overall	genetic	load,	the	power	advantage	of	

family-based	designs	over	population-based	designs	is	larger	than	under	a	model	of	no	

interaction.	On	the	other	hand,	if	the	genetic	effect	of	risk	variants	at	the	locus	of	interest	

decreases	with	overall	genetic	load,	the	power	in	family-based	designs	is	smaller	than	the	

power	 under	 a	 model	 of	 no	 interaction	 and	 population-based	 designs	 can	 be	 more	

powerful.	This	effect	has	been	described	before	for	additive	gene-gene	interaction,	which	

is	a	special	case	of	genetic	effect	at	the	locus	of	interest	decreasing	with	overall	genetic	

load	(Ionita-Laza	and	Ottman	2011;	Zöllner	2012;	Helbig,	Hodge,	and	Ottman	2013).		

Moreover,	TRAFIC	is	generally	robust	to	population	stratification,	as	it	compares	IBD	

chromosome	regions	to	non-shared	chromosome	regions	in	every	sibpair	thus	naturally	

matching	the	genetic	background	of	samples.	This	robustness	can	be	violated	in	regions	

where	one	of	the	populations	has	a	strong	linkage	signal	while	the	other	population	has	

no	evidence	 for	 linkage	 (Appendix	A.6).	However,	 this	 unlikely	 scenario	only	 results	 in	

minor	 increase	of	the	false	positive	rate	and	has	thus	 little	 impact	on	the	utility	of	our	

method.	 As	 the	 efficacy	 of	 current	methods	 to	 control	 for	 population	 stratification	 in	

population	based	designs	for	rare	variant	tests	is	not	clear	(Mathieson	and	McVean	2012;	

Liu,	Nicolae,	and	Chen	2013),	family	based	designs	may	be	necessary	to	avoid	spurious	

association.	 TRAFIC	 achieves	 this	 robustness	 to	 stratification	 by	 using	 non-shared	

chromosome	regions	as	controls	at	the	cost	of	some	reduction	in	power.	As	non-shared	
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chromosome	 regions	 have	 a	 higher	 risk	 allele	 frequency	 than	 chromosome	 regions	 in	

population	controls,	a	test	comparing	shared	chromosome	regions	against	chromosome	

regions	from	unaffected	controls	may	be	more	powerful	than	TRAFIC.	However,	such	a	

design	would	be	very	susceptible	to	population	stratification,	even	more	than	the	selected	

cases	design	shown	in	Figure	2-4.	

In	 conclusion,	 we	 have	 proposed	 TRAFIC	 using	 affected	 sibpairs	 for	 testing	 the	

association	between	a	set	of	 rare	variants	and	 the	disease	phenotype.	TRAFIC	 is	more	

powerful	than	the	conventional	case-control	design	under	a	wide	range	of	models	while	

being	generally	robust	to	population	stratification.	
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Chapter	3 	
Powerful	Statistical	Testing	for	Rare	
Variant	Associations	with	Binary	
Traits	using	Extended	Families	

3.1. Introduction	

Genome-wide	association	studies	 (GWAS)	have	 identified	many	variants	associated	

with	different	complex	diseases;	however,	the	identified	variants	do	not	fully	explain	the	

estimated	genetic	contribution,	leading	to	the	search	for	missing	heritability	(Manolio	et	

al.	2009;	Eichler	et	al.	2010).	Rare	variants	are	hypothesized	to	explain	some	of	the	missing	

genetic	 contribution	 (Manolio	 et	 al.	 2009;	 Eichler	 et	 al.	 2010).	 Importantly,	 these	 rare	

variants	are	abundant	in	human	populations.	In	a	sequencing	study	of	202	drug-targeted	

genes	 from	14,002	 individuals,	more	than	95%	of	single-nucleotide	variants	 found	had	

minor	allele	frequency	(MAF)	<	0.5%	(Nelson	et	al.	2012).	In	addition,	rare	variants	can	

make	important	contributions	to	complex	disease	risk.	In	a	recent	sequencing	study	of	63	

known	 prostate	 cancer	 risk	 regions,	 variants	 with	 minor	 allele	 frequency	 0.1-1%	

accounted	for	42%	of	genetic	risk	(Mancuso	et	al.	2016).		

Using	 conventional	 approaches	 to	 investigate	 the	 role	 of	 rare	 variants	 in	 complex	

diseases	has	limited	statistical	power.	For	example,	to	study	the	association	between	rare	
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variants	 and	 complex	 diseases,	 conventional	 case-control	 studies	 require	 huge	 sample	

sizes	 (>10,000	 individuals)	 to	have	adequate	power	 (Manolio	et	al.	2009;	Nelson	et	al.	

2012).	 In	 contrast,	 family	 samples	 can	 provide	 power	 gain	 for	 association	 studies,	

especially	 for	 rare	 variants	 (Feng	 et	 al.	 2015).	 When	 combined	 with	 ascertainment	

strategies,	family-based	methods	further	benefit	from	the	enrichment	of	rare	variants.	For	

example,	 collecting	 cases	with	ascertained	 siblings	 and	 comparing	 them	 to	population	

controls	can	significantly	increase	the	power	relative	to	a	population	case-control	design	

(Zöllner	2012).		

Another	 advantage	 of	 family	 studies	 arises	 in	 the	 context	 of	 population	 structure,	

which	is	a	common	confounder	in	association	studies	(Price	et	al.	2006;	Zawistowski	et	al.	

2014).	Rare	variants	are	often	population-specific	or	shared	by	closely	related	populations	

(The	 1000	 Genomes	 Project	 Consortium	 2015);	 thus	 rare	 variants	 are	more	 prone	 to	

population	stratification	than	common	variants.		Even	minor	population	stratification	can	

significantly	inflate	type	I	error	and	result	in	spurious	findings	(Zawistowski	et	al.	2014).	

Although	many	methods	have	been	developed	to	correct	for	population	stratification	for	

common	 variants	 in	 population	 samples,	 it	 is	 not	 evident	 that	 these	methods	 are	 as	

effective	when	applied	to	rare	variants	 (Y.	Zhang,	Shen,	and	Pan	2013).	Family	data,	 in	

which	 family	 members	 are	 typically	 from	 the	 same	 genetic	 and	 environmental	

background,	can	protect	against	spurious	signals	caused	by	population	stratification	and	

other	environmental	confounders	(Ott,	Kamatani,	and	Lathrop	2011).	These	advantages	

of	family	studies	have	motivated	adaptations	of	many	population-based	methods	for	rare	

variant	associations	applied	to	family	data	(H.	Chen,	Meigs,	and	Dupuis	2013;	X.	Wang	et	

al.	2013;	Schaid	et	al.	2013;	Q.	Zhang	et	al.	2014).		
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To	increase	power,	combining	the	signal	across	multiple	rare	variants	 in	a	gene	has	

been	shown	to	be	effective	in	identifying	associations	between	rare	variants	and	complex	

diseases	(B.	Li	and	Leal	2008;	Zawistowski	et	al.	2010;	Wu	et	al.	2011).	These	gene-based	

tests	have	facilitated	association	studies	and	identified	many	associated	rare	variants	(Lee	

et	al.	2014).	Extending	such	methods	to	family	samples	requires	modeling	the	relatedness	

in	 the	 samples;	 otherwise,	 the	 standard	 error	 of	 the	 test	 statistic	 is	 underestimated,	

leading	to	inflated	type	I	error.	To	correct	the	underestimated	standard	error,	a	popular	

method	is	to	incorporate	the	kinship	matrix	in	the	mixed	model	to	account	for	relatedness	

(Kang	et	al.	2010;	Schaid	et	al.	2013).	These	corrections	decrease	the	effective	sample	size,	

so	 that	 family-based	 approaches	 often	 appear	 to	 have	 inferior	 power	 compared	 to	

similarly-sized	 population	 case-control	 studies.	 An	 alternative	 approach	 to	 account	 for	

relatedness	 is	to	use	methods	that	only	rely	on	within-family	 information	such	as	FBAT	

(Rakovski	et	al.	2007);	De	et	al.	(2013)	and	Ionia	et.al.	(2013)	extended	FBAT	to	gene-based	

tests.	This	class	of	within-family	approach	often	requires	separating	a	 large	 family	 into	

many	 parent-offspring	 trios,	 leading	 to	 power	 loss	 (Laird	 and	 Lange	 2006).	 In	 general,	

although	 the	 approaches	 that	 consider	 only	 within-family	 information	 are	 robust	 to	

population	stratification,	they	are	not	as	powerful	as	the	approaches	adapted	from	the	

population-based	design,	which	exploit	both	between-	and	within-family	information.		

Recent	methods	for	rare	variant	association	in	families	exploit	that	rare	risk	variants	

are	 more	 likely	 to	 reside	 on	 chromosomes	 shared	 identity-by-descent	 (IBD)	 among	

affected	 family	 members.	 Hence,	 comparing	 the	 distribution	 of	 rare	 variants	 in	 IBD	

chromosomes	and	non-IBD	chromosomes	in	affected	sibpairs	can	be	more	powerful	than	

a	 conventional	 case-control	 study	 (Epstein	et	 al.	 2015;	 Lin	and	Zöllner	2015).	Here	we	
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propose	testing	for	rare	variant	associations	in	pedigree	studies	(TRAP)	that	compares	the	

distribution	of	rare	variants	in	chromosomes	shared	among	affected	family	members	to	

other	chromosomes.	A	variant	that	increases	disease	risk	is	more	likely	to	be	transmitted	

from	 founders	 to	 affected	 offspring	 thus	 creating	 a	 departure	 from	 the	 Mendelian	

segregation	 (Figure	 3-1).	 TRAP	 is	 applicable	 to	 any	 type	 of	 pedigree	 structures,	 from	

sibpairs	to	multi-generation	families.	We	evaluate	this	approach	using	simulations	with	

realistic	parameter	configurations	and	show	that,	given	the	same	number	of	sequenced	

individuals,	 TRAP	 can	 substantially	outperform	 the	 conventional	population-based	 test	

and	existing	family-based	methods.		

3.2. Methods	

3.2.1. Overview	

First,	we	introduce	our	proposed	family-based	test,	TRAP.	Second,	since	TRAP	requires	

founder	 information,	 which	 may	 not	 be	 accessible	 for	 every	 family,	 we	 devise	 an	

imputation	algorithm	to	account	for	missing	founders.	Third,	we	describe	a	disease	model	

that	accounts	for	the	heritability	in	families	and	elaborate	how	we	conduct	simulations	

based	on	this	disease	model.		

3.2.2. Test	for	rare	variant	associations	in	pedigree	studies	(TRAP)		

Consider	a	set	of	fully	genotyped	families	of	arbitrary	size	and	structure	with	multiple	

affected	individuals.	Moreover,	assume	the	chromosome	inheritance	vector	is	known	for	

each	family.	In	practice,	several	methods	can	provide	a	precise	estimation	of	inheritance	

vectors	with	high	certainty	(Abecasis	et	al.	2002).	In	the	following,	we	aim	to	jointly	test	
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all	 putative	 risk	 variants	 in	 a	 region	 of	 interest	 (e.g.	 a	 gene)	 for	 associations	with	 the	

disease	phenotype.	To	account	for	co-segregating	rare	variants	in	a	region,	we	define	a	

carrier	 chromosome	 as	 a	 region	 carrying	 at	 least	 one	 putative	 risk	 variant.	 If	 any	 rare	

variant	is	associated	with	the	disease,	we	expect	affected	family	members	to	share	carrier	

chromosomes	more	 than	 expected	 at	 random.	 Analogously,	we	 expect	 a	 depletion	 of	

carrier	 chromosomes	 among	 unaffected	 family	members.	 To	 test	 for	 this	 pattern,	 we	

define	𝑋rs ∈ {0,1,2}		as	 the	 number	 of	 carrier	 chromosomes	 for	 the	 jth	 member	 in	 ith	

family.	We	evaluate	the	distribution	of	carrier	chromosomes	in	each	family	by	calculating	

𝑇r = 𝑋rs𝑌rss 	,	 where	𝑌rs = 1		if	 the	 jth	 member	 in	 ith	 family	 is	 affected	 and	𝑌r = −1	

otherwise.	Next,	we	compare	the	observed		𝑇r 	to	the	null	expectation	that	carrier	status	

is	unrelated	to	the	disease	risk.		

To	carry	out	this	comparison,	we	condition	on	the	inheritance	vector	in	each	family	

(Figure	3-1)	and	on	the	number	of	carrier	chromosomes	among	founders.	For	example,	a	

nuclear	family	has	four	founder	chromosomes,	each	with	its	own	inheritance	path.	If	there	

is	one	carrier	chromosome	in	the	founders,	this	carrier	chromosome	can	thus	take	one	of	

four	possible	inheritance	paths.	Under	the	null	hypothesis,	each	founder	chromosome	is	

equally	 likely	 to	 be	 a	 carrier	 chromosome.	 Under	 alternative	 that	 a	 variant	 increases	

disease	 risk,	 carrier	 chromosomes	are	more	 likely	 to	be	 shared	among	affected	 family	

members	and	to	be	transmitted	through	paths	that	include	multiple	affected	individuals.	

Conditional	on	the	inheritance	vector	in	family	i,	we	can	thus	generate	the	null	distribution	

of	 𝑇r 		and	 calculate	 𝜇r =
l
3w

𝑇r
(x)3w

xyl 		and	 𝜎rH =
l
3w

𝑇r
x − 𝜇r

H3w
xyl 			 where	 𝑛{ 		is	 the	

number	 of	 paths	 and	 	𝑇r
(x)		is	 the	 count	 of	 affected	 individuals	 inheriting	 a	 carrier	

chromosome	 through	 a	 particular	 path	 (see	 Figure	 3-1	 for	 example	where	𝜇r = 1		and	
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𝜎rH = 1.5).	We	then	calculate	a	joint	test	statistics	𝑇	across	families,	

𝑇 =
1
𝑆3

𝑇r − 𝜇r

3

ryl

	

where	𝑆3H = 𝜎rH3
ryl .	Using	the	Lyapunov	Central	Limit	Theorem,	we	can	show	that	the	

test	statistic	𝑇	follows	a	standard	normal	distribution	(see	Appendix	B.1	for	details).	Based	

on	the	resulting	z-score,	we	test	for	the	association.	Note	that	𝜎r = 0	means	that,	in	family	

i,	either	no	founder	carries	a	rare	risk	variant	or	that	all	founders	carry	rare	risk	variants	

on	both	chromosomes.	Such	families	do	not	contribute	to	𝑇,	and	we	do	not	include	them	

in	the	final	test	statistic.	

	
Figure	3-1.	Illustration	of	counting	carrier	chromosomes	for	a	family	with	two	founders	and	two	offspring	assuming	a	
single	variant	in	the	region.	There	are	four	possible	paths	to	place	the	variant	in	founder	chromosomes.		The	colored-
line	indicates	the	path	that	a	variant	 is	transmitted	to	offspring.	𝑇r

x 	is	the	count	of	carrier	chromosomes	given	that	
carrier	chromosome	is	transmitted	through	a	particular	path.	Conditional	on	the	inheritance	vector	in	family	i,	we	can	
thus	enumerate	all	four	possible	𝑇r

x .	Under	the	null	hypothesis	that	each	placement	is	equally	likely	to	occur,	we	then	
can	 calculate	 𝜇r =

l
|
1 + 3 + 0 + 0 = 1	 	and	 𝜎rH =

l
|
[ 1 − 1 H + 3 − 1 H + 0 − 1 H + 0 − 1 H] = 1.5.	 	Under	

alternative	that	a	variant	increases	the	risk	of	developing	disease,	the	variant	is	more	likely	to	appear	on	the	second	
(orange)	founder	chromosome	and	reach	two	affected	offspring.		
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3.2.3. Imputation	algorithm	for	missing	founders	

TRAP	 depends	 on	 information	 from	 founders	 to	 perform	 the	 association	 test.	 In	

practice,	 this	 information	may	be	missing,	especially	 for	 larger	pedigrees	or	 late	onset	

diseases.	 Here,	we	 devise	 an	 algorithm	 to	 impute	 founder	 genotypes	 and	 inheritance	

vector.	There	are	two	steps	in	the	algorithm.	The	first	step	is	to	impute	inheritance	vectors	

and	 the	 phasing	 of	 variants.	 Given	 the	 number	 of	 IBD	 chromosomes	 shared	 between	

family	members,	we	determine	 an	 inheritance	 vector	 for	 each	 family.	 Then,	 given	 the	

inheritance	 vector,	 we	 determine	 the	 phasing	 configuration	 based	 on	 the	 observed	

genotype	for	each	family	member.	If	there	is	an	ambiguous	phasing,	we	randomly	draw	a	

possible	phasing	based	on	its	relative	likelihood	(see	Appendix	B.2.1	for	details).	From	the	

above	procedure,	we	can	identify	the	number	of	transmitted	founder	chromosomes	and	

their	carrier	status.	The	second	step	is	to	impute	the	carrier	status	for	the	non-transmitted	

founder	chromosomes.	We	use	the	probability	of	a	founder	chromosome	being	a	carrier	

𝑝{7��r�� 		and	 thus	 impute	 the	 number	 of	 carrier	 chromosomes	 in	 missing	 founders.	

𝑝{7��r�� 		is	 estimated	 based	 on	 all	 observed	 transmitted	 founder	 chromosomes	 across	

families.	 Alternatively,	 𝑝{7��r�� 	can	 be	 obtained	 from	 existing	 population	 variant	

databases,	e.g.	1000	Genomes	Project	which	contains	 the	majority	 (>	95%)	of	variants	

with	allele	frequency	>	0.5%	(The	1000	Genomes	Project	Consortium	2015).	Specifically,	

for	 a	 family	 with	𝑛r
XrZZr3b		missing	 founder	 chromosomes,	 we	 impute	 the	 number	 of	

carrier	chromosomes	𝑥r{7��r�� 	following	a	binomial	distribution	with	probability	𝑝{7��r��,		

𝑥r{7��r��~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛r
XrZZr3b, 𝑝{7��r�� .	For	example,	for	a	sibpair	family	where	siblings	

share	both	chromosomes,	there	are		𝑛r
XrZZr3b = 2	missing	founder	chromosomes	and	we	

impute	the	carrier	status	for	missing	founder	chromosomes	𝑥r{7��r�� ∈ 0,1,2 .	Next,	we	
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use	imputed	samples	to	perform	TRAP	and	apply	multiple	imputation	when	generating	

test	statistics	to	account	for	the	imputation	uncertainty	(details	in	Appendix	B.2.2).		

3.2.4. Simulation	design	

Using	simulations,	we	compare	power	between	TRAP	and	two	existing	family-based	

methods,	 Pedgene	 which	 uses	 both	 between-	 and	 within-family	 information	 by	

comparing	cases	to	controls	and	adjusting	for	relatedness	in	families	(Schaid	et	al.	2013),	

and	FB-SKAT	which	extends	the	within-family-approach	FBAT	to	gene-based	test	(Ionita-

Laza	et	al.	2013).		

We	first	describe	a	disease	model	for	population	samples	and	later	extend	to	family	

samples.	Here	we	define	𝑝		as	 the	disease	 risk,	𝐺 = 𝑔l	, 𝑔H	, … , 𝑔X	|𝑔r ∈ (0,1,2) 		as	 an	

indicator	vector	for	carrying	the	variant	allele	at	mth	variant	of	interest	in	the	region.	For	

cases	 and	 controls	 from	 a	 population,	we	model	 the	 disease	 risk	 as	log �
lk�

= 𝛽5 +

𝛽l𝑮 + 𝜖,	where	𝛽5	is	the	prevalence,	𝛽l	is	the	effect	size	of	the	risk	variant	assuming	all	

risk	 variants	 have	 the	 same	 effect	 size,	 and	𝜖~𝑁(0, 𝜎�H = 0.5)		represents	 the	 random	

error.	We	generate	an	equal	number	of	cases	and	controls,	and	apply	a	simple	burden	test	

collapsing	variants	in	a	region	into	a	carrier	chromosome	(B.	Li	and	Leal	2008).	

To	generate	families,	we	model	the	heritability	in	a	family	by	incorporating	the	kinship	

matrix	of	ith	family	𝑲r 	and	modify	the	disease	model	as	log ���
lk���

= 𝛽5 + 𝛽l𝐺rs + 𝐹rs +

𝜀rs.	Here,	ij	denote	the	jth	individual	in	the	ith	family,	and	𝐹rs~𝑁(0, 𝜎��H = 0.5)	is	the	shared	

polygenic	and	environmental	effect	in	a	family.	The	covariance	matrix	in	ith	family	is	𝑽r =

2𝜎��H 𝑲𝒊 + 𝜎�H𝑰.	Under	the	null	hypothesis,	we	adjust	𝛽5	so	that	the	diseases	prevalence	is	

10%,	unless	specified	otherwise.		
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We	simulate	sequence	data	using	a	coalescent-model-based	simulator	COSI	(Schaffner	

et	al.	2005)	and	generate	 ten	 thousand	1kb	chromosomes.	We	randomly	pick	variants	

whose	frequency	sums	to	f	and	fix	these	variants	as	causal	in	the	simulations.	To	generate	

𝐺rs,	 assuming	 no	 recombination	 in	 families,	 we	 sample	 two	 chromosomes	 for	 each	

founder	 from	 those	 ten	 thousand	 chromosomes;	 then,	 each	 offspring	 inherits	 two	

chromosomes	 following	 Mendel	 law	 (MacCluer	 et	 al.	 1986).	 Given	 the	 generated	

chromosomes,	we	simulate	the	phenotype	for	all	family	members	based	on	the	disease	

model	introduced	above	and	only	keep	the	families	that	match	the	specified	number	of	

affected	 and	 unaffected	 in	 a	 given	 family	 structure.	 To	 generate	 families	with	 a	 given	

pedigree	structure,	we	simulate	family	by	family	until	there	are	1000	families	generated.	

Then	we	apply	TRAP,	Pedgene,	and	FB-SKAT	to	compare	power.	In	the	following	sections,	

we	use	1,000,000	replications	to	evaluate	type	I	error	rate	and	1,000	replications	for	each	

scenario	to	calculate	power.	

3.3. Results	

Using	simulations	with	regions	of	1kb,	we	compared	the	proposed	TRAP	with	Pedgene	

(Schaid	et	 al.	 2013),	 FB-SKAT	 (Ionita-Laza	et	 al.	 2013),	 and	a	 conventional	 case-control	

design.	Results	that	applied	TRAP	to	all	affected	and	unaffected	family	members	had	a	

negligible	 difference	 in	 power	 compared	 to	 the	 affected-member-only	 analysis	 (Figure	

B-5).	Thus,	 in	 the	 following,	we	consider	TRAP	applied	to	 founders	and	affected	family	

members	only,	leading	to	lower	sequencing	cost.		First,	we	demonstrate	all	methods	are	

calibrated	 under	 the	 null	 hypothesis.	 Second,	we	 compare	 power	 across	 family-based	

methods	and	contrast	them	to	a	conventional	case-control	design.	Third,	we	explore	the	
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power	change	in	different	pedigree	structures,	specifically	to	see	how	the	power	changes	

with	the	increasing	pedigree	size	and	ascertainment.	Lastly,	we	present	the	results	using	

imputation	to	account	for	missing	founders.		

3.3.1. Type	I	error	rate		

To	evaluate	type	I	error	rate,	we	simulated	1000	two-generation	families	and	three-

generation	families	under	the	null.	We	assumed	inheritance	vectors	were	known	in	this	

evaluation.	We	considered	the	variants	with	population	carrier	chromosome	frequency	of	

0.01.	To	limit	computational	burden,	we	set	type	I	error	rate	at	2.5×10k|.	Table	3-1	shows	

all	methods	retained	nominal	type	I	error	rate	across	considered	family	structures.		

	 TRAP	 Pedgene	 FB-SKAT	
Two-generation	family--	

2	affected	
2	unaffected	

2.0×10k|	 2.5×10k|	 2.2×10k|	

Two-generation	family--	
3	affected	

1	unaffected	

2.1×10k|	 2.0×10k|	 1.9×10k|	

Three-generation	family--	
2	affected	

5	unaffected	

2.5×10k|	 2.4×10k|	 2.6×10k|	

Table	 3-1.	 Type	 I	 error	 rate	 evaluation	 for	 carrier	 chromosome	 frequency	 0.01	 and	 different	 family	 structures	with	
nominal	𝛼 = 2.5×10k|.	

3.3.2. Power	comparison	in	nuclear	families	

We	compared	TRAP	to	existing	methods,	Pedgene	and	FB-SKAT.	Pedgene	extended	the	

existing	 methods	 for	 population	 samples	 to	 family	 data,	 and	 FB-SKAT	 extended	 the	

framework	of	FBAT	to	gene-based	test.	Both	methods	can	choose	to	perform	gene-based	

test	 in	 “burden”	 or	 “variance	 component”	 style.	 Since	 the	 simulations	 in	 this	 study	

considered	only	risk	variants,	which	resulted	in	favoring	burden	tests,	we	only	presented	
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those	 results	 in	 burden	 style	 in	 the	 following	 sections.	 We	 considered	 1000	 nuclear	

families	 with	 two	 affected	 and	 two	 unaffected,	 and	 three	 disease	 models	 under	

population	 carrier	 chromosome	 frequency	 f	 of	 0.01,	 0.05	 and	 0.2.	We	 calculated	 the	

power	over	a	range	of	odds	ratios,	r.	Among	the	considered	family-based	tests,	assuming	

disease	prevalence	of	1%,	TRAP	was	uniformly	the	most	powerful	method	from	rare	to	

common	 variants	 followed	 by	 Pedgene.	 FB-SKAT,	 which	 only	 relied	 on	 within-family	

information,	was	as	expected	to	be	the	least	powerful	method.	For	rare	variants	with	f	=	

0.01	and	r	=	2.5,	the	power	for	TRAP,	Pedgene,	and	FB-SKAT	was	0.767,	0.423,	and	0.043,	

respectively.	The	advantage	in	power	for	TRAP	maintained	for	variants	with	f	=	0.20;	at	r	

=	1.4,	the	power	was	0.908,	0.740,	and	0.004,	respectively.		

When	comparing	to	a	conventional	case-control	design	assuming	a	simply	burden	test	

(B.	Li	and	Leal	2008),	using	an	equally-sized	population	samples	was	more	powerful	than	

all	considered	family-based	tests,	except	when	f	=	0.01,	TRAP	was	the	only	method	being	

more	powerful	 than	the	population	case-control	design.	 In	contrast,	 for	higher	disease	

prevalence	 at	 10%,	 none	 of	 the	 family-based	 methods	 showed	 an	 advantage	 in	 any	

scenario,	 except	 only	 TRAP	 had	 a	 comparable	 power	 to	 the	 conventional	 case-control	

design	for	f	=	0.01	(Figure	B-6).	
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Figure	3-2.	The	power	comparison	evaluated	at	𝛼 = 2.5×10k�	and	prevalence	1%	across	TRAP,	Pedgene	and	FB-SKAT.	
Power	 curve	 is	 shown	as	 a	 function	 of	 effect	 size	 r	 (odds	 ratio)	 of	 risk	 variants	 in	 a	 gene	with	 carrier	 chromosome	
frequency	f	=	0.01,	0.05,	0.20.	

3.3.3. Power	 comparison	 with	 additional	 generation	 or	 affected	
members	in	families	

To	evaluate	 the	effect	of	 pedigree	 size	 and	ascertainment	on	TRAP,	we	 considered	

multiple	pedigree	 structures	with	different	 levels	of	ascertainment.	We	evaluated	 four	

pedigree	structures	and	coded	each	structure	by	the	number	of	generations	(g),	number	

of	affected	individuals	(a)	and	the	number	of	unaffected	individuals	(u);	 for	example,	a	

two-generation	family	with	three	affected	and	one	unaffected	was	denoted	as	2g.3a.1u;	

we	allowed	any	family	member	to	have	the	disease	(Figure	B-7	shows	the	illustration	of	

different	pedigree	structures).	Assuming	we	can	reliably	impute	offspring	genotypes	given	

sequenced	founders	in	a	family	and	the	cost	of	genotyping	array	was	relatively	negligible	

compared	to	the	cost	of	sequencing,	we	thus	considered	the	same	number	of	sequenced	

founders	 for	 different	 family	 structures,	 resulting	 in	 1000,	 667,	 and	 286	 families	 for	

2g.3a.1u,	3g.3a.4u,	and	3g.3a.19u	(3g.5a.17u).	In	general,	these	pedigree	structures	differ	
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in	the	number	of	family	members	(4,	7,	and,	22	members),	the	number	of	affected	(3	and	

5	affected)	and	the	number	of	generations	(2	generations	vs.	3	generations).		

Figure	3-3	shows	the	power	comparison	across	pedigree	structures	for	TRAP.	For	f	=	

0.01,	given	 three	affected	 family	members	across	pedigree	 structures,	TRAP	with	 two-

generation	pedigree	2g.3a.1u	had	a	similar	power	compared	to	three-generation	pedigree	

3g.3a.4u	 and	 3g.5a.17u.	 For	 instance,	 for	 r	 =	 2.5,	 TRAP	 with	 2g.3a.1u,	 3g.3a.4u,	 and	

3g.5a.17u	had	power	of	0.546,	0.529	and	0.460,	respectively.	Note	that	pedigrees	with	a	

higher	 proportion	 of	 affected	 individuals	 were	 more	 ascertained	 with	 the	 disease;	

therefore,	these	families	were	more	likely	to	carry	risk	variants,	resulting	in	power	gain.	

The	 level	 of	 ascertainment	 can	 be	 quantified	 by	 how	 challenging	 to	 collect	 such	 an	

ascertained	family.	To	collect	a	family	with	2g.3a.1u,	3g.3a.4u,	3g.5a.17u	and	3g.3a.19u	

ascertainment,	the	chance	of	gathering	one	such	family	were	one	in	201,	37,	20	and	5	

equally-sized	 families,	 respectively.	Thus,	3g.3a.17u	was	 the	 least	ascertained	pedigree	

and	thereby	TRAP	had	the	least	power	with.	Although	2g.3a.1u	was	the	most	ascertained	

pedigree	(also	the	most	challenging	to	collect),	it	only	achieved	a	comparable	power	as	

much-less-ascertained	 3g.3a.4u,	 and	 3g.5a.17u,	 suggesting	 a	 pedigree	 with	 three	

generations	 was	 more	 informative	 to	 TRAP	 than	 two	 generations.	 In	 comparison	 to	

existing	family-based	methods,	TRAP	was	more	powerful	than	Pedgene	and	FB-SKAT	in	all	

considered	pedigree	structures	(Figure	B-8).	
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Figure	3-3.	Power	curve	across	pedigree	structures	evaluated	at	𝛼 = 2.5×10k�	and	f	=	0.01	as	a	function	of	odds	ratio	
of	 risk	 variants	 for	 TRAP.	 Solid	 lines	 represent	 two-generation	 families	 and	dashed	 lines	 represent	 three-generation	
families	

3.3.4. Power	study	with	missing	founders	

Performing	TRAP	depended	on	founder	information.	To	apply	TRAP	to	families	with	

missing	founders,	we	developed	an	imputation	procedure.	Specifically,	we	imputed	the	

inheritance	vector	and	founder	carrier	chromosomes	(more	details	in	Appendix	B.2).	To	

evaluate	TRAP	performance	using	imputed	samples,	here	we	generated	1000	families	with	

two	 founders	 and	 three	 siblings,	 in	 which	 two	 siblings	 were	 affected	 and	 one	 was	

unaffected	 in	order	to	compare	with	Pedgene,	which	 is	not	applicable	to	affected-only	

design.	We	considered	 four	 scenarios	 in	which	all	 founders	were	missing	or	a	 random	

subset	of	founders	were	missing	in	20%,	50%,	and	80%	of	families.	We	compared	TRAP	

imputation	 to	 TRAP	with	 compete	 founder	 information	 (but	 did	 not	 consider	 founder	

phenotypes)	and	to	Pedgene,	which	did	not	require	information	from	founders.	Since	FB-

SKAT	 could	 not	 perform	 without	 founders	 and	 did	 not	 implement	 an	 imputation	

procedure	in	their	program,	it	was	excluded	in	this	study.	Type	I	error	rate	was	set	at	0.05	
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to	demonstrate	the	change	and	there	was	no	inflation	given	a	more	stringent	level	(Table	

B-1).	

	 f=0.01	 f=0.20	

Complete	data	--	No	imputation	 0.056	 0.041	

Imputed	samples	with	20%	missing	founders	 0.047	 0.036	

Imputed	samples	with	50%	missing	founders	 0.021	 0.014	

Imputed	samples	with	80%	missing	founders	 0.011	 0.007	

Imputed	samples	with	100%	missing	founders	 0.008	 0.005	

Table	3-2.	Type	I	error	rate	evaluation	for	TRAP	with	and	without	imputed	samples	under	different	population	carrier	
frequency	given	𝛼 = 0.05.	

First,	assuming	all	founders	were	missing,	we	evaluated	if	TRAP	with	imputed	families	

was	a	valid	test.	For	rare	variants	with	f	=	0.01,	TRAP	became	conservative	with	type	I	error	

rate	deflated	from	0.056	without	imputation	to	0.008	using	imputation	(Table	3-2).	Next,	

we	 evaluated	 the	 degree	 of	 power	 loss	 due	 to	 being	 conservative	 and	 using	 imputed	

families	 in	 Figure	3-4;	 since	all	 founders	were	missing,	 this	 scenario	 served	as	a	 lower	

bound	of	how	TRAP	imputation	resulted	in	power	loss.	For	r	=	2,	TRAP	imputation	had	

reduced	power	from	0.799	assuming	known	founders	to	0.413.	However,	TRAP	imputation	

had	comparable	power	to	Pedgene;	given	sufficient	 large	effect	size,	e.g.	r	=	2.3,	TRAP	

imputation	have	an	advantage	in	power	over	Pedgene,	0.703	to	0.655.	Note	that	there	

were	 two	cases	 for	every	one	control	 in	Pedgene,	and	 this	was	not	optimal	 in	a	 case-

control	 design;	 thus,	 increasing	 the	number	of	 controls	 in	 families	would	 increase	 the	

power	for	Pedgene.		

As	for	common	variants	f	=	0.20,	TRAP	imputation	also	had	deflated	type	I	error	rate	

(0.005)	and	resulted	in	a	similar	power	loss	as	compared	to	rare	variants	(f	=	0.01).	Using	

the	carrier	chromosome	frequency	from	external	databases	was	the	most	efficient	way	to	
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impute	 missing	 founders	 and	 resulted	 in	 only	 minor	 loss	 in	 power.	 This	 approach,	

however,	was	highly	sensitive	to	the	bias	to	the	true	carrier	chromosome	frequency;	even	

a	small	bias	could	lead	to	substantially	inflated	type	I	error	(Figure	B-9).		

Lastly,	 we	 considered	 the	 degree	 of	 power	 loss	 when	 there	 were	 some	 observed	

founders	in	the	samples.	With	these	additional	founders,	we	can	improve	the	estimate	for	

carrier	chromosome	frequency,	 leading	to	less	power	loss.	Figure	3-4	shows	that	when	

there	were	only	80%	of	families	with	missing	founders,	the	power	was	improved	relative	

to	all	families	with	missing	founders.	For	example,	for	f	=	0.01	and	r	=	2,	the	power	for	

TRAP	imputation	is	0.518	compared	to	0.413	when	all	founders	were	missing.	When	there	

were	only	20%	of	families	with	missing	founders,	the	power	loss	was	negligible	compared	

to	no-missing-founder	analysis	(with	power	0.761	and	0.799).	

In	 sum,	 from	 rare	 to	 common	 variants	 with	 ascertained	 families,	 TRAP	 was	more	

powerful	 than	 the	 two	existing	 family-based	methods	under	many	pedigree	structures	

considered.	Besides,	for	disease	prevalence	1%	and	rare	variants,	TRAP	outperformed	the	

population	 case-control	 design.	 Across	 pedigree	 structures,	 families	 with	 more	

generations	 and	 more	 affected	 family	 members	 increased	 power.	 Importantly,	 we	

developed	 the	 imputation	algorithm	 for	 families	with	missing	 founders.	 Even	when	all	

founders	were	missing,	TRAP	using	imputation	was	comparable	to	existing	methods	and	

the	loss	in	power	decreased	with	the	increasing	number	of	observed	founders.	
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	Figure	3-4.	Power	curve	for	TRAP	using	imputaion	for	differenct	proportion	of	missing	founders	evlaued	at	𝛼 = 0.05.	
The	imputation	algorithm	estimates	carrier	chromosome	frequency	based	on	observed	samples.	Panel	(A)	shows	the	
results	for	TRAP	with	complete	data	and	100%	missing	founder	compared	to	Pedgene.	Panel	(B)	shows	the	result	for	
TRAP	under	different	proportion	of	families	with	missing	founders. 

3.4. Discussion	

We	propose	a	family-based	method	TRAP	designed	for	rare	variant	association	studies	

using	extended	families.	TRAP	exploits	that	risk	variants	are	more	likely	to	be	shared	IBD	

among	 affected	 family	 members.	 To	 leverage	 this	 observation,	 TRAP	 compares	 the	

number	of	carrier	chromosomes	in	a	family	to	the	expectation	conditional	on	the	founder	

genotypes	 and	 inheritance	 vectors.	 Equivalently,	 we	 propose	 to	 test	 if	 the	 variant	 is	

equally	likely	to	be	transmitted	through	all	possible	transmission	paths	from	founders	to	

offspring.	 Based	 on	 simulations	with	 realistic	 parameter	 settings,	 TRAP	was	 uniformly	
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more	powerful	than	existing	family-based	methods	in	all	considered	pedigree	structures;	

Given	disease	prevalence	1%	and	rare	variants	with	f	=	0.01,	TRAP	also	outperformed	the	

conventional	case-control	study.		

Better	using	IBD	information	can	increase	the	power	to	detect	rare	variant	associations	

as	 shown	 in	 affected-sibling	 designs	 (Epstein	 et	 al.	 2015;	 Lin	 and	 Zöllner	 2015).	 The	

proposed	method	 TRAP	 not	 only	 better	 exploit	 IBD	 information	 but	 also	 provide	 the	

flexibility	 to	 apply	 to	 arbitrary	 pedigree	 structures,	 from	 sibpairs	 to	 multi-generation	

families.	Studying	large	and	extensive	pedigree,	i.e.	more	founders	in	a	family,	increases	

the	chance	of	observing	a	segregating	risk	variant	in	the	family,	leading	to	power	gain.	In	

addition,	with	the	devised	imputation	algorithm,	TRAP	can	also	apply	to	families	where	

the	founder	genotype	is	not	available	with	minimal	power	loss.	This	imputation	algorithm	

can	easily	extend	to	scenarios	in	which	some	of	family	members	have	missing	genotypes	

but	 with	 phenotypic	 information	 available.	 Specifically,	 the	 missing	 genotype	 can	 be	

replaced	by	the	expectation	conditional	on	available	relatives	(W.-M.	Chen	and	Abecasis	

2007).	 Since	 acquiring	 disease	 status	 is	 more	 accessible	 than	 gathering	 genotype	

information,	we	expect	TRAP	 is	especially	useful	when	applying	to	extensive	pedigrees	

with	imputation.		

As	 TRAP	 exploits	 within-family	 information	 and	 includes	 founders	 in	 the	 test,	 it	

achieves	greater	power	compared	to	the	existing	family-based	method	Pedgene,	which	

uses	 both	 between-	 and	 within	 family	 information	 and	 the	 conventional	 case-control	

design.	The	reason	is	that,	 for	a	family	with	multiple	affected	family	members	and	low	

disease	prevalence,	it	is	more	likely	that	founders	carry	the	risk	variant	and	this	influences	

TRAP	 in	 two	ways.	First,	 the	number	of	 informative	 families	 increases,	 i.e.	at	 least	one	
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founder	carries	the	risk	variant.	Second,	the	rare	risk	variant	is	more	likely	to	be	shared	

among	 affected	 and	 TRAP	 efficiently	 uses	 the	 inheritance	 vector	 to	 test	 for	 this	

association.	These	two	conditions	significantly	increase	the	power	of	TRAP	to	detect	rare	

variant	 associations	 compared	 to	 the	 conventional	 case-control	 designs.	 Although	 the	

allele	count	of	rare	risk	variants	also	increases	for	Pedgene,	it	does	not	directly	use	the	

sharing	of	rare	risk	variant	between	affected	family	members,	leading	to	less	power	gain	

than	TRAP.	Compared	to	FB-SKAT	that	only	uses	within-family	information	by	separating	

an	extended	family	into	many	trios,	TRAP	gains	additional	power	by	taking	into	account	

founders’	 affected	 status	and	 jointly	 considering	 the	 information	across	many	affected	

family	members.		

In	this	study,	we	evaluated	statistical	power	between	TRAP	and	the	conventional	case-

control	design	assuming	the	same	number	of	sequenced	individuals	without	considering	

the	increased	cost	of	recruiting	ascertained	families.	Note	that	the	power	gain	for	TRAP	

relative	to	the	case-control	design	depended	on	the	 level	of	ascertainment	 in	sampled	

families.	For	nuclear	families	with	two	affected	and	two	unaffected	family	members,	TRAP	

was	 only	 advantageous	 to	 identifying	 rare	 variant	 associations	 for	 low	 prevalence	

diseases.	 However,	 TRAP	 allows	 the	 design	which	 collects	 only	 founders	 and	 affected	

individual	in	families,	and	has	a	negligible	power	loss;	hence,	given	fixed	sequencing	costs,	

using	TRAP	allows	to	sample	more	families	and	thus	achieve	higher	power.	In	contrast,	

most	existing	family-based	methods,	such	as	Pedgene,	are	not	applicable	to	affected-only	

studies.		

Given	the	decreasing	cost	of	sequencing	technology,	researches	are	bound	to	gather	

a	large	number	of	samples;	thus,	population	stratification	is	inevitable	to	be	a	challenge	
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for	 large-scale	 association	 studies.	 Since	 TRAP	 evaluates	 the	 disproportionate	 sharing	

among	 affected	 family	 members	 within	 each	 family,	 TRAP	 is	 robust	 to	 population	

stratification	when	families	come	from	different	ancestral	backgrounds.	However,	when	

the	founders	within	a	family	are	heterogeneous	in	origin,	TRAP	is	subject	to	population	

stratification	by	assuming	these	founders	have	the	same	carrier	chromosome	frequency.	

As	a	 future	 improvement,	we	can	 infer	 founders’	ancestry	and	 their	 individual-specific	

carrier	chromosome	frequency	(Conomos	et	al.	2016),	and	then	accommodate	TRAP	to	

mitigate	the	confounding	effect	of	population	stratification.		

TRAP	 requires	 inheritance	 vectors	 as	 input	 and	we	assume	 inheritance	 vectors	 are	

known	in	this	study.	For	nuclear	families,	multiple	software	can	reliably	infer	inheritance	

vectors	(X.	Li	and	Li	2011;	Roach	et	al.	2011;	O’Connell	et	al.	2014).	However,	the	inference	

of	inheritance	vectors	for	large	pedigrees	can	be	challenging,	especially	when	there	are	

multiple	ungenotyped	members/founders	in	the	pedigree.	In	addition,	large	pedigrees	are	

more	prone	 to	 genotyping	error	which	 influences	 the	 accuracy	of	 inferred	 inheritance	

vectors	 than	 nuclear	 families	 (X.	 Li	 and	 Li	 2011).	 As	 the	 size	 of	 pedigree	 grows,	 the	

computational	 time	 for	 inferring	 inheritance	 vectors	 increases	 with	 multiple	 possible	

inheritance	vectors	for	a	given	pedigree.	For	such	a	large	pedigree,	we	can	extend	TRAP	

to	evaluate	associations	based	on	the	dosage	of	each	inferred	inheritance	vector;	though,	

this	also	requires	additional	computational	time.	Future	work	is	required	to	evaluate	the	

performance	of	TRAP	on	large	pedigrees	accounting	for	the	uncertainty	of	inferring	their	

inheritance	vectors.		

Overall,	family	designs	are	especially	informative	for	rare	variant	association	studies.	

We	develop	a	family-based	method	that	can	both	apply	to	arbitrary	pedigree	structures	
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and	efficiently	exploit	the	information	of	rare	variants	shared	on	IBD	chromosomes.	We	

expect	 TRAP	 is	 particularly	 useful	 for	 family	 studies	with	 ascertainment,	 especially	 for	

multi-generation	pedigrees.
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Chapter	4 	
Increasing	Power	for	Testing	Rare	

Variant	Associations	with	
Continuous	Traits	using	Extended	

Families		

4.1. Introduction	

Genome-wide	association	studies	have	identified	many	common	variants	that	account	

for	a	modest	portion	of	heritability	 for	a	given	disease	 (Eichler	et	al.	2010).	To	 further	

explore	the	genetic	contribution	to	the	complex	diseases,	rare	variants	are	hypothesized	

to	explain	some	of	the	remaining	heritability	(Manolio	et	al.	2009).	In	fact,	rare	variants	

are	abundant	in	human	populations	(The	1000	Genomes	Project	Consortium	2015).	Thus,	

many	studies	have	focused	on	identifying	rare	variants	and	their	contributions	to	complex	

diseases	(Cirulli	and	Goldstein	2010).	

The	challenge	of	using	population	samples	to	study	rare	variants	is	the	low	statistical	

power	to	identify	the	rare	variants	associated	with	a	trait	(Lee	et	al.	2014).	To	improve	

power	to	identify	associated	rare	variants,	one	popular	strategy	is	to	aggregate	the	rare	

variants	 in	 a	 gene	 region	 to	 jointly	 test	 for	 associations	 in	 “burden”	 or	 “variance-

component”	styles	(B.	Li	and	Leal	2008;	Wu	et	al.	2011).	An	alternative	strategy	is	to	use	
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family	samples.	Extending	gene-based	tests	to	family-based	samples	can	further	improve	

power	since	genetic	loading	at	susceptible	loci	can	be	enriched	in	families	(Ott,	Kamatani,	

and	Lathrop	2011).	These	extensions	can	be	categorized	into	two	classes:	to	adjust	for	the	

relatedness	in	families,	the	first	class	of	methods	extend	population	gene-based	tests	by	

employing	generalized	estimating	equation	or	mixed	effect	models	(H.	Chen,	Meigs,	and	

Dupuis	2013;	Schifano	et	al.	2012;	Schaid	et	al.	2013;	X.	Wang	et	al.	2013).	Although	valid,	

this	adjustment	typically	reduces	the	effective	sample	size,	offsetting	the	benefit	of	the	

increased	 loading	at	 susceptible	 loci	 in	 the	 family;	 this	makes	 these	 family	gene-based	

tests	fall	behind	their	counterparts	for	population	samples.	The	second	class	of	methods	

is	based	on	FBAT	(Laird,	Horvath,	and	Xu	2000),	that	uses	within-family	information	to	test	

for	the	equilibrium-transmission	of	alleles	in	the	family,	and	extends	to	gene-based	test;	

these	methods	are	robust	to	the	confounding	effect	due	to	population	stratification	(De	

et	al.	2013;	Ionita-Laza	et	al.	2013).	Instead	of	only	using	within-family	information,	Jiang,	

Conneely,	and	Epstein	[2014]	proposed	to	use	between-family	information	to	select	the	

variants	 to	 include	 in	 the	within-family	 association	 test	 to	 reduce	 the	multiple-testing	

burden.	 Fang,	 Sha,	 and	 Zhang	 [2012]	 included	 the	 between-family	 information	 and	

formed	a	combined	test;	a	combined	test	is	more	powerful	than	using	only	within-family	

information,	 however,	 losing	 its	 immunity	 to	 population	 stratification.	 However,	 FBAT-

based	method	often	breaks	an	extended	family	into	many	trios	where	only	heterozygous	

parents	contribute	to	the	test.	For	rare	variants,	most	parents	would	be	homozygous.	This	

significantly	decreases	the	number	of	informative	transmissions;	thus,	these	methods	do	

not	efficiently	use	the	within-family	information.		

In	Chapter	3,	TRAP	presents	a	new	framework	to	exploit	within-family	information	by	
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including	all	homozygous	parents	in	a	family	in	which	at	least	one	parent	is	heterozygous.	

By	directly	considering	the	sharing	of	rare	variants	among	affected	family	members,	TRAP	

improves	power	for	detecting	rare	variants	associated	binary	traits	as	compared	to	FB-

SKAT,	 which	 is	 a	 gene-based	 test	 extended	 from	 FBAT	 (Ionita-Laza	 et	 al.	 2013)	 and	

Pedgene,	which	 is	 an	extension	of	population	gene-based	 test	 (Schaid	et	 al.	 2013).	By	

using	a	similar	idea,	we	can	extend	this	efficient	within-family	test	framework	to	studying	

continuous	traits.	Continuous	traits	are	routinely	collected	in	many	disease	studies.	For	

example,	in	a	diabetes	study,	patients	are	usually	measured	for	their	lipid,	glucose	level,	

waist/height	ratio,	and	blood	pressure.	Therefore,	the	goal	of	this	chapter	is	to	propose	a	

new	 efficient	 gene-based	 method	 to	 use	 family	 data	 to	 increase	 power	 for	 the	

identification	of	associated	rare	variants,	focusing	on	continuous	traits.	

To	increase	power	based	on	the	fact	that,	given	a	rare	variant	increases	the	trait,	two	

family	members	who	 have	 a	 high-level	 trait	 are	more	 likely	 to	 share	 this	 rare	 variant	

identity-by-descent	 (IBD).	 Collecting	 ascertained	 families,	 which	 have	 many	 family	

members	who	have	a	high-level	trait,	can	increase	the	observed	frequency	of	risk	alleles,	

leading	to	power	gain.	Although	powerful,	the	ascertainment	requirement	also	increases	

the	 cost	 of	 collecting	 family	 samples,	 resulting	 in	 a	 smaller	 sample	 size	 (given	 a	 fixed	

budget),	which	can	offset	the	power	gain.	On	the	other	hand,	by	collecting	a	larger	sample	

of	unascertained	families,	i.e.	randomly	selected	families	in	a	population,	may	still	allow	

us	to	observe	excessive	copies	of	risk	alleles	within	a	family,	described	as	the	‘Jackpot’	

effect	 (Feng	 et	 al.	 2015).	 Thus,	 developing	 a	 method	 that	 has	 adequate	 statistical	

performance	for	both	scenarios	can	ease	the	process	of	finding	rare-variant	associations	

and	not	have	to	consider	whether	the	family	is	“ascertained”	or	not.			
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Here,	 we	 propose	 test	 for	 rare-variant	 associations	 with	 continuous	 traits	 using	

extended	families	(TRACE),	which	can	be	applied	to	both	non-ascertained	and	ascertained	

scenarios.	Intuitively,	within	each	family,	we	test	if	the	family	members	with	a	similar	trait	

are	more	likely	to	share	the	IBD	variant.	Equivalently,	if	a	variant	increases	the	trait	value,	

this	 variant	would	pass	 through	 the	 founder	 chromosome	 that	 can	 reach	many	 family	

members	with	high	trait	values	(as	illustrated	in	Figure	4-1).	Therefore,	using	within-family	

information,	 we	 test	 if	 the	 transmission	 path	 is	 associated	 with	 the	 trait	 of	 family	

members.	 Moreover,	 within-	 and	 between-family	 information	 provide	 independent	

information	about	association	signals	 (Fang,	Sha,	and	Zhang	2012).	To	 further	 increase	

power,	we	design	TRACE	as	a	combined	method	that	can	use	both	within-	and	between-

family	information.	

In	the	following,	we	first	describe	and	explain	how	to	use	within-family	to	perform	the	

test.	Second,	we	show	how	TRACE	combines	within-	and	between-family	information	to	

increase	power.	Using	simulations,	we	show	that	under	a	non-ascertained	scenario,	TRACE	

is	more	 powerful	 than	 the	 existing	 family-based	methods	 for	 large	 pedigree,	 but	 less	

powerful	 for	 small	 and	 medium	 pedigree;	 for	 ascertained	 scenarios,	 TRACE	 has	 an	

advantage	over	the	existing	approaches	in	all	considered	scenarios.	

4.2. Method	

In	this	section,	we	first	introduce	TRACE_W	using	within-family	information.	Then,	we	

introduce	TRACE	using	both	within-	and	between-family	information.	Finally,	we	explain	

the	 simulation	model	 that	 accounts	 for	 the	 relatedness	 and	 heritability	 in	 families	 to	

evaluate	 the	 proposed	 and	 existing	 methods	 under	 non-ascertained	 and	 ascertained	
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scenarios.		

4.2.1. Test	 for	 associations	 based	 on	 within-family	 information:	
TRACE_W	

Considering	a	region	in	the	human	genome,	we	jointly	test	if	rare	variants	are	shared	

by	the	family	members	who	have	a	similar	trait	value.	In	a	chromosome	region,	we	use	a	

simple	collapsing	approach	(B.	Li	and	Leal	2008)	to	collapse	the	variants	of	interest,	e.g.	

nonsynonymous	variants,	and	define	the	carrier	chromosome	as	a	chromosome	region		

carrying	at	least	one	variant	of	interest.	For	𝑗[^	individual	in	𝑖[^	family,	let	𝑥rs ∈ {0,1,2}	be	

the	number	of	carrier	chromosomes	 for	every	 individual	and	𝑌rs 	be	 the	 trait	value,	𝑖 =

1…𝑛 ¡¢	and	𝑗 = 1…𝑛£.	 In	addition,	we	center	 the	 individual’s	 trait	by	 subtracting	 the	

family	mean	𝑌¤.	To	quantify	the	covariance	between	carrier	chromosomes	and	the	trait,	

we	 calculate	 𝑇r = (𝑌rs − 𝑌¤)
3�
s 𝑋rs.		We	 can	 then	 use	 𝑇r 		to	 test	 for	 the	 association.	

Intuitively,	if	the	variant	is	associated	with	the	trait,	𝑇r 		would	deviate	from	its	expectation	

𝐸 𝑇r 	assuming	no	association.	We	then	calculate	the	expectation	for	every	family	and	

aggregate	the	information	across	families	to	test	for	the	association	between	the	variants	

and	the	continuous	trait.	

To	 calculate	𝐸 𝑇r 	,	we	 use	 the	 inheritance	 vector;	 the	 inheritance	 vector	 indicates	

possible	paths	for	a	variant	to	be	transmitted	from	founders	to	offspring	in	a	family	(as	

shown	in	Figure	4-1).	For	example,	for	a	nuclear	family,	two	parents	provide	four	possible	

transmission	paths.	Under	the	null	hypothesis	that	the	variants	are	not	associated	with	

the	 trait,	 the	 carrier	 chromosome	 is	 equally	 likely	 to	 be	 transmitted	 through	 any	

transmission	path	 from	 founders	 to	offspring.	Given	 the	 founder	genotypes	𝐿r 		and	 the	

inheritance	 vector	𝐼𝑉r 	,	 we	 can	 thus	 enumerate	 all	 possible	 transmission	 paths	 c	 and	
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calculate	 the	 expectation	 𝐸 𝑇r = (𝑌rs − 𝑌¤)
3�
s 𝑋rs|{

3w	
{|©�	,.ª� /𝑛{ 	,	 	 where	 𝑛{ 		is	 the	

number	of	possible	transmission	paths.	The	test	statistic	using	within-family	information,	

𝑇« = [𝑇r
3¬­®
r − 𝐸 𝑇r ],	 aggregates	 the	 information	across	 families.	To	derive	 the	null	

distribution	of	𝑇«,	we	can	rewrite	within-family	information,	𝑇r − 𝐸 𝑇r ,	as	a	summation	

of	the	excessive	transmission	of	carrier	chromosome	and	the	trait	of	each	family	member	

as	below,		

𝑇r − 𝐸 𝑇r = 𝑌rs − 𝑌¤

3�

s

𝑋rs − 𝑌rs − 𝑌¤

3�

s

(𝑋rs|{

3w	

{|K�,.ª�

/𝑛{) 				

= 𝑌rs − 𝑌¤

3�

s

𝑋rs − 𝑌rs − 𝑌¤
𝑋rs|{
𝑛{

3w

{|K�,.ª�

3�	

s

= 𝑌rs − 𝑌¤

3�

s

(𝑋rs	–
𝑋rs|{
𝑛{

3w

{|K�,.ª�

) = 𝑌rs − 𝑌¤

3�

s

(𝑋rs − 𝐸(𝑋rs|𝐿r, 𝐼𝑉r)).	

Then,	the	overall	statistic	across	families	and	its	variance	are,	

																	𝑇« = 𝑇r
3¬­®
r − 𝐸 𝑇r = 𝑌rs − 𝑌¤ (𝑋rs − 𝐸(𝑋rs|𝐿r, 𝐼𝑉r)

3�
s )3¬­®

ryl 													(1)	

Var 𝑇« = (𝑌rs − 𝑌¤)(𝑌rs² − 𝑌¤)Cov(𝑋rs, 𝑋rs²|𝐿r, 𝐼𝑉r)
3�

s²
)

3�

s

3¬­®

r

	

where	 	Cov 𝑋rs, 𝑋rs² 𝐿r, 𝐼𝑉r =
µ��|wk� 𝑋rs 𝐿r, 𝐼𝑉r µ��²|wk� 𝑋rs² 𝐿r, 𝐼𝑉raw	

w|¶�,·¸�
3w

.	 	Under	

the	 null	 hypothesis	 that	 every	 founder	 chromosome	 is	 equally	 likely	 to	 be	 a	 carrier	

chromosome,	i.e.	that	no	variants	are	associated	with	the	trait,	TRACE_W	is	a	score	test	

and	follows	the	standard	normal	distribution	TRACE_W = ¾¿
À¡Á ¾¿

~𝑁(0,1)	
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Figure	4-1.	Illustration	of	inheritance	vector	for	a	family	with	two	founders	and	two	offspring	assuming	a	single	variant	
in	the	region.	There	are	four	possible	paths	to	place	the	variant	in	founder	chromosomes.		The	colored-line	indicates	the	
path	that	a	variant	is	transmitted	to	offspring.	Given	that	the	variant	is	transmitted	through	a	particular	path	k,	𝑇r

x 	is	
the	 summary	 statistic	 measuring	 the	 covariance	 between	 the	 trait	 and	 carrier	 chromosomes.	 Conditional	 on	 the	
inheritance	 vector	 in	 family	 i,	 we	 can	 thus	 enumerate	 all	 four	 possible	𝑇r

x 	.	 Under	 the	 null	 hypothesis	 that	 each	
placement	 is	 equally	 likely	 to	 occur,	 we	 then	 can	 calculate	𝜇r =

l
|
0.225 + 0.375 − 0.25 − 0.35 = 0.		Under	 the	

alternative	that	a	variant	increases	the	trait	value,	the	variant	is	more	likely	to	appear	on	the	second	(orange)	founder	
chromosome	and	reach	two	offspring	with	high	traits.		

4.2.2. Include	between-family	information	to	form	a	combined	test:	
TRACE	

As	 shown	 in	 equation	 (1),	 within-family	 information	 calculates	 the	 covariance	

between	the	trait	and	carrier	chromosomes	 𝑌rs − 𝑌¤ (𝑋rs − 𝐸 𝑋rs 𝐿r, 𝐼𝑉r .	Define	𝛾r =

𝑋rs − 𝐸(𝑋rs|𝐿r, 𝐼𝑉r)	 	and	 𝛿r = 𝐸(𝑋rs|𝐿r, 𝐼𝑉r)	 .	 𝛿r 	 	is	 the	 family	 loading	 of	 carrier	
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chromosomes	and	equals	the	mean	number	of	carrier	chromosomes	in	a	founder	of	the	

ith	 family.	 Since	 accounting	 for	 the	 expected	 number	 of	 the	 transmitted	 carrier	

chromosomes	 in	 a	 family,	 within-family	 information	 𝛾r 		represents	 the	 additionally	

transmitted	carrier	chromosomes	and	is	independent	of	𝛿r.	Thus,	we	propose	to	use	𝛿r 	to	

test	for	the	association	between	families.	To	test	for	the	association	using	between-family	

information,	we	evaluate	if	the	mean	trait	of	all	family	members	is	associated	with	the	

family	 loading,	𝑇/ = 𝑌¤ − 𝑌 (𝛿r − 𝛿) 	
3¬­®
r 	where	𝛿 =

Ä�
a¬­®
�ÅÆ
3¬­®

		representing	 the	mean	

family	 loading	 in	 the	 samples.	 And	var(𝑇/) = 𝑌¤ − 𝑌 H HÇ lkÇ
3�
¬ÈÉÊËÌÍ

3¬­®
r 	,	 where	𝑓		is	 the	

estimated	 carrier	 chromosome	 frequency	 based	 on	 all	 founders	 and	𝑛r ÎÏÐÑÒÁ		is	 the	

number	 of	 founders	 in	 ith	 family.	 Finally,	we	 combine	TÓ		and	TÔ		to	 jointly	 test	 for	 the	

association,	

TRACE =
𝑇« + 𝑇/

var 𝑇« + var 𝑇/
~𝑁(0,1)	

4.2.3. Simulation	model	

We	 use	 simulations	 to	 compare	 power	 between	 the	 proposed	 tests	 and	 existing	

family-based	 methods.	 We	 consider	 two	 existing	 family	 gene-based	 tests:	 Pedgene	

(Schaid	et	al.	2013),	a	gene-based	test	which	implicitly	uses	both	between-	and	within-

family	information	by	adjusting	for	the	relatedness	in	families,	and	FB-SKAT	that	extends	

the	 within-family-approach	 FBAT	 to	 a	 gene-based	 test	 	 (Ionita-Laza	 et	 al.	 2013).	 We	

consider	two	scenarios	of	sampling.	First,	families	are	sampled	without	ascertainment,	i.e.	

we	use	every	simulated	family.	Second,	in	the	ascertained	scenario,	we	only	use	families	

that	have	a	pre-specified	number	of	family	members	ascertained	to	have	a	trait	in	the	top	

10%	percentile	in	the	population.		
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Let	 𝑦rs 	 	denote	 the	 trait	 for	 the	 jth	 member	 in	 the	 ith	 family,	 𝐺rs =

𝑔rsl	, 𝑔rsH	, … , 𝑔rsX	|𝑔rs∙ ∈ (0,1,2) 		an	 indicator	 vector	 for	 carrying	 the	 variant	 allele	 at	

mth	 variant	 of	 interest.	 To	 generate	 families,	 we	model	 the	 heritability	 in	 a	 family	 by	

incorporating	the	kinship	matrix	of	ith	family	𝑲r 	and	use	the	trait	model	𝑦rs = 𝛼 + 𝐺rs𝛽 +

𝐹rs + 𝜀rs,	where	𝐹rs 	is	the	corresponding	entry	for	jth	member	in	2𝑲r,	𝛼	is	the	mean,	and	

𝛽 = (𝛽l, 𝛽H, … , 𝛽x)		is	 the	 effect	 size	 of	 the	 risk	 variant	 assuming	 the	 effect	 size	 is	 a	

function	of	minor	allele	 frequency	 (MAF):	𝑟 l
|
logl5(𝑀𝐴𝐹)	;	 thus,	 a	 risk	 variant	of	MAF	

0.0001	has	effect	size	r.	For	neutral	variants,	the	effect	size	is	set	as	zero.	In	this	disease	

model,	the	covariance	matrix	for	ith	family	is	𝑽r = 2𝜎��H 𝑲𝒊 + 𝜎�H𝑰,	where	𝜎��H = 0.5	is	the	

shared	 polygenic	 and	 environmental	 effect	 in	 the	 family,	 and	𝜎�H = 0.5		is	 the	 non-

measurable	error.		

We	simulate	sequence	data	using	a	coalescent-model-based	simulator	COSI	(Schaffner	

et	al.	2005)	and	generate	 ten	 thousand	1kb	chromosomes.	We	randomly	select	causal	

variants	where	the	summed	allele	frequency	is	0.01	and	fix	these	causal	variants	in	the	

simulations.	Assuming	no	recombination	within	a	family,	to	generate	𝐺rs,	we	sample	two	

chromosomes	 for	 each	 founder	 from	 those	 ten	 thousand	 chromosomes;	 then	 each	

offspring	 inherits	 two	 chromosomes	 following	Mendel	 law	 (MacCluer	 et	 al.	 1986).	 For	

non-ascertained	scenarios,	we	simulate	the	phenotype	for	all	members	according	to	the	

trait	model	introduced	above	and	keep	every	family	until	a	specified	number	of	families	

have	 been	 generated.	 For	 ascertained	 scenarios,	 we	 simulate	 the	 phenotype	 for	 all	

members	and	only	keep	the	families	that	have	a	specified	number	of	family	members	who	

have	traits	above	the	90th	percentile.	We	simulate	family	by	family	until	we	have	generated	

a	specified	number	of	families.	Then,	to	compare	power,	we	apply	the	proposed	tests	and	
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the	existing	methods	with	different	family	structures.	 In	the	following	sections,	we	use	

1,000,000	 replications	 to	 evaluate	 type	 I	 error	 rate	 and	 1,000	 replications	 for	 each	

scenario	to	calculate	power.	

4.3. Results	

Using	simulations	generating	1kb	regions,	we	consider	two	scenarios.	First,	 families	

are	collected	without	ascertainment.	Second,	families	are	generated	with	ascertainment	

where	we	keep	only	the	family	that	has	the	specified	number	of	members	belonging	in	

the	top	10th	percentile.	To	compare	power,	we	use	different	family	structures	from	two-

generation	to	three-generation	pedigrees.	First,	we	evaluate	nominal	type	I	error	rate	for	

all	considered	methods.	Second,	to	quantify	the	power	gain	by	including	between-family	

information,	we	compare	TRACE_W,	which	only	considers	within-family	 information,	to	

TRACE,	which	considers	both	within-	and	between-family	information.	Third,	we	compare	

TRACE	to	existing	methods,	Pedgene	and	FBSKAT.		

4.3.1. Type	I	error	rate		

We	 considered	 three	 pedigree	 structures	 in	 both	 ascertained	 and	 non-ascertained	

scenarios	(see	Methods).	For	two-generation	pedigree,	there	were	4	members;	for	three-

generation	pedigree	we	considered	7	and	22	members.	We	coded	each	pedigree	structure	

by	the	number	of	generations	(g),	number	of	family	members	(n),	number	of	members	

with	a	trait	above	the	90th	percentile	(a),	and	the	number	of	members	with	a	trait	below	

the	90th	percentile	(u).	For	example,	under	non-ascertained	scenarios,	a	two-generation	

family	with	4	members	was	denoted	as	2g.4n;	under	ascertained	scenarios,	when	there	
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were	two	members	with	a	trait	above	the	90th	percentile	and	two	members	below	the	

90th	percentile,	this	pedigree	was	denoted	as	2g.2a.2u.	Moreover,	any	family	member	can	

have	the	trait	above	the	90th	percentile.	The	pedigree	structures	can	be	found	in	Appendix	

C.1.	To	ease	the	computational	burden,	type	I	error	rate	was	set	at	2.5×10k|.	To	compare	

results	across	pedigrees,	given	sequenced	founders	in	a	family,	we	assume	that	we	can	

accurately	 impute	 offspring	 genotypes	 using	 genotyping	 array	 with	 a	 negligible	 cost	

relative	to	sequencing;	we	thus	considered	a	fixed	number	of	2000	founders	sequenced	

for	each	pedigree	structure,	resulting	in	1000,	667,	and	286	families	for	2g.4n	(2g.2a.2u),	

3g.7n	(3g.3a.4u),	and	3g.22n	(3g.5a.17u),	respectively.	FB-SKAT	failed	to	run	for	the	large	

pedigree	3g.5a.17u,	and	thus	was	excluded	for	the	result	of	 large	pedigree.	Across	the	

pedigree	structures,	all	considered	methods	maintained	nominal	type	I	error	as	shown	in	

Table	4-1.	

	 Non-ascertained	 Ascertained	
	 2g.4n	 3g.7n.4n	 3g.22n	 2g.2a.2u	 3g.3a.4u	 3g.5a.17u	
TRACE_W	 1.0×10k|	 1.2×10k|	 1.5×10k|	 1.0×10k|	 1.1×10k|	 1.3×10k|	
TRACE	 1.0×10k|	 1.2×10k|	 1.4×10k|	 1.1×10k|	 1.1×10k|	 1.4×10k|	
Pedgene	 1.6×10k|	 1.5×10k|	 1.4×10k|	 1.7×10k|	 1.6×10k|	 1.4×10k|	
FB-SKAT	 1.1×10k|	 1.4×10k|	 1.3×10k|	 1.1×10k|	 1.4×10k|	 1.2×10k|	

Table	4-1.	Type	I	error	rate	evaluation	for	TRACE_W,	TRACE,	Pedgene,	and	FB-SKAT	for	carrier	chromosome	frequency	
0.01	under	different	family	structures	and	nominal	𝛼 = 2.5×10k|.	

4.3.2. Power	gain	by	including	between-family	information	

Since	between-	and	within-family	 information	provide	 independent	evidence	about	

the	association,	including	between-family	information	can	increase	power	compared	to	

only	using	within-family	information.	We	simulated	families	for	each	pedigree	structures	

described	above	and	compared	TRACE_W	to	TRACE.	As	shown	in	Figure	4-2,	we	found	

that	 the	power	gain	by	 including	between-family	 information	was	more	substantial	 for	
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non-ascertained	than	ascertained	scenarios.	For	example,	for	two-generation	pedigree,	

the	 maximum	 difference	 in	 power	 between	 TRACE_W	 to	 TRACE	 was	 0.45	 under	 no	

ascertainment	 and	 decreased	 to	 0.08	when	 two	members	were	 ascertained	 in	 >	 90th	

percentile.	The	power	gain	also	depended	on	the	pedigree	structure.	When	comparing	

medium-size	pedigree	3g.7n	to	small	pedigree	2g.4n,	the	power	gain	was	more	substantial	

for	small	pedigree	than	medium	pedigree;	the	maximum	difference	between	TRACE_W	

to	TRACE	was	0.45	for	2g.4n	compared	to	0.15	for	3g.7n.	For	large	pedigree	3g.22n,	there	

was	little	power	gain	by	including	between-family	information	for	both	non-ascertained	

and	ascertained	scenarios.		

		
Figure	 4-2	 The	 power	 comparison	 evaluated	 at	𝛼 = 2.5×10k�		between	 the	 within-family	 test	 TRACE_W	 and	 the	
combined	test	TRACE	under	non-ascertained	and	ascertained	scenarios.	Power	curve	is	shown	as	a	function	of	effect	size	
of	risk	variants	in	a	gene	with	carrier	chromosome	frequency	0.01.	

4.3.3. Power	comparison	across	TRACE,	Pedgene,	and	FBSKAT	

Under	 different	 pedigree	 structures	 and	 ascertainment,	 we	 compared	 TRACE	 to	
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existing	 family-based	 methods	 Pedgene	 and	 FB-SKAT;	 we	 excluded	 FB-SKAT	 for	 large	

pedigree	because	it	failed	to	complete	the	analyses.	Throughout	the	considered	scenarios	

in	Figure	4-3,	FB-SKAT	was	the	least	powerful	method.	For	Pedgene	and	TRACE,	the	power	

difference	depended	on	the	size	of	the	pedigree	structure	and	ascertainment.	Under	the	

non-ascertained	scenario,	Pedgene	was	the	most	powerful	method	for	2g.4n	and	3g.7n	

followed	by	TRACE.	For	example,	given	effect	size	1.3	and	pedigree	2g.4n,	the	power	for	

Pedgene	and	TRACE	was	0.80	and	0.65,	respectively.	In	contrast,	for	large	pedigree	3g.22n,	

TRACE	was	more	powerful	than	Pedgene;	for	effect	size	of	1.0,	the	power	for	TRACE	and	

Pedgene	was	0.56	and	0.51.	In	this	case,	within-family	contained	the	most	information,	

specifically	the	sharing	of	rare	variants	between	family	members.	TRACE	could	directly	use	

this	within-family	information	through	inheritance	vector	to	up-weight	the	sharing	of	rare	

variants	and	outperform	Pedgene,	which	does	not	exploit	this	information.		

For	 ascertained	 scenarios,	 the	 power	 of	 TRACE	 substantially	 increased	 and	 it	 was	

consistently	 the	 most	 powerful	 method	 from	 small	 to	 large	 pedigree	 settings.	 For	

example,	for	2g.2a.2u	and	effect	size	0.8,	the	power	for	TRACE	and	Pedgene	was	0.64	and	

0.59.	The	advantage	in	power	for	TRAP	was	more	substantial	for	large	pedigree	3g.5a.17u	

than	 small	 pedigree	 2g.2a.2u.	 The	 maximum	 power	 difference	 between	 TRACE	 and	

Pedgene	was	0.12	for	3g.5a.17u	compared	to	0.06	for	2g.2a.2u.	
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Figure	 4-3	 The	 power	 comparison	 evaluated	 at	 𝛼 = 2.5×10k�		across	 TRAP,	 Pedgene	 and	 FB-SKAT	 under	 non-
ascertained	and	ascertained	scenarios.	Power	curve	is	shown	as	a	function	of	effect	size	of	risk	variants	in	a	gene	with	
carrier	chromosome	frequency	f	=	0.01.	

4.4. Discussion		

In	 this	chapter,	we	developed	a	novel	 family-based	rare-variant	association	 test	 for	

continuous	 traits	 that	 can	 flexibly	 be	 applied	 to	 arbitrary	 pedigree	 structures	 and	

efficiently	use	within-family	information.	We	use	the	fact	that	for	family	members	with	a	

similar	trait	value,	they	are	more	likely	to	share	the	associated	variant.	Conditional	on	the	

transmission	vector,	we	evaluate	if	the	sharing	of	the	variant	is	associated	with	the	trait	

similarity.	 Intuitively,	 if	a	variant	 is	not	associated	with	the	disease,	 it	would	be	equally	

likely	transmitted	to	the	offspring	through	every	founder	chromosome;	thus,	we	evaluate	

if	 the	 variant	 is	 biasedly	 transmitted	 to	 the	 offspring	 through	 a	 specific	 founder	

chromosome.	Moreover,	 TRACE	 combined	 within-	 and	 between-family	 information	 to	

fully	use	family	information	to	jointly	test	for	associations.	
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TRACE	is	a	combined	test	that	use	both	within-	and	between-family	information.	We	

have	 showed	 that	 TRACE	 can	 be	 useful	 in	 both	 non-ascertained	 and,	 particularly	

ascertained	scenarios.	For	the	ascertained	scenario,	within-family	 information	provides	

the	most	evidence	about	association;	thus,	there	was	a	minor	power	gain	as	comparing	

TRACE	to	TRACE_W,	which	only	used	within-family	information.	TRACE	was	more	powerful	

than	existing	family-based	methods	by	better	using	the	within-family	information	through	

inheritance	vector	to	exploit	the	sharing	of	rare	variants	between	family	members.	Under	

the	ascertained	scenario,	family	members	with	a	high-level	trait	were	more	likely	to	share	

a	 variant	 that	 increases	 the	 trait	 value,	 leading	 to	 power	 gain.	 In	 addition,	 due	 to	

ascertainment,	it	was	more	likely	that	a	family	segregates	at	least	one	risk	variant,	leading	

to	more	 informative	 families	 in	 the	 test,	 particularly	 for	 large	 pedigrees	with	multiple	

founders;	thus,	we	observe	a	greater	power	gain	for	large	pedigrees	than	small	pedigrees.	

In	general,	Pedgene	reduced	the	effective	sample	size	to	account	for	relatedness	and	did	

not	consider	 the	sharing	of	 rare	variants	 in	a	 family;	 thus,	 the	 larger	 the	pedigree,	 the	

greater	the	power	difference	was	between	TRACE	and	Pedgene.	Although	FB-SKAT	should	

benefit	 from	 ascertainment,	 FB-SKAT	 was	 less	 powerful	 than	 TRACE	 as	 it	 does	 not	

efficiently	 use	 within-family	 information	 and	 breaks	 an	 extended	 family	 into	 trios.	 In	

addition,	FB-SKAT	cannot	consider	parents’	phenotypic	information.		

Under	 non-ascertained	 scenarios,	 TRACE	 includes	 between-family	 information	 and	

substantially	 improves	 power	 over	 TRACE_W,	 especially	 for	 small	 pedigree	 structures.	

Although	Pedgene	reduced	the	effective	sample	size	to	account	for	relatedness,	we	only	

observed	 TRACE	 being	 more	 powerful	 than	 Pedgene	 for	 large	 pedigrees.	 For	 a	 large	

pedigree,	 sharing	 an	 IBD	 variant	 among	 many	 family	 members	 across	 generations	
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provides	 stronger	 evidence	 that	 the	 variant	was	 associated	with	 disease	 compared	 to	

small	pedigree;	thus,	TRACE	can	better	exploit	within-family	information	to	up-weight	this	

sharing	evidence	as	compared	to	Pedgene	(Appendix	C.2).		

By	 including	 between-family	 information,	 TRACE	 can	 substantially	 increase	 power	

over	 TRACE_W,	 which	 only	 uses	 within-family	 information,	 particularly	 for	 small	

pedigrees.	 We	 note	 that	 including	 between-family	 information	 is	 more	 prone	 to	

population	stratification	due	to	 the	heterogeneity	 in	origin	between	families	 than	only	

using	within-family	information.	However,	TRACE	can	easily	adapt	the	existing	strategy	to	

overcome	 the	common	confounders	 in	association	 studies.	 For	example,	by	 taking	 the	

residual	of	the	trait	adjusted	for	principal	components	and	available	covariates	as	the	new	

trait,	 TRACE	 can	 adapt	 this	 existing	 strategy	 to	 reduce	 false	 positive	 signals	 due	 to	

population	stratification.		

In	conclusion,	we	propose	a	new	powerful	approach	to	better	use	family	information	

for	 testing	 rare	 variant	 associations	 with	 continuous	 traits.	With	 ascertained	 families,	

TRACE	is	more	powerful	than	the	existing	family-based	methods;	TRACE	is	also	useful	for	

non-ascertained	families	with	multiple	members	and	generations.	As	discussed	in	Chapter	

3,	TRACE	relies	on	inheritance	vectors	to	evaluate	associations	and	inferring	inheritance	

vectors	 for	 large	 pedigrees	 can	 be	 challenging;	 thus,	 future	 work	 is	 warranted	 to	

investigate	and	accommodate	TRACE	to	scale	up	to	future	large	family-based	association	

studies.
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Chapter	5 	
Discussion	

Rare	 variants	have	been	hypothesized	 to	explain	part	of	 the	missing	heritability	of	

complex	diseases	(Manolio	et	al.	2009).	With	the	innovation	of	sequencing	technology,	

recent	 studies	 have	 routinely	 assessed	 rare	 variants	 using	 next-generation	 sequencing	

technology	(Sidore	et	al.	2015;	Fuchsberger	et	al.	2016;	Fritsche	et	al.	2016).	However,	

identifying	 associated	 rare	 variants	 faces	 the	 challenge	 of	 low	 statistical	 power	 unless	

using	a	very	large	sample	sizes	(Lee	et	al.	2014).	In	this	dissertation,	we	have	presented	a	

series	of	methods	to	harness	the	disproportionate	sharing	of	rare	variants	between	family	

members	to	increase	power	to	detect	rare	variant	associations.	In	this	chapter,	we	discuss	

the	significance	of	each	method,	 their	extensions	and	the	 impact	on	future	 large-scale	

family-based	studies.		

In	Chapter	2,	we	presented	a	new	paradigm	TRAFIC	to	use	identity-by-descent	(IBD)	

information	in	affected	sibpairs	to	test	for	rare	variant	associations.	For	a	rare	risk	variant,	

it	 is	 expected	 that	 only	 one	 parent	 in	 a	 family	 carries	 the	 variant;	 thus,	 two	 affected	

siblings	share	the	same	variant,	i.e.	the	rare	variant	resides	on	the	IBD	chromosome.	Using	

this	 fact,	 we	 test	 whether	 rare	 variants	 are	 equally	 likely	 to	 be	 observed	 on	 IBD	

chromosomes	and	non-IBD	chromosomes	in	affected	sibpairs,	and	found	TRAFIC	can	be	

substantially	more	powerful	in	detecting	rare	variants	than	using	population	case-control	
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samples.	 Furthermore,	 as	 shown	 in	 Zawistowski	 et	 al.	 (2014)	 and	 our	 results,	 minor	

population	stratification	can	substantially	 inflate	type	I	error	rate	and	thereby	generate	

spurious	 association	 signals.	 In	 rare	 variant	 association	 studies,	 adjusting	 for	 principal	

components	(Price	et	al.	2006)	may	not	be	sufficient	to	control	for	population	stratification	

(Mathieson	and	McVean	2012;	Liu,	Nicolae,	and	Chen	2013).	An	alternative	way	to	prevent	

population	 stratification	 is	 to	 use	 prudently	 matched	 cases	 and	 controls.	 Intuitively,	

TRAFIC	uses	non-IBD	chromosomes	to	serve	as	cautiously	matched	“controls”	compared	

to	IBD-chromosomes	as	“cases”	in	each	sibpair	to	be	robust	to	population	stratification.	

An	 innovation	 of	 TRAFIC	 is	 that	we	 can	 translate	 an	 affected-sibpair	 design	 into	 a	

“case-control”	design	by	assigning	a	new	label	to	IBD	chromosomes	as	“cases”	and	non-

IBD	chromosomes	as	“controls.”	This	connection	allows	an	affected-sibpair	design	to	take	

advantage	of	existing	population	gene-based	methods	(Wu	et	al.	2011;	Zawistowski	et	al.	

2010;	Price	et	al.	2010;	 Lee	et	al.	2014),	 for	example,	 to	 incorporate	 the	variants	with	

different	directions	of	effect.	Furthermore,	 this	 translation	 into	a	“case-control”	design	

also	enables	the	inclusion	of	external	population	samples,	generated	by	many	existing	and	

ongoing	sequencing	projects,	to	further	increase	power.	Recently,	by	matching	with	the	

inferred	 ancestry,	 using	 external	 population	 controls	 have	 been	 proposed	 to	 increase	

sample	sizes	(C.	Wang	et	al.	2014;	Bodea	et	al.	2016).	Although	future	evaluations	of	the	

matching	algorithms	 to	 avoid	population	 stratification	 for	 rare	 variant	 associations	 are	

required,	 in	 principle,	 given	 prudently	 matched	 external	 controls,	 TRAFIC	 can	 further	

improve	power	 to	 identify	associated	 rare	variants	by	comparing	 IBD-chromosomes	as	

“cases”	to	the	external	controls.	

To	fully	harness	the	pedigree	information	contained	in	extended	families,	in	Chapter	3	



70	

	

and	Chapter	4,	we	devised	TRAP	and	TRACE	to	efficiently	use	pedigree	 information	for	

binary	and	continuous	traits,	respectively.	The	innovation	of	TRAP	and	TRACE	is	to	better	

use	within-family	 information	 through	 inheritance	vectors,	which	 indicate	 transmission	

paths	 by	 which	 a	 variant	 can	 be	 transmitted	 from	 founders	 to	 offspring.	 If	 a	 variant	

increases	the	disease	risk	(trait	value),	the	variant	would	be	disproportionally	transmitted	

through	the	path	that	can	include	the	most	family	members	with	the	disease	(a	high	trait	

value).	In	a	scenario	that	multiple	members	in	a	family	are	ascertained	to	have	the	disease	

(a	high	trait	value),	these	ascertained	family	members	tend	to	share	the	associated	rare	

variants.	Because	TRAP	and	TRACE	can	efficiently	use	the	inheritance	vector	to	up-weight	

the	sharing	of	rare	variants	between	family	members,	we	showed	that	TRAP	and	TRACE	

can	be	more	powerful	than	existing	family-based	methods	from	small	to	large	pedigree	

structures.	 In	addition,	as	 the	sharing	of	 rare	variants	across	generations	 in	a	 family	 is	

strong	evidence	for	associations,	the	power	gain	increases	with	the	size	of	pedigree.	For	a	

large	 pedigree	with	multiple	 generations,	 even	without	 ascertainment,	we	 found	 that	

TRACE	is	more	powerful	than	existing	family-based	methods	which	do	not	directly	take	

advantage	of	the	sharing	of	variants	among	family	members.		

Recent	work	has	suggested	that	rare	variants	play	an	critical	role	in	contributing	to	the	

variance	of	traits	such	as	height	(Yang	et	al.	2015)	and	prostate	cancer	(Mancuso	et	al.	

2016).	 At	 the	 same	 time,	 it	 has	 been	 shown	 that	 the	 exponential	 growth	 of	 human	

population	and	selection	can	alter	the	genetic	architecture	of	a	trait	in	which	rare	variants,	

such	as	singletons,	account	for	the	majority	of	the	trait	variance	(Uricchio	et	al.	2016).	In	

such	 a	 scenario,	 existing	 population	 gene-based	 tests	 have	 inadequate	 statistical	

performance	(Uricchio	et	al.	2016).	Alternatively,	to	achieve	sufficient	power	to	detect	the	



71	

	

associations,	a	family-based	design	might	be	necessary	to	increase	observed	copies	of	rare	

variants	in	families	and	then	employ	methods,	such	as	TRAP	and	TRACE,	to	efficiently	use	

within-family	 information	 to	 leverage	 the	 sharing	of	 rare	variants,	 leading	 to	 the	most	

power	gain.	

Although	the	methods	presented	in	this	dissertation	use	IBD	information	to	improve	

power	for	rare	variant	associations,	we	note	that	generated	results	are	independent	from	

how	 linkage	studies	use	 IBD	 information,	 specifically	allele-sharing	 linkage	methods.	 In	

principle,	allele-sharing	linkage	methods	evaluate	whether	there	is	an	excessive	number	

of	 IBD	 chromosome	 shared	 by	 affected	 family	 members	 (Weeks	 and	 Lange	 1988;	

Whittemore	and	Halpern	1994;	Sham	et	al.	2002).		In	contrast,	TRAFIC,	TRAP,	and	TRACE	

are	conditional	on	the	excessive	number	of	shared	IBD	chromosomes,	and	then	test	for	

whether	IBD	chromosomes	that	are	shared	by	multiple	affected	family	members	are	more	

likely	to	carry	rare	variants.	This	 implies	the	association	signal	 is	driven	by	the	 linkage-

disequilibrium	between	the	tested	variants	and	the	causal	variant	as	used	in	association	

studies.	Thus,	as	in	association	studies,	TRAFIC,	TRAP,	and	TRACE	provide	a	finer	resolution	

than	the	resolution	in	linkage	studies	(Laird	and	Lange	2006).	

With	the	growing	volume	of	genetic	studies	that	collect	tens	of	thousands	samples	

(Lee	et	al.	2014;	R.	Chen	et	al.	2016),	the	success	of	future	family-based	studies	depends	

on	the	scalability	of	family-based	methods	applied	to	a	large	sample	of	families.	Linear	

mixed	 models	 or	 logistic	 mixed	 models	 are	 popular	 approaches	 to	 account	 for	 the	

relatedness	in	family-based	studies,	and	many	methods	have	been	developed	based	on	

the	 mixed	 model	 approach	 (Kang	 et	 al.	 2010;	 Zhou	 and	 Stephens	 2012;	 Eu-

ahsunthornwattana	et	al.	2014;	H.	Chen	et	al.	2016).	Fitting	these	mixed	models	requires	
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one	step	to	calculate	the	likelihood	under	the	null	hypothesis,	which	has	a	computational	

time	complexity	that	 is	cubic	to	the	sample	size	(Eu-ahsunthornwattana	et	al.	2014;	H.	

Chen	et	al.	2016),	and	can	be	computationally	difficult	for	a	very	large	number	of	samples	

(>100,000).	On	the	other	hand,	when	using	within-family	information,	TRAP	and	TRACE	

only	examine	those	families	which	segregate	a	rare	variant,	and	thus	these	methods	need	

much	fewer	computational	resources.		

However,	TRAP	and	TRACE	require	inheritance	vectors	as	input.	To	infer	inheritance	

vectors,	 the	 computational	 burden	 of	 existing	 methods	 grows	 exponentially	 with	 the	

family	size	(number	of	non-founders)	or	the	number	of	variants	considered	(X.	Li	and	Li	

2011;	Ott,	Wang,	and	Leal	2015).	For	example,	for	ten	families	 in	a	1kb	region	with	50	

variants,	using	Merlin	(Abecasis	et	al.	2002)	to	infer	two-generation	pedigree	consisting	

of	 2	 founders	 and	 2	 offspring	 takes	 <0.001	 second;	 in	 contrast,	 the	 time	 to	 infer	

inheritance	 vectors	 for	 two-generation	 pedigree	with	 3	 founders	 and	 4	 offspring,	 and	

three-generation	 pedigree	 of	 7	 founders	 and	 15	 offspring	 are	 0.01	 and	 108	 seconds,	

respectively.	Although	new	methods	have	been	proposed	to	reduce	the	computational	

burden	to	be	linear	with	the	number	of	non-founders	(X.	Li	and	Li	2011;	O’Connell	et	al.	

2014),	 it	 can	 still	 impose	 a	 computational	 burden	 in	 a	 sample	 with	 many	 extended	

families.	 In	 addition,	 the	 inference	 of	 inheritance	 vectors	 for	 large	 pedigrees	 can	 be	

challenging	when	there	are	multiple	missing	founders	across	generations.	To	account	for	

the	missingness,	enumerating	all	possible	inheritance	patterns	among	missing	founders	

in	 several	 generations	 quickly	 becomes	 computationally	 prohibitive.	 Besides,	 the	

presence	 of	 missing	 founders	 elevates	 the	 chance	 of	 falsely	 reporting	 the	 sharing	 of	

chromosomes	between	offspring,	leading	to	power	loss.	Thus,	future	work	is	warranted	
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to	investigate	the	scalability	of	the	necessary	steps,	and	accommodate	TRAP	and	TRACE	

to	apply	in	such	scenarios.	

In	conclusion,	with	the	abundant	number	of	rare	variants	discovered	by	existing	and	

ongoing	 sequencing	projects,	 drawing	 further	 findings	on	 rare	 variants	 contributing	 to	

complex	diseases	requires	robust	and	powerful	methods	for	association	studies.	In	this	

dissertation,	we	have	presented	three	statistical	methods,	each	aimed	at	using	the	sharing	

of	rare	variants	in	family	data	to	advance	our	understanding	of	etiologies	and	promote	

new	preventive	and	therapeutic	strategies	for	complex	diseases.		
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Appendix	A 	
For	Chapter	2	

A.1. EM	algorithm	and	multiple	imputation	

This	 imputation	 estimates	 the	 minor	 allele	 frequencies	 on	 shared	 chromosome	

regions	𝑝;	and	non-shared	chromosome	regions	𝑝1;	at	a	single	SNP	position.	Let	𝑁;	be	

the	number	of	shared	chromosome	regions,		𝑥;	be	the	number	of	minor	alleles	located	

on	IBD	chromosome	regions,	𝑁1;	be	the	number	of	non-IBD	chromosome	regions,	and	

𝑥1;		be	 the	 number	 of	 minor	 alleles	 located	 on	 non-IBD	 chromosome	 regions.	 Then	

𝑥;, 𝑥1;	are	binomially	distributed	with	the	full	likelihood	function,	

𝐿 𝑥;, 𝑥1; 𝑁;, 𝑁1;, 𝑝;, 𝑝1; = 𝑁;
𝑥;

𝑝;
ÙÚ 1 − 𝑝; 𝑁𝑆−𝑥𝑆 𝑁1;

𝑥1;
𝑝1;
ÙÛÚ 1 − 𝑝1; 𝑁𝑁𝑆−𝑥𝑁𝑆.	

Let	𝑘;	be	the	known	total	number	of	shared	alleles	on	IBD=2	sibpairs	(sibpairs	who	

share	two	IBD	chromosome	regions),	and	𝑘1;	be	the	known	total	number	of	non-shared	

alleles	 on	 IBD=0	 and	 single	 allele	 on	 IBD=1	 sibpairs.	 Suppose	 there	 are	 𝑢		double-

heterozygote	IBD=1	sibpairs.	Among	those	sibpairs,	𝑢;	number	of	sibpairs	share	an	allele	

and	𝑢1;		of	 them	do	not	 share	an	allele.	 The	 likelihood	 function	of	observing	 the	 total	

number	of	shared	allele	𝑥;	and	non-shared	allele	𝑥1;	can	be	rewritten	as		

𝑁;
𝑘; + 𝑢;

𝑝;
xÚ`ÞÚ 1 − 𝑝; 1ÚkxÚkÞÚ 𝑁1;

𝑘1; + 2𝑢1;
𝑝1;
xÛÚ`HÞÛÚ 1 − 𝑝1; 1ÛÚkxÛÚkHÞÛÚ.	

To	set	up	the	initial	values	for	the	algorithm,	we	estimate	the	allele	frequency	on	IBD	
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chromosome	regions	𝑝;	by	counting	the	total	number	of	non-shared	alleles	divided	by	the	

number	 of	 IBD=2	 sibpairs.	 Similarly,	 we	 estimate	 the	 allele	 frequency	 on	 non-IBD	

chromosome	regions	𝑝1;	from	IBD=0	sibpairs.	

In	the	E-step,	we	calculate	the	expectation	of	double-heterozygote	IBD=1	sibpairs	who	

share	and	don’t	shared	an	allele	conditional	on	the	current	estimation	of	parameters,	

𝐸 𝑢; 𝑝;	, 𝑝1; = 𝑢
𝑝; 1 − 𝑝1; H

𝑝; 1 − 𝑝1; H + 1 − 𝑝Z 𝑝1;H
	

𝐸 𝑢1; 𝑝;	, 𝑝1; = 𝑢
1 − 𝑝Z 𝑝1;H

𝑝; 1 − 𝑝1; H + 1 − 𝑝Z 𝑝1;H
.	

In	 the	M-step,	 we	 update	 new	𝑝;		and	𝑝1;		as	 the	 solution	 of	maximum	 likelihood	

estimators	of	the	expected	likelihood	function	

𝑝;3�ß =
k; + 𝑢;
𝑁;

,					𝑝1;3�ß =
𝑘1; + 2𝑢1;

𝑁1;
.	

The	algorithm	repeats	between	E-step	and	M-step	until	the	estimation	of	parameters	

converges.	To	impute	the	allele	sharing	status	for	double-heterozygote	IBD=1	sibpairs,	let	

𝑝∗	the	probability	of	being	a	shared	allele	given	a	double-heterozygote	IBD=1	sibpair,	

𝑝∗ =
𝑝; 1 − 𝑝1; H

𝑝; 1 − 𝑝1; H + 1 − 𝑝Z 𝑝1;H
.	

The	procedures	of	multiple	imputation	are	as	follows:	

1. Draw	the	number	of	double-heterozygote	IBD=1	sibpairs	who	share	an	allele	µâ	from	

Binomial(µ,	𝑝∗)	

Then	the	number	of	double-heterozygote	IBD=1	sibpairs	who	do	not	share	an	allele	is	

µ − µâ	

2. With	the	imputed-complete	data,	calculate	the	test	statistic	Ti		and	its	variance	𝜎rH	

3. Repeat	the	above	procedures	for	D=10	times	

4. Combine	D	test	statistics	and	their	variances	by	the	following	rule	
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𝑇0 =
𝑇r0

ryl

𝐷 	

	𝜎0H =
l
0

𝜎rH + (1 + 1/𝐷)
l

0kl
0
ryl 𝑇r − 𝑇0 H0

ryl 	

5. Use	𝑇0	and	𝜎0H	to	perform	the	hypothesis.	

A.2. Simulation	 result	 for	 Imputing	 Double	

Heterozygotes	

We	evaluated	multiple	 imputation	assuming	one	single	underlying	risk	variant	with	

minor	allele	 frequency	 f	 =	 0.01.	Conditional	on	 f,	 a	 single	 variant	 represents	 the	most	

challenging	scenario	as,	the	probability	of	a	double-heterozygote	at	a	single	position	in	

sibpairs	that	share	one	chromosome	region	IBD	decreases	with	the	number	of	underlying	

variants	in	the	region	and	the	probability	that	such	a	double	heterozygote	is	the	result	of	

two	non-shared	variants	also	decreases.	In	Table	A-1,	we	compared	three	models:	(1)	the	

sharing	status	of	alleles	was	known	(true),	(2)	assuming	all	double-heterozygote	sibpairs	

were	the	results	of	shared	alleles	 (naive	estimate),	and	 (3)	using	 the	multiple	 imputed	

sharing	status	(corrected	estimate).	We	set	the	false	positive	rate	at	0.05.	The	test	was	

well	calibrated	if	sharing	status	was	known.	After	applying	multiple	imputation,	there	was	

no	 inflation	 on	 the	 false	 positive	 rate.	 For	 example,	 under	 the	 null	 hypothesis	 of	µ =

1	and	σH = 0,	for	a	single	rare	variant	(f	=	0.01),	the	false	positive	rate	for	the	true,	naïve	

and	corrected	estimate	were	0.058,	0.058,	 and	0.055,	 respectively.	 For	more	 common	

variants	(f	=	0.2),	the	inflation	(0.545)	was	substantial	when	using	the	naive	estimate	of	

sharing	status	but	remained	at	the	nominal	 level	for	the	true	model	and	the	corrected	

estimate	at	0.049.			
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Under	the	alternative	with	µ > 1,	the	loss	in	power	due	to	imputation	compared	to	

the	true	model	was	negligible	for	low	f.	For	example,	for	a	single	rare	risk	variant	(f	=	0.01,	

µ = 1.5),	the	power	of	the	true,	and	corrected	were	0.294,	and	0.296,	respectively.	For	a	

single	common	risk	variant	(f	=	0.20,	µ = 1.2)	the	power	was	0.557,	and	0.467.		

	 True	 Naive	 Corrected	 	 True	 Naive	 Corrected	
f=0.01	 	 	 	 f=0.1	 	 	 	
𝛍 = 𝟏	 0.058	 0.058	 0.055	 𝛍 = 𝟏	 0.054	 0.121	 0.060	
𝛍 = 𝟏. 𝟓	 0.294	 0.313	 0.296	 𝛍 = 𝟏. 𝟐	 0.356	 0.691	 0.324	
𝛍 = 𝟐	 0.835	 0.847	 0.815	 𝛍 = 𝟏. 𝟒	 0.888	 0.992	 0.827	
f=0.05	 	 	 	 f=0.2	 	 	 	
𝛍 = 𝟏	 0.047	 0.057	 0.046	 𝛍 = 𝟏	 0.049	 0.545	 0.049	
𝛍 = 𝟏. 𝟑	 0.464	 0.602	 0.433	 𝛍 = 𝟏. 𝟏	 0.205	 0.903	 0.169	
𝛍 = 𝟏. 𝟓	 0.847	 0.929	 0.806	 𝛍 = 𝟏. 𝟐	 0.557	 0.993	 0.467	

Table	 A-1.	 The	 simulated	 false	 positive	 rate	 and	 power	 for	 TRAFIC	 using	 true	model,	 naïve	 estimate	 and	 corrected	
multiple	imputation	under	different	summed	allele	frequencies	f	and	mean	relative	risk	𝜇.	The	true	model	assumes	the	
sharing	status	of	alleles	is	known.	The	naive	estimate	treats	all	ambiguous	variants	as	shared,	and	the	corrected	multiple	
imputation	uses	 EM	 followed	by	multiple	 imputation	 to	perform	 the	hypothesis	 testing.	 	 The	 sample	 size	was	1000	
sibpairs	and	false	positive	rate	was	set	at	0.05.			

A.3. Calculating	𝐏 𝐇𝑺, 𝐇𝑵𝑺 𝐀𝐀𝑹, 𝐒 	

The	power	of	TRAFIC	depends	on	

P H;, H1; AAB, S = P AAE H;, H1; P H;, H1; S P S
1

P AAB, S
	

where	P AAE H;, H1; 		depends	 on	 the	 underlying	 genetic	 and	 the	 effect	 size	 model	

described	 as	 below,	 and	P S 		is	 the	 segregating	 probability:	P S = 0 = 0.25	,	P S =

1 = 0.50	and	P S = 2 = 0.25.	P H;, H1; S 	is	described	at	the	end	of	this	section.	

A.3.1 Genetic	model	

Suppose	the	population	has	the	disease	prevalence	𝐾.	Let	𝐾𝐾B 	denote	the	recurrence	

risk	 for	 a	 sibpair.	 The	 penetrance	 contributed	 from	 the	 locus	 of	 interest	 is	𝐾K		and	 the	
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contribution	to	the	recurrence	risk	is	𝐾K𝐾KB.	Similarly,	the	penetrance	contributed	from	

the	rest	of	the	genome	is	defined	as	𝐾L ,	and	the	contribution	to	the	recurrence	risk	 is	

𝐾L𝐾LB 	.	 Assume	 there	 are	 m	 distinct	 risk	 haplotypes	ℎl …ℎX	.	 Let	𝜔 ℎZ, ℎ[ 		be	 the	

penetrance	component	of	any	genotype	ℎZℎ[.	Under	the	multiplicative	model,	each	locus	

contributes	 independently	 to	 the	 heritability.	 The	 recurrence	 risk	 can	 be	 expressed	 as	

𝐾𝐾B = 𝐾K𝐾KB𝐾L𝐾LB.	The	probability	of	observing	an	affected	sibpair	given	haplotypes	

(ℎr, ℎs), (	ℎx, ℎò)	is	

P AAE ℎr, ℎs, ℎx, ℎò = 𝜔 ℎr, ℎs 𝜔 ℎx, ℎò 𝐾L𝐾LB.	

A.3.2 Effect	size	model	

We	model	the	effect	size	(relative	risk)	𝜔	of	haplotype	as	a	random	variable	following	

a	 distribution	 g(.)	 with	 the	 first	 two	 moments	µ		and	σH		known.	 The	 penetrance	 for	

haplotype	(ℎr, ℎs)		is	 the	 product	 of	 both	 haplotypes’	 effect	 i.e.	𝜔 ℎr, ℎs = 𝜔r𝜔s 	.	 For	

those	haplotypes	with	no	 risk	alleles,	 the	 relative	 risk	 is	 set	 to	1.	Then	we	can	 further	

express	P AAE H;, H1; = 𝜔l𝜔H𝜔ó𝜔|	as	a	function	of	µ	and	σH	by	using	the	underlying	

genetic	and	effect	model.	

A.3.3 Calculating	𝐏 𝐀𝐀𝐑 𝐇𝐒, 𝐇𝐍𝐒 	

When	 considering	 the	 contribution	 from	 the	 non-shared	 chromosome	 regions,	we	

take	the	average	on	the	range	of	all	possible	effect	sizes	 𝜔𝑔 𝜔 𝑑𝜔 = 𝜇.	In	a	sibpair	who	

shared	an	IBD	chromosome	region,	the	IBD	chromosome	region	is	observed	twice.	Thus,	

the	contribution	of	these	chromosome	regions	to	the	overall	penetrance	would	involve	

the	term	 𝜔ZH𝑔 𝜔Z 𝑑𝜔Z = 𝜇H + 𝜎H.	In	the	following,	we	calculate	the	penetrance	given	

the	haplotype	under	multiplicative	model.	
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P AAE H; = ℎZ, H÷ø = ℎ3Z,

∝ 𝜔ZH𝑔 𝜔Z 𝑑𝜔Z
^c

𝜔𝑔 𝜔 𝑑𝜔
^ac

= (µH + σH)^c𝜇^ac 	

A.3.4 Calculating	𝐏 𝐇𝐒, 𝐇𝐍𝐒, 𝐒 	

Given	S,	the	frequency	f	of	carrying	at	least	one	allele	(risk	haplotype)	is	identical	on	

the	shared	and	non-shared	chromosome	regions,	

P H; = ℎZ, H÷ø = ℎ3 S = 0 = 𝑓^a 1 − 𝑓 |k^a 	

P H; = ℎZ, H÷ø = ℎ3 S = 1 = 𝑓^c`^ac 1 − 𝑓 ók^ck^ac 	

P H; = ℎZ, H÷ø = ℎ3 S = 1 = 𝑓^c 1 − 𝑓 Hk^c 	

A.4. sMAF	and	analytical	power	calculation	

In	this	study,	we	use	a	simple	Chi-squared	test	to	determine	if	the	proportion	of	risk	

haplotypes	is	different	on	shared	and	non-shared	chromosome	regions.	The	power	of	the	

test	depends	on	the	non-centrality	parameter	λ,	where	

λ =
− 𝑝H − 𝑝l − 𝑝0 × 𝑁×𝑁;𝑁 ×𝑁1;𝑁

l
H

𝑁1;
𝑁 ×𝑝l× 1 − 𝑝l + 𝑁;𝑁 ×𝑝H× 1 − 𝑝H

l
H

H

	

𝑁;	and	𝑁1;	are	the	number	of	shared	(cases)	and	non-shared	(controls)	chromosome	

regions,	 respectively.	N	 denotes	 the	 sum	 of	 independent	 chromosome	 regions	 which	

equals	𝑁;	+	𝑁1;.	𝑝l	and	𝑝H	are	the	proportions	of	shared	IBD	chromosome	regions	and	

non-shared	IBD	chromosome	regions	carrying	a	risk	haplotype,	respectively.	The	expected	

number	 of	 independent	 chromosome	 regions	 depends	 on	 P S AAE 		which	 can	 be	

derived	 by	 integrating	 out	 H;	 	and	 H1;	 	in	 P H;, H1;, 𝑆 AAE =
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P AAE H;, H1; P H;, H1; S P S
l

ú ûûü
.		

Suppose	 there	 are	𝑁		pairs	 of	 affected	 siblings,	 the	 expected	 number	 of	 shared	

chromosome	 regions	 𝑁;		(cases)	 is	 𝑁×P S = 1 AAE + 2𝑁×P S = 2 AAE 		and	 the	

expectation	 of	 non-shared	 IBD	 chromosome	 regions	 𝑁1;	 	(controls)	 is	 2𝑁×

P S = 1 AAE	 + 4𝑁×P S = 0 AAE .	 The	 expectations	 of	 total	 number	 of	 shared	 and	

non-shared	chromosome	regions	carrying	a	risk	haplotype	are	𝐸 𝐻; = 𝑁×E H; AAE =

N×[P H; = 1 AAE + 2×P H; = 1 AAE ]	 	and	 𝐸 𝐻1; = 𝑁×[P H1; = 1 AAE +

2P H1; = 2 AAE + 3P H1; = 3 AAE + 4P H1; = 4 AAE ]	 	respectively;	 the	

marginal	probability	of	H;	and	H1;	can	be	derived	by	integrating	out	the	other	variable	in	

P H;, H1; AAE = P H;, H1;, 𝑆 AAE; 	 .	 	 Thus,	 sMAF	 for	 cases	 and	 controls	 is	

𝐸 𝐻; /E[𝑁;]	and	𝐸 𝐻1; /𝐸[𝑁1;],	respectively.	

𝐸 𝐻; /E 𝑁; = 	 ú H; = 1 AAE `H×ú H; = 1 AAE
ú S = 1 AAE `H×ú S = 2 AAE

	 	

where	

P H; = 1 AAE

= 𝜇H 	+ 𝜎H ∗ 1 − 𝑓 + 𝜇𝑓 H ∗ 𝑓 ∗ 0.5 + 𝜇H 	+ 𝜎H ∗ 2𝑓 1 − 𝑓

∗ 0.25	

P H; = 2 AAE = 𝜇H + 𝜎H H ∗ 𝑓H ∗ 0.25	

P S = 1 AAE = 0.5 ∗ 1 + 𝑓 ∗ 𝜇 − 1 H ∗ 1 + 𝑓 ∗ 𝜇H + 𝜎H − 1 	

P S = 2 AAE = 0.25 ∗ 1 + 𝑓 ∗ 𝜇H + 𝜎H − 1 H
	

𝐸 𝐻1; /𝐸[𝑁1;] =

ú H1; = 1 AAE `Hú H1; = 2 AAE `óú H1; = 3 AAE `|ú H1; = 4 AAE
Hú S = 1 AAE	 `|ú S = 0 AAE

,		
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where	

P H1; = 1 AAE

= 𝜇 ∗ 4 ∗ 𝑓 ∗ 1 − 𝑓 ó ∗ 0.25	 +	 	𝜇 ∗ 1 − 𝑓 + 𝜇 ∗ 𝜇H 	+ 𝜎H ∗ 𝑓

∗ 2𝑓 1 − 𝑓 ∗ 0.5 	

P H1; = 2 AAE

= (𝜇H ∗ 6𝑓H ∗ 1 − 𝑓 H ∗ 0.25	 + (𝜇H ∗ (1 − 𝑓) + 𝜇H ∗ (𝜇H + 𝜎H) ∗ 𝑓)

∗ 𝑓H ∗ 0.5)	

P H1; = 3 AAE = 𝜇ó 		∗ 4𝑓ó(1 − 𝑓) ∗ 0.25	

P H1; = 4 AAE = 𝜇| ∗ 𝑓| ∗ 0.25	

P S = 1 AAE	 = 0.5 ∗ 1 + 𝑓 ∗ 𝜇 − 1 H ∗ 1 + 𝑓 ∗ 𝜇H + 𝜎H − 1 	

P S = 0 AAE = 0.25 ∗ 1 + 𝑓 ∗ 𝜇 − 1 |
	

The	test	statistic	Z	is,	

𝑍 =
𝑝l − 𝑝H

𝑝(1 − 𝑝)( 1𝑁Z
+ 1
𝑁1;

)
,				where			𝑝 =

𝑝l ∗ 𝑁Z + 𝑝H ∗ 𝑁1Z
𝑁Z + 𝑁1Z

, 𝑝l

= 𝐸 𝐻; /E 𝑁; 	and	𝑝H = 𝐸 𝐻1; /𝐸[𝑁1;]		

and	𝑍H	follows	a	Chi-square	distribution	with	degree	of	freedom	1.	

A.5. Gene-gene	interaction	

In	a	two-locus	model,	the	joint	effect	from	locus	of	interest	L	and	remaining	genome	

G	is	defined	as	

𝑃 𝐴 ℎX, ℎ3, 𝑔Z, 𝑔[ ∝ 𝛽K
^_`^a	𝛽L

bc`bd𝛾 ^_`^a bc`bd 	

Under	this	model,	the	marginal	relative	risk	at	locus	L	is			
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𝑃(𝐴|ℎX = 1)
𝑃(𝐴|ℎX = 0) =

𝛽K 𝛽K
^a𝑝 ℎ3 (𝛽L𝛾)bc	`bd𝛾^a bc`bd 𝑝(𝑔Z)𝑝(𝑔[)bdbc 	^a

𝛽K
^a𝑝 ℎ3 𝛽L

bc	`bd𝛾^a bc`bd 𝑝(𝑔Z)𝑝(𝑔[)bdbc 	^a

,	

and	the	marginal	relative	risk	at	locus	G	is			

𝑃(𝐴|𝑔Z = 1)
𝑃(𝐴|𝑔Z = 0) =

𝛽L (𝛽K𝛾)^_`^a𝛾(^_`^a)bd𝑝(ℎX)𝑝 ℎ3 	^a^_ (𝛽L)bd𝑝(𝑔[)bd

(𝛽K)^_`^a𝛾(^_`^a)bd𝑝(ℎX)𝑝 ℎ3 	^a^_ 𝛽L
bd𝑝(𝑔[)bd

.	

To	calculate	the	power,	we	assume	the	allele	frequency	at	locus	L	and	G	is	0.01	and	

0.05,	 respectively.	We	first	derive	P H;, H1; AAE 	then	calculate	the	expectation	of	H;	

and	H1;	given	both	affteced	siblings.	The	penetrance	for	one	individual	given	genotype	

at	 loci	 L	 and	 G	 is	𝑃 𝐴 	𝐿l = 𝑙, 𝐺l = 𝑔 = 𝛽5𝛽Kò𝛽L
b𝛾ò×b		where	𝐿l = ℎX + ℎ3		and	𝐺l =

𝑔Z + 𝑔[		denote	 the	 number	 of	 risk	 alleles	 at	 loci	 L	 and	G,	 respectively.	 Define	𝑣𝑛𝑠l ∈

{0,1,2}		and	𝑣𝑛𝑠H ∈ {0,1,2}		as	 the	number	of	non-shared	allele	on	 the	 first	and	 second	

sibling,	respectively.	Let	𝑣𝑠 ∈ {0,1,2}	be	the	number	of	shared	alleles	between	a	sibpair.	

The	probability	 of	 having	 both	 affected	 siblings	 given	 the	number	 of	 shared	 and	non-

shared	alleles	is		

𝑃 𝐴𝐴 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠

= 𝑃 𝐴 𝐿l = 𝑣𝑛𝑠l + 𝑣𝑠, 𝐺l 𝑃 𝐴 𝐿H = 𝑣𝑛𝑠H + 𝑣𝑠, 𝐺H

H

L%y5

H

LÆy5

× 𝑃 𝑆 𝑃 𝐺H 𝐺l, 𝑆 𝑃 𝐺l

H

;y5

,	

then	the	expectation	of	H; = 𝑣𝑠	and	H1; = 𝑣𝑛𝑠l + 𝑣𝑛𝑠H	are	

E H÷ø AA = (𝑣𝑛𝑠l + 𝑣𝑛𝑠H)𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠 𝐴𝐴
&Z&3Z%&3ZÆ

	

E Hø AA = (𝑣𝑠)𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠 𝐴𝐴
&Z&3Z%&3ZÆ
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where	

𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠 𝐴𝐴 =
𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠, 𝐴𝐴

𝑃 𝐴𝐴 	

𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠, 𝐴𝐴 = 𝑃 𝐴𝐴 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠 𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠 	

= 𝑃 𝐴𝐴 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠 𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠|𝑆 𝑃(𝑆)
H

;y5

	

To	 calculate	 the	 number	 of	 shared	 and	 non-shared	 chromosome	 regions,	 the	

derivation	 is	 similar	 but	 has	 to	 be	 conditional	 on	 the	 number	 of	 shared	 chromosome	

region	 𝑆		at	 locus	 L.	 Assuming	 no	 linkage	 between	 L	 and	 G,	 we	 integrate	 out	 the	

contribution	 from	 the	 remaining	 genome.	 The	 expectation	 of	 shared	 and	 non-shared	

chromosome	can	be	calculated	based	on,	

𝑃 𝑆|	𝐴𝐴 =
1

P AA 𝑃 𝐴𝐴 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠, 𝑆 𝑃 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠|𝑆 𝑃(𝑆)
&Z&3Z%&3ZÆ

	

where	

	𝑃 𝐴𝐴 𝑣𝑛𝑠l, 𝑣𝑛𝑠H, 𝑣𝑠, 𝑆

= P 𝐴 𝐿l = 𝑣𝑛𝑠l + 𝑣𝑠, 𝐺l, 𝑆 𝑃 𝐴 𝐿H = 𝑣𝑛𝑠H + 𝑣𝑠, 𝐺H, 𝑆
H

L%y5

H

LÆy5

× 𝑃 𝑆∗ 𝑃 𝐺H 𝐺l, 𝑆∗ 𝑃 𝐺l

H

;∗y5

	

where	𝑆∗	is	the	sharing	status	at	locus	G.	

The	sibling	relative	risk	(SRR)	is	defined	as	

SRR =
𝑃 𝐴𝐴

𝑃 𝐴 𝑃 𝐴 		

where		

𝑃 𝐴 = 𝑃(𝐴|𝐿l, 𝐺l)𝑃(𝐿l, 𝐺l)H
LÆ

H
KÆy5 = 𝑃 𝐴 𝐿l, 𝐺l 𝑃 𝐿l 𝑃(𝐺l)H

LÆ
H
KÆy5 ,	 	
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𝑃 𝐴𝐴 = 𝑃 𝐴𝐴 𝐿l, 𝐺l 𝑃 𝐿l, 𝐺lH
LÆ

H
KÆy5 ,	and		

	 	

Pr AA 𝐿l, 𝐺l, 𝑆 	

= 𝑃(𝐴|𝐿l, 𝐺l) 𝑃 𝐴 𝐿H, 𝐺H 𝑃 𝐿H 𝐿l, 𝑆
H

L%y5

H

K%y5

(𝑃 𝑆∗ = 0 𝑃 𝐺H 𝐺l, 𝑆∗ = 0

+ 𝑃 𝑆∗ = 1 𝑃 𝐺H 𝐺l, 𝑆 = 1 + 𝑃 𝑆∗ = 2 𝑃 𝐺H 𝐺l, 𝑆∗ = 2 )	

where	we	assume	no	linkage	between	loci	L	and	G,	and	𝑆∗	is	the	sharing	status	at	locus	G.	

Given	the	marginal	relative	risk	of	locus	L,	we	find	the	marginal	relative	risk	of	locus	G	that	

satisfies	the	specified	level	of	SRR	assuming	no	gene-gene	interaction	(γ = 1)	by	solving	

𝛽K	and	𝛽L .	

A.6. Population	 stratification	 in	 loci	 with	

linkage	signal	

In	known	loci,	the	linkage	between	the	tested	variants	and	the	true	risk	variant	could	

potentially	cause	the	population	stratification	as	a	confounder	using	TRAFIC.	To	evaluate	

the	 extent	 of	 how	 linkage	 affects	 TRAFIC’s	 robustness	 to	 population	 stratification,	 we	

perform	 simulations	 with	 different	 levels	 of	 linkage	 signal	 (LOD	 score)	 and	 show	 the	

genomic	control	𝜆	under	the	null	that	the	tested	variant	is	not	associated	with	the	disease.		

Define	 𝜆./0yH = 𝜆)*	 	is	 the	 recurrence	 risk	 for	 a	 sibpair	 who	 share	 2	 IBD	

chromosomes,	 𝜆./0yl = 𝜆+		is	 the	 recurrence	 risk	 for	 a	 sibpair	 who	 share	 1	 IBD	

chromosome,	 𝜆./0y5 = 1	 	is	 the	 recurrence	 risk	 for	 a	 sibpair	 who	 share	 0	 IBD	

chromosome.	Then		 𝜆; =
l
|
𝜆)* + 2𝜆+ + 1 		is	 the	 recurrence	 risk	 for	 a	 sibpair.	 Let	
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𝑧5	,	𝑧l	,	𝑧H		be	 the	 proportion	 of	 sampled	 sibpairs	 who	 share	 0,1,2	 IBD	 chromosome,	

respectively.	The	expected	values	for	𝑧5,	𝑧l,	𝑧H	is,	

𝐸 𝑧5 = 0.25
1
𝜆;
	 , 𝐸 𝑧l = 0.50

𝜆+
𝜆;
, 𝐸 𝑧H = 0.25

𝜆)*
𝜆;

	

Assuming	 N	 sibpairs,	 the	 expected	 number	 of	 sibpairs	 who	 share	 0,	 1,	 and	 2	 IBD	

chromosomes	 are	 𝑛./0- , 𝑛./0Æ 	,	 and	 𝑛./0% 	,	 respectively,	 where	 𝑛./0- = 𝑁×

𝐸 𝑧5 , 	𝑛./0Æ = 𝑁×𝐸 𝑧l 	, 	𝑛./0% = 𝑁×𝐸 𝑧H .	Thus,	the	expected	LOD	score	is,		

𝐿𝑂𝐷 = logl5
𝐿(𝐸 𝑧5 , 𝐸 𝑧l , 𝐸 𝑧H )

𝐿(𝑧5 =
1
4 , 𝑧l =

1
2 , 𝑧H =

1
4)
= logl5

𝐸 𝑧5 3·/0-×𝐸 𝑧l 	3·/0Æ×𝐸 𝑧H 	3·/0%

0.253·/0-×0.50	3·/0Æ×0.25	3·/0% 	

We	simulate	500	sibpairs	from	each	population;	one	population	has	LOD	score	at	the	

specified	 level	 and	 the	 other	 population	 with	 LOD	 =	 0.	 Then,	 we	 apply	 TRAFIC	 and	

calculate	the	Genomic	Control	𝜆.	Genomic	Control	𝜆	grows	with	increasing	LOD	as	shown	

in	 Table	 A-2.	 In	 addition,	 based	 on	 the	 expected	 values	 of	𝑧5	,	𝑧l	,	𝑧H		and	 the	 allele	

frequencies	of	0.01	and	0.05	in	two	populations,	we	calculate	the	analytical	false	positive	

rate	at	α = 0.05.	

LOD	score	 Genomic	Control	𝜆	 False	Positive	Rate	
3	 1.06	 0.057	
5	 1.13	 0.063	
10	 1.30	 0.081	
57	 5.73	 0.352	

Table	A-2.	The	Genomic	Control	λ	and	false	positive	rate	under	different	LOD	score	using	TRAFIC.	Calculations	are	based	
on	a	summed	allele	frequency	of	0.01	in	population	1	with	the	specified	LOD	and	a	summed	allele	frequency	of	0.05	in	
population	2	with	LOD	=	0.	The	sample	size	of	1000	sibpairs	are	draw	evenly	from	two	populations.	 	
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Figure	A-1.	Illustration	of	all	possible	sharing	scenarios	between	a	sibpair	who	shares	one	IBD	chromosome	region.	When	
both	siblings	are	heterozygotes,		it	is	not	possible	to	distinguish	whether	the	minor	allele	is	located	on	shared	or	non-
shared	chromosome	regions.	Block	dot	represents	a	minor	allele,	a	colored	rectangle	is	a	shared	IBD	chromsome	and	a	
blank	rectangle	is	a	non-IBD	chromosome	region.	 	

One	risk	allele:	must	be	non-shared	

Double-heterozygote:	case	1	 Double-heterozygote:	case	2	

	 	 		

Sib	1	 Sib	2	

	 	 		

Sib	1	 Sib	2	

	 	 		

Sib	1	 Sib	2	

	 	 		

Sib	1	 Sib	2	

No	variant	

One	homozygote	of	minor	allele	and	
one	heterozygote	

Two	homozygotes	of	minor	alleles	

	 	 		

Sib	1	 Sib	2	

	 	 		

Sib	1	 Sib	2	
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Figure	A-2.	Summed	minor	allele	frequency	(sMAF)	of	risk	variants	in	cases	(solid	lines)	and	controls	(broken	lines)	under	
different	 study	designs	at	 the	disease	prevalence	of	0.20.	We	show	sMAF	as	a	 function	of	mean	 relative	 risk	of	 risk	
variants	for	(a)	TRAFIC,	(b)	the	conventional	case-control	design,	and	(c)	the	selected	cases	design	for	summed	allele	
frequencies	(f)	of	0.01,	0.05	and	0.2	and	fixed	variance	of	relative	risk	𝜎H = 0.		

	
Figure	A-3.	Summed	minor	allele	frequency	(sMAF)	of	risk	variants	in	cases	(solid	lines)	and	controls	(broken	lines)	under	
different	 study	 designs	 at	 the	 disease	 prevalence	 of	 0.01.	We	 show	 sMAF	 as	 a	 function	 of	 variance	 of	 relative	 risk	
between	 risk	 variants	 for	 (a)	 TRAFIC,	 (b)	 the	 conventional	 case-control	 design,	 and	 (c)	 the	 selected	 cases	design	 for	
summed	allele	frequencies	(f)	of	0.01,	0.05	and	0.2	and	fixed	mean	relative	risk	𝜇 = 1.	
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Figure	A-4.	The	simulated	and	analytical	power	curve	TRAFIC	under	different	summed	allele	frequency	f.	The	analytical	
and	 simulated	power	 lines	are	 in	 red	and	black,	 respectively.	The	power	 is	 evaluated	at	𝜎H = 0	while	 varying	mean	
relative	risk	assuming	the	sharing	status	of	alleles	is	known.	Results	are	shown	for	1000	sibpairs	at	a	false	positive	rate	
of	0.05.	 	

	
Figure	A-5.	The	analytical	power	curve	for	TRAFIC,	conventional	case-control,	and	selected	cases	design	for	different	
summed	allele	frequencies	(f)	at	the	disease	prevalence	of	0.20.	Row	(a)	displays	the	power	as	a	function	of	mean	relative	
risk	evaluated	at	variance	of	relative	risk	𝜎H = 0.	Row	(b)	shows	the	power	as	a	function	of	variance	of	relative	risk	
evaluated	at	mean	relative	risk	𝜇 = 1.5.	Results	are	shown	for	2000	individuals	(1000	sibpairs	or	1000	cases	and	1000	
controls)	at	a	significance	level	2.5×10-6.
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Appendix	B 	
For	Chapter	3	

B.1. Verification	 of	 Lyapunov	 condition	 in	

Lyapunov	central	limit	theorem	

First	 we	 describe	 Lyapunov	 central	 limit	 theorem.	 Let	 𝑋r 	 	be	 a	 sequence	 of	

independent	random	variables,	each	with	finite	expected	value		𝜇r 	and	variance	𝜎rH	

Define,	

	𝑆3H = 𝜎rH
3

ryl

	

If	for	some	𝛿 > 0,	the	Lyapunov’s	condition	holds,		

lim
3→4

1
𝑆3H`Ä

𝐸 𝑋r − 𝜇r H`Ä	 = 0
3

ryl

	

Then,	

1
𝑆3

𝑋r − 𝜇r
5

3

ryl

𝑁(0,1)	

	

To	proof	the	Lyapunov	condition	holds,	I	consider	families	with	two-generation	(two	

founders	and	 two	offspring:	one	affected	 founder	and	both	affected	offspring).	 For	 all	

combinations	of	the	number	of	shared	IBD	chromosomes	between	two	siblings	and	the	
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number	of	carrier	chromosomes	(C)	in	founders,	I	calculated	the	expectation	and	variance	

for	each	combination.	Assuming	f	=	0.01,	since	majority	of	informative	families	carrying	

only	 one	 carrier	 founder	 chromosome,	 I	 only	 consider	 the	 informative	 families	which	

contains	one	carrier	chromosome	in	the	founders	(IBD0C1,	IBD1C1,	and	IBD2C1).		

	 IBD0C1	 IBD1C
1	

IBD2C1	 IBD0C2	 IBD1C2	 IBD2C2	 IBD0C
3	

IBD1C
3	

IBD2C
3	

proportion	 0.0097
5	

0.019
5	

0.0097
5	

0.0001
5	

0.0002
9	

0.0001
5	

9.9e-
07	

1.98e-
06	

9.9e-
07	

Expectatio
n	

1.5	 1.5	 1.5	 3	 3	 3	 4.5	 4.5	 4.5	

Variance	 0.25	 0.75	 1.25	 0.333	 1	 1.667	 0.25	 0.75	 1.25	
Delta=1	 0.125	 0.937

5	
1.75	 0.333	 1	 3	 0.125	 0.937

5	
1.75	

	

Non-

informative		

C0	 C4	

proportion	 0.961	 1e-08	

	

For	𝛿 = 1,	the	Lyapunov’s	condition	is,		

1
𝑆3H`Ä

𝐸 𝑋r − 𝜇r H`Ä	
3

ryl

=
𝑁Ç7X ∗ 0.00975 ∗ 0.125 + 0.0195 ∗ 0.9375 + 0.00975 ∗ 1.75

𝑁Ç7X ∗ 0.00975 ∗ 0.25 + 0.0195 ∗ 0.75 + 0.00975 ∗ 1.25
ó
H

=
𝑁Ç7X ∗ 0.0365625

𝑁Ç7X ∗ 0.02925
ó
H
=

0.0365625

𝑁Ç7X 0.02925
ó
H
→ 0	𝑎𝑠	𝑁Ç7X → ∞	

where	𝑆3H = 𝜎rH3
ryl .	For	different	pedigree	structures,	I	can	use	the	similar	approach	

to	proof	that	Lyapunov	condition	holds.	
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B.2. Inheritance	 vector	 and	 missing	 founder	

imputation	

B.2.1 Impute	inheritance	vector		

Here,	we	demonstrate	the	imputation	procedure	with	three	affected	offspring	as	in	

Figure	B-1,	however,	the	imputation	works	for	any	pedigree	structure.	As	the	IBD	sharing	

status	is	known	between	siblings,	the	possible	transmission	pattern	can	be	determined	

conditional	 on	 the	 IBD	 status.	 Without	 loss	 of	 generosity,	 the	 unobserved	 founder	

chromosomes	are	 labelled	as	A,	B,	C,	D;	A,	B	are	paternal	 chromosomes	and	C,	D	are	

maternal	 chromosomes.	 	Assume	we	know	 the	 IBD	 sharing	 status	between	 siblings	as	

shown	below.	At	the	beginning,	we	assign	A,	C	to	Sib	1.	Since	Sib	1	and	Sib	2	share	2	IBD	

chromosome	region,	Sib	2	must	also	have	A,	C.	Given	Sib	3	share	one	IBD	chromosome	

region	 with	 Sib	 1	 and	 Sib	 2,	 Sib	 3	 could	 have	 A,	 D	 or	 B,	 C.	 The	 choice	 of	 possible	

chromosomes	 for	Sib	3	 is	 independent	of	 the	 final	 imputation	 result	 since	 in	 this	 step	

A,B,C,D	 are	 simply	 arbitrary	 labels	 and	 help	 determine	 the	 shared	 and	 non-shared	

chromosomes.	In	this	example,	we	choose	B,	C.		
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Figure	B-1.	The	illustration	of	assigning	a	possible	inheritance	vector	given	sharing	status	between	siblings.	

Given	 inheritance	vectors,	phasing	of	 variants	are	 straightforward.	When	 there	are	

ambiguous	 phasing	 configurations,	 we	 impute	 the	 phasing	 of	 variants.	 Suppose	 we	

observe	all	three	siblings	are	heterozygotes	at	this	position,	the	phasing	for	this	variant	

has	two	possible	configurations;	there	is	a	single	variant	residing	on	chromosome	C	which	

is	shared	by	three	siblings	or	there	are	two	variants	which	reside	on	shared	chromosomes	

A	and	non-shared	chromosome	B.	And	we	impute	the	phasing	of	the	variants	using	EM	

algorithm,	 in	which	we	 estimate	 the	minor	 allele	 frequencies	 on	 shared	 chromosome	

regions	𝑝;		and	 non-shared	 chromosome	 regions	𝑝1;		at	 a	 single	 SNP	 position.	 Across	

families,	 let	𝑁;		be	 the	 number	 of	 shared	 chromosome	 regions,	 	𝑥;		be	 the	 number	 of	

minor	 alleles	 located	 on	 IBD	 chromosome	 regions,	𝑁1;		be	 the	 number	 of	 non-IBD	

chromosome	 regions,	 and	 𝑥1;		be	 the	 number	 of	 minor	 alleles	 located	 on	 non-IBD	

chromosome	 regions.	 Then	𝑥;, 𝑥1;		are	 binomially	 distributed	 with	 the	 full	 likelihood	

function,	

C	 C	A	 A	 C	 B	

IBD=2	 IBD=1	

IBD=1	
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𝐿 𝑥;, 𝑥1; 𝑁;, 𝑁1;, 𝑝;, 𝑝1; = 𝑁;
𝑥;

𝑝;
ÙÚ 1 − 𝑝; 𝑁𝑆−𝑥𝑆 𝑁1;

𝑥1;
𝑝1;
ÙÛÚ 1 − 𝑝1; 𝑁𝑁𝑆−𝑥𝑁𝑆.	

For	unambiguous	families,	let	𝑘;	be	the	known	total	number	of	shared	alleles	and	𝑘1;	

be	 the	 known	 total	 number	 of	 non-shared	 alleles.	 Suppose	 there	 are	𝑢		ambiguous	

sibpairs.	Without	loss	of	generosity,	for	ith	families	with	an	ambiguous	phase,	𝑢;� 	denotes	

number	of	shared	allele	and	𝑢1;�	denotes	non-shared	allele.	The	 likelihood	function	of	

observing	the	total	number	of	shared	allele	𝑥;	and	non-shared	allele	𝑥1;	can	be	rewritten	

as		

𝑁;
𝑘; + 𝑢;

𝑝;
xÚ`ÞÚ 1 − 𝑝; 1ÚkxÚkÞÚ 𝑁1;

𝑘1; + 2𝑢1;
𝑝1;
xÛÚ`HÞÛÚ 1 − 𝑝1; 1ÛÚkxÛÚkH7ÛÚ 	

where	𝑢; = 𝑢;�r 	and	𝜇1; = 𝜇1;�r 	To	set	up	the	initial	values	for	the	algorithm,	we	

estimate	 the	 allele	 frequency	 on	 IBD	 chromosome	 regions	𝑝;		by	 counting	 the	 total	

number	 of	 non-shared	 alleles	𝑥;		divided	 by	 the	 number	 of	 shared	 chromosomes	𝑁;	.	

Similarly,	we	estimate	the	allele	frequency	on	non-IBD	chromosome	regions	𝑝1;.	

In	the	E-step,	conditional	on	the	current	estimation	of	parameters,	we	calculate	the	

expectation	of	shared	and	non-shared	allele	for	ith	ambiguous	family	weighted	by	each	

possible	phase	configuration.	Both	configurations	contain	one	shared	allele,	thus	

𝐸 𝑢;� 𝑝;	, 𝑝1;

=
𝑝;(1 − 𝑝Z) 1 − 𝑝1;

𝑝;(1 − 𝑝Z) 1 − 𝑝1; + 𝑝;(1 − 𝑝Z)𝑝1;

+
𝑝;(1 − 𝑝Z)𝑝1;

𝑝;(1 − 𝑝Z) 1 − 𝑝1; + 𝑝;(1 − 𝑝Z)𝑝1;
	

Only	the	second	configuration	contain	one	non-shared	allele,	thus	

𝐸 𝑢1;� 𝑝;	, 𝑝1; =
𝑝;(1 − 𝑝Z)𝑝1;

𝑝;(1 − 𝑝Z) 1 − 𝑝1; + 𝑝;(1 − 𝑝Z)𝑝1;
.	

In	 the	M-step,	 we	 update	 new	𝑝;		and	𝑝1;		as	 the	 solution	 of	maximum	 likelihood	

estimators	of	the	expected	likelihood	function	
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𝑝;3�ß =
𝑘; + 𝑢;
𝑁;

,					𝑝1;3�ß =
𝑘1; + 2𝑢1;

𝑁1;
	

where	𝑢; = 𝑢;�r 		and	𝜇1; = 𝜇1;�r 	.The	 algorithm	 repeats	 between	 E-step	 and	M-

step	until	the	estimation	of	parameters	converges.		

To	impute	the	phase	status	for	ambiguous	families,	let	𝑝l	and	𝑝H	be	the	probability	of	

the	first	and	the	second	phase	configuration	respectively.	

𝑝l =
𝑝;∗ 1 − 𝑝;∗ 1 − 𝑝1;∗

𝑝;∗ 1 − 𝑝;∗ 1 − 𝑝1;∗ + 𝑝;∗ 1 − 𝑝;∗ 𝑝1;∗
,	

𝑝H =
𝑝;∗ 1 − 𝑝;∗ 𝑝1;∗

𝑝;∗(1 − 𝑝;∗) 1 − 𝑝1;∗ + 𝑝;∗(1 − 𝑝;∗)𝑝1;∗
	

where	𝑝;∗	and	𝑝1;∗ 	are	the	final	estimates	of	EM.	Then	we	can	assign	a	phasing	based	

on	these	probabilities.	

B.2.2 Impute	the	carrier	status	of	missing	founder	chromosomes	

After	assigning	the	inheritance	vectors,	we	use	multiple	imputation	to	account	for	the	

uncertainty	 of	 estimating	𝑝{7��r�� 		and	 impute	 founder	 genotypes	 to	 apply	 TRAP.	 We	

consider	three	imputation	procedures	as	shown	in	Appendix	B.3	and	chose	the	procedure	

with	the	best	power	(Combine_Test).	The	imputation	procedure	has	the	following	steps:	

1. Estimate	𝑝{7��r�� 	using	all	samples	and	consider	estimation	uncertainty	

Naïve	estimate	from	samples	is	𝑝{7��r�� =
	89
È:;Ê¬­®

9ÅÆ
Ð9
È:;Ê¬­®

9ÅÆ
	

g£Î<â:	number	of	observed	carrier	parental	chromosomes	

n£Î<â:	number	of	observed	parental	chromosomes	

n ¡¢:	number	of	families	

2. Instead	 of	 using	 naïve	 estimator,	 we	 account	 for	 estimation	 uncertainty	 and	 draw	
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𝑝{7��r��~Beta(1 + 	g£Î<â
Ð¬­®
£yl , 1 + n£Î<â

Ð¬­®
£yl − 	g£Î<â

Ð¬­®
£yl )	

3. Impute	 the	 number	 of	 carrier	 chromosomes	 in	 missing	 founders.	 For	 example,	

suppose	 for	 family	 i,	 there	are	 	𝑛r
XrZZr3b	missing	 founder	chromosomes,	we	 impute	

the	 number	 of	 carrier	 chromosomes	 𝑥r{7��r�� 	 	based	 on	

𝑥r{7��r��~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛r
XrZZr3b, 𝑝{7��r�� 	and	calculate	𝜇r 	and	𝜎rH	for	each	family		

4. Repeat	the	procedures	2	and	3	for	M=50	times	

5. Combine	M	imputed	data	of	each	family	then	apply	TRAP	(Combine_Test)	

𝜇r =
𝜇r
(ò)

𝑀

)

òyl

	

𝜈rH =
𝜎r
H(ò))

òyl

𝑀 +
𝑀 + 1
𝑀

1
𝑀 − 1 (𝜇r

(ò) − 𝜇r)H
)

òyl

	

𝑇𝑒𝑠𝑡	𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝑇r − 𝜇r)

3CD_
r

𝜈rH
3CD_
ryl

∼ 𝑁(0,1)	

B.3. Compare	 three	 combining	 rules	 for	

multiple	imputation	for	TRAP	

Suppose	 I	use	M	rounds	of	multiple	 imputation,	 let	𝑖	be	 the	𝑖[^	family	among	𝑛Ç7X	

families	and	𝑇r 		be	 the	observed	count	of	 carrier	 chromosome	among	affected	 siblings.	

Given	the	𝑙[^	round	of	imputed	data,	I	calculated	the	expectation	𝜇r
(ò)	and	variance	𝜎r

H(ò)	

for	each	family.	I	compared	the	following	three	combing	rules,	

1. Combine	M	imputed	data	of	each	family	then	apply	TRAP	(Combine_Test)	
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𝜇r =
𝜇r
(ò)

𝑀

)

òyl

	

𝜈rH =
𝜎r
H(ò))

òyl

𝑀 +
𝑀 + 1
𝑀

1
𝑀 − 1 (𝜇r

(ò) − 𝜇r)H
)

òyl

	

𝑇𝑒𝑠𝑡	𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝑇r − 𝜇r)

3CD_
r

𝜈rH
3CD_
ryl

∼ 𝑁(0,1)	

2. Apply	TRAP	then	combine	across	multiple	imputation	(Test_Combine)	

𝐷(ò) =
(3CD_

ryl 𝑇r − 𝜇r
(ò))

𝜎r
H(ò)3CD_

ryl

	

𝐷 =
𝐷(ò))

òyl

𝑀 	

𝑉0 = 1 +
𝑀 + 1
𝑀

1
𝑀 − 1 (𝐷(ò) − 𝐷)H

)

òyl

	

𝑡𝑒𝑠𝑡	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝐷
𝑉0

∼ 𝑁(0,1)	

3. Apply	 TRAP	 then	 combine	 across	multiple	 imputation	 with	 Chi-square	 statistic	

(Test_Combine_Chisq)	

𝑋(ò) = 𝐷H(ò) =
( (3CD_

ryl 𝑇r − 𝜇r
(ò)))H

𝜎r
H(ò)3CD_

ryl

	

𝑋 =
𝑋(ò))

ryl

𝑀 	

𝑎 =
𝑋(ò))

ryl

𝑀 	

𝑏 =
()

òyl 𝑋(ò) − 𝑎)H

𝑀 − 1 	
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𝑟) =
𝑀 + 1
𝑀 𝑏	

𝜈) = (𝑀 − 1)(1 + 𝑟)kH)	

𝑡𝑒𝑠𝑡	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑋 − (𝑀 + 1)

𝑀 − 1 𝑟)
1 + 𝑟)

∼ 𝐹l,GH 	

I	used	simulations	to	evaluate	the	performance.	I	simulated	1000	families	with	two	

parents	and	three	children,	and	consider	randomly	mask	both	parents	in	100%,	50%,	and	

20%	of	 families.	 To	 quantify	 the	 power	 loss,	 I	 compared	 imputed	 results	 to	 the	 result	

without	missing	founder	(noimpute).	Type	I	error	was	set	at	0.05.	

B.3.1 Power	comparison	for	100%	missing	parents	

Considering	all	parents	were	missing,	combine_test	strategy	performed	slightly	better	

than	test_combine.	Test_combine_chisq	has	the	least	power.	

	
Figure	B-2.	Power	comparison	across	three	 imputation	procedures	with	100%	missing	parents	and	evaluated	at	𝛼 =
0.05.	
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B.3.2 Power	comparison	for	50%	missing	parents	

When	there	were	50%	of	families	with	missing	founders,	the	difference	across	three	

combining	rules	reduced.	

	
Figure	B-3.	Power	comparison	across	three	imputation	procedures	with	50%	missing	parents	and	evaluated	at	𝛼 = 0.05.	

	

B.3.3 Power	comparison	for	20%	missing	parents	

When	there	were	only	20%	of	families	with	missing	parents,	there	was	no	significant	

difference	across	three	combining	rules.	
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Figure	B-4.	Power	comparison	across	three	imputation	procedures	with	50%	missing	parents	and	evaluated	at	𝛼 = 0.05.	

All	three	combining	rules	were	valid	and	conservative	under	the	null	with	very	similar	

performance	in	the	considered	scenarios.	When	all	families	had	missing	parents,	the	first	

combining	rule	(combine	first	then	test)	had	a	slightly	advantage	in	power	over	the	other	

two	rules.	When	only	a	minor	portion	of	families	with	missing	parents,	all	three	combining	

rules	performed	well.	
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B.4. Additional	Figures	

	
Figure	B-5.	Power	comparison	between	full	samples	and	affected-only	designs	for	TRAP	evaluated	at	𝛼 = 0.05.	Power	
curve	is	shown	as	a	function	of	effect	size	r	(odds	ratio)	of	risk	variants	in	a	gene	with	risk	chromosome	frequency	f	and	
disease	prevalence	p_dis.	The	pedigree	structure	is	two-founder-two-children	(one	affected	founder	and	two	affected	
children)	

	
Figure	B-6.	Power	comparison	across	TRAP,	Pedgene,	FB-SKAT,	and	case-control	design	(CC)	evaluated	at	𝛼 = 2.5×10k�	
and	prevalence	10%.	Power	curve	is	shown	as	a	function	of	effect	size	r	(odds	ratio)	of	risk	variants	in	a	gene	with	carrier	
chromosome	frequency	f	=	0.01,	0.05,	0.20.	
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Figure	B-7.	Illustration	of	number	of	members	in	each	generation	for	different	family	structures.	“g”	denotes	number	of	
generations,	“a”	denotes	number	of	affected	individuals	that	can	occur	in	any	generation,	and	“u”	denotes	the	number	
of	unaffected	individuals.	

	
Figure	B-8.	Power	comparison	across	pedigree	structures	for	TRAP,	Pedgene	and	FB-SKAT	evaluated	at	𝛼 = 2.5×10k�	
and	f	=	0.01.	The	power	curve	is	shown	as	a	function	of	odds	ratio	of	risk	variants.	

	 	

a)	2	generations:	
2g.3a.1u	

b)	3	generations:		
3g.3a.4u	

c)	3	generations:		
3g.3a.19u,	3g.5a.17u	
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Figure	B-9.	Power	curve	for	TRAP	using	imputaion	for	missing	founders	and	using	external	allele	frequency,	evlaued	at	
𝛼 = 0.05	.	 The	 imputation	algorithm	assuming	 carrier	 chromosome	 frequency	 from	an	 existing	database	 (e.g.	 1000	
Genome	Peoject)	“pop.f”	with	the	absolute	bias	in	allele	ferquency.	

		

	 f=0.01	

Complete	data	--	No	imputation	 1.4×10k|	

Imputed	samples	with	20%	missing	founders	 0.6×10k|	

Imputed	samples	with	50%	missing	founders	 0.2×10k|	

Imputed	samples	with	80%	missing	founders	 0.01×10k|	

Imputed	samples	with	100%	missing	founders	 < 0.01×10k|	

Table	B-1.	Type	I	error	rate	evaluation	for	TRAP	with	and	without	imputed	samples	under	different	population	carrier	
frequency	given	𝛼 = 2.5×10k|.
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Appendix	C 	
For	Chapter	4	

C.1. Pedigree	structures	illustration	

	
	

C.2. Investigate	 how	 TRAP,	 Pedgene,	 and	 FB-

SKAT	use	within-family	information	

Given	pedigree	structure	as	below,	

a) 2 generations:
2g.4n, 2g.3a.1u

b) 3 generations:
3g.7n, 3g.3a.4u

c) 3 generations:
3g.22n, 3g.3a.19u, 3g.5a.17u
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To	 compare	how	TRAP,	Pedgene,	 FB-SKAT	use	within-family	 information,	 I	 consider	

TRAP	 in	 two	 scenarios:	 first	 look	 at	 each	 trio	 separately,	 equivalent	 to	 using	 FB-SKAT.	

Second,	 I	use	the	regular	TRAP	to	analyze	this	pedigree.	 I	also	compare	to	Pedgene	by	

assuming	 a	 simple	 burden	 test.	 I	 quantify	 the	 overall	 information	 by	 their	 resulting	 Z	

statistics.	

When	separately	evaluating	each	trio,	the	enumerated	summary	statistics	for	each	trio	

based	 on	 TRAP	 (FB-SKAT)	 is	 (0,1,1,0),	 thus	𝜇 = 0.5		and	𝜎H = 0.25	.	 Thus,	 the	 overall	

information	is	(1-0.5+1-0.5)/sqrt(0.25+0.25)=1.414	

When	collectively	looking	at	the	pedigree,	the	enumerated	summary	statistics	for	each	

trio	based	on	TRAP	is	(0,2,1,0,1,0),	thus	𝜇 = 0.67	and	𝜎H = 0.83.	The	overall	information	

is	(2-0.67)/sqrt(0.83)=1.459	

I	evaluated	Pedgene	using	the	following	equation,		

Pedgene_burden = 𝑇r − 𝐸 𝑇r = 𝑌rs − 𝑌¤ (𝑋rs − 2𝑓
3�

s

)	

Affected=1

Unaffected=0

Founders’
Chromosomes

Risk Variant
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Var 	Pedgene_burden = 2𝑓(1 − 𝑓)(𝑌rs − 𝑌¤)(𝑌rs² − 𝑌¤)Cov(𝑋rs, 𝑋rs²)
3�

s²
)

3�

s

	

where	 	Cov(𝑋rs, 𝑋rs²) =
0									𝐼𝐵𝐷 = 0
0.5							𝐼𝐵𝐷 = 1
1								𝐼𝐵𝐷 == 2

	

	I	 used	 the	 estimated	 frequency	 	 𝑓	 	based	 on	 founders.	 In	 this	 case,	

Pedgene_burden=0.8,	 Var(Pedgene_burden)=0.58,	 and	 the	 overall	 information	 is	 1.05.	

Based	on	the	overall	information,	TRAP	is	the	most	efficient	method.	

In	conclusion,	under	ascertained	scenarios,	between-family	information	is	not	useful	

since	every	family	has	a	similar	mean	phenotype	and	mean	genotype.	Thus,	within-family	

information	 is	 the	 most	 informative.	 Under	 non-ascertained	 scenarios,	 between-

information	 is	 useful.	 But,	 for	 large	 pedigree,	 within	 family	 information	 is	 more	

informative	with	a	smaller	number	of	families.	Thus,	within-family	information	out-weight	

the	 between-family	 information,	 and	 TRAP	 can	 exploit	 the	 sharing	 among	 all	 family	

members	to	outperform	Pedgene.		
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