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Abstract 
 

Tropical cyclones (TCs) are important to observe, especially over the course of 

their lifetimes, most of which is spent over the ocean. Very few in situ 

observations are available. Remote sensing has afforded researchers and 

forecasters the ability to observe and understand TCs better. Every remote 

sensing platform used to observe TCs has benefits and disadvantages. Some 

remote sensing instruments are more sensitive to clouds, precipitation, and other 

atmospheric constituents. Some remote sensing instruments are insensitive to 

the atmosphere, which allows for unobstructed observations of the ocean 

surface. Observations of the ocean surface, either of surface roughness or 

emission can be used to estimate ocean surface wind speed. Estimates of 

surface wind speed can help determine the intensity, structure, and destructive 

potential of TCs. While there are many methods by which TCs are observed, this 

thesis focuses on two main types of remote sensing techniques: passive 

microwave radiometry and Global Navigation Satellite System reflectometry 

(GNSS-R). 

First, we develop and apply a rain rate and ocean surface wind speed 

retrieval algorithm for the Hurricane Imaging Radiometer (HIRAD). HIRAD, an 

airborne passive microwave radiometer, operates at C-band frequencies, and is 

sensitive to rain absorption and emission, as well as ocean surface emission. 

Motivated by the unique observing geometry and high gradient rain scenes that 

HIRAD typically observes, a more robust rain rate and wind speed retrieval 

algorithm is developed. HIRAD’s observing geometry must be accounted for in 

the forward model and retrieval algorithm, if high rain gradients are to be 

estimated from HIRAD’s observations, with the ultimate goal of improving surface 

wind speed estimation. 



xix 

Lastly, TC science data products are developed for the Cyclone Global 

Navigation Satellite System (CYGNSS). The CYGNSS constellation employs 

GNSS-R techniques to estimate ocean surface wind speed in all precipitating 

conditions. From inputs of CYGNSS level-2 wind speed observations and the 

storm center location, a variety of products are created: integrated kinetic energy, 

wind radii, radius of maximum wind speed, and maximum wind speed. These 

products provide wind structure and intensity information—valuable for situational 

awareness and science applications. 
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Chapter 1. Introduction 
 

1.1 Introduction to Tropical Cyclones 

Tropical cyclones (TCs) are strong low-pressure systems that form in the tropics. 

TCs are similar to their mid-latitude counterparts in that they are low-pressure 

systems, and dissimilar in that they are warm-core systems without fronts. 

Tropical cyclone is the general term used throughout the world, but other terms 

are used to refer to TCs developing in specific ocean basins. In the Eastern 

Pacific and Atlantic Ocean basins, TCs are referred to as hurricanes. In the 

western Pacific, the term typhoon is used. For TCs forming near Australia and in 

the Indian Ocean basin, the term cyclone is used.  

Regardless of the term used to describe this type of storm, the destructive 

nature of TCs motivates their study. Extreme winds and precipitation are just 

some of the characteristics that make TCs destructive and potentially deadly—

unless proper warnings and subsequent evacuations occur. For example, Figure 

1.1 shows the percentages of deaths in the United States during 1963-2012 that 

were caused by different hurricane attributes. One of the most important findings 

from (Rappaport 2014) is that around 90% of fatalities are water related, most 

due to drowning. Storm surge, an abnormal rise in water pushed ashore by the 

strong winds of storms, is a significant source of loss of life for hurricanes. More 

detailed statistics and discussion can be found in (Rappaport 2014).  

The destructive nature of TCs is often dependent on geography. For example, 

landslides—erosions in mountainous slopes from heavy rainfall—are concerns 

for those who live in mountainous regions in the path of tropical storms. Cyclone 
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Roanu (2016) caused dangerous landslides in Sri Lanka while still a weak 

tropical depression, leading to many fatalities and destruction.  

Before a hurricane can form, certain ingredients must be available. The first 

ingredient is warm sea surface temperature (SST)—typically above 26.5 C. 

Warm SSTs fuel storms by enabling strong evaporation from the ocean surface. 

Sensible and latent heat fluxes warm and moisten the boundary layer air; this 

warm, moist air fuels the thunderstorms in the TC. Second, developing storms 

need to be in a region with a noticeable Coriolis force—generally thought to be 

locations at least 5 degrees away from the equator in latitude. Converging winds 

in the lowest level of the atmosphere are forced to flow around the center (or 

Figure 1.1: Cause of death in the United States directly attributable to Atlantic tropical cyclones, 1963-2012. 
Credit: (Rappaport 2014) 
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eye) of the storm through the Coriolis force, which helps to sustain and 

strengthen the low pressure in the eye of the storm.  For intense convection to be 

supported, a few other ingredients must be in place. Convection is important 

since the latent heat that is produced from convective storms will fuel the TC. 

Low vertical wind shear helps to keep storms from tilting with increasing height; 

latent heat release is more concentrated in low wind shear conditions. 

Additionally, high humidity in the low-and mid-troposphere and conditional 

instability—when the environmental temperature lapse rate is less than the dry-

adiabatic lapse rate, but greater than the moist-adiabatic lapse rate—helps to 

fuel convection. Finally, enhanced relative vorticity, or local rotation, in the lower 

troposphere helps to organize convective storms and potentially produce TCs. 

(Gray 1979, 1998) 

The necessary conditions for TCs are generally present in the tropics, which 

explains why most TCs develop there. Figure 1.2 shows the track and intensity of 

Figure 1.2: Global distribution of observed tropical cyclone tracks from 1851-2006 (where available) and the 
corresponding intensity according to the Saffir-Simpson Hurricane Intensity Scale. Credit: The COMET 
Program. 
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TCs observed from 1851 – 2006. The dearth of TCs forming in the South Atlantic 

and Southeastern Pacific result from a lack of some of the critical ingredients of 

TC formation. In the South Atlantic, vertical wind shear is generally too strong 

and there are no African easterly waves, or waves generated from the African 

easterly jet (Burpee 1972), to initiate storms south of the equator. In the 

Southeast Pacific, the sea surface temperatures are too cold and the vertical 

wind shear is too strong. The existence of the ingredients discussed previously is 

not enough to initiate a TC. Even if all ingredients discussed previously are in 

place, there also needs to be convergence within the boundary layer to fuel the 

thunderstorms that start the TC formation process. Synoptic scale horizontal 

convergence in the boundary layer is needed so that upward motion above this 

convergence zone can be initiated and supported. Examples of sources of 

convergence include, but are not limited to: monsoon troughs, the intertropical 

convergence zone (ITCZ), and easterly waves. Monsoon troughs are locations of 

relatively low sea level pressure in monsoon regions. The ITCZ consists of lines 

of deep convective clouds and heavy precipitation extending across the Atlantic 

and Pacific Ocean basins from around 5˚ to 10˚ north. Easterly waves are waves 

which move from east to west within the broad easterly current in the tropics. 

With upward motion, comes convective storm formation. (Holton 2004) 

 As highlighted in Figure 1.2, before reaching TC strength, TCs progress 

through categorizations of weaker strength: tropical depressions and tropical 

storms. Even before those categorizations apply, the first stage of the TC 

formation process is the tropical disturbance stage. In this stage, clusters of 

thunderstorms move collectively across the ocean. No eye or rotation will have 

developed at this stage. Condensation in the thunderstorms leads to latent heat 

release, which makes these disturbances warmer than the surrounding 

environment. Through the hypsometric relationship,  

 1

2 1

2

ln
d v

R T p
z z

g p

 
   

 

 (1.1) 



5 

warming (an increase in the mean virtual temperature v
T ) in this disturbance will 

cause high pressure to develop above the storm and at the top of the 

troposphere. Here, the thickness ( 2 1
z z ) of a layer of the atmosphere for a 

particular pair of pressure surfaces ( 1
p , 2

p ) is related to v
T , where d

R  is the dry 

air constant, and g  is gravity. Development of high pressure above the storm is 

important since it will drive further enhancement at the next stages of 

development. (Stull 2015) 

 From tropical disturbances, tropical depressions can form. In this stage, the 

high pressure that has developed aloft leads to divergence aloft, which then 

leads to low pressure at the surface. Air flows into the disturbance within the 

boundary layer, up through the storm and out at the top of the troposphere. This 

inflow helps to supply warm moist air from the surrounding environment to build 

and sustain the convection. The inflow and outflow will be deflected slightly due 

to Coriolis forces, and rotation of the winds starts to appear visually as rain bands 

begin to align with these rotating winds. This stage is typically also identified by 

how strong the rotating surface winds are; for storms monitored by the National 

Hurricane Center (NHC) and Central Pacific Hurricane Center (CPHC), 1-minute 

sustained maximum surface winds must be less than 17 m s-1 in order to be 

categorized as a depression. During this phase of development, if low pressure 

continues to deepen through the balance of inflow and outflow, the system will 

continue to organize and strengthen towards the next phase. (Stull 2015)  

 Tropical depressions lead to tropical storms. The most noticeable difference 

between tropical storms and depressions is that the surface winds are now 

stronger. According to classifications employed by the NHC/CPHC, for a tropical 

storm to be identified, the 1-minute maximum sustained surface winds must be 

above 17 m s-1 but less than 33 m s-1. Generally, convection will be concentrated 

in the center of the storm, so no eye is present yet, and the storm can now 

sustain itself without external forcing from the environment. Figure 1.3 shows the 

strength and track of Hurricane Earl, starting at tropical depression stage and 
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then intensifying to tropical storm strength at points 1 through 5. The same 

thermodynamics that fueled the depression continue to drive and strengthen the 

storm at this stage.  

Once the maximum 1-minute sustained surface wind speed is above 33 m s-1, 

a storm is classified as a TC—according to the classifications employed by the 

NHC/CPHC. At the TC stage, there are many unique visual characteristics that 

set this type of storm apart from the weaker stages. Figure 1.4 visualizes the key 

elements of TCs with a cross-sectional view. 

As shown in Figure 1.3, Hurricane Earl—at TC strength from approximately 

time points 6 through 10—looks more symmetric and often has a visually clear 

eye; this matches what Figure 1.4 suggests. The most intense surface winds and 

rain are found in the eyewall, labeled in Figure 1.4.  

 Figure 1.3: A mosaic of visible and infrared imagery over the lifecycle of Hurricane Earl (2012), with strength 
and track denoted for additional clarity. Courtesy of Cooperative Institute for Meteorological Satellite 
Studies/University of Wisconsin-Madison Tropical Cyclones Atlantic Storm Product Archive. 
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 It is useful to characterize the wind field of TCs with two main idealized 

circulations—the primary and secondary circulations. The primary circulation is 

composed of the approximately axisymmetric rotating winds around the eye. The 

winds in the primary circulation can be idealized and explained by the gradient 

wind balance (Willoughby 1990). In cylindrical coordinates, gradient wind balance 

is defined as 

 
2

1
T

T

v p
fv

r r


 


   (1.2) 

where T
v  is tangential velocity, r  is the radial distance from the axis of rotation, 

f  is the coriolis parameter,   is air density, and p  is air pressure. As the 

boundary layer winds flow inward towards the low pressure of the eye, the air 

begins to rotate cyclonically in order to conserve angular momentum. In the end, 

a three-way gradient wind balance exists between the horizontal pressure 

gradient force (term 3 in eqn. (1.2), the centrifugal force (term 1 in eqn. (1.2)), 

and Coriolis force (term 2 in eqn.  (1.2)). All other things being equal, an increase 

in the horizontal pressure gradient across the storm will lead to stronger 

tangential winds. In Figure 1.3, the rotating winds of the primary circulation 

surrounding Earl’s eye are evident in clouds embedded in the upper level outflow 

and lower level inflow. While the lower level outflow will flow cyclonically, an anti-

cyclonic circulation eventually wins out at the top of the troposphere, as shown in 

Figure 1.4. (Frank 1977a; 1977b; Holton 2004) 

Figure 1.4: Conceptual model of the main structural elements of tropical cyclones: boundary layer inflow, clear 
central eye, eyewall and rain bands surrounding the eye, cirrus cloud shield and the upper tropospheric 
outflow. Credit: (Lang and Evans, 2016). 
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A TC’s secondary circulation governs the energetics of a storm; it consists of the 

winds flowing inward radially and then vertically within the storm, as illustrated in 

Figure 1.4. The first leg of this circulation consists of the winds that flow inward 

within the boundary layer, picking up latent and sensible heat from the sea 

surface for fuel. On the second leg of this secondary circulation, winds turn 

upwards vertically through the eyewall, forming condensation that releases latent 

heat. At the tropopause, air flows outward to a large radius where air subsides 

toward the surface to complete the secondary circulation. This secondary 

circulation acts like an idealized Carnot heat engine; conversion of heat to 

mechanical energy makes TCs powerful and destructive. (Emanuel 1988; 

Willoughby 1988)  

 After reaching maximum intensity as a TC, there usually comes a dissipation 

phase. There are many reasons why TCs weaken. Usually, TCs either run into a 

harsh environment or they run out of fuel. For example, if TCs go over land or 

cooler SSTs, their main source of energy is cut off. After landfall, TCs not only 

have to deal with a lost energy source, they also have to deal with increased 

friction. For example, as Figure 1.3 shows, Hurricane Earl started to dissipate as 

it moved further north; here, it encountered cooler SSTs, a drier environment, 

and an increase in shear (Cangialosi 2011). At the very end of a TC life cycle, 

TCs sometimes evolve into extratropical cyclones. By the last time point in Figure 

1.3, Hurricane Earl was extratropical.  

 As highlighted in the discussion above, many of the categorizations of 

different stages of a TC life cycle can be diagnosed based on the strength of 

surface winds and/or convection in the inner-core of the storm. Therefore, 

observations of these features are highly valued for situational awareness within 

the operational community. In order to advance the state of our understanding of 

TC processes, the TC research community also values observations of 

precipitation, clouds, and wind structure throughout the storm life-cycle. 

Observing TCs and their precursors have led to many advances in the science 

and forecasting of TCs. The next sections will give an overview of remote 
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sensing methods typically used to estimate important variables of interest for 

TCs: surface wind speed, precipitation, and intensity. 

 

1.2 Remote Sensing of Oceanic Surface Wind Speed 

1.2.1 Spaceborne Passive Microwave vs. Conventional Radar 

1.2.1.1 Passive Microwave 

As wind blows across the sea surface, it becomes rougher and more foam 

covered with increasing wind speed. Foam coverage increases surface 

emissivity because foam has an intermediate dielectric constant as compared 

with the highly mismatched dielectric values for sea water and air: sea foam acts 

as an impedance match at the surface interface and allows for the signal to 

couple through better (Williams 1969; Droppleman 1970). Surface roughness 

also increases brightness temperature (TB). Small, cm-scale roughness effects 

are important to consider below wind speeds of 7 m s-1, before foam starts to 

cover the surface. As surface roughness increases, the local incidence angle 

changes and reflects downwelling atmosphere TB contributions back toward the 

sensor from higher slant paths (Wentz 1975). Overall, emissivity increases with 

increasing wind speed. Therefore, TB increases with increasing wind speed—a 

relationship exploited in surface wind speed retrievals (Meissner and Wentz 

2012).  

 Some spaceborne passive microwave radiometers have a 10.7 GHz channel; 

this channel is considered useful for estimating wind speed since the atmosphere 

is somewhat transparent here (Ulaby et al. 2014). However, practical 

considerations including horizontal resolution and antenna size have to be taken 

into account in radiometer design. Half-power beamwidth   is related to the 

length of the antenna aperture l  and the wavelength   with 

 k
l


   (1.3) 
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where k  is some constant that is dependent on antenna design, and is usually 

between 0.88 and 1.5. Since, for a given antenna size, and with decreasing 

frequency (increasing wavelength), beamwidth increases and spatial resolution 

degrades, spaceborne passive microwave wind sensing missions typically do not 

use channels lower than 10 GHz. Higher frequency channels are used to 

increase spatial resolution. Using multiple channels, the parameters that make 

the atmosphere more opaque with increasing frequency can also be retrieved, in 

addition to correcting the surface wind speed retrieval for atmospheric effects. 

 One example of a microwave radiometer with channels below 10 GHz is 

WindSat—the first fully polarimetric microwave radiometer in space (Gaiser et al. 

2004). While the 6.8 GHz channel is not fully polarimetric, most of the higher 

frequency channels—10.7, 18.7, and 37 GHz—are. Fully polarimetric—TB at H, 

V, slant linear (+/- 45 degrees), as well as right and left hand circular 

polarizations—observations can be used to retrieve not only wind speed but wind 

direction as well. The relationships between TB and wind speed and direction is 

summarized in Figure 1.5. The 6.8 GHz channel can be used in conjunction with 

the higher frequency wind channels to retrieve wind speed in all weather 

(Meissner and Wentz 2009), but with a degradation in spatial resolution since the 

6.8 GHz channel provides observations over an effective spatial resolution of 39 

km x 71 km. If the lowest frequency used in the retrieval is the 10.7 GHz channel, 

the spatial resolution becomes 25 km x 38 km, but then performance in heavy 

precipitation becomes more problematic.  

 Aircraft-based microwave radiometers take advantage of flying closer to the 

surface, and use lower frequencies than are typically found on spaceborne 

instruments without a performance loss in horizontal resolution. Now regarded as 

the gold standard measurement for TC surface winds, the Stepped Frequency 

Microwave Radiometer (SFMR) is routinely used in aircraft reconnaissance 

missions. SFMR works similarly to other microwave radiometers, but is more 

sensitive to high wind speeds and less impaired by the copious rain typical in 

TCs (Jones et al, 1981; Uhlhorn et al. 2007; Klotz and Uhlhorn 2014). SFMR is 

limited by the range of the aircraft it flies on and unfortunately only observes the 
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surface along a narrow track beneath the aircraft. A next generation instrument, 

the Hurricane Imaging Radiometer (HIRAD), looks to improve upon the 

limitations of the SFMR nadir-only swath by using a synthetic aperture 

radiometer to view a larger swath of the wind field (Amarin 2010). 

 

1.2.1.2 Conventional Radar 

Oceanic surface wind retrievals are possible through observations made by 

conventional radar type instruments: scatterometers, synthetic aperture radar 

Figure 1.5: L-band model azimuth patterns for TB for v-polarization (TBv) and horizontal 
polarization (TBh) from (Yueh and Chaubell, 2012). Figure adopted from Ulaby et al. 
(2014).  
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(SAR), altimeters. Scatterometers are active microwave sensors (radars) which 

observe the backscattered signal reflected off of the surface below them. From 

observations of the normalized radar cross section ( 0
 ) estimates of both 

oceanic surface wind speed and direction are possible. Scatterometers are some 

of the most established spaceborne instruments used to measure ocean vector 

winds, and some examples of spaceborne scatterometers include the Ku-band 

(around 14 GHz) NASA Quick Scatterometer (QuikScat) (Ebuchi et al. 2002), its 

replacement RapidScat (Madsen and Long, 2016) which was put onboard the 

international space station, and the ESA/EUMETSAT series of C-Band (around 5 

GHz) Advanced Scatterometers (ASCAT) (Figa-Saldana et al, 2002). 

 Scatterometer measurements are sensitive to the roughness of the surface. 

Between incidence angles of 20 °-70 °, the return signal is proportional to the 

roughness of the surface on the scale of the radar wavelength. The wavelengths 

used by scatterometers match well to the scale of capillary waves on the ocean 

surface which are driven by local winds. The physical process forming the basis 

for scatterometer measurements—Bragg resonant scattering—results in a useful 

relationship between the backscattering coefficient, 0
  , and surface wind speed. 

With increasing wind speed, ocean surface roughness increases, and 0
  

increases. Therefore, relationships between 0
  and oceanic surface wind speed 

can be developed in the geophysical model functions which support the ocean 

vector wind retrievals from scatterometer observations. Wind direction also 

affects the 0
  measurement and must be accounted for in the retrieval 

algorithms. In particular, 0
  is dependent on the relative azimuth angle between 

the radar look direction and the wind direction. The relationships between 0
  and 

wind speed and direction are summarized in Figure 1.6 for a single incidence 

angle and polarization. However, incidence angle and polarization both play a 

role here as well. The same functional form would be shown if hh-polarization 

had been plotted instead, but different empirical coefficients would change the 
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magnitude of the function plotted. The relationship of 0
  with wind speed and 

incidence angle is explored in Figure 1.7.  With multiple measurements of 0
  at 

different geometric views, both wind speed and direction can be determined for a 

single location.  
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Figure 1.6: The backscattering coefficient versus wind –speed and azimuth angle at 
13.9 GHz and 40 degree incidence angle. Note that the upwind backscatter is 
always larger than downwind and cross wind and that the backscattering coefficient 
always rises with wind speed. Measured data is from Schroeder et al. (1985). Figure 
from Ulaby and Long (2014) 
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SAR observations also contain information about the ocean surface wind speed. 

Examples of operational SARs include the C-band RADARSAT-2 (Morena et al. 

2014) and TerraSAR-X which operates at 9.65 GHz (Werninghaus and 

Buckreuss 2010). Like scatterometers, SARs measure 0
 , but unlike 

scatterometers, SARs measure 0
  along single geometric looks for each pixel 

across a 2D image. Without multiple looks at a single location, the ambiguity, 

also seen in Figure 1.6, in the wind direction dependence remains in the SAR 0
  

measurements. Wind direction can be inferred from other sources (e.g. 

scatterometers, model data, or expected dynamic relationships for a given 

weather phenomenon). After wind direction is accounted for, wind speed is 

Figure 1.7: The Ku-band Seasat scatterometer (SASS-1) SASS-1 model (Schroeder et al., 
1982) geophysical model function relating ocean surface σ0 to the near-surface wind 
speed:  σ0 versus incidence angle for when the wind is blowing toward the radar 
(downwind). Adopted from Ulaby et al. (2014). 
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estimated from the SAR 0
  measurements. In comparison with scatterometers, 

SAR is also limited by swath size. Narrow SAR swaths have large gaps between 

them, making global coverage challenging on the weather time scales. Another 

major limitation is cost; SAR missions are much more expensive. If SAR were 

less expensive, it could be relied upon for ocean surface wind speed estimation.   

 Measurements made by another type of radar, altimeters, can also be used to 

estimate oceanic surface wind speed. Unlike scatterometers, altimeters consist 

of a nadir-looking radar, rather than an off-nadir-looking radar. An example of a 

currently operating spaceborne altimeter is the Poseidon-3 altimeter on the 

Jason-3 satellite, which operates at C- and Ku- bands (Vaze et al. 2016). While 

primarily used for determining surface topography and ocean surface height, the 

reflected altimeter waveform can be used to estimate near-surface wind speed. 

As with other radars, the measured 0
  is used to estimate near-surface wind 

speed. However, since the altimetry measurements are from a nadir-looking 

sensor, 0
  decreases with increasing wind speed. From the nadir point of view, 

as wind speed increases, the surface roughness increases, and more signal will 

be scattered away from the sensor. The utility of altimetry-based measurements 

for ocean surface wind speed applications is limited. As with SAR, altimeters also 

have low fractional Earth coverage since there are large gaps between the 

swaths. 

 

1.2.1.3 Radar vs. Radiometer Summary 

Radiometers—passive instruments—and radars—active instruments—measure 

different properties of the ocean surface. Oceanic surface wind speed estimation 

is possible from radiometer measurements as the emission from the surface is 

dependent on wind speed. Radars measure the backscattered signal, which 

depends on roughness, which is also related to near-surface wind speed. Rain 

affects both of these measurements. If the attenuation due to rain can be 

accounted for—for example, in SFMR’s retrieval algorithm—it is possible to 
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estimate oceanic surface wind speed as long as the surface signal isn’t too 

strongly attenuated. As frequency increases, attenuation from rain increases.  

 

1.2.2 Monostatic Radar vs. Bistatic Radar 

The conventional radar systems discussed in the previous section are all 

monostatic radars; the transmitter and receiver are in the same place and share 

a common antenna. If the transmitter and receiver are not in the same place, the 

instrument is a bistatic radar. Like their monostatic counterparts, bistatic radars 

are also used to estimate oceanic surface wind speed. Global Navigation 

Satellite System reflectometry (GNSS-R) techniques rely on a bistatic 

measurement geometry. 

GNSS-R takes advantage of signals of opportunity from the existing network 

of GNSS satellites. The GNSS spacecraft act as the transmitting part of a bi-

static radar, with the GNSS-R receiver receiving the forward signals that scatter 

from the Earth’s surface. The GNSS satellites operate at low L-band frequencies 

which are insensitive to atmosphere and precipitation attenuation. Unlike 

scatterometers, which receive the backscattered signal, the GNSS-R receiver 

receives the forward-scattered signal from the Earth’s surface, which is related to 

surface roughness and dielectric properties. In the forward scattering 

measurement, with increasing wind speed, surface roughness increases, and 

forward-scatter decreases (Garrison et al. 1998): this relationship is exploited in 

GNSS-R surface wind speed retrievals. The forward scattering measurement is 

more amenable to observations at low wind speeds, since this is when the signal 

will be strongest. Conversely, improved performance in scatterometry is 

expected for higher winds, since the backscattered signal is stronger in higher 

winds.  

The history of GNSS-R is a bit shorter than that of scatterometry. Over the 

past 20 years, numerous aircraft and ground-based GNSS-R experiments have 

been performed (e.g. Garrison et al. 1998; 2002; Komjathy et al. 2004; Germain 

et al. 2004; Thompson et al. 2005; Katzberg et al. 2006; Rodriguez-Alvarez et al. 
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2013). The first spaceborne satellite with a dedicated GNSS-R sensor was UK-

DMC in 2003 (Unwin et al. 2013). Since then, the UK TechDemoSat-1 satellite 

(TDS-1) launched in July 2014 (Foti et al. 2015) with the Space GNSS Receiver 

Remote Sensing Instrument (SGR-ReSI) on board. SGR-ReSI is a precursor to 

the instrument that will be used on the Cyclone Global Navigation Satellite 

System (CYGNSS) constellation, a NASA spaceborne GNSS-R mission (Ruf et 

al. 2016). The motivation for the CYGNSS mission is to measure oceanic surface 

wind speeds in all precipitating conditions—which will enable surface wind speed 

estimation even in the inner-core of TCs. GNSS-R performance has been tested 

in TC scenes through aircraft campaigns (Katzberg et al. 2001; 2006; 2013), but 

has yet to be demonstrated from a spaceborne platform, as UK-DMC-1 and TDS-

1 never reported observations of TC strength winds.  

 There are many benefits to the applications of GNSS-R as compared with 

other methods. First, GNSS-R is not limited in regions of high precipitation. 

Second, GNSS-R takes advantage of the existing architecture of GNSS 

spacecraft such as the GPS constellation, making these spacecraft small, low 

power, and low cost. Third, since the locations of the receiver and transmitter 

determine the location of the specular point on the surface where the 

measurement is made, and since those locations are known quite well due to the 

GNSS position tracking capabilities, accurate antenna pointing and knowledge is 

not needed for this application (Ulaby et al. 2014). A disadvantage of the 

observations possible through this method include the fact that instead of a wide 

swath of observations—like scatterometer observations—GNSS-R observations 

resemble collections of tracks through an area. For gridded observations, GNSS-

R observations need to be combined and interpolated intelligently based on the 

application.  

 

1.2.3 Observations from Shorter vs. Longer Wavelengths 

A persistent theme throughout this introduction is the fact that with increasing 

frequency, regardless of whether an active or passive sensor is used, the 
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observations will be increasingly affected by rain. Ocean surface wind 

measurements made at C-band and above (e.g. WindSat, QuikScat) will be 

affected by rain attenuation. In radiometer-based retrievals, C-band 

measurements can be used in tandem with multiple higher frequency 

observations to distinguish the wind and rain signals in the TB measurements. 

Measurements above 10 GHz will experience large enough attenuation in high 

precipitation scenes to significantly compromise their ability to make useful 

measurements of the surface.  

In order to propagate to the surface in all precipitating conditions, L-band (or 

lower) sensors must be used. Observations from the Soil Moisture Active 

Passive mission (SMAP) (Fore et al. 2016) are useful for all-weather wind speed 

retrievals because the low frequency observations are uncontaminated by rain. 

However, observations by SMAP are limited to a relatively coarse spatial 

resolution of ~65 km, which can wash out much of the small spatial scale size, 

highest wind speed portions of TCs. Observations from the recently launched 

CYGNSS constellation will give more L-band observations in all precipitating 

conditions, but at 25 x 25 km2 resolution (Ruf et al. 2016). Hopefully, GNSS-R 

receiver development will advance to give even higher spatial resolution 

measurements in the future.  

 

1.3 Sensitivity of Remote Sensing to Precipitation 

At certain frequencies, estimates of surface wind speed from passive microwave 

radiometers are possible—even in the presence of rain. Sensitivity to surface 

emission—ideal if estimates of surface wind speed are sought after—requires 

that transmissivity in the atmosphere be high at the frequency of observation. A 

transparent atmosphere allows for higher sensitivity to changes in surface 

emission, which allows for estimates of surface wind speed. 

Remote sensing systems are designed to be sensitive to certain aspects of 

the environment, allowing for indirect estimation of the quantities in question. 

Sometimes, precipitation is part of the signal of interest. Sometimes, it is the 
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noise. And sometimes, it makes no impact. In this section, a comparison of 

examples from each of these situations is presented.  

 Passive microwave measurements have varying levels of rain sensitivity 

depending on frequency choice. Spaceborne passive microwave radiometers 

with channels above 10 GHz are sensitive to precipitation. Since the 1970’s, 

passive microwave radiometers have been available to observe the emission 

from the atmosphere (Wilheit 1976; Weinman and Guetter 1977; Prabhakara et 

al. 1992). Initial examples of these microwave instruments include the Electrically 

Scanning Microwave Radiometer (ESMR) (Wilheit 1971; 1975) and the Scanning 

Multichannel Microwave Radiometer (SMMR) (Njoku at al. 1980). More recently, 

the series of passive microwave sensors on the Special Sensor 

Microwave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder 

(SSMIS), the Tropical Rainfall Measuring Mission (TRMM), the Advanced 

Microwave Scanning Radiometer (AMSR-E), the Advanced Microwave Scanning 

Radiometer-2 (AMSR-2), and Global Precipitation Measurement (GPM) core 

observatory are used for precipitation estimates (Hollinger et al. 1990; Kawanishi 

et al. 2003; Imaoka et al. 2010; Kummerow et al. 1998; Hou et al. 2014). 

Retrievals of precipitation are possible from observations by these types of 

instruments. Radiometer channel selection is determined based on the sensitivity 

of TB to the environmental parameter to be estimated, and on the orthogonality 

of sensitivity to the same parameter by different channels. Ideally, the sensitivity 

across channels will be independent and non-overlapping. In general, higher, but 

differentiatable sensitivity results in better retrieval performance. 

Before discussing the physical basis of passive microwave radiometer 

retrieval algorithms, it is useful to consider the thermal radiation components in a 

brightness temperature (TB) measurement from a downward looking passive 

microwave radiometer. Brightness temperature represents the intensity of 

radiation emitted by a scene under observation and is defined by 

 
P

TB
kB

  (1.4) 
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where P  is the power measured by the radiometer across a spectral bandwidth 

B , k  is the Boltzmann constant. Considering an nadir earth scene from space, 

    
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TB T e T T e T e
  

  
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where   is the emissivity of the surface, SFC
T  is the physical surface temperature, 

 is the path-integrated atmospheric optical depth, e
  is the atmospheric 

transmissivity, U P
T  and D N

T  are respectively, the upwelling and downwelling 

atmospheric TBs, and COS
T  is the cosmic microwave background TB. On the right 

hand side of eqn.(1.6), term one represents a scene’s surface emission that 

propagates through the atmosphere, term two represents the upwelling 

atmosphere radiation, term three represents the reflected and transmitted 

downwelling atmosphere radiation, and the last term represents the reflected 

portion of the cosmic microwave background radiation. The path-integrated 

optical depth is defined for an integration through the entire atmosphere as 

    
2

1

1 2
0,

z

g e

z

z z dz        (1.6)  

where g
  is the gaseous absorption coefficient with units of Np m-1, e

  is the 

extinction coefficient due to hydrometeors and clouds with units of Np m-1,   is 

the incidence angle of the propagation path calculated over the height z  of the 

atmosphere. e
  accounts for scattering and absorption with 

 e a s
    . (1.7) 

where s
  is the scattering coefficient. The upwelling TB ( U P

T ) is given by 
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where T  is atmosphere temperature at height z . The downwelling TB ( D N
T ) has 

a similar form and is given by  

 ( 0 , )
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
   (1.9) 

where the key difference between U P
T  and D N

T  is in the integration limits for 

calculating the optical depth. The extinction and absorption from the atmosphere 

along the propagation path must be accounted for. However, the dominance of 

the atmosphere vs. the surface contributions towards TB depends on the 

frequency in question, as well as the scene in question. (Ulaby et al. 2014) 

Signatures of rain exist in low-frequency microwave observations after rain 

absorbs and reemits radiation (Wilheit 1986). Over the ocean, rain-rate can be 

estimated with physically-based retrieval algorithms. The ocean has a low 

emissivity at microwave frequencies. Rain absorption and reemission will warm 

the TB over the cool background of the ocean surface. Missions like TRMM and 

GPM take advantage of this emission relationship and employ Bayesian type 

retrieval algorithms to instantaneously retrieve rain rate from low frequency 

observations and databases built offline (Kummerow et al. 1996; 2001). 

 It is also possible to estimate rain rate with higher frequency channels, where 

scattering signatures start to come into play. Sometimes, these high frequency 

channels were originally chosen for use in temperature and humidity sounding. 

Temperature sounding channels near the strong oxygen absorption lines (50-60 

GHz or 118 GHz) and moisture sounding channels near the water vapor line (183 

GHz) are used for indirect estimates of precipitation. Scattering-based rain rate 

retrievals that use these sounding channels are more empirically based (e.g. 

Staelin and Chen 2000, Chen and Staelin 2003, Surussavadee and Staelin 

2008). While these estimates are empirical, they allow for estimates of 

precipitation over land.  
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 Since land not only has a high emissivity, but also has highly varying and less 

well known emissivity values (Weng et al. 2001), emission-based rain rate 

retrieval methods are not useful for rain rate retrieval over land. The warm signal 

from rain absorption and reemission is not distinguishable from a warm land 

background. However, the scattering signatures from the ice particles within 

upper-levels of clouds are strong against the land background at high 

frequencies. In particular, the reflected upper atmosphere downwelling and 

cosmic microwave background radiation scatters back towards the sensor, 

causing a radiance depression, compared to its environment (Spencer et al. 

1989; Kidd et al. 2013). There are empirical relationships between the scattering 

signatures and rain rate; these relationships support the retrieval algorithms that 

use high frequency channels to estimate rain rate. 

 At the frequencies used in spaceborne microwave radiometers—about 10 

GHz to 183 GHz—precipitation will block the surface emission from the ocean. 

This can be explained by considering the typical range of sizes of rain drops vs. 

the wavelengths used on spaceborne passive microwave radiometers. Raindrops 

are typically around 0.5 - 3 mm (Rogers and Yau 1989) and the wavelengths of 

the 183 - 10 GHz channels range from roughly 2 - 30 mm. At the lowest 

frequencies, the wavelengths here are only about 10 times greater than the 

largest rain drops, and thus these observations are still sensitive to rain 

absorption and re-emission processes. In order to be insensitive to rain, the 

wavelengths used must be much greater than the size of the rain drops.  

 Passive microwave radiometers with frequencies below 10 GHz exist on 

aircraft. For example, the Stepped Frequency Microwave Radiometer (SFMR) 

works at the range of frequencies from roughly 4 - 7 GHz (Uhlhorn et al. 2007). 

At these frequencies, the observations are attenuated by rain, but not so much 

that the surface emission is attenuated completely. The 4 - 7 GHz channels 

correspond to wavelengths of roughly 40 - 70 mm. With wavelengths roughly 10 

times greater than the largest rain drops, these channels are able to partially see 

through rain to the surface. SFMR was designed with TC surface wind speed 
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estimation in mind; here, rain is a source of noise which must be accounted for in 

retrieval algorithms. Rain only partially blocks the surface signal which is used to 

estimate oceanic surface wind speed, as described in section 1.3.  

 With increasing wavelength (and decreasing frequency) passive microwave 

observations are decreasingly sensitive to rain. Figure 1.8 summarizes the 

frequency dependence of the Mie extinction and absorption coefficients of rain, 

for a precipitation rate of 12 mm h-1.  Generally, as frequency increases, 

extinction increases. Below 10 GHz, extinction from scattering—the difference 

between the extinction and absorption coefficients—is insignificant.  

Approaching 1 GHz (L-band), both scattering and absorption due to rain 

become negligible. At L-band frequencies, the atmosphere is transparent in all 

weather, and the sensitivity to the surface is large. High surface sensitivity is 

Figure 1.8: Calculated Mie extinction ( e
 ) and 

absorption ( a
 ) coefficients of rain 

characterized by a precipitation rate of 12 mm 
h-1. [from Ulaby and Long, 2014; Tsang et al., 

1977]. 
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ideal for oceanic surface wind speed retrievals in all-weather conditions, as was 

discussed in section 1.2. 

 

1.4 Remote Sensing of Tropical Cyclones 

1.4.1 Importance of Tropical Cyclone Remote Sensing 

TCs and their precursor storms spend most—if not all—of their lifetime over the 

ocean, which makes them harder to observe in situ. Since the advent of remote 

sensing, fewer TCs go unobserved, and our increased observation of these 

storms has led to improved understanding of TC processes. Additionally, the 

observations that are collected through remote sensing support the TC 

situational awareness and forecasting efforts at warning centers like the National 

Hurricane Center (NHC) (Rappaport et al. 2009).  

TC forecasters are required to estimate the present and predict the future 

intensities of TCs, typically defined by a maximum 1- or 10-minute sustained 

wind speed at the 10-m observing level associated with the system (Harper et al. 

2010; Office of the Federal Coordinator for Meteorological Services and 

Supporting Research 2012). Only 30% of the 6-hourly intensity estimates in the 

North Atlantic are guided by aircraft reconnaissance, and next to no aircraft 

reconnaissance is performed elsewhere (Rappaport et al. 2009). Unfortunately, 

intensity estimation is challenging without aircraft reconnaissance. Intensity 

estimates in the post-season reanalysis records have uncertainties of 

approximately 5 m s-1 (Landsea and Franklin 2013; Torn and Synder 2012). In 

addition to intensity, forecasters use information about precipitation and 

convective structure, the environmental conditions, and wind field size to guide 

their forecasts of TC track and intensity. Often, the observational guidance that 

TC forecasters use is based entirely upon remote sensing observations.  

 In recent years, hurricane intensity forecasts have started to improve, but, 

previously, forecasts in intensity lagged behind the skill improvement in track 

forecasts (Rogers et al. 2006). With further innovations in TC remote sensing, 
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particularly with regards to inner-core observations, TC forecasting will continue 

to improve and our understanding of the physical processes that underlie TC 

development will advance. While there are many types of remote sensing 

observations that support TC forecasts and process studies, this thesis will focus 

on the following three inner-core-related observations: precipitation, surface wind 

speed, and intensity.  

 Using observations of precipitation structure, TC forecasters can locate the 

center of a storm, determine the radius of the eye, and estimate the direction in 

which system intensity change is headed. A high interest observation is surface 

wind speed, which can inform estimates of the intensity of a system—a prioritized 

parameter in the operational forecasting environment.  

 

1.4.2 Remote Sensing Applications to Tropical Cyclone Intensity and Wind 

Structure Estimation 

Since TC intensity is a parameter that is prioritized in the operational TC 

forecasting environment, remote sensing-based methods have been developed 

to estimate intensity in situations where aircraft reconnaissance is not available. 

Currently, there are two main competing methods: the Dvorak and sounding-

based techniques. 

 The Dvorak technique, a method of estimating TC intensity through subjective 

image pattern recognition, was first developed based on visible-sensors onboard 

geostationary meteorological satellites (Dvorak 1975). As Figure 1.3 suggests, it 

is possible to estimate TC intensity based on cloud patterns. Since the initial 

method was published, refinements and advancements have been made to the 

Dvorak technique (Velden et al. 2006; Velden et al. 1998). Infrared imagery is 

now included in the guidance (Dvorak 1984) and an automated version, called 

the Advanced Dvorak Technique (ADT) is a part of the suite of satellite-based 

guidance available to TC forecasters (Olander and Velden 2007). One 

disadvantage of the Dvorak technique is that it is an indirect and sometimes 

subjective approach. Brown and Franklin (2004) analyzed the performance of 
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Dvorak-based intensity estimates and found errors to be 2.5 m s-1 in roughly half 

the cases and over 6 m s-1 in a quarter of all cases. However, since the Dvorak 

technique relies on geostationary satellites, it is not plagued by data gaps 

typically seen if relying on polar-orbiting satellites alone.  

Due to the ready availability of geostationary data, a variety of other methods 

for TC characterization—both intensity and wind structure estimation—have been 

developed for geostationary data (e.g. Mueller et al. 2006; Kossin et al 2007; 

Piñeros et al. 2008, 2011; Fetanat et al. 2013; Knaff et al. 2015; Dolling et al. 

2016). A number of studies have developed methods which require an estimate 

of storm intensity in order to estimate wind structure from infrared data (Mueller 

et al. 2006; Kossin et al 2007; Knaff et al. 2011, 2015). The deviation angle 

variance (DAV) technique developed by Piñeros et al. (2008, 2011) correlates 

intensity and structure with the gradient in infrared brightness temperature; the 

DAV-based wind radii methods presented in Dolling et al. (2016) use a multiple 

linear regression technique. Fetanat et al. (2013) take advantage of historical 

hurricane satellite data (HURSAT) to estimate intensity from feature analogs—or 

brightness temperature patterns—in satellite imagery and analogous storms. In 

addition to infrared data inputs, the methods developed in Knaff et al. (2011, 

2015) take advantage of multiple satellite inputs (i.e. a combination of more direct 

wind speed estimates from scatterometers and indirect flight-level wind speed 

estimates from geostationary and microwave sounder data) to estimate the TC 

wind field, from which wind radii are estimated.  

 TC intensity estimation is also possible using passive microwave sounders, 

like AMSU. This method takes advantage of the correlation between a TC’s 

warm core structure and its intensity. Warm-core anomalies are greatest during 

peak intensity. Using the retrieved vertical temperature structure from AMSU, 

estimates of the minimum surface level pressure and maximum sustained wind 

speed are possible through the hydrostatic approximation and assumptions of 

gradient wind balance (Kidder et al. 2000). Care must be taken to account for the 

effect of clouds and precipitation on the AMSU radiances. The mean absolute 
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errors for AMSU-based maximum wind estimates developed in Demuth et al. 

(2006) are roughly 6 m s-1. Although performance is comparable to the Dvorak 

technique, sampling of the TC inner core is limited since this method relies on 

polar-orbiting sounders. 

In addition to intensity estimation, surface wind speed observations can also 

guide forecasters who analyze the extent of 34-, 50-, and 64- kt surface winds 

out from the center of a storm—commonly collectively referred to as wind radii. 

While AMSU does not have adequate horizontal resolution to estimate realistic 

wind structure alone, estimates of the 34-, 50-, and 64-kt wind radii and 

maximum wind speed can be made using statistically-based algorithms (Demuth 

et al. 2006). 

 Knaff et al. (2016) developed methods for estimating wind radii using routinely 

available estimates of TC intensity, motion, and location. These inputs, together 

with estimates of TC size from IR imagery or model analyses, are used to create 

a modified Rankine vortex—a vortex which follows a linear increase in wind 

speed from the center of the storm to the radius of maximum wind speed and an 

exponential decrease from the radius of maximum wind speed outwards—from 

which the wind radii are estimated.  

 

1.5 Organization of thesis 

While there are many aspects of TCs to observe and many tools from which to 

observe them, this thesis focuses on two main fields of remote sensing: passive 

microwave radiometry and GNSS-R. The work for this thesis was performed to 

support the algorithm and product development of two missions: HIRAD and 

CYGNSS. While these instruments operate on different scales, both have been 

developed with one main goal in mind: to measure ocean surface wind speed in 

tropical cyclones.  

 HIRAD is an airborne microwave radiometer operating at C-band frequencies. 

HIRAD is sensitive to rain emission and absorption, so algorithm development 
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revolved around properly modeling rain in HIRAD’s forward model, as well as 

inverting the model to properly estimate rain rate. While the main aspect of the 

HIRAD algorithm project developed around better modeling the rainy 

atmosphere, ultimately, the goal is to improve surface wind speed estimation by 

properly accounting for the rain in the field of view. Chapter 2 outlines the 

algorithm work that is a part of this project, also published in Morris and Ruf 

(2015a).  

 Chapters 3 and 4 are both related to the CYGNSS mission. The objective of 

these projects is to determine how to take advantage of the unique observations 

from CYGNSS to estimate parameters of interest to the TC forecasting and 

research communities. Since this work was done before launch, an extensive set 

of simulated CYGNSS observations is used to develop algorithms and data 

products. Chapter 3 outlines how CYGNSS surface wind speed estimates can be 

used to estimate a measure of a TC’s destructive potential, integrated kinetic 

energy (IKE). Chapter 3 is related to the work found in Morris and Ruf (2016a). 

Chapter 4 takes some of the methods developed in chapter 3, and adopts them 

to estimates of TC wind structure and intensity. The results and methods outlined 

in chapter 4 are currently in peer review (Morris and Ruf 2016b).  

 All of these projects are incremental steps in development for their respective 

missions. Future work and personal contributions are outlined in detail in chapter 

5.  
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Chapter 2. A Coupled-Pixel Model (CPM) Atmospheric Retrieval 

Algorithm for the Hurricane Imaging Radiometer (HIRAD) 
 

2.1 Summary 

Low frequency, passive microwave observations allow for oceanic remote 

sensing of surface wind speed and rain rate from spaceborne and airborne 

platforms. For most instruments, the modeling of contributions of rain absorption 

and re-emission in a particular field of view is simplified by the observing 

geometry. However, the simplifying assumptions that can be applied in most 

applications are not always valid for the scenes that the airborne Hurricane 

Imaging Radiometer (HIRAD) regularly observes. Co-located Stepped Frequency 

Microwave Radiometer (SFMR) and HIRAD observations of Hurricane Earl 

(2010) indicate that retrieval algorithms based on the usual simplified model, 

referred to here as the Decoupled-Pixel Model (DPM), are not able to resolve two 

neighboring rain bands at the edge of HIRAD’s swath. The DPM does not allow 

for the possibility that a single column of atmosphere can affect the observations 

at multiple cross-track positions. This motivates the development of a Coupled-

Pixel Model (CPM), which is developed and tested in this chapter. Simulated 

observations as well as HIRAD's observations of Hurricane Earl (2010) are used 

to test the CPM algorithm. Key to the performance of the CPM algorithm is its 

ability to deconvolve the cross-track scene, as well as unscramble the signatures 

of surface wind speed and rain rate in HIRAD’s observations. While the CPM 

approach was developed specifically for HIRAD, other sensors could employ this 

method in similar complicated observing scenarios. 
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2.2 Introduction 

Most airborne and spaceborne sensors have observing geometries that allow for 

simplifying assumptions when modeling the rain that is present in their fields of 

view (Uhlhorn et al. 2007; Kummerow et al. 1996). The rain is assumed to exist 

only below the freezing level of the atmosphere. Figure 2.1.a shows the 

observing geometry of a typical spaceborne imaging radiometer. Note, this 

geometry works well in the emission and specular reflection regime, but would be 

more complicated if in the scattering regime. 

Figure 2.1: Typical observing geometry of: (a) a spaceborne microwave radiometer; and (b) the airborne 
stepped frequency microwave radiometer (SFMR) (not to scale). FL stands for freezing level, SFC stands for 
Earth surface.  The yellow shaded region on the left represents the relatively small portion of the rain column 
below the freezing level that is not common to both the upwelling and downwelling emission sensed by the 
radiometer. The horizontal extent of individual pixels in the image is indicated by black vertical tick marks. 

The horizontal extent of individual pixels in the image is indicated by vertical tick 

marks along the black surface boundary. The region of the atmosphere that 

contributes to a measurement at a particular pixel is indicated by the expanding 

conic boundary away from the sensor, denoted in Figure 2.1 by striped polygons. 

The dispersion of the cone is determined by the angular resolution of the sensor. 

Highlighted in yellow in Figure 2.1.a is the part of the rain column that contributes 

to the downwelling and not the upwelling thermal emission measured at a 

particular pixel, but would however contribute to the upwelling thermal emission 

in the neighboring pixel. The adjacent portion of the rain column that contributes 
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to both the upwelling and downwelling emission can be seen to be much greater. 

This is a direct result of the fact that the horizontal resolution of the imager’s 

pixels is significantly greater than height of the freezing level.  This condition is 

common with spaceborne radiometer imagers and is the reason why the 

radiative transfer models typically used in these applications assume that the 

upwelling and downwelling atmospheric emission originates from the same 

atmospheric column (Stephens and Kummerow 2007; Wilheit et al. 1994).  

 With varying degrees of validity, there are a variety of assumptions made 

when modeling radiative transfer. The work in this chapter can be put into better 

context by looking at the approaches used for cloudy atmosphere radiative 

transfer, ranging from the plane parallel assumptions, or 1-D modeling, to full 3-D 

radiative modeling (Cahalan et al. 2005). Other commonly used approximations, 

which are just steps above plane-parallel in complexity, include the independent 

pixel approximation (IPA) and the tilted IPA (TIPA). For IPA, the radiative 

properties of a given horizontal region are considered to be isolated from 

neighboring pixels (Cahalan et al. 1994), and the plane-parallel treatment is 

applied to particular columns. However, the IPA doesn’t account for horizontal 

transport of radiative effects (Marshak et al. 1995; Zuidema and Evans 1998). In 

the IPA, each pixel is assumed to be radiatively independent of the others, and 

each column or horizontal region is assumed horizontally infinite. The IPA fails in 

certain situations because it doesn’t account for the horizontal transport of 

radiation between pixels. A step up in geometry-complexity, TIPA takes into 

account the slant path of solar radiation, but is not a full 3-D treatment (Varnai 

and Davies 1999). The slanted-columns being modeled are still treated 

independently of one another.  

Simplifying assumptions about radiative transfer can also be made for an 

airborne radiometer like SFMR, but for different reasons. SFMR is a nadir-looking 

radiometer with horizontal resolution on the order of typical convective rain cell 

features, and smaller than most stratiform rain distributions (Uhlhorn and Black 

2003). Figure 2.1.b illustrates the relative contributions of the atmosphere below 



33 

the freezing level for this airborne observing geometry. In this case, a larger 

portion of the downwelling propagation path spills over into the next surface pixel. 

However, since large gradients in rain—on the order of 10 (mm h-1) · km-1—are 

unlikely at this horizontal scale, rain in the spillover region can be assumed to be 

similar to the rain in the main pixel of observation.  

There are certain conditions under which the simplifying assumptions 

mentioned above are no longer valid. While developing a physically-based 

retrieval algorithm for the Hurricane Imaging Radiometer (HIRAD), these 

assumptions failed often. HIRAD was developed with the goal of achieving 

SFMR observing capabilities over a wider cross-track swath; therefore, initial 

retrieval algorithm development for HIRAD was based on established SFMR 

algorithms (Amarin et al. 2012). However, approximations, similar to IPA, that are 

reasonable given SFMR’s nadir viewing geometry become much less valid for 

HIRAD’s non-nadir pixels, especially at the higher incidence angle portions of its 

swath edge and in a tropical cyclone environment.  

Co-located HIRAD/SFMR observations of Hurricane Earl (2010) during GRIP 

(Braun et al. 2013) exposed the flaws in using SFMR-like assumptions in the 

forward radiative transfer model on which HIRAD’s retrieval algorithm is based. 

HIRAD and SFMR were on separate aircraft, flying perpendicular to one another. 

HIRAD was flying north on a WB-57 at roughly 20 km in altitude, with Hurricane 

Earl’s western eyewall to its right. SFMR was observing from a NOAA P-3 at 

roughly 3 km and flew directly over the same western eyewall going from east to 

west. In this instance, SFMR’s nadir observations were able to identify two 

neighboring, but distinct, rain bands as it flew directly over them. HIRAD, on the 

other hand, was not able to distinguish between the two when they were imaged 

at the outer edge of its field of view.  

The simplified radiative transfer model used by SFMR and by typical 

spaceborne radiometer retrieval algorithms, in which each surface pixel has 

associated with it a single atmospheric column that is directly above it and is 

responsible for both upwelling and downwelling emission and absorption, will be 
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referred to here as the Decoupled Pixel Model (DPM), and is similar to the IPA. It 

is decoupled in the sense that the atmosphere observed at each pixel is 

assumed to be independent of that at any other pixel, so that retrieval algorithms 

can independently solve for surface and atmospheric state variables at each 

pixel. A Coupled Pixel Model (CPM) is developed here, which explicitly accounts 

for the possibility that upwelling and downwelling emission and absorption at a 

single pixel can result from different portions of the atmosphere, and that a given 

portion of the atmosphere can affect measurements at multiple pixels in the 

image. In this case, a corresponding retrieval algorithm will need to couple its 

geophysical state estimates across multiple pixels in the image. The CPM 

method combines ideas from TIPA and 2-D radiative transfer modeling.  

Since HIRAD regularly observes tropical cyclone conditions in the outer-most 

incidence angles of its large cross-track swath, a new retrieval algorithm was 

developed based on the CPM. A key feature of the CPM algorithm is that it is 

able to deconvolve the cross-track scene, as well as unscramble the signatures 

of surface wind speed and rain rate in HIRAD’s observations. While HIRAD will 

benefit directly from this method, the CPM algorithm approach could potentially 

be used in other applications and with other sensors, in cases where the 

horizontal resolution of the imager is comparable to or less than the depth of the 

atmospheric column within which a significant portion of the atmospheric 

attenuation and emission originates.  

The objectives of this chapter are to present the CPM algorithm and compare 

its performance to that of the DPM. We hypothesize that the performance will be 

comparable in conditions without significant horizontal variability in the rain at the 

scale size of the HIRAD spatial resolution, and better in highly variable conditions 

such as a double rain band.  To begin, section 2.3 highlights key differences in 

the forward radiative transfer models used in DPM and CPM methods. Section 

2.4 outlines the set of simulated observations used to test the CPM algorithm. 

Section 2.5 describes the CPM algorithm. Results of the CPM performance tests 
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are reported in Section 2.6. Finally, a discussion of these results is summarized 

in section 2.7 and concluded upon in section 2.8.  

 

2.3 Decoupled and Coupled Forward Radiative Transfer Models 

The appropriate radiative transfer forward model to use given HIRAD’s observing 

geometry depends on assumptions about the atmosphere along the propagation 

path. A typical situation for off-nadir pixels in the HIRAD image is shown in Figure 

2.2. Regions 1 and 5 in the figure are modeled as a rain-free gaseous 

atmosphere above the freezing level. Below the freezing level, where rain may 

be present, region 2 is the downwelling-only portion of the propagation path, 

region 3 is the overlapping area of both upwelling and downwelling portions of 

the path, and region 4 is the upwelling only portion of the path.  

Figure 2.2.a illustrates how the Forward Radiative Transfer Model (FRTM) 

considers the atmosphere under the DPM assumption. The rain in the 

downwelling path is assumed to be the same as that in the upwelling path. In 

cases of significant horizontal non-uniformity in the rainfall, such as near the TC 

eyewall, this assumption may not be valid.  

Figure 2.2.b highlights the differences in the FRTM under a CPM assumption. 

The downwelling and upwelling atmospheres are considered separately, without, 

for example, assuming that the rain in region 3 is the same as that in region 2 or 

4. Note also that the atmosphere along the upwelling and downwelling paths that 

are associated with a particular surface pixel also pass over other surface pixels. 

For example, the downwelling path in Fig.2.b passes over three surface pixels,  
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 Figure 2.2: Diagram showing the assumptions made about the below-freezing-level atmosphere in a 
decoupled-pixel (DPM) (a) vs. coupled-pixel (CPM) (b) forward model. The horizontal extent of individual 
pixels in the image is indicated by black vertical tick marks. Regions 1 and 5 are modeled as a gaseous 

atmosphere without rain. Region 2 is the downwelling-only portion of the observing path for a particular field 
of view. Region 3 is the overlapping area of upwelling and downwelling portions of the path. Region 4 is the 
upwelling only portion of the path. (a): In the DPM model, regions 2-4 are modeled assuming the upwelling 

and downwelling paths have the same rain. (b): In the CPM model, there is no longer an assumption that the 
same rain is seen along the upwelling and downwelling paths. While there is a small portion of overlap in the 

paths (region 3), regions 2 and 4 are not assumed to have the same rain as region 3. 

while the upwelling path passes over two. The footprint of these pixels is 

dependent on the horizontal resolution of the sensor, which is detailed in Amarin 

(2010). The appropriate FRTM in this case first requires that the total optical 
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depth along the upwelling and downwelling paths, UP
  and DN

 , be calculated 

from the total rain column that is present along each propagation path. The total 

is calculated by weighting and summing the rain rate above each pixel according 

to the cross-sectional volume of atmosphere that the path cuts through below the 

freezing level (see Appendix for details). Once the two optical depths are 

calculated, the corresponding upwelling and downwelling TBs are determined 

similar to (Amarin 2010) with (1) and (2) respectively: 
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where a
  is the absorption coefficient, T  is the physical temperature (K), z  is 

the height in the atmosphere, TO A  is the top of the atmosphere, which is assumed 

to be 20 km in this application, and   is the Earth incident angle. The observed 

TB, including atmospheric emission and attenuation as well as surface emission 

and reflection, is modeled as 

     
DNCOSSFCUPB

TTeTeTT DNUP 
 

 1  (2.3) 

where SFC
T  is the physical sea surface temperature,   is the emissivity of the sea 

surface, and COS
T  is the cosmic microwave background TB. The total, path 

integrated, transmissivity is represented in eqn. (2.3) for the individual upwelling 

and downwelling propagation paths as UPe
  and DNe

 , respectively. The 

emissivity of the surface is modeled based on earth incidence angle (EIA), sea 

surface temperature, and wind speed with an emissivity model developed for 

HIRAD (El-Nimri et al. 2010). With this FRTM, TBs are modeled for the entire 

cross-track scene in increments of )(sin
1



 in EIA. Those TBs are then weighted 

with HIRAD’s antenna pattern to determine the observed TBs. Observed TB is 

calculated as 
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where 
w eighted j

B
T  is the observed TB value at a particular cross-track location j, 

iB
T  is 

the unweighted TB at a particular cross-track location i , and ij
W  is the normalized 

weight of the antenna pattern for the field of view at cross-track location j , at the 

same cross-track location of 
iB

T . The number of cross-track positions is m. 

Examples of the antenna pattern at EIA = 7°, 36°, and 62° are shown in Figure 

2.3. Also plotted in Figure 2.3 is the half power beam width (HPBW). HPBW is 

the angle between points in the antenna pattern where the power is half of the 

maximum. With increasing EIA, HPBW increases. 

Figure 2.3: The relationship between HIRAD’s beamwidth and 
synthetic antenna pattern with earth incidence angle (EIA). 
Portions of synthetic antenna beam patterns are shown in 

grayscale for EIA of 7°, 36°, and 62°, and are labeled in the figure. 
Plotted in blue is the half power beam width (HPBW). HPBW is the 

angle between points in the antenna pattern where the power is 
half of the maximum. 
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2.4 Simulated Observations as Test Cases 

A set of simulated HIRAD observations was developed using the CPM FRTM in 

order to test the CPM algorithm. There are three main test case categories: 

horizontally uniform (or constant) conditions, a single rain band, and a double 

rain band. The test cases are summarized in Figure 2.4 and Table 2.1. Figure 2.4 

gives a visual glimpse of the cross-track scene in each case, while Table 2.1 

outlines the case identification numbers and quantifies some of the parameters 

illustrated in Figure 2.4. 
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Figure 2.4 Portrayals of the true surface wind speed (m s-1) and rain rate (mm h-1) used to simulate 
observations for each case type. The X parameters are labeled on the x axis to provide reference to Table 
2.1 and are quantified in Table 2.1 for each test case ID number. XRRi1 is the horizontal distance to the point 
in the cross-track swath where the first (or only) rain band begins, from 0 ° EIA. XRRi2 is the distance to the 
point in the cross-track swath, from 0 ° EIA, where the second rain band begins (double rain band cases 
only). XPEAK is the distance to the point in the cross-track swath, from 0 ° EIA, where wind speed and the 
outer rain band peaks. 
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Table 2.1: Summary of simulated test case identification numbers, and descriptions of the true surface wind 
speed (m s-1) and rain rate (mm h-1) for each case. The parameters of WS, RR, XRRi1, XRRi2, and XPEAK are 
labeled in Figure 2.4 for a visualization of the types of cases simulated. XRRi1 is the horizontal distance to the 
point in the cross-track swath where the first (or only) rain band begins, from 0° EIA. XRRi2 is the distance to 
the point in the cross-track swath, from 0° EIA, where the second rain band begins (double rain band cases 
only). XPEAK is the distance to the point in the cross-track swath, from 0° EIA, where wind speed and the 
outer rain band peaks. The identification numbers provide information about the particular test case. In the 
constant cases, the number before the ‘w’ gives the true wind speed and the number before the ‘r’ gives the 
true rain rate. In the rain band cases, the number before the letter ‘s’ or ‘d’ gives the EIA location of XPEAK. 

 

Constant Cases: Constant Wind Speed/Rain Rate 

Test Case ID WS (m s-1) RR (mm h-1) 

10w10r 10 10 

10w40r 10 40 

50w10r 50 10 

50w40r 50 40 

Single Rain Band Cases: peak wind speed = 50 m s-1; peak rain rate = 40 mm h-1 

Test Case ID XRRi1 (km) XPEAK  (km) 

20s 3 7 

30s 7 10 

40s 10 15 

50s 15 21 

60s 21 31 

Double Rain Band Cases: peak wind speed = 50 m s-1; peak rain rate = 40 mm h-1 

Test Case ID XRRi1 (km) XRRi2 (km) XPEAK (km) 

20d 0 3 7 

30d 3 7 10 

40d 7 10 15 

50d 10 15 21 

60d 15 21 31 
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Constant cases illustrate the performance of the CPM algorithm in different 

combinations of constant high and low retrieved parameters, where the retrieved 

parameters are surface wind speed and rain rate. The identification numbers in 

Table 2.1 give information about the amount of true wind speed and rain rate in 

that particular simulated test case. For the constant cases, the true wind speed is 

the number before the ‘w’, and the true rain rate is the number before the ‘r’. 

Figure 2.4 shows that the true wind speed and rain rate are held constant for the 

entire cross-track scene in the constant parameter test cases. 

In addition to the constant parameter cases, idealized cases of a TC eyewall 

overpass—where the eyewall cuts through perpendicular to the cross-track view 

of the instrument—are also considered. The wind speed is assumed to linearly 

increase up to the location of the eyewall, followed by a drop in wind speed in the 

eye. Coinciding with the area of highest winds is an area of intense rainfall. Both 

single and double rain bands at the eyewall are considered. The cross-track 

location of the eyewall is also an important feature to consider because the 

amount of coupling in the CPM FRTM is dependent on the cross-track location. 

Therefore, cases with different eyewall cross-track locations are considered.  

Test cases with an ‘s’ after the identification number in Table 2.1 have a 

single rain band and cases with a ‘d’ after the identification number have a 

double rain band. The identification number in these test cases corresponds to 

the EIA in HIRAD’s cross-track swath at which the eyewall peaks. For these 

cases, the wind speed peak value is always 50 m s-1 and the rain rate peak value 

is always 40 mm h-1. For convenience, Table 2.1 also includes approximate 

horizontal cross-track distances from 0° EIA that match these EIA points in the 

cross-track swath, labeled in Figure 2.4. 
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2.5 Inversion Algorithm 

2.5.1 Procedure 

The FRTM is inverted using an iterative least squares estimator to retrieve 

surface wind speed and rain rate from HIRAD’s TB observations. To start, a first 

guess of wind speed and rain rate is estimated. The first guess is found by 

considering TBs with a range of wind speed and rain rate pairs, and choosing the 

pair that results in the lowest difference between the observed and modeled TB. 

This procedure is performed for each cross-track pixel individually, using the 

DPM version of the FRTM.  A uniform cross-track wind speed and rain rate 

distribution is assumed as the first guess, with their values being the average of 

all the initial cross-track best guesses found.  

With a first guess of wind speed and rain rate, the iteration process can start. 

Each iteration, a jacobian matrix is populated using the FRTM for each retrieved 

value at each EIA as 

 
j

Bi

ij
g

T
J




   (2.5) 

where j
g  is the wind speed or rain rate, the retrieved state variables. At the edge 

of the swath under the CPM assumption, we need to extend the jacobian matrix 

to account for the extra downwelling atmosphere that extends past the surface 

pixel at the swath edge. This creates an [m x n] matrix where m is the number of 

cross-track TB observations and n is the sum of the number of wind speed and 

rain rate retrievals being solved for. In this CPM application, n is twice the 

number of pixels plus two, in order to account for the extra rain rate retrievals 

attempted for the outer downwelling atmosphere at the edge of the swath. After 

J  is populated and beam averaging is accounted for, the update to the state 

vector is estimated as  
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where R  is a diagonal regularization matrix given by IR   where I  is the 

identity matrix, and 
B

T  is the vector of residual differences between the 

observed TB and the TB estimated by the FRTM given g

. The amount of 

regularization is determined by the regularization parameter  . 

The state vector, g

, is updated with g  and this iterative process continues 

with the goal of minimizing the difference between the forward modeled TB and 

the observed TB. We define convergence when a decrease in the RMS value of   

from one iteration to the next is less than 0.01 K, or if the RMS value increases. 

We determined the threshold value of 0.01 K after repeated experimentation with 

the algorithm. This threshold value, specific to these retrieval performance tests, 

insures that the run time for a retrieval is reasonable. 

 

2.5.2 Regularization Issues 

Regularization is used to decrease noise sensitivity in the inversion process. 

However, over-regularization can have detrimental effects on the retrieval. We 

use the set of simulated test cases to determine a satisfactory value for  . Figure 

2.5 shows the average error in retrieved wind speed and rain rate, over all 

simulated cases, for a range of   values. We limit our investigation of errors to 

the portion of the cross-track +/- 5° around the rain bands, for those cases with 

rain bands, in order to emphasize the performance of the retrieval near the rain 

bands more than the calmer portions of the scene.  

The blue line in Figure 2.5 represents the component of retrieval error not due 

to random additive noise (the so called “intrinsic” error in the retrieval algorithm). 

The red line in Figure 2.5 represents error due to noise sensitivity. Errors 

representing both components are based on the RMS difference between the 

true and retrieved values. The “intrinsic” error was calculated from retrievals that 

used simulated TBs with no added noise. In order to estimate the component of 

error due to noise sensitivity, 25 realizations of noisy simulated TBs were 

developed by adding random Gaussian noise with a standard deviation of 1 K to 
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the noise-free simulated observations. One realization consists of a single set of 

cross-track TBs. Using those 25 realizations of noisy observations, 25 retrievals 

were performed. The error due to noise sensitivity is based on an average of 

those 25 realizations of noisy retrievals. The choice of 25 realizations was found 

to be adequate to produce repeatable results of overall retrieval residuals in a 

reasonable run time. 

Figure 2.5: The relationship between the amount of regularization and the corresponding errors in the 
retrieved surface wind speed (top) and rain rate (bottom). The amount of error for each regularization 

amount represents an average across all simulated cases. For simulated cases with rain bands, errors were 

focused and averaged +/- 5 earth incidence angle around the rain bands. Errors in 1 K noise cases were 
averaged over 25 realizations of each simulated case for a representative idea of how random noise affects 

the retrieval performance at different levels of regularization. 

At low values of  , sensitivity to noise is larger and contributes a significantly 

greater portion of the overall error. With   above 10-1, the retrieval algorithm is 

over-regularized, and we lose our ability to retrieve two distinct neighboring rain 

bands. Figure 2.6 compares retrievals of the noise-free simulated test cases 40s 

and 40d, and shows why a   of 10-1 was found to be the best choice for these 

tests.  The solution that uses a   equal to 10-2 has too many ringing artifacts and 

will be too sensitive to noise. The ringing artifacts are oscillations versus EIA 
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about the true value, which are caused by an under-damped inversion. The 

oscillations tend to increase with decreasing  . Unfortunately, the CPM retrieval 

that uses a   of 100 is unable to distinguish between the neighboring rain bands. 

A   of 10-1 is a good compromise between noise sensitivity and over 

regularization, and this   value is used for the rest of the results reported.  

Figure 2.6: Comparison of noise free retrieval performance for simulated case 40s (left) and 40d (right) over 

a range of values. EIA is the Earth incidence angle. A   value of 10-1 was chosen as a compromise value 

between a solution that is highly noise sensitive and a solution that cannot differentiate between two 
neighboring rain bands. 
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2.6 Results 

2.6.1 Algorithm Performance for Simulated Test Cases 

The CPM FRTM-based inversion algorithm with optimal regularization was 

applied to each of the simulated test cases to evaluate its performance. Table 2.2 

gives the RMS difference (RMSD) between true and retrieved values for each 

retrieved parameter. For simplicity of comparison, these RMS values represent 

an average cross-track value for each test case. Performance was evaluated for 

simulated observations, with and without noise. For the observations with noise, 

we added random, Gaussian distributed noise with a standard deviation of 1 K. 

We used 25 realizations of the 1 K noise tests to estimate the errors associated 

with the noisy retrievals.  

The performance of the constant test cases are the most sensitive to noise 

because we chose a regularization parameter that worked best on average for all 

types of HIRAD situations. Sacrificing a noise sensitive solution for the constant 

cases means that we are able to better resolve double rain band-type situations. 

The retrieval performance with the constant test cases indicates fairly poor 

performances in the low wind cases. This is likely due to low sensitivity of 

emissivity to wind speed under these conditions.  

The retrieval performance in the single and double rain band cases indicates 

that, generally, performance degrades with a more complicated scene. Errors are 

generally similar between the same cross-track position cases, but performance 

is dependent on the position of the eyewall.  This is particularly true in the double 

rain band case, where errors in rain rate estimates increase with increasing EIA 

rain band position. Performance with the more complicated scenes can be 

degraded by both the antenna beam averaging and the cross-track coupling.  

The relationship between cross-track coupling and EIA is illustrated in Figure 

2.7, which shows the correlation between errors in the wind speed and rain rate 

retrievals. For each test case, the correlation was calculated for each position in 

the swath. Figure 2.7 shows the correlation across all test cases. A negative 

correlation exists along the main diagonal because wind speed and rain rate 
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retrievals at the same EIA tend to compensate for one another in order to 

minimize the overall error in the retrieval. The largest negatively correlated pixels 

represent the pixels in the field of view that have the largest fractional 

contribution to the modeling of the atmosphere below the freezing level, and thus 

the rain rate in this field of view. Note that the negative correlation between wind 

speed and rain rate errors at the same EIA has the potential to introduce 

compensating retrieval biases (e.g. wind speed too high and rain rate too low). In 

practice, this possibility can be monitored by independent ground truth validation 

of one or the other retrieved variable – typically the wind speed.  This approach 

motivated the refinement of the rain absorption model used by SFMR, to correct 

for similar negatively correlated biases found in its wind speed retrievals at high 

rain rates (Klotz and Uhlhorn, 2014). 

 

Table 2.2: RMS difference (RMSD) between the true and CPM-retrieved parameters (averaged over the 
swath) for each test case simulation. Noise-free performance is listed under the 0 K noise columns. Noisy 

simulations were also tested with 25 realizations of observations with random Gaussian noise with standard 
deviation of 1 K added. The RMSD for 1 K noise cases is an average value from the 25 realizations. 

Case ID 

RMSD 

Wind Speed (m s-1) Rain Rate (mm h-1) 

0 K Noise 1 K Noise 0 K Noise 1 K Noise 

10w10r 1.7 5.3 1.3 3.8 

10w40r 1.1 4.6 1.0 3.2 

50w10r 0.5 1.7 0.7 3.5 

50w40r 1.4 3.8 0.8 3.1 

20s 2.6 4.6 2.3 5.5 

30s 2.3 4.4 2.2 5.5 

40s 3.2 4.7 2.5 5.5 

50s 3.3 4.6 3.1 5.9 

60s 2.2 3.9 2.9 6.0 

20d 2.7 4.7 2.6 5.8 

30d 2.4 4.1 3.0 5.7 
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40d 3.2 4.7 3.2 6.1 

50d 3.2 4.5 4.1 6.3 

60d 2.2 4.0 4.1 6.7 

 

Figure 2.7: Correlation between retrieval of rain rate and surface wind speed at one cross-track position with 
that at all other cross-track positions, composited over all simulated cases with 1 K noise. EIA is Earth 

incidence angle. 

Near nadir, there is much less coupling because the observing geometry at these 

locations is such that there is not a lot of crossover through neighboring columns 

of atmosphere. Farther away from nadir, there is a bit of asymmetry in the fields 

of view, as alluded to in Figure 2.2.b. The alternating negative and positive 

correlations are a consequence of the ringing artifacts that increase as the 

effects of cross-track coupling increase. At the edge of the swath, there is less 

coupling because the horizontal resolution of individual pixels increases enough 

to offset the larger EIAs. 
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2.6.2 Algorithm Performance for High Variability Wind Speed Scenes 

While scenes with a double wind speed peak have not been observed with 

HIRAD, secondary wind maxima can occur during eyewall replacement cycles 

(Willoughby et al. 1982). The CPM algorithm is motivated by distinct rain bands 

occurring over small distances. The typical scales that motivated the 

development of the CPM algorithm are not typically seen for instances of 

secondary wind maxima. The double rain bands simulated in these performance 

tests were between 4 and 10 km from one another. During the eyewall 

replacement cycle, secondary wind maxima are seen closer to tens of km from 

one another (Sitkowski et al. 2011). Even though these secondary wind maxima 

do not occur on the spatial scales that might be a problem for HIRAD, tests were 

completed that show what would happen if the cross-track wind speed scene 

were the same as the rain rate scene simulated in the double rain band cases.  

An example of the double wind speed and rain band retrieval is shown in Figure 

2.8. The CPM algorithm can differentiate between both the double rain bands 

and double wind speed peaks. RMSD values for these improbable wind speed 

scenes were found to be similar to the performance values of the double rain 

band test cases. While these scenes are improbable, the CPM model still 

performs well for these cases. 
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Figure 2.8: An example of wind speed (top) and rain rate (bottom) CPM retrieval performance as compared 
to the simulation truth for a complicated and unusual double wind speed maxima and rain band scene. 

 

2.6.3 Hurricane Earl (2010) HIRAD Rain Rate Retrievals 

The CPM FRTM-based retrieval algorithm was applied to HIRAD observations of 

Hurricane Earl (2010) during the GRIP airborne campaign. Figure 2.9 shows 

HIRAD observations (color) along with near-simultaneous measurements of 85 

GHz h-pol TB by SSM/I on the F-16 satellite platform (grayscale) observed at 

23:20 UTC on 01 September 2010, hereafter referred to as 85h satellite imagery. 

HIRAD’s observations are shown in the form of excess TB (above that of a clear 

sky, calm ocean TB model) in order to emphasize the effects of wind speed and 

rain rate. The highest excess TBs are located where HIRAD passes over areas 

of intense rain and/or winds. Figure 2.9 shows that HIRAD tracked over the 

edges of the northern and western eyewalls, as well as a few of the outer rain 

bands.  
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Using the observations shown in Figure 2.9, rain rate and wind speed 

retrievals were performed. Figure 2.10 shows a composite of the rain rates 

retrieved. While there are some non-physical artifacts of calibration in this image, 

the CPM algorithm-retrieved rain rates match up well to the 85h satellite imagery. 

Both the outer and eyewall rain bands are captured at reasonable magnitudes 

and locations.  

 

 

Figure 2.9: HIRAD observations of Hurricane Earl (2010) during GRIP (color) and the closest 85h satellite 
imagery (grayscale) from SSM/I. The satellite imagery is shown alone in Fig.2.9.a. HIRAD observations are 

expressed as excess TB (K), which is (HIRAD observed TB – background TB), leaving only the relationships 
in TB due to strong winds and rain. Figure 2.9.b shows the approximate flight track of SFMR in addition to 
the excess TB at 4 GHz. Figure 2.9.c shows excess TB for 5 GHz. Figure 2.9.d shows excess TB for 6.6 

GHz. The satellite imagery is courtesy of the Naval Research Laboratory. 
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Figure 2.10: (a) 85h satellite imagery from SSM/I. This satellite imagery is courtesy of the Naval Research 
Laboratory. (b) A composite of HIRAD CPM rain rate retrievals (mm h-1) of Hurricane Earl (2010) (color) and 

the closest 85h satellite imagery (grayscale) from SSM/I. The dashed arrow shows the approximate flight 
track of SFMR. 

 

2.7 Discussion 

2.7.1 Weighted Antenna Beam Issues 

In addition to being able to differentiate between the rain and wind signatures in 

the observations, the CPM algorithm is also able to partially deconvolve the 

averaging effects of the HIRAD antenna pattern. Figure 2.3 shows why 

convolution is an issue in HIRAD’s wide swath of observations. With increasing 

EIA, the antenna pattern’s half power beam width (HPBW) increases. The CPM 

algorithm takes the beam averaging into account in the forward model, and is 

therefore able to retrieve a solution that is closer to the truth than the beam-

weighted scene. Figure 2.11 shows this performance capability in the context of 

test case 30d. While beam averaging will smooth out the scene variations, the 

retrieved wind and rain are more representative of the true wind and rain. Most 

importantly, the peak wind speed is captured alongside the two neighboring rain 

bands. After averaging the RMSD for all noise-free, rain band cases, it was found 

that the CPM retrieval improves upon the beam averaged truth for rain rate by 

0.3 mm h-1 and for wind speed by 2.3 m s-1. 
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Figure 2.11: Wind speed (top) and rain rate (bottom) CPM retrieval performance as compared to the 
simulation truth and beam averaged truth for Case 30d. 

 

2.7.2 Comparison of Coupled and Decoupled Performance 

The advantages of the CPM algorithm become most apparent at the outer edges 

of HIRAD’s cross-track swath. During GRIP, a similar instrument, SFMR, was 

flown on a NOAA P-3 at an altitude of around 3 km, with a track that allowed for 

nearly-co-located-with-HIRAD observations of Hurricane Earl (2010). HIRAD was 

flown on a WB-57 at around 20 km. Figure 2.12 shows SFMR observations from 

an overpass of the western eyewall that were used to compare DPM- and CPM-

based HIRAD rain rate retrievals. These observations were located at nearly the 

same latitude and differ in time by about 15 minutes, on 02 September 2010 

around 00:00 UTC. 

Figure 2.12 shows that when a DPM FRTM-based retrieval algorithm is used, 

the algorithm is unable to resolve the two rain bands that SFMR observes in a 

similar location. However, the CPM retrieval is able to differentiate between these 
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two rain bands and successfully retrieve them. The magnitudes of CPM rain rate 

retrievals match up well with SFMR, and the location offset between their rain 

bands is likely due to slight differences in observation time and position. 

 

Figure 2.12: (a): SFMR and HIRAD/CPM retrieved rain rate, plotted along the latitude and longitude 
coordinates for reference. Flying on different aircraft, SFMR and HIRAD observations differ in time by ~15 
minutes. (b): Plotted only with respect to longitude, a comparison of HIRAD rain rate retrievals (using the 

decoupled and coupled-pixel algorithms), as compared to nearly co-located SMFR observations of 
Hurricane Earl (2010). 

 

The HIRAD absolute calibration errors are large enough that its wind speed 

retrievals are still problematic and are therefore not shown in Figure 2.12. Rain 



56 

rate retrievals are found to be much less sensitive to the absolute calibration 

issues; this results because the rain rate retrieval depends on differences 

between TB at different frequencies rather than on the absolute TB level. With 

well-calibrated observations, the wind speed can be estimated too, as has been 

shown by the simulations presented here. 

 

2.7.3 Other Applications 

As remote sensing technology advances, the CPM method could be valuable in 

spaceborne applications as well. Atmospheric phenomena exhibiting high 

gradients across a scene could pose retrieval challenges similar to HIRAD’s 

challenges if the field of view cuts through a high gradient scene with high 

resolution. For example, narrow bands of moisture called “atmospheric rivers” 

(ARs) could potentially satisfy these high gradient scene requirements. ARs 

provide the west coast of the United States with extreme precipitation (Guan et 

al. 2010). High gradient scenes like this could pose challenges for advanced 

sensors of the future.  

 

2.8 Conclusions 

While developing a physically-based retrieval algorithm for HIRAD, we found that 

the simplifying assumptions commonly used in spaceborne applications and with 

HIRAD’s heritage instrument, SFMR, were not always acceptable for HIRAD. 

This led to the development of a more robust method, the CPM algorithm. The 

CPM is different than the DPM previously used because it allows for the 

possibility that a single column of atmosphere can affect the observations along 

multiple cross-track positions. High contrast rain features, such as those that 

occur in an eyewall, can now be properly accounted for because there is no 

longer an assumption that the upwelling and downwelling atmospheric emission 

originate from the same atmospheric column. Using the CPM algorithm, HIRAD 

can differentiate between two neighboring rain bands, whereas the DPM 

algorithm cannot. Although the performance of this algorithm is limited by the 
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beamwidths at the edge of HIRAD’s swath, the algorithm is also able to partially 

deconvolve the beam-averaged observations, getting closer to the truth.  

HIRAD’s observations and retrieval algorithm remain a work in progress, but 

strides are being made to improving its reliability. The favorable performance of 

the CPM has only been demonstrated thus far by the case studies presented 

here. Future work could include the assessment of performance in more cases 

as they become available with future airborne campaigns. Future work includes 

determining how HIRAD rain rate retrievals compare with coincident satellite 

observations as well as determining how sensitive the retrieval results are to 

freezing level height assumptions. 

 

Appendix 2.I: Derivation of Inter-Pixel Coupling Weights in the CPM 

 

The CPM FRTM requires individual estimates of the path-integrated optical depth 

along each of the upwelling and downwelling propagation paths of the measured 

brightness temperature at each pixel in the HIRAD wind speed image.  The 

estimates are made using the following model for the atmosphere. Below the 

freezing level, a vertically uniform rain column is assumed to exist down to the 

surface. It is also assumed to be uniform horizontally across each surface pixel 

over which the wind speed is estimated. The optical depth of a rain column is 

assumed to scale linearly with its rain rate. The appropriate scale factor, in units 

of (Np·mm-1·h), is given in Amarin (2010). The total, path-integrated, optical 

depth through the rain is found by breaking the path up into segments that pass 

through the rain column above each surface pixel.   
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Figure 2.A1: This diagram shows a simple example, where three atmospheric columns contribute towards a 
single field of view, each having potentially different rain amounts, designated by the red, blue, and yellow 
values. The upwelling propagation path, signified by the green line, intersects through the blue and yellow 
columns of atmosphere. The downwelling propagation path, signified by the purple line, intersects through 
the red and blue columns of atmosphere. FL stands for freezing level. SFC stands for the ocean surface. 

 

Figure 2.A1 shows an example of an observing geometry in which the 

propagation path passes through the rain column above three surface pixels. The 

number of distinct rain columns intersected will vary, depending on the subset of 

observations used and the EIA of the surface pixel considered, with higher EIAs 

crossing through more columns. Table 2.I.1 shows, as a function of EIA, the 

number of distinct rain columns that must be considered when computing the 

total path-integrated optical depth in the set up used for the simulated test cases. 

At nadir, it is sufficient to consider only the single rain column above the surface 

pixel under observation. In this case, the CPM reduces to the DPM FRTM. At 

high EIA values, near the swath edge, there is significant coupling between rain 

columns over many surface pixels on either side of the surface pixel under 

observation. At the outermost edge of the swath, horizontal resolution of the rain 

columns degrades, causing the number of pixels to decrease slightly compared 

to the peak amount of coupling considered in the middle-edge of the swath. 
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Figure 2.A2: This figure illustrates that the weighted upwelling rain rate would be a weight of the blue and 

yellow columns of atmosphere. 
UPY

A  and 
UPB

A  are labeled for reference to eqn. 2.A1. 

 

The total effective rain rate along a propagation path, from which the optical 

depth is derived, is the weighted average of the rain rates of all rain columns 

intersected. The appropriate weighting is found geometrically. In the example in 

Fig.2.A2, the rain rate integrated along the upwelling propagation path is a 

weighted average of the rain in the yellow and blue columns, as given by 

 

UPUP

UPUP

YB

YYBB

UP
AA

RARA
R




  (2.A1) 

where Y
R  is the rain rate in the yellow column, B

R  is the rain rate in the blue 

column, 
UPY

A  is the area of the yellow upwelling polygon below the freezing level, 

and 
UPB

A  is the area of the blue upwelling polygon below the freezing level. 

 Similarly, the rain rate integrated along the downwelling propagation path is a 

weighted average of the rain in the red and blue columns shown in Fig.2.A3, or 
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DNDN

DNDN

RB

RRBB

DN
AA

RARA
R




   (2.A2) 

where B
R  is the rain rate in the blue column, R

R  is the rain rate in the red column, 

D NR
A  is the area of the downwelling red polygon below the freezing level,  and 

D NB
A  is the area of the downwelling blue polygon below the freezing level. 

 

Figure 2.A3: This figure illustrates that the weighted downwelling rain rate would be a weight of the blue and 

red columns of atmosphere. 
DNR

A   and 
DNB

A   are labeled for reference to eqn.2.A2. 

Once the total effective rain rate has been computed along both the upwelling 

and downwelling propagation paths, the corresponding optical depths can be 

computed. These are then used in the CPM FRTM, as explained in section 2.3. 
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Table 2.I.1: The number of rain pixels that are considered when calculating the effective rain rate in the field 
of view at Earth incidence angles (EIA) of the subset of observations used in the simulated test case set up. 

EIA 
Number of 
Rain Pixels 

0 1 

2 3 

4 3 

5 3 

7 4 

9 5 

11 5 

12 5 

14 6 

16 7 

18 7 

20 7 

22 7 

24 8 

26 8 

27 8 

29 8 

32 8 

34 8 

36 8 

38 8 

40 8 

43 8 

45 8 

48 8 

50 8 

53 7 

56 7 

60 6 

63 6 

67 4 
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Chapter 3. Estimating Tropical Cyclone Integrated Kinetic Energy with the 

CYGNSS Satellite Constellation 

3.1 Summary 

The Cyclone Global Navigation Satellite System (CYGNSS) constellation is 

designed to provide observations of surface wind speed in and near the inner 

core of tropical cyclones with high temporal resolution throughout the storm’s life 

cycle. A method is developed for estimating tropical cyclone integrated kinetic 

energy (IKE) using CYGNSS observations. IKE is calculated for each 

geographically-based quadrant out to an estimate of the 34-knot wind radius. The 

CYGNSS-IKE estimator is tested and its performance characterized using 

simulated CYGNSS observations with realistic measurement errors. CYGNSS-

IKE performance improves for stronger, more organized storms and with 

increasing number of observations over the extent of the 34-knot radius. Known 

sampling information can be used for quality control. While CYGNSS-IKE is 

calculated for individual geographic quadrants, using a total-IKE—a sum over all 

quadrants—improves performance. CYGNSS-IKE should be of interest to 

operational and research meteorologists, insurance companies, and others 

interested in the destructive potential of tropical cyclones developing in data 

sparse regions, which will now be covered by CYGNSS.  

 

3.2 Introduction 

3.2.1 Tropical Cyclone Intensity Classifications and Complications 

Tropical cyclones (TCs) are routinely categorized according to the intensity of 

storm winds, either as the maximum sustained one-minute or 10-minute wind 

speed (VMAX). Routinely used in the United States, the Saffir-Simpson 

Hurricane Wind Scale (SSHWS) categorizes hurricanes with the one-minute 

sustained VMAX (Saffir 1975; Simpson 1974). Using a single, intensity-related 
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input often doesn’t tell the whole story of the destructive potential of a TC. Both 

size and intensity matter.  

 The deficiencies of the SSHWS as a predictor of destructive potential have 

been acknowledged in numerous previous studies (e.g. Mahendran 1998; 

Kantha 2006; Powell and Reinhold 2007; Irish et al. 2008; Maclay et al. 2008). 

The limitations of SSHWS are most clearly shown by a comparison between the 

destruction from Hurricanes Katrina (2005) and Camille (1969) (Irish et al. 2008; 

Powell and Reinhold 2007). Hurricane Camille, with a landfall intensity of 150 kts, 

maxing out the SSHWS at category 5, is now considered to be the second-most-

intense hurricane in the United States’ record, surpassed only by the 1953 Labor 

Day hurricane (Kieper et al. 2016). Hurricane Katrina made landfall in the same 

area, but as a category 3 storm with an intensity of 110 kts (Knabb et al. 2005). 

The SSHWS failed to communicate the destructive potential for Hurricane 

Katrina. Those that had survived the category 5 Hurricane Camille, may have 

thought that it would be easier to live through category 3 Hurricane Katrina. 

Despite being two SSHWS classifications below Hurricane Camille, Hurricane 

Katrina was a much larger storm than Camille at landfall, which led to a 

significantly more destructive storm surge (Knabb et al. 2005; Irish et al. 2008).  

 The comparison of hurricanes Katrina and Camille highlights the need for a 

TC strength scale that depends on both the intensity of the winds and the size of 

the storm. First proposed by Powell and Reinhold (2007), integrated kinetic 

energy (IKE) can be used to supplement the SSHWS. IKE is defined here as 

  21

2V
IK E U dV    (3.1) 

where U , the surface wind speed, is integrated over a specified volume V  of 

the storm, taking into account the air density  . IKE is considered to be a better 

measure of the destructive potential of TCs than is SSHWS, since it quantifies 

both the spatial extent and the strength of the winds.  
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3.2.2 Previous IKE studies 

Since first being introduced, several IKE-related products have been proposed. 

IKE is now included in the set of H*Wind products (Powell et al. 1998; 2010). 

H*Wind IKE can be computed from H*Wind analyses which combine all available 

surface wind speed observations for storms in real-time, as well as in post-storm 

reanalyzes. H*Wind products have been recently commercialized, and current 

products are no longer publically available. However, the H*Wind legacy dataset 

is still publically available, since it was created when these products were 

supported through NOAA. H*Wind products are heavily reliant on data 

availability—in particular, on observations collected from reconnaissance aircraft. 

The coverage and availability of H*Wind products is concentrated in the Atlantic 

and Eastern Pacific basins.  

 In a study by Maclay et al. (2008), low-level IKE was calculated from flight-

level aircraft reconnaissance data, and an experimental, multi-satellite, IKE-

based product developed from this work is now available from the 

NOAA/NESDIS/STAR/RAMMB real-time TC data product page 

(NOAA/NESDIS/STAR/RAMMB 2016). Dissimilar to the IKE product to be 

developed in this study, IKE is calculated over a 1 km depth and at 700 hPa 

using flight-level wind speed, rather than over a 1 m depth at the surface level, 

like all other surface wind speed-based IKE products. This difference between 

flight-level and surface-level IKE calculations is important to consider, if trying to 

compare different IKE products. Maclay et al. (2008) went to considerable 

lengths to then categorize the 700-hPa-IKE further by a simple 0 – 5 scale to 

create easier comparisons to the categorization employed by the SSHWS.  

 IKE-metrics like the track-IKE have been proposed as more useful analysis 

metrics for seasonal activity: Misra et al. (2013) followed up on this proposal. 

Additionally, work has been performed on the statistical predictability of IKE 

(Kozar and Misra, 2014; Kozar 2015; Kozar et al. 2016). 
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3.2.3 Existing Sensors for Surface Wind Speed Estimation 

The space-borne sensors and imagery that have supported the above IKE 

products (Maclay et al. 2008; Powell et al. 1998; 2010) include scatterometers, 

infrared, visible, and water vapor imagery, and microwave sounders. 

Scatterometers provide surface wind speed estimates, but are limited to regions 

without heavy precipitation and are also known to have poor revisit time (Hennon 

et al. 2006). Infrared and visible imagery allow for the estimation of low-level 

winds by tracking cloud features (e.g., Dunion and Velden 2002; Holmlund et al. 

2001; Velden et al. 1997, 2005). Generally, the feature tracking methods will not 

work for low-level wind estimation if the low-level features being tracked are 

obscured by high cloud tops, say for example, near the center of a tropical 

cyclone. It is also possible to estimate low-level wind parameters using infrared 

data, but these methods require an estimate of storm intensity (Kossin et al 2007; 

Knaff et al. 2015; Mueller et al. 2006). Advanced Microwave Sounding Unit 

(AMSU) soundings can inform estimates of the two-dimensional mid-level wind 

field after solving the non-linear balance equation. However, AMSU estimated 

winds are known to be poor near storm centers since the resolution of the 

product is limited, with 50 – 120 km footprints (Bessho et al. 2006). Low-level 

winds estimated through these methods will have to be adjusted to the surface 

(Knaff et al., 2011). All of these sensors have limited utility for estimating surface 

wind speed in the heavy-precipitation and high-cloud-shielded region of the TC 

eyewall. Additionally, the polar-orbiting sensors will have inadequate temporal 

sampling for the time-scales typical of TC rapid intensification.  

3.2.4 CYGNSS 

The Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight 

small satellites, launched on 15 December 2016, will provide unique ocean 

surface wind speed observations in all precipitating conditions (Ruf et al. 2016). 

The mean and median revisit times for the constellation over the entire tropics 

are 7.2 h and 2.8 h, respectively. The resolution of the wind speed product will be 

25 x 25 km2 or better, with 2 m s-1 retrieval uncertainty for winds less than 20 m s-

1 and 10% retrieval uncertainty for winds greater than 20 m s-1. Given the ability 
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to penetrate through the high precipitation of a TC eyewall to observe the highest 

surface wind speeds of TCs, and the rapid temporal sampling, CYGNSS is well 

suited to estimate IKE.  

 There are some challenges to overcome with this new observing system. 

Since CYGNSS operates in a bi-static radar type set up with GNSS transmitters, 

the sampling patterns are not analogous to the continuous-swath observations 

typical of other space-borne wind sensing instruments. Instead, CYGNSS 

observes winds along a series of narrow tracks through the storm. Portions of the 

wind field between the tracks are not directly sampled and must be estimated as 

part of the IKE algorithm discussed in this chapter. It should be noted that there 

are currently no plans for near-real-time ground processing of CYGNSS data. In 

the future, if the CYGNSS mission successfully demonstrates the value of its 

data products, a transition to near-real time operations is possible and the IKE 

data product could be available to operational agencies. 

 

3.2.5 Objectives and Overview 

The main objectives of this study are to develop and characterize a CYGNSS-

based IKE product for tropical storms and cyclones (CYGNSS-IKE). Section 3.3 

describes the data sets used. Section 3.4 presents the CYGNSS-IKE algorithm 

concept and implementation. The subsequent sections address the 

characterization of the algorithm in three respects: 

1) How well does CYGNSS-IKE perform? 

2) How well can the confidence in CYGNSS-IKE be determined from 

CYGNSS data alone? 

3) What are the dominant error contributors to CYGNSS-IKE? 

 



67 

3.3 Datasets 

In order to test the CYGNSS-IKE algorithm pre-launch, a large set of simulated 

observations was created using the CYGNSS end-to-end-simulator (E2ES) 

(O’Brien, 2014). The E2ES generates simulated CYGNSS level 2 wind speed 

data products from a time evolving input wind field. It properly accounts for both 

the spatial and temporal peculiarities of the CYGNSS measurement technique by 

forward propagating the orbital trajectories of every satellite in the GPS and 

CYGNSS constellations and computing the location of the specular reflection 

point on the Earth surface as a function of time for every possible GPS/CYGNSS 

pair. The E2ES also properly accounts for the 25 km spatial resolution of the 

CYGNSS wind speed measurements by appropriately averaging the input wind 

field and for its measurement uncertainty by corrupting the input “truth” winds 

with noise that is statistically representative of the expected precision of the level 

2 wind speed retrieval algorithm (Clarizia and Ruf, 2016).  

 Simulated CYGNSS observations were generated using real-time wind field 

analyses produced by the operational version of the Hurricane Weather 

Research and Forecasting (HWRF) system (Tallapragada et al., 2013) for most 

Atlantic and West Pacific storms during the 2010 and 2011 hurricane seasons. 

HWRF wind fields were generated for 25 different storms every 3 hours 

throughout their life cycles. Times during which the storm center, provided by the 

best-track database (Landsea et al. 2013), was within 200 km of a major land 

mass were excluded from this study. This resulted in a total of 201 3-hour 

intervals in which CYGNSS observations were simulated from the HWRF “truth” 

wind fields.  An example of an HWRF input wind field for one of these 3-hour 

periods, together with the simulated observations by CYGNSS that would have 

been made over that interval of time, within 200 km of the storm center, is shown 

in Figure 3.1,  A summary of all of the storms used in this study is given in Table 

3.1.  
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Figure 3.1: (Top) An example of an HWRF wind analysis for Hurricane Igor, 1200 UTC, 13 September 2010. 
(Bottom) Simulated CYGNSS observations that correspond to the HWRF wind analysis, within 200 km of the 

storm center, for the time period 1200 UTC – 1500 UTC, 13 September 2010. 
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Table 3.1: A summary of all of the storms used in this study, with the storm name, the number of cases for 
that particular storm, the maximum wind speed (VMAX) of the cases considered, the storm center latitude and 

longitude of the storm at the point in time corresponding to the VMAX case, and the year for each storm. 

Storm 
Name 

Number 
of 

Storm 
Test 

Cases 

VMAX 
(m s-1) 

Storm Center 
Latitude (deg 

N) 

Storm 
Center 

Longitude 
(deg E) 

Storm Test 
Case Year 

Colin 7 27 27.4 293.0 2010 

Danielle 13 54 26.8 300.3 2010 

Earl 5 23 15.0 324.8 2010 

Estelle 8 27 17.3 250.8 2010 

Fiona 4 29 24.3 293.8 2010 

Frank 2 40 17.6 250.6 2010 

Gaston 8 16 17.4 304.5 2010 

Igor 18 66 17.6 310.7 2010 

Julia 11 59 17.7 327.8 2010 

Matthew 1 20 14.0 282.3 2010 

Ten 1 24 19.8 250.4 2010 

Adrian 10 63 14.5 254.7 2011 

Bret 3 24 29.8 284.0 2011 

Calvin 3 36 16.7 250.9 2011 

Dora 2 41 19.4 250.6 2011 

Eugene 18 61 15.7 245.3 2011 

Fernanda 14 28 14.6 217.3 2011 

Gert 5 26 32.9 297.3 2011 

Greg 9 36 18.5 248.6 2011 

Hilary 13 59 17.1 250.6 2011 

Irwin 2 22 15.2 240.9 2011 

Katia 19 55 27.0 294.1 2011 

Maria 6 33 33.7 293.1 2011 

Ophelia 8 50 24.0 296.9 2011 

Philippe 11 25 14.9 326.4 2011 

 

3.4 Methodology 

Determination of the IKE requires that the integral expression in eqn. (3.1) be 

evaluated. This, in turn, requires that the wind speed be known (or estimated) at 

every location within the vicinity of the storm bounded by the limits of integration. 

In the case of CYGNSS, actual measurements of the wind occur along a series 

of narrow tracks through the storm, as illustrated in Figure 3.1. Values of the wind 
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speed in between the actual observations, which are needed to compute the IKE, 

are estimated by fitting a parametric model of the wind structure to the 

observations and then using the model to interpolate between the observations.   

 In order to create an operationally relevant IKE product, IKE is integrated over 

each geographically-based quadrant out to the 34-knot wind radius (R34). The 

operational community uses R34 because this refers to the extent of the tropical 

storm strength winds. If a storm is weaker than 34-kts, the R34 threshold is not 

attained, and IKE is not estimated. For the case of the true IKE, R34 is found 

directly from the fully sampled HWRF wind field that is integrated to get the IKE. 

For the case of the IKE retrieved from CYGNSS observations, R34 is estimated 

iteratively using a parametric wind model. This parametric 34-knot wind radius is 

denoted as R34.P. The CYGNSS-IKE algorithm has two inputs: 1) the CYGNSS 

level-2 surface wind speed observations collected over a three hour time period 

within a specified radius of the storm center; and 2) the storm center location.   

 The interpolation of the wind field to points between those measured by 

CYGNSS takes advantage of the approximately symmetrical nature of hurricanes 

by using the parametric wind model based on Emanuel and Rotunno (2011) 
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where .m p
R  is the radius of maximum winds, .m p

V  is the maximum wind speed, r  

is the radial distance from the storm center, and f  is the Coriolis parameter. The 

Coriolis parameter is dependent on the storm center location coordinates. The 

model is illustrated in Figure 3.2.  

 While there are many options of parametric wind model that could be used, 

the one chosen has been found to be especially amenable to use when fitting in 

a least-squares sense to the CYGNSS samples, because it is continuous and 

has an analytical derivative. Our choice was informed by the study performed by 

Lin and Chavas (2012), where they tested four gradient wind profiles in storm 
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surge modeling applications (Holland 1980; Jelesnianski et al., 1992; Emanuel 

2004; Emanuel and Rotunno 2011). Lin and Chavas (2012) finds that the 

Emanuel and Rotunno (2011) model performs better in storm surge applications 

compared to the other parametric wind models tested. The use of other 

commonly used models (i.e. Willoughby et al. 2006) is a subject for future study.  

 There are some limitations to using eqn. (3.2), as discussed extensively in 

(Chavas et al. 2015): particularly, this model is most applicable to the region 

inwards of around 2.5 times the radius of maximum wind speed. Outside this 

inner region, the level of error is storm-type dependent, as quantified in Chavas 

et al. (2015).The simplicity of this model far outweighs the limitations. 

 Figure 3.2: A visualization of the parametric wind profile embedded within the CYGNSS-IKE algorithm. 
This model is described by eqn. (3.2), based on the work of Emanuel (2011) and recommended by Lin and 

Chavas (2012). 

The CYGNSS-IKE algorithm flow is illustrated in Figure 3.3. The two free 

parameters of the model, .m p
R  and .m p

V , are solved for using an iterative, least-

squares fit of the model to the CYGNSS observations. An example of the cost 

function to be minimized is shown in Figure 3.4 as a function of .m p
R  and .m p

V . 

The error surface is free of inflection points and the cost function has a single 
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global minimum at the optimum ( .m p
R , .m p

V ) value. Such a well-behaved error 

surface makes the iterative algorithm relatively insensitive to the first guess 

(which only effects the number of iterations required before convergence) and 

means a global minimum is generally found in each case.   

 

 

Figure 3.3: A flow chart describing the steps within the CYGNSS-IKE algorithm. 

 

Figure 3.4: An example of the cost function to be minimized, RMSD, is shown as a function of the parametric 

model free-variables, .m p
R  and .m p

V  from eqn.  (3.2), for Test Case: Hurricane Igor, 1200 UTC, 13 

September 2010. For further reference and connection, Figure 3.1 shows the HWRF wind field and 
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corresponding CYGNSS observations that were input into the CYGNSS-IKE estimation process for this test 
case. 

The population of CYGNSS observations which are used in the parametric fit is 

all those samples lying within a distance RLimit of the storm center. RLimit is initially 

set to 200 km. After the first iteration, the estimate of R34 given the parametric 

model, R34.P, is compared to RLimit. If they are not sufficiently close, then RLimit is 

set equal to R34.P, a new population of observations is selected, and the 

processes is repeated. Eventually (in practice within just a few iterations), the 

values of R34.P and RLimit converge and the parametric model estimation is 

complete. 

 The IKE is calculated from the parametric wind model by 

   
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where v  is given by eqn. (3.2) and r  is the radial distance from the storm center. 

The integration extends out to R = R34.P, with an assumed z  of 1 m, and a 

constant density 0
  of 1.15 kg m-3—as suggested by Holland (1980). 

 

3.5 Results 

3.5.1 CYGNSS-IKE Performance 

The performance of the CYGNSS-IKE estimates is assessed by comparison to 

the true IKE derived by direct integration of the high resolution HWRF wind fields. 

All 201 cases are considered. A portion of the 201 cases serve as test cases, but 

do not meet the strength or observation criteria to compute IKE at the R34 

threshold. There are two scenarios for which IKE is not estimated in a particular 

quadrant: 1) the quadrant was not observed by CYGNSS, or 2) CYGNSS did not 

observe winds which would have supported an estimate of R34 from the 

parametric model fit. For example, if the quadrant wind field is well sampled by 

CYGNSS, but most of the wind speed estimates are lower than 34-knots, the 

parametric model trained to the observations will not predict, or support, winds 
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over 34-knots. The performance statistics reported here are for comparisons 

when both HWRF and CYGNSS-based estimates of R34 IKE are possible. For 

the rest of the chapter, unless otherwise noted, IKE refers to a quadrant specific 

calculation of IKE.  

 First, as an example, Figure 3.5 demonstrates IKE estimates possible over 

the course of the lifetime of one storm. Figure 3.5 shows the CYGNSS-IKER34.P 

and HWRF-IKER34 values every 3 hours throughout the life cycle of Hurricane 

Igor (2010) for instances of available simulated CYGNSS observations for all four 

storm quadrants. In general, the CYGNSS-IKE agrees closely with the HWRF-

IKE. However, Figure 3.5 also highlights two main limitations of the current 

CYGNSS-IKE estimation process. At elapsed time 50 h, CYGNSS-IKE is not 

estimated for the NW and NE quadrants, while it was estimated from HWRF. In 

this case, CYGNSS did not have sufficient observations to support an estimate of 

R34 strength in the parametric model. Weaker case points sometimes miss the 

R34.P threshold—a requirement for IKE to be calculated in these methods—if they 

are not sampled sufficiently. A sufficient number of observations is required in a 

quadrant in order to accurately represent the wind field and support the 

parametric model estimator. An example of the effects of sample size on 

performance can be seen in Figure 3.5 in the SE quadrant at 253 h, where 

CYGNSS-IKE is much less than HWRF-IKE. Outliers like this will be flagged 

based on CYGNSS coverage over a particular storm.   

 Figure 3.6 shows the overall performance of the CYGNSS-IKE estimate 

compared with HWRF-IKE. CYGNSS-IKE is estimated 412 times out of all 201 

storm test cases. The two colors signify the quality control (QC) applied. Red 

dots indicate that the QC flag, developed in the following section, has been 

flagged for that estimate. 
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Figure 3.5: A comparison of the IKE estimated from HWRF wind fields (truth) and simulated CYGNSS 
observations (retrieved) over the life cycle of Hurricane Igor (2010) as a function of the elapsed time since 
tropical depression formation at 0600 UTC 8 September 2010 (Pasch and Kimberlain 2011). For further 

reference and connection, Figure 3.1 shows the HWRF wind field and corresponding CYGNSS observations 
that were initially input into the CYGNSS-IKE estimation process at elapsed time 126 hours. 
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Figure 3.6: A comparison of CYGNSS-IKE with the IKE estimated from HWRF for test cases defined from a 
set of simulated CYGNSS observations of Atlantic and Pacific-basin storms occurring during 2010 – 2011. 
Out of 201 storm test cases, IKE is estimated for a particular quadrant 412 times. Red dots denote cases 

where Q/C is flagged. 

 

3.5.2 Quality Control Threshold Determination 

In order to create estimates of IKE product trustworthiness, additional analysis 

was performed to create a QC flag for the CYGNSS-IKE estimate. Ideally, a QC 

flag would throw out as many outliers as possible, while still retaining the cases 

with good performance. Instinctively, one would expect sampling coverage by 

CYGNSS to control the quality of the IKE estimate. A number of sampling 

thresholds were tested in combination to determine a practical CYGNSS-IKE QC 

flag. Figure 3.7 supports the decision making process for the ultimate QC flag 

choice. In the top subplot of Figure 3.7, the IKE error is plotted with respect to 

two types of QC flags which are used in combination. IKE error is here defined as 

the normalized RMS difference, with normalization of the difference between  
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Figure 3.7: Top: IKE RMS normalized difference between HWRF-IKE and CYGNSS-IKE with respect to two 
Q/C flags operated in combination. Each line represents the minimum number of observations allowed for a 
test case. Each line is plotted against a second Q/C flag, which controls for the ratio of the number of 
observations per the 34-kt wind radius in the parametric model (R34.P). Bottom: Fraction of data left for all 
combinations of Q/C applied. The Q/C choice of more than 10 samples and more than 0.1 samples/km 
leaves 88% of the test cases. 



78 

HWRF and CYGNSS-IKE by the HWRF-IKE being performed before the root 

mean square calculation. 

 To pass the QC test requires that 

  obs
num N   (3.4) 

where obs
num  is the number of observations over a storm quadrant and N  is the 

minimum number of observations allowed, and that 

  s
ratio S   (3.5) 

where s
ratio  is the sampling ratio defined as 

  
34.

obs

s

P

num
ratio

R
  (3.6) 

in units of number per km. S  is the minimum sampling ratio required. On the 

Figure 3.7 x-axis, is s
ratio : larger s

ratio  correlates with better sampling over the 

extent of 34-kt winds. Each line in Figure 3.7 shows the QC defined by eqn.(3.4), 

which only controls for the minimum number of observations needed for IKE 

estimation. Operated in combination, eqn.s (3.4)-(3.5) allow us to discard cases 

with poor sampling by CYGNSS. In general, the higher the threshold, the lower 

the error in the CYGNSS estimate. However, as noted in the bottom subplot of 

Figure 3.7, the threshold also affects data coverage (i.e. fraction of remaining 

storm quadrant overpasses for which an IKE estimate is produced). The choice 

for the threshold should be an appropriate balance between data coverage and 

performance. We propose a QC flag that requires N = 10 observations and S = 

0.1 observations per km; this threshold operates just above the “knee in the 

curve” with respect to performance and provides 88% data coverage.  

 The results of applying the chosen QC can be seen in Figure 3.6, where red 

dots denote cases where the flag is applied. Black dots show the cases which 
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would remain post-QC. The chosen QC flag gets rid of most of the outliers 

without a large loss of good cases.  

3.5.3 Error Decomposition 

There are four main sources of error in the CYGNSS-IKE estimation. The first 

source results from the use of a parametric wind model which is not 

representative of the true wind speed distribution. Second, CYGNSS sampling 

varies between 3-hour intervals, with poorer coverage generally leading to worse 

estimates of IKE. Third, the CYGNSS wind speed measurements are not noise-

free, and the retrieval uncertainty will contribute to errors in the CYGNSS-IKE 

estimate. Fourth, imperfect knowledge of R34 will impact the performance of the 

algorithm, since R34.P determines the population of observations used and 

defines the outer limit of integration of the IKE. 

 In order to compare the impact of these sources of errors, four experiments 

were run, each with a different type of wind speed input to the algorithm.  The 

first experiment assumes gap-free sampling of the wind field at the high 

resolution HWRF reporting intervals. The samples are also assumed to be exact, 

with no CYGNSS measurement error. The parametric wind model is fit to these 

observations and then used to estimate IKE. Errors in the estimated IKE in this 

case will be due only to deviations of the true wind field from the parametric wind 

model.  

 The second experiment also assumes observations of the wind field without 

any CYGNSS measurement error, but now only at the locations at which 

CYGNSS would have sampled. In this case, errors in the estimated IKE will be 

due to both deviations from the ideal wind model and gaps in the wind 

observations.  The third experiment is most realistic and assumes CYGNSS 

observations with realistic noise levels and at their appropriate sample locations. 

The fourth experiment is similar to experiment three, but we assume perfect 

knowledge of R34, which is calculated from HWRF for this analysis. Differences 

between the IKE calculated from these experiments and the HWRF-IKE allows 
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for comparisons of the dominant error contributors to the CYGNSS-IKE 

estimation process.  

 Table 3.2 reports the results of these experiments.  Overall, the CYGNSS-IKE 

performance is quite good, with 6.5% total unexplained variance due to all 

causes. The table also compares the percent unexplained variance that can be 

attributed to the individual sources of error. There is an increase in unexplained 

variance as the experiments include sparser and noisier wind fields. However, 

imperfect knowledge of R34 also impacts the performance of this estimation 

process. With perfect knowledge of R34, the unexplained variance using true 

CYGNSS observations decreases from 6.5% to 3.9%, which is closest to the 

performance from the first, perfectly sampled, and noise-free experiment.  

Table 3.2: Percent unexplained variance for experiments which used different input wind fields into the 
CYGNSS-IKE algorithm, where percent unexplained variance is (1 – R2) x 100%. 

Experiment Input Winds 
Percent Unexplained 

Variance 

HWRF Wind Field 4.3% 

Noise-free CYGNSS Wind Speed Observations 4.8% 

Noisy CYGNSS Wind Speed Observations 6.5% 

Noisy CYGNSS Wind Speed Observations with 
perfect RLimit = R34 

3.9% 

 

3.5.4 Storm Center Sensitivity 

Since one of the inputs to the IKE algorithm is an estimate of the storm center 

location—which, for this study, is provided by the best-track database (Landsea 

et al. 2013)—additional tests were performed to determine the sensitivity of the 

CYGNSS-IKE estimate to the accuracy of the storm center location. It is well 

known that the storm center is challenging to define for poorly organized storms. 

To test storm center location sensitivity, the coordinates were varied from the 

HWRF best estimate to locations +/- 0.5 degrees in latitude. The CYGNSS 

observations were then re-assembled according to the new (erroneous) storm 
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center location. The results, averaged over north and south perturbations, from 

the storm center position experiments are shown in Figure 3.8. CYGNSS-IKE 

was found to be essentially insensitive to errors in storm center latitude within 

about 15 km north and south of the best estimate of storm center location. 

Outside of this range, the estimated IKE begins to degrade in accuracy. Center 

position uncertainty estimates vary widely depending on the strength of the 

storm, as well as the data available for position estimation (Torn and Snyder 

2012; Landsea and Franklin 2013). For example, Torn and Synder (2012) 

estimated position uncertainty to be around 37-65 km. While position uncertainty 

estimates from these studies are usually larger than 15-km, the authors 

hypothesize that the availability of CYGNSS data could be used to improve 

position estimates.  

 

Figure 3.8: The average relative difference in CYGNSS and HWRF 
derived IKE estimates for experiments where the given storm center 
location was perturbed degrees north and south of its original location, 
shown along the x-axis. 
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3.6 Discussion 

Generally, the CYGNSS-IKE estimate is skillful. Performance depends most on 

the number of CYGNSS observations available for a given IKE estimate, which 

led to the formulation of a useful quality control flag. A CYGNSS-IKE estimate is 

generally more reliable as the number of samples increases. If a quality control 

flag is applied which limits estimates to cases with a minimum of 10 CYGNSS 

observations and a 0.1 sampling ratio, 88% of the coverage remains, the 

performance metrics improve, and the dominant source of IKE retrieval error is 

no longer the number of CYGNSS observations.  

 Other parameters were considered for use as a quality control parameter, but 

nothing else gave as much skill as the sample number flag. One potential 

parameter considered was the RMSD between the retrieved parametric wind 

model and the CYGNSS observations. However, the RMSD was found to be well 

correlated with the number of CYGNSS samples. With fewer samples, the RMSD 

of the parametric wind model fit tends to go down since it is generally easier to fit 

a model to fewer points. Thus, a low RMSD in this case does not mean the 

parametric wind model explains the wind field better, and so does not predict a 

better IKE estimate. An accurate IKE estimate requires the wind field to be well 

sampled, not that the RSMD in the parametric model be low.  

 Generally, the CYGNSS-IKE estimate performs better in intense storms 

because the parametric wind model is more applicable in these cases—stronger 

storms tend to be better organized and hence correspond more closely to the 

parametric model. Figure 3.9 and Figure 3.10 summarize the relationship 

between relative IKE error and maximum wind speed (VMAX). Figure 3.9 

compares data for quadrant IKE, while Figure 3.10 shows the results from total 

(sum over all quadrants) IKE. In Figure 3.10, only cases where estimates of IKE 

were available for all four quadrants are considered. Figure 3.9 shows that the 

large outliers in quadrant-IKE performance occur more often in cases with low 

VMAX; many of the low intensity outliers result from large overestimates of the 

IKE. Aside from the outliers at low VMAX, CYGNSS-IKE performs relatively 
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consistently across the range of intensity. Figure 3.10 shows the results if 

considering total IKE over the entire storm. Performance improves for these 

cases compared to the results in Figure 3.9. Improvements from quadrant-IKE to 

total-IKE are likely due to two main things. First, comparisons of total-IKE are 

only made for cases where all four quadrants have IKE estimates; these cases 

are strong and are well sampled, the latter likely playing a larger role. Second, 

quadrant-IKE errors will partially cancel out after summation.  

 Overall, Figure 3.9Figure 3.10 show there is a low bias in the CYGNSS-IKE, 

whether or not it is a total or quadrant specific value. The bias in CYGNSS-IKE is 

likely due to the fact that we are training the parametric model to the CYGNSS 

observations in a best-fit sense in order to estimate the full wind field. CYGNSS-

IKE is calculated out to the radial extent of the 34-kt winds in the parametric 

model, rather than the true extent. Since the model is fit to all of the wind speed 

data, and not just the highest magnitude data, a bias is introduced. It is also 

possible that the parametric model used is not always representative of the 

distribution of wind speed. Future work will include analyzing this bias further on 

a wider range of cases, as well as determining solutions to correct it.  
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Figure 3.9: The relative, quadrant specific, IKE error of cases post-QC, with respect to the maximum wind 
speed found in the HWRF wind field. Quadrant Normalized IKE Error = (truth – estimated)/truth where the 

truth here is derived from HWRF.  

 

Figure 3.10: The relative IKE error of cases post-QC, with respect to the maximum wind speed found in the 
HWRF wind field. Normalized IKE Error = (truth – estimated)/truth where the truth here is derived from 

HWRF. IKE is summed over all quadrants for cases where there were estimates of IKE for all quadrants 
available. 
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3.7 Conclusions 

CYGNSS will provide the opportunity to observe tropical cyclones (TCs) with 

unprecedented temporal and spatial sampling. With this new observing system 

comes challenges and questions to be explored. In this chapter we consider how 

well IKE can be estimated from its observations.  

 With applications ranging from storm surge prediction to situational 

awareness, users of the CYGNSS-IKE product could include operational and 

research meteorologists, insurance companies, and anyone interested in TCs 

generated in data-sparse, but CYGNSS covered, regions. IKE is particularly 

useful considering it is often more correlated with storm surge at TC landfall than 

is the VMAX or intensity of the storm.  

 There are a number of areas of future work. First, the way in which CYGNSS 

observations and the parametric model are combined to produce a complete 

wind field has to be optimized. As IKE is not yet widely used, another area of 

future work includes determining the accuracy requirements needed for science 

applications. Additional sensitivity analysis using a larger variety of test cases, as 

well as on-orbit data, is ongoing. Finally, determining the applicability and 

usefulness of a CYGNSS-based storm center position corrector to this product 

and others is another area of future work. 
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Chapter 4. Determining Tropical Cyclone Surface Wind Speed Structure 

and Intensity with the CYGNSS Satellite Constellation 

 

4.1 Summary 

The Cyclone Global Navigation Satellite System—CYGNSS—consists of a 

constellation of eight microsatellites which will provide observations of surface 

wind speed in all precipitating conditions. A method for estimating tropical 

cyclone (TC) metrics—maximum surface wind speed (VMAX), radius of maximum 

surface wind speed (RMAX), and wind radii (R64, R50, R34)—from CYGNSS 

observations is developed and tested based on simulated CYGNSS observations 

with realistic measurement errors. Using two inputs, 1) CYGNSS observations 

and 2) the storm center location, estimates of TC metrics are possible through 

the use of a parametric wind model algorithm which effectively interpolates 

between the available observations as a constraint on the assumed wind speed 

distribution. This methodology has promising performance based on the 

simulations presented. Future work will include calibration and validation of the 

algorithm once real CYGNSS data are available. In particular, after quality control 

filters based on sampling properties are applied to our population of test cases, 

the standard deviation of retrieval error for VMAX is 4.3 m s-1, for RMAX is 17.4 km, 

for R64 is 16.8 km, for R50 is 21.6 km, and for R34 is 41.3 km.  

 

4.2. Introduction 

4.2.1 Motivation 

Tropical cyclones (TCs) and their precursor storms spend most—if not all—of 

their lifetime over the ocean, which makes them harder to observe in situ. Since 

the advent of remote sensing, fewer TCs go unobserved, and our increased 

observation of these storms has led to improved understanding of TC processes. 
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Additionally, the observations that are collected through remote sensing support 

the TC situational awareness and forecasting efforts at warning centers like the 

National Hurricane Center (NHC) (Rappaport et al. 2009).  

Forecasters are required to estimate the present and predict the future 

intensity of TCs, typically defined as the maximum 1- or 10-minute sustained 

wind speed at the 10-m observing level associated with the system (Harper et al. 

2010; Office of the Federal Coordinator for Meteorological Services and 

Supporting Research 2012). Only 30% of the 6-hourly intensity estimates in the 

North Atlantic (Rappaport et al. 2009) are guided by aircraft reconnaissance, and 

next to no aircraft reconnaissance is performed elsewhere. Unfortunately, 

intensity estimation is challenging without aircraft reconnaissance. Intensity 

estimates in the post-season reanalysis records have uncertainties of 

approximately 5 m s-1 (Landsea and Franklin 2013; Torn and Synder 2012). 

Often, the observational guidance that TC forecasters use is based entirely on 

remote sensing observations. 

Observations of surface wind speed can inform estimates of the intensity of a 

system. In addition to intensity estimation, surface wind speed observations can 

also guide forecasters who are analyzing the extent of 34-, 50-, and 64- kt 

surface winds out from the center of a storm—commonly collectively referred to 

as wind radii. Wind radii give insight into the surface wind structure and therefore 

are useful for a variety of applications (Knaff 2016).   

 

4.2.2 Examples of Previous Efforts 

Satellite remote sensing-based methods have been developed to estimate 

intensity in situations where aircraft reconnaissance is not available. One of 

these methods is the Dvorak technique: a method of estimating TC intensity 

through subjective image pattern recognition. The Dvorak technique was first 

developed based on visible-sensors onboard geostationary meteorological 

satellites (Dvorak 1975). Since the initial method was published, refinements and 

advancements have been made to the Dvorak technique (Velden et al. 1998; 
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Velden et al. 2006). Infrared imagery is now included in the guidance (Dvorak 

1984) and an automated version, called the Advanced Dvorak Technique (ADT) 

is a part of the suite of satellite-based guidance available to TC forecasters 

(Olander and Velden 2007). One disadvantage of the Dvorak technique is that it 

is an indirect and sometimes a subjective approach. However, since the Dvorak 

technique relies on geostationary satellites, it is not plagued by data gaps 

typically seen if relying on polar-orbiting satellites or aircraft reconnaissance 

alone. 

 Due to the usefulness of geostationary data availability, a variety of other 

methods for TC characterization—both intensity and wind structure estimation—

have been developed for geostationary infrared imagery and data (e.g. Mueller et 

al. 2006; Kossin et al 2007; Piñeros et al. 2008, 2011; Fetanat et al. 2013; Knaff 

et al. 2015; Dolling et al. 2016). A number of studies have developed methods 

which need an estimate of storm intensity in order to estimate wind structure from 

infrared data (Mueller et al. 2006; Kossin et al 2007; Knaff et al. 2011, 2015). The 

deviation angle variance (DAV) technique developed by Piñeros et al. (2008, 

2011) correlates intensity and structure with the gradient in infrared brightness 

temperature; the DAV-based wind radii methods presented in Dolling et al. 

(2016) use a multiple linear regression technique. Fetanat et al. (2013) take 

advantage of historical hurricane satellite data (HURSAT) to estimate intensity 

from feature analogs—or brightness temperature patterns—in satellite imagery 

and analogous storms. In addition to infrared data inputs, the methods developed 

in Knaff et al. (2011, 2015) take advantage of multiple satellite inputs to estimate 

the TC wind field, from which wind radii are estimated. 

 TC intensity estimation is also possible using passive microwave sounders, 

like AMSU. This method takes advantage of the correlation between a TC’s 

warm core structure and its intensity. Warm-core anomalies are greatest during 

peak intensity. Using the retrieved vertical temperature structure from AMSU, 

estimates of the minimum surface level pressure and maximum sustained wind 

speed are possible through the hydrostatic approximation and assumptions of 
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gradient wind balance (Kidder et al. 2000). Care has to be taken to account for 

the effect of clouds and precipitation on the AMSU radiances. While AMSU does 

not have adequate horizontal resolution to estimate realistic wind structure alone, 

estimates of the 34-, 50-, and 64-kt wind radii and maximum wind speed can be 

made using statistically-based algorithms (Bessho et al. 2006; Demuth et al. 

2006). The performance from this microwave-sounder-type method is 

comparable to the Dvorak technique, but since this method relies on polar-

orbiting sounders, sampling of the TC inner core is limited. 

 Knaff et al. (2016) developed methods for estimating wind radii using routinely 

available estimates of TC intensity, motion, and location. These inputs, together 

with estimates of TC size from IR imagery or model analyses, are used to create 

a modified Rankine vortex from which wind radii are estimated.  

 Observations from the Soil Moisture Active Passive mission (SMAP) (Fore et 

al. 2016) are useful for TC applications because the low frequency observations 

are uncontaminated by rain. However, the spatial resolution, 65-km, requires 

additional scaling if intensity is to be estimated from SMAP ocean vector winds. 

Yueh et al. (2016) developed SMAP-based TC intensity estimation methods after 

relating the VMAX observed by the SMAP platform to the true VMAX. Unfortunately, 

as a polar-orbiting satellite, the revisit time for SMAP is poor. 

 

4.2.3 CYGNSS 

The Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight 

small satellites will provide unique ocean surface wind speed observations in all 

precipitating conditions (Ruf et al. 2016). The retrieval uncertainty is anticipated 

to be 2 m s-1 for winds less than 20 m s-1 and 10% for winds greater than 20 m s-

1. Like SMAP, CYGNSS operates at a sufficiently low frequency to see through 

the high precipitation of a TC eyewall and observe the highest surface wind 

speeds of TCs. Unlike SMAP, CYGNSS observations will be 25 x 25 km2. Its 

temporal sampling is also significantly more frequent. Using a constellation of 
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eight satellites in low-inclination circular orbit allows for mean and median revisit 

times over the tropics of 7.2 h and 2.8 h, respectively.  

 While CYGNSS observations will be useful for estimating TC intensity and 

wind structure, there are some challenges to overcome with this new observing 

system. The sampling patterns are not analogous to the continuous-swath 

observations typical of other space-borne wind sensing instruments (e.g. SMAP). 

CYGNSS observes winds along a series of narrow tracks through the storm; 

portions of the wind field between observations tracks are not directly sampled. If 

for example, a CYGNSS-based intensity estimation method involved simply 

finding the highest wind speed observed by CYGNSS through a storm, the 

intensity estimate might not have good performance if the gaps in sampling 

happened to coincide with the location of maximum winds.  

 If the CYGNSS mission successfully demonstrates the value of its data 

products, a transition to near-real time operations is possible in the future, and 

the data products developed here could be available to operational agencies. 

However, it should be noted that there are currently no plans for real-time data 

processing.  

 

4.2.4 Outline 

The capabilities of CYGNSS have wide applicability to TC science and 

forecasting activities. In this chapter, CYGNSS-based methods are developed for 

the estimation of a variety of metrics commonly used to describe TCs: VMAX 

(intensity), RMAX (the radius of maximum winds), and wind radii (R34 or 34-kt wind 

radius; R50 or 50-kt wind radius; R64 or 64-kt wind radius). Section 4.3 describes 

the datasets used to develop and evaluate the method. Section 4.4 describes the 

algorithm. Sections 4.5 and 4.6 characterize the performance of the CYGNSS-

based estimates of intensity and wind structure and develop quality control 

measures of its reliability. Section 4.7 discusses these results. Section 4.8 offers 

some conclusions and opportunities for future investigations.  
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4.3 Datasets 

A large set of realistic simulated observations was created using the CYGNSS 

end-to-end-simulator (E2ES) (O’Brien, 2014) in order to develop and test the 

CYGNSS-IKE algorithm prior to launch. The E2ES generates simulated 

CYGNSS level-2 wind speed data products from a time evolving input wind field. 

It properly accounts for both the spatial and temporal peculiarities of the 

CYGNSS measurement technique by forward propagating the orbital trajectories 

of every satellite in the GPS and CYGNSS constellations and computing the 

location of the specular reflection point on the Earth surface as a function of time 

for every possible GPS/CYGNSS pair. Additionally, the E2ES properly accounts 

for the 25 km spatial resolution of the CYGNSS wind speed measurements by 

appropriately averaging the input wind field and it accounts for its measurement 

uncertainty by corrupting the input “truth” winds with noise that is statistically 

representative of the expected precision of the level-2 wind speed retrieval 

algorithm (Clarizia and Ruf, 2016).  

 Simulated CYGNSS observations were generated using real-time wind field 

analyses produced by the operational version of the Hurricane Weather 

Research and Forecasting (HWRF) system (Tallapragada et al., 2013) for 

Atlantic and Pacific storms during 2010, 2011, 2013, and 2014. HWRF wind 

fields were generated for storms every 3 hours throughout their life cycles; from 

each 3-hour snapshot from HWRF, CYGNSS observations were simulated.  

 After the simulation data were created, a number of quality control (QC) 

metrics were applied in order to get the best population of test cases to 

effectively test the methods presented in this paper. For each test case, there 

had to be no land in the smallest HWRF domain, a maximum wind speed of at 

least 17.49 m s-1 was required, and the center position—provided by the best-

track databases (Chu et al. 2002; Landsea et al. 2013)—had to be within 1 

degree latitude and longitude of the center of the smallest HWRF domain. These 

thresholds were applied to make sure the storms would be strong enough to test 
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for the 34-kt radius, as well as to make sure reasonably well behaved test cases 

were used for development.  

 Performance of the algorithm is characterized using comparisons with ground 

truth values derived from the HWRF data. True VMAX is defined as the maximum 

surface wind speed in the smallest HWRF domain. True RMAX is determined from 

the average location of the winds falling above the 95 percentile in the smallest 

HWRF domain. The true wind radii are determined from the extent of certain 

strengths (34-, 50-, and 64-kt) of wind speed within the smallest HWRF domain. 

In addition to the previously mentioned QC, cases for which the true R34 was 

located at the edge of the smallest HWRF domain were also excluded. After all 

QC filters are applied, a total of 302 test cases remain for developing and testing 

the algorithm in this study; details of each case are given in Table 4.I.1. A wide 

variety of storms are included. There are 113 cases from the Atlantic and Eastern 

Pacific. There are 189 cases from the Western Pacific. The mean R34 across all 

cases is 248 km, with a standard deviation of 99 km. The highest intensity (74 m 

s-1) test cases are found in the Lekima (2013) and Vongfong (2014) storms.  

  

4.4 Methodology 

4.4.1 Parametric Wind Model 

CYGNSS wind speed observation tracks often have large gaps between them—

gaps which may be in areas of interest (e.g. the location of the maximum wind 

speed). In order to account for the areas that have been missed by CYGNSS, a 

method is developed which effectively interpolates between the available 

observations using a parametric model as a constraint on the assumed wind 

speed distribution.  

 The parametric wind model used has roots in the method developed in 

Emanuel and Rotunno (2011) and was used in a previous study by Morris and 

Ruf (2016a). In Emanuel and Rotunno (2011), the parametric wind profile most 
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applicable to the region inside of approximately 2.5 times the radius of maximum 

winds is given by 
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where .m p
R  is the radius of maximum winds, .m p

V  is the maximum wind speed, r  

is the radial distance from the storm center, and f  is the Coriolis parameter. The 

Coriolis parameter is determined by the storm center location coordinates and is 

not an independent parameter to be estimated from the CYGNSS observations.  

 As discussed in Chavas et al. (2015) the outer wind radii tend to be 

underestimated by eqn. (4.1). In order to address this tendency, two additional 

parameters have been added to the model to regulate the rate of decay of the 

wind speed at large radii. The model is given by 
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where the two additional parameters are a  and b  Examples of the wind speed 

radial dependence specified by eqn.(4.2) are shown in Figure 4.1. 
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Figure 4.1: An example of the wind speed relationship from the parametric model in eqn.(4.2)  with three 

different ‘b’ parameters used. Vm.p = 50 m s-1. Rm.p = 75 km, and the center position latitude is 15  . 

 Of the four model parameters— .m p
R , .m p

V , a , and b  — a  can be solved for 

from the other three by requiring that the maximum value of ( )V r  equals the 

parameter .m p
V . This effectively reduces eqn.(4.2) to a three parameter model. As 

shown in Figure 4.1, the b  parameter allows for adjustment of the radial decay 

rate of the wind speed in the outer storm region speed. Larger values of b  

correspond to a faster radial roll-off. The model is fit to the CYGNSS wind speed 

data by adjusting the three parameters, .m p
R , .m p

V , and b , to minimize the sum 

squared difference between the model and all CYGNSS observations within a 

specified region near the storm center. 

 

4.4.2 Parametric Retrieval Algorithm 

A flow diagram of the parametric model retrieval algorithm is shown in Figure 4.2. 

First, depending on the basin in question, an initial RLimit—the maximum radial 

distance from the storm center over which to draw an initial set of CYGNSS 

observations from—is set. For the Atlantic and Eastern Pacific storms, the initial 

RLimit = 200 km. For the Western Pacific storms, the initial RLimit = 300 km, as 

these storms are generally larger. The algorithm requires two sets of inputs: 1) 

CYGNSS observations; and 2) the center position of the storm. For the wind radii 

estimates, which are quadrant dependent, only observations within a particular 

quadrant are used; if no observations are available in that quadrant, wind radii 

are not estimated there. The estimates of VMAX and RMAX are not quadrant 

dependent so all available observations are used.  

 Once the initial set of CYGNSS wind speed data is gathered, it is input into 

the parametric wind model algorithm. In this algorithm, the free-parameters .m p
R , 

.m p
V , and b  are solved using an iterative least-squares estimator. These 
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estimates are used to create a best-fit parametric wind model to the available 

observations. An example of this process is shown in Figure 4.3. In Figure 4.3a, 

the HWRF wind field from which the CYGNSS observations are derived is 

shown. In Figure 4.3b, the simulated CYGNSS observations are shown for this 

test case. In Figure 4.3c, an example of the final best-fit parametric wind model 

over all quadrants is shown. The model effectively interpolates between the gaps 

in the track which are shown in Figure 4.3b. The parametric model is used to 

derive VMAX and RMAX.  

 

 

Figure 4.2: A flow diagram which outlines the steps of the CYGNSS tropical cyclone surface wind speed 
structure and intensity product algorithms. 
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Figure 4.3: (a) HWRF wind speed field for Vongfong on 09 October 2014, 03:00 UTC; (b) Simulated 
CYGNSS wind speed observations for (a); and (c) the parametric model algorithm fit for this test case. 

Figure 4.3c also highlights another aspect of the algorithm flow shown in Figure 

4.2. Initially, observations within 300 km of the storm center are used. However, 

after the initial run of the algorithm, if the estimate of R34.P (the parametric model 
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estimate of R34) is different than 300 km, then the algorithm is repeated until RLimit 

and R34.P converge. In the test case shown in Figure 4.3, fewer observations are 

used in the final iteration of the algorithm because the final value of RLimit after 

convergence is less than 300 km. 

 Once the best fit parametric model solution is attained, the metrics of interest 

can be derived from it. The parametric VMAX is defined as the maximum of v(r) 

and the parametric RMAX is defined as that r where the parametric VMAX occurs. 

The parametric wind radii are defined by the radius at the wind strength in 

question in the parametric model.  

 

4.4.3 Three- versus Two-parameter Model Impacts 

In Figure 4.4 the parametric model algorithm process is examined for a particular 

NE quadrant test case. In this example, however, the results from using the two-

parameter model given by eqn. (4.1) are shown in addition to those from using 

the three-parameter model (eqn.(4.2)). In this test case, the simulated CYGNSS 

observations suggest that the roll-off in wind speed is slower than the original 

two-parameter model would fit. The estimates of the outer wind radii are 

improved by use of a model with a more flexible roll off rate. 

 

4.4.4 Parametric Scaling 

Estimates of the intensity, radius of maximum wind, and wind radii derived 

directly from the parametric model function, V(r), are found to have characteristic 

scale and bias difference from the actual values. This is true whether the 

parametric model is derived only from CYGNSS observations or is fit to the 

complete grid of HWRF wind samples. Since the model is fit to all of the wind 

speed data, and not just the highest magnitude data, a bias is introduced. These 

scale and bias differences are compensated for by scaling the values derived 

directly from the parametric model using a simple power series correction. 

Scaling factors also help alleviate parametric model inaccuracies, as the model is 
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not always able to capture the inner and outer wind fields accurately. The 

coefficients in the power series are determined as follows: Best fit parametric 

models are determined for all storm cases using the complete grid of HWRF wind 

samples. In each case, estimates of the intensity ( max . p
V ), radius of maximum 

wind ( m ax . p
R ), and wind radii ( 34. p

R , 50. p
R , 64. p

R ) are derived directly from the 

parametric model and compared to the true values determined from the actual 

HWRF winds. A power series is fit to the comparison which translates the direct 

parametric values to scaled values that are closest, in a least squares sense, to 

the true values. A simple linear scaling was found to be sufficient for the intensity 

and all three wind radii, and a third order power series was found to be 

necessary for the radius of maximum wind. The scaling relationships have the 

form 

  max . 0 1 max .scaled p p
V a a V


    (4.3.a) 

  
2 3

m ax . 0 1 m ax . 2 m ax . 3 m ax .scaled p p p p
R a a R a R a R


      (4.3.b) 

  34.max . 0 1 34.scaled p p
R a a R


    (4.3.c) 

  50.max . 0 1 50.scaled p p
R a a R


    (4.3.d) 

  64.max . 0 1 64.scaled p p
R a a R


    (4.3.e) 

The coefficients used in this study are given in Table 4.1. In summary, TC 

metrics are first derived directly from the best fit parametric model. Those metrics 

are then corrected using eqns. (4.3.a-e) and the coefficients in Table 4.1 to 

estimate the TC metrics. These final metrics will henceforth be referred to as the 

scaled-parametric metrics.  
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Figure 4.4: (a) HWRF wind speed field for 
Soulik on 11 July 2013, 03:00 UTC; (b) 
Simulated CYGNSS wind speed 
observations for (a) with the NE quadrant 
(cornered off by red lines) currently being 
considered; and (c) the parametric model 
algorithm fit for this NE quadrant test case, 
from which the NE quadrant wind radii are 
solved for. 



100 

Table 4.1: Coefficients used for translation from the parametric metrics to the scaled-parametric metrics, 
assuming the form of eqn.3.  

Metric a0 a1 a2 a3 

VMAX (m s-1) 5.605266 1.131274 0 0 

RMAX (km) 51.951488 0.228911 0.003682 -0.000006 

R34 (km) 42.564232 1.098006 0 0 

R50 (km) 11.904758 1.006752 0 0 

R64 (km) 9.444089 0.975245 0 0 

 

 

4.5 Initial Results 

4.5.1 Performance without Quality Control 

To illustrate the effect of applying the scaling factors described above, 

histograms of error are plotted in Figure 4.5 for each of the TC metrics. These 

histograms include all storm cases, with no QC filters related to algorithm 

performance applied. Both the parametric and scaled-parametric metrics are 

plotted to show that the scaling alleviates some of the larger biases in the 

parametric estimates. For example, there is a clear overall bias in the parametric 

VMAX but, after the scaling correction is applied, the mean error is close to zero. 

The mean and standard deviation of each population of errors are reported in 

Table 4.2. For some metrics, the scaling factor improves performance much 

more than for others. The inner wind radii R50 and R64 have very small scaling 

factors; their performance improves by a small amount. The standard deviations 

reported in Table 4.2 show that RMAX is the only metric where the scaling factors 

affect the root mean square (RMS) error by a significant amount. The RMS error 

can be further improved by applying QC filters, which will also improve some of 

the mean error values as well. These filters are developed below. 
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Table 4.2: Mean and standard deviation of the error plotted in Figure 4.5  for each parametric and scaled-
parametric metric. 

Metric 

Mean Standard Deviation 

Parametric 
Scaled-

Parametric 
Parametric 

Scaled-
Parametric 

VMAX (m s-1) 10.4 0.8 6.9 7.2 

RMAX (km) 1.7 -6.4 54.0 41.7 

R34 (km) 57.4 -5.9 55.6 57.3 

R50 (km) 11.9 -1.1 33.4 33.5 

R64 (km) 5.7 -0.6 27.7 27.2 
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Figure 4.5: Histograms of error before quality control is applied in all parametric and scaled-parametric 
metrics. Error is defined here as true – estimated. 

4.5.2 Sensitivity to Storm Center Location Error 

One of the required inputs to the TC metric estimator algorithm is the location of 

the storm center. Center position uncertainty estimates vary widely depending on 
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the strength of the storm, as well as the data available for position estimation 

(Torn and Snyder 2012; Landsea and Franklin 2013). Torn and Synder (2012) 

estimated position uncertainty to be around 37-65 km.  

 Sensitivity experiments were performed to assess the impact of center 

location error on the metrics. In these experiments, the algorithm was executed 

multiple times using all available test cases, each time perturbing the center 

position latitude by an increasing amount. After performing some quality control 

(described in the following section) the error due to latitude offset was calculated 

by decomposing it from the overall error in the TC metric estimate. Specifically, 

the root mean square error (RMSE) due to center location offset is given by 

   
0

2 2
( ) ( )

xoff total off
RMSE x RMSE x RMSE



   (4.4) 

where total
RMSE  is the total RMSE for a certain offset x  and 

0xoff
RM SE


 is the 

RMSE with no latitude offset. The results are shown in Figure 4.6 for VMAX and 

RMAX, the metrics that are derived using observations from all four quadrants and 

in Figure 4.7 for wind radii, the metrics derived in individual quadrants. For the 

wind radii, the NE quadrant was used.  

 The results are similar in other quadrants. The results show a consistent, 

monotonic increase in error with increasing uncertainty in the storm center 

location for all TC metrics. For example, a storm center offset of 55 km 

introduces an RMS error in VMAX of 4.7 m s-1, in RMAX of 12 km and in R64, R50 

and R34 of 39 km, 43 km, and 48 km, respectively. In terms of relative error 

(relative to the mean value of each TC metric), these errors correspond to 12% 

for VMAX, 13% for RMAX, and 32%, 28% and 19% for R64, R50 and R34.  
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Figure 4.6: The additional error on average to expect from storm center offsets (here, only in latitude) for (a) 
VMAX and (b) RMAX. 



105 

 

Figure 4.7: The additional error on average to expect from storm center offsets (here, only in latitude) for 
wind radii. This analysis is based on the cases available in the NE quadrant. 

4.5.3 Sensitivity to CYGNSS Coverage 

The spatial distribution of observations, or coverage, by CYGNSS of the TC wind 

field will affect the quality of its retrieval of the TC metrics. The sensitivity of the 

retrievals to coverage is illustrated in Figure 4.8 - 4.9. Different sampling 

characteristics are considered for different TC metrics. Figure 4.8 shows the 

sensitivity of (a) VMAX and (b) RMAX estimates to the number of CYGNSS samples 

within 100-km of the storm center. The RMSD between the HWRF and CYGNSS 

values is shown for different populations of storm cases, with the population 

selected based on the number of samples. The x-axis in the figure is the 

threshold (minimum) number of samples required. For example, an x-axis value 

of 10 means that only storm cases are considered for which at least 10 CYGNSS 

samples are within 100 km of the storm center. As the threshold is increased, 

more under sampled cases are thrown out and the performance improves. An 

adequate number of CYGNSS observations are needed within the inner core in 

order to make an accurate estimate of inner core metrics like VMAX and RMAX.  
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Figure 4.8: (a) The RMSD between the HWRF and CYGNSS derived VMAX depending on the quality control 
filter threshold used. The quality control keeps test cases that have a number of observations within 100-km 
from the storm center above the sample number threshold plotted on the x-axis. (b) The same as (a), but for 
RMAX. (c) The fraction of the original test case estimates left that are used to derive the RMSD in (a) and (b). 
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Figure 4.9: (a) The RMSD between the HWRF and CYGNSS derived wind radii depending on the quality 
control applied. The quality control keeps test cases that have a number of observations outside 100-km 

from the storm center (but within the estimate of R34) above the sample number threshold plotted on the x-
axis. (b) The fraction of the original test case estimates left that are used to derive the RMSD in (a). 
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Figure 4.9 shows the results of a similar sensitivity experiment for the wind radii. 

Here, a different sampling characteristic was found to be more indicative of the 

performance. The number of CYGNSS samples between 100 km and R34 was 

used for quality control. As above with VMAX and RMAX, as the minimum threshold 

for the number of samples increases, the performance of the wind radii estimates 

improves (see Figure 4.9a). Of course, the more stringent the threshold is, the 

fewer cases remain (see Figure 4.9b). 

 

4.5.4 Quality Control Test Procedures 

QC filters are derived using the results of the sensitivity experiments. The filters 

are intended to identify CYGNSS sampling conditions under which the TC metric 

estimates are of acceptable quality. However, the filters should not be so 

stringent that they eliminate too large a fraction of the possible storm cases. For 

estimates of VMAX and RMAX, a sampling threshold test is used given by 

  
100obs

num N   (4.5) 

where 
100obs

num   is the number of observations within 100-km of the storm center 

for a particular storm case and N  is the filter threshold. For this study, we 

choose N = 20 as a good balance between high algorithm performance and not 

filtering out too many storm cases.  For estimates of wind radii, a different 

sampling test is used given by   

   
100 34Robs

num M


  (4.6) 

where 
100 34Robs

num


 is the number of observations between 100-km of the storm 

center and R34 for a particular quadrant and M  is the filter threshold. For this 

study, we choose M = 30. Higher values produce only marginal improvement in 

performance while eliminating a significant fraction of the storm cases.  
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4.6 Final Results 

Figure 4.10 shows the histograms of error for all TC metrics after the QC filters 

described above have been applied. The original histogram data shown in Figure 

4.5 are included for convenience. The means and standard deviations derived 

from the Figure 4.10 cases are listed in Table 4.3. Overall, the QC filters remove 

the egregious outliers while retaining most of the higher quality estimates. As a 

result, the RMSE in the metrics is improved. Additionally, the bias in the 

estimates remains small after QC filters are applied. Our results are comparable 

or better than results from other methods. For example, the errors in wind radii 

reported in Knaff et al. (2016) range from 19 – 85 km in mean absolute error, 

while our current estimates for wind radii range from around 20 – 45 km in RMS 

error. 

Table 4.3: Mean and standard deviation of the error plotted in Figure 4.10 for each parametric and scaled-
parametric metric, as well as the quality controlled scaled-parametric metrics. 

Metric 

Mean Standard Deviation 

Parametric 
Scaled-

Parametric 
Post-
QC 

Parametric 
Scaled-

Parametric 
Post-
QC 

VMAX 
(m s-1) 

10.4 0.8 -0.4 6.9 7.2 4.3 

RMAX 
(km) 

1.7 -6.4 -0.04 54.0 41.7 17.4 

R34 
(km) 

57.4 -5.9 -4.6 55.6 57.3 41.3 

R50 
(km) 

11.9 -1.1 2.1 33.4 33.5 21.6 

R64 
(km) 

5.7 -0.6 1.6 27.7 27.2 16.8 
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Figure 4.10: Histograms of error in all parametric, scaled-parametric, and quality controlled scaled-
parametric metrics. Error is defined here as true – estimated. 
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4.7 Discussion 

The methods presented here enable CYGNSS-based estimates of VMAX, RMAX, 

and wind radii. The estimates require a sufficient number of observations in the 

appropriate regions of the storm; this requirement is met using appropriate 

quality control filters. For example, data availability within the inner core best 

predicts the quality of the inner core metrics, namely VMAX and RMAX. Wind radii 

estimates require sufficient sampling in an annular region outside of the inner 

core of the storm, between 100-km and R34, and the sampling is quadrant-

dependent.  

 Another potential factor in performance is the type and location of the storm. 

Figure 4.11 examines the impact that intensity has on the performance of the 

VMAX and RMAX estimates. Here the test cases are separated into those that, 

according to HWRF, have an intensity estimate either below or above 33 m s-1—

differentiating between tropical storm and hurricane strength. Figure 4.11a shows 

that the spread in error is slightly larger in the stronger storms. Figure 4.11b 

shows that the spread in RMAX error is larger for tropical storms. Both of these 

performance distinctions make sense considering that, in both instances, the 

spread is larger for the population with larger values of the metric in question.  

 Figure 4.12 compares the performance of all TC metrics depending on the 

basin location of the storm. The error plotted is with QC filtering. Notably, the 

spread in VMAX error is larger in the Western Pacific test cases, which makes 

sense as these cases tend to have higher intensity. Another interesting take-

away from Figure 4.12 is shown in Figure 4.12c; here, the bias in Atlantic and 

Eastern Pacific RMAX error is more pronounced than that in the Western Pacific. 

Basin-specific RMAX performance will be examined further post-launch with 

CYGNSS data in order to determine whether different scaling factors are 

required for different basins. In summary, Figure 4.11-4.12 illustrate situations 

where one might expect better or worse performance. 
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Figure 4.11: Histograms of the quality controlled scaled-parametric VMAX and RMAX depending on the HWRF 
VMAX threshold attained. Weaker storms (VMAX < 33 m s-1) are plotted in solid light blue. Stronger storms 
(VMAX >= 33 m s-1) are plotted in dashed dark red. 
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Figure 4.12: Histograms of the quality controlled scaled-parametric metrics depending on the test case 
basin. Storms from the Atlantic and East Pacific basins are plotted in solid light green. Storms from the 

Western Pacific basin are plotted in dashed dark blue. 

 



114 

4.8 Conclusions 

CYGNSS will allow for a unique opportunity to estimate certain metrics of tropical 

cyclones that are typically quite challenging to estimate with other platforms. 

Since CYGNSS observations consist of collections of tracks rather than complete 

swaths, new estimation methods have been developed which effectively 

interpolate between observations in order to produce the TC metric estimates.  

 This study uses a mission simulator which reproduces realistic sampling 

patterns to be expected with CYGNSS. Sampling patterns are important to 

consider, as the quality of the TC metric estimates can depend strongly on them. 

Given good coverage, the methodology presented here enables VMAX, RMAX, and 

wind radii estimates to be made from two inputs: 1) CYGNSS observations and 

2) the storm center location.  

 Future work includes calibration and validation of the TC metric estimates 

made from actual on-orbit CYGNSS data. Calibration might, for example, include 

re-tuning of the scaled parametric relationships described in Section 4.4.4, or 

revision of the QC filter thresholds. Validation will follow from comparisons with 

coincident ground truth sources such as HWRF wind fields or airborne 

reconnaissance underflights. Future work also includes testing other types of 

parametric models in this methodology, developing a CYGNSS-based storm 

center position corrector, and determining the utility of a CYGNSS-based storm 

center position corrector to this application and others. Finally, while these 

methods were developed with CYGNSS in mind, it is possible that this 

methodology could also be applied to other types of observations, in particular 

those for which gaps in spatial sampling also exist. 
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Appendix 4.I 

Table 4.I.1: A summary of all of the storms used in this study, with the storm name, the number of cases for 
that particular storm, the maximum wind speed (VMAX), the storm center latitude and longitude at the point in 
time corresponding to the VMAX case, and the year for each storm. 

Storm Name 
# of Storm Test 

Cases 
VMAX (m s-1) 

Storm Center 
Latitude (˚N) 

Storm Center 
Longitude (˚E) 

Storm Test 
Case Year 

Danielle 11 54 26.8 300.3 2010 

Estelle 4 27 17.3 250.8 2010 

Frank 2 40 17.7 250.6 2010 

Igor 13 66 17.6 310.7 2010 

Julia 7 59 17.7 327.8 2010 

Adrian 6 63 14.5 254.7 2011 

Bret 1 24 29.8 284 2011 

Calvin 3 36 16.7 250.9 2011 

Dora 2 41 19.4 250.6 2011 

Eugene 14 61 15.7 245.3 2011 

Fernanda 5 28 14.7 217.3 2011 

Gert 2 24 37.9 303 2011 

Greg 4 36 18.5 248.6 2011 

Hilary 12 59 17.1 250.6 2011 

Katia 15 55 27 294.1 2011 

Maria 4 33 33.7 293.1 2011 

Ophelia 4 50 24 296.9 2011 

Philippe 4 25 22.9 314.8 2011 

Yagi 3 26 28.6 136.5 2013 

Leepi 1 21 19.6 126.1 2013 

Soulik 14 66 21.3 135.3 2013 

Eleven 2 72 15.7 132.7 2013 

Trami 2 28 19.9 128.3 2013 

Man-yi 1 24 25.8 136 2013 

Usagi 5 57 17.9 127.6 2013 

Pabuk 12 46 29.4 139 2013 

Wutip 1 27 16.4 114.1 2013 

Fitow 13 47 24.5 127.3 2013 

Danas 8 47 22.8 133.4 2013 

Nari 1 50 15.3 114.2 2013 

Francisco 20 71 17.8 137.8 2013 

Lekima 12 74 19 150.9 2013 

Krosa 3 31 17 127.6 2013 

Tapah 3 39 14.5 147.5 2014 

Eight 8 62 18.1 132.1 2014 

Nine 3 47 16.6 115.4 2014 

Matmo 10 45 13.5 129.3 2014 

Eleven 28 72 15.7 132.7 2014 

Fengshen 5 28 29.5 136.6 2014 

Fifteen 2 24 13.6 130.8 2014 

Kammuri 7 28 23 145.7 2014 

Phanfone 11 59 20.2 137.6 2014 
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Vongfong 14 74 18 131.9 2014 



117 

Chapter 5. Summary and Future Work 
 

5.1 Summary of Original Contributions 

5.1.1 Brief Review of Thesis 

TCs are important to observe, especially over the course of their lifetimes, most 

of which is spent over the ocean. Very few in situ observations are available. 

Remote sensing has afforded researchers and forecasters the ability to observe 

and understand TCs better. Every remote sensing platform used to observe TCs 

has benefits and disadvantages. Some remote sensing instruments are more 

sensitive to clouds, precipitation, and other atmospheric constituents. Some 

remote sensing instruments are insensitive to the atmosphere, which allows for 

unobstructed observations of the ocean surface. Observations of the ocean 

surface, either of surface roughness or emission can be used to estimate ocean 

surface wind speed. Estimates of ocean surface wind speed can help determine 

the intensity and destructive potential of TCs, as well as the radial extent of 

specified strengths of wind. While there are many methods by which TCs are 

observed, this thesis focuses on two main types of remote sensing techniques: 

passive microwave radiometry and GNSS-R. 

Chapter 2 discusses work that was done as a part of the HIRAD mission. 

HIRAD, an airborne passive microwave radiometer, operates at C-band 

frequencies, and is sensitive to rain absorption and emission, as well as ocean 

surface emission. A more robust retrieval algorithm was developed to estimate 

rain rate and surface wind speed from HIRAD observations. The development of 

this algorithm was motivated by the unique observing geometry and high gradient 

rain scenes that HIRAD observes. HIRAD’s observing geometry must be 

accounted for in the forward model and retrieval algorithm, if high rain gradients 
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are to be estimated from HIRAD’s observations, with the ultimate goal of 

improving surface wind speed estimation. 

Chapters 3 and 4 develop higher level TC science data products from simple 

inputs of CYGNSS level-2 surface wind speed and the assumed known storm 

center location. From these simple inputs, a variety of products have scientific 

and forecasting applications: IKE, wind radii, RMAX, and VMAX. These higher level 

TC products provide information about the wind structure and intensity of storms, 

which is valuable for situation awareness, as well as science applications.  

A full outline of all original work, including publications with work not included 

in this thesis, but related to the CYGNSS and HIRAD missions is discussed in 

the following section. 

 

5.1.2 Original Work 

5.1.2.1 Peer-reviewed Journal Publications 

 Developed a method to estimate TC maximum wind speed, radius of 

maximum wind speed, and wind radii from CYGNSS level-2 surface wind 

speed observations (Morris and Ruf 2016b) 

 Developed a method to estimate TC integrated kinetic energy from 

CYGNSS level-2 surface wind speed observations (Morris and Ruf 2016a) 

 Developed a more robust level-2 retrieval algorithm for HIRAD that gets 

rid of assumptions previously used—invalid for the observing geometry of 

HIRAD and high-rain-gradient TC scenes. With this algorithm, we can 

partially deconvolve the beam-averaged observations, getting closer to the 

truth. (Morris and Ruf 2015a) 

5.1.2.2 Peer-reviewed Conference Proceedings Publications 

 Determined antenna temperature valid at the CYGNSS operating 

frequency, a parameter which will be used in the level-1A CYGNSS 

calibration over open-ocean. (Morris et al. 2016) 
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 Quantified the limit to the amount of deconvolution possible at different 

portions of the cross-track swath using the CPM algorithm. (Morris and Ruf 

2015b) 

 

5.1.2.3 Other Publications 

 Provided support for the CYGNSS level-1A calibration and level-2 MSS 

algorithms. Provided a description of the radiative transfer model that is 

used in the CYGNSS level-1A calibration algorithm, and figures that show 

the Fresnel reflection coefficients to be used in the level-2 MSS algorithm. 

(Ruf et al. 2016) 

 

5.2 Future Work 

5.2.1 General Applicability of the Parametric Wind Model Algorithm 

The parametric wind model algorithm which forms the basis for several higher 

level CYGNSS TC data products may be applicable to other observing systems. 

The objective of the work discussed in chapters 3 and 4 is to determine how to 

take advantage of the information content in the CYGNSS level-2 wind speed 

observations in order to estimate TC parameters of interest. Creating CYGNSS-

based products allows for examination of the potential utility of a new and unique 

dataset. The products developed in chapters 3 and 4 are based on CYGNSS 

data, but other available surface wind speed products could also be used. The 

parametric wind model algorithm methods were developed because CYGNSS 

level-2 wind speed data has gaps. Other wind speed data products also have 

gaps in coverage over a storm. A number of questions remain for future work, but 

in particular it would be interesting to explore the following questions:  

1. Could the parametric wind model algorithm methodology be applicable 

to other observing systems? 

2. Could other wind speed observations be used in conjunction with 

CYGNSS observations to improve the performance of the TC parameter 

products discussed in chapters 3 and 4? 
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For example, scatterometer observations are plagued by rain contamination and 

loss of sensitivity at higher wind speeds. Experiments could be performed to see 

if the parametric wind model algorithm methodology would work if scatterometer 

observations, after rain contamination flags are applied, were input into the 

parametric wind model algorithm, and the same TC parameters were estimated. 

Since scatterometer observations lose sensitivity at high wind speeds, this 

methodology might be especially attractive if CYGNSS and scatterometer winds 

are used in combination; CYGNSS would provide valuable inner core data, and 

scatterometers more complete outer core data.  

 This experiment could be extended to look at the applicability of CYGNSS 

with other types of ocean surface wind speed data. Each dataset would have its 

own strengths and weaknesses, but if data are used in conjunction, the 

weaknesses of one instrument would be complimented by the strengths of 

another instrument. For example, CYGNSS performance is expected to be 

superior at low wind speed. Passive microwave radiometers, due to the onset of 

ocean surface foaming, perform better at higher wind speeds. Combining passive 

observations from SMAP and active observations from CYGNSS, both at L-band, 

could provide complementary information and improve the estimates of TC 

parameters. These data could be combined in a complementary way to get 

accurate surface wind speed over the entire storm.  

 It should also be noted that the overall methodology presented in chapter 4 

requires that scaling factors, which scale the parametric model values to 

estimates of true parameters of interest, be produced. If this methodology were 

to be applied to other types of wind speed data, it is unlikely that the scaling 

factors used for the CYGNSS-based methods would be appropriate for the other 

data. In fact, the scaling factors developed in chapter 4 will be re-examined and 

tuned according to the performance of on-orbit data.  
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5.2.2 Science Applications from CYGNSS L4 Products 

There are numerous potential applications of CYGNSS TC data products. This 

section discusses just one opportunity for the applicability of CYGNSS data 

products in TC research.  

 

5.2.2.1 Investigation of Environmental Humidity Controls on TC Intensity and Structure 

The processes that underlie TC intensification are not fully understood (Rogers et 

al. 2006). In particular, the control of environmental moisture on TC 

intensification is not clear (Kaplan and DeMaria 2003; Kimball 2006; Hill and 

Lackmann 2009; Shu and Wu 2009; Braun et al. 2012; Wu et al. 2012; Wu et al. 

2015). Dry or humid environments surrounding TCs have the potential to cause 

significant changes in the convective structure of TCs, which consequently 

change TC wind structure and intensity. CYGNSS TC data products could be 

used to investigate the impact of environmental humidity on TCs. In particular, 

CYGNSS data could be used to characterize of the relationship between surface 

wind structure and intensity with environmental humidity and precipitation. 

Previous studies do not agree on the relationship between environmental 

moisture and TC intensification. Increased understanding of these processes will 

help to improve TC forecasting efforts. 

 In order to investigate the relationship between the TC characteristics and 

environmental humidity, satellite observations of environmental humidity, 

precipitation, and surface wind speed would be needed. Environmental humidity 

data are available twice daily from the AIRS mission. CYGNSS TC data products 

would give the necessary wind structure and intensity information. The GPM 

mission provides estimates of precipitation. These data, used in combination, will 

allow for case studies and composite statistical analyses of the relationship 

between environmental humidity and TC characteristics. 
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5.2.3 Orbit Configuration Optimization for CYGNSS TC Product Performance 

The CYGNSS TC data products were developed and tested with the sampling 

properties expected of the upcoming mission. The CYGNSS constellation 

consists of eight satellites in a 35-degree inclination circular orbit. This design 

maximizes the coverage over the tropics under the cost constraints of the 

mission. While this setup gives good coverage over the tropics, there are times 

when CYGNSS will miss storms. In addition to occasional misses of TCs in the 

current tropical coverage, TCs which exist north and south of the current 

CYGNSS tropics sampling extent will also be missed. Without data, TC products 

cannot be produced. Data gaps in coverage over the lifetime for any storm are 

not ideal if these data are used in TC process studies. Therefore, it would be 

useful to know how to efficiently and effectively observe the entire planet with a 

larger constellation. A number of specific questions are posed here for future 

investigation: 

1. If TC science data products are needed from CYGNSS every three 

hours on a consistent and uniform basis, what type of constellation (how 

many satellites, how many orbit planes, and how best to distribute the 

satellites between them) would need to be flown?  

2. How much impact would additional polar orbiting CYGNSS 

microsatellites have on improving TC data product performance and 

coverage?  

3. What types of coverage would be needed to maximize the performance 

of the CYGNSS TC data products?   

If CYGNSS TC data products could be provided with more consistent temporal 

resolution, their applicability to TC process studies would improve. More study is 

needed to determine how to optimize constellation-type missions like CYGNSS.  
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