
Resource Management in
Constrained Dynamic Situations

by

Jinwoo Seok

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2017

Doctoral Committee:

Associate Professor Anouck R. Girard, Chair
Assistant Professor Kira L. Barton
Professor Daniel J. Inman
Professor Pierre T. Kabamba
Professor Ilya V. Kolmanovsky

Jinwoo Seok

sjinu@umich.edu

ORCID iD: 0000-0002-4904-726X

c© Jinwoo Seok 2017

All Rights Reserved

To my parents, Yongkee Seok and Youngsun Kim,

To my brother, Jinho Seok,

and

To my wife, Yujin Kim.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerely appreciation to my advisor,

Professor Anouck Girard, for her wisdom, guidance, and support that made it possible

to complete my doctoral journey and this dissertation. Without her exceptional

advising and understanding, my journey would never have been possible. I also

would like to give my sincere thanks to Professor Pierre Kabamba, who passed on

a love of researching and teaching. His enthusiasm in research has inspired me, not

only in academics, but also in my personal life.

I also would like to thank to Professor Ilya Kolmanovsky for his guidance and

feedback on the research. I am privileged to work with him. Thanks to the distin-

guished faculty members who served on my committee, Professor Kira Barton and

Professor Daniel Inman. I really appreciate their valuable time and suggestions. I

also thank Dr. Brandon Hencey from the Air Force Research Laboratory for technical

discussions and comments.

I acknowledge funding and support from the Office of Naval Research, the Air

Force Research Laboratory, and the Boeing Company during my doctoral studies.

Thanks for all the support from the Rackham Graduate School and the Department

of Aerospace Engineering. Special thanks to the Vehicle Optimization, Dynamics,

Control and Autonomy Laboratory members, colleagues, and all the friends.

Finally, the biggest thanks to my father, Yongkee Seok, my mother, Youngsun

Kim, my brother, Jinho Seok, and my beloved wife, Yujin Kim for their love, trust,

and support.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Contributions . 7
1.3 Dissertation Outline . 9

II. Recomposable Restricted Finite State Machine 10

2.1 Introduction . 10
2.1.1 Motivation . 10
2.1.2 Literature Review 12
2.1.3 Original Contributions 13

2.2 Background . 14
2.2.1 Finite State Machines 14
2.2.2 Finite State Machine Composition and Pruning . . 15
2.2.3 Recomposable Finite State Machines 16
2.2.4 Restricted Finite State Machines 17
2.2.5 Recomposable Restricted Finite State Machines . . 18
2.2.6 Additive and Subtractive Costs 19
2.2.7 Dynamic Programming for Finite State Machine . . 20

2.3 Problem Formulation . 21

iv

2.4 Optimal Policy of Composed Finite State Machine 21
2.5 Optimal Policy of Restricted Finite State Machine 26
2.6 Approaches . 27

2.6.1 DP for ReFSM or ReRFSM 27
2.6.2 LBFS for ReRFSM 28

2.7 Optimality of ReFSM and ReRFSM 29
2.8 Conclusions . 32

III. Task Scheduling for Radar Resource Management in Dy-
namic Environments . 34

3.1 Introduction . 34
3.1.1 Motivation . 35
3.1.2 Literature Review 36
3.1.3 Original Contributions 39

3.2 Radar Modeling . 41
3.3 Problem Formulation . 44
3.4 Task Scheduler Design . 44

3.4.1 Sector Finite State Machine 45
3.4.2 Threat Finite State Machine 46
3.4.3 Mission Restricted Finite State Machine 47
3.4.4 Cooperation . 48

3.5 Policy and Solution Approach 49
3.5.1 DP for ReRFSM . 50
3.5.2 Heuristics for ReRFSM 51

3.6 Scheduler Architecture . 53
3.7 Simulations and Results . 55

3.7.1 One radar case: small scale 56
3.7.2 One radar case: large scale 57
3.7.3 Three radar case: large scale 59

3.8 Conclusions . 61

IV. Unpredictably Dynamic Environment Patrolling 63

4.1 Introduction . 63
4.1.1 Motivation . 63
4.1.2 Literature Review 65
4.1.3 Original Contributions 67

4.2 Mission Design . 68
4.2.1 Example Problem Description 68
4.2.2 Waypoints Finite State Machine 69
4.2.3 Task Finite State Machine 70
4.2.4 Mission Restricted Finite State Machine 71

4.3 Problem Formulation . 73
4.4 Policy and Solution Approach 75

v

4.4.1 DP for ReRFSM . 75
4.4.2 LBFS for ReRFSM 78

4.5 Analysis of the Approach . 79
4.5.1 Plan . 79
4.5.2 Computation Time and Costs 80

4.6 Simulations and Results . 82
4.6.1 Single UAV: Small Scale Example 82
4.6.2 Single UAV: Small Scale Comparison 85
4.6.3 Single UAV: Large Scale Example 85
4.6.4 Two UAVs: Small Scale Example 87

4.7 Conclusions . 87

V. Coordinated Model Predictive Control of Aircraft Gas Tur-
bine Engine and Electrical Power System 89

5.1 Introduction . 89
5.1.1 Motivation . 89
5.1.2 Literature Review 91
5.1.3 Original Contributions 93

5.2 Modeling . 95
5.2.1 Gas Turbine Engine 95
5.2.2 Generators . 96
5.2.3 Energy Storage Elements 97
5.2.4 Linear Design Model 98

5.3 Problem Formulation . 103
5.4 Controller Design . 104

5.4.1 Overall Architecture 104
5.4.2 Optimal Power Split 105
5.4.3 Energy Storage Elements Control Strategy 108
5.4.4 Rate-based MPC Controller Design 109
5.4.5 Multiple MPC Controllers 116

5.5 Simulations and Results . 118
5.5.1 Performance Metrics 119
5.5.2 Uncoordinated and Coordinated Control 120
5.5.3 Different Energy Storage Elements 124
5.5.4 LQR, MPC, Offset MPC, and MMPC Controllers . 128
5.5.5 Offset MPC with and without Sensor Noise 132

5.6 Conclusions . 133

VI. Conclusions . 136

BIBLIOGRAPHY . 140

vi

LIST OF FIGURES

Figure

1.1 Overview of multi-function phased array radar task scheduling. . . . 4

1.2 Overview of an UAV patrolling mission planner. 5

1.3 Overview of aircraft power system management. 6

2.1 Example FSM. 30

3.1 Example of radar area sector. 42

3.2 Sector FSM when REVmax = 4. 46

3.3 Threat FSM when Td = 4. 47

3.4 Multi radar sectors example. 48

3.5 Scheduler diagram. 53

3.6 Snapshot of one radar scenario. 56

3.7 Snapshot of three radars scenario. 59

4.1 Example of UAV patrolling mission in an UDE. 68

4.2 Waypoints FSM for a case with a single UAV and three waypoints. . 69

4.3 Task FSM for single waypoint. 70

4.4 Total length of tour for different penalty (P) and reward (R). 79

4.5 Comparison of computation times and costs. 80

vii

4.6 Comparison of computation time of DP, BFS and LBFS. 81

4.7 Initial plan. 82

4.8 Updated plan. 83

4.9 Initial plans with different settings: without priorities or no fly zones. 84

4.10 Updated plans with different settings: without priorities or no fly zones. 84

4.11 Large scale problem example. 86

4.12 Plan for two UAVs with four waypoints. 87

5.1 A schematic of the gas turbine engine and the electrical power system. 91

5.2 Comparison of step responses of the linear and nonlinear models. . . 101

5.3 Steady states values of the nonlinear model for different thrust levels. 102

5.4 Control system architecture. 104

5.5 Fuel optimal power split range examples. 105

5.6 The surge margin dependence on other variables. 106

5.7 Fuel and surge margin optimal power split ranges. 107

5.8 Simulink model for the closed-loop system with the offset MPC. . . 119

5.9 Comparison of uncoordinated LQR and integrated LQR controllers. 121

5.10 Comparison of integrated LQR and MPC controllers. 122

5.11 Input constraint comparison of integrated LQR and MPC controllers. 122

5.12 Comparison of integrated LQRs and MPC controllers. 124

5.13 Comparison of battery and ultracapacitor packs. 126

5.14 Comparison of controller without and with energy storage elements. 127

5.15 Comparison of MPC, MMPC, and offset MPC controllers. 130

5.16 Comparison of offset MPC with and without energy storage elements. 132

viii

5.17 Comparison of offset MPC controllers with and without sensor noise. 133

6.1 An example of joint operation of planning level and control level. . 139

ix

LIST OF TABLES

Table

3.1 Radar model parameters . 44

3.2 Performance metrics . 55

3.3 One radar scenario simulation variables 56

3.4 Average performance metrics for small scale simulations for one radar 57

3.5 One radar scenario simulation variables 58

3.6 Average performance metrics for large scale simulations for one radar 58

3.7 Three radar scenario simulation variables 60

3.8 Average performance metrics for three radar case 60

4.1 Waypoints FSM state transition table. 70

4.2 Task FSM state transition table. 71

4.3 Comparison of DP and LBFS. 85

5.1 Agreement between the validation data and identified linear model. 117

5.2 Constraints for LQR and MPC controllers. 118

5.3 Parameters for LQR and MPC controllers. 121

5.4 Comparison of uncoordinated LQR, integrated LQR, and integrated
MPC. 123

5.5 Specification of battery cell and ultracapacitor cell. 124

x

5.6 Specifications of three different energy storage element configurations. 125

5.7 Parameters and energy storage element input constraints for MPC. 125

5.8 Comparison of the systems with different energy storage elements. . 128

5.9 Parameters for LQR, MPC, offset MPC and MMPC controllers. . . 129

5.10 Comparison of LQR, MPC, MMPC, and offset MPC controllers. . . 129

5.11 Comparison of offset MPC with and without energy storage elements. 131

xi

LIST OF ABBREVIATIONS

AEA All Electric Aircraft

ATSP Asymmetric Traveling Salesman Problem

BFS Breadth-First Search

DP Dynamic Programming

DTRP Dynamic Traveling Repairman Problem

DVRP Dynamic Vehicle Routing Problem

FAR Fuel to Air Ratio

FSM Finite State Machine

HPC High Pressure Compressor

HPS High Pressure Shaft

HPSG High Pressure Shaft Generator

LBFS Limited Breadth-First Search

LPC Low Pressure Compressor

LPS Low Pressure Shaft

LPSG Low Pressure Shaft Generator

LQR Linear Quadratic Regulators

MEA More Electric Aircraft

MMPC Multiple Model Predictive Control

MPC Model Predictive Control

MPT Multi-Parametric Toolbox

xii

NMPC Nonlinear Model Predictive Control

NPSS Numerical Propulsion System Simulation

ONR Office of Naval Research

PI Proportional-Integral

QoS Quality of Service

ReFSM Recomposable Finite State Machine

ReRFSM Recomposable Restricted Finite State Machine

RFSM Restricted Finite State Machine

SoC State of Charge

SWC Sliding Window Control

T-MATS Toolbox for the Modeling and Analysis of Thermodynamic Systems

TSP Traveling Salesman Problem

UAV Unmanned Aerial Vehicle

UDE Unpredictably Dynamic Environment

UGS Unattended Ground Sensor

VRP Vehicle Routing Problem

xiii

ABSTRACT

Resource Management in Constrained Dynamic Situations

by

Jinwoo Seok

Chair: Anouck Girard

Resource management is considered in this dissertation for systems with limited re-

sources, possibly combined with other system constraints, in unpredictably dynamic

environments. Resources may represent fuel, power, capabilities, energy, and so on.

Resource management is important for many practical systems; usually, resources are

limited, and their use must be optimized. Furthermore, systems are often constrained,

and constraints must be satisfied for safe operation. Simplistic resource management

can result in poor use of resources and failure of the system. Furthermore, many

real-world situations involve dynamic environments. Many traditional problems are

formulated based on the assumptions of given probabilities or perfect knowledge of

future events. However, in many cases, the future is completely unknown, and infor-

mation on or probabilities about future events are not available. In other words, we

operate in unpredictably dynamic situations. Thus, a method is needed to handle

dynamic situations without knowledge of the future, but few formal methods have

been developed to address them. Thus, the goal is to design resource management

methods for constrained systems, with limited resources, in unpredictably dynamic

environments.

xiv

To this end, resource management is organized hierarchically into two levels: 1)

planning, and 2) control. In the planning level, the set of tasks to be performed

is scheduled based on limited resources to maximize resource usage in unpredictably

dynamic environments. In the control level, the system controller is designed to follow

the schedule by considering all the system constraints for safe and efficient operation.

Consequently, this dissertation is mainly divided into two parts: 1) planning level

design, based on finite state machines, and 2) control level methods, based on model

predictive control. We define a recomposable restricted finite state machine to handle

limited resource situations and unpredictably dynamic environments for the planning

level. To obtain a policy, dynamic programing is applied, and to obtain a solution,

limited breadth-first search is applied to the recomposable restricted finite state ma-

chine. A multi-function phased array radar resource management problem and an

unmanned aerial vehicle patrolling problem are treated using recomposable restricted

finite state machines. Then, we use model predictive control for the control level,

because it allows constraint handling and setpoint tracking for the schedule. An air-

craft power system management problem is treated that aims to develop an integrated

control system for an aircraft gas turbine engine and electrical power system using

rate-based model predictive control.

Our results indicate that at the planning level, limited breadth-first search for

recomposable restricted finite state machines generates good scheduling solutions in

limited resource situations and unpredictably dynamic environments. The importance

of cooperation in the planning level is also verified. At the control level, a rate-

based model predictive controller allows good schedule tracking and safe operations.

The importance of considering the system constraints and interactions between the

subsystems is indicated. For the best resource management in constrained dynamic

situations, the planning level and the control level need to be considered together.

xv

CHAPTER I

Introduction

1.1 Motivation

Resource management is important in many real-world systems, because, often,

resources are limited. Hence, resources have to be utilized optimally. Furthermore,

real-world systems are often subject to constraints, for example actuator limits or

safety constraints. Resources may include fuel, power, capabilities, or energy, among

others. For instance, for a multi-function phased array radar, the available power

at each time instance is a resource; for an Unmanned Aerial Vehicle (UAV), the re-

maining battery charge or the onboard sensors can be viewed as resources. For an

aircraft, available fuel is a resource. In addition, the torque of a gas turbine engine

can be viewed a resource, and can be thought of as being converted from fuel; the

electrical power of a generator can be a resource, and can be thought of as being

converted from the torque; finally, the conversion abilities can also be considered

as resources. Thus, resource management may include conversions between the re-

sources, and may also require considering efficiencies. In many resource management

situations, satisfying all the demands may not be possible because of the limited

amounts of available resources, as well as other constraints of the system, such as

safety constraints, physical limitations, or other prohibitions. For instance, for a

multi-function phased-array radar, the radar is prohibited from transmitting more

1

power than the maximum amount of power for a single task. For an aircraft, a gas

turbine engine has to satisfy the surge margin constraints for safe operations, and

the conversion ability between the torque and the electrical power is limited by the

power of the gas turbine engine and the capacity of the generator. Misguided use

of resources can result in poor resource use as well as system failure. Consequently,

resource management should consider constraints to maximize the performance and

safety of systems. More specifically, by resource management, we mean achieving

more and performing better while using limited resources in a constrained system.

Furthermore, many real-world situations involve dynamic environments. By dy-

namic, we mean that situations change in time in response to decisions – our own,

as well as those of others. Many traditional problems are formulated based on the

assumptions of given probabilities or perfect knowledge of future events. For instance,

Markov process models are based on event probabilities. However, in many cases, the

future is completely unknown, and this means that information on or probabilities

of future events are not available. In other words, we operate in an Unpredictably

Dynamic Environment (UDE). By unpredictable, we mean that we cannot perfectly

estimate the changing situation. In many real-world situations, knowing or estimat-

ing the future may be challenging. For instance, the systems may be too complicated,

or too interconnected to predict, such as in biology, earthquake prediction, or stock

market prediction. In an adversarial situation, predicting future behaviors of the en-

emy is difficult [41, 95] because the behaviors usually depend on humans [15, 63], that

are hard to predict at the best of times, and the unobservable space may be large

due to the enemy’s actions, including denial of sensing in contested areas, obsolete

intelligence, and obfuscation. Furthermore, the enemy may try to actively deceive the

friendly force, so the predictions (for example, of probabilities) may be poor or com-

pletely wrong. Helmuth von Moltke the Elder said “No battle plan survives contact

with the enemy.” Decisions based on poor or wrong predictions can cause irreparable

2

results in adversarial situations. Thus, we consider dynamic environments, and let

situations change in time in response to decisions – our own, as well as those of others,

without any knowledge of the future. Methods are needed to handle dynamic situa-

tions without predictions of the future, but few formal methods have been developed

to address these situations.

As mentioned, the resources are limited and the environments are changed un-

predictably in many real-world situations and engineering problems. For instance, a

radar or an UAV may have a set of tasks to perform in an UDE; these tasks have

to be planned carefully considering the resource limitations and the environments.

Resource management for planning belongs to the broad class of task allocation (who

does what?) and scheduling (when?) problems. For an aircraft, the scheduled re-

sources, thrust and electrical power, have to be supplied, so uses and conversions of

the resources have to be considered to operate the system. Resource management for

control is analogous to an operating system, that supplies all the scheduled resources

and satisfies a variety of constraints for safe operation of the system. Thus, resource

management can be categorized into two broad levels: 1) planning and 2) control.

The planning level schedules a set of tasks, in a constrained UDE, to maximize perfor-

mance subject to limited resources. The control level problem is to design a system

controller that is able to follow the task schedule while considering all the system

constraints for safe and efficient operations. The planning level and control level need

to be considered together for the best resource management in constrained dynamic

situations.

Consequently, this dissertation contains two main parts: 1) methods for resource

management at the planning level, based on Finite State Machine (FSM) and 2)

methods for resource management at the control level, based on Model Predictive

Control (MPC). A method is needed to model unpredictably dynamically changing

environments easily and precisely. Thus, for the planning level resource management,

3

Recomposable Restricted Finite State Machine (ReRFSM) is defined based on FSM;

it can handle limited resource situations by prohibiting some of the transitions in an

FSM, and UDE by allowing the state space of an FSM to change dynamically to follow

the environment. In an UDE, obtaining local optimal policies of the ReRFSM does

not guarantee global optimality, so heuristic methods can be applied to the ReRFSM

to obtain solutions.

Figure 1.1: Overview of multi-function phased array radar task scheduling.

As shown in Fig. 1.1, in our first case study, the system under consideration is a

multi-function phased array radar on a ship. The ship is located in a two dimensional

geographic area, surrounded by many threats. The threats are moving toward the

radar (or ship) with constant speeds. The limited resource is power emitted from

the radar; we treat the resource management as a task scheduling (planning level)

problem. This adversarial situation is in an UDE because the set of the tasks to be

performed changes in time based on the enemy’s behaviors, that are hard to predict;

hence, the set of tasks to schedule changes in an unpredictable manner. The goals

are to ensure zero leakage, where the radar should be aware of the threats if they

are within a certain range, and to discriminate as many threats as possible. This

problem was motivated by the Office of Naval Research (ONR) and their interest in

studying cooperative, fleet level resource management of multi-function phased array

radars onboard ships. Our approach allows for the convenient design of a distributed,

4

cooperative, multi-radar resource management system. Simulation results indicate

that heuristic methods generate effective radar schedule solutions in an overwhelming

situation.

Figure 1.2: Overview of an UAV patrolling mission planner.

As a second case study, the system under consideration is an UAV. The UAV

flies over a contested area to gather information on an area of interest (waypoint), as

shown in Fig. 1.2. The limited resource is the ability of the UAV, that is, the UAV

only can perform one task at a specific location at a time. For instance, the UAV can

only gather information about a waypoint when it is physically at the waypoint. Con-

straints include availabilities of the paths between the areas of interest. We treat the

resource management as a task scheduling (planning level) problem. The patrolling

mission is in an UDE because the areas of interest may change in time without predic-

tions. For instance, an UAV may collect new, previously unknown information during

a patrolling mission, and the information may indicate that the UAV no longer has to

visit areas it was previously assigned to, but may have to visit new areas of interest

instead. The priorities and/or the risk in some areas of interest may evolve in time in

the same unpredictable manner; the set of tasks changes in time in an unpredictable

manner. The goal is to find a tour such that the UAV visits all waypoints while

minimizing the total travel distance and maximizing surveillance performance based

on the priorities of the waypoints. This problem was motivated by many real-world

5

UAV patrolling missions, such as surveillance for crime prevention, searching for ob-

jects or facilities, reconnaissance of contested areas, and so on. The effects of system

gains on the resulting plan are analyzed and a two-UAV example problem is treated

to study the cooperation of UAVs. Simulations of different settings verify that the

mission planner based on heuristic methods successfully generates patrolling plans in

UDEs and handles large numbers of waypoints with fast computation time.

Figure 1.3: Overview of aircraft power system management.

Finally, the third case study considers an aircraft power system that includes a

gas turbine engine and electrical power systems as shown in Fig. 1.3. The system is

required to supply scheduled thrust and large electrical loads. The limited resources

are fuel, electrical power of generators and energy storage elements, as well as the

conversion abilities between the resources. Constraints include the gas turbine engine

constraints (e.g., surge margins) and electrical system constraints (e.g., component

power limits). Thus, we treat the resource management as a system operation (control

level) problem. The problem is in an UDE because the schedule can change unex-

pectedly, so the controller must safely operate the system and follow the schedule

in the presence of transient requests without any preview. The goal is to design an

integrated rate-based MPC controller that accommodates large steady and transient

6

electrical loads, maintains aircraft flight performance by delivering scheduled thrust,

enforces gas turbine engine constraints, as well as electrical system constraints, and

reduces fuel consumption. This problem was motivated by future More Electric Air-

craft (MEA) or All Electric Aircraft (AEA). An MPC approach is used because the

MPC allows constraints handling and set-point tracking (schedule tracking). The sys-

tem constraints and the interactions between the subsystems have to be considered

to follow the schedule safely and efficiently. To alleviate the interaction effects, an

advanced two-generator configuration and high performance energy storage elements

are considered. For the two-generator configuration, a power split map between the

two generators is developed and for the high performance energy storage elements,

supervisory logic is developed. Auxiliary offset states are introduced to reduce the

mismatch between the linear prediction models and the actual nonlinear system.

Simulations results are included to compare the different settings and show that the

integrated rate-based MPC controller allows good tracking of thrust and electrical

power schedules, and satisfies a variety of constraints for safe operations.

1.2 Contributions

The original contributions of the dissertation are as follows:

• Resource management of constrained systems, with limited resources, in UDEs,

is treated in this dissertation. The notions of resource, resource management

in constrained environments, and dynamic environments are defined. Resource

management is partitioned into two broad categories; 1) planning and 2) control.

The planning level maximizes the usage of the limited resource. The importance

of cooperation is shown. At the control level, good tracking of the schedule and

safe operations considering a variety of system constraints are required. The

importance of taking into account the system constraints and the interactions

7

between subsystems is shown. The importance of considering the planning

and control levels together in resource management in constrained dynamic

situations is discussed.

• The Recomposable Restricted Finite State Machine, ReRFSM, is defined, and

can handle limited resource situations in UDEs for planning level resource man-

agement. The optimality of the ReRFSM is not achieved by obtaining the local

optimal policies of the ReRFSM, due to the unpredictable nature of the envi-

ronment. Thus, heuristic methods can be applied to the ReRFSM to obtain a

solution for planning level resource management in an UDE.

• A multi-function phased array radar task scheduler, with limited radar re-

sources, in an UDE, is designed for planning level resource management us-

ing ReRFSM. Because of the UDE, heuristic methods are applied to generate

a radar scheduling solution, and the resulting schedule performs well. A dis-

tributed, cooperative multi-radar system, using communications between the

radars, is designed and the importance of cooperation at the planning level for

resource management in UDEs is verified.

• A patrolling mission planner for an UAV in an UDE is designed for planning level

resource management using ReRFSM. Because of the UDE, heuristic methods

are applied to generate an UAV patrolling plan, and the resulting plan per-

forms well. The development of a multi-UAV patrolling mission planner is also

considered to study cooperation of the UAVs at the planning level of resource

management.

• A coordinated rate-based MPC controller for aircraft gas turbine engine and

electrical power system is designed for control level resource management. The

system constraints and the interactions between the subsystems are considered,

and the importance of considering them is verified. The integrated rate-based

8

MPC controller allows good tracking of schedules, and satisfies a variety of

constraints, so the system is safely and efficiently operated.

1.3 Dissertation Outline

The outline of this dissertation is as follows. Chapter II presents the theoretical

foundations of ReRFSM. The ReRFSM is defined and the optimality of the ReRFSM

is analyzed. Chapter III designs a multi-function phased array radar task scheduler in

an UDE for planning level resource management using ReRFSM. The method allows

the convenient design of a cooperative, distributed resource management system for

multi-radar. Simulation results are presented for the single-radar and multi-radar

cases. Chapter IV designs a patrolling mission planner for UAVs in an UDE at

the planning level, treating the resource management using ReRFSM. A two-UAV

system is introduced and simulation results are presented. Chapter V describes the

development of a coordinated rate-based MPC controller for an aircraft gas turbine

engine and electrical power system for control level resource management. Simulation

comparisons of different settings are presented. Finally, Chapter VI presents our

conclusions.

9

CHAPTER II

Recomposable Restricted Finite State Machine

2.1 Introduction

2.1.1 Motivation

The real-world is dynamic and unpredictable. By dynamic, we mean that situa-

tions change in time in response to decisions – our own, as well as those of others. By

unpredictable, we mean that we cannot perfectly estimate the changing situations. In

other words, we operate in UDE. Many traditional problems were formulated based

on the assumptions of given probabilities or perfect knowledge of future events. As

an alternative, predetermined priority rules may be used. However, in many cases,

the future is completely unknown, which means any information or probabilities of

the future are not available. In addition to that, predetermined priority rules may

not take into account environment changes in the future. Furthermore, in the real-

world, the resources are usually limited, and the limitations must be considered when

making the decisions.

Many dynamic problems have been formulated; for instance, the Dynamic Vehicle

Routing Problem (DVRP) [78] is a dynamic version of the Vehicle Routing Prob-

lem (VRP), the Dynamic Traveling Repairman Problem (DTRP) [12] is a dynamic

version of Traveling Salesman Problem (TSP), and the dynamic task scheduling prob-

10

lem. By task scheduling we mean given a set of tasks, find the order of execution

of the tasks using the given resources. Thus, the task scheduling problem is finding

the order of execution of a set of tasks that maximizes or minimizes a desired per-

formance, for example time duration using the given resources. Then, by dynamic

task scheduling problem we mean that in the task scheduling problem, we allow the

set of tasks to change with time. Dynamic problems and their solution methods are

application relevant. As mentioned, many dynamic problems are formulated based

on the assumption of knowledge of future events, so many methods are developed and

used to solve the problem based on the knowledge. For instance, Markovian process

models are based on event probabilities. However, in the case of UDE, where the

future is completely unknown, thees methods cannot be used. Thus, methods that

can handle UDE are necessary, but most methods depend on predetermined priority

rules, and few formal methods have been developed to address them.

Dynamic Programming (DP) for FSM is a well known method and can be applied

to static or predictably dynamic problems. FSM are intuitive and easy to use, and DP

guarantees an optimal policy. By policy, we mean the solutions for all the states. By

solution, we mean the optimal/suboptimal sequence of decisions at the current state.

The drawback of DP is the curse of dimensionality. Thus, for large scale problems, a

heuristic method can be applied to FSM, such ae Breadth-First Search (BFS), which

generates sub-optimal solutions but is computationally effective.

As mentioned previously, the real world is typically an UDE. For instance, in the

task scheduling problem, a existing task can be canceled or a new task can be added

without any prediction. However, traditional FSM cannot capture changing envi-

ronments because the state space of the FSM is finite, so only known or predictable

states exist. Thus, the FSM needs to be updated according to the changing environ-

ment, but changing FSMs in time (dynamics FSMs) requires careful definitions and

it was previously unclear what the optimality of such a system is. In this chapter,

11

we define Restricted Finite State Machine (RFSM) based on FSM to handle resource

limitations, and Recomposable Finite State Machine (ReFSM) and ReRFSM, which

are based on FSM and can handle UDEs, then study the optimality of the resulting

systems.

2.1.2 Literature Review

Methods for dealing with dynamically changing environments vary based on the

specific problem under consideration. A convenient approach to deal with dynamic

environments is rule-based. When the environment changes, a new plan or schedule

is obtained based on pre-defined rules. In [98], the authors propose a least-violating

control strategy algorithm with safety rules. Each safety rule has an associated pri-

ority; thus, the algorithm finds a strategy to reach the goal while minimizing violated

priorities. Robotic car navigation in an urban environment is used as an illustrative

example. In [65], the authors introduce a distributed play-based role assignment al-

gorithm for teams of robots for the RoboCup four-legged league. Each pre-decided

“play” has a role for each robot, so based on the current situation, the “play” is

determined, then each robot is assigned a role by the “play.”

In [78], the author suggests two approaches to solve the DVRP: the first involves

rerunning the whole procedure, and the second considers local updates. Local up-

dates use the previous solution. An example is to insert new tasks into the previous

schedule. In [92], the authors solve the DTRP with two priorities, where each task

has one of the two priorities. The authors want to minimize expected delay, that is,

the time between a task’s arrival and its completion. A lower bound is provided and

a Randomized Priority policy is proposed. This work is extended to multiple vehicles

and multiple priorities in [93]. The authors also provide a lower bound and propose

a Separate Queues policy that performs within a constant factor of the lower bound.

In [23], the scheduling of part-feeding tasks of manufacturing lines for a single

12

mobile robot is proposed. The mobile robot has to prevent stopping the manufac-

turing lines by feeding enough parts to the lines. The authors find the schedule of

part-feeding tasks for the mobile robot that minimizes the total traveling time of the

robot using mixed integer programming for optimal solutions and a genetic algorithm

based heuristic for near optimal but computationally lighter solutions.

Mobile service robot dynamic task scheduling is discussed in [20] and [101]. The

authors introduce an online user to a mobile service robots architecture, and schedule

the tasks using mixed integer programming, then apply the schedule to an actual

mobile service robot called CoBot. The scheduler rejects or asks the user to loosen

the constraints if the task is not feasible. It generates a new schedule whenever a new

task is requested by the user.

2.1.3 Original Contributions

The original contributions of this chapter are as follows:

1. We define a composition and pruning operations of FSM as well as additive and

subtractive costs of associated transitions, then prove that the optimal policy

of a composed FSM is the union of the optimal policies of its component FSMs.

Thus, the optimal policy of a composed FSM is computationally easily obtained

even if the size of the composed FSM is large.

2. We define RFSM and prove that the optimal policy of a RFSM is not the union

of the optimal policies of its component FSMs. Thus, the optimal policy of a

RFSM, which is a composed FSM with input restrictions, has to be computed

directly from the RFSM, so is computationally expensive to obtain if the size

of the RFSM is large.

3. We define ReFSM and ReRFSM and investigate the optimality of ReFSM and

ReRFSM, and show that the optimal policies of ReFSM and ReRFSM are

13

not obtained by obtaining the local optimal policies of the composed FSMs in

ReFSM and the RFSMs in ReRFSM, thus, in fact, are not obtainable without

perfect knowledge of future. We conclude that the current optimal policy (or

solution) may not be needed in UDE.

4. We develop a method, Limited Breadth-First Search (LBFS) for ReRFSM, that

can handle UDE and is computationally tractable for large scale problems.

2.2 Background

2.2.1 Finite State Machines

An FSM constructs an output signal one symbol at a time by observing an input

signal one symbol at a time [32, 16, 60]. An FSM is a six-tuple:

FSM = (X,U, Y, f, g, x0), (2.1)

where X, U , and Y are sets, f and g are functions, and x0 ∈ X. X is the state space,

U is the input alphabet, Y is the output alphabet, f : X × U → X is the next state

function, g: X × U → Y is the output function, and x0 ∈ X is the initial state.

The interpretation of f and g is as follows: if x(k) ∈ X is the current state at

step k and u(k) ∈ U is the current input signal, then the current output symbol y(k)

and the next state x(k + 1) are given by:

x(k + 1) = f(x(k), u(k)), (2.2)

y(k) = g(x(k), u(k)), (2.3)

and x(0) is x0.

To represent an FSM, we can use the sets and functions models as given above,

14

state transition diagrams or state transition tables. Note that the output alphabet

and the output function can be omitted if the output does not exist or is not necessary.

In an FSM, an absorbing state is a state from which there is no transition to

another state. Hence, if the state of the FSM reaches an absorbing state, then the

state remains there perpetually, regardless of the input.

2.2.2 Finite State Machine Composition and Pruning

We consider the following composition operation on FSMs. Given a number w

of FSMs, FSM1 = (X1, U1, Y1, f1, g1, x01), FSM2 = (X2, U2, Y2, f2, g2, x02), ...,

FSMw = (Xw, Uw, Yw, fw, gw, x0w), we define the composition of FSM1, FSM2, ...,

FSMw, denoted FSM1 × FSM2 × ... × FSMw, as the FSM:

FSM1 × FSM2 × ... × FSMw = (X,U, Y, f, g, x0), (2.4)

where FSM1, FSM2, ..., FSMw are called the components of the composed FSM,

and

X = X1 ×X2 × ... ×Xw

U = U1 × U2 × ... × Uw

Y = Y1 × Y2 × ... × Yw

f = (f1, f2, ..., fw)

g = (g1, g2, ..., gw)

x0 ∈ X = (x01, x02, ..., x0w)

. (2.5)

The interpretation of f and g is as follows: if x(k) = (x1(k), x2(k), ..., xw(k)) ∈ X

is the current state at step k and u(k) = (u1(k), u2(k), ..., uw(k)) ∈ U is the current

input signal, then the current output symbol y(k) and the next state x(k + 1) are

15

given by:

x(k + 1) = f(x(k), u(k))

=
(
x1(k + 1), x2(k + 1), ..., xw(k + 1)

)
=
(
f1(x1(k), u1(k)), f2(x2(k), u2(k)),

..., fw(xw(k), uw(k))
)
,

(2.6)

y(k) = g(x(k), u(k))

=
(
y1(k), y2(k), ..., y2(k)

)
=
(
g1(x1(k), u1(k)), g2(x2(k), u2(k)),

..., gw(xw(k), uw(k))
)
,

(2.7)

and x(0) is x0.

We also consider the following pruning operation on composed FSMs. If one of

the component FSMs is not needed, we remove that FSM as follows. Assume that in

(2.4), FSMi is not needed. Then, we define the pruning of FSMi from the FSM ,

noted FSM / FSMi, as the FSM:

FSM / FSMi =

FSM1 × ... × FSMi−1 × FSMi+1 × ... × FSMw.
(2.8)

We compose the FSMs using a composition operation called synchrony. In this op-

eration, each machine in the composition reacts simultaneously and instantaneously.

The synchronous operation and its composition properties are well studied in com-

puter science; see [8, 9, 30, 61, 62].

2.2.3 Recomposable Finite State Machines

An ReFSM is a composed FSM that has three modes of operation: normal, com-

position and pruning.

a. In the normal mode of operation, the ReFSM operates as a composed FSM.

16

b. The composition mode happens when a new component FSM arises. Assume

that this happens at step k, let FSM(k) be the FSM in which the ReFSM

operates at step k, and let FSMnew be the new component FSM that arises at

step k. Then, we have:

FSM(k + 1) = FSM(k)× FSMnew. (2.9)

c. The pruning mode happens when a component FSM is not needed. Assume

that at step k, component FSMi is not needed. Then we have:

FSM(k + 1) = FSM(k) / FSMi. (2.10)

2.2.4 Restricted Finite State Machines

To represent realistic situations, specifically resource or ability limitations, some

of the transitions corresponding to the constraints may be restricted during the com-

position in (2.4). The restrictions may be global, which means some inputs are not

available for all the states (input alphabet space is reduced), or local, which means

an input in the input alphabet may not available in specific states. We call this

composed FSM an RFSM. Thus, the RFSM is a composed FSM with the component

FSMs defined as (2.4) but the restricted input alphabet (global input restriction), U :

U ⊂ U1 × U2 × ... × Uw,

where U 6= U1 × U2 × ... × Uw.
(2.11)

and/or the local input restriction:

∃x ∈ X, u ∈ U : f(x(k), u(k)) = g(x(k), u(k)) = ∅, (2.12)

17

where ∅ means empty, so the transition is not available. In other words, we disable

transitions that correspond to insufficient or excessive resource or capability use.

This is an example of supervisory control [16], [80]. The limitations are different

for different situations/problems, so restriction rules for the transitions are problem

dependent. In general, for the case of the composition of w component FSMs with

input restrictions, the RFSM is denoted as

RFSM = FSM1 ×̄ FSM2 ×̄ ... ×̄ FSMw, (2.13)

and the pruning of FSMi from the RFSM is denoted as

RFSM = RFSM /̄ FSMi. (2.14)

2.2.5 Recomposable Restricted Finite State Machines

The ReRFSM is defined as the ReFSM, but with a restricted input alphabet

during the composition mode as defined in (2.11) and (2.12). Thus, a ReRFSM is an

RFSM that has three modes of operation: normal, composition and pruning.

a. In the normal mode of operation, the ReRFSM operates as an RFSM.

b. The composition mode happens when a new component FSM arises. Assume

that this happens at step k; let RFSM(k) be the RFSM in which the ReRFSM

operates at step k, and let FSMnew be the new component FSM that arises at

step k. Then, we have:

RFSM(k + 1) = RFSM(k) ×̄ FSMnew. (2.15)

c. The pruning mode happens when a component FSM is not needed. Assume

18

that at step k, component FSMi is not needed. Then, we have:

RFSM(k + 1) = RFSM(k) /̄ FSMi. (2.16)

2.2.6 Additive and Subtractive Costs

Assume that we have two component FSMs that are FSM1 and FSM2 with

associated transition costs Φ1 and Φ2. When composition of FSM1 and FSM2 occurs,

the costs are added to each other as follows:

Φ1 + Φ2 = Φ1(x1, u1) + Φ2(x2, u2) = Φ((x1, x2), (u1, u2)),

for all x1 ∈ X1, u1 ∈ U1, x2 ∈ X2, u2 ∈ U2,
(2.17)

where Φ1, Φ2 and Φ represent the transition costs of FSM1, FSM2, and FSM1 ×

FSM2, x1 is the state of FSM1, u1 is the input of FSM1, x2 is the state of FSM2,

u2 is the input of FSM2, X1 is the state space of FSM1, U1 is the input alphabet of

FSM1, X2 is the state space of FSM2 and U2 is the input alphabet of FSM2. We

call costs that satisfy the above property additive. Now, assume that we also have

the composed FSM that is FSM1 × FSM2 with associated costs Φ. When pruning,

for instance FSM/FSM1, occurs, Φ1 is subtracted from Φ as follows:

Φ− Φ1 = Φ((x1, x2), (u1, u2))− Φ1(x1, u1) = Φ2(x2, u2),

for all x ∈ X, u ∈ U, x1 ∈ X1, u1 ∈ U1,
(2.18)

where x is the state of FSM1 × FSM2, u is the input of FSM1 × FSM2, X is the

state space of FSM1 × FSM2 and U is the input alphabet of FSM1 × FSM2. We

call costs that satisfy the above property subtractive.

19

2.2.7 Dynamic Programming for Finite State Machine

Given the state transition mapping (2.2), consider the objective function:

J(x(0), u(0), x(1), ..., u(K − 1)) =
K−1∑
k=0

Φ(x(k), u(k)), (2.19)

where Φ is the transition cost and K is the time horizon. A sequence of decisions that

optimizes J is obtained through DP based on solving the Hamilton-Jacobi Bellman

equation:

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + J∗(f(x(k), u(k)))}, (2.20)

where J∗ is the optimal cost to-go from state x. From (2.2) and (2.20),

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + J∗(x(k + 1))}. (2.21)

Equation (2.21) illustrates that DP proceeds backwards with respect to steps, i.e.,

the optimal cost and decision at step k depend on the optimal cost and decision at

step (k + 1). The optimal decision is then

u∗(x(k)) = argmin
u(k)∈U

{Φ(x(k), u(k)) + J∗(x(k + 1))}. (2.22)

By solving DP for every step k for all states x ∈ X, where X is state space, we obtain

a sequence of optimal decisions (u∗) according to Φ, and this is the optimal policy

(π∗) [104], [10], and [11]. Then, the optimal policy for an FSM is:

π∗ = DP (FSM,Φ, K), (2.23)

where FSM is a finite state machine, Φ is a transition cost, and DP is the dynamic

programming operator.

Note that if there is no penalty to being in a given state at step K + 1, if there is

20

no penalty for taking a given decision at step K, or if K is large enough, the optimal

cost to go for state x at step K + 1, J∗(x(K + 1)), is zero for all states x ∈ X.

2.3 Problem Formulation

Assume that there are w FSMs with associated transition cost functions and that

the FSMs are composed without input restrictions as defined in Sec. 2.2.2 or with

input restrictions as defined in Sec. 2.2.4. Assume that the transition costs are

additive and subtractive as defined in Sec. 2.2.6. Assume that the number w changes

in time in an unpredictable manner. Given the situation, find the best sequence of

decisions such that the cumulative cost is minimized.

2.4 Optimal Policy of Composed Finite State Machine

The optimal policy of an FSM is obtained by DP for FSM as described in the

previous section. Thus, the optimal policy of a composed FSM is also obtained by

DP for the composed FSM. However, if the number of the component FSM for the

composed FSM is large, DP may not be computationally feasible to obtain the optimal

policy due to the large state space and input space sizes. Thus, in this section, we

prove that the optimal policy of a composed FSM is the union of the optimal policies of

its component FSMs. We also prove that the optimal policy of a composed FSM after

pruning is the separation of the optimal policy of the pruned FSM from the optimal

policy of the previous composed FSM. The resulting policy is called as union policy.

Thus, the optimal policy of a composed FSM is computationally easily obtained

by computing the union policy even if the number of the component FSM is large.

Considering a composed FSM that consists of w copies of the same component FSMs.

Then, the computation cardinality of DP applied directly to the composed FSM is

(nw)× (mw)×K where n is the number of states of the component FSMs and m is

21

the number of inputs of the component FSMs, while the computation cardinality of

obtaining the union policy is n×m×K×w, which means obtaining the union policy

is (n(w−1))×(m(w−1))
w

times faster than applying DP directly to the composed FSM.

Without loss of generality, we consider the case of two component FSMs yielding

one composed FSM. Then, the union of optimal policies of two FSMs is the optimal

policy of the composed FSM and the optimal policy of a composed FSM can be

decoupled to optimal policies of two component FSMs.

Consider a ReFSM as defined in Section 2.2.3. Assume that the transitions in each

component FSM of the ReFSM have associated cost (typically, assigned heuristically)

and that the costs are additive (2.17) upon composition (2.4), (2.9) and subtractive

(2.18) upon pruning (2.8), (2.10). The optimal policies are obtained by (2.23) when

the composition or the pruning occurs. To prove this, we consider two cases: compo-

sition, where the number of states increases, and pruning, where the number of states

decreases. We consider each case in turn.

Claim A.

Assume that FSM1 has cost Φ1 and FSM2 has cost Φ2.

Let u∗1 = DP (FSM1,Φ1), u
∗
2 = DP (FSM2,Φ2) and u∗ = DP (FSM1 × FSM2,Φ1 +

Φ2).

Then, we claim that u∗ =

u∗1
u∗2

.

Proof A. The optimal cost-to-go of DP for FSM1 is J∗1 , and it is obtained by

(2.20) as follows:

J∗1 (x1(k)) = min
u1(k)∈U1

{Φ1(x1(k), u1(k)) + J∗1 (f1(x1(k), u1(k)))}, (2.24)

where k is the time step, x1(k) is the state of FSM1 at the time step k, U1 is the

input alphabet of FSM1, u1(k) is the input of FSM1 at the time step k, Φ1 is the

22

transition costs of FSM1 and f1 is the transition function of FSM1. The optimal

cost-to-go of DP for FSM2 is J∗2 , and it is also obtained by (2.20) as follows:

J∗2 (x2(k)) = min
u2(k)∈U2

{Φ2(x2(k), u2(k)) + J∗2 (f2(x2(k), u2(k)))}, (2.25)

where x2(k), U2, u2(k), Φ2 and f2 are defined as in (2.24).

Let the optimal cost-to-go of DP for FSM1 × FSM2 be J∗. It is obtained by

(2.20) as follows:

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + J∗(f(x(k), u(k)))}, (2.26)

where x(k), U , u(k) = (u1(k), u2(k)), Φ = Φ1 + Φ2 and f are defined similarly as in

(2.24). Equations (2.2) and (2.26) yield

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + J∗(x(k + 1))}. (2.27)

We expand (2.27) to step K as follows:

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + min
u(k+1)∈U

{Φ(x(k + 1), u(k + 1)) + J∗((x(k + 2))}},

= min
u(k)∈U

{Φ(x(k), u(k)) + min
u(k+1)∈U

{Φ(x(k + 1), u(k + 1)) + ...

+ min
u(K−1)∈U

{Φ(x(K − 1), u(K − 1))

+ min
u(K)∈U

{Φ(x(K), u(K)) + J∗((x(K + 1))}}...}},

(2.28)

where K is the time horizon of DP. When K is large enough, J∗((x(K + 1)) = 0.

Then, the last line of (2.28) becomes

min
u(K)∈U

{Φ(x(K), u(K)) + J∗((x(K + 1))} = min
u(K)∈U

{Φ(x(K), u(K))}. (2.29)

23

Then, (2.17) and (2.29) yield

min
u(K)∈U

{Φ(x(K), u(K))} = min
(u1(K),u2(K))∈U

{Φ((x1(K), x2(K)), (u1(K), u2(K)))},

= min
(u1(K),u2(K))∈U

{Φ1(x1(K), u1(K)) + Φ2(x2(K), u2(K))}.

(2.30)

Since Φ1 does not depend on u2 and Φ2 does not depend on u1, (2.30) can be rewritten

as follows:

min
u(K)∈U

{Φ(x(K), u(K))} = min
u1(K)∈U1

{Φ1(x1(K), u1(K))}+ min
u2(K)∈U2

{Φ2(x2(K), u2(K))}.

(2.31)

When K is large enough, J∗1 (x1(K + 1)) = 0 and J∗2 (x2(K + 1)) = 0. Then, (2.24),

(2.25) and (2.31) imply

min
u(K)∈U

{Φ(x(K), u(K))} = J∗1 (x1(K)) + J∗2 (x2(K)). (2.32)

Then, (2.28), (2.29) and (2.32) yield

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + min
u(k+1)∈U

{Φ(x(k + 1), u(k + 1)) + ...

+ min
u(K−1)∈U

{Φ(x(K − 1), u(K − 1)) + J∗1 (x1(K)) + J∗2 (x2(K))}...}}.

(2.33)

As in (2.30), Φ(x(K−1), u(K−1)) can be expressed in terms of Φ1 and Φ2, so (2.33)

becomes

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + min
u(k+1)∈U

{Φ(x(k + 1), u(k + 1)) + ...

+ min
(u1(K−1),u2(K−1))∈U

{Φ1(x1(K − 1), u1(K − 1))

+ J∗1 (x1(K)) + Φ2(x2(K − 1), u2(K − 1)) + J∗2 (x2(K))}...}}.

(2.34)

Similar to (2.31), Φ1 does not depend on u2 and Φ2 does not depend on u1. Therefore,

24

(2.34) can be rewritten as

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + min
u(k+1)∈U

{Φ(x(k + 1), u(k + 1)) + ...

+ min
u1(K−1)∈U1

{Φ1(x1(K − 1), u1(K − 1)) + J∗1 (x1(K))}

+ min
u2(K−1)∈U2

{Φ2(x2(K − 1), u2(K − 1)) + J∗2 (x2(K))}...}}.

(2.35)

Hence, (2.24), (2.25) and (2.35) yield

J∗(x(k)) = min
u(k)∈U

{Φ(x(k), u(k)) + min
u(k+1)∈U

{Φ(x(k + 1), u(k + 1)) + ...

+ J∗1 (x1(K − 1)) + J∗2 (x2(K − 1))}...}}.
(2.36)

Repeating (2.33) through (2.36) until step k, we obtain

J∗(x(k)) = J∗1 (x1(k)) + J∗2 (x2(k)). (2.37)

Thus, the optimal cost-to-go for FSM1 × FSM2, J
∗, is the sum of the optimal cost-

to-go for FSM1 and the optimal cost-to-go for FSM2. Moreover, since the costs are

uncoupled, that is, Φ1 does not depend on u2 and Φ2 does not depend on u1, J
∗ is

obtained by applying the optimal policies of FSM1 and FSM2 to their respective

FSMs. By (2.22), the optimal policies of FSM1 and FSM2 are u∗1 and u∗2 respec-

tively. Then, together with (2.26), the optimal policy for FSM1×FSM2 is u∗ =

u∗1
u∗2

.

Claim B.

Assume that FSM = FSM1×FSM2 has cost Φ = Φ1 + Φ2 and FSM1 has cost Φ1.

Let u∗ = DP (FSM, Φ), u∗1 = DP (FSM1, Φ1) and u∗2 = DP (FSM/FSM1, Φ−Φ1).

Then, we claim that u∗ =

u∗1
u∗2

.

25

Proof B. By definition of pruning (2.8), FSM/FSM1 = FSM2 because FSM =

FSM1 × FSM2. Moreover, Φ− Φ1 = Φ2 by (2.17) and (2.18) because Φ = Φ1 + Φ2.

Then, the optimal policy for FSM/FSM1 is

u∗2 = DP (FSM2, Φ2). (2.38)

Then, claim B is equivalent to claim A.

2.5 Optimal Policy of Restricted Finite State Machine

Unlike the composed FSMs, the optimal policy of a RFSM may not be the union of

the optimal policies of its component FSMs. As previously, without loss of generality,

we consider the case of two component FSMs yielding one RFSM. Then, the union

of optimal policies of two FSMs may not be the optimal policy of the RFSM.

Consider a ReRFSM as defined in Section 2.2.5. Assume that the transitions

in each component FSM of the ReRFSM have associated cost (typically, assigned

heuristically) and that the costs are additive (2.17) upon composition (2.13), (2.15)

and subtractive (2.18) upon pruning (2.14), (2.16). Input restrictions (2.11) and/or

(2.12) are applied during the composition. The optimal policies are obtained by (2.23)

after the composition.

Claim C.

Assume that FSM1 has cost Φ1 and FSM2 has cost Φ2. Assume that RFSM =

FSM1 ×̄ FSM2 as described in Sec. 2.2.4

Let u∗1 = DP (FSM1,Φ1), u
∗
2 = DP (FSM2,Φ2) and u∗ = DP (RFSM,Φ1 + Φ2).

Then, we claim that u∗ may not be

u∗1
u∗2

.

26

Proof C. Assume that u∗ =

u∗1
u∗2

. Assume that u∗(x(k)) ∈ u∗ is the optimal

input in state x at step k, and

u∗1(x1(k))

u∗2(x2(k))

 ∈
u∗1
u∗2

 is the input in state x at step

k from union policy. Assume that

u∗1(x1(k))

u∗2(x2(k))

 /∈ U as in (2.11). Then, u∗(x(k)) 6=

u∗1(x1(k))

u∗2(x2(k))

, which implies u∗ 6=

u∗1
u∗2

. Thus, it may be that u∗ 6=

u∗1
u∗2

.

Thus, the optimal policy of a RFSM is obtained by applying DP directly to the

RFSM. Consequently, as we mentioned in the previous section, if the sizes of the state

space and the input space of the RFSM are large, obtaining the optimal policy of the

RFSM using DP is computationally infeasible.

2.6 Approaches

2.6.1 DP for ReFSM or ReRFSM

The optimal policy of the composed FSM (or RFSM) is computed for every in-

stance when the composed FSM (or RFSM) is updated. The method is called DP

for ReFSM (or ReRFSM). In the “normal” mode, the ReFSM (or ReRFSM) oper-

ates as a composed FSM (or RFSM) with associated transition cost. DP provides a

policy. We use that policy until composition or pruning occurs. Then, the ReFSM

(or ReRFSM) and cost are updated and we recompute the policy. The algorithm of

DP for ReRFSM is shown in Algorithm 1.

As described in earlier sections, DP for ReFSM is computationally tractable be-

cause of the union policy. However, DP for ReRFSM is computationally intractable

if the state space is large; unfortunately, many realistic problems are modeled by

ReRFSM.

27

Algorithm 1 DP for ReRFSM

1: π∗(k) ← DP for ReRFSM(RFSM(k), RFSM(k − 1))
2: if RFSM(k) 6= RFSM(k − 1) then
3: w ← number of component FSMs
4: for i = 1 to w do
5: FSMi ← component FSM
6: Φi ← transition cost of FSMi

7: end for
8: RFSM ← FSM1 ×̄ FSM2 ×̄ ... ×̄ FSMw

9: Φ ← Φ1 + Φ2 + ... + Φw

10: for i = 1 to w do
11: if FSMi needs to be pruned then
12: RFSM ← RFSM /̄ FSMi

13: Φ ← Φ1 + Φ2 + Φi−1 + Φi+1 + ... + Φw

14: end if
15: end for
16: π∗(k) = DP(RFSM , Φ, K)
17: else
18: π∗(k) = π(k − 1)
19: end if
20: return π∗(k)

2.6.2 LBFS for ReRFSM

The motivation of this section is that DP suffers from the curse of dimensionality.

Using DP for ReRFSM is computationally expensive, especially if the state space is

large. In such situations, we may not use DP for ReRFSM for the policy; instead

we may find the solution for the current state. In addition to that, if we encounter

high UDE, that is, the environment changes frequently without any prediction, the

previous policy is not useful. In such situation, obtaining a policy is useless, and

obtaining a solution may be good enough.

Thus, we use a BFS heuristic algorithm with fixed depth (fd) to get the solution

for the current state. The ReRFSM is recomposed at every time step to take into

account the environment changes.

However, if the state space and input space for the ReRFSM are very large,

BFS with fd may not be feasible. In those cases, we set the upper bound for the

28

computational cardinality, CCub, for each node for BFS as follows:

number of next states× number of inputs ≤ CCub. (2.39)

In other words, the computational cardinality at each node for BFS has to be less

than the upper bound, CCub. We call this LBFS. Once we have the number of inputs

(size of input alphabet), the number of next states is obtained based on (2.39), and

the next state is decided based on the cost, highest first for maximizing, lowest first

for minimizing. Consequently, LBFS with fd ensures a small amount of computation

time. The algorithms for LBFS for ReRFSM are shown in Algorithm 2.

Algorithm 2 Algorithm of LBFS for ReRFSM

1: u(k) ← LBFS for ReRFSM(RFSM(k))
2: w ← number of component FSMs
3: for i = 1 to w do
4: FSMi ← component FSM
5: Φi ← transition cost of FSMi

6: end for
7: RFSM ← FSM1 ×̄ FSM2 ×̄ ... ×̄ FSMw

8: Φ ← Φ1 + Φ2 + ... + Φw

9: for i = 1 to w do
10: if FSMi needs to be pruned then
11: RFSM ← RFSM /̄ FSMi

12: Φ ← Φ1 + Φ2 + Φi−1 + Φi+1 + ... + Φw

13: end if
14: end for
15: u(k) = LBFS(RFSM , Φ, fd, CCub)
16: return u(k)

2.7 Optimality of ReFSM and ReRFSM

What the optimal policies for the ReFSM or ReRFSM should be still not clear.

The optimal policy for the ReFSM or ReRFSM should generate the optimal cost to-

go. Intuitively, DP for ReFSM or ReRFSM seems to generate the optimal policy for

the ReFSM or ReRFSM, so yield the optimal cost to-go. DP for ReFSM or ReRFSM

29

generates the local optimal policy for each composed FSM in ReFSM, and each RFSM

in ReRFSM; but adding or deleting FSMs from the previous composed FSM or RFSM

without any prediction can affect the optimality or ReFSM or ReRFSM; thus, the

resulting policy may not be optimal.

However, in the case of DP for ReFSM, the resulting policy tends to stay near the

optimal policy because in ReFSM, the optimal policy of the previous composed FSM

is connected to the optimal policy of the next composed FSM because the optimal

policy of the composed FSM is obtained by the union policy. In other word, they

share the same component FSMs and the optimal policy for the same component FSM

remains the same. Consequently, if the number of changed FSMs is relatively large,

the connections are weaker, and the resulting policy may be far from the optimal

policy.

Furthermore, many realistic problems can be modeled by a ReRFSM, but because

of the input restrictions, the optimal policies between the RFSMs in the ReRFSM

are not well connected. Thus, the policy from DP for ReRFSM may not stay close

to the optimal policy.

Consider the simple example FSM as shown in Fig. 2.1. The FSM can be repre-

sented as a four-tuple: X = {A,B}, U = {1, 2}, x0 = A, x(k + 1) = f(x(k), u(k))

where f operates as follows: f(A, 1) = B, f(A, 2) = A, f(B, 1) = A, and f(B, 2) = B.

The goal state is B.

Figure 2.1: Example FSM.

Assume that at step 1, two example FSMs (FSM1 and FSM2) are composed with

input restrictions to form an RFSM, and the restricted input alphabet (global input

30

restriction) is as follows:

U ={(1, 2), (2, 1), (2, 2)}. (2.40)

In other words, u1 and u2 for the input u = (u1, u2) ∈ U , cannot be input 1 at the

same time. Assume that the transition cost of the FSM1 is given as Φ1(A, 1) = 7,

Φ1(A, 2) = 10, Φ1(B, 1) = 10, and Φ1(B, 2) = 0, and FSM2 is given as Φ2(A, 1) = 5,

Φ2(A, 2) = 10, Φ2(B, 1) = 10, and Φ2(B, 2) = 3.

Assume that fd = 1, that is, LBFS behaves as a greedy algorithm. Then, applying

DP to the RFSM yields the optimal policy and applying LBFS to the RFSM yields

a sub-optimal solution. For DP, the cost to-go from the initial state to the goal state

is 22, which is the optimal cost to-go, while it is 25 for LBFS. Both take two steps to

reach the goal state.

However, assume that another FSM (FSM3) is added at step 2 without any

prediction. Assume that the transition cost of the FSM3 is given as Φ3(A, 1) = 5,

Φ3(A, 2) = 10, Φ3(B, 1) = 10, and Φ3(B, 2) = 0. Then, at step 2, the three FSMs are

composed with input restrictions to form an RFSM, and the restricted input alphabet

(global input restriction) is as follows:

U ={(1, 2, 2), (2, 1, 2), (2, 2, 1), (2, 2, 2)}, (2.41)

and the local input restriction is as follows:

f(x, (2, 2, 1)) = ∅, if x ∈ {(B,A,A), (B,A,B), (B,B,A), (B,B,B)}. (2.42)

In other words, u1, u2, and u3 for the input u = (u1, u2, u3) ∈ U cannot be input 1

at the same time, and input (2, 2, 1) is prohibited at the state (B,A,A), (B,A,B),

(B,B,A), and (B,B,B).

31

Assume that the same parameters are used for the computations. Then, DP for

ReRFSM yields a cost to-go from the initial state to the goal state of 83 and it takes

five steps to reach the goal state, while LBFS for ReRFSM yields a cost of 43 and

it takes three steps; this is, in fact, the optimal cost to-go. LBFS for ReRFSM is

much better than DP for ReRFSM because the policy from DP for ReRFSM at step

1 (with two FSMs) leads the states to go (B,A), so at step 2, when FSM3 is added,

the state is (B,A,A) where the optimal policy from the state requires four steps to

reach the goal state because of local input restrictions (2.42). Thus, the optimality

of ReRFSM may not be achieved by DP for ReRFSM. In other words, current local

optimal policy may be useless in the future for ReRFSM.

Apparently, it is not possible to obtain the optimal policy of ReFSM or ReRFSM

without knowing the future perfectly. Thus, first, obtaining the optimal policy of

RFSM using DP is difficult if the state space is large as described in the previous

section, and more importantly, second, obtaining the local optimal policy of RFSM

in ReRFSM does not guarantee the optimal policy of ReRFSM. Therefore, heuristics,

such as LBFS can be used for ReRFSM.

2.8 Conclusions

Real-world environments are unpredictably dynamic and resources are usually lim-

ited, hence, we seek a method that can handle UDEs and limited resource situations.

We leverage the facts that FSM are intuitive and easy to use. We defined the RFSM,

which is a composed FSM with global and/or local input restrictions that takes into

account the resource limitations, and we defined the ReFSM and ReRFSM based on

the composition and pruning operations of the FSM to handle UDEs. We proved

that the optimal policy of a composed FSM is obtained by union of optimal policies

of its component FSMs. Thus, even if the number of component FSMs is large, the

optimal policy of the composed FSM can be obtained without computational diffi-

32

culties. Many real-world problems are formulated by RFSM to take account resource

limitations; however, in the case of the RFSM, the union policy is unavailable, and it

is computationally difficult to obtain the optimal policy if the number of component

FSMs is large.

However, in general, the optimality of the ReFSM or ReRFSM is not achieved

by obtaining the local optimal policies of the composed FSMs in ReFSM or RFSMs

in ReRFSM in UDEs, where FSMs are composed or pruned in a completely unpre-

dictable manner. Thus, DP for ReFSM or ReRFSM does not guarantee an optimal

policy, and it may perform worse than LBFS for ReFSM or ReRFSM. In the case of

ReFSM, DP for ReFSM may stay near the optimal policy because the local optimal

policies are connected to each other by the union policy, but in the case of ReRFSM,

the local optimal policies are not well connected because of input restrictions. Thus,

in the case of ReRFSM, the local optimal policy may be useless.

Obtaining the optimal policy of ReRFSM is impossible without knowing the future

perfectly, which is seldom the case in reality, and obtaining local optimal policies in

ReRFSM may be useless, so using LBFS for ReRFSM in real-world scenarios in UDE

and limited resource situations is reasonable.

33

CHAPTER III

Task Scheduling for Radar Resource Management

in Dynamic Environments

3.1 Introduction

In this chapter, we study phased array radar resource management in dynamic

environments. By management, we mean task assignment and scheduling. By dy-

namic environments, we mean that the environment may change unpredictably in

time, thus the name UDE. In our scenarios, first, a phased array radar allocates re-

sources in a dynamic environment when the resources are limited; second, multiple

phased array radars work together to allocate resources in a dynamic environment

when the resources are limited.

We develop a phased array radar scheduler and test it for single radar and mul-

tiple radar scenarios. We focus on making decisions of how to allocate finite radar

resources when the resources are not sufficient to perform all tasks, in a dynamically

changing environment. In other words, our focus is on task scheduling when the set

of tasks to be performed changes dynamically and the ability to perform tasks is

resource-constrained. Thus, we do not consider all physics of the radar; instead we

only consider key physics of the radar that affect decision making. The key radar

physics were suggested by radar modeling experts at ONR. Here, we mainly focus

34

on allocation of radar resources to area search and threat tracking for discrimination

subject to given constraints, and on implementation of our own original methodology

for dynamic modeling and efficiency. By discrimination, we mean collecting informa-

tion to identify the threat. We use ReRFSM to design a scheduler for the radar and

apply DP to obtain the policy, or heuristics to obtain the policy/solution.

3.1.1 Motivation

Our motivating problem is as follows. Consider a geographic area in which two

enemy forces operate. The red force consists of multiple threats (used to represent

either missiles or aircraft). The blue force consists of ships that carry multi-function

phased array radars. The ships are deployed throughout the area; they use their

radars to detect threats, and can communicate among themselves. The goal of the

red force is to destroy the blue force. The goal of the blue force is to detect and

destroy the red force. Our goal is to provide algorithms to detect, discriminate, and

obtain as much information as possible on threats, which is then sent to an interceptor

unit that processes (attempts to destroy) the threats. This is realistic in view of the

standard separation of responsibilities on battleships. We refer to the tasks performed

by our algorithms as radar resource management.

Radar resource management belongs to the broad class of task allocation (who

does what?) and scheduling (when?) problems. Current radar resource management

algorithms are limited to a single radar. Radar resource management is challenging

because radar resources are limited; in some scenarios the workloads are severe, and

the enemy often attempts to overwhelm the radar.

Our designs do not contain all the physics and details necessary for individual

radar control. But they are appropriate for the study of distributed policies/solutions

and communication strategies. A distributed system can achieve cooperation of radars

using communications. Distribution of tasks across the fleet (to avoid duplication of

35

effort) and communication of information between radars may be advantageous. For

distributed fleet-level radar systems, each radar uses its own scheduler rather than one

global scheduler. A distributed architecture is advantageous compared to a centralized

one from the standpoints of computational time and flexibility of organization.

In addition, the radar resource management must deal with a dynamic environ-

ment. The blue force does not know a priori how many threats the red force has at its

disposal, or their nature. Every time a new threat is detected, the situation awareness

must be updated, and discrimination and tracking are initiated, resource-permitting.

Specifically, we consider the following scenarios.

Scenario 1 Consider a phased array radar on a ship, in high seas, surrounded

by many threats. The ship is located in a two dimensional geographic area, and all

threats are moving toward the radar (or ship) with constant speeds. The number

and location of threats are unknown and unpredictable, which makes the environ-

ment dynamic and unpredictable. The radar must achieve its goals by allocating a

finite amount of resources. The goals of the radar are to ensure zero leakage and to

discriminate as many threats as possible. Zero leakage means that the radar should

be aware of the threats if they are within a certain range.

Scenario 2 Consider the same battle situation as scenario 1 with multiple ships.

Each ship is equipped with one phased array radar that has a finite amount of re-

sources. The goals of the radars are the same as in scenario 1, and the radars have

to cooperate to achieve the goals using the finite resources of each radar.

3.1.2 Literature Review

There have been many approaches to model and control of battlespaces. In [22, 34,

64], time-based state space models are used to represent a stochastic system. Discrete

system based modeling for adversarial situations can be found in [45, 91] using finite

state machines and in [35] using hybrid automata. To represent a discrete decision

36

process, a finite state automaton is used in [50].

A number of papers have studied allocation of multi-function radar resources.

Visnevski et al. [102] model the emitter of a multi-function radar based on a gener-

alized semi-Markov process in electronic warfare. Watson and Blair [103] calculate a

revisit time to track maneuvering targets using the Interacting Multiple Model. They

mix multiple models’ states using a Markov process, and estimate the next states to

calculate the revisit time. However, they only consider a tracking task even if the

radar can perform multiple tasks simultaneously such as searching and tracking. In

addition, they do not consider overwhelming situations where the resources are not

sufficient to perform all tasks. Blair et al. [13] propose a benchmark problem for

highly maneuverable targets. The purpose is to obtain beam pointing control of a

phased array radar against highly maneuverable targets in the presence of false alarms

and Electronic Counter Measures. They provide a structure of the solutions, so each

participant codes his own “tracking algorithm” in the structure to solve the problem

to achieve the given performance goal. However, the solution focuses on minimizing

tracking error and the targets are already specified for the problem, which is not

suitable for realistic battle situations.

Ting et al. [96] develop a dwell scheduling algorithm for a multi-function phased

array radar based on a combination of heuristics and scheduling gain in real time.

Gosh et al. [44] propose a phased array radar model that does resource allocation

and scheduling using a Quality of Service (QoS)-based resource allocation model

optimizer and improper nesting of the radar dwells. They allocate the radar resources

to each task and also schedule the allocated resources to the radar to meet a jitter

requirement. By jitter, we mean a deviation pulse from a digital signal. However,

they allocate resources to all tasks, which implies that if there are too many tasks, the

radar lowers the utilization bound for the tasks, which causes poor radar performance.

Furthermore, none of those radar models are appropriate for multi-radar systems.

37

Many of multi-function radar tasks scheduling works are based on prioritization.

Miranda et al. [69, 67] allocate the radar resources using task scheduling and compare

the scheduling algorithms. The scheduling depends on the pre-assigned priority of the

tasks allocated to the radar. In [68], the authors develop an adaptive prioritization of

the tasks based on a fuzzy-reasoning-based algorithm in dynamically changing tactical

environments and compare their design with other prioritization methods. Jiménez et

al. [49] model a radar task scheduler using three stages: task priorization, a schedul-

ing algorithm, and temporal planning, and compare different scheduling algorithms.

Duron and Proth [29] maximize the number of useful tasks performed, taking into

account their priorities. However, the solution depends on the pre-assigned priorities,

so the solution may not be optimal. It also depends on probabilities of certain events,

which, in practice, are unknown. Therefore, in an overwhelming situation, the radar

only performs high priority tasks, which could yield problems such as leakage within a

search area because the searching tasks usually have lower priority than the tracking

tasks. By leakage, we mean that the radar fails to be aware of the threats when they

are in a certain range. Moo [72] develops a method for the scheduling of prioritized

tracking and surveillance tasks based on a two-slope benefit function where tracking

and high priority surveillance tasks are scheduled first, then lower priority surveillance

tasks are scheduled.

Moo and Ding [73] consider a multi-radar configuration, where the networked

phased array radars are connected by a communication channel and share the tracking

and detection data, and verify a benefit over the independent radars configuration.

Severson and Paley [89] describe a distributed multi-radar system. They calculate the

optimal position and search radius of the radars to maximize the unified searching

area among the radars in a given environment. Also, they allocate the tracking tasks

to each radar to balance each radar’s utilization. However, there are limitations

for dynamic situations, because of assumptions such as the number of targets that

38

the radar can track. These assumptions are not suitable for dynamic environments

scenarios because in practice the number of threats is unpredictable.

In addition, many radar control schemes do not consider overwhelming situa-

tions, which are important in our case. Many other radar control schemes focus on

how to allocate the radar resources to maximize the radar usage while we focus on

how to choose the tasks to perform when the radar cannot perform all the tasks

because of resource limitations. Tumová et al. [99] consider instances when all of

the given specifications cannot be reached simultaneously due to their incompatibil-

ity or environmental constraints, which is an overwhelming situation. They find the

least violating control in the environment with respect to the given set of mission

specifications using a Büchi automaton and a Nested Depth-first Search, which is

computationally advantageous compared to exhaustive search. However, unlike [99],

we do not have strict behavior rules nor final constraints. Instead, rules are embed-

ded in the cost function, so by minimizing or maximizing the objective function, we

obtain a policy/solution.

In [88, 106], we developed a framework for a phased array radar model control

using FSM and we applied DP to the FSM. In this chapter, we reformulate the

problem using ReRFSM. We also develop a more sophisticated radar scheduler based

on our prior work to obtain the policy/solution and test a distributed architecture

with multiple radars.

3.1.3 Original Contributions

The original contributions of this chapter are as follows:

1. Radar task scheduler design using ReRFSM: We develop a phased array radar

scheduler based on FSM that describes the world with a set of discrete states; the

design is amenable to studying radar configurations for fleets. We design mission

RFSMs that allow the consideration of limited (radar) resources. RFSMs can

39

take into account limited resources by restricting some transitions during the

composition. We then design ReRFSMs that allow the state space of a mission

RFSM to change dynamically; they are suitable to model dynamically changing

environments.

2. Policy generation for radar resource management in dynamic environments us-

ing DP: We generate policies for a phased array radar system to allocate the

radar resources in dynamic environments by applying DP to ReRFSM. The re-

sulting policy allows us to find the radar resource allocation. DP yields a policy

for every state, so even though a state may jump to another state unexpectedly,

we always have a policy for the resulting state. In other words, if the current

decision is interrupted, the policy gives an alternative solution within the state

space.

3. Policy or solution generation for radar resource management in dynamic envi-

ronments using heuristic methods: We generate the polices and solutions for

a phased array radar or a multi-radar system to allocate radar resources in

dynamic environments even if the radar system encounters an overwhelming

situation; Sliding Window Control (SWC), BFS, and (LBFS) are considered.

When the number of threats is large, we generate radar resource management

policies using SWC and solutions using BFS or LBFS.

4. Distributed multi-radar systems and communication: We develop a distributed

architecture for fleet-level radars over communication networks that improves

the overall system’s performance compared to a decentralized system, without

a significant trade-off such as computational time.

To model dynamically changing environments is important because many real

world situations are dynamically changing. However, modeling dynamic environ-

ments is not easy because it is not possible to perfectly predict dynamically changing

40

environments. Thus, a method is needed to capture dynamically changing environ-

ments easily and precisely.

Resource allocation is also important because in practice, resources are limited,

so not all desired tasks are performed at the same time step. Resources are used by

agents to perform tasks at every time step, and their amount is quantifiable. A multi-

function phased array radar has limited resources at a given time step. Sometimes,

it is impossible to perform all tasks in the time step because of resource limitations;

consequently it is important to choose the tasks to perform first.

Furthermore, in a multi-radar system, cooperation is important because it saves

resources, so the radars can perform more tasks. Thus, we present a distributed

architecture where the radars can cooperate over a communication channel.

3.2 Radar Modeling

We consider a two dimensional geographic area for the phased array radar model.

The radar is physically at the center of a circular disk divided into sectors of equal

aperture (Fig. 3.1). A radar can search within a circular area with radius rmin and

the area is divided into m radar area sectors. Each sector may contain a number of

threats. The radar is capable of searching sectors and focusing attention on specific

threats, and does so using power. Accordingly, the radar resources are power, and

the radar can use a maximum power of Ptotal at each time step. Then, the resources

constraint of the radar at each time step k is

s1(k) + s2(k) + ...+ sm(k) + t1(k) + t2(k) + ...+ tn(k) ≤ Ptotal, for all k, (3.1)

where si is the transmitted power (Ptrans) to sector i, m is the total number of radar

area sectors, tj is the transmitted power to threat number j, and n is the total number

41

of threats.

Figure 3.1: Example of radar area sector.

The integers si and tj have the following constraints at each time step k:

si(k) = 0 or Bs ≤ Ptransmax , i = 1, 2, ...,m,

0 ≤ tj(k) ≤ Ptransmax , j = 1, 2, ..., n,

(3.2)

where Bs is the transmitted power required for searching each radar area sector and

Ptransmax is the maximum transmitted power that the radar can use for one task. To

ensure zero leakage, the radar should search each sector at least once every maximum

revisit time (REVmax) to acquire the threat in a certain range. Assume that the

scanning rotation rate is fixed. Then, threat acquisition happens when a certain QoS

is satisfied for si. The QoS for each threat j in sector i at each time step k is given

by

QoSj(si, rj, σj, k) =
Q0si(k)σj(k)

rj(k)4
, (3.3)

where rj is the distance between the radar and threat j, σj is the radar cross section

of threat j, and Q0 is a normalization constant. Once the desired QoS (QoSdesired) is

determined, which ensures the acquisition of the target in the radar area sector, Bs

can be determined as follows. Assume that we know Q0. If we have the minimum

radar range (rmin) and the minimum radar cross-section (σmin) of the threat that the

42

radar would acquire at the minimum radar range, we can calculate Bs for QoSdesired

using the following equation:

Bs = ceil

(
QoSdesiredr

4
min

Q0σmin

)
, (3.4)

where the function ceil rounds up to the next integer and Bs ≤ Ptransmax as in (3.2).

Note that si should be binary, that is either 0 or Bs, to always satisfy the desired

QoS. Then, QoSdesired is always satisfied for any threat in a disk of radius rmin

that has radar cross-section larger than σmin. This allows the radar to ensure the

acquisition of the threat for rmin and σmin.

To discriminate the threat, we need to track the threat longer than the discrimi-

nation time (Td) with return power (Preturn) larger than the minimum required return

power (Preturnmin
) at every time step during tracking. The return power for threat j

at each time step k is

Preturnj
(k) =

tj(k)KGσj(k)

rj(k)4
, (3.5)

where KG is the radar constant. Assume that we are given Preturnmin
. Then, we can

compute the required transmitted power to the threat to satisfy Preturnmin
as function

of r:

treq(r) =
Preturnmin

r4

KGσ
, (3.6)

where treq(r) ≤ Ptransmax as in (3.2). The parameters for the radar model are sum-

marized in Table 3.1.

43

Table 3.1: Radar model parameters

Ptotal Maximum power that the radar can use at each time step
Ptransmax Maximum transmitted power that the radar can use for one task
Preturnmin

Minimum required return power for the radar to discriminate targets
Bs Required power for searching each radar area sector
Q0 Normalization constant for the radar
KG Radar constant
QoSdesired Desired QoS
rmin Minimum radar range that the radar should search
σmin Minimum radar cross section of the target that the radar should find
REVmax Maximum revisit time for the sector
Td Discrimination time for the target

3.3 Problem Formulation

The problem is formulated as follows. Assume that the phased array radar (or

radars) is (are) located at the center of a Manhattan grid along which all threats move.

The radar has an amount of resources, Ptotal at each time step k as in (3.1) and the

radar can use a maximum of Ptransmax for each threat or sector. The geographic

area is divided into m radar area sectors as in Fig. 3.1. Each sector has a revisit

deadline, REVmax (3.8), and desired QoS QoSdesired. The radar has constant KG,

normalization constant Q0, minimum distance to search rmin, and minimum cross

section to search σmin. There are nt threats moving toward the radar with different

constant speeds from different locations. The minimum required return power for

tracking is Preturnmin
and the time required to discriminate threats is Td. Given the

above data, we want to find a policy/solution for the radar to allocate its resources

by minimizing the cumulative cost.

3.4 Task Scheduler Design

The assumptions are: (i) Events are discrete, i.e., events happen slowly enough

relative to the time constants of the radar that we can eliminate monitoring of con-

44

tinuous time variables. This is the basis for employing logic-level models (FSMs). (ii)

We consider a two dimensional geographic area. (iii) We assume that the radar is

not allowed to have resources left at any time step if there is any task left. (iv) We

assume perfect communications between the radars of the multi-radar system. By

perfect communication, we mean no information loss, no delay and no fail.

3.4.1 Sector Finite State Machine

We keep track of the revisit time for each sector i. The revisit time for each sector

i at time step k (REVi(k)) satisfies

REVi(k + 1) = REVi(k) + 1, if si(k) = 0,

REVi(k + 1) = 0, if si(k) > 0.

(3.7)

Then, the constraint to ensure zero leakage is:

REVi(k) ≤ REVmax, for all k, (3.8)

where REVmax is the maximum revisit time for all sectors that the radar should search

before the sectors reach REVmax. This constraint makes the radar search each sector

at least once every REVmax time steps. We want to discriminate as many threats as

possible with respect to the constraints described above.

We use the formalism of FSMs to model the radar area sectors. Fig. 3.2 shows

the FSM for a radar area sector when the revisit deadline (REVmax) is four. Thus,

Bs means the sector is searched and 0 means the sector is not searched. Each sector

only allows four time steps of not being searched. Wherever the state is, if the input

is Bs, REV is reset to zero.

A Sector FSM is a four-tuple (no output alphabet and output function). The

state space is X = {SEARCH, NO SEARCH1, NO SEARCH2, NO SEARCH3,

NO SEARCH4}. The input alphabet is U = {0, Bs}. The initial state is x0 =

45

Figure 3.2: Sector FSM when REVmax = 4.

SEARCH. The next state function is fs:

xs(k + 1) = fs(xs(k), s), (3.9)

where xs is the state of each radar sector for searching and fs is defined in Fig. 3.2.

3.4.2 Threat Finite State Machine

As we stated in Section 3.2, to discriminate the targets, we need to keep a record

of tracking time for each threat. The consecutive Tracking Time for each threat j at

time step k (TTj(k)) always starts from zero (TTj(0) = 0), and satisfies:

TTj(k + 1) = TTj(k) + 1, if Preturnj
(k) ≥ Preturnmin

,

TTj(k + 1) = 0, if Preturnj
(k) < Preturnmin

.

(3.10)

As we describe in Section 3.2, treq guarantees Preturn ≥ Preturnmin
. The reward for

discrimination of the threat j, Rj, at each time step k is,

Rj(k) = 1, if TTj(k) ≥ Td,

Rj(k) = 0, otherwise.

(3.11)

Once Rj = 1, we do not evaluate the reward for threat j again. Fig. 3.3 shows an

FSM for tracking time for threats when the discrimination time (Td) is four. Thus,

treq means the threat is tracked, 0 means the threat is not tracked and Rew is the

46

set of real numbers where the reward (R) resides. Each threat is discriminated after

being tracked for four consecutive time steps. Wherever the state is, if the input is 0,

TT is reset to zero except in the last state because the threat is already discriminated.

Figure 3.3: Threat FSM when Td = 4.

Each detected threat FSM can be represented by a six-tuple. The state space

is X = {NO TRACK, TRACK1, TRACK2, TRACK3, DISCRIMINATED}.

The input alphabet is U = {0, treq} and the output alphabet is Y = Rew, where

Rew is the set of real numbers where the reward (R) resides. The initial state is

x0 = NO TRACK. The state transitions are governed by:

xt(k + 1) = ft(xt(k), t), (3.12)

where xt is the state of each detected threat for tracking, ft is defined in Fig. 3.3 and

t is the transmitted power assigned to the threat. The output is:

yt = gt(xt(k), t), (3.13)

where yt is the output and gt is defined in Fig. 3.3.

3.4.3 Mission Restricted Finite State Machine

By composing the sector FSM and the threat FSM, we obtain an RFSM for the

mission. Assume that we havem sectors and n threats. Then, during the composition,

the input alphabet of the mission RFSM, U , is defined as follows:

47

U = {u ∈ U1 × U2 × ... × Un × Un+1 × Un+2 ... × Un+m : sumP (u) ≤ Ptotal},

(3.14)

where sumP (u) means sum of the required powers to perform the input u. The input

alphabet is restricted by (3.1).

The representations of sector FSM and threat FSM are convenient because com-

position of these FSMs allows the representation of all states of the system. Thus,

DP can explore every situation and find the optimal policy for all possible situations.

In other word, the optimal policy knows what it should do at every state.

3.4.4 Cooperation

For the distributed system with communication, consider the formation of three

phased array radars shown in Fig. 3.4. Each radar has the same rmin and the same

m = 4. The areas monitored by the individual radars overlap. We set a threshold

such that if one radar sub-area overlaps with at least a certain percentage (say, 90%)

of another radar sub-area, we assume that the two sub-areas are the same. Under

this assumption, we can say that sub-areas 4A and 2B are the same, as are sub-areas

4B and 2C. These sub-areas are defined as redundant sub-areas.

Figure 3.4: Multi radar sectors example.

We introduce a distributed architecture over a communication channel as follows.

The radars share the revisit times of redundant sub-areas. For example, in Fig. 3.4,

the first radar and second radar share the revisit time for sub-area 4A = 2B, and the

48

second radar and third radar share the revisit time for sub-area 4B = 2C. Thus, if

the first radar searches the sub-area 4A, the state of both mission RFSMs of the first

and second radars are updated accordingly. In other words, sharing the revisit times

of redundant sub-areas can update the states of the relevant radars. Then, even if

the whole system is not centralized, this system architecture gives better radar area

search performance than the decentralized system because in the decentralized case,

individual radars only implement their own policy/solution without regard for the

policies/solutions of other radars. Hence, in the decentralized architecture, redun-

dant sub-areas may be searched more frequently than other sub-areas, where the

distributed architecture searches evenly. In addition, all the radars share information

about discriminated threats. Thus, the states of the mission RFSMs of the relevant

radars are updated based on the information. As a consequence, the system does

not track a threat if it has been discriminated by one of the radars. Furthermore,

the tasks are assigned to the idlest radar first, so the radars that have fewer tasks

than the neighboring radars are able to help the neighboring radars by searching the

redundant sub-areas. This allows radars to save resources and improves the overall

system performance.

3.5 Policy and Solution Approach

Given a ReRFSM, different methods can be applied to obtain the policy and

the solution. Each component of the ReRFSM is assigned a transition cost. The

transition cost is assigned by a heuristic using REV , TT , r and v of the threat at the

time when the FSMs are created. The transition cost of the ReRFSM is the sum of

the transition costs of its components as described in Sec. 2.2.6. When composition

occurs, the transition cost of the new component is added to the transition cost of the

ReRFSM. When pruning occurs, the transition cost of the pruned FSM is subtracted

from the transition cost of the ReRFSM.

49

3.5.1 DP for ReRFSM

Note that the optimal policy of a composed FSM is obtained by the union of the

optimal policies of its component FSMs as shown in Sec. 2.4. However, for RFSM,

this does not hold due to the restricted inputs in RFSM as shown in Sec. 2.5. Thus,

the optimal policy of RFSM has to be obtained by applying DP directly to the whole

RFSM.

ReRFSMs allow the state space of an FSM to change dynamically as defined in

Section 2.2.5. For example, in our scenario, when the radar detects new enemies,

threat FSMs are created and composition occurs. If a threat is discriminated, the

FSM of that threat reaches an absorbing state and pruning occurs when needed. The

algorithm of DP for ReRFSM for the radar task schedule is shown in Algorithm 3.

Algorithm 3 DP for ReRFSM

1: π∗(k) ← DPforReRFSM(nt(k), nt(k − 1))
2: if nt(k) 6= nt(k − 1) then
3: for i = 1 to m do
4: FSMsi ← sector FSM of sector i
5: Φsi ← transition cost of FSMsi

6: end for
7: for j = 1 to n do
8: FSMtj ← threat FSM of threat j
9: Φtj ← transition cost of FSMtj

10: end for
11: RFSMsys← FSMs1 ×̄ FSMs2 ×̄ ... ×̄ FSMsm ×̄ FSMt1 ×̄ FSMt2 ×̄ ... ×̄ FSMtn

12: for j = 1 to n do
13: if FSMtj needs to be pruned then

14: RFSMsys ← RFSMsys /̄ FSMtj

15: end if
16: end for
17: π∗(k) = DP(RFSMsys, Φ, K)
18: else
19: π∗(k) = π(k − 1)
20: end if
21: return π∗(k)

50

3.5.2 Heuristics for ReRFSM

The motivation for this section is that DP suffers from the curse of dimensionality.

The first idea is to only use the inputs that use more than a certain threshold of power,

Plb, because in an overwhelming situation, using as many resources as possible can

take many tasks. Furthermore, we consider the following methods.

Algorithm 4 SWC for ReRFSM

1: π(k) ← SWCforReRFSM(nt(k), nt(k − 1), window(k), window(k − 1))
2: if nt(k) 6= nt(k − 1) then
3: if n > q then
4: ntwin(k) ← sort(nt(k))
5: n̄ ← q
6: else
7: ntwin(k) ← nt(k)
8: n̄ ← n
9: end if
10: end if
11: if nt(k) 6= nt(k − 1) or window(k) 6= window(k − 1) then
12: for i = 1 to m do
13: FSMsi ← sector FSM of sector i
14: Φsi ← transition cost of FSMsi

15: end for
16: for j = 1 to n̄ do
17: FSMtj ← threat FSM of threat j in ntwin(k)
18: Φtj ← transition cost of FSMtj

19: end for
20: RFSMsys← FSMs1 ×̄ FSMs2 ×̄ ... ×̄ FSMsm ×̄ FSMt1 ×̄ FSMt2 ×̄ ... ×̄ FSMtn̄

21: for j = 1 to n̄ do
22: if FSMtj needs to be pruned then

23: RFSMsys ← RFSMsys /̄ FSMtj

24: end if
25: end for
26: π(k) = DP(RFSMsys, Φ, K)
27: window(k) ← update(ntwin(k), π(k))
28: else
29: π(k) = π(k − 1)
30: window(k) ← update(ntwin(k), π(k))
31: end if
32: return π(k), window(k)

51

3.5.2.1 Sliding Window Control for ReRFSM

We only consider urgent threats when the number of threats is large. When the

number of threats is large, it is computationally impossible to generate the policy

because the state space and input space are extremely large. Thus, in this situation,

the scheduler sorts the threats by predefined priority, and generates a policy for the

window that contains the first q highest priority threats. As soon as at least one of

the threats is taken care of, the window is slid over to generate the next policy. With

this method, many threats can be taken care of without computational complexity.

We call this a SWC.

In SWC, the number of detected threats is evaluated and if the number exceeds

the threshold, q, SWC generates a sliding window of threats by priority. Then, DP

is applied within the window to obtained the policy for the window. The algorithm

of SWC for ReRFSM for the radar task schedule is shown in Algorithm 4.

3.5.2.2 Breadth-First Search and Limited Breadth-First Search for ReRFSM

Using DP for ReRFSM is computationally expensive even if we use SWC, es-

pecially if REVmax and Td are large. In addition to that, if the environment is

rapidly changing, for example, the number of detected threats is rapidly changing,

the ReRFSM has to be recomposed frequently, so the previous policy is useless as

described in Sec. 2.7. In such situations, we may not need DP for ReRFSM for the

policy; instead we may want to find the solution for the current state. We may lose

robustness of the policy, but if the solution is obtained fast enough, we can quickly

generate the solution for any state. Thus, we use BFS or LBFS algorithm with fixed

depth (fd) to get the solution for the current state as we described in Sec. 2.6.2. The

algorithms for BFS or LBFS for ReRFSM are similar to Algorithm 3.

52

3.6 Scheduler Architecture

Figure 3.5: Scheduler diagram.

In this section, we describe the scheduler architecture used to perform radar re-

source management. The scheduler consists of subsystems (a) through (h), as shown

in Fig. 3.5. The inputs of the scheduler from the radar are return power, speed

of detected threats, distance between detected threats and the radar, and QoS. The

outputs to the radar are the assigned transmitted power for each threat and sector.

The descriptions of and relationships between the subsystems are as follows.

(a) Environment Evaluator (EE): EE evaluates environment situations based on the

inputs from the radar, such as number of detected threats, to decide whether

the system needs to generate a new policy/solution or use the previous pol-

icy/solution. If a new policy/solution is needed, go to (b): otherwise, go to

(d).

(b) Radar Resource Distributor (RRD): Assigns transmitted power to all the sectors

53

and all the threats. If there is not enough available power to do this assignment,

go to (c): otherwise, go to (e) and (f).

(c) Radar Resource Allocator (RRA): Use DP for ReRFSM or SWC for ReRFSM

to obtain a policy, or use BFS for ReRFSM or LBFS for ReRFSM to obtain

solution.

Note that in the above sequence of actions, we use DP only when we reach (c) in the

sequence. In addition, if the numbers of radar sectors and threats are large, we use

heuristics in RRA to reduce the computation time.

(d) Policy Reader (PR): PR interprets the policy/solution generated by RRA in

terms of radar resources for each sector and threat, then gives the result to the

radar.

(e) Threat FSMs: Threat FSM takes assigned transmitted power for each threat

as inputs and updates the states.

(f) Sector FSMs: Sector FSM takes assigned transmitted power for each radar

sector for searching as inputs and updates the state.

(g) Performance Evaluator (PERF): PERF generates an index to evaluate radar

performance easily.

The joint operation of the radar and scheduler can be summarized as follows.

It starts from the RRD by receiving inputs from the EE. Then, the system assigns

transmitted power to all tasks and evaluates the maximum power constraint. If the

power constraint (3.1) is not violated, the system yields the final resource allocation

result for the radar. If the constraint is violated, the system moves to RRA. Then,

RRA yields the resource allocation policy/solution using one of the approaches. Then,

the PR interprets the policy/solution into resource allocation results for the radar

54

inputs according to the current state and saves the policy. The radar takes the inputs

from the scheduler and returns information on the radar area sectors and detected

threats to the EE. Then the EE decides whether the system needs to generate a new

policy/solution or use the current one. After all inputs for the radar are generated,

PERF yields a performance index to evaluate the performance of the inputs.

3.7 Simulations and Results

We simulate two scenarios as described in Section 3.1.1: a one radar case, and

a three-radar case. For both scenarios, the goal of the radar(s) is to detect and

discriminate the threats. Once the threats are discriminated, information about them

is sent to an interceptor unit that destroys them. For the one radar case, we compare

four methods for ReRFSM for a small scale simulation: DP, SWC, BFS, and LBFS,

to find out whether using heuristics generates as good a policy/solution as using DP.

We then use SWC and LBFS for a large scale simulation. For the three-radar case, we

only use LBFS but we compare centralized and distributed architectures. To compare

each method, we use performance metrics as defined in Table 3.2.

Table 3.2: Performance metrics

Metrics Descriptions

timemax Maximum computation time: the longest time for DP, SWC, BFS, or LBFS

to generate the policy/solution.

FAIL Number of fail cases where the Red force wins, that is, a threat reaches the

radar before detection or discrimination.

REVavg Average revisit time of all sectors: a large value means that the radar does not

search the sectors often and evenly, so a small value is desired.

REVhigh Highest revisit time of the sectors: a smaller value than REVmax is desired.

TIavg Average time to impact when the threat is discriminated: a small value means

that the radar discriminates the threats late, so a large value is desired.

TIlow Minimum time to impact when the threat is discriminated: a small value

means that the radar discriminates the threats late, so a large value is desired.

55

3.7.1 One radar case: small scale

Figure 3.6: Snapshot of one radar scenario.

We first run small scale simulations that the radar handles easily to compare

the solution approaches (DP, SWC, BFS, and LBFS) and their simulation times.

A snapshot of a one radar scenario is shown in Fig. 3.6. The ship and radar are

indicated in blue, and threats are indicated by red stars. For the simulations, we set

the variables as shown in Table 3.3.

Table 3.3: One radar scenario simulation variables
Ptotal 200 Q0 15,000
Ptransmax 64 rmin 30
m 4 σmin 2
REVmax 2 nt 5
QoSdesired 2 Td 2
KG 20,000 Plb 140
fd 4 CCub 35,000
Preturnmin

5

We set priorities for our sliding window by using time to impact as a metric, and

set a maximum of three threats as a threshold for SWC. We run 30 simulations using

the same variables but with different initial positions and speeds for each threat. The

average performance metrics for the 30 simulations are shown in Table 3.4.

56

Table 3.4: Average performance metrics for small scale simulations for one radar

DP SWC BFS LBFS
timemax 7.74 3.82 0.60 0.44
FAIL 0 0 0 0
REVavg 0.36 0.36 0.33 0.33
REVhigh 2 2 2 2
TIavg 12.39 12.41 12.53 12.53
TIlow 5.22 5.23 5.32 5.31

In terms of maximum computation time, the LBFS is the best, followed by BFS,

SWC and DP. The maximum computation time for the LBFS is only 0.44 seconds

while for DP it is 7.74 seconds, a factor of 18 times.

No method encounters a fail case. The other performance metrics are not signif-

icantly different between each method. BFS and LBFS yield slightly better perfor-

mance metrics (smaller REVavg and larger TIavg and TIlow) than DP and SWC. It is

because the BFS and LBFS update ReRFSM at every time step, which allows them to

use the latest information on the threats, while DP and SWC only update ReRFSM

when a new threat FSM is added because the policy can be used before a new threat

FSM arises. As we mentioned earlier, if the environment changes are frequent, we

may not need the full policy; instead, we need the solution for the current state, as

the simulation results suggest.

Therefore, we can conclude that the LBFS performs as well as DP on the metrics

that were evaluated, and significantly reduces computation time. In addition, LBFS

yields better decisions as DP, so we can save much computation time by using LBFS.

This suggests that LBFS may be a good method for large scale problems.

3.7.2 One radar case: large scale

We then simulate larger scale problems that the radar does not easily handle by

increasing nt, REVmax and Td. For the large scale simulations, we set the variables

57

as shown in Table 3.5.

Table 3.5: One radar scenario simulation variables
Ptotal 200 Q0 15,000
Ptransmax 64 rmin 30
m 4 σmin 2
REVmax 3 nt 20
QoSdesired 2 Td 4
KG 20,000 Plb 140
fd 4 CCub 35,000
Preturnmin

5

In addition, we set priorities for our sliding window by using time to impact as

a metric, and set a maximum of three threats as a threshold for SWC. We run 10

simulations using the same variables but where initial positions and speeds for each

threat are different. The average performance metrics of the 10 simulation results are

shown in Table 3.6.

Table 3.6: Average performance metrics for large scale simulations for one radar

SWC LBFS
timemax 465.73 [s] 8.05 [s]
FAIL 0.5 0.1
REVavg 0.58 0.83
REVhigh 3 3
TIavg 7.63 10.48
TIlow 0.88 1.81

The maximum computation time for LBFS is much faster than SWC, around

58 times faster. Because the number of threats is large for our configuration (20),

there are some fail cases. Consequently, TIlow is small, which means that the radar

discriminates some threats at very close range to the radar. However, TIavg for LBFS

is 10.48, which means that the radar still discriminates most threats far enough from

the radar if we compare this to the small scale problem (where the range was 12.39 -

12.53).

58

The main difference between SWC and LBFS is that the SWC yields better per-

formance for REVavg while LBFS yields better performance for TIavg and TIlow. It

is because the SWC can only handle three threats at each time step, so SWC uses

the remaining resources for sector searches. Meanwhile, LBFS uses more resources

for threat tracking as far as the sectors do not reach the maximum revisit time. Con-

sequently, LBFS can handle more threats than SWC and ensure revisit deadlines for

the sectors, so LBFS generates fewer fail cases, that is, LBFS outperforms SWC.

The results indicate that the radar can handle many threats using LBFS but may

fail on some threats because of limited resources.

3.7.3 Three radar case: large scale

Figure 3.7: Snapshot of three radars scenario.

For a multi-radar system, we compare a decentralized system (without communi-

cation) and a distributed architecture (with communication) as described in Section

3.4.4. Both systems are built based on LBFS. A snapshot of a three radar scenario

is shown in Fig. 3.7. Ships and radars are indicated in blue, and the threats are

indicated by red stars. For the three radar scenario, we set the variables as shown in

Table 3.7.

59

Table 3.7: Three radar scenario simulation variables
Ptotal 200 Q0 15,000
Ptransmax 64 rmin 30
m 4 σmin 2
REVmax 3 nt 20
QoSdesired 2 Td 3
KG 20,000 Plb 140
fd 4 CCub 35,000
Preturnmin

5

We run 10 simulations using the same variables, but with different initial positions

and speeds for each threat. The average performance metrics for the 10 simulation

runs are shown in Table 3.8.

Table 3.8: Average performance metrics for three radar case

Decentralized Distributed
LBFS LBFS

FAIL 0.30 / 0 / 0.40 0 / 0 / 0
REVavg 0.32 / 0.56 / 0.34 0.29 / 0.25 / 0.29
REVhigh 3 / 3 / 3 3 / 3 / 3
TIavg 2.10 / 9.09 / 3.02 2.21 / 10.31 / 3.28
TIlow 0.86 / 6.23 / 1.17 0.86 / 7.52 / 1.35

We observe that in the distributed architecture, radars mostly have better per-

formance metrics than in the decentralized system. TIavg values for the distributed

architecture are improved over those of the decentralized system. It is because the

radars in the distributed architecture share information about discriminated threats,

so as soon as the radar detects one of the threats discriminated by the other radars, the

radar gets time to impact index, TI. Also, the radars in the distributed architecture

have smaller REVavg and REVhigh. This means that, in the distributed architecture,

the second radar helps the first and third radars by searching redundant sub-areas

more frequently because they share revisit times of redundant sub-areas, so the first

and third radars can use more resources to track threats. The distributed system is

60

very useful because only simple communications (sharing only revisit time and infor-

mation on discriminated threats) improve the overall performance a great deal. A

centralized system [106] should have better results than the distributed architecture.

However, it is nearly impossible to get a solution because of the curse of dimen-

sionality of SSM, even in small scale problems. Thus, in practice, the distributed

architecture is a good method to implement radar resource management with proper

choice of communications.

3.8 Conclusions

In this chapter, we design a task scheduler for a multi-function phased array

radar using ReRFSMs for radar resource allocation in dynamically changing envi-

ronments. We design ReRFSMs that allow the state space of an FSM to change

dynamically. FSMs allow us to model the radar scheduler conveniently because they

are intuitive, easy to use and amenable to composition and pruning operations and

analysis. RFSM allows one to design a composed FSM in the presence of resource

limitations by restricting some of the inputs. We develop a phased array radar re-

source allocation algorithm using DP for ReRFSM that handles situations where the

set of tasks to be performed changes dynamically and the ability to perform tasks is

resource-constrained. DP yields a policy for every state, so we always have alterna-

tive decisions within the state space although the states may change unexpectedly.

We also design heuristic methods; SWC for ReRFSM, BFS for ReRFSM, and LBFS

for ReRFSM, and implement them in the scheduler for large numbers of threats and

large numbers for REVmax and Td. Our results show that using DP performs well

but takes more computation time compared to using the heuristics. However, there

is no significant difference in the radar performance, so our approach using LBFS is

effective. The resource allocation results depend on a cost function that is based on

a heuristic; the results are intuitive and acceptable for real-world scenarios. We also

61

develop a distributed architecture using communication for fleet-level radar systems.

The distributed architecture performs better than the decentralized one, as shown

by the facts that the distributed architecture has better overall performance metrics

than the decentralized one, and that the distributed architecture can handle more

threats than the decentralized one in the same battle situation.

62

CHAPTER IV

Unpredictably Dynamic Environment Patrolling

4.1 Introduction

4.1.1 Motivation

UAVs are a key technology for the United States Air Force in the coming decades.

Their use has been growing rapidly, for a greater variety of missions, due to increased

autonomous decision making capabilities, including mission planning. Autonomous

decision making works best if it accounts for the local environment as well as for

whether the environment is allowed to change [86]. Patrolling is the most com-

monly requested type of UAV mission; thus we use it as a prototypical example of

autonomous mission planning. Patrolling missions are used both for civilian and

military applications. Examples of civilian applications include search for survivors

of accidents or natural disasters, and surveillance for crime prevention. Examples

of military applications include searching for objects or facilities, reconnaissance of

contested areas, surveillance of important facilities and/or base camps, and data col-

lection from unattended sensors.

In patrolling, UAVs visit areas of interest to collect information autonomously.

To maximize the patrolling performance of the UAVs given the area of interest, tours

for the available UAVs that account for the mission environment need to be found.

63

Otherwise, the UAVs may spend more fuel, time or may fail to accomplish the mission.

Thus, to determine the best UAV tours for the patrolling mission, parameters of the

mission environment have to be considered, such as the size and number of areas of

interest, the kinds of tasks that need to be accomplished in each area of interest, and

flight path conditions between the areas of interest.

However, the world is unpredictable, especially in adversarial situations, and thus

the mission environment may change unpredictably in time. As such, which areas are

of interest may change: an UAV may no longer have to visit areas it was previously

assigned to but may have to visit new areas of interest instead. Furthermore, the

risk in some areas of interest may evolve in time; previously safe areas may become

too dangerous to fly over. In short, we allow for UDEs. If an UAV has a mission

plan that only considers the initial environment, it may not be able to accomplish

the patrolling mission. Therefore, the United States Air Force, and others, strive for

autonomous mission planning in UDE, as described in [86].

Consider the following UAV patrolling mission scenario: An UAV flies over a

contested area to gather information on objects of interest. The objects of interest

may be targets, important facilities or likely hostage locations. There are initial

waypoints of interest to search and each waypoint has its own priority, hence the UAV

may need to visit the higher priority waypoints as soon as possible. Furthermore, some

of the paths between the waypoints may not be available because of dangerous flight

conditions such as enemy presence. Once the initial tour is decided, the UAV starts

to gather information. Based on the collected information, some waypoints might not

warrant a visit anymore and new waypoints might be added. In addition, some safe

paths may in truth be unsafe, or some unsafe paths may be safe. Finally, the UAV’s

patrol may be interrupted for many reasons, such as a human operator wanting to

check a specific waypoint immediately or some waypoints being impossible to visit

(e.g., it may be impossible to get a clear picture).

64

Thus, we develop an UAV mission planner that can handle such UDE patrolling

scenarios. We design a mission planner for the UAV patrolling problem in UDE

using ReRFSM. ReRFSM can handle UDE by allowing the state space of a FSM to

change dynamically to follow the environment. ReRFSM can represent the problem

by prohibiting some of the transitions during the composition. By applying DP to

ReRFSM, a robust policy is obtained and by applying a heuristic method, LBFS,

to ReRFSM, a solution is obtained. By robust, we mean that DP yields a policy

for every state, so even though a state may change unexpectedly, we always have a

policy for the resulting state. Thus, even though the current plan may be interrupted,

the policy has an alternative plan within the state space. This comes at the cost of

(off-line) computation; the method is thus applicable to small problem instances. For

large problem instances, LBFS quickly generates a solution for the current state.

4.1.2 Literature Review

Autonomous vehicle patrolling has been studied at great length in the literature.

In [5], the problem is modeled using a graph, and each vertex has a relative deadline,

which is the time for the intruders to reach a base from the vertex. Thus, the UAV

has to visit all the vertices in such a way that the intruders do not have enough

time to reach the base from their current vertex. In [38], teamed UAVs perform

surveillance near a base relying on Unattended Ground Sensor (UGS) placed on the

roads to detect the intruders. The UAVs have to visit UGSs to find intruders, so

the path is determined based on revisit deadlines of UGSs and the probability of

intercepting the intruder. In [33], a scheme is presented for dynamic classification-

driven sensor optimization under incomplete information and for objects with time-

varying dynamics.

The UAV patrolling mission treated in this chapter is similar to the TSP or VRP.

The TSP is formulated as follows: given the locations of a set of cities, find the

65

shortest tour for a salesman such that the salesman visits all the cities exactly once.

There exist many variations and heuristic solutions of the TSP in the literature. One

of the most successful heuristics is the k-opt heuristic, specifically the LK heuristic

[57]. An algorithm that transforms the heterogeneous, multiple depot, multiple UAVs

routing problem to the Asymmetric Traveling Salesman Problem (ATSP) is proposed

in [76], so the well known LK heuristic can be applied to solve the problem. In [85],

the authors solve the TSP for Dubins’ vehicles, which are a standard kinematic model

abstraction for UAVs, where the vehicles are assumed to operate in a 2D plane and

have turn rate constraints, so that the paths between points may be straight lines or

arcs of circles.

The VRP originated in a truck dispatching problem in [24]. The truck dispatching

problem is a generalized version of the TSP: Given fleets of delivery trucks, bulk

terminals, and many service locations to visit, find a route for each truck such that all

service locations are visited and the total length of all routes is minimized, considering

that the trucks have limited capacity. The VRP is formulated in more detail in [19],

the general form of the problem under consideration is: Given a set of locations with

requirements and limited capacity vehicles that deliver goods from a single depot,

minimize the total cost. Many exact solutions and approximation algorithms for the

VRP have been proposed; a number are discussed in [56]. Minimizing emissions and

fuel consumption are considered in [40].

Dynamic versions of the VRP are proposed in [78] (DVRP) and in [12] (DTRP).

They consider dynamically changing environments. In [84], the UAV is required

to visit a dynamically growing set of targets while traveling a Dubins’ path. The

authors propose an algorithm to find solutions and study the stability of solutions to

the problem. This work is extended in [31] for multiple UAVs. In [14], the authors use

a queueing approach to design cooperative control and task allocation strategies for

DVRP with priorities, and many variations of VRP exist in the literature [37, 35, 36].

66

The literature does not contain methods that allow one to deal with simultaneous

addition and deletion of waypoints, (changing) priorities of waypoints and (changing)

availability of paths between waypoints, for example for UAV patrolling. These sce-

narios are, however, highly realistic. Thus, in this chapter, we aim to develop an UAV

mission planner that can handle such an UDE and consider the effects of priorities of

the waypoints and no fly zones on the paths.

4.1.3 Original Contributions

The original contributions of this chapter are as follows:

1. We design UDE patrolling strategies in the FSM framework using ReRFSM.

UDE allows for changing online the number of waypoints, their priorities, and

availabilities of the paths. Our ReRFSM design can handle UDE by allowing

the state space to change vigorously to accommodate the changing environment.

2. We generate mission planning policies for an UAV in UDE using DP for ReRFSM.

Using DP, we generate policies for every state, allowing optimal and robust mis-

sion planning in UDE.

3. We generate mission planning solutions for an UAV in UDE using a heuristic,

LBFS for ReRFSM. Using LBFS, we generate a solution for the current state

for large scale problems.

4. We introduce patrolling policies for multiple UAVs in UDE using DP for ReRFSM:

By modifying the inputs of ReRFSMs, we obtain policies for multiple UAVs.

We consider the two-UAV case as a proof of concept.

67

4.2 Mission Design

Our design is based on two different state machines: the waypoints FSM, and the

task FSM. The waypoints FSM represents the position of the waypoints and starting

point as well as paths between them. The task FSM represents tasks to be performed

at each waypoint. For a complete system representation, we compose the waypoints

FSM and the m task FSMs using the composition operation with input restrictions to

get the RFSM. In the following sections, we describe the waypoints FSM, task FSM,

and restricted composition for single as well as multiple UAVs.

4.2.1 Example Problem Description

Consider the following scenario: One UAV is flying in a geographic area on a

patrolling mission, and starts off with three waypoints to visit. The waypoints have

different priorities. There is a confrontation in the area, resulting in a no-fly zone

over which the UAV may not fly (for instance, because of risk, operations by friendly

aircraft, or enemy actions). Fig. 4.1 shows the example scenario.

Figure 4.1: Example of UAV patrolling mission in an UDE.

In the left subfigure, which shows the initial environment, there are three way-

points to check, each indicated by a star. One path is not available because of

dangerous flight conditions. Based on the situation, the UAV generates an initial

plan, and it starts to visit the first waypoint according to the initial plan. However,

and this is the UDE nature of the scenario, when the UAV visits the first waypoint,

68

priorities of the remaining two waypoints are changed, new waypoints are added and

availability (or unavailability) of paths may also change with time along some tours,

as shown in the right subfigure of Fig. 4.1. Thus, the UAV has to modify its initial

plan to accomplish the mission. We aim, in this chapter, to develop a mission planner

that can deal with the dynamic nature of such a problem.

4.2.2 Waypoints Finite State Machine

In the waypoints FSM, states are the position of a waypoint or starting point, and

transitions represent all available paths between the waypoints and starting point.

One can think of the waypoints FSM as a directed graph. Given the information on

no-fly zones, unavailable paths can be removed from the directed graph by deleting the

arcs that cross over the no-fly zones. We assign distance between any two waypoints

as the cost of the corresponding transition. An example of waypoints FSM for a single

UAV and three waypoints is shown in Fig. 4.2.

Figure 4.2: Waypoints FSM for a case with a single UAV and three waypoints.

States, or vertices on the graph, represent the waypoints and the starting point.

The input alphabet is: S for ‘stay’ and Mi for ‘move to state i.’ The initial state

i = 0 is the starting point. Note that there is no transition between states 1 and 2

because the corresponding path crosses over a no-fly zone. The waypoints FSM for

the example shown in Fig. 4.2 can be represented as a four-tuple:

69

XW ={0, 1, 2, 3},

UW ={S,M0,M1,M2,M3},

xW0 =0,

xW (k + 1) =fW (xW (k), uW (k)),

(4.1)

where fW operates as shown in Table 4.1.

Table 4.1: Waypoints FSM state transition table.

State 0 State 1 State 2 State 3
Input S State 0 State 1 State 2 State 3
Input M0 N/A State 0 State 0 State 0
Input M1 State 1 N/A N/A State 1
Input M2 State 2 N/A N/A State 2
Input M3 State 3 State 3 State 3 N/A

4.2.3 Task Finite State Machine

At each waypoint, the task FSM represents a task to be performed. For simplicity,

we restrict tasks at all waypoints to a simple ‘check’ task. An example of task FSM

for a single waypoint is shown in Fig. 4.3.

Figure 4.3: Task FSM for single waypoint.

For state and output alphabets, Done represents a checked waypoint and 0 an

unchecked waypoint. The input alphabet is: C for ‘check waypoint’ and NC for ‘not

checked waypoint’. The initial state is 0 for all waypoints. The task FSM can be

represented as a four-tuple:

70

XT ={0, Done},

UT ={C,NC},

xT0 =0,

xT (k + 1) =fT (xT (k), uT (k)),

(4.2)

where fT operates as shown in Table 4.2.

Table 4.2: Task FSM state transition table.
State 0 State Done

Input NC State 0 State Done
Input C State Done N/A

4.2.4 Mission Restricted Finite State Machine

In order to form an UAV RFSM representing a complete mission for a single UAV

checking m waypoints, we compose a waypoints FSM with m task FSMs (one task

FSM for each waypoint) using the composition operator defined earlier with input

restrictions. For n UAVs, we compose an UAV FSM n times (one for each UAV).

We choose a particular style of composition called reactive/synchronous FSMs.

Our composition is reactive since it reacts to external stimulus. Synchronous style

dictates that each state machine in the composition reacts simultaneously and instan-

taneously. Thus, a reaction of the composite machine consists of a set of simultaneous

reactions of each of the component state machines. In the following, we discuss the

complete mission model for single and multiple UAVs.

4.2.4.1 Single UAV

Let us consider our earlier example of three waypoints and a starting point to

compose a mission RFSM for single UAV. As explained earlier, we have to compose

one waypoints FSM with three task FSMs (in our case m=3) with input restrictions

71

to form a mission RFSM. Inputs for the composed FSM are all possible combinations

of inputs for each FSM. However, some restrictions should be applied for the RFSM.

Thus, the mission RFSM for a single UAV is as follows:

XU =XW ×XT1 ×XT2 ×XT3 ,

UU ={uU ∈ UW × UT1 × UT2 × UT3 : action(uU) ≤ 1},

xU0 =xW0 × xT10
× xT20

× xT30
,

fU =(fW , fT1 , fT2 , fT3),

(4.3)

where

fU(xU , uU) = ∅, when

uU = (•, C, •, •) ∈ UU , xU 6= (1, •, •, •) ∈ XU , and

uU = (•, •, C, •) ∈ UU , xU 6= (2, •, •, •) ∈ XU , and

uU = (•, •, •, C) ∈ UU , xU 6= (3, •, •, •) ∈ XU ,

(4.4)

where action(uU) is the number of active actions in the input uU , the active action

is one of {M0,M1,M2,M3, C}, and • means all possibilities. The restrictions in (4.4)

means that the input C for task i is only available at the waypoint i, i.e., the UAV

can check the waypoint when the UAV is at the waypoint, and the restrictions in

(4.3) mean that the UAV can only perform one active action at a time.

For example, the input alphabet (S,C,C,NC) is restricted since checking two

waypoints concurrently is impossible. Similarly (M1, NC,NC,C) is prohibited, as

moving to waypoint #1 while checking waypoint #3 synchronously is banned. On

the other hand, some of the allowed input alphabet elements are (S,NC,NC,C),

(M2, NC,NC,NC), and (S,NC,C,NC) where in the first case the UAV stays at

waypoint #3 and starts checking it. In the second input case, the UAV starts heading

to waypoint #2. Then the UAV starts checking waypoint #2 as in the third input

alphabet case.

72

4.2.4.2 Multi UAV

For n UAVs, the mission RFSM can be represented as:

XMU =XU1 ×XU2 × · · · ×XUn ,

UMU ={uMU ∈ UU1 × UU2 × · · · × UUn : uU1 6= uU2 6= · · ·uUn},

xMU0 =xU10
× xU20

× · · · × xUn0
,

fMU =(fU1 , fU2 , · · · , fUn).

(4.5)

Progressing with our example of three waypoints, let us form a mission for two

UAVs. For two UAVs, we assume that there are two sets of inputs where each

set of inputs is from the single UAV case. Then, the inputs for two UAVs are all

possible combinations of the two sets of inputs with a restriction as described in

(4.5): the inputs from the two sets are not allowed to be the same. For instance,

(S,C,NC,NC, S, C,NC,NC) is prohibited because the input for the first UAV (first

four elements) is the same as the input for the second UAV (last four elements). An

example of a possible input alphabet is (S,C,NC,NC,M1, NC,NC,NC) where the

first input is for the waypoints FSM for the first UAV, the next three inputs are

for each task FSM for the first UAV, the fifth input is for the waypoints FSM for

the second UAV, and the other three inputs are for each task FSM for the second

UAV. By doing this, each UAV can have its individual input on the same set of the

waypoints, so the state can be updated by the actions of two UAVs. Three and more

UAVs can be treated in a similar fashion, with the caveat that the cardinality of the

space and cost of the computations increase accordingly.

4.3 Problem Formulation

A number n of UAVs are patrolling A, a compact subset of R2, which repre-

sents our UDE. We discretize the environment’s geography as a rectangular grid

73

[0, Xarea]X[0, Yarea] to provide a computationally efficient abstraction for planar rigid

body motion. The environment has a number of no-fly zones (L), that are described

by Lj = (xj, yj, rj) where (xj, yj) is center of the no-fly zone j in Cartesian coordi-

nates, and rj is the radius of no-fly zone j, where 1 ≤ j ≤ l. UAVs are required to

check m waypoints (w). Each waypoint i is described by wi = (xi, yi, pi) where (xi, yi)

is waypoint position in Cartesian coordinates, pi is the waypoint’s priority level, and

1 ≤ i ≤ m. The setup is modeled as an ReRFSM using one waypoints FSM and m

task FSMs for each UAV as described earlier.

Let c(xW , uW) be a function called the cost function, which assigns positive cost

(representing travel distance between two waypoints) to the corresponding transition

in the waypoints FSM. In addition, each transition in the task FSM has a patrolling

performance index as:

PP(xTi , uTi) = R, when xT = Done,

PP(xTi , uTi) = pi × P, when xT = 0,

(4.6)

where R is the reward for a waypoint being in the Done state and P is a penalty for

a waypoint being in the 0 state.

In normal mode, the ReRFSM operates as a RFSM with associated transition

weights. The RFSM transition weight is the sum of the transition weights of its

components. Transition weight in the waypoints FSM is defined as cost c(xW , uW),

while transition weight in the task FSM is its patrolling performance PP(xTi , uTi).

So transition weight in the ReRFSM, W(xU , uU) can be represented as:

W(xU , uU) = c(xW , uW) +
m∑
i=1

PP(xTi , uTi). (4.7)

For n UAVs, the transition weight in the ReRFSM, W(xMU , uMU) can be repre-

sented as:

74

W(xMU , uMU) =W(xU1 , uU1) + · · ·+W(xUn , uUn). (4.8)

For accessible analysis, we assign negative values to task FSM transition rewards,

R in (4.6). Thus we can define the UDE patrolling problem as minimizing ReRFSM

transition weights.

Definition IV.1 (UDE Patrolling Problem). Given that L and w are changing dy-

namically in an unpredictable manner, find tours such that the UAVs check all way-

points and return to their starting point that minimize the sum of sequences of the

transition weights, W .

4.4 Policy and Solution Approach

4.4.1 DP for ReRFSM

Note that the optimal policy of a composed FSM is obtained by the union of the

optimal policies of its component FSMs as shown in Sec. 2.4. However, for RFSMs,

this does not hold due to the restricted inputs in RFSM as shown in Sec. 2.5. Thus,

the optimal policy of RFSMs has to be obtained by applying DP directly to the whole

RFSM. Defining FSM in the state space as:

RFSM = (ST , IP , f, Init), (4.9)

where ST and IP are sets representing XMU and UMU in (4.5) respectively, let the

function f : ST × IP → ST be the next state function, and Init ∈ ST be the initial

state. The interpretation of f is as follows: if st(k) ∈ ST is the current state at step

k and TD(k) ∈ IP is the current input alphabet, then the next state st(k+1) is given

by:

st(k + 1) = f(st(k), TD(k)), (4.10)

75

and st(0) is Init. Given the state transition mapping (4.10), consider the objective

function:

J(st(0), · · · , TD(0), · · ·) =
K−1∑
k=0

W(st(k), TD(k)), (4.11)

where W is the transition weight and K is the time horizon. A sequence of deci-

sions that optimizes J is obtained through DP based on solving the Hamilton-Jacobi

Bellman Equation:

J∗(st(k)) = min
TD(k)∈IP

{W(st(k), TD(k)) + J∗(f(st(k), TD(k)))}, (4.12)

where J∗ is the optimal cost-to-go from state st. From (4.10) and (4.12),

J∗(st(k)) = min
TD(k)∈IP

{W(st(k), TD(k)) + J∗(st(k + 1))}. (4.13)

Equation (4.13) illustrates that DP proceeds backwards with respect to steps. The

optimal decision is then

T ∗D(st(k)) = argmin
TD(k)∈IP

{W(st(k), TD(k)) + J∗(st(k + 1))}. (4.14)

By solving DP for every step k for all states st ∈ ST , we obtain a sequence of optimal

transitions (T ∗D) according to W , and this is the optimal policy (π∗) [104, 10]. Then,

the optimal policy for FSM is:

π∗ = DP (RFSM,W , K), (4.15)

where DP is the dynamic programming operator.

Note that if there is no penalty for being in a given state at step K + 1 or if there

is no penalty for taking a given decision at step K, the optimal cost-to-go for state

st at step (K + 1), J∗(st(K + 1)), is zero for all states st ∈ ST .

76

DP provides a policy. We use that policy until composition occurs. Then, the

ReRFSM and weights are updated and we recompute the policy. When pruning

occurs, we keep the same policy. ReRFSMs allow the state space of a FSM to change

dynamically to follow the environment as defined earlier. When new waypoints are

added, priorities of some waypoints are altered, or availability of some paths are

changed, new task FSMs or an updated waypoints FSM are created and composition

occurs. When composition occurs, the transition weight of the new component is

added to the transition weight of the ReRFSM. Similarly, if a waypoint is checked,

and the task FSM of that waypoint needs to be pruned, then pruning occurs. When

pruning occurs, the transition weight of the pruned FSM is subtracted from the

transition weight of the ReRFSM. The algorithm of DP for ReRFSM for the patrolling

mission is shown in Algorithm 5.

Algorithm 5 Algorithm of DP for ReRFSM

1: π∗(k) ← DP for ReRFSM(w(k), w(k − 1), L(k), L(k − 1))
2: if w(k) 6= w(k − 1) or L(k) 6= L(k − 1) then
3: m ← length(w(k))
4: for i = 0 to m do
5: if i = 0 then
6: FSMi ← waypoints FSM
7: else
8: FSMi ← task FSM of wi(k)
9: end if
10: end for
11: RFSM ← FSM0 ×̄ FSM1 ×̄ ... ×̄ FSMm

12: W ← transition weight of RFSM
13: for i = 1 to m do
14: if FSMi needs to be pruned then
15: RFSM ← RFSM /̄ FSMi

16: W ← transition weight of RFSM
17: end if
18: end for
19: π∗(k) = DP(RFSM , W , K)
20: else
21: π∗(k) = π(k − 1)
22: end if
23: return π∗(k)

77

4.4.2 LBFS for ReRFSM

The motivation of this section is that DP suffers from the curse of dimensionality.

Using DP for ReRFSM is computationally expensive, especially if the number of

waypoints is large. In such situations, we may not use DP for ReRFSM for the

policy; instead we may find the solution for the current state. In addition to that, if we

encounter high UDE, that is, the environment changes frequently and unpredictably,

the previous policy is not useful as described in Sec. 2.7. In such a situation, obtaining

a policy is useless, and obtaining a solution may be better. Thus, we use BFS or

LBFS algorithm with fixed depth (fd) to get the solution for the current state as

we described in Sec. 2.6.2. The algorithms for LBFS for ReRFSM for the patrolling

mission is shown in Algorithm 6.

Algorithm 6 Algorithm of LBFS for ReRFSM.

1: u(k) ← LBFS for ReRFSM(w(k), L(k),)
2: m ← length(w(k))
3: for i = 0 to m do
4: if i = 0 then
5: FSMi ← waypoints FSM
6: else
7: FSMi ← task FSM of wi(k)
8: end if
9: end for
10: RFSM ← FSM0 ×̄ FSM1 ×̄ ... ×̄ FSMm

11: W ← transition weight of RFSM
12: for i = 1 to m do
13: if FSMi needs to be pruned then
14: RFSM ← RFSM /̄ FSMi

15: W ← transition weight of RFSM
16: end if
17: end for
18: u(k) = LBFS(RFSM , W , fd, CCub)
19: return u(k)

78

4.5 Analysis of the Approach

4.5.1 Plan

Given the sets of the waypoints and no-fly zones, the resulting plan changes based

on the choice of rewards R and penalties P . Thus, R and P need to be carefully chosen

to obtain the desired plan. Assume that we have seven waypoints with different levels

of priority and no-fly zones as follows: w = {(2, 4, 2), (4, 2, 2), (5, 5, 1), (9, 10, 3),

(5, 7, 1), (8, 1, 2), (2, 9, 1)} and L = {(3, 3, 0.5), (6, 1.5, 1)}. Then, we generate

plans for the given waypoints for different values R and P using DP for ReRFSM

with K = 20, and compare the total lengths of the tours of the plans.

0 0.5 1 1.5 2 2.5 3

Penalty

37

38

39

40

41

42

43

44

45

46

T
ot

al
 le

ng
th

 o
f t

ou
r

R= -10
R= -100
R= -200
R= -1000

Figure 4.4: Total length of tour for different penalty (P) and reward (R).

P is main driver to determine the plan. For low levels of P , from 0.1 to 0.4, the

plans yield the minimum length of the tour. For medium levels of P , from 0.5 to

1.4, the plans yield longer lengths of tour and for high levels of P , that is, larger

than 1.4, the plans yield the longest lengths of tour. These results indicate that when

the level of P is high, the plan emphasizes visiting the high priority waypoints over

minimizing the total length of the tour; this results in longer than minimum total

tour length. Thus, if minimizing the total tour length is more important, a low level

of P should be used; if checking high priority waypoints is more important, a high

79

level of P should be used; if balancing between the two is needed, a medium level of

P should be used. These low, medium, high levels of P can be obtained based on

simulations.

4.5.2 Computation Time and Costs

One of the important questions when using LBFS for ReRFSM is how to de-

termine CCub. To determine CCub, computation time, number of waypoints that

we can handle, and cumulative cost have to be considered. Thus, the computa-

tion time and the cost for the different CCub for different numbers of waypoints are

compared in simulations. Every simulation is performed on the following environ-

ment using MATLAB R© R2016b: Intel R© CoreTM i5-4300U Processor CPU 1.90GHz,

8.0GB RAM.

0 100 200 300 400 500 600 700 800 900 1000

Number of waypoints

0

100

200

300

400

500

600

700

800

900

C
om

pu
ta

tio
n

tim
e

[s
]

3500
7000
14000
28000
56000

0 100 200 300 400 500 600 700 800 900 1000

Number of waypoints

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t d
iff

er
en

ce
s

[%
]

3500
7000
14000
28000
56000

Figure 4.5: Comparison of computation times and costs.

For the comparison, we choose fd = 10. The cost comparison is shown in the

lower figure in Fig. 4.5. The different colors indicate different CCub as indicated in

the legend, the x axis is the number of waypoints, and the y axis is the cost difference

with the case of CCub = 3, 500 in percentage, so it is zero for CCub = 3, 500. The cost

difference between the case of CCub = 3, 500 and the others are less then 0.5% for 400

waypoints and less than 4% for up to 1,000 waypoints. However, the computation

80

time, as shown in the upper figure in Fig. 4.5, for the case of CCub = 3, 500 is

less than 10 seconds for 400 waypoints while the computation time for the case of

CCub = 56, 000 is more than 500 seconds. Thus, for the case of fewer than 400

waypoints, which is a large number of waypoints, CCub = 3, 500 can be used for fast

computation time, reasonable cost, and large number of waypoints handling. In this

particular choice, the upper bound is around 400 waypoints, but this number can be

increased, or decreased, based on the choice of CCub and desired computation time.

Then, the computation times of DP, BFS and LBFS for different numbers of

waypoints are compared. For the comparison, we choose K = 10 for DP, fd = 10 for

BFS and LBFS, and CCub = 3, 500 for LBFS. The computation time comparison is

shown in Fig. 4.6.

0 2 4 6 8 10 12 14 16 18 20

Number of waypoints

0

100

200

300

400

500

600

700

800

900

1000

C
om

pu
ta

tio
n

tim
e

[s
]

DP
BFS
LBFS

Figure 4.6: Comparison of computation time of DP, BFS and LBFS.

As shown in the figure, BFS is slightly faster than DP as DP needs around 100 sec-

onds for 11 waypoints, but BFS needs around 100 seconds for 15 waypoints. However,

both computation times increased exponentially, so the methods may not handle large

numbers of waypoints in real-time, while the computation time of LBFS is very small

compared to DP and BFS, and it can be used in near real-time for large numbers of

waypoints.

81

4.6 Simulations and Results

In this section, every simulation is performed in the environment described in the

previous section. For the simulation, we choose P = 2, R = −100, p1 = 1 (low

priority), p2 = 2 (medium priority), p3 = 3 (high priority), K = 10, fd = 10, and

CCub = 3, 500.

4.6.1 Single UAV: Small Scale Example

In this section, we follow the example scenario described in the earlier sections,

where a single UAV has to check three waypoints that have different priorities. The

UDE is considered by adding more waypoints and a no fly zone, and changing the

priorities of the waypoints. We then show how the plans are changed based on the

no fly zones and priorities of the waypoints. All the plans are obtained by DP for

ReRFSM in this section.

At first, the UAV starts from point (1, 1), and has to check three waypoints at

(0.8, 4), (5, 5), and (4, 1) that have medium, low, and medium priority respectively.

In addition to that, a no fly zone is located at (3, 2) with radius of 0.5. The UAV

has an initial plan as shown in Fig. 4.7. The length of the tour is 14.45, which is the

exact minimum length of the tour for the given waypoints.

0 1 2 3 4 5 6

X

0

1

2

3

4

5

6

Y

Figure 4.7: Initial plan.

82

Based on the initial plan, the UAV moves to the waypoint (0.8, 4) first to check

the waypoint. When the UAV reaches the first waypoint, two new waypoints at (3, 7),

and (6, 3) are added, that have high and medium priority, respectively. The priority

of the waypoint at (5, 5) is changed from low to medium and that of the waypoint

at (4, 1) is changed from medium to low. Another no fly zone at (4, 6) with radius

0.3 is appended. Our method can handle the situation, so a new plan is generated

as shown in Fig. 4.8. Complying with the new no fly zone, priorities, and waypoints

added, the total length of the tour is 23.53.

0 1 2 3 4 5 6 7

X

0

1

2

3

4

5

6

7

8

Y

Figure 4.8: Updated plan.

4.6.1.1 Initial plan with different settings

The initial plans, without priorities, and without an unavailable path, are shown

in Fig. 4.9. When there is no priorities as shown in the left subfigure of Fig. 4.9,

the tour is similar to the initial plan with priorities and an unavailable path, so the

length of the tour is the same. When all paths are available as shown in the right

subfigure of Fig. 4.9, the UAV visits high priority waypoints first, so the total length

of the tour, 17.17, is larger than in the other two cases. The length of the tour can

be affected by the priorities of the waypoints, so the priorities of the waypoints have

to be considered.

83

0 1 2 3 4 5 6

X

0

1

2

3

4

5

6

Y

0 1 2 3 4 5 6

X

0

1

2

3

4

5

6

Y

Figure 4.9: Initial plans with different settings: without priorities or no fly zones.

4.6.1.2 Updated plan with different settings

The updated plan, without priorities and without unavailable paths, is shown in

Fig. 4.10. When there is no priority as shown in the left subfigure of Fig. 4.10, the

UAV looks for the minimum tour, but because of unavailable paths, the resulting tour

is not the exact minimum tour for the given waypoints, and the resulting tour length is

23.53 which is the same as the updated plan in Fig. 4.8. When all paths are available,

as shown in the right subfigure of Fig. 4.10, the UAV visits high priority waypoints

first while minimizing length of tour. The resulting plan is the exact minimum tour

for the given waypoints where the length of the tour is 17.62. As is apparent, the no

fly zones affect to the plan, so no fly zones have to be considered for the plan.

0 1 2 3 4 5 6 7

X

0

1

2

3

4

5

6

7

8

Y

0 1 2 3 4 5 6 7

X

0

1

2

3

4

5

6

7

8

Y

Figure 4.10: Updated plans with different settings: without priorities or no fly zones.

84

4.6.2 Single UAV: Small Scale Comparison

In this section, we run 50 simulations for a small scale problem to compare the

DP for ReRFSM and LBFS for ReRFSM. Each small scale problem contains eight

waypoints with different priorities where the locations and the priorities of the way-

points are randomly decided. We do not consider no fly zones in this section. The

simulation results are shown in Table 4.3.

Table 4.3: Comparison of DP and LBFS.

DP LBFS
Average tour length 18.2439 18.2439
Average computation time 15.21 [s] 0.36 [s]
Number of computations once every step

Because there are no environment changes and DP generates the optimal policy,

only one computation occurs for DP, but LBFS generates the solution for every time

step. However, the average computation time for LBFS is very fast, so it can compute

the solution at every time step. The average computation time for DP is acceptable,

so DP can be used for small scale problems, but if the number of waypoints is further

increased, using DP is not feasible. The average tour length is the same for both, and

both generate the same plans. This indicates that for small scale problems, fd = 10

and CCub = 3, 500 for LBFS generates the same solution with DP.

4.6.3 Single UAV: Large Scale Example

In this section, we present simulation results for a large scale example using LBFS

for ReRFSM. As we mention in the previous section, using DP is not possible for

the large scale problem because it is computationally intractable. We show that the

LBFS generates the same plans as DP does in the previous section for small scale

problems; hence, it is reasonable to use LBFS for large scale problems on which DP

cannot be used. We keep in mind that using LBFS for large scale problems most

85

0 5 10 15 20 25 30 35

X

0

5

10

15

20

25

30

Y

Figure 4.11: Large scale problem example.

likely generates sub-optimal solutions. We consider a scenario with 45 waypoints

with different priorities, and no fly zones as shown in Fig. 4.11.

For this simulation, we choose fd = 20. The LBFS for ReRFSM successfully

generates a plan, where the length of the tour is 350.39. The average computation

time is 9.8957 seconds, which is acceptable. Then, we compare the plan with other

cases, where the first case does not have priorities for the waypoints, and the second

case does not have no fly zones. The length of the tour of the first case is 232.75 and

the length of the second case is 275.26. As expected, the priorities and the no fly

zones affect the plan significantly. When there are no waypoint priorities, the UAV

looks for the minimum length of the tour, so without priorities we obtain the shortest

tour. Without no fly zones, the UAV wants to visit the high priorities waypoints first,

so the length of the tour is longer than in the case without priorities, but shorter than

in the original case because all the paths are available.

86

4.6.4 Two UAVs: Small Scale Example

We simulate a case with two UAVs and four waypoints as shown in Fig. 4.12

for a proof of concept. Each UAV visits two waypoints and returns to the starting

point while avoiding unavailable paths across no fly zones. The first UAV visits the

waypoints (5, 5) and (3.5, 6) and then returns to its starting point, which is indicated

by a black arrow. The second UAV visits the waypoints (4, 2) and (2, 4) and then

returns to (4, 2) and then to the starting point, which is indicated by a blue arrow,

because the path between the waypoint (2, 4) and the starting point is not available.

The length of the tour for the first UAV is 13.05 and the length of the tour for the

second UAV is 11.98.

0 1 2 3 4 5 6

X

0

1

2

3

4

5

6

7

Y

Figure 4.12: Plan for two UAVs with four waypoints.

4.7 Conclusions

A mission planner for an UAV patrolling problem in UDE using DP for ReRFSM

and LBFS for ReRFSM is introduced. Our mission planner accounts for an unpre-

dictably changing environment and guides the UAV through it online. The UDE is

represented in the FSM framework using ReRFSM. By applying DP for ReRFSM,

which can handle approximately 10 waypoints, we generate a robust policy. By ap-

87

plying LBFS for ReRFSM, which can handle approximately 400 waypoints in the

current setting, we generate sub-optimal solutions with fast computation times. DP

and LBFS for ReRFSM can handle UDE. Our analysis indicates that the gain P has

to be carefully chosen to obtain the desired plan: reducing total length of tour or vis-

iting high priority waypoints first. Our simulation results indicate that the priorities

and no fly zones are important factors to generate the plan for the waypoints, so they

should be considered to obtain the plan for UAV. Finally, we introduce patrolling

policies for multiple UAVs in UDE using DP for ReRFSM by modifying the inputs

of ReRFSMs. Here, we consider the two-UAV case as a proof of concept.

88

CHAPTER V

Coordinated Model Predictive Control of Aircraft

Gas Turbine Engine and Electrical Power System

5.1 Introduction

5.1.1 Motivation

In the past few decades, the electrical power requirements for aircraft have been

steadily increasing, concomitant with trends towards MEA and AEA [71]. A typical

aircraft power system involves one or more generators connected to one or more gas

turbine engines, integrated with energy storage elements that provide supplemental

electrical power, a distribution system and loads. The large electrical loads, including

both steady and transient loads, affect the operation of the generators and of the gas

turbine engines. For instance, large electrical load changes induce large torque distur-

bances on the gas turbine engine and can affect engine thrust and shaft speeds. These

changes, in turn, affect the generators; hence, the system exhibits strong static and

dynamic interactions. Thus, in the presence of large electrical loads, the interactions

between the electrical system and gas turbine engine have to be addressed for efficient

and safe operation of aircraft.

Our objective is to establish an integrated, model-based control capability for

an aircraft’s propulsion and electrical power systems, including thrust generation,

89

electric power generation, and energy storage, that improves the capability of the

system to accommodate large transients, including those caused by large transient

electrical loads, while maintaining the operation of the components and the overall

system within a specified safe range by enforcing appropriately defined state and

control constraints.

Specifically, in this chapter, the development of an integrated control system is

considered that accommodates large steady and transient electrical loads, maintains

aircraft flight performance by delivering requested thrust, enforces gas turbine engine

constraints (e.g., surge margins), as well as electrical system constraints (e.g., com-

ponent power limits), and reduces fuel consumption. To facilitate the achievement of

these goals, an advanced two-shaft distributed generator configuration is considered

where one generator is connected to the High Pressure Shaft (HPS) and the other is

connected to the Low Pressure Shaft (LPS) of the gas turbine engine. This configu-

ration affords an extra degree of freedom to accommodate the effects of large loads

compared to the single-shaft configuration. Furthermore, it potentially achieves bet-

ter fuel efficiency than the single-shaft configuration. In addition, the integration of

high performance storage elements that can react quickly to transient loads to assist

the generators and the gas turbine engines is considered.

To control such an advanced system with two generators, a gas turbine engine and

energy storage, we define a power split strategy between the two generators based on

the offline minimization of the fuel consumption, and a rule-based strategy to deter-

mine when to charge and discharge the energy storage. To protect the engine and the

electrical system components against constraint violation, a rate-based MPC frame-

work is exploited and several MPC controller designs are developed, validated on a

nonlinear model of the system and compared with each other. The proposed frame-

work is flexible and modular and can accommodate other constraints not explicitly

treated in the chapter, such as temperature constraints in the engine or voltage sta-

90

bility constraints in the electrical systems, provided the prediction model is updated

with representations for these constraints. Since only linear MPC design techniques

are employed, the controller implementation is feasible with standard quadratic pro-

gramming solvers that are becoming a mature and reliable technology.

Figure 5.1: A schematic of the gas turbine engine and the electrical power system.

The system configuration of interest in this chapter is illustrated in Fig. 5.1. The

system consists of a single gas turbine engine, energy storage element(s), and two

generators, one of which is attached to the LPS of the gas turbine engine while the

other is attached to the HPS of the gas turbine engine.

5.1.2 Literature Review

The growing electrical power requirements of MEA and AEAs are highlighted

in [71, 83]. For instance, at least 1.6 MW will be required for a next-generation

300 pax aircraft [83]. Large electrical power is required for turboelectric propulsion.

Three MW generators are considered in [59] and a 40.2 MW generator is planned

in [39, 51]. Electrical weapons systems for military applications also require large

91

electrical power, from 0.025 to 4.5 MW depending on the type [66]. Directed energy

systems are one of the key 12 potential capability areas for the U.S. Air Force [86].

To deal with these large electrical loads on aircraft, integrated control of the aircraft’s

gas turbine engine, electrical power system, and thermal management are necessary.

Challenges in aircraft engine control and integrated power and thermal management

are discussed in [6, 7, 58, 27].

Since our system has constraints, we employ MPC [81]. MPC-based approaches

have been considered to develop solutions to many recent control problems, including

gas turbine engine control, see e.g. [82, 25, 42, 3]. Rate-based MPC allows setpoint

tracking and has been applied to turbofan engine clearance control in [25] and to

turbocharged compression ignition engine control in [47]. References [53, 54] report

the application of reference and extended command governors to handle constraints

in gas turbine engines. In this chapter, the Multi-Parametric Toolbox (MPT) [55] is

employed for computational implementation of a rate-based MPC controller.

The two-generator configuration for aircraft, with one generator connected to

the HPS and the other generator connected to the LPS of a gas turbine engine, is

introduced in [70]. The challenges and possible research directions for UAVs and

MEA with a gas turbine engine, two-generator configuration, and battery (and/or

supercapacitor) are discussed in [79]. The authors of [79] indicate the necessity of

integrated control of the electrical system and the gas turbine engine system due to

interactions between both systems. In [74], the authors design a voltage and current

controller for the generators and this work is extended in [4] to include a battery.

The controller proposed in these references is based on a master-slave configuration

for high-load situations. Existing publications on two-generator configurations focus

primarily on the electrical system, especially voltage and current stability, and a

control design exploiting batteries.

Integrated control of a gas turbine engine and electrical power system has been

92

considered in some publications. The Nonlinear Model Predictive Control (NMPC)

approach for a 166 MW heavy-duty single shaft gas turbine power plant based on

simplified gas turbine engine and generator models is presented in [52]. The control

goal is to supply all electrical loads, maintain the rotor speed, exhaust gas temper-

ature, and turbine firing temperature by controlling air flow and fuel flow despite

transient load changes. The control of the gas turbine engine and electrical system,

focused on their thermal management, for the U.S. Navy’s future all-electric ship is

considered in [94]. The importance of interactions between the gas turbine engine

and the electrical system for aircraft are highlighted in [75] where the engine response

when a step change reduction of electrical power occurs is simulated. In [97], an

energy storage element (supercapacitor) is used to reduce the effects of high dynamic

loads on the engine using a Proportional-Integral (PI) supercapacitor controller. A

load management system, which consists of generators, contactors, buses and loads,

and a battery for an aircraft electric power system, is presented in [90]. The paper

[90] focuses on the electrical system of the aircraft, mainly controlling contactors for

safety and reliability, using load shedding. The aircraft gas turbine engine modeling

and control are discussed in [48].

A Simulink-based Toolbox for the Modeling and Analysis of Thermodynamic Sys-

tems (T-MATS) [18, 107, 17] is used for the gas turbine engine modeling and is

supplemented by an electrical power system model in Simulink. T-MATS allows one

to model both steady state and dynamic gas turbine engine operation.

5.1.3 Original Contributions

The original contributions of this chapter are as follows:

1. We treat an advanced electrical power system configuration with two generators

and an electrical storage element, and we successfully design and demonstrate

control designs which accomplish simultaneous tracking of requested thrust com-

93

mands and electrical power output commands, while satisfying the imposed

component protection constraints within the engine and the electrical system,

and minimizing the fuel consumption. These designs account for static and

dynamic interactions between the gas turbine engine, generators and energy

storage. We also illuminate the link between energy storage characteristics and

control performance.

2. We define a novel control system architecture based on a combination of a

rate based MPC controller, a power split map between generators optimized

for steady-state operation and a supervisory logic to govern energy storage

charging/discharging. The benefits of constrained coordinated control include

the ability to handle load pulses of higher frequency and larger magnitude than

possible with existing systems.

3. We also propose a novel linear transformation approach to match states of

different linear prediction models from system identification. This approach

avoids the need for designing observers for non-physical states of the individual

models.

4. We compare MPC controller designs based on single linear and multiple lin-

ear prediction models where the linear prediction models are determined by

applying system identification techniques. We demonstrate that the mismatch

between the linear prediction models and the actual nonlinear system can be

successfully handled by auxiliary offset states so that the surge margin con-

straints can be robustly enforced.

5. We demonstrate that successful control of the engine can be accomplished uti-

lizing a single rate-based linear prediction model with auxiliary offset states

that allows lower computational and implementation complexity. We compare

the controller performance with the energy storage and verify the benefits of

94

the energy storage to the system. We validate the design in nonlinear model

simulations over the full engine operating range, while responding to large tran-

sient thrust commands and electrical power loads. The proposed control design

framework is systematic and expandable, e.g., to incorporate additional con-

straints or components.

5.2 Modeling

In this section, models of the gas turbine engine, generators and energy storage

elements are described. A simple relationship between the shaft speeds of the gas

turbine engine and the output power of the generators is used, assuming the dynam-

ics of the generators are much faster than the dynamics of the gas turbine engine,

and a first-order model is adopted to represent the dynamics of the energy storage

elements. The engine model, generator models, and energy storage element models

are assembled into a system level model in which one generator is connected to the

HPS and the other generator is connected to the LPS of the gas turbine engine. Note

that the assembled model is able to represent subsystem level interactions visible in

the simulation results.

Then, a linear model of the gas turbine engine with two generators is obtained via

system identification followed by a linear transformation of all the states of the linear

model to physical states. Note that the identified linear model takes into account the

interactions between the gas turbine engine and the generators. Finally, the identified

linear model, the generator models, and energy storage element models are combined

to obtain the complete linear prediction model to be used in MPC control design.

5.2.1 Gas Turbine Engine

The JT9D gas turbine engine model provided with T-MATS package [107] is used

to represent engine dynamics. T-MATS is a Simulink-based tool for thermodynamic

95

system simulation developed and released by NASA to facilitate research involving

gas turbine engine simulations and control of the kind pursued in this chapter. Unlike

other packages, T-MATS is open to public use. It includes generic modeling libraries

and is suitable for gas turbine engine modeling. The JT9D gas turbine engine model

represents the dynamics of shaft speeds, pressures and flows in various components

of the engine and predicts engine thrust. The model is developed and verified based

on data from the Numerical Propulsion System Simulation (NPSS) [17]. The thrust

(Fg) is controlled using the Fuel to Air Ratio (FAR) as a control input.

5.2.2 Generators

The two generators are each connected to different shafts of the gas turbine engine:

one to the HPS and one to the LPS. We refer to the generator that is connected to

the HPS as the High Pressure Shaft Generator (HPSG) and the generator that is

connected to the LPS as the Low Pressure Shaft Generator (LPSG). Then, the

power requested from the HPSG (PHreq) and the power requested from the LPSG

(PLreq) are two additional control inputs in our system. The total output power from

the generators (PGT
) is the sum of the output powers of the HPSG (PH) and LPSG

(PL). The power difference between two generators (PD) is one of the outputs of the

system and is defined as PH − PL.

Assuming that the dynamics of the generators are much faster than those of the

gas turbine engine [21], a simple relationship between the shaft speeds of the gas

turbine engine and the output power of the generators is adopted based on given

efficiencies of the generators,

PH = NH × τEH
× ηH ,

PL = NL × τEL
× ηL,

(5.1)

where NH , τEH
and ηH are, respectively, the shaft speed, torque on the shaft and

96

efficiency of the HPSG, and NL, τEL
and ηL are, respectively, the shaft speed, torque

on the shaft and efficiency of the LPSG. Thus, given electrical power outputs of the

generators, the torques that the generators create on the gas turbine engine shafts

can be computed according to

τEH
= PH

NH×ηH
,

τEL
= PL

NL×ηL
.

(5.2)

Note that the above electrical power system representation is suitable given the

specific control objectives in this chapter and is justified by the time-scale separation

between the engine dynamics and the dynamics in the electrical power system. In the

subsequent analysis and simulations, constant values of the efficiencies, ηH = ηL =

0.9, are assumed.

5.2.3 Energy Storage Elements

The energy storage element model is as follows:

dEj
dt

= −Pj, (5.3)

where Ej is the total energy stored in the energy storage j, Pj is power to/from

the energy storage j, and j indicates the type of energy storage element. In this

chapter, a battery and/or ultracapacitor are exploited as the energy storage elements,

so j ∈ {B,C} whereB indicates the battery and C indicates the ultracapacitor. Then,

the State of Charge (SoC) is given by

SoCj =
Ej

EjMax

, (5.4)

where EjMax
is the maximum energy that can be stored in the energy storage j.

The total output/input power of the energy storage elements (PEST
) is the sum of

97

the output/input power of all the energy storage elements. Then, the total output

power, PT , is the sum of the total output powers from the generators (PGT
) and the

total output/input powers of the energy storage elements (PEST
).

5.2.4 Linear Design Model

5.2.4.1 System Identification and Linear Transformation

The design of our MPC controller is based on a linear prediction model. Since our

gas turbine engine model is essentially of black-box type, either analytical or numerical

(finite-difference-based) linearization cannot be easily implemented. Consequently,

the linear model is identified based on the input-output response data collected from

the nonlinear model of the engine near a nominal operating point. The nominal

operating point is the same as the one used for verifying the model in [17] (27, 593

[lbf] thrust and FAR of 0.0187) and PHreq = PLreq = 0 [MW].

Our linear model to be identified has three inputs, FAR, PHreq, and PLreq, and five

outputs, the HPS speed, LPS speed, thrust, Low Pressure Compressor (LPC) surge

margin, and High Pressure Compressor (HPC) surge margin. The surge margins are

added as outputs to the model to predict the evolution of the surge margin constraints

over the prediction horizon.

To identify the linear prediction model at a given operating point, a system iden-

tification approach is followed. The input-output data set is based on a 400 sec trace

generated when chirp signals are applied to each of FAR, PHreq, and PLreq channels

for 100 sec individually, and then to all inputs in combination for another 100 sec.

The magnitude of chirp signals is set to 0.001 for δFAR and 0.5 for δPHreq and δPLreq

where δ designates the deviation from steady-state values at the operating point. The

chirp signal frequency ranges between 0 Hz and 1.8 Hz. After the set of input-output

data is obtained by simulating the nonlinear model, mean removal is applied so that

only variations from the steady state are reflected in the signals.

98

Based on such input-output data collected around a specific operating point, the

linear model of order five is identified using the system identification toolbox in Mat-

lab, and is verified to be both asymptotically stable and fully controllable. This

identified linear model has the following form,

δẋ = Aδx+Bδu,

δy = Cδx,

(5.5)

where δx is the state, δu is the input deviations from the operating point, δy is the

output deviations from the operating point, A ∈ R5×5, B ∈ R5×3, and C ∈ R5×5.

The resulting linear model from system identification typically has C 6= I, which

indicates that the states are not physical. Since models with physical states have

advantages in terms of state estimation (e.g., non-physical states must be estimated

even if physical states are measured) and control design (e.g., switching between

different linear state feedback controllers is straightforward), a state transformation

is constructed to obtain C = I. Specifically, let δz = δy, so δz is the physical state.

Then,

δz = Cδx ⇒ C−1δz = δx ⇒ Ċ−1δz + C−1δż = δẋ. (5.6)

Substituting for δẋ from Eq. (5.5) yields

Ċ−1δz + C−1δż = Aδx+Bδu ⇒ C−1δż = Aδx+Bδu. (5.7)

Since δx = C−1δz,

C−1δż = AC−1δz +Bδu ⇒ δż = CAC−1δz + CBδu. (5.8)

Let A′ = CAC−1, B′ = CB, and δx = δz. Then, the new system is as follows:

99

δẋ = A′δx+B′δu,

δy = C ′δx = Iδx,

(5.9)

where now δx is the physical state, and

δx =

δxNH

δxNL

δxFg

δxSMLPC

δxSMHPC

, δu =

δFAR

δPHreq

δPLreq

 . (5.10)

Here δxNH
is the HPS speed deviation, δxNL

is the LPS speed deviation, δxFg is

the thrust deviation, δxSMLPC
is the LPC surge margin deviation, and δxSMHPC

is

the HPC surge margin deviation. The components of the control input vector are

δFAR, δPHreq, and δPLreq and they represent the deviations in the respective inputs.

Note that choosing the order of the linear model equal to five is essential for this

transformation procedure to apply.

To confirm linear model accuracy, we have generated another 100 sec trace of

input-output data for validation purposes. This trace was constructed similarly to the

one used to generate system identification data but with the chirp signals frequency

range being between 0 Hz and 3.2 Hz, and chirp signals were applied to all inputs

channels in combination for 100 sec. The agreement between the validation data and

the identified linear model is 81.34% for HPS speed, 80.24% for LPS speed, 81.41%

for thrust, 63.80% for LPC surge margin, and 82.62% for HPC surge margin. The

agreement is defined in terms of normalized root mean square error as

agreement [%] = 100×
(

1− ||y − ŷ||
||y − yavg||

)
, (5.11)

100

where y is the measurement vector, ŷ is the estimate vector yavg is the mean of y, and

|| · || denotes the 2-norm applied to the respective vectors of measurements/estimates.

7350

7400

7450

[r
pm

]

HPS Speed Response T-MATS
Linear Sys

3600

3650

3700

[r
pm

]

LPS Speed Response

2.7

2.75

2.8

[lb
f]

104 Thrust Response

42

44

46

[%
]

LPC Surge Margin Response

0 5 10 15 20 25 30 35 40

Time [s]

16.5

17

17.5

[%
]

HPC Surge Margin Response

Figure 5.2: Comparison of step responses of the linear and nonlinear models.

Fig. 5.2 compares step responses of the linear model and T-MATS. These results

were obtained at the operating point corresponding to FAR = 0.0187, and PHreq =

PLreq = 0. The T-MATS initially runs at the steady state, then step increments of

the inputs, δFAR = 0.0001, δPHreq = 0.1MW , and δPLreq = 0.1MW , are applied

during the time period between 10 and 25 sec. The agreement between the nonlinear

model (T-MATS) and the identified linear model is 94.75% for HPS speed, 86.74%

for LPS speed, 93.37% for thrust, 74.15% for LPC surge margin, 80.81% for HPC

surge margin, and the average is 85.96%. Note that if the response of surge margins

is not considered, the average agreement for the step responses between the nonlinear

model and the identified linear model increases to 91.62%, which is fairly accurate. A

comparably larger mismatch of the surge margin response prediction is compensated

by the auxiliary offset states (see Sec. 5.4.4.2 and Sec. ??). Furthermore, our

controller is feedback-based and feedback compensates for model inaccuracies.

To confirm model accuracy, we checked the sensitivity of the results to the choice of

101

signals used for identification. Specifically, we considered 19 other random frequency

sub-ranges (within the overall 0 Hz to 2.4 Hz range) for the chirp signal which was used

to generate input-output data for identification. This did not substantially change

the results against the validation data.

0 0.2 0.4 0.6 0.8 1

 FAR 10-3

0

500

1000

1500

2000

[lb
f]

Thrust Deviation

0 0.2 0.4 0.6 0.8 1

 FAR 10-3

-1

0

1

2

3

4

[%
]

LPC Surge Margin Deviation

0 0.2 0.4 0.6 0.8 1

 FAR 10-3

-2

-1.5

-1

-0.5

0

0.5

[%
]

HPC Surge Margin Deviation

0 0.2 0.4 0.6 0.8 1

 P
H

-8000

-6000

-4000

-2000

0

[lb
f]

Thrust Deviation

0 0.2 0.4 0.6 0.8 1

 P
H

-30

-20

-10

0

10

[%
]

LPC Surge Margin Deviation

0 0.2 0.4 0.6 0.8 1

 P
H

-1

0

1

2

[%
]

HPC Surge Margin Deviation

0 0.2 0.4 0.6 0.8 1

 P
L

-2500

-2000

-1500

-1000

-500

0

[lb
f]

Thrust Deviation

0 0.2 0.4 0.6 0.8 1

 P
L

0

2

4

6

8

[%
]

LPC Surge Margin Deviation

0 0.2 0.4 0.6 0.8 1

 P
L

-4

-3

-2

-1

0

1

[%
]

HPC Surge Margin Deviation

20,593
22,593
24,593
26,593
28,593

Figure 5.3: Steady states values of the nonlinear model for different thrust levels.

Steady states values of thrust, LPC surge margin and HPC surge margin devi-

ations as functions of different δFAR, δPH , and δPL for different operating points

based on the nonlinear model are shown in Fig. 5.3. The different colors indicate

different operating points (defined by different thrust levels) as indicated in the leg-

ends of the figures. As observed, the gas turbine engine with two generators is a

highly nonlinear system. In particular, the static (dc) gains are different at different

operating points defined by different thrust levels. Thus, multiple linear models may

be needed to represent the response at different operating points.

102

5.2.4.2 Combined Linear Model

The linear model, Eq. (5.9), is combined with the generator and energy storage

elements models. The outputs of the integrated system are the thrust (Fg), total

power (PT), power difference between the two generators (PD) and stored energy in

energy storage elements (Ej). The total power is PH +PL+Pj = PHreq +PLreq+Pjreq

and the power difference between the two generators is PD = PH−PL = PHreq−PLreq.

The combined model has the following form:

δẋ
Ėj

 =

A′ 0

0 0

δx
Ej

+

B′ 0

0 −1

 δu

Pjreq

 ,

δFg

δPT

δPD

δPD

Ej

=

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

δx
Ej

+

0 0 0 0

0 1 1 1

0 1 −1 0

0 1 −1 0

0 0 0 0

 δu

Pjreq

 .
(5.12)

For control purposes, two outputs for the power difference between two generators

(PD) are needed, as described in the next section. Thus, the inputs in Eq. (5.12) are

δFAR, δPHreq, δPLreq and Pjreq, and the outputs in Eq. (5.12) are δFg, δPT , δPD,

δPD and Ej.

5.3 Problem Formulation

In this chapter, the following problem formulation is considered: Given a gas

turbine engine, energy storage elements, two generators, one connected to each shaft

of the gas turbine engine, a requested thrust level and (large) expected/requested

electrical loads, determine the fuel to air ratio of the gas turbine engine, input/output

power of the energy storage elements and the electrical power output of each generator

103

to supply all the required electrical loads, maintain the requested thrust level, and

minimize fuel consumption, subject to surge margin limits and other constraints.

5.4 Controller Design

5.4.1 Overall Architecture

Figure 5.4: Control system architecture.

Our control architecture is shown in Fig. 5.4. The control system consists of a

power split map and feedback controller designed as an MPC controller. The power

split map determines the maximum and minimum optimal power differences (PDreqmax

and PDreqmin
) between the two generators as a function of the requested thrust level

(Fgreq) and a total electrical power (PTreq) command. Then, the MPC controller

generates the four control signals (FAR, PHreq, PLreq, Pjreq) to track the thrust,

total electrical power and optimal power difference setpoints while enforcing system

constraints.

104

5.4.2 Optimal Power Split

In this section, the gas turbine engine behavior and operating regions are analyzed

for different electrical power loads and operating points in steady state based on the

models described in Sec. 5.2. In particular, fuel consumption and compressor surge

margins are considered.

In [87], the optimal power split map has been based on a point that minimizes

fuel consumption for a given thrust and total electrical power output. In this chapter,

we generalize this approach and define the optimal power split range in which the

fuel consumption deviates from the optimal fuel consumption by no more than 0.3%.

Examples of the fuel optimal power split ranges obtained by numerical optimization

applied to our model for thrust levels of 21,593, 27,593 and 32,593 [lbf] are shown in

Fig. 5.5.

0 10 20 30 40 50 60 70 80 90 100

P
H
 Percentage [%]

50

55

60

65

70

75

80

F
ue

l C
on

su
m

pt
io

n
[K

g]

Thrust =21593[lbf]

1 MW
2 MW
3 MW
Fuel Optimal Split Line
Fuel Optimal Split Range

0 10 20 30 40 50 60 70 80 90 100

P
H
 Percentage [%]

85

90

95

100

105

110

115

F
ue

l C
on

su
m

pt
io

n
[K

g]

Thrust =27593[lbf]

1 MW
2 MW
3 MW
Fuel Optimal Split Line
Fuel Optimal Split Range

0 10 20 30 40 50 60 70 80 90 100

P
H
 Percentage [%]

120

125

130

135

140

145

150

F
ue

l C
on

su
m

pt
io

n
[K

g]

Thrust =32593[lbf]

1 MW
2 MW
3 MW
Fuel Optimal Split Line
Fuel Optimal Split Range

Figure 5.5: Fuel optimal power split range examples.

The colored lines correspond to different levels of total electrical power and they

represent fuel consumption as a function of PH percentage for a given total electric

power level. The black dotted lines indicate the optimal PH percentage where fuel

consumption is minimal for given thrust and total electrical power output. The

black solid lines indicate the interval of PH percentage values within which the fuel

consumption is not worse than 0.3% of optimal; this interval changes depending on

the total electric power level and thrust. Thus, staying within the fuel optimal split

range (between the black solid lines) yields good fuel efficiency, that is, no more than

105

0.3% worse than that for the fuel optimal split line (black dotted lines).

As observed, when the total electrical power is small, the fuel optimal power split

range is large: we have much control flexibility. However, when the total electrical

power is large, the fuel optimal power split range is small and hence an accurate

control strategy is necessary for fuel efficient operation at large electrical power levels.

The safe operation of the gas turbine engine also has to be ensured. Thus, an

additional requirement to maintain sufficient fan, LPC, and HPC surge margins is

considered in the definition of the power split range. Specifically, 15% as the minimum

surge margin for the fan, 20% as the minimum surge margin for LPC and 14% as the

minimum surge margin for HPC are chosen for our control design and simulation-

based case studies.

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

S
ur

ge
 M

ar
gi

n
[%

]

Thrust =21593[lbf]
FAN

1 MW
2 MW
3 MW
SM Optimal Split
SM Lower Limit

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

S
ur

ge
 M

ar
gi

n
[%

]

LPC

0 10 20 30 40 50 60 70 80 90 100

P
H

 Percentage [%]

5

10

15

20

25

S
ur

ge
 M

ar
gi

n
[%

]

HPC

0 10 20 30 40 50 60 70 80 90 100
14

16

18

20

22

24

Thrust =27593[lbf]
FAN

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
LPC

0 10 20 30 40 50 60 70 80 90 100

P
H

 Percentage [%]

0

5

10

15

20
HPC

0 10 20 30 40 50 60 70 80 90 100
15

16

17

18

19

20

Thrust =32593[lbf]
FAN

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60
LPC

0 10 20 30 40 50 60 70 80 90 100

P
H

 Percentage [%]

0

5

10

15

20
HPC

Figure 5.6: The surge margin dependence on other variables.

The surge margins as functions of PH percentage at different levels of thrust and

electrical power are shown in Fig. 5.6. The black circles indicate the power split that

yields the highest surge margin for given thrust and electrical power output, and the

black dotted lines indicate the surge margin lower bounds for each compressor. Thus,

106

if the black circle lies below the black dotted line, it is impossible to satisfy the surge

margin constraint for the given situation. Note that the fan always satisfies the lower

limit, but LPC and HPC do not satisfy the lower limits for certain situations.

Note also that using LPSG more increases the fan and LPC surge margins, and

using the HPSG more increases the HPC surge margin. Furthermore, for some split

ranges for fan and LPC, surge margins increase as the total electrical power output

increases.

We now consider the power split ranges that satisfy both fuel efficiency and surge

margin constraints for the given thrust and total electrical power level. See Fig. 5.7.

Figure 5.7: Fuel and surge margin optimal power split ranges.

Not all values of PH percentage in the fuel optimal power split range satisfy the

surge margin limits. For instance, for 27,593 [lbf] thrust and the total electrical power

of 1.7 MW, PH percentage of 40%, as indicated by the red cross, is within the fuel

optimal range but it violates the HPC surge margin limit. The optimal power split

range that takes into account the fuel efficiency constraints and surge margin limits is

indicated in cyan in Fig. 5.7. The total electrical power output becomes more limited

as the thrust increases, as expected. The optimal power split ranges for thrust varying

between 21,593 and 32,593 [lbf] and total electrical power varying between 0 and 3

[MW] have been generated.

Note that for a given thrust and total electrical power, the optimal power split

range equivalently prescribes lower and upper bounds for the power difference, PD =

107

PH − PL, between HPSG and LPSG. Rather than using these values as constraints,

in our MPC controller design, we choose to use both of these bounds (PDreqmin
and

PDreqmax), respectively, as setpoints in the cost function for PD. As a result, PD is

maintained in the range between these two setpoints as we have verified by simula-

tions, and this design approach leads to good performance.

5.4.3 Energy Storage Elements Control Strategy

The energy storage SoC is constrained between 40% and 60%. These SoC con-

straints are treated as soft in the control design. The setpoint for the energy storage

SoC is changed according to the following rule-based strategy:

• When thrust and load are decreased: track high SoC setpoint, which is 90% in

our simulation case study – charge.

• When thrust and load are increased: track low SoC setpoint, which is 10% in

our simulation case study – supply.

• When one is decreased and the other is maintained: track high SoC setpoint –

charge.

• When one is increased and the other is maintained: track low SoC setpoint –

supply.

• All other cases: track the setpoint corresponding to the mid-range between

lower and upper limit – maintain desired SoC.

The basic idea behind these rules is to charge the energy storage if extra power is

available, and discharge the energy storage if extra power is needed. Given a SoC

setpoint of the energy storage j (SoCjd), the stored energy setpoint of the energy

storage j can be computed based on Eq. (5.4) as follows:

Ejd = SoCjd × EjMax
. (5.13)

108

Thus, the stored energy setpoint in the MPC controller can be used instead of the

SoC setpoint because the stored energy is one of the outputs of the linear model for

our MPC controller design.

5.4.4 Rate-based MPC Controller Design

5.4.4.1 Scaled Model

To alleviate the effects of different order of magnitudes of the inputs and outputs

for the MPC controller, the inputs and outputs of the linear model are scaled before

controller design. We want to scale the inputs and outputs such that the maximum

value of each element in the scaled inputs and outputs is one.

Let δus designate the vector of scaled inputs and δusmax be the maximum value

of the scaled inputs, so that each element in δusmax is one. Let the vector of the

maximum values of the inputs δu be given by δumax = [δu1max δu2max ... δuimax]′.

Then, the relationship between the inputs and scaled inputs is defined as

δu = Suδus, (5.14)

where Su is the input scaling matrix,

Su =

δu1max 0 0 0

0 δu2max 0 0

0 0 ... 0

0 0 0 δuimax

. (5.15)

Let δys be the vector of scaled outputs and δysmax be the maximum value of the

scaled outputs, so that each element in δysmax is one. Assume that the maximum value

of the outputs is known. Let δy be the outputs and δymax = [δy1max δy2max ... δyjmax]′

be the maximum value of the outputs. Then, the relationship between the outputs

109

and scaled outputs is defined as

δy = Syδys, (5.16)

where Sy is the output scaling matrix,

Sy =

δy1max 0 0 0

0 δy2max 0 0

0 0 ... 0

0 0 0 δyjmax

. (5.17)

Assume that the unscaled linear system from Eq. (5.12) has the following form:

δẋ =A′′δx+B′′δu

δy =C ′′δx+D′′δu.

(5.18)

Substituting Eq. (5.14) and Eq. (5.16) into Eq. (5.18) yields

δẋ =A′′δx+B′′Suδus

Syδys =C ′′δx+D′′Suδus.

(5.19)

Then, the scaled system is

δẋ =A′′δx+ B̂δus

δys =Ĉδx+ D̂δus,

(5.20)

where B̂ = B′′Su, Ĉ = Sy
−1C ′′, and D̂ = Sy

−1D′′Su. The model with the scaled

inputs and outputs is used for control design.

110

5.4.4.2 Offset State

Before the rate-based model for MPC design is introduced, we describe how the

nominal linear discrete-time model can be augmented with extra offset states to com-

pensate for errors between linear model predictions and the response of the actual

nonlinear system. The approach of compensating for model mismatch using offset

states has also been used in other predictive control applications, such as for refer-

ence governors [100, 43]. For the design of rate-based MPC, a linear discrete-time

model is needed. Let the discrete-time linear model of the system have the following

form,

δxk+1 = A′dδxk +B′dδuk,

δyk = C ′dδxk +D′dδuk,

(5.21)

where k indicates discrete time instant, and yk denotes the output on which con-

straints are imposed. Suppose that the actual nonlinear system is given by

Xk+1 = f(Xk, Uk),

Yk = g(Xk).

(5.22)

The offset state at the time instant t is defined as:

dt = Yt − (δyt + yno), (5.23)

where δyt is the vector of outputs of the linearized model (deviations from the nominal

values) at the time instant t and yno is the vector of nominal values of the output

at which the model is linearized. We assume that the measurements or accurate

estimates of Yt are available so that the current value of the offset state dt can be

111

computed. Then, the linear prediction model is given by

δxk+1|t = A′dδxk|t +B′dδuk|t,

dk+1|t = dk|t,

δyk|t = C ′dδxk|t +D′dδuk|t + dk|t,

(5.24)

where standard notation in predictive control is used to designate predictions, e.g.,

δxk|t is the predicted state k steps ahead when the prediction is made at the time

instant t. In the sequel, this approach is used for handling surge constraints and hence

we assume, motivated by existing literature, see, e.g., [26], that accurate estimates or

measurements of surge margins are available in the gas turbine engine control strategy

to be able to compute d0|t = dt.

5.4.4.3 Rate-based MPC

The design process of the rate-based MPC controller is now described. The states

of the linear model used for prediction are assumed to be available from measurements

and appropriately designed estimators. The rate-based MPC design described in this

section is for the system configuration with a single energy storage element and two

surge margin offset states. Other system configurations are handled similarly.

The discrete-time model is obtained using a sampling period of 0.04 sec based on

the scaled input-output model in Eq. (5.20). A rate-based MPC controller can be

designed to perform setpoint tracking based on the discrete-time prediction model

shown, without extra offset states, as

δxk+1 = Adδxk +Bdδuk, δyk = Cdδxk +Ddδuk, (5.25)

where A6×6
d , B6×4

d , C5×6
d , D5×4

d , and δyk = [δFg δPT δPD δPD Ej]
T . The control

objective is to follow a requested command (setpoint) r where r = [δFgreq δPTreq

112

δPDreqmax
δPDreqmin

Ejd]
T , that is, follow thrust requests, total electrical power

requests, optimal maximum power difference requests, optimal minimum power dif-

ference requests, and stored energy requests, respectively. Then, the state and control

increments are defined as

∆xk = δxk+1 − δxk, ∆uk = δuk+1 − δuk, (5.26)

and the error between outputs (yk) and setpoints (r) is defined as

ek = Cdδxk +Ddδuk − r. (5.27)

Then,

∆xk+1 = Ad∆xk +Bd∆uk,

ek+1 = Cd∆xk +Dd∆uk + ek,

δxk+1 = δxk + ∆xk,

δuk+1 = δuk + ∆uk.

(5.28)

Eq. (5.28) can be extended with two surge margin offset states and two compen-

sated surge margin states as described in Sec. 5.4.4.2. The extended linear prediction

model is as follows:

∆xk+1 = Ad∆xk +Bd∆uk,

ek+1 = Cd∆xk +Dd∆uk + ek,

δxk+1 = δxk + ∆xk,

δuk+1 = δuk + ∆uk,

dk+1 = dk,

δx̄k+1 = Fδxk+1 + dk+1 = Fδxk + F∆xk + dk,

(5.29)

where dk is the 2 × 1 surge margin offset states vector, δx̄k+1 is the 2 × 1 compen-

113

sated surge margin deviations vector, and F = [02×4 I2×2]. The cost function to be

minimized is given by

JN =
N−1∑
k=0

eTk|tQek|t + ∆uTk|tR∆uk|t,

subject to the constraints: δxmin ≤ δxk|t ≤ δxmax, k = 0, · · · , N,

δumin ≤ δuk|t ≤ δumax, k = 0, · · · , N − 1,

∆umin ≤ ∆uk|t ≤ ∆umax, k = 0, · · · , N − 1,

(5.30)

where N is the prediction horizon, Q is a 5 × 5 diagonal weight matrix associated

with the five errors, R is a 4 × 4 diagonal weight matrix associated with the four

inputs, ek|t is the predicted error k steps ahead when the prediction is made at time

instant t, δuk|t is is the predicted input k steps ahead when the prediction is made at

time instant t, δxmin and δxmax designate state bounds, and δumin, δumax,∆umin and

∆umax designate the bounds on the control inputs and their time rates of change.

Note that the cost function is constructed to penalize the deviation of power dif-

ference between the two generators (PD) from the maximum power difference setpoint

(PDreqmax
) and the minimum power difference setpoint (PDreqmin

), where these set-

points are computed from optimal power split ranges. The same weights are used for

both tracking errors. This strategy maintains PD in between the two setpoints and

hence within/in the middle of the optimal power split range.

The above tracking MPC formulation can be re-written as a standard MPC prob-

lem (to which standard MPC solvers are applicable) for an extended system with a

larger state vector,

xextk|t =

[
∆xTk|t eTk|t δxTk|t δuTk|t dTk|t δx̄Tk|t

]T
, (5.31)

114

and the extended state prediction model given by

xextk+1|t =

Ad 0 0 0 0 0

Cd I5×5 0 0 0 0

I6×6 0 I6×6 0 0 0

0 0 0 I4×4 0 0

0 0 0 0 I2×2 0

F 0 F 0 I2×2 0

xextk|t +

Bd

Dd

0

I4×4

0

0

∆uk|t. (5.32)

For this extended system, the state penalty matrix has the form

Qext =

0 0 0 0 0 0

0 Q 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

, (5.33)

and the control penalty matrix is Rext = R. Two choices of prediction horizon and

sampling period are considered: N=100 with a sampling period of 0.04 sec (which

corresponds to 4 sec of prediction) and N=30 with a sampling period of 0.12 sec (which

corresponds to 3.6 sec of prediction). The MPT toolbox [55] is used to implement

and simulate our MPC controller. Hard constraints are imposed on power output of

the generators to be positive and power limit to/from the energy storage elements,

and soft constraints are imposed on surge margins and stored energy of the energy

storage elements.

115

5.4.5 Multiple MPC Controllers

The rate-based MPC controller is based on a single linear system obtained as a

linearization of the nonlinear model at 27,593 [lbf] of thrust and 0 electrical load. If

the system operates far from this nominal operating point, model inaccuracies may

lead to poor closed loop performance. The standard approach to address this issue [77,

28, 46], sometimes called switched MPC, is to design a set of linear MPC controllers

based on linear models at several operating points, and then switch between the

corresponding MPC controllers depending, in our case, on the engine thrust level.

The switching process can be summarized as follows:

1. If the current operating point is different from the previous operating point, go

to step 3. Otherwise go to step 2.

2. Generate control input using the current controller, then return to step 1.

3. Switch the controller and initialize the previous linear state as follows:

δxold = 0. (5.34)

4. Update the previous input as follows:

δuold = δuold − (un0 − uold0), (5.35)

where un0 is the nominal input at the new operating point and uold0 is the

nominal input at the previous operating point.

5. Update the current linear state as follows:

δx = Adδxold +Bdδuold, (5.36)

116

where Ad and Bd are the discrete linear system matrices at the new operating

point.

6. Compute the input for the MPC controller as follows:

xcont = [(δx− δxold)T eT δxT δuTold dT δxT + dT]T , (5.37)

where e is the measured error and d is offset states. Then, generate the control

input using the current controller, and return to step 1.

Our switching MPC design was based on 10 operating points corresponding to

thrust levels 20,593, 21,593, 22,593, 23,593, 24,593, 25,593, 26,593, 27,593, 28,593

and 29,593 [lbf]. At each operating point, the linearized model was generated using

identification techniques as in Sec. 5.2.4.

Table 5.1: Agreement between the validation data and identified linear model.

Operating Point Determined by Thrust Level (lbf)
20,593 21,593 22,593 23,593 24,593 25,593 26,593 27,593 28,593 29,593

HPS Speed 94.11% 91.89% 92.48% 88.54% 82.82% 82.19% 83.38% 81.34% 80.60% 89.54%
LPS Speed 92.66% 92.73% 82.14% 80.39% 79.00% 83.50% 81.36% 80.24% 82.32% 87.54%
Thrust 93.72% 93.21% 89.14% 84.78% 87.11% 82.69% 83.00% 81.41% 82.10 88.87%
LPC SM 90.44% 86.29% 84.46% 76.60% 72.83% 64.32% 64.97% 63.80% 69.89% 79.59%
HPC SM 90.02% 92.43% 52.71% 42.85% 51.72% 68.44% 40.84% 82.62% 43.69% 89.94%
Average 92.99% 91.31% 80.19% 74.63% 74.70% 76.23% 71.11% 77.88% 71.72% 87.09%

The agreements between the validation data and identified linear models have

been computed for each operating point as described in Sec. 5.2.4.1. See Table 5.1.

Because the LPC and HPC surge margins behaviors are highly nonlinear as shown in

Fig. 5.3, the LPC and HPC surge margins agreements are relatively poor compared to

the other agreements. However, these inaccuracies can be handled by using the extra

offset state as described in Sec. 5.4.4.2. The 10 MPC controllers used in switched

MPC design were generated based on these linearized models and the same weights.

117

5.5 Simulations and Results

The results of different simulation case studies are reported in this section. Firstly,

uncoordinated Linear Quadratic Regulators (LQR), integrated LQR and integrated

MPC are compared to show the benefits of the integrated control and of the MPC.

Secondly, the responses with different energy storage elements are compared, and the

benefits of adding energy storage elements to the system are illustrated. Thirdly,

LQR, MPC, MPC with surge margin offset states (offset MPC) and 10 MPC (Mul-

tiple Model Predictive Control (MMPC)) control designs are compared. The MPC

controllers with offset state for the systems configurations with and without energy

storage elements are also compared.

The control objective is to satisfy the surge margin constraints, maintain the

requested thrust level, and supply the requested electrical power during a 90-sec

simulation. All the simulations start from steady-state with Fg = 27, 593 lbf , LPC

surge margin = 44.7%, HPC surge margin = 17.3%, FAR = 0.0187, and PHreq =

PLreq = Pjreq = PT = 0 MW . The initial energy storage SoC is 50%, and the desired

SoC range is between 40 and 60%. The state and input constraints are summarized

in Table 5.2. Since LQR controllers do not enforce constraints, no constraints are

defined for them.

Table 5.2: Constraints for LQR and MPC controllers.

LQR MPC

Input
Constraints

FAR N/A ±inf
PH [KW] N/A 0 ≤
PL [KW] N/A 0 ≤

˙FAR [/s] N/A ±0.0005

ṖH [KW/s] N/A ±1,000

ṖL [KW/s] N/A ±1,000

State
Constraints

SMFAN [%] N/A 15 ≤
SMLPC [%] N/A 20 ≤
SMHPC [%] N/A 14 ≤

118

The charge/discharge rate constraints of the energy storage elements vary based

on their types, so these constraints are as indicated for each simulation.

Figure 5.8: Simulink model for the closed-loop system with the offset MPC.

All simulations are performed on the fully nonlinear model of the system. The

Simulink model of the closed-loop system with the offset MPC controller and the

energy storage elements is shown in Fig. 5.8.

5.5.1 Performance Metrics

Performance metrics have been defined to compare different controllers. The first

metric is the average thrust deviation from the setpoint, FgAvgDev, which reflects the

thrust tracking performance, and is defined by

FgAvgDev =

∑
|Fgref − Fg|

nt
or

∫ td
0
|Fgref − Fg|

td
, (5.38)

119

where Fgref is the thrust setpoint, Fg is the thrust, nt is the number of samples,

and td is the total simulation duration. A smaller value of FgAvgDev indicates better

thrust request tracking.

The second metric is the average total electrical power deviation from the setpoint,

PTAvgDev
, which reflects the performance in supplying the requested total electrical

power. This metric is defined as

PTAvgDev
=

∑∣∣PTref − PT ∣∣
nt

or

∫ td
0

∣∣PTref − PT ∣∣
td

, (5.39)

where PTref is the total electrical power setpoint (i.e., the sum of required electrical

loads), and PT is the total electrical power generated by the system. A smaller value

of PTAvgDev
indicates better total electrical power tracking, i.e., better supply of the

electrical loads.

The next set of metrics is introduced to characterize the surge margin violations.

The metrics are: the number of surge margin violations (nsmv), the duration of the

ith violation (tidsmv
), and the maximum amount of the ith violation (SM i

MaxV).

The final metric is the total fuel consumption, wf . A smaller value of wf indicates

better fuel efficiency.

5.5.2 Uncoordinated and Coordinated Control

In this section, three different controllers are compared: uncoordinated LQR,

integrated LQR, and integrated MPC. For the purpose of this comparison, the system

without the energy storage elements is considered. The uncoordinated LQR controller

only adjusts FAR for the engine, while the generator power requests are managed

according to a simple strategy of the form,

PHreq =
PTreq+PDreq

2
,

PLreq =
PTreq−PDreq

2
.

(5.40)

120

Table 5.3: Parameters for LQR and MPC controllers.
Uncoordinated LQR Integrated LQR Integrated MPC

Sampling Time [s] 0.04 0.04 0.04
Prediction Horizon [steps] Inf Inf 30
Constraint Horizon [steps] N/A N/A 30
Control Horizon [steps] Inf Inf 10

In the integrated LQR and MPC controllers, a single controller is used for the

whole system to provide coordinated control of three inputs. Each choice of the

controller was tuned for best performance. The controller parameters are shown in

Table 5.3.

0 10 20 30 40 50 60 70 80 90

Time [s]

2.2

2.4

2.6

2.8

3

3.2

F
g

 [
lb

f]

×104 Thrust

0 10 20 30 40 50 60 70 80 90

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
Separated LQR
Integrate LQR

0 10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

55

S
ur

ge
 M

ar
gi

n
[%

]

LPC Surge Margin

0 10 20 30 40 50 60 70 80 90

Time [s]

10

12

14

16

18

20

22

24

S
ur

ge
 M

ar
gi

n
[%

]

HPC Surge Margin

Constraint
Separated LQR
Integrate LQR

Figure 5.9: Comparison of uncoordinated LQR and integrated LQR controllers.

The simulation results of uncoordinated LQR and integrated LQR controllers are

shown in Fig. 5.9. As shown in the left subfigures, both controllers accurately track

the total electrical power setpoint. However, the uncoordinated LQR controller yields

larger thrust deviations when the step change of electrical power occurs as it does not

account for the interactions between the generators and the gas turbine engine. As

expected, both controllers violate surge margin constraints.

121

0 10 20 30 40 50 60 70 80 90

Time [s]

2.2

2.4

2.6

2.8

3

3.2

F
g

 [
lb

f]

×104 Thrust

0 10 20 30 40 50 60 70 80 90

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
MPC
LQR

0 10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

55

S
ur

ge
 M

ar
gi

n
[%

]

LPC Surge Margin

0 10 20 30 40 50 60 70 80 90

Time [s]

10

12

14

16

18

20

22

24

S
ur

ge
 M

ar
gi

n
[%

]

HPC Surge Margin

Constraint
MPC
LQR

Figure 5.10: Comparison of integrated LQR and MPC controllers.

The simulation results of the integrated LQR and integrated MPC controllers

are shown in Fig. 5.10. As shown in the right subfigures, the integrated MPC

controller satisfies the soft surge margin constraints, except for a few small violations,

while the integrated LQR controller does not. Note that the tracking of thrust and

total electrical power is worse for the integrated MPC than for the integrated LQR

controller; however, unlike LQR, the former enforces the constraints, see Fig. 5.11.

0 10 20 30 40 50 60 70 80 90
-4

-2

0

2

4

 F
A

R

10-4 FAR Rate of Change

0 10 20 30 40 50 60 70 80 90
-0.1

-0.05

0

0.05

0.1

 P
H

P
H

 Rate of Change

0 10 20 30 40 50 60 70 80 90

Time [s]

-0.1

-0.05

0

0.05

0.1

 P
L

P
L
 Rate of Change

Constraints
MPC
LQR

Figure 5.11: Input constraint comparison of integrated LQR and MPC controllers.

122

Table 5.4: Comparison of uncoordinated LQR, integrated LQR, and integrated MPC.
Uncoordinated LQR Integrated LQR Integrated MPC

Wf [Kg] 84.74 84.77 84.59
FgAvgDev [lbf] 236.13 109.05 191.79
PTAvgDev

[KW] 0 7.42 32.48
nsmv [times] 5 5 2
tdsmv [s] 1.6 / 1.36 / 0.68 / 2.28 / 0.92 1.44 / 0.12 / 1.16 / 1.16 / 0.48 1.36 / 1.32
SMMaxV [%] 2.78 / 2.89 / 0.13 / 0.48 / 2.49 3.90 / 0.02 / 3.47 / 0.17 / 0.97 0.34 / 0.03

The performance metrics for the three controllers are compared in Table 5.4. The

uncoordinated LQR controller yields the best electrical power tracking performance,

but the worst thrust tracking performance. The integrated LQR controller yields the

best thrust tracking performance and good electrical power tracking performance.

However, both LQR controllers violate the HPC surge margin constraint five times,

sometimes by a large amount (2.89% for the uncoordinated LQR and 3.9% for the

integrated LQR at time instants 50.52 sec and 10.68 sec, respectively), while the in-

tegrated MPC controller only violates these constraints twice by very small amounts.

To illustrate the advantages of MPC over LQR, note that tuning the LQR con-

troller less aggressively could remove the surge margin violations, but, at the same

time, the thrust and total electrical power tracking will be slower for all the transients,

even for small transients, for which there is no danger of surge margin violations. Ex-

amples of different tunings of the integrated LQR controller and comparison with

integrated MPC are shown in Fig.5.12.

As indicated in the figures, tuning the integrated LQR controller less aggressively,

indicated by LQR1 in Fig. 5.12, reduces the surge margin violations. However, it

stills yields more surge margin violations, and furthermore, worse thrust tracking per-

formance than the integrated MPC. If the integrated LQR controller is tuned further

(less aggressively), indicated by LQR2 in the figures, most of the surge margin viola-

tions disappear, but thrust and total electrical power tracking are poor. Meanwhile,

the MPC controller can provide aggressive thrust and total electrical power track-

123

0 10 20 30 40 50 60 70 80 90

Time [s]

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

F
g

 [
lb

f]

104 Thrust

0 10 20 30 40 50 60 70 80 90

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
MPC
LQR1
LQR2

0 10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

S
ur

ge
 M

ar
gi

n
[%

]

LPC Surge Margin

0 10 20 30 40 50 60 70 80 90

Time [s]

13

14

15

16

17

18

19

20

S
ur

ge
 M

ar
gi

n
[%

]

HPC Surge Margin

Constraint
MPC
LQR1
LQR2

Figure 5.12: Comparison of integrated LQRs and MPC controllers.

ing when there is no danger of surge margin constraint violation, and less aggressive

tracking when the surge margin constraints are active. Furthermore, in addition to

the surge margins, there are other constraints handled by MPC controller (e.g., posi-

tive power limit, charge and discharge rate of the energy storage elements, etc.) that

the LQR controller is not designed to handle. In the subsequent sections, the un-

coordinated LQR controller design is no longer considered, and only the integrated

controllers are focused on.

5.5.3 Different Energy Storage Elements

Table 5.5: Specification of battery cell and ultracapacitor cell.

AMP20 Battery cell K2 Ultracapacitor cell

Weight 496 g 520 g
Stored Energy, nominal 65 Wh 4 Wh
Discharge Power, nominal 1.2 KW 4.4 KW (max 9.4 KW)
Voltage, nominal 3.3 V 2.85 V

In this section, the system responses with different energy storage elements are

compared, and the benefits of adding energy storage elements are illustrated. Batter-

124

ies and ultracapacitors are chosen as the energy storage elements. The specifications

of the chosen battery cells [2] and ultracapacitor cells [1] are listed in Table 5.5.

Table 5.6: Specifications of three different energy storage element configurations.
Battery-Ultracapacitor
Pack (Bat-Ucap Pack)

Battery-Pack
(Bat Pack)

Ultracapacitor-
Pack (Ucap Pack)

Battery-Pack
(Bat Pack)

Ultracapacitor-
Pack (Ucap Pack)

Number of cells 77 cells 88 cells 38 cells 44 cells
Weight 39 kg 46 Kg 19 Kg 23 Kg
Volume 20.3 L 36 L 10 L 18 L
Stored Energy, nominal 5 KWh 0.35 KWh 2.4 KWh 0.176 KWh
Voltage, nominal ≈ 250 V ≈ 250 V ≈ 125 V ≈ 125 V
Discharge Rate, nominal 92 KW 389 KW

(max 824 KW)
45 KW 193 KW

(max 413 KW)

Based on the specifications, three different energy storage element configurations

are considered: a battery pack, an ultracapacitor pack, and a battery-ultracapacitor

pack. All the energy storage elements are limited to less than 50 Kg and 40 L

considering limited space on aircraft. Note that currently, relatively small stored

energy is considered compared to our electrical load requests. The specifications of

the energy storage elements are shown in Table 5.6.

Table 5.7: Parameters and energy storage element input constraints for MPC.

MPC

Without Bat Pack UCap Pack
Bat-Ucap Pack

Bat Pack UCap Pack

Controller
Parameters

Sampling Time [s] 0.04 0.04 0.04 0.04 0.04
Prediction Horizon [steps] 100 100 100 100 100
Constraints Horizon [steps] 100 100 100 100 100
Control Horizon [steps] 30 30 30 30 30

Input
Constraints

Pj [KW] N/A ±100 ±800 ±50 ±400

Ṗj [KW/s] N/A ±inf ±inf ±inf ±inf

There are clearly differences between the battery pack and the ultracapacitor

pack in terms of the stored energy and the discharge rate. The battery pack has

much larger stored energy than the ultracapacitor pack, but the ultracapacitor pack

has much faster discharge rate than the battery pack. The battery-ultracapacitor

125

packs can take advantage of both characteristics. Based on the specifications in

Table 5.6, the controller parameters and the energy storage element input constraints

(charge/discharge rate constraints) are defined as shown in Table 5.7.

All of the MPC controllers designed for systems with three different storage el-

ement configurations use the same controller parameters and constraints except for

the constraints on Pj that are determined based on the discharge rate of the energy

storage elements. Constraints on Ṗj are not considered. The simulation results of

MPC with the battery pack and the ultracapacitor pack are shown in Fig. 5.13.

0 10 20 30 40 50 60 70 80 90
2.4

2.6

2.8

3

3.2

F
g

 [
lb

f]

×104 Thrust

0 10 20 30 40 50 60 70 80 90

0

1

2

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
Battery
Capacitor

0 10 20 30 40 50 60 70 80 90

Time [s]

20

40

60

80

S
oC

 [%
]

SoC

60 62 64 66 68 70 72 74 76
2.73

2.74

2.75

2.76

2.77

F
g

 [
lb

f]

×104 Thrust

18 20 22 24 26 28 30 32

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
Battery
Capacitor

Figure 5.13: Comparison of battery and ultracapacitor packs.

There are clear differences in the responses observed for the two types of energy

storage elements. The SoC of the ultracapacitor pack varies more than the SoC of the

battery pack because the ultracapacitor pack has much smaller stored energy than the

battery pack, while the ultracapacitor pack is much faster than the battery pack, so

it can supply the electrical loads very quickly, see the right-bottom subfigure, which

shows the time history of the total electrical power in the time interval between 18

and 32 sec. However, due to limited stored energy, the ultracapacitor cannot supply

126

the electrical loads for a long time; instead it needs to be recharged to recover a

SoC in the 40 to 60% range as shown in the left-bottom SoC subfigure in the time

interval between 20 and 25 sec. Meanwhile, the battery pack allows for better thrust

command tracking as shown in the right-upper subfigure in Fig. 5.13, that represents

the trajectory of thrust in the time interval between 60 and 75 sec. This is reasonable

given the large stored energy in the battery pack. The battery pack can deliver

electrical power for a long time, which helps the gas turbine engine to use power

for thrust generation instead of supplying the generators to satisfy the loads. In

addition, the battery pack reduces surge margin violations, as shown in Table 5.8.

Thus, for faster electrical loads supplying, the ultracapacitor pack appears to be a

suitable energy storage choice; however, for faster thrust responses and stable gas

turbine engine operation, the battery pack is preferred.

We next compare cases without and with the battery-ultracapacitor pack that

take advantage of the characteristics of both types of energy storage elements. The

simulation results are shown in Fig. 5.14.

0 10 20 30 40 50 60 70 80 90
2.4

2.6

2.8

3

3.2

F
g

 [
lb

f]

×104 Thrust

0 10 20 30 40 50 60 70 80 90

0

1

2

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
Without Energy Storage
With Energy Storage

0 10 20 30 40 50 60 70 80 90

Time [s]

20

40

60

80

S
oC

 [%
]

SoCConstraints
Battery
Ultracapacitor

60 62 64 66 68 70 72 74 76
2.73

2.74

2.75

2.76

2.77

F
g

 [
lb

f]

×104 Thrust

18 20 22 24 26 28 30 32

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
Without Energy Storage
With Energy Storage

Figure 5.14: Comparison of controller without and with energy storage elements.

127

As shown in the right subfigures in Fig. 5.14, with the energy storage element,

the controller has better thrust and electrical power tracking. The comparison of the

performance of all the cases is shown in Table 5.8. All energy storage element cases

yield better performance than the case without the energy storage element except for

the second surge margin violation with the ultracapacitor pack. The second surge

margin violation for the ultracapacitor pack is longer and larger than in the case

without energy storage elements. This violation likely occurs because the ultraca-

pacitor pack needs to be charged frequently, which requires the gas turbine engine

to provide more output than in the case without the ultracapacitor. Thus, using the

battery-ultracapacitor pack appears to be the preferred choice from the perspective

of system response to thrust commands and electrical loads, and if the impact on

weight, packaging and cost is not considered.

Table 5.8: Comparison of the systems with different energy storage elements.

MPC
Without Bat Pack UCap Pack Bat-Ucap Pack

Wf [Kg] 84.59 84.56 84.6 84.57
FgAvgDev [lbf] 191.79 187.17 191.87 188.84
PTAvgDev

[KW] 32.48 26.69 15.02 19.32
nsmv [times] 2 1 2 2
tdsmv [s] 1.36 / 1.32 1.32 1.36 / 1.72 1.32 / 0.76
SMMaxV [%] 0.34 / 0.03 0.34 0.34 / 0.06 0.34 / 0.01

Note that the energy storage elements are beneficial, based on our simulation

results, despite the fact that their stored energy is limited in this study. Even more

substantial benefits are expected for the energy storage elements with larger stored

energy in future MEAs.

5.5.4 LQR, MPC, Offset MPC, and MMPC Controllers

In this section, LQR, MPC, offset MPC and MMPC controllers are compared.

The MMPC controller based on linearizations at multiple (10 in our case) operating

128

points and the MPC controller with extra offset states are considered as potential

approaches to better deal with the nonlinearities. For the purpose of quantifying

potential benefits of these design steps, the energy storage elements are not included

in the analysis, and a broader range of thrust profiles is used compared to the previous

simulations. The controller parameters are shown in Table 5.9.

Table 5.9: Parameters for LQR, MPC, offset MPC and MMPC controllers.

LQR MPC MMPC Offset MPC
Sampling Time [s] 0.12 0.12 0.12 0.12
Prediction Horizon [steps] Inf 30 30 30
Constraint Horizon [steps] N/A 30 30 30
Control Horizon [steps] Inf 10 10 10

For all the controllers, the same parameters and constraints are used. The closed-

loop performance comparison is shown in Table 5.10.

Table 5.10: Comparison of LQR, MPC, MMPC, and offset MPC controllers.

LQR MPC MMPC Offset MPC
Wf [Kg] 75.34 74.47 75.13 74.28
FgAvgDev [lbf] 170.06 719.72 497.93 718.93
PTAvgDev

[KW] 7.50 101.14 92.18 101.14
nsmv [times] 4 1 1 0
tdsmv [s] 1.44 / 1 / 5.4 / 0.48 5.36 7.76 0
SMMaxV [%] 3.9 / 3.86 / 1.24 / 0.97 1.06 1.62 0

As expected, the LQR controller yields the best thrust and electrical load tracking,

but it violates the surge margin constraints four times with a maximum of 3.9%. It

also consumes the largest fuel amount. The MPC controller is able to reduce the surge

margin violations; nevertheless it violates the surge margin constraint once at 5.36

sec with a maximum violation of 1.06%. This violation is likely due to discrepancy

between the prediction model and the actual nonlinear plant behavior. The MMPC

design yields better thrust and electrical loads tracking than the MPC controller, but

the surge margin constraint violation is longer and has larger magnitude than the

129

MPC controller, which is likely due to surge margin prediction being insufficiently

accurate. The offset MPC design yields very similar tracking performance to that

of the MPC controller, and has no violation of the surge margin constraint. The

simulation results of MPC, MMPC, and offset MPC controllers are shown in Fig.

5.15.

0 10 20 30 40 50 60 70 80 90

Time [s]

2

2.2

2.4

2.6

2.8

3

3.2

F
g

 [
lb

f]

×104 Thrust

0 10 20 30 40 50 60 70 80 90

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
Single MPC
Ten MPCs
Single MPC w/ offset

0 10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

S
ur

ge
 M

ar
gi

n
[%

]

LPC Surge Margin

0 10 20 30 40 50 60 70 80 90

Time [s]

12

14

16

18

20

22
S

ur
ge

 M
ar

gi
n

[%
]

HPC Surge Margin

Constraint
Single MPC
Ten MPCs
Single MPC w/ offset

Figure 5.15: Comparison of MPC, MMPC, and offset MPC controllers.

The black vertical lines indicate the switching time instants for MMPC controllers.

As observed, switching does not cause improper behaviors of the system. For most

of the simulation, all three controllers yield similar results, but the major differences

can be found in the time interval between 60 and 80 sec. Specifically, between 60 and

70 sec, the MPC controller assumes that it does not have available HPC surge margin

because of inaccurate surge margin estimation due to being far from the operating

point. Thus, it does not track the thrust setpoint aggressively, while the MMPC

and offset MPC controllers are able to correctly account for the available HPC surge

margin, and hence they track the thrust setpoint faster than the MPC controller. In

the time interval between 70 and 80 sec, the MPC and MMPC controllers incorrectly

130

assess that there is available HPC surge margin, so they track the thrust setpoint

aggressively, but the offset MPC assesses that there is no available surge margin, so

it tracks the thrust setpoint slowly to satisfy the HPC surge margin constraint, and

uses the available LPC surge margin. Thus, the offset MPC performs best in this

simulation.

To confirm that the offset MPC is a good design choice, an energy storage ele-

ment, the battery-ultracapacitor pack, is added to the offset MPC controller, and the

cases without and with the energy storage element are compared to each other. The

controller parameters and the constraints can be found in Tables 5.2, 5.7 and 5.9.

The performance comparison is shown in Table 5.11.

Table 5.11: Comparison of offset MPC with and without energy storage elements.

Offest MPC
Without With Bat-Ucap Pack

Wf [Kg] 74.28 74.41
FgAvgDev [lbf] 718.93 672.91
PTAvgDev

[KW] 101.14 71.35
nsmv [times] 0 0
tdsmv [s] 0 0
SMMaxV [%] 0 0

As shown in Table 5.11, both thrust and total electrical power tracking perfor-

mance are improved with the addition of the energy storage, especially in terms of

the total electrical power tracking performance. The fuel consumption is increased,

as a penalty for better tracking performance, but the increased amount is relatively

small. The surge margin constraints are perfectly satisfied for both controllers. The

simulation results of offset MPC controllers with and without energy storage elements

are shown in Fig. 5.16.

131

0 10 20 30 40 50 60 70 80 90
2

2.5

3

3.5

F
g

 [
lb

f]

×104 Thrust

0 10 20 30 40 50 60 70 80 90

0

1

2

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
Without Energy Storage
With Energy Storage

0 10 20 30 40 50 60 70 80 90

Time [s]

0

20

40

60

80

S
oC

 [%
]

SoCConstraints
Battery
Ultracapacitor

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

1

1.5

P
D
 [M

W
]

Electrical Power Difference between HPC & LPC Gens

P
H

 - P
L
:Without Energy Storage

P
H

 - P
L
:With Energy Storage

0 10 20 30 40 50 60 70 80 90
-2

-1

0

1

2

P
D
 [M

W
]

Reference
P

H
 - P

L
:Without Energy Storage

0 10 20 30 40 50 60 70 80 90

Time [s]

-2

-1

0

1

2

P
D
 [M

W
]

Reference
P

H
 - P

L
:With Energy Storage

Figure 5.16: Comparison of offset MPC with and without energy storage elements.

As the left subfigures in Fig. 5.16 show, offset MPC with energy storage elements

shows better thrust and total electrical power tracking. Both SoCs, especially for

the ultracapacitor pack, violate the SoC constraint a small number of times to deal

with transient thrust and electrical power changes, but they quickly recover to their

constrained levels. As shown in the right subfigures, for both controllers, the power

difference between the two generators stays within the optimal power split ranges for

most of the time, which corresponds to safe and efficient operation.

5.5.5 Offset MPC with and without Sensor Noise

In this section, sensor noise is added to the measurements to verify the robustness

of the offset MPC controller, and the responses with and without sensor noise are

compared. Specifically, zero mean standard deviation Gaussian noise of 0.1% is added

to the thrust, LPC and HPC surge margins measurements. The simulation results

of offset MPC with and without sensor noise for the system configuration with the

battery-ultracapacitor are shown in Fig. 5.17.

132

0 10 20 30 40 50 60 70 80 90

Time [s]

2

2.2

2.4

2.6

2.8

3

3.2

F
g

 [
lb

f]

104 Thrust

0 10 20 30 40 50 60 70 80 90

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

P
T

[M
W

]

Total Electrical Power

Reference
Constraint
With Noise
Without Noise

0 10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

S
ur

ge
 M

ar
gi

n
[%

]

LPC Surge Margin

0 10 20 30 40 50 60 70 80 90

Time [s]

12

14

16

18

20

22

S
ur

ge
 M

ar
gi

n
[%

]

HPC Surge Margin

Constraint
With Noise
Without Noise

Figure 5.17: Comparison of offset MPC controllers with and without sensor noise.

The simulation results show that the offset MPC controller is able to handle

the sensor noise. In the time interval between 70 to 80 sec, when high electrical

power is required and thrust increment is requested near the HPC surge margin

limit, some oscillations are observed because of the sensor noise, but the controller is

able to handle the situation without having surge margin violations. Note that the

computational delay can be accommodated by using advanced-step MPC [105] and

other delays, if they exist, can be handled by augmenting the discrete-time model

with extra delay states.

5.6 Conclusions

In this chapter, the development of a coordinated control strategy for a gas tur-

bine engine, an advanced dual generator subsystem, and energy storage elements for

MEA and AEA in the presence of large transient thrust and electrical loads has been

pursued. The control design exploited rate-based MPC, for which various enhance-

133

ments and design options have been considered and analyzed. Specifically, single

MPC, MMPC, and offset MPC strategies were applied and compared to uncoordi-

nated LQR and integrated LQR strategies in full nonlinear model simulations.

The comparison of closed-loop responses for the cases of uncoordinated LQR and

integrated LQR indicated that the integrated control is capable of outperforming

uncoordinated control in terms of tracking performance. The integrated LQR con-

troller yielded better thrust and total electrical power tracking than the integrated

MPC controller, however, with more surge margin constraint violations and without

granting any protection against violation of other constraints.

To improve prediction model accuracy, MMPC and offset MPC design approaches

were pursued. In the latter case, auxiliary offset states are used to represent the error

between the linear model-based estimates of the constrained outputs and their actual

value from the nonlinear model. The simulation results show that a single MPC with

offset states is able to satisfy the surge margin constraints while MMPC, a more

complex controller, has some constraint violations. Thus, the single rate-based offset

MPC controller appears to be the best strategy to control the system. The closed-

loop system performance with different types of energy storage elements has also been

analyzed with the combined battery and the ultracapacitor pack providing the best

solution; however, the weight and size impact of such an approach need to be carefully

analyzed. Including energy storage elements into the system improves performance.

For instance, in our simulations, the offset MPC controller with battery-ultracapacitor

pack improved average thrust deviation by 6.4%, settling time of thrust by 3.47%,

average total electrical power tracking by 29.45%, and settling time of total electrical

power by 8.65% compared to an offset MPC controller applied to the system without

energy storage, and without any constraint violations. In addition, the offset MPC

controller was able to handle sensor noise. Our results support the perspective that

the aircraft architecture with dual generators attached to different gas turbine engine

134

shafts and battery-ultracapacitor pack, controlled by a single offset MPC controller,

is appealing in terms of fast, safe and efficient thrust and electrical load delivery for

future MEA and AEA.

135

CHAPTER VI

Conclusions

In this dissertation, we consider situations where resources are limited, other con-

straints are imposed on the system, and no knowledge or probabilities of the future

are available. The goal is to develop/design methods of resource management for the

available resources and for a constrained system operating in an UDE. Resources may

include different notions, such as fuel, power, capabilities, energy, and so on. In this

dissertation, resource management is divided into two main categories: 1) planning,

and 2) control. At the planning level, the set of tasks to be performed is scheduled

based on the limited resources, to maximize performance and resource use. At the

control level, the system controller is designed to follow the schedule by considering

all the system constraints for safe and efficient operations. For the best resource

management performance in constrained dynamic situations, the planning level and

the control level need to be considered together.

In Chapter 2, the RFSM is defined; it is a composed FSM with global and/or

local input restrictions that takes into account resource limitations. Then, ReRFSM

is defined, based on composition and pruning operations of the FSM that can handle

UDEs. To obtain the resource management policy, DP for ReRFSM is developed, and

to obtain a solution with faster computation time, LBFS for ReRFSM is developed.

However, we show that the optimal policies of the ReRFSM are not achieved by

136

combining the local optimal policies of the RFSMs in the ReRFSM because of UDE,

where a random FSM can be added or deleted without preview information. In

the case of ReFSM, DP for ReFSM may stay near the optimal policy because the

local optimal policies are connected to each other by the union policy, but in the

case of ReRFSM, the local optimal policies are not well connected because of input

restrictions. Furthermore, DP for ReRFSM may be worse than LBFS for ReRFSM, so

DP may not be useful in UDE. Obtaining the optimal policy of ReRFSM is impossible

without knowing the future perfectly, so for real-world situations with UDE and

limited resources, using LBFS for ReRFSM is reasonable.

In Chapter 3, a multi-function phased array radar task scheduler is designed using

ReRFSM in UDE for planning level resource management. The scheduling algorithm

is developed based on several different methods: DP for ReRFSM, SWC for ReRFSM,

BFS for ReRFSM, and LBFS for ReRFSM. The simulation results indicate that the

algorithm performs similarly for all methods, but LBFS for ReRFSM is computation-

ally faster than the other methods, especially, when the number of threats is large.

Therefore, using a LBFS for ReRFSM is effective in this application. The resource

management results depend on a cost function that is based on a heuristic; the re-

sults are intuitive and acceptable for real-world scenarios. A distributed architecture

using communication for fleet-level radar systems is also developed. The simulation

results show that the distributed architecture performs better than the decentralized

one by yielding better overall performance metrics and handling more threats in the

same battle situation. The results indicate that cooperation is important to utilize

the limited resource well, and our approach allows convenient design of cooperative

resource management strategies.

In Chapter 4, patrolling mission planners for an UAV and multi-UAV are designed

using ReRFSM in UDE for planning level resource management. By applying DP for

ReRFSM, a policy is generated and by applying LBFS for ReRFSM, a sub-optimal

137

solution is generated with faster computation time. LBFS for ReRFSM can handle

around 400 waypoints in real time in the current setting, while DP for ReRFSM

can handle approximately 10 waypoints; for large numbers of waypoints, LBFS for

ReRFSM should to be used. Our analysis indicates that the gain P has to be carefully

chosen to obtain the desired plan: reducing total length of tour or visiting high priority

waypoints first. The simulation results show that the resulting schedule is affected

by the priorities of the waypoints and no fly zones, as well as their changes, so they

should be considered to obtain the plan for the UAV.

In Chapter 5, a rate-based MPC controller for a gas turbine engine and electri-

cal power system for future MEA/AEA in the presence of large transient thrust and

electrical loads is designed for control level resource management. In the presence

of large transient thrust and electrical loads, the interactions between the subsys-

tems are significant, so they have to be considered. To alleviate the effects of the

interactions, a two-generator configuration is exploited and advanced energy storage

elements are considered. The control design exploits rate-based MPC to handle a

variety constraints, for which various enhancements and design options have been

considered and analyzed. The comparison of closed-loop responses for the cases of

uncoordinated and integrated designs indicates that the integrated control is better

than uncoordinated control in terms of the performance metrics. Our results show

that the two-generator configuration and battery-ultracapacitor pack, controlled by

a single offset MPC controller, is appealing in terms of fast, safe and efficient thrust

and electrical load delivery for future MEA and AEA. This indicates that for control

level resource management, considering the interactions between the subsystems and

integrated control for the subsystems are important to achieve good tracking of the

schedule and safe operations for the system.

As indicated previously, for the best resource management performance in con-

strained dynamic situations, the planning level and the control level need to be con-

138

Figure 6.1: An example of joint operation of planning level and control level.

sidered together. For the planning level, cooperation is important to maximize use of

the limited resource, and for the control level, considering the system constraints and

interactions between the subsystems are important for good tracking of the sched-

ule and safe operations of the system. Consider a two-aircraft patrolling mission in

an UDE where each aircraft is equipped with two sensors for collecting information.

Then, a patrolling mission planner similar to that from Chapter 4 can generate a

trajectory plan by considering cooperation between the two aircraft, and generate

corresponding thrust schedules for each aircraft. Also, a scheduler similar to that

developed in Chapter 3 can provide the electrical power schedule for each aircraft’s

sensor by considering cooperation between the sensors, as well as the aircraft, to col-

lect the information. Because of the UDE, the schedules can change in time without

available prediction. For instance, the set of waypoints, and for each waypoint, the

number of tasks may change in time without prediction. Once the schedules are ob-

tained, a rate-based MPC controller for each aircraft, similar to that developed in

Chapter 5, can provide control signals for each aircraft to follow their given schedule

while considering the system constraints. The joint operation of the planning level

and the control level of the given example is shown in Fig. 6.1. The planning level en-

sures good schedules, and the control level ensures good tracking of schedules and safe

operations of the system, so good resource management performance in constrained

dynamic situations can be achieved.

139

BIBLIOGRAPHY

140

BIBLIOGRAPHY

[1] Datasheet k2 ultracapacutors - 2.85v/3400f. http://www.maxwell.com/

images/documents/K2_2_85V_DS_3000619EN_3_.pdf. Accessed: 2016-06-20.

[2] Nanophosphate lithium ion prismatic pouch cell amp20m1hd-a. http:

//web.archive.org/web/20080207010024/http://www.808multimedia.

com/winnt/kernel.htm. Accessed: 2016-06-20.

[3] Pratt & whitney’s f135 advanced multi-variable control team receives utc’s pres-
tigious george mead award for outstanding engineering accomplishment, 2010.

[4] M. Alnajjar and D. Gerling. Control of three-source high voltage power network
for more electric aircraft. In International Symposium on Power Electronics,
Electrical Drives, Automation and Motion, pages 232–237, Jun 2014.

[5] N. Basilico, N. Gatti, and F. Amigoni. Developing a deterministic patrolling
strategy for security agents. In IEEE/WIC/ACM International Joint Confer-
ences on Web Intelligence and Intelligent Agent Technologies, volume 2, pages
565–572, 2009.

[6] A. Behbahani, D. Culley, S. Garg, R. Millar, B. Smith, J. Wood, T. Mahoney,
R. Quinn, S. Carpenter, B. Mailander, et al. Status, vision, and challenges
of an intelligent distributed engine control architecture. SAE Technical Paper
2007-01-3859, 2007.

[7] A. R. Behbahani, A. Von Moll, R. Zeller, and J. Ordo. Aircraft integration
challenges and opportunities for distributed intelligent control, power, thermal
management, diagnostic and prognostic systems. SAE Technical Paper 2014-
01-2161, 2014.

[8] G. Berry and L. Cosserat. The esterel synchronous programming language and
its mathematical semantics. In Seminar on Concurrency, pages 389–448, Jul
1984.

[9] G. Berry, M. Kishinevsky, and S. Singh. System level design and verification
using a synchronous language. In Proceedings of the 2003 IEEE/ACM Interna-
tional Conference on Computer-aided Design, pages 433–440, 2003.

[10] D. P. Bertsekas. Dynamic Programming and Optimal Control Volume I. Athena
Scientific, 3rd edition, 2005.

141

[11] D. P. Bertsekas. Dynamic Programming and Optimal Control Volume II. Athena
Scientific, 4th edition, 2012.

[12] D. Bertsimas and G. V. Ryzin. The dynamic traveling repairman problem.
Sloan School of Management, Massachusetts Institute of Technology, 1989.

[13] W. Blair, G. A. Watson, T. Kirubarajan, and Y. Bar-shalom. Benchmark for
radar allocation and tracking in ecm. IEEE Transactions on Aerospace and
Electronic System, 34:1097–1114, Oct 1998.

[14] F. Bullo, E. Frazzoli, M. Pavone, K. Salva, and S. Smith. Dynamic vehicle
routing for robotic systems. Proceedings of the IEEE, 99:1482–1504, 2011.

[15] G. L. Calhoun, M. H. Draper, M. F. Abernathy, M. Patzek, and F. Delgado.
Synthetic vision system for improving unmanned aerial vehicle operator situa-
tion awareness. In SPIE Enhanced and Synthetic Vision, pages 219–230, May
2005.

[16] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, 2nd edition, 2007.

[17] J. W. Chapman, T. M. Lavelle, J. S. Litt, and T.-H. Guo. A process for the
creation of t-mats propulsion system models from npss data. In Propulsion and
Energy Forum, Jul 2014.

[18] J. W. Chapman, T. M. Lavelle, J. S. Litt, R. D. May, and T.-H. Guo. Propulsion
system simulation using the toolbox for the modeling and analysis of thermo-
dynamic systems (t-mats). In Propulsion and Energy Forum, Jul 2014.

[19] N. Christofides. The vehicle routing problem. Revue Francaise D’automatique,
D’informatique et de Recherche operationnelle, 10:55–70, 1976.

[20] B. Coltin, M. Veloso, and R. Ventura. Dynamic user task scheduling for mobile
robots. In AAAI Workshop on Automated Action Planning for Autonomous
Mobile Robots, Aug 2011.

[21] M. Corbett, P. Lamm, J. McNichols, M. Boyd, and M. Wolff. Effects
of transient power extraction on an integrated hardware-in-the-loop air-
craft/propulsion/power system. SAE Technical Paper 2008-01-2926, 2008.

[22] J. B. Cruz, J. M. A. Simaan, A. Gacic, H. Jiang, B. Letellier, M. Li, and
Y. Liu. Modeling and control of military operations against adversarial control.
In Proceedings of the 39th IEEE Conference on Decision and Control, volume 3,
pages 2581–2586, Dec 2000.

[23] Q. Dang, I. Nielsen, K. Steger-Jensen, and O. Madsen. Scheduling a single
mobile robot for part-feeding tasks of production lines. Journal of Intelligent
Manufacturing, 25:1271–1287, 2013.

142

[24] G. Dantzig and J. Ramser. The truck dispatching problem. Management Sci-
ence, 6:80–91, 1959.

[25] J. A. DeCastro. Rate-based model predictive control of turbofan engine clear-
ance. Journal of Propulsion and Power, 23(4):804–813, 2007.

[26] J. C. DeLaat, R. D. Southwick, and G. W. Gallops. High stability engine control
(histec). In 32nd Joint Propulsion Conference Cosponsored by AIAA, ASME
and SAE, Jul 1996.

[27] M. P. DeSimio, B. M. Hencey, and A. C. Parry. Online prognostics for fuel
thermal management system. In ASME 2015 Dynamic Systems and Control
Conference, page V001T08A003. American Society of Mechanical Engineers,
Oct 2015.

[28] S. Di Cairano and H. Tseng. Driver-assist steering by active front steering and
differential braking: Design, implementation and experimental evaluation of a
switched model predictive control approach. In IEEE Conference on Decision
and Control, pages 2886–2891, Dec 2010.

[29] C. Duron and J. Proth. Multifunction radar: Task scheduling. Journal of
Mathematical Modeling and Algorithm, 1:105–116, Jun 2002.

[30] S. A. Edwards, N. Halbwachs, R. V. Hanxleden, and T. Stauner. Synchronous
programming. In Synchronous Programming, Nov 2005.

[31] J. Enright, K. Salva, and E. Frazzoli. Stochastic and dynamic routing problems
for multiple uninhabited aerial vehicles. Journal of Guidance, Control, and
Dynamics, 32:1152–1166, 2009.

[32] S. S. Epp. Discrete Mathematics with Applications. Cengage Learning, 4th
edition, 2010.

[33] M. Faied. Multistep classification problem using evsi bayesian preposterior
framework. Robotics and Autonomous Systems, 72:277–284, 2015.

[34] M. Faied, I. Assanein, and A. Girard. Uavs dynamic mission management
in adversarial environments. International Journal of Aerospace Engineering,
pages 1–10, 2009.

[35] M. Faied and A. Girard. Modeling and optimization of military air operations.
In Proceedings of the 48th IEEE Conference on Decision and Control, pages
6274–6279, Dec 2009.

[36] M. Faied, A. Mostafa, and A. Girard. Dynamic optimal control of multiple
depot vehicle routing problem with metric temporal logic. In IEEE American
Control Conference, Jun 2009.

143

[37] M. Faied, A. Mostafa, and A. Girard. Vehicle routing problem instances: Ap-
plication to multi-uav mission planning. In AIAA Guidance, Navigation, and
Control Conference, pages 565–572, Aug 2010.

[38] J. L. Fargeas, P. Kabamba, and A. Girard. Cooperative surveillance and pur-
suit using unmanned aerial vehicles and unattended ground sensors. Sensors,
15:1365–1388, 2015.

[39] J. Felder, H. Kim, and G. Brown. Turboelectric distributed propulsion engine
cycle analysis for hybrid-wing-body aircraft. In AIAA Aerospace Sciences Meet-
ing including The New Horizons Forum and Aerospace Exposition, Jan 2009.

[40] M. Figliozzi. Vehicle routing problem for emissions minimization. Transporta-
tion Research Record: Journal of the Transportation Research Board, 2:1–7,
2010.

[41] D. Ford. Planning for an unpredictable war: British intelligence assessments
and the war against japan, 193745. Journal of Strategic Studies, 27(1):136–167,
2007.

[42] J. Fuller, I. Das, F. Potra, and J. Ji. System and method of applying interior
point method for online model predictive control of gas turbine engines, Jun
2005. US Patent App. 11/150,703.

[43] E. Garone, S. Di Cairano, and I. Kolmanovsky. Reference and command gov-
ernors for systems with constraints: A survey of their theory and application.
Automatica, 75(1):306–328, 2017.

[44] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky. Integrated resource
management and scheduling with multi-resource constraints. In Proceedings
of the 25th IEEE International Real-Time Systems Symposium, pages 12–22,
Dec 2004.

[45] R. R. Hill, J. O. Miller, and G. A. McIntyre. Application of discrete event sim-
ulation to modeling military problems. In Proceedings of the Winter Simulation
Conference, volume 1, pages 780–788, Feb 2001.

[46] M. Huang, H. Nakada, S. Polavarapu, R. Choroszucha, K. Butts, and I. Kol-
manovsky. Towards combining nonlinear and predictive control of diesel engines.
In American Control Conference, pages 2846–2853, Jun 2013.

[47] M. Huang, K. Zaseck, K. Butts, and I. Kolmanovsky. Rate-based model predic-
tive controller for diesel engine air path: Design and experimental evaluation.
IEEE Transactions on Control Systems Technology, 2016.

[48] L. C. Jaw and J. Mattingly. Aircraft Engine Controls: Design, System Analysis,
and Health Monitoring. AIAA, 1st edition, 2010.

144

[49] M. I. Jiménez, L. D. Val, J. J. Villacorta, A. Izquierdo, and M. R. Mateos.
Design of task scheduling process for a multifunction radar. IET Radar, Sonar
and Navigation, 6:341–347, 2012.

[50] R. M. Karp and M. Held. Finite-state processes and dynamic programming.
SIAM Journal on Applied Mathematics, 15(3):693–718, May 1967.

[51] H. D. Kim. Distributed propulsion vehicles. In 27th International Congress of
the Aeronautical Sciences, Sep 2010.

[52] J. S. Kim, K. M. Powell, and T. F. Edgar. Nonlinear model predictive control
for a heavy-duty gas turbine power plant. In American Control Conference,
pages 2952–2957, Jun 2013.

[53] I. Kolmanovsky, L. Jaw, W. Merrill, and H. T. Van. Robust control and limit
protection in aircraft gas turbine engines. In Proceedings of 2012 IEEE Multi-
conference on Systems and Control, Oct 2012.

[54] I. Kolmanovsky and W. Merill. Limit protection in gas turbine engines
based on reference and extended command governors. In Proceedings of 50th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Jul 2014.

[55] M. Kvasnica, P. Grieder, and M. Baotić. Multi-parametric toolbox (mpt), 2004.

[56] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithm. Eropean Journal of Operational Research, 59:345–358, 1992.

[57] S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operation Research, 21:498–516, 1973.

[58] J. S. Litt, D. L. Simon, S. Garg, T.-H. Guo, C. Mercer, R. Millar, A. Behba-
hani, A. Bajwa, and D. T. Jensen. A survey of intelligent control and health
management technologies for aircraft propulsion systems. Journal of Aerospace
Computing, Information, and Communication, 1(12):543–563, 2004.

[59] C. A. Luongo, P. J. Masson, T. Nam, D. Mavris, H. D. Kim, G. V. Brown,
M. Waters, and D. Hall. Next generation more-electric aircraft: A potential
application for hts superconductors. IEEE Transactions on Applied Supercon-
ductivity, 19:1055–1068, Jun 2009.

[60] N. A. Lynch and M. R. Tuttled. An introduction to input/output automata.
CWI Quarterly, 2(3):219–246, 1989.

[61] F. Maraninchi and N. Halbwachs. Compositional semantics of non-deterministic
synchronous languages. In Programming Languages and System, pages 235–249,
Apr 1996.

[62] F. Maraninchi and Y. Remond. Argos: An automaton-basedsynchronous lan-
guage. Computer Languages, 27:61–92, Apr 2001.

145

[63] J. S. McCarley and C. D. Wickens. Human factors implications of uavs in the
national airspace. Technical Report AHFD-05-5/FAA-05-1, Aviation Human
Factors Division, Savoy, IL, 2005.

[64] J. S. McGrew, J. P. How, L. A. Bush, B. Williams, and N. Roy. Air-combat
strategy using approximate dynamic programming. Journal of Guidance, Con-
trol, and Dynamics, 33:1641–1654, 2010.

[65] C. McMillen and M. Veloso. Distributed, play-based role assignment for robot
teams in dynamic environments. In Distributed Autonomous Robotic Systems
7, pages 1271–1287, 2006.

[66] I. R. McNab. Pulsed power for electric guns. IEEE Transactions on Magnetics,
33:453–460, Jan 1997.

[67] S. L. C. Miranda, C. J. Baker, K. Woodbridge, and H. Griffiths. Compari-
son of scheduling algorithms for multifunction radar. IET Radar, Sonar and
Navigation, 1:414–424, 2007.

[68] S. L. C. Miranda, C. J. Baker, K. Woodbridge, and H. Griffiths. Fuzzy logic
approach for prioritisation of radar tasks and sectors of surveillance in multi-
function radar. IET Radar, Sonar and Navigation, 1:131–141, 2007.

[69] S. L. C. Miranda, C. J. Baker, K. Woodbridge, and H. D. Griffiths. Phased
array radar resource management: A comparison of scheduling algorithms. In
Proceedings of the IEEE Radar Conference, pages 79–84, 2004.

[70] A. J. Mitcham and J. J. A. Cullen. Permanent magnet generator options for
the more electric aircraft. In International Conference on Power Electronics,
Machines and Drives, pages 241–254, Jun 2002.

[71] I. Moir and A. Seabridge. Aircraft Systems: Mechanical, Electrical and Avionics
Subsystems Integration. Wiley, 3rd edition, 2008.

[72] P. W. Moo. Scheduling for multifunction radar via two-slope benefit functions.
IET Radar, Sonar and Navigation, 5:884–894, 2011.

[73] P. W. Moo and Z. Ding. Coordinated radar resource management for networked
phased array radars. IET Radar, Sonar and Navigation, 9:1009–1020, 2015.

[74] K. Muehlbauer and D. Gerling. Two-generator-concepts for electric power gen-
eration in more electric aircraft engine. In International Conference on Electrical
Machines, pages 1–5, Sep 2010.

[75] P. J. Norman, S. J. Galloway, G. M. Burt, J. E. Hill, and D. R. Trainer. Evalu-
ation of the dynamic interactions between aircraft gas turbine engine and elec-
trical system. In IET Conference on Power Electronics, Machines and Drives,
pages 671–675, Apr 2008.

146

[76] P. Oberlin, S. Rathinam, and S. Darbha. Today’s traveling salesman problem.
IEEE Robotics & Automation Magazine, 17:70–77, 2010.

[77] P. Ortner and L. del Re. Predictive control of a diesel engine air path. IEEE
Transactions on Control Systems Technology, 15:449–456, 2007.

[78] H. Psaraftis. Dynamic vehicle routing problem. Vehicle Routing: Methods and
Studies, 1988.

[79] P. Rakhra, P. J. Norman, S. J. Galloway, and G. M. Burt. Modelling and
simulation of a mea twin generator uav electrical power system. In Interna-
tional Proceedings of Universities’ Power Engineering Conference, pages 1–5,
Sep 2011.

[80] P. J. Ramadge and W. H. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25:206–230, 1987.

[81] J. Rawlings and D. Mayne. Model Predictive Control: Theory and Design. Nob
Hill Publishing, 1st edition, 2009.

[82] H. Richter. Advanced Control of Turbofan Engines. Springer, 1st edition, 2012.

[83] J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral. Moving towards a more
electric aircraft. IEEE Aerospace and Electronic Systems Magazine, 22:3–9, Mar
2007.

[84] K. Salva, F. Bullo, and E. Frazzoli. On travelling salesperson problem for du-
bins’ vehicle: Stochastic and dynamic environment. In Conference on Decision
and Control, and the European Control Conference, pages 4530–4535, Dec 2005.

[85] K. Salva, E. Frazzoli, and F. Bullo. On the point-to-point and travelling sales-
person problem for dubins’ vehicle. In American Control Conference, volume 2,
pages 786–791, Jun 2005.

[86] U. S. A. F. C. Scientist. Technology horizons: A vision for air force science and
technology 2010-30. Technical report, United States Air Force, 2010.

[87] J. Seok, I. Kolmanovsky, and A. Girard. Integrated/coordinated control of
aircraft gas turbine engine and electrical power system: Towards large electrical
load handling. In IEEE Conference on Decision and Control, pages 3183–3189,
Dec 2016.

[88] J. Seok, J. Zhao, J. Selvakumar, E. Sanjaya, P. T. Kabamba, and A. Girard.
Radar resource management: Dynamic programming and dynamic finite state
machines. In European Control Conference, pages 4100–4105, Jul 2013.

[89] T. A. Severson and D. A. Paley. Distributed optimization for radar mission
coordination. In American Control Conference, pages 5102–5107, Jun 2012.

147

[90] B. Shahsavari, M. Maasoumy, A. Sangiovanni-Vincentelli, and R. Horowitz.
Stochastic model predictive control design for load management system of air-
craft electrical power distribution. In American Control Conference, pages
3649–3655, Jul 2015.

[91] G. Shen and P. E. Caines. Hierarchically accelerated dynammic programming
for finite-state machines. IEEE Transaction on Automatic Control, 47(2):271–
283, Feb 2002.

[92] S. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic traveling repairman
with priority demands. In IEEE Conference on Decision and Control, pages
1206–1211, 2008.

[93] S. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with
priority classes of stochastic demands. SIAM Journal on Control and Optimiza-
tion, 48:3224–3245, 2010.

[94] E. Thirunavukarasu, R. Fang, J. A. Khan, and R. Dougal. Evaluation of gas tur-
bine engine dynamic interaction with electrical and thermal system. In Electric
Ship Technologies Symposium, pages 442–448, Apr 2013.

[95] P. Thunholm. Planning under time pressure: An attempt toward a prescriptive
model of military tactical decision making. H. Montgomery, R. Lipshitz & B.
Brehmer (Eds.), How Experts Make Decisions, 2005.

[96] C. Ting, H. Zishu, and T. Ting. Dwell scheduling algorithm for multifunction
phased array radars based on the scheduling gain. Journal of Systems Engi-
neering and Electronics, 19:479–485, June 2008.

[97] R. Todd, D. Wu, J. A. dos Santos Girio, M. Poucand, and A. J. Forsyth.
Supercapacitor-based energy management for future aircraft systems. In Ap-
plied Power Electronics Conference and Exposition, pages 1306–1312, Feb 2010.

[98] J. Tumova, G. Hall, S. Karaman, E. Frazzoli, and D. Rus. Least-violating
control strategy synthesis with safety rules. In 16th International Conference
on Hybrid Systems: Computation and Control. ACM, 2013.

[99] J. Tumová, L. I. Reyes-Castro, S. Karaman, E. Frazzoli, and D. Rus. Minimum-
violating planning with conflicting specifications. In American Control Confer-
ence, pages 200–205, Jun 2013.

[100] A. Vahidi, I. Kolmanovsky, and A. Stefanopoulou. Constraint handling in a
fuel cell system: A fast reference governor approach. IEEE Transactions on
Control Systems Technology, 15(1):86–98, 2007.

[101] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, S. Brandao, T. Mericli, and
R. Ventura. Symbiotic-autonomous service robots for user-requested task in a
multi-floor building. In IROS Cognitive Assistive Systems Workshop, Oct 2012.

148

[102] N. Visnevski, V. Krishnamurthy, S. Haykin, B. Currie, F. Dilkes, and P. Lavoie.
Multi-function radar emitter modelling: A stochastic discrete event system ap-
proach. In Proceedings of the 42nd IEEE Conference on Decision and Control,
pages 6295–6300, Dec 2003.

[103] G. A. Watson and W. D. Blair. Revisit calculation and waveform control for a
multifunction radar. In Proceedings of the 32nd IEEE Conference on Decision
and Control, pages 456–461, Dec 1993.

[104] R. R. Weber. Optimization and control. University of Cambridge, 1999.

[105] V. M. Zavala and L. T. Biegler. The advanced-step nmpc controller: Optimality,
stability and robustness. Automatica, 45:86–93, 2009.

[106] J. Zhao, J. Seok, J. Selvakumar, R. Bencatel, P. T. Kabamba, and A. Girard.
A greedy policy for fleet-level radar resource management. In Conference on
Decision and Control, pages 3160–3165, Dec 2013.

[107] A. Zinnecker, J. W. Chapman, T. M. Lavelle, and J. S. Litt. Development of
a twin-spool turbofan engine simulation using the toolbox for modeling and
analysis of thermodynamic systems (t-mats). In Propulsion and Energy Forum,
Jul 2014.

149

