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ABSTRACT 

 

Inspired by the advantages of biological systems, especially high efficiency, parallel 

processing ability and the combination of computing with memory, solid-state neural network 

systems have attracted much attention for neuromorphic applications. Memristors, with several 

unique properties, are exceptional candidates for emulating artificial synapses, a critical 

component for neural networks. This thesis work explores the device characteristics and 

dynamics for synaptic functions implementation and networks for neuromorphic applications, 

with device performance improvement and fabrication process optimization. 

Device fabrication, electrical studies for both WOx and Ta2O5-TaOx memristors are 

presented. Bipolar resistive switching is observed due to oxygen vacancy redistribution within 

the switching layer upon an applied electric field. In WOx memristor, oxygen vacancies drift by 

electric filed and spontaneous diffusion result in a gradual resistance change with decay 

(volatile), while in Ta2O5-TaOx memristor, filament formation/rupture lead to a distinct, abrupt 

resistance change (nonvolatile). 

The traditional framework for memristor swtiching mechanism, which has only one state 

variable, is fundamentally a 1st order dynamic model. Based on more experimental results 

showing more detailed switching behaviors, 2nd order models are proposed for both devices by 

introducing a second state variable, that is, the oxygen vacancy mobility for WOx memristor and 

temperature for Ta2O5-TaOx memristor, to quantitively capture the ionic dynamics and describe 

device responses over a large range of programming conditions. 

Based on the understanding of the switching dynamics of these two memristors, 

important synaptic functions are demonstrated with natural, bio-realistic implementations in 

these electric devices. Both short-term synaptic plasticity, including paired-pulse facilitation, 

rate-dependent weigh change, and long-term plasticity, including spike-timing dependent 

plasticity, experience-dependent plasticity and metaplasticity are implemented. 



xii	
	

Apart from achieving synaptic functions in single device, memristor crossbar network has 

also been utilized for neuromorphic applications. 

The crossbar network, by forming memristor cell at each crosspoint, enables an easy way 

of conducting matrix operation, specifically the dot product, and can store trained weights by the 

adjustable resistances of memristors. Sparse coding algorithm has been implemented by the 

crossbar network, both through simulation based on WOx memristor model and experiment on 

fabricated 32-by-32 WOx array. 

Further, the dynamics of WOx memristor, especially the decay of state caused by 

spontaneous oxygen vacancy diffusion, is utilized to do temporal information processing. The 

handwritten digit recognition task is achieved by converting the spatial information of digit 

image to temporal information and fed into a network, composed of memristors in the 

configuration inspired by an improve reservoir computing structure, i.e., the liquid state machine, 

to generate the desired recognition results through the training of a simple linear readout 

function. 

Finally, despite the successful demonstration of some synaptic functions and 

neuromorphic applications, the device performance could be further improved through 

fabrication process optimization and regulation of switching region. Memristor array fabrication 

process also requires optimization for better performance and higher yield with large scale for 

neuromorphic applications. Some progress has been achieved, which has shed light upon future 

research. 
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Chapter 1 

Introduction 

 

1.1 Memristors 

Memristive devices, or so called memristors, are two-terminal electrical devices whose 

states, normally represented by resistance or conductance, can be regulated by the history of 

applied stimulations. The device states are described by one or a few internal state variable(s) 

and are governed by dynamic ionic processes. The concept of memristor was initially proposed 

in the 1970s1,2  as shown in Figure 1-1 and has been intensively investigated in the last a few 

years.  

 

Figure	1-1:	Memristor	as	the	forth	electrical	element,	besides	resistor,	inductor	and	capacitor.	

A conventional memristor has a sandwiched metal-insulator-metal (MIM) structure, in 

which the switching happens in the insulator layer, or so-called switching layer. Due to the 

simplicity of MIM structure, memristors can be easily fabricated by inserting the switching 
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material between two crossing metal lines, thus forming the cell at the crosspoint, as illustrated 

in Figure 1-2. This is the so-called “crossbar” structure and commonly used in research. 

	

 

Figure	1-2:	Crossbar	structure	for	memristor.	The	cell	is	formed	at	the	crosspoint	of	two	metal	lines	by	inserting	the	switching	
material.	

The key advantages of memristors include the simple structure, fast speed, low power, 

complementary metal oxide semiconductor (CMOS) compatibility and the ability for hybrid 

circuit and 3D integration, making them attractive for a broad range of applications including 

memory, analog and reconfigurable circuits, as well as neuromorphic computing. 

 

1.2 Biological Synapses and Memristor Based Artificial Synapses 

Neurons and synapses together make up neural networks, which are the building blocks 

that empower humans to learn, think and remember. Synapses are connections between neurons, 

and can transfer and regulate signals between them as illustrated in Figure 1-3. There are ~1011 

neurons and ~1014 synapses in a human brain3. A key attribute of the brain’s computing power is 

that the synapses are “plastic” – that is, the synaptic weight, or the connection strength between 

neurons, can be modulated and new weight can be retained. Since the synaptic weight regulates 

the transmission of signals between neurons, synaptic plasticity along with the very large 

synaptic connectivity empowers the efficient brain-based parallel computing paradigm and lays 

the foundation of neuromorphic computing. 

So far, most previous attempts to implement neural networks by CMOS technology 

suffered from the difficulty of building large networks with massive plastic connections and low 
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power consumption. Therefore, the prospect of building biologically inspired neuromorphic 

computing systems with memristor-based synapses4 has generated significant interest since 

memristors can phenomenologically and bio-realistically emulate synaptic plasticity, and offer 

the desired large connectivity and low power budget, as illustrated in Figure 1-44. 

 

Figure	1-3:	Schematic	of	synapse.	Synapse	is	the	connection	between	two	neurons	and	can	transmit	signal	through	it	from	axon	
of	one	neuron	to	dendrites	of	another	neuron.	

	

Figure	1-4:	Memristors	as	electrical	synapses.	a)	Schematic	illustration	of	the	concept	of	using	memristors	as	synapses	between	
neurons.	The	insets	show	the	schematics	of	the	two-terminal	device	geometry	and	the	layered	structure	of	the	memristor.	b)	

Schematic	of	a	neuromorphic	network	with	CMOS	neurons	and	memristor-based	synapses	in	a	crossbar	configuration.	
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1.3 Memristor Crossbar Network for Neuromorphic Applications 

Besides being utilized as synapses in neural networks, the network of memristors itself 

has also been intensively investigated for neuromorphic applications recently because the 

crossbar architect can implement certain matrix operation in a natural and elegant fashion. As 

illustrated in Figure 1-5, if a vector X is input with each element xi applied on the top electrode 

(the row metal lines on the left) while keeping the bottom electrode (the column metal lines at 

the bottom) ground, the current flowing through each memristor at the crosspoint (i, j) will be: 

𝑖",$ = 𝑥"𝑤",$                                                                                                              (1-1) 

where xi represents the vector element which for example could be a pulse with a fixed 

amplitude but width modulated according to the input, and wj represents the state of memristor, 

i.e., the conductance (but more often called weight in neuromorphic research). Then the current 

is measured at the bottom electrode and since all memritors on one column share the same 

bottom electrode, the current collected is the sum of all the currents flowing through all the 

memristors on this column: 

𝐼$ = 𝑥"𝑤",$ = 𝑋 ∙ 𝑊,-
"./                                                                                          (1-2) 

Therefore, the dot product can be easily implement in a memristor crossbar network. 

 

Figure	1-5:	Memristor	crossbar	architecture.	Inputs	are	indicated	on	the	rows	as	xi,	while	the	charge	is	collated	on	the	columns,	
schematically	shown	as	Aj.	Memristors	are	formed	at	the	crosspoints	with	the	weight	wi,j	.	
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Moreover, because the resistances of memristors can be easily modulated, the 

information of a neuromorphic system can be stored in the network by programming the 

resistances of the memristors on one column corresponding to one weight vector (or called 

receptive field of a neuron) for further computing. 

These two merits make memristor crossbar network very suitable for certain 

neuromorphic applications, which will be discussed in later chapters. 

	

1.4 Organization of The Dissertation  

In this chapter the fundamental background of memristors and the advantages of 

memristor-based approach for neuromorphic computing are introduced. 

Chapter 2 discusses the fabrication, basic characteristics and switching mechanisms of 

WOx memristor and Ta2O5-TaOx memristor. 

Chapter 3 discusses the second order effect observed in WOx memristor and Ta2O5-TaOx 

memristor, and the improved dynamic models that incorporate critical second order state 

variables for both memristors. 

Chapter 4 discusses different synaptic functions we have implemented with memristors 

using their internal second order dynamics. 

Chapter 5 and 6 discuss utilizing the switching characteristics of memristor array, 

especially WOx memristor array, for some neuromorphic applications.  

Chapter 5 discusses a sparse coding algorithm that has been implemented by WOx 

memristor crossbar network, through both simulation based on dynamic model and experiment 

with fabricated devices.  

Chaoter 6 discusses the handwritten digit recognition by memristor-array-based reservoir 

computing, emphasizing the temporal information processing ability of WOx memristor through 

its internal dynamics. 

Chapter 7 discusses the improvement of memristor performance for neuromorphic 

applications through the optimization of fabrication processes, both for single cell and large scale 

array. 

Chapter 8 discusses the remaining issues and further research. 
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Chapter 2 

Memristors Fabrication and Basic Characteristics 

 

In this research project, two types of metal oxide memristors, using different metal oxides 

as the switching layer, are investigated: 1) WOx memristor and 2) Ta2O5-TaOx memristor. Here 

we introduce the fabrication process and basic characteristics of these devices. 

 

2.1 WOx Memristor Fabrication Process 

WOx memristors are based on a metal-insulator-metal (MIM) structure similar to those 

reported earlier1,2. The device has a palladium (Pd) top electrode (TE), a tungsten oxide (WOx) 

switching layer, and a tungsten (W) bottom electrode (BE), schematically shown in Figure 2-1. 

 

Figure	2-1:	Schematic	of	a	WOx	memristor.	The	device	has	a	MIM	structure,	with	W	as	the	bottom	electrode,	WOx	as	the	
switching	layer	and	Pd	as	the	top	electrode.	

First, a 60 nm W film is deposited on a Si/SiO2 substrate by RF sputtering at room 

temperature. Then the bottom electrodes are patterned by ebeam lithography, Ni deposition by 

evaporation and lift-off, followed by reactive ion etching (RIE) using Ni as a hard mask to etch 

uncovered W. After removing Ni by wet etching, rapid thermal annealing (RTA) in pure oxygen 

at temperatures ranging from 375 oC to 450 oC, with annealing times ranging from 30 s to 90 s, is 

performed to partially oxidize the W film and form the nonstoichiometric tungsten oxide layer as 
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the switching layer. The thickness of the WOx layer ranges from 40 nm to 90 nm depending on 

the oxidation condition, which in turn leads to different switching behaviors and allows tuning of 

the device performance for different applications. Finally, the Pd/Au top electrodes, where Au 

acts as a cover layer for better ohmic contact and a protective layer for probe station test and 

wire-bonding, are patterned by ebeam lithography and evaporation of metal materials. After lift-

off, the tungsten oxide regions outside the crosspoints formed between the TEs and the BEs are 

etched away by RIE, using the TEs as a hard mask. Another photography and metal deposition 

process, usually by evaporating NiCr (5 nm) and Au (140 nm), may be performed to form the 

bonding pads for both BEs and TEs for wire-bonding the chip to a chip carrier for measurement 

using customized testing board of our group. 

 

Figure	2-2:	Broken	TE	at	the	crosspoint.	The	TE	breaks	due	to	its	bad	step	coverage	and	the	height	of	BE.	

It should be noted that after oxidation of the W BE, the total thickness of the remaining 

BE and the switching layer could be as large as 100 nm, which may cause the TE to break at the 

crosspoint due to its bad step coverage when using evaporation for metal deposition, as shown in 

Figure 2-2. This will cause TE discontinuity and more severely, no switching behavior at all. 

Therefore, for a better yield and reliably repeatable device fabrication, we introduced a spacer 

structure along the sidewall of BE, which will be discussed in more detail in later chapter. 

Briefly speaking, after BE formation a conformal SiO2 layer (~250 nm - 400 nm) is deposited by 

plasma-enhanced chemical vapor deposition (PECVD) and then directionally etched by precisely 

measuring the etch rate and controlling the etching time using RIE. The isotropic deposition by 

PECVD leads to uniform coverage of the SiO2 in all directions, while the following anisotropic 

RIE etching removes SiO2 in the vertical direction. These processes leave residual SiO2 only 
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along the sidewalls of the BEs, creating a ramp like, self-aligned structure termed the spacer, as 

shown in Figure 2-3. 

 

Figure	2-3:	SEM	image	showing	spacer	formation	of	WOx	memristor.	Left:	W	bottom	electrode	with	thickness	of	~60-70	nm	and	
width	of	200	nm.	Right:	Spacer	formed	along	the	side	walls	of	W	bottom	electrodes	after	isotropic	deposition	of	400	nm	SiO2	and	

directional	etch	that	fully	removes	SiO2	on	top	of	the	BEs	but	leaves	residual	SiO2.	

 

2.2 Basic Characteristics of WOx Memristor 

 

Figure	2-4:	Gradual	conductance	increase	of	WOx	memristor	by	DC	sweep.	Three	consecutive	positive	DC	sweeps,	from	0	V	to	1.1	
V	were	applied	to	the	device.	Gradual	conductance	change	and	overlaps	between	each	sweep	were	observed.	

The WOx memristor was characterized by DC and AC electrical measurements. A typical 

DC measurement involves sweeping the voltage on the TE from 0 V to 1.1 V at a ramp rate of 

1.5 V/s and then back to 0 V, with the BE grounded (all signals are applied to the TE with the 

BE grounded, if not otherwise specifically mentioned, in the following context). The current 
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through the device was monitored and recorded during the voltage sweep. A typical result is 

shown in Figure 2-4, highlighting two characteristics: 1) gradual conductance (or current) 

increase and 2) overlaps between the loops. The gradual conductance increase indicates an 

analog type of resistance modulation (switching), which is an intrinsic characteristic of WOx 

memristor. 

 

Figure	2-5:		Gradual	conductance	increase	and	decrease	of	WOx	memristor	by	pulses.	20	positive	pulses	(+1.2	V,	100	µs)	followed	
by	20	negative	pulses	(-1.2	V,	100	µs)	were	applied	to	the	device	and	the	conductance	was	obtained	by	a	small	read	pulse	(0.	5	
V	,1	ms)	after	each	operation	pulse.	Gradual	conductance	increase(decrease),	controlled	by	positive(negative)	pulses,	was	

observed.	

The analog switching behavior was more clearly demonstrated through pulse 

measurement. Figure 2-5 shows results obtained by applying 20 positive pulses (+1.2 V, 100 µs) 

followed by 20 negative pulses (-1.2 V, 100 µs) as programming and resetting pulses, 

respectively. The device conductance was obtained through the read current by applying a read 

pulse (0.5 V, 1 ms) after each programming/resetting pulse. The read current, representing the 

state of device, showed a gradual increase, which we call a SET process with positive pulses and 

decrease, referred as RESET process with negative pulses. As shown in Figure 2-5, multiple 

states between the low read current and high read current can be achieved by controlling the 

number of applied programming/resetting pulses (or equivalently, the duration of the pulses). 
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2.3 WOx Memristor Switching Mechanism and 1st Order Dynamics 

The above behaviors can be explained by the redistribution of ions2,3, here in the form of 

oxygen vacancies (VOs), in the switching layer as schematically illustrated in Figure 2-6.  

 

Figure	2-6:	Schematic	illustration	of	the	internal	VO	dynamics	in	WOx	memristor.	Two	competing	effects	are	shown:	(1)	electric	
field	driven	VO	drift	and	(2)	spontaneous	diffusion	of	VOs.	

Upon the application of a positive voltage, positively charged oxygen vacancies will be 

driven toward the BE under a high electric field at a speed exponentially dependent on the 

electric field4 to form regions rich with oxygen vacancies as indicated by the dash square in the 

figure. These regions form high conductance channels since the VOs act as dopants that increase 

the local conductivity, resulting in a tunneling-like conduction mechanism through the VO 

defects5,6. The rest of the regions remain at low conductance and form a Schottky contact with 

the W electrode. Therefore, the device can be modeled as having two conduction paths in 

parallel, with a state variable w representing the relative area of the more conductive region. 

When positive voltage is applied continuously, either by consecutive positive DC sweeps as in 

Figure 2-4 or by multiple positive pulses in Figure 2-5, the conductive region will keep 

expanding, resulting in the increasing read current. When negative pulses are applied, as in 

Figure 2-5, the electric field, now with opposite direction, drives the oxygen vacancies away 

from the BE thus reducing the conductive region, resulting in the decreasing read current.  
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Meanwhile the non-uniform distribution of the oxygen vacancies will lead to a 

spontaneous diffusion. Specifically, the more resistive state is the thermodynamically ground 

state4 and the diffusion of oxygen vacancies will lead to a natural decay toward that state, 

causing the decrease of conductance therefore the overlapping of the neighboring hysteresis 

loops in Figure 2-4. 

The memristor dynamics can now be described by the following equations: 

𝐼 = 1 − 𝑤 𝛼 1 − 𝑒𝑥𝑝 −𝛽𝑉 + 𝑤𝛾sinh	 𝛿𝑉                                                   (2-1) 

?@
?A
= 𝜆𝑠𝑖𝑛ℎ 𝜂𝑉 − @

G
                                                                                            (2-2) 

where Equation (2-1) is the I-V equation which includes the Schottky term (1st term) and the 

tunneling term (2nd term). The two conduction channels are in parallel and their relative weight is 

determined by the internal state variable w, which is the normalized area index of the conductive 

region, i.e., w = 0 indicates fully Schottky-dominated conduction (no conductive channels) while 

w = 1 indicates fully tunneling-dominated conduction. Equation (2-2) is the dynamics equation 

which describes the rate of change of the state variable w with respect to the applied voltage, 

including the drift under electric filed (1st term) and the spontaneous diffusion (2nd term). 

𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 𝜂 are all positive-valued parameters determined by material properties. 𝜏 is the 

diffusion time constant characterizing the state decay.	

 

2.4 Ta2O5-TaOx Memristor Fabrication 

The TaOx-based memristor devices consist of a Au/Pt/Ta2O5/TaOx/Pt crossbar structure as 

shown in Figure 2-7 with a line width from 200 nm up to 2 µm. Pt bottom electrodes with 50 nm 

thickness were firstly fabricated on the SiO2/Si substrate by e-beam or photo lithography and e-

beam evaporation of the Pt metal, followed by the lift-off process. A 35 nm TaOx layer was 

deposited by DC reactive sputtering of a Ta metal target in an Ar/O2 environment at room 

temperature, followed by the deposition of a 5 nm-thick Ta2O5 switching layer through 

sputtering a Ta2O5 ceramic target in the same chamber but without O2. Subsequently, top 

electrodes, with 30 nm Pt and 25nm Au, were fabricated following the BE fabrication processes. 

Finally, a reactive ion etching process using SF6/Ar was performed to expose the contact area of 

the bottom electrodes. 
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Figure	2-7:	Schematic	of	a	Ta2O5-TaOx	memristor.	The	device	has	a	MIM	structure,	with	Pd	as	the	bottom	electrode,	Ta2O5-TaOx	
as	the	switching	layer	and	Pd	as	the	top	electrode.	

 

2.5 Ta2O5-TaOx Memristor Switching Behaviors and Mechanism 

 
Figure	2-8:	I-V	curve	of	a	Ta2O5-TaOx	memrsitor.	Typical	bipolar	resistive	switching,	with	negative	voltage	SET	the	device	

(conductance	increase)	and	positive	voltage	RESET	the	device	(conductance	decrease).	

The Ta2O5-TaOx memristor was characterized by DC measurement. The voltage on the 

TE was first swept in a negative loop (0 V to -1.3 V to 0 V) then a positive loop (0 V to 1.5 V to 

0 V), with the BE grounded. The current through the device was monitored and recorded during 

the voltage sweep. A typical hysteresis loop is shown in Figure 2-8. The device, initially in a 

high resistance state (HRS) can be SET by negative voltage to a low resistance state (LRS) as 

indicated by red arrows. Then positive voltage can RESET the device back to HRS as indicated 

by blue arrows. 
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Figure	2-9:	Schematic	illustration	of	the	internal	VO	dynamics	in	Ta2O5-TaOx	memristor.	The	oxygen	vacancies	(cyan	spheres)	in	
TaOx	layer	can	be	driven	into	or	away	from	Ta2O5-y	layer,	resulting	in	the	formation	or	rupture	of	conduction	filaments	(blue	

rectangles).	

Similar to the WOx memristor, the resistive switching in Ta2O5-TaOx memristor can be 

understood based on the VO redistribution, specifically, VO exchange between the Ta2O5-y (the 

subscript 5-y indicates the as-fabricated stoichiometric Ta2O5 layer will lose some oxygen ions 

during the switching process) and TaOx layers7,8. As illustrated in Figure 2-9, because the two 

tantalum oxide layers are in series, the device resistance is mainly determined by the more 

resistive, oxygen-rich Ta2O5-y layer. A negative voltage attracts VOs from the oxygen-deficient 

TaOx layer into the Ta2O5-y layer, forming conduction filaments connecting the TE and the 

conductive TaOx layer and in turn switches the device to LRS (SET process). When a positive 

voltage is applied, it repels the VOs from the Ta2O5-y layer and breaks those filaments, thus 

switching the device to HRS (RESET process). 

A major difference compared with the switching dynamics of WOx memristors is that in 

the Ta2O5-TaOx case VOs of very high concentration are typically accumulated in the conductive 

regions, essentially making the conductive region metallic where the high concentration of VOs 

form an extended state for electrons to move through. This conducting region is analogous to a 

“filament”. Its formation/rupture leads to dramatic resistance changes thus the “digital” type 

resistive switching behavior. While in WOx memristors the effect of VO is similar to a doping 

near the oxide-metal interface, therefore the resistance change is gradual when the amount of 

VOs are modulated during the SET and RESET processes, leading to the incremental “analog” 

type resistive switching behavior. 
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2.6 Complimentary Resistive Switching 

Besides conventional resistive switching behaviors shown above, another effect was 

observed in Ta2O5-TaOx memristor at certain conditions. Different from typical batches which 

used photolithography for both TE and BE patterning, one batch of device was fabricated by 

using ebeam lithography for TE and BE patterning to reduce the line width to 200 nm. As a 

result, the switching is restricted to a much smaller area and the heat generated during switching 

is also concentrated, leading to more elevated temperature and more dramatic filament 

modulation. 

 

Figure	2-10:	Complimentary	resistive	switching	in	Ta2O5-TaOx	memristor.	The	device	was	made	by	ebeam	lithography	to	achieve	
narrower	line	width	thus	confining	the	switching	location	and	heat	generation,	leading	to	a	more	dramatic	filament	modulation	

thus	different	switching	behavior	by	consecutive	DC	sweeps.	

After a forming and subsequence RESET process, several DC voltage sweeps were 

applied on the device and its current-voltage (I-V) characteristics were shown in Figure 2-10. In 

the positive voltage sweep, the device, initially in a high resistance state (HRS1), was first 

switched into low resistance state (LRS) as shown in step 1 when the voltage was increased from 

0.5 V to 1.0 V. Then it was switched back to another high resistance state (HRS2) when the 

voltage was further increased to 1.8 V (step 2).  After sweeping back to 0 V (step 3), a similar 

resistance change was observed during the sweep at the negative cycle: the device was first 

switched from HRS2 into LRS by an intermediate negative voltage sweep (step 4) then fell back 
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to HRS1 as the voltage was further increased (step 5) and remained in HRS1 (step 6), consistent 

with the complimentary resistive switching (CRS) effect observed in memristive devices9,10. The 

underlying mechanism of the observed CRS can be understood based on the movement and 

redistribution of a limited amount of oxygen vacancies under electric field, resulting in the 

formation of filaments and gaps at the two opposite interfaces between the oxide layer and either 

TE or BE10. This characteristic provides an insight into tunable resistance switching for synaptic 

function implementation, as will be discussed later in Chapter 4. 

 

2.7 Conclusion 

The fabrication processes for WOx memristor and Ta2O5-TaOx memristor are described 

above. The switching behaviors of both types of memristors are shown. The bipolar resistive 

switching behaviors are attributed to the movement of oxygen vacancies inside the switching 

layer, though with different dynamics. In WOx memristor, the drift of oxygen vacancies under 

electric filed and the spontaneous diffusion, equivalent to doping/undoping near the metal-

insulator interface, result in the gradual resistance change (analog type switching) upon an 

applied stimulation and the decay behavior after the simulation is removed. In Ta2O5-TaOx 

memristor, the electric field driven oxygen vacancy movement can form/rupture the filaments 

inside the insulating layer, resulting in a more abrupt resistance change (digital type switching). 

By restricting the filament modulation location, a complementary switching behavior can also be 

observed. 
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Chapter 3 

Second Order Memristor Dynamics 

 

3.1 Basic Memristor Model 

Following the memristor theoretical framework1, a typical memristive device can be 

described by the following equations: 

𝐼 𝑡, 	𝑉 = 𝑉 ∗ 𝐺 𝑉,𝑤                                                                                            (3-1) 

?@ A,	L
?A

= 𝐹 𝑉, 𝑤                                                                                                  (3-2) 

Here Equation (3-1) is the current-voltage equation, and the state of the device 

(conductance G) is determined by the internal state variable w; while Equation (3-2) is the 

dynamics equation of the state variable w, and highlights the fact that the present input cannot 

deterministically control w – rather it can only control the change rate of w. As a result, w, hence 

the device state, is controlled by the cumulative effects of the inputs, leading to the history-

dependence of the device.  

In models proposed previously, for example the WOx memristor model in Chapter 2, the 

conductance/resistance is always expressed by an equation containing one state variable w. This 

variable normally represents a physical element that will be changed during operation and 

determines the device state, such as the effective conductive region area, or tunneling gap length 

and conduction filament width. This state variable directly determines the resistance, while the 

dynamics equation is usually a first order differential equation. This kind of memristors can be 

categorized as 1st order memristors. The dynamics equation, or the change rate of the state 

variable w, can be re-written as: 

?@ A,	L
?A

= 𝐹 𝑤 𝑡 , 	𝑉                                                                                             (3-3) 
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In these 1st order memristors, the state variable, w, directly modulating the device 

conductance (through Equation (3-1)) is in turn directly modulated by the inputs (through 

Equation (3-3)). 

 

3.2  Second Order Memristor Model 

In biology and other nonlinear systems, the state variable that determines the output is 

typically different from the state variable that directly responds to the input, leading to much 

richer behaviors. In the memristor theoretical framework, these devices can be described as 2nd 

order memristors2. In a 2nd order memristor, there are more than one state variables: the 1st order 

state variable directly determines the conductance and is usually a physical element related to the 

conduction structure in the switching layer, while the 2nd order state variable may not directly 

control the device conductance but still responds to stimulation and more importantly it will 

regulate the dynamic process of the 1st order state variable during and after stimulations.  

The dynamic equations for a 2nd order memristor can be written as: 

𝐼 𝑡, 	𝑉 = 𝑉 ∗ 𝐺 𝑉,𝑤                                                                                            (3-4) 

?@ A,	L
?A

= 𝐹(𝑤, 𝑠, 	𝑉)                                                                                              (3-5) 

?P A,	L
?A

= 𝑌(s, 𝑉)                                                                                                     (3-6) 

Here s is the 2nd order state variable and it only indirectly determines the device conductance. As 

will be shown in more detail below, the dynamics of the 2nd order stable variable (Equation (3-

6)) can strongly modulate the dynamics of the 1st order state variable (and hence the device 

conductance modulation) through Equation (3-5), allowing the bio-realistic implementation of 

synaptic functions naturally, which can be hardly achieved in simple 1st order memristors. 

Understanding and utilizing the different dynamics in 2nd order memristors thus provide an 

elegant path towards bio-inspired neuromorphic hardware. 
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3.3 WOx (volatile) Memristor as 2nd Order Memristor 

3.3.1 From Measurement Results to Modeling 

The volatile behavior in WOx memristors were systematically studied. In particular, a 

two-stage decay was observed, leading to the development of a 2nd order memristor model with 

the oxygen vacancy mobility as the 2nd order state variable3. 

 

3.3.1.1 Two-Stage Decay 

To study the dynamics of the WOx memristor, we first analyzed the temporal decay 

characteristics of the device. In one experiment, ten positive write pulses (1.2 V, 1 ms) at 5 ms 

interval were applied first, followed by small read pulses (0.4 V, 1 ms) to track the memristor 

conductance change as shown below.  

  

Figure	3-1:	Read	current	decay	of	WOx	memristor	after	stimulation.	

The stimulation drives the memristor conductance higher (as represented by the higher 

read current). However after stimulation is stopped the memristor conductance decays. A clear 

read current decay could be observed, shown in Figure 3-1. This decay is likely due to the 

spontaneous diffusion of VOs4–8. Significantly, careful analysis of the data shows that the decay 

appears to occur at two very different time scales: right after stimulation (within ~200 ms after 
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stimulation is removed), the read current shows a very fast decay and the decay becomes much 

slower after a few hundreds of milliseconds (up to 1000 s), as shown in Figure 3-1 in both log 

and linear time scales.  

Specifically, the data can be well fitted with stretched exponential functions having two 

time constants: a short-term time constant of »52.5 ms and a long-term time constant of »92.5 s 

𝐼 = 𝐴/ ∗ 𝐼PSTUA + 𝐴V ∗ 𝐼WT-X = 𝐴/𝐼YP𝑒𝑥𝑝 − A
GZ

[Z
+ 𝐴V𝐼YW𝑒𝑥𝑝 − A

G\

[\
         (3-7) 

Here, stretched exponential functions that describe the relaxation in a disordered system 

are used to model both the short-term and the long-term decays, where τs (τl), I0s (I0l), βs (βl) are 

the characteristic relaxation time, prefactor, and the stretch index for the short-term (long-term 

term) process, respectively. Experimentally, this behavior can be explained by the fact that the 

state variable directly governing memristor conductance (wc) is affected by how mobile the 

oxygen vacancies are. It has been found that the mobility of oxygen vacancies (ions) increases 

when they are driven out of equilibrium right after a stimulation pulse, possibly due to the local 

lattice distortion and strain, followed by slow relaxation after certain period8. The temporary 

higher mobility, represented by another state variable wm in our model, may explain the initial 

fast decay of the memristor conductance and also affect how the conductance determining state 

variable wc responds to stimulations.  

Physically, the migration of oxygen vacancies is driven by electrochemical gradients9, 

including the field-driven drift process by an electrical potential gradient and the diffusion 

process driven by an internal chemical potential gradient. Additional factors (e.g., protons 

provided by moisture, local morphology change, etc.) can in turn affect the dynamics of such 

processes. The formation of electrochemical potential gradients in both electrochemical 

metallization memory (ECM) and valence change memory (VCM, to which the WOx memristor 

belongs), and the relaxation that lead to the experimentally observed nanobattery effect9 have 

been extensively discussed previously9. 

Borrowing terms used in neuroscience, the first stage with time constant »52.5 ms is 

considered short-term and the second stage with time constant »92.5 s (i.e., >1000x longer) is 

considered long-term. We note that even though the absolute values of the short-term and long-

term characteristic time constant are different from those reported in biological synapses (e.g., 
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tens of milliseconds to a few minutes for short-term and minutes to hours for long-term), the 

separation of the two time scales that differ by more than three orders of magnitude is evident in 

the memristor, and that circuits based on memristors can potentially operate at higher clock 

frequency (e.g., kHz or higher compared to ~Hz in biological systems) to utilize the different 

dynamics in the two regimes. 

 

3.3.1.2 Nonlinear Response: Saturation Effect 

Another property of the memristor device is the nonlinear response to programming as 

shown in the figure below. 

	

Figure	3-2:	Conductance	saturation	by	repeated	stimulations.	Inset:	the	programming	waveform	with	a	write	pulse	(1.3	V,	1	ms)	
followed	by	a	read	pulse	(0.5	V,	500	us).	

Here 1000 consecutive write pulses (1.3 V, 1 ms) were applied to the device at a 

repetition frequency of 50 Hz, and the device conductance was measured by a small read pulse 

(0.5 V, 500 µs) after each write pulse (as shown in the inset). The read current increases quickly 

following the first few write pulses but the rate of increase slows down as the device 

conductance increases with an increasing number of write pulses. The loss of programming 

capability at high conductance states has been hypothesized to be caused by the exhaustion of the 

supply of readily-available oxygen vacancies in the switching layer. 
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3.3.1.3 The Effect of Short-term Activity on Long-term Plasticity 

 

Figure	3-3:	Memristor	conductance	change	by	programming	pulse	pairs	with	difference	intervals.	The	change,	represented	by	
read	current	difference,	was	measured	long	(5	s)	after	the	application	of	a	pair	of	programming	pulses.	

The effects and interplay of the short- and long-term dynamics in the WOx memristors 

were studied in several experiments. In one experiment, the long-term device conductance 

increase (measured 5 s after the application of the programming pulse pairs) was monitored as a 

function of the time interval between two programming pulses. As shown in Figure 3-3, the 

long-term plasticity shows a clear dependence on the short-term, intra-pair delay between the 

two pulses. Longer intervals led to smaller conductance increase, consistent with a short-term, 

vanishing effect induced by the first pulse, whose effect is experienced by the second pulse and 

leads to different long-term effects.  

 

3.3.2 Equations Describing Memristor Dynamics 

Considering these observed behaviors, the memristor can be modeled with two state 

variables derived from generic memristor to capture the ionic dynamics: 

𝐼 = 1 − 𝑤] ∗ 𝛼 ∗ 1 − 𝑒𝑥𝑝 −𝛽𝑉 + 𝑤] ∗ 𝛾 ∗ 𝑠𝑖𝑛ℎ 𝜂𝑉                   (3-8) 

?@^
?A

= 𝜆_𝑀 𝑤_, 𝑉 𝑠𝑖𝑛ℎ 𝜌_ 𝑉 − @^b@^c
G^∗ (@^)

                                                       (3-9) 
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?@d
?A

= 𝜆] 𝑀 𝑤], 𝑉 𝑒𝑥𝑝 𝜖𝑤_ 𝑠𝑖𝑛ℎ 𝜌]𝑉 − @df@dc
Gd∗(@^)

                                               (3-10) 

Here, Equation (3-8) is the current-voltage equation determined by the state variable 𝑤], 

which represents the effective area of the conductive region, as discussed in previous studies4,10. 

Equation (3-9) and (3-10) are the dynamic equations of the two state variables 𝑤_ and 𝑤] in 

which the first term describes the effect of the stimulation voltage on oxygen vacancy mobility, 

while the second term describes the effect of decay with effective time constants (𝜏_∗  and 𝜏]∗ ). 

Specifically, the dynamics Equation (3-9) for state variable 𝑤_, which represents the effective 

mobility of VOs, shows that VOs become more mobile with stimulation since more VOs are 

driven out of equilibrium, and the mobility enhancement fades after stimulation is removed8. 

Additionally, 𝑤_ affects how 𝑤] changes with stimulation through the factor	𝑒𝑥𝑝 𝜖𝑤_  in 

Equation (3-10). The decay of 𝑤] , which shows two time periods, may also be affected by the 

VO mobility so the effective decay time constant 𝜏]∗ is considered as a function of 𝑤_ too, as 

shown in Equation (3-12), to capture and reproduce the two-stage decay. In this sense, the 

memristor can be considered as a “second-order” memristor2,11 as discussed at the beginning of 

this chapter. In this kind of memristor, the state variable 𝑤] that directly controls the device 

current-voltage characteristics is modulated by another state variable 𝑤_.In particular, even 

though the enhancement of 𝑤_ is mostly short-term with an effective time constant of only tens 

of milliseconds, it can (indirectly through Equation (3-10)) have long-term effects on the device 

conductance. 

The value of the device-specific parameters and the choice of the “window function” 

𝑀 𝑤,𝑉  that reflects the nonlinear state-dependent programming capability and the effective 

time constant functions 𝜏_∗ (𝑤_) and 𝜏]∗(𝑤_) are listed below. 

/
G^∗ (@^)

= /
GZ

                                                                                                          (3-11) 

/
Gd∗(@^)

= /
G\
+ g∙@^

GZ
                                                                                                (3-12)         

𝑀(𝑤, 𝑉) =
1 − exp −@^klb@

Y.YYY/
		𝑖𝑓	𝑉 ≥ 0

1 − exp −@b@^qr
Y.YYY/

		𝑖𝑓	𝑉 < 0
                                                     (3-13)                  
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Parameter Value Parameter Value 

α 1.5e-6 β 4 

γ 3.2e-6 κ 5 

λm 1e-6 λc 1e-6 

ρm 15.5±2.5 ρc 14±2 

wc0 0-0.3 Wm0 0.001 

τs 0.0025 τl 298 

σ 0.25 𝝐 15 

Table	3-1:	The	values	of	parameters	used	in	the	simulation.	

 

3.3.3 SPICE Code 

The memristor model discussed here can be directly implemented in a circuit simulator 

(SPICE). Note that in Table 3-1 the values of the two time constants are different from the fitting 

results because in the simulation normal exponential decay form is used while in the data fitting, 

a stretched exponential form is used. 

The SPICE code for memristor model and simulation are shown below. 

 

******************	LTspice	code	for	metal	oxide	memristors*****************	

*Parameters:	

*alpha	is	prefactor	for	Schottky	barrier	

*beta	is	exponent	prefactor	for	Schottky	barrier	

*gamma	is	prefactor	for	tunneling	

*delta	is	exponent	prefactor	for	tunneling	

		***************************************************************************	
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.SUBCKT	memristor	1	2	params:	

+	alpha=1.5e-6	beta=4	gamma=3.2e-6	delta=5	wmax=1	wmin=0	

*State	variable:	

.param	lambda=1e-6	rhoc=14.5	rhom=17	taul=298	taus=0.0025	epsilon=15	sigma=0.25	

.param	cc={1}	

.param	cm={1}	

Cpvar1	c	0	{cc}	

Cpvar2	m	0	{cm}	

*rate	equation	considering	the	diffusion	effect	

Gc	0	c	value={trunc1(V(1,2),cc*V(c))*(lambda*exp(epsilon*cc*V(c))*sinh(rhoc*V(1,2)))-

(cc*V(c)-0.001)*(1/taul+sigma*cm*V(m)/taus)}	

Gm	0	m	value={trunc2(V(1,2),cm*V(m))*(lambda*sinh(rhom*abs(V(1,2))))-(cm*V(m)-

0.001)*(cm*V(m)/taus)}	

.ic	V(c)	=	0.001	

.ic	V(m)	=	0.001	

**********************************************************	

*auxiliary	functions	to	limit	the	range	of	w	

.func	sign2(var)	{(sgn(var)+1)/2}	

.func	trunc1(var1,var2)	{sign2(var1)*sign2(wmax-var2)*(1-exp(-(wmax-var2)/0.0001))+sign2(-

var1)*sign2(var2-wmin)*(1-exp(-(var2-wmin)/0.0001))}	

.func	trunc2(var1,var2)	{sign2(var1)*sign2(wmax-var2)*(1-exp(-(wmax-var2)/0.0001))+sign2(-

var1)*sign2(var2-wmin)*(1-exp(-(var2-wmin)/0.0001))}	

***************************************************************************	

*Output:	
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Gw	1	2	value={(1-cc*V(c))*alpha*(1-exp(-beta*V(1,2)))+(cc*V(c))*gamma*sinh(delta*V(1,2))}	

.ENDS	memristor 

 

3.3.4 Simulation Results 

This memristor model based on two state variables can quantitatively capture the ionic 

dynamics and describe the device response over a large range of programming conditions. Below 

we summarize simulation results obtained from the 2nd order memristor model using parameters 

listed in Table 3-1.  

First, we show that the two-stage decay phenomenon can be well-reproduced through 

simulation, as shown below. 

 

Figure	3-4:	Simulation	of	the	two-stage	decay	using	the	2nd	order	WOx	memristor	model.	

Both AC and DC dynamic responses of the device can be also captured, as shown below. 



	

28	
	

 

Figure	3-5:	AC	sweep	experimental	and	simulation	results.	Inset:	AC	sweep	waveform	applied	to	the	device.	

 

Figure	3-6:	DC	sweep	experimental	and	simulation	results.	Inset:	DC	sweep	waveform	applied	to	the	device.	

The effect of short-term dynamics on long-term plasticity is also captured by the model, 

shown in Figure 3-7 and Figure 3-8. A large intra-pair interval between two pulses will lead to 

the weakening of the enhancement effect on long-term plasticity induced by the short-term 

dynamics after the first pulse, thus reducing the overall conductance increase after the second 

pulse. 
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Figure	3-7:	Simulation	results	showing	the	evolution	of	short-term	and	long-term	state	variables.	After	the	stimulation	(the	pulse	
pair)	is	removed,	they	will	decay	with	different	time	constants	and	be	affected	by	the	intra-pair	interval	between	two	pusles.	

 

Figure	3-8:	Simulation	results	showing	the	effect	of	short-term	dynamics	on	long-term	plasticity.		

The success of the 2nd order memristor model to describe the device dynamics allows 

design and implementation of rate- and timing-dependent plasticity in memristor-based hardware 

in a bio-realistic fashion, as will be discussed below.  
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3.4 Ta2O5-TaOx (nonvolatile) Memristor as 2nd Order Memristor 

The 2nd order memristor effect is not restricted to volatile memristor effects. For example, 

for the commonly studied Ta2O5-TaOx-based memristor, we found that the temperature can be 

used as the 2nd order state variable that can in turn modulate the first state variable (conduction 

filament geometry)11. 

Specifically, when a voltage pulse is applied then removed, the local temperature inside 

the switching layer, especially at the conduction filament gap, will increase then spontaneously 

decay therefore affecting the programming ability of stimulation afterwards. 

 

Figure	3-9:	Temporal	effect	of	heat	on	weight	change	in	Ta2O5-TaOx	memristor.	The	elevated	temperature	by	a	heating	pulse	will	
affect	the	effectiveness	of	weight	change	caused	by	the	subsequent	programming	pulse,	depending	on	the	interval	between	the	

two	pulses.	

The 2nd order effect caused by internal heating was verified by a series of carefully 

designed experiments. In a typical experiment, a pulse pair is designed as the stimulation which 

consists of two pulses: the first pulse (+0.7 V, 1 µs) has a small amplitude well below both the 

RESET and the SET threshold voltage so the device conductance could not be changed. 

However, it has a long pulse width so that it lasts long enough to cause sufficient heat 

accumulation and raise the internal temperature in the switching layer, especially in the 

conduction filament gap. This pulse is termed the “heating pulse”. The other pulse in the pulse 

pair (-1.1 V, 20 ns), the so-called “programming pulse”, has a larger amplitude than the SET 

threshold voltage, but the width is extremely short so it alone is not sufficient to change the 

device conductance. When these two pulses are applied consecutively and the intra-pair interval 

is short enough, there could be significant conductance change as shown in Figure 3-9. As the 

interval getting shorter, especially around hundreds of nanoseconds, the effect becomes more 

significant. Additionally, substituting the heating pulse with a pulse with negative amplitude (-
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0.7 V, 1 µs) leads to similar conductance changes, consistent with the fact that the effect from 

the first pulse is Joule heating and not polarity-dependent.  

Overall these results show that the internal temperature, increased by the first heating 

pulse and decays after the pulse removal, affects the effects of the subsequent programming 

pulse. The strong dependence of the conductance change on the intra-pair interval suggests the 

elevated temperature decays very fast, probably due to heat dissipation through metal top 

electrode, with a time constant around hundreds of nanoseconds. 

Similar to the WOx memristor case, the experimental results obtained from the Ta2O5-

TaOx memristor can be explained by a 2nd order memristor model using the local temperature as 

the 2nd order state variable.  

 

Figure	3-10:	Simulated	transient	temperature	evolution	of	the	device	(measured	at	the	edge	of	filament)	during	and	after	the	
application	of	only	heating	pulse	or	programming	pulse.	

 

Figure	3-11:	Simulated	transient	temperature	evolution	during	and	after	the	application	of		a	heating	pulse	followed	by	a	
programming	pulse	with	the	internal	of	1	μs	(left)	and	100	ns	(right).	
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The simulation results verify the heat accumulation when adequate pulse is applied and 

the heat dissipation in a very fast but still noticeable speed. When a heating pulse is applied, 

Joule heating is generated at the conduction filaments and the temperature rises to more than 400 

K.  After the pulse is removed the temperature decays with a time constant around 500 ns, as 

shown in Figure 3-10.The relatively long decay time is due to the relatively low thermal 

conductivity values of the oxide and metal electrode used, which allows for slower heat 

dissipation and sheds light upon future device performance improvement. Addtionally, the SiO2 

substrate acts as a heat insulator which further slows down heat dissipation. The conductance is 

not changed due to the low amplitude of the heating pulse. If a progamming pulse is applied 

alone, little conductance change is observed due to the extremely short pulse width. However if 

the programming pulse is applied shortly after the heating pulse, higher temperature is obtained 

(e.g. T >750 K when Δt=100 ns) during the second programming pulse since the elevated 

temperature created during heating pulse has not returned to its resting value. The elevated 

temperature then enables fast VO migration and results in detectable conductance change during 

the programming pulse, as shown in Figure 3-11(right). On the other hand when the intra-pair 

pulse interval is long, the tempertaure has decayed to the ambient level before the programming 

pulse and the internal temperature during the programming pulse is kept low, leading to 

negligible conductance change (Figure 3-11(left)). 

The simulation and experimental results confirm the 2nd order memristor hypothesis, that 

is 1) Joule heating generated by the application of voltage pulses lead to a temporary temperature 

increase; 2) temperature exhibits short-term dynamics and will decay spontaneoulsy when the 

pulse is removed, with a decay time constant ~500 ns for our devices and 3) the temporal 

summation of the thermal effect can occur and lead to an elevated device temperature that is 

higher than produced by a single pulse alone, and subsequently enable device conductance 

modulation, the extent of which depends on the relative timing of the pulses. 

We will utilize those second-order dynamics, both caused by enhanced oxygen vacancy 

mobility and elevated internal temperature, to implement synaptic functions in a bio-realistic 

fashion, as will be discussed in the next chapter. 
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3.5 Conclusion 

Originated from basic memristor model, 2nd order switching models are proposed for 

both WOx memristor and Ta2O5-TaOx memristor to quantitively capture both the short-term and 

the long-term switching dynamics, which are observed in electrical measuremens. Apart from 

previously introduced 1st order state variable, which can be the effective conductive area, 2nd 

order state variables, i.e., oxygen vacancy mobility in WOx memristor and internal temperature 

in Ta2O5-TaOx memristor, are introduced to reflect the effect of short-term dynamics on long-

term plasticity. Simulations based on those 2nd order models can reproduce the experimental 

results very well. 

 

Reference  

1. Chua, L. O. Memristor-the missing circuit element. Circuit Theory, IEEE Trans. 18, 507–

519 (1971). 

2. Pershin, Y. V. & Di Ventra, M. Neuromorphic, Digital, and Quantum Computation With 

Memory Circuit Elements. Proc. IEEE 100, 2071–2080 (2012). 

3. Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic Implementation of 

Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics. Adv. Funct. 

Mater. 25, 4290–4299 (2015). 

4. Chang, T. et al. Synaptic behaviors and modeling of a metal oxide memristive device. 

Appl. Phys. A Mater. Sci. Process. 102, 857–863 (2011). 

5. Wang, Z. Q. et al. Synaptic Learning and Memory Functions Achieved Using Oxygen Ion 

Migration/Diffusion in an Amorphous InGaZnO Memristor. Adv. Funct. Mater. 22, 2759–

2765 (2012). 

6. Yang, R. et al. On-Demand Nanodevice with Electrical and Neuromorphic Multifunction 

Realized by Local Ion Migration. ACS Nanoano 6, 9515–9521 (2012). 

7. Chen, Y. Y. et al. Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low 

operating current. Int. Electron Devices Meet. 2013 10.1.1-10.1.4 (2013). 

doi:10.1109/IEDM.2013.6724598 



	

34	
	

8. Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an Oxygen 

Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-

Metal Oxides. Phys. Rev. Lett. 98, 146403 (2007). 

9. Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of 

memristor theory. Nat. Commun. 4, 1771 (2013). 

10. Strachan, J. P. et al. State Dynamics and Modeling of Tantalum Oxide Memristors. 

Electron Devices, IEEE Trans. 60, 2194–2202 (2013). 

11. Kim, S. et al. Experimental Demonstration of a Second-Order Memristor and Its Ability to 

Biorealistically Implement Synaptic Plasticity. Nano Lett. 15, 2203–2211 (2015). 

 

	  



	

35	
	

	

	

Chapter 4 

Bio-realistic Implementation of Synaptic Functions Using Internal 

Ionic Dynamics of Memristors 

 

During systematic studies on biological synaptic behaviors, diverse synaptic plasticity 

effects, including rate- and timing-based synaptic functions have been observed1–3. 

Neuroscientists have been trying to reconcile the experimental results and the different models 

created to explain specific synaptic functions. Among those, a unified model based on calcium 

ion (Ca2+) concentration dynamics was shown to offer plausible explanation at the molecular 

level and was able to account for many different synaptic behaviors4,5. In this model, as has been 

confirmed in many previous biological studies, the calcium ion concentration in both the 

presynaptic neuron and the postsynaptic neuron will surge when an action potential arrives, then 

decreases following an exponential trend1,6. Specially the calcium dynamics is described by a 

first-order linear differential equation: 

? uv A
?A

= 𝐼wxyz 𝑡 − uv A
G{k

                                                                                  (4-1) 

The relative interval between action potentials then determines the cumulative calcium 

ion concentration, which in turn affects the activity of the receptors for neural transmitters (e.g. 

NMDAR) in the synapse that lead to synaptic plasticity. 

We note that Equation (4-1) is similar to the equations describing the 2nd order state 

variable dynamics in metal oxide memristors. Specially, for WOx memristor, the oxygen vacancy 

mobility decreases after the simulation is removed and can be modeled as an exponential decay. 

For Ta2O5-TaOx memristor, the temperature decay by heat dissipation after stimulation is 

removed is also described as an exponential process. Similar to the biological synapse, the short-

term dynamics of these 2nd order state variables in turn determines the dynamics of the 1st order 
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state variable (e.g. conduction filament geometry) which in turn determines the device 

conductance (synaptic weight). Therefore, by emulating Ca2+ dynamics in the 2nd order 

memristors, it becomes possible to mimic different synaptic functions naturally, in a bio-realistic 

fashion without having to manually adjust pulse parameters for different plasticity effects7,8. 

Below we discuss how the 2nd order memristors can be utilized to implement different 

synaptic functions, for both short-term effects and long-term effects, and for both rate- and 

timing-dependent plasticities. 

 

4.1 Short-term Synaptic Behaviors 

4.1.1 Paired-pulse Facilitation 

Paired-pulse facilitation (PPF) is an important short-term phenomenon extensively 

discussed in neuroscience studies1. PPF states that when two excitatory presynaptic spikes are 

applied successively, the second spike will generate a larger excitatory postsynaptic current 

(EPSC) than the first pulse does. Additionally, the amplitude of EPSC caused by the second 

pulse is determined by the time interval between the two pulses and a larger interval will lead to 

a smaller EPSC amplitude enhancement as shown in Figure 4-1. 

 

Figure	4-1:	Results	of	PPF.	The	results	were	obtained	from	mossy	fiber	(MF)	and	assoc/com	(AC)	synapses2.	Top:	EPSC	obtained	
from	paired	pulses	with	different	intervals.	The	EPSC	by	the	second	pulse	is	enhanced	and	the	enhancement	is	weaker	with	

longer	intervals	between	the	pulses.	Bottom:	PPF	ratio	as	a	function	of	pulse	interval.	The	ratio	was	defined	as	(p2-p1)/p1,	where	
p1	and	p2	are	the	amplitude	of	the	EPSCs	evoked	by	the	first	and	second	pulse,	respectively.	

The PPF effect is believed to be caused by the residual Ca2+ concentration in the 

presynaptic neuron induced by the first spike which enhances the overall Ca2+ level and the 
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resulting EPSC generated by the second spike. Due to the exponential decay of the residual Ca2+ 

caused by the first spike, the effect naturally becomes weaker when the interval between the two 

spikes increases1. 

We obtain similar effects in the WOx memristor when applying two identical, non-

overlapping pulses as shown in Figure 4-2. 

 

Figure	4-2:	PPF	effect	obtained	in	WOx	memristor.	Two	paired	pulses	(1.4	V,	1	ms)	are	applied	to	the	device	at	ten	different	
intervals	and	the	current	during	all	pulses	is	recorded.	The	second	pulse	produces	an	enhanced	response	in	all	cases,	and	

increasing	the	interval	leads	to	a	decrease	in	the	enhancement.	

First, we find that the peak current during the second pulse is indeed higher than that 

during the first pulse which is similar to the PPF effect. Analogous to the residual effects of Ca2+ 

in biological synapses, the enhancement in programming current (determined by the state 

variable wc) observed in the second pulse can be explained by the residual effect of oxygen 

vacancy mobility enhancement (represented by the state variable wm) from the first pulse. If the 

second pulse is applied before wm has decayed to its resting value, wm during the second pulse, 

which starts from a higher initial value when the pulse is applied, is larger than during the first 

pulse and so is wc (and its increase), therefore an enhanced current spike will be obtained. 

Second, with increasing interval between the two pulses, the enhancement in reduced. 

This can also be easily explained as wm gradually decays toward its resting value so the 

difference of wm during the two pulses becomes smaller with longer interval, leading to a smaller 

wc (therefore the peak current) enhancement during the second pulse. 



	

38	
	

The PPF effect observed in memristor can be better illustrated by measuring the device 

conductance immediately after the first pulse (p1) and the second pulse (p2), and calculating the 

conductance change ratio as (p2-p1)/p1, similar to the biological method, as shown in Figure 4-3. 

 

Figure	4-3:	PPF	ratio	for	different	pulse	intervals	obtained	from	WOx	memristor.	The	results	(squares:	experimental	data,	line:	
simulation	results	by	the	second	order	WOx	memristor	model)	show	similar	trend	to	biological	experimental	results.	

The dependence of the conductance enhancement on the pulse interval again shows a 

similar trend to that observed in biological synapses (Figure 4-1). A larger interval will lead to a 

smaller conductance enhancement and this could be directly explained from the perspective of 

the enhancement and decay of wm as discussed above. Specifically, the change in device 

conductance as a function of pulse interval can be quantitatively explained through simulations 

based on the device model, shown as the solid line in Figure 4-3. 

 

4.1.2 Frequency-dependent Weight Change 

As an extension of PPF, if more than two excitatory presynaptic spikes are applied to the 

synapse, the amplitude of the resulting EPSC will continue increasing gradually. The extent of 

the synaptic weight change should depend on the frequency of stimuli, which is inversely related 

to the interval between each pulse. To verify that the internal dynamics can naturally lead to 

similar frequency-dependent weight change, we applied ten continuous write pulses (1.25 V, 1 

ms) with different frequencies to WOx memristor and monitored the current during each pulse 

and calculated the increase by comparing the current of the last pulse to that of the first pulse.  
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Figure	4-4:	Frequency-dependent	weight	change	in	WOx	memristor.	Ten	write	pulses	(1.25	V,	1	ms)	with	different	frequencies	
are	applied	to	the	device	and	the	currents	of	the	last	and	the	first	pulse	are	compared	to	calculate	the	increase.	Higher	

stimulation	frequency	leads	to	larger	conductance	enhancement.	Squares:	experimental	data.	Line:	simulation	results	from	the	
second	order	WOx	memristor	model.	

As shown in Figure 4-4, the device current is indeed found to increase gradually and 

more interestingly but not surprisingly, at different rates depending on the stimulation frequency. 

A clear trend in the potentiation effect with respect to the stimulation frequency can be observed: 

as the stimulation frequency increases, the increase in current is more significant. This frequency 

dependent weight change in WOx memritor can be readily explained using the VO dynamics 

following the residual Ca2+ concentration model, as pulse trains with higher frequency means 

smaller intervals between each pulse to allow wm decay and result in more effective 

accumulation of the VO (analogous to the more enhanced Ca2+ concentration in presynaptic 

neuron in biological synapses), as already explained in the PPF experiments. Again, the 

experimental data can be quantitatively explained by the second order WOx memristor model 

(solid line in Figure 4-4). 

 

4.2 Long-term Synaptic Behaviors 

The synaptic behaviors discussed in Section 4.1 are mostly believed to be caused by the 

Ca2+ concentration surge and decay in the presynaptic neuron therefore the effects are short-

term1. However the more important synaptic behaviors, relating to memory and functionality of 
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brain, are long-term9. The long-term synaptic plasticity is mostly believed to be related to the 

Ca2+ concentration change in the postsynaptic neuron and involve many complex dynamics. 

Here we show that some important long-term synaptic behaviors can be implemented by metal 

oxide memristors and more importantly, in a bio-realistic way. 

 

4.2.1 Spike-timing Dependent Plasticity  

Spike-timing dependent plasticity (STDP) is a very important synaptic behavior. In 

STDP, the synapse is subjected to repetitive pre- and postsynaptic spike trains, and the relative 

timing of the pre- and postsynaptic spikes determines whether the synaptic weight will be 

potentiated or depressed and by how much3. If presynaptic spike arrives before postsynaptic 

spike (pre-post pair), the pairs will cause potentiation while a reversed sequence (post-pre pair) 

will cause depression. Moreover, a larger time interval between the pre- and postsynaptic spikes 

will lead to smaller weight modification.  

In previous studies, STDP was implemented by applying carefully designed, overlapped 

waveforms on memristors, such that the relative timing of the spikes was converted into the 

amount of overlap of the pre- and postsynaptic signals, allowing the device to respond 

accordingly10, as shown in Figure 4-5. 

 

Figure	4-5:	Waveforms	with	overlap	for	STDP.	Pre-	and	postsynaptic	membrane	potential	waveform	for	the	situations	of	positive	
Δt	(A)	and	negative	Δt	(B)	where	Δt=tpost-tpre.	Voltage	VMR	is	the	difference	between	the	postsynaptic	membrane	voltage	Vmem-pos	
and	the	presynaptic	membrane	voltage	Vmem-pre.	Overlap	of	two	waveforms	generates	the	effective	programming	signal	(red	

area)	which	is	above	the	threshold.	
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Instead of relying on external factors that keep the timing information, in neurobiology, 

the relative timing information between the pulses is natively embedded, e.g., by the natural 

decay of Ca2+ level which provides an internal timing mechanism4,11. Here we demonstrate that 

STDP behavior can be achieved in memristors with similarly simple, non-overlapping pre- and 

postsynaptic spike pairs. Similar to the case of biological synapses, STDP is achieved naturally 

since the relative timing information is encoded internally through the VO dynamics of WOx 

memristor and heat dynamics of Ta2O5-TaOx memristor. 

 

4.2.1.1 STDP Achieved by WOx Memristor 

The pulse pair we used contains a negative erase pulse (-1.1 V, 1 ms) representing the 

effect of a presynaptic spike and a positive write pulse (+1.1 V, 1 ms) representing that of a 

postsynaptic spike, both applied at the postsynaptic side. This configuration is equivalent to 

applying identical, positive pulse on both presynaptic and postsynaptic sides of the device as 

shown in Figure 4-6. 

 

Figure	4-6:	Stimulation	protocol	for	STDP	on	WOx	memristor.	Left:	experimental	setup,	a	pre-post	pair	consisting	of	identical	
spikes	is	equivalent	to	a	negative/positive	pulse	pair	applied	on	the	postsynaptic	side.	Right:	the	pre-post	programming	protocol	

including	30	pulse	pairs	(-1.1	V,	1	ms/1.1	V,	1	ms)	applied	at	5	Hz	for	stimulation,	followed	by	a	read	pulse	200	ms	after	
stimulation.	Post-pre	pairs	are	applied	similarly.	

Before each test, the device was stimulated with the same pulse train consisting of ten 

positive pulses (1.2 V, 1 ms, 200 Hz). In each test, 30 pulse pairs of either positive-negative 

pulse pair (+/- pair, representing the post-pre spike condition) or negative-positive (-/+ pair, 

representing the pre-post spike condition) were then applied at 5 Hz repetition frequency, as 

shown in Figure 4-6 (right). The device conductance was measured 0.2 s after the last pair and 

compared to that of the reference value, which was measured at identical time but without 
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applying pre-post or post-pre pairs. The device was then brought back to the same starting 

condition and the experiment was repeated for different pulse pair configurations. 

 

Figure	4-7:	STDP	implemented	in	WOx	memristor.	The	weight	of	memristor	changes	as	a	function	of	the	relative	timing	between	
the	pre-	and	postsynaptic	pulses.	Δt=tpost-tpre.	Symbols:	experimental	results	obtained	from	four	different	tests.	Solid	lines:	

simulation	data	from	the	second	order	WOx	memristor	model.	

As shown in Figure 4-7, for pre-post condition (Δt > 0), the memristor conductance 

(weight) increases while for post-pre condition (Δt < 0), the memristor conductance decreases. In 

other words, even though symmetric presynaptic (negative) and postsynaptic (positive) pulses 

were applied with identical amplitude and pulse width, their effects do not cancel each other and 

the net effect is found to be strongly dominated by the effect of the second pulse. This 

observation can be understood again with the second order WOx memristor model, as illustrated 

in Figure 4-8. 
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Figure	4-8:	Illustration	of	weight	change	under	different	pulse	pair	timing	by	simulation	based	on	WOx	memristor	model.	The	
dynamics	of	only	wc	within	one	pulse	pair	is	shown	for	clarity.	The	second	pulse	in	the	pair	has	a	large	effect	on	wc	change	due	to	

residue	enhanced	wm	from	the	first	pulse,	and	can	cause	either	potentiation	or	depression	depending	on	the	relative	timing	
between	the	pre-	and	postsynaptic	pulses.	

Here the state variable wc after a negatvie-positive pulse pair shows a net increase, since 

the write effect of the second pulse will be stronger due to the larger residue value of wm, which 

is enhanced by the first pulse (Figure 4-8, upper panel). Therefore, the negative-positive pair 

leads to a net increase of the state variable wc and a net increase of device conductance. 

Moreover, since the enhancement effect of the second pulse is caused by the residue of 

the increased state variable wm, the amplitude of the enhancement is dependent on the relative 

timing (Δt) of the first (which enhances wm) and the second pulse (which utilizes this 

enhancement) inside the pulse pair as shown in Figure 4-9. 
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Figure	4-9:	Illustration	of	state	variable	dynamics	for	different	Δt	by	simulation	based	on	WOx	memristor	model.	a)	The	case	of	
pre-post	pulse	pair.	b)	The	case	of	post-pre	pulse	pair.	With	longer	interval	Δt,	wm	decays	to	a	smaller	value,	leading	to	less	

significant	wc	change	by	the	second	pulse.	

After the first pulse, the enhanced state variable wm decays following a characteristic time 

constant around tens of milliseconds, so a larger Δt between the two pulses leads to a smaller 

residual wm and subsequently a smaller change in the state variable wc during the second pulse, 

and a smaller measured conductance change. As a result, the accumulating net weight change of 

30 pulse pairs, which is dominated by the second pulse in each pair, shows an inverse 

relationship with Δt. Indeed, an effect analogous to STDP was clearly observed, with larger 

relative timing between two pulses (larger Δt) resulting in smaller conductance change3 and vice 

versa, as shown in Figure 4-7.  

Here again the state variable wm plays the role of the (postsynaptic) Ca2+ concentration 

and provides an intrinsic timing mechanism, and in turn affects the plasticity of the weight-

determining state variable wc.  

Similar to other experiments discussed earlier, the second order memristor model can 

quantitatively capture the STDP behavior (Figure 4-7) and explain the mechanisms from known 

physical processes with controlled internal dynamics (Figure 4-8, Figure 4-9). 

 

4.2.1.2 STDP Achieved by Ta2O5-TaOx Memristor 

Similarly, STDP can be achieved in Ta2O5-TaOx memristor since the short-term 

temperature dynamics can also provide an intrinsic timing mechanism and enables timing-
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dependent long-term weight changes. The spikes used to implement STDP are shown in Figure 

4-10(a), (b), where the presynaptic (postsynaptic) spike consists of a programming element: 1.6 

V (1.1 V) with 20 ns duration and a heating element: 0.7 V with 1 µs duration, applied to the TE 

(BE) respectively. Equivalently, the postsynaptic spike corresponds to a programming element of 

-1.1 V with 20 ns duration and a heating element of -0.7 V with 1 µs applied to the TE, as shown 

in Figure 4-10(c). 

 

Figure	4-10:	Stimulation	protocol	for	STDP	onTa2O5-	TaOx	memristor.	a)	Experimental	setup:	a	pair	of	spikes	(Vpre	-Vpost)	applied	
to	TE	is	equivalent	to	a	pair	of	spikes	Vpre	and	Vpost

	applied	to	the	pre-	and	postsynaptic	side,	respectively.	b)	Pre-	and	
postsynaptic	spikes	used	for	STDP	implementation.	Each	spike	consists	of	a	programming	pulse	(1.6	V,	20	ns	for	presynaptic	
spike	and	1.1	V,	20	ns	for	postsynaptic	spike)	and	a	heating	pulse	(0.7	V,	1	µs).	c)	Equivalent	pulses	applied	to	the	TE	of	the	

device,	for	Δt	>	0	and	Δt	<	0.	

Similar to earlier discussions, each programming and heating element alone cannot 

modulate the device conductance. However, when the presynaptic spike reaches the device 

earlier than the postsynaptic spike (i.e., in the case of Δt > 0), the postsynaptic spike will be 

effected by the temporal heating effect from the presynaptic spike. The elevated temperature 

during the second spike causes the effect of second spike (the postsynaptic spike in this case, 

which with a negative programming pulse will increase the device conductance) to be stronger 

than that of the first spike (the presynaptic spike, which with a positive programming pulse will 

decrease the device conductance) and thus the overall effect will be dominated by the second 

spike and an overall increase in device conductance (potentiation) is obtained. In the opposite 

case (Δt < 0), a decrease in device conductance (depression) can be obtained by similar 

arguments. Indeed, STDP results measured in the Ta2O5-TaOx memristor using the non-

overlapped, spike-pairing protocols, where the conductance was measured with a small (0.2 V) 

read voltage after the application of the spikes, are shown in Figure 4-11. 
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Figure	4-11:	STDP	implemented	in	Ta2O5-TaOx	memristor.	The	weight	of	memristor	changes	as	a	function	of	the	relative	timing	
between	the	pre-	and	postsynaptic	spikes,	i.e.,	Δt.	Squares:	experimental	results.	Solid	lines:	simulation	results	from	the	second	

order	Ta2O5-TaOx	memristor	model.	

Significantly, an effect analogous to STDP observed in biology is clearly observed, with 

the sign of the conductance (weight) change determined by the sign of Δt and the amplitude of 

that change determined by the value of Δt, with larger relative timing between the pre- and 

postsynaptic spikes (larger Δt) resulting in smaller conductance change and vice versa. 

Here again, the internal temperature plays a similar role of the (postsynaptic) Ca2+ 

concentration and provides an intrinsic mechanism to encode the spike timing and activity 

information, which in turn causes the first order state variable, which determines the device 

conductance, to change accordingly. Similar to the WOx memristor case, the experiment results 

can be quantitatively captured by the second order model, shown as red curves in Figure 4-11. 

 

4.2.2 Frequency-dependent Long-term Weight Change 	

As discussed above, we have demonstrated that the Ca2+-like short-term dynamics of the 

2nd order state variable can have strong effects on the modulation of the 1st order (determining 

synaptic weight) state variable, leading to (long term) synaptic plasticity effects that are 

controlled by short-term temporal properties, e.g. spiking timing in STDP experiments.  

One more example is the frequency-dependent plasticity observed in the Ta2O5-TaOx 

memristor. As has been discussed previously, the rise and decay of the local temperature offers 
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an intrinsic timing mechanism, and different (short-term) temporal patterns of the input spikes 

can lead to different long-term conductance changes. To test this concept, we applied a series of 

stimuli with different frequencies to the device. Each stimulus is a pulse pair consisting of a large 

but narrow programming pulse (-1.1 V, 20 ns) and a small but long heating pulse (-0.7 V, 1 µs), 

and is considered together as a single spike here as shown in the top panel in Figure 4-12. The 

frequency is determined by controlling the inter-spike time interval Δt. 

 

Figure	4-12:	Frequency-dependent	long-term	weight	change	of	Ta2O5-TaOx	memristor.	Top:	the	spikes	applied.	Each	spike	
contains	a	programming	pulse	(-1.1	V,	20	ns)	and	a	heating	pulse	(-0.7	V,	1	us).	The	interval	Δt	between	the	spikes	are	tuned	to	
obtain	different	frequencies.	Bottom:	conductance	(represented	by	the	current	measured	by	read	pulses)	change	by	stimulations	

with	different	frequencies	and	spike	numbers.	Higher	frequency	and	more	pulses	lead	to	stronger	weight	increase.	

At each frequency, an increase in device conductance, i.e. potentiation, is generally 

observed as the number of spikes is increased. More importantly, when the stimulation frequency 

is low (e.g. 0.14 MHz for Δt=5 µs), the potentiation effect is weak and no potentiation is 

observed for frequency below 0.1 MHz (Δt=8 µs), while higher stimulation frequencies (e.g. 

0.43 MHz for Δt=200 ns and 0.45 MHz for Δt=100 ns) lead to stronger potentiation, as shown in 

Figure 4-12. This obvious frequency dependence of the conductance modulation can be readily 

explained by the heat accumulation/dissipation dynamics based on second order memristor 
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model. Since spike trains with higher frequency means shorter interval between spikes, more 

pronounced heat summation and higher device temperature, caused by the heating pulse in one 

spike, is experienced during the following programming pulse of the next spike, leading to a 

more significant conductance change. 

 

4.3 Metaplasticity 
As has been discussed and demonstrated above, neural activity can generate persistent 

forms of synaptic plasticity, such as long-term potentiation (LTP) and long-term depression 

(LTD), which are used to retain and process information in activated networks of neurons. 

However, there must exist some mechanisms to prevent the saturation of LTP or LTD. Apart 

from various intercellular signaling molecules directly regulating the degree of LTP and LTD12, 

there exists a different regulation that persists across time. Here stimulations at certain time can 

affect neurons or synapses such that their ability to exhibit LTP or LTD is changed after a later 

bout of activity. This form of plasticity regulation, i.e. plasticity of plasticity, is termed 

metaplasticity13.  

 

 

Figure	4-13:	The	standard	paradigm	of	metaplasticity.	An	episode	of	priming	activity	at	one	point	in	time	is	applied	and	no	
weight	change	is	observed.	Then	a	subsequent	event	evokes	synaptic	plasticity.	A	change	in	neural	function	as	a	result	of	

priming	alters	the	response	to	the	subsequent	plasticity-inducing	event.	
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As shown in Figure 4-13, the metaplasticity states that the historical activity, or termed 

priming activity, may induce synaptic weight change or may not, but there must be some change 

in neural function as a result of the priming that persists after the termination or washout of the 

priming stimulus that alters the response to a subsequent plasticity-inducing event. For example, 

weak prior stimulation (only leading to short-term potentiation, STP) that does not cause a long-

lasting change in the synaptic efficacy was found to inhibit subsequent induction of LTP in the 

CA1 region of the hippocampus14. Therefore, the ‘meta’ part reflects a higher order of plasticity, 

that is, the plasticity of plasticity. Metaplasticity is important to the learning and memory of the 

brain, since it functions as an internal modulator that dynamically regulates the synaptic 

plasticity according to its previous activity and maintains the synaptic efficacy within a range. 

Studying the metaplasticity in memristor based artificial neuromorphic system can help explore 

how the network adaptively evolves with activities. 

Steady implementation of metaplasticity in memristor requires the existence of a state 

variable that can be adjusted not only by the historical activity but also determines the future 

exhibition of plasticity. Here we show that metaplasticity can be implemented by our metal oxide 

memristor. 

 

4.3.1 Experience-dependent Plasticity in WOx Memristor 

An important instance of metaplasticity is the experience-dependent plasticity. For 

example, according to the theory of Bienenstock, Cooper and Munro (BCM)15, the synapse can 

exhibit either potentiation (synaptic weight strengthening) or depression (synaptic weight 

weakening) even when subjected to the same spike trains. In other words, not only the amplitude 

but also the sign of synaptic weight change depends on the present stimulation conditions as well 

as the stimulation history. Specifically, Bear et al. found that high frequency stimulation 

normally leads to potentiation and low frequency stimulation normally leads to depression, and 

there exists a threshold frequency at which the synaptic weight can be maintained16. 

Additionally, the threshold frequency will also shift accordingly, depending on the experience of 

the synaptic activities16. For example, after a period of increased synaptic activity, the threshold 

will slide to right (higher frequency), promoting synaptic depression such that spike trains that 

previously caused potentiation may now be below the threshold frequency and will cause 
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depression instead. Similarly, after a period of decreased activity, the threshold will slide to left, 

promoting synaptic potentiation and it will be easier to enhance synaptic weight with lower 

frequency spikes. The sliding threshold effect from Bear’s study16 on visual cortex is reproduced 

in Figure 4-14. 

 

Figure	4-14:	Experience-dependent	synaptic	weight	change	of	biological	synapse.	The	relative	weight	change	as	a	function	of	
stimulation	frequency	was	obtained	in	rat	visual	cortex	for	two	different	cases.	Low	stimulation	frequency	results	in	depression	

and	high	stimulation	frequency	results	in	potentiation,	and	the	threshold	moves	to	lower	frequency	under	light-deprived	
condition	(filled	symbols)	compared	to	the	normal	condition	(open	symbols).	

In our experiment, we applied a series of pulse trains, each consisting of five identical 

programming pulses (1 V, 1 ms) with different frequencies and recorded the memristor 

conductance change (represented by the current produced by each pulse) as shown in Figure 4-

15. 
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Figure	4-15:	Experience-dependent	weigh	change	of	WOx	memristor.	Consecutive	programming	pulse	trains	(1	V,	1	ms,	blue	
lines)	at	different	frequencies	were	applied,	with	five	pulses	for	each	frequency.	The	10	Hz	pulse	train	caused	current	decrease	in	
step	2	following	strong	200	Hz	stimulation	in	step	1,	but	current	increase	in	step	4	following	weak	1	Hz	stimulation	in	step	3.	

Black	squares:	simulation	results	from	the	second	order	WOx	memristor	model.	

In step 1, the first pulse train with a 200 Hz stimulation frequency was applied and 

resulted in an increase in current through the memristor. Subsequently, in step 2, a 10 Hz pulse 

train caused the memristor current to drop. On the other hand, following the 1 Hz pulse train in 

step 3, the same 10 Hz pulse train in step 4 caused an increase in memristor current instead. The 

sign reversal with respect to current change at the same 10 Hz stimulation condition shows that 

the effect of the stimulation on a memristor can also be dependent on previous activity. 

This behavior observed in WOx memristor can be explained by the VO dynamics of the 

memristor, as the conductance change is determined by the competition of the effects of the 

stimulation pulse and the decay of the state variables wc and wm. The experimentally observed 

experience-dependent behaviors can be fully reproduced by simulation based on second order 

WOx memristor model (black squares, Figure 4-15). Briefly, during the experiment, the 200 Hz 

pulse train drove wm to a high value which leads to small effective time constant 𝜏_∗  and 𝜏]∗ and 

enhanced the decay of wc and wm in Equations (3-9) and (3-10). As a result, the subsequent 10 

Hz pulse train was not sufficient to overcome the fast wc decay to increase the memristor 

conductance anymore so an overall conductance drop was observed. On the contrary, after the 1 

Hz pulse train, wm had fully relaxed so the decay of wc and wm had slowed down significantly. As 

a result, the same 10 Hz pulse train afterwards was enough to bring the conductance up. In other 

words, the same device can experience either conductance increase or decrease at a given 

stimulation condition, depending on previous activities. 

With this understanding, we performed an experiment analogous to that of Bear et al.16 

(Figure 4-14). In this study, we first experienced the device to one of three levels of activities by 

the application of ten pulses at either 10, 20 or 50 Hz, then five write pulses (1.2 V, 1 ms) with 

different repetition frequencies were applied and the net current (before and after the application 

of the write pulses) were recorded and the change was calculated. The experiment was repeated 

by fully relaxing the device to the resting state, and the change in current by the five write pulses 

was plotted against the stimulation frequency of the write pulses for the three cases, as shown in 

Figure 4-16. 



	

52	
	

 

Figure	4-16:	Experience-dependent	weight	change	by	different	stimulation	strength	on	WOx	memristor.	The	current	changes	as	a	
function	of	the	stimulation	frequency	after	the	memristor	has	been	experienced	to	three	different	levels	of	activities	(10,	20	and	
50	Hz	stimulation).	Pulse	trains	consisting	of	five	pulses	(1.2	V,	1	ms)	with	different	repetition	frequencies	were	used	to	program	
the	memristor.	Black	squares,	red	circles,	blue	triangles	represent	experimental	data	and	the	solid	lines	are	simulation	results	by	

the	second	order	WOx	memristor	model.	

A low stimulation frequency in general leads to conductance decrease (negative change) 

due to the previous activities and a high frequency in general leads to conductance increase. 

Moreover, the threshold frequency at which the net conductance change is zero is observed to 

depend on the previous activities as well, as evidenced by the shift in the three curves 

corresponding to the three levels of previous activities the device has been subjected to. The 

threshold frequency will slide to the right (higher frequency) when previous activity is stronger 

(50 Hz stimulation), similar to the theory in neurobiology, specifically the BCM theory. On the 

contrary, after experiencing weak previous activity (10 Hz), the threshold frequency will slide to 

the left (lower frequency). 

These behaviors can be fully explained by the internal memristor dynamics using wm and 

wc as state variables, as evidenced by the quantitative agreement between experimental data and 

simulation results shown in Figure 4-16. 
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Figure	4-17:	Experience-dependent	plasticity	as	shown	by	the	hold	voltage	of	WOx	memristor.	The	device	was	stimulated	by	

pulse	trains	with	the	same	repetition	frequency	of	50	Hz	but	different	amplitudes	as	different	previous	activities	then	the	voltage	
by	which	the	weigh	could	be	maintained	was	recorded.	Black	squares:	experimental	data.	Solid	line:	simulation	results	by	the	

second	order	WOx	memristor	model.	

The sliding threshold effect can be reflected as either a change in threshold frequency at 

the same stimulation amplitude, as observed in neurobiological studies and shown in Figure 4-

16, or a change in threshold amplitude at the same stimulation frequency. Both effects may be 

relevant for memristor devices and can be used in hardware-based neuromorphic systems. The 

sliding threshold amplitude effect is demonstrated in Figure 4-17. In this study, the device again 

was first subjected to different levels of activities, then a pulse train consisting of five pulses 

with a fixed frequency (50 Hz) but different amplitudes was applied and the amplitude at which 

the device conductance can be maintained was recorded. As can be seen in Figure 4-17, to 

maintain the device conductance at a given stimulation frequency, the threshold amplitude shifts 

to higher voltages with stronger previous activities (higher frequency in Figure 4-17). This 

behavior can be again quantitatively captured by the memristor model (solid line, Figure 4-17). 

 

4.3.2 Metaplasticity in Ta2O5-TaOx Memristor 

As has been discussed in Chapter 2, the Ta2O5-TaOx memristor made by ebeam 

lithography can demonstrate well-controlled complimentary resistive switching (CRS) behavior, 

which can be used to phenomenologically implement metaplasticity. 
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Figure	4-18:	CRS	of	Ta2O5-TaOx	memristor.	

As shown in Figure 4-18, after experiencing different DC sweep voltage ranges, which 

can be regard as the priming activity in metaplasticity, the device can be switched to two states A 

and B.  While the conductances of states A and B, analogous to the synaptic weight, are of the 

same value (~0.326 mS), the response of the device to subsequent stimulations are dramatically 

different, for example with A leading to LTP while B leading to LTD when faced with identical 

large positive voltage. This effect is similar to the most common paradigm of metaplasticity, and 

can be explained by the different conduction filament profiles in the two cases,  i.e. the location 

of the depletion gap at the opposite sides of the device in cases A and B, leading to conductance 

increase in A and conductance decrease in B when programmed with identical pulses17.  
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Figure	4-19:	Metaplasticity	observed	in	Ta2O5-TaOx	memristor.	(a)	Evolution	of	the	device	conductance	with	the	number	of	
applied	programming	pulses	(1.2	V,	0.5	µs)	staring	from	HRS.	(b)	The	conductance	change	with	the	number	of	subsequently	

applied	programming	pulses	(1.1	V,	0.5	µs)	after	the	device	was	switched	into	states	A	and	B.	

This hypothesis was verified experimentally, shown in Figure 4-19. Here a series of 

programming pulses, acting as the priming activity, was applied to a device initially in HRS and 

the conductance evolved with the number of pulses applied (Figure 4-19(a)). The device was 

switched into states A and B, both of which have same conductance (~1.5 mS), meaning the 

priming activity does not cause measurable weight difference. However, when subjected to 

identical, subsequent programming pulses (1.1 V, 0.5 µs), LTP was observed in case A while 

LTD was observed in case B (Figure 4-19(b)), meaning the plasticity had indeed been altered by 

the priming activity. This result suggests the pulse-number-dependent metaplasticity in the 

Ta2O5-TaOx memristor, similar to the spike-number dependent metaplasticity observed in the 

hippocampal slices of rats18. 

Similar effects were also observed by using pulse trains with different frequencies and 

pulse amplitudes as the priming activities (results to be published), and again suggest that 

memristors are much more than a programmable resistor characterized by a single weight state 

variable, but can exhibit interesting dynamics that can be used to emulate biological synapses 

efficiently. 

 

4.4 Conclusion 
Based on the understanding of internal ionic dynamics of WOx memristor and Ta2O5-

TaOx memristor, the dynamics of 2nd order state variables are found to play a similar role of Ca2+ 

concentration dynamics in biological synapse that results in many different synaptic functions 

and can be utilized to implement them. Short-term synaptic behaviors, including paired pulse 

facilitation, rate dependent plasticity, long-term synaptic plasticities, including spike-timing 

dependent plasticity, frequency-dependent long-term weight change, and metaplasticity, 

including experience-dependent plasticity, are implemented in either WOx memristor or Ta2O5-

TaOx memristor, and more importantly, in a natural and bio-realistic fashion. 

 

 



	

56	
	

Reference  

1. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 

355–405 (2002). 

2. Salin, P. A., Scanziani, M., Malenka, R. C. & Nicoll, R. A. Distinct short-term plasticity at 

two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. 93, 13304–13309 

(1996). 

3. Bi, G. & Poo, M. Synaptic modifications in cultured hippocampal neurons: dependence on 

spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 

(1998). 

4. Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-

dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. U. S. A. 99, 10831–

10836 (2002). 

5. Rachmuth, G., Shouval, H. Z., Bear, M. F. & Poon, C.-S. A biophysically-based 

neuromorphic model of spike rate- and timing-dependent plasticity. Proc. Natl. Acad. Sci. 

U. S. A. 108, E1266-74 (2011). 

6. Zucker, R. Calcium-and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 

305–313 (1999). 

7. Kim, S. et al. Experimental Demonstration of a Second-Order Memristor and Its Ability to 

Biorealistically Implement Synaptic Plasticity. Nano Lett. 15, 2203–2211 (2015). 

8. Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic Implementation of 

Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics. Adv. Funct. 

Mater. 25, 4290–4299 (2015). 

9. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation 

in the hippocampus. Nature 361, 31–39 (1993). 

10. Zamarreño-Ramos, C. et al. On spike-timing-dependent-plasticity, memristive devices, 

and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011). 

11. Graupner, M. & Brunel, N. Calcium-based plasticity model explains sensitivity of 

synaptic changes to spike pattern, rate, and dendritic location. Proc. Natl. Acad. Sci. U. S. 



	

57	
	

A. 109, 3991–3996 (2012). 

12. Yang, S.-N., Tang, Y.-G. & Zucker, R. S. Selective Induction of LTP and LTD by 

Postsynaptic [Ca2+]i Elevation. J. Neurophysiol. 81, 781–787 (1999). 

13. Abraham, W. C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. 

Neurosci. 9, 387–399 (2008). 

14. Huang, Y., Colino, A., Selig, D. & Malenka, R. The influence of prior synaptic activity on 

the induction of long-term potentiation. Science (80-. ). 255, 730–733 (1992). 

15. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron 

selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 

2, 32–48 (1982). 

16. Kirkwood, A., Rioult, M. G. & Bear, M. F. Experience-dependent modification of 

synaptic plasticity in visual cortex. Nature 381, 526–528 (1996). 

17. Yang, Y., Sheridan, P. & Lu, W. Complementary resistive switching in tantalum oxide-

based resistive memory devices. Appl. Phys. Lett. 100, 1–5 (2012). 

18. Mockett, B., Coussens, C. & Abraham, W. C. NMDA receptor-mediated metaplasticity 

during the induction of long-term depression by low-frequency stimulation. Eur. J. 

Neurosci. 15, 1819–1826 (2002). 

 

  



	

58	
	

	

	

Chapter 5 

Memristor Array for Sparse Coding 

 
In previous chapters, we have demonstrated that at the single device level, memristors 

can emulate synaptic functions by storing the analog synaptic weights and implementing 

synaptic learning rules1–6. When constructed into a crossbar form, memristor networks can 

implement certain matrix operation, especially the dot product, very easily as discussed in 

Chapter 1 and offer the desired density and connectivity that are required for hardware 

implementation of neuromorphic computing systems7–9. Recently, memristor arrays and phase 

change memory devices have been used as artificial neural networks to perform tasks such as 

feature extraction and pattern recognition10–14. Here we experimentally demonstrate a sparse 

coding algorithm implemented by a memristor crossbar network, and show that the memristor 

network can be used to perform applications such as natural image analysis using learned 

dictionaries. 

 

5.1 Sparse Coding 

Sparse representation of information provides a powerful method to perform feature 

extraction on high-dimensional data, and is of broad interest for applications in signal 

processing, machine vision, object recognition and neurobiology15,16. Sparse coding is also 

believed to be a key mechanism by which biological neural systems can efficiently process 

complex, large amount of sensory data while consuming very little power17,18. 

Sparse representation reduces the complexity of the input signals and enables more 

efficient processing and storage, as well as improved feature extraction and pattern recognition 

functions15,16. Briefly, given a signal x, which may be a vector (e.g. representing the pixel values 

in an image patch), and a dictionary of features D, the goal of sparse coding is to represent x as a 
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linear combination of features from D using a sparse set of coefficients a, while minimizing the 

number of features used. A schematic of the sparse coding concept is shown in Figure 5-1, where 

an input (e.g. the image patch of a clock) is represented by a few features selected from a large 

dictionary16,17. 

 

Figure	5-1:	Schematic	of	the	sparse	coding	concept.	An	input	(e.g.,	the	image	patch	of	a	clock)	can	be	decomposed	into	and	
represented	with	a	minimal	number	of	dictionary	elements.	

 

5.2 Sparse Coding Algorithm 

The Locally Competitive Algorithm (LCA)19 is a sparse coding algorithm that uses a 

dictionary of feature vectors (represented as synaptic weights in a neural network) to transform a 

vector of input signal into a relatively small number of output coefficients, which can be used as 

a compressed form of the input for image compression or object recognition. Different from 

simple feed-forward neural networks, LCA describes a dynamical system where neurons 

compete with each other in proportion to the similarity of their respective receptive fields (the 

collection of synaptic weights entering a neuron) so that a more optimal representation, out of 

many possible representations, can be obtained.  

The neuron dynamics during LCA analysis can be summarized by the following 

equations: 

?|
?A
= /

G
−𝑢 + 𝑥~𝐷 − 𝑎 𝐷~𝐷 − 𝐼-                                                                            (5-1) 

𝑎 = 	𝑢	if	𝑢 > 𝜆				
	0	otherwise                                                                                                        (5-2) 
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where 𝑢 is the neuron’s membrane potential, 𝜏 is a time constant, 𝑥 is the signal to be encoded, 𝐷 

is the dictionary of features, 𝑎 is the neuron activity (whose non-zero elements form the sparse 

code), and 𝐼- is the 𝑛	×	𝑛 identity matrix. During LCA analysis, each neuron i integrates its input 

𝑥~𝐷, leakage −𝑢, and inhibition 𝑎 𝐷~𝐷 − 𝐼-  terms and updates its membrane potential ui 

(Equation (5-1)). Specifically, the input to neuron i results from the signal x scaled by the 

weights Dji connected to the neuron (second term in Equation (5-1)). To this regard, the 

collection of the synaptic weights Dji associated with neuron i, corresponding to a feature column 

of D, is also referred to as the receptive field of neuron i, analogous to the receptive fields of 

biological neurons in the visual cortex17,20. Here the input 𝑥~𝐷 increases the neuron’s membrane 

potential, by an amount proportional to the similarity between the input and the neuron’s 

receptive field (through the vector-matrix dot-product), while the inhibition term decreases the 

neuron’s membrane potential, particularly from other neurons with similar receptive fields. If 

and only if ui reaches above a threshold (set by parameter λ), neuron i will produce an output ai 

= ui, otherwise the neuron’s activity ai is kept at zero through the thresholding function 

(Equation (5-2)).  

 

5.3 Memristor Network for Sparse Coding 

The memristor network is particularly suitable for implementing neuromorphic 

algorithms such as LCA since the matrix-vector dot-product operations can be performed 

through a single read operation in the memristor array8, as already discussed in Chapter 1.  

Equation (5-1) can be rewritten as: 

?|
?A
= /

G
−𝑢 + 𝑥 − 𝑥 ~𝐷 + 𝑎                                                                               (5-3) 

By doing so, the matrix-matrix operation 𝐷~𝐷 in Equation (5-1) is reduced to two 

sequential matrix-vector dot-product operations (one used to calculate 𝑥 = 𝐷𝑎~  and the other 

used to calculate the contribution from the updated input 𝑥 − 𝑥 ~𝐷). 
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Figure	5-2:	Schematic	of	memristor	crossbar	based	computing.	A	memristor	is	formed	at	each	crosspoint	and	can	be	
programmed	to	different	conductance	states	(represented	as	grayscale	color).	

We have mapped the LCA algorithm into a memristor crossbar network, schematically 

shown in Figure 5-2. In this implementation, x is an m-element column vector applied to the 

rows of the memristor crossbar (cyan pads on the left), with each element corresponding to an 

input element (e.g. intensity of a grayscale pixel in an image patch). It is implemented by read 

pulses with a fixed amplitude but variable width proportional to the pixel intensity. The 

dictionary D is an m×n matrix directly mapped element-wise into the memristor crossbar with 

each column j storing the corresponding synaptic weights, an m-element vector, for one element 

in the dictionary. As a result, the total charge Qij passed by a memristor at crosspoint (i, j) is 

linearly proportional to the product of the pixel intensity xi and the conductance Dij of the 

memristor 𝑄"$ = 𝑥"D"$, and the charge passed by all memristors sharing column j is summed via 

Kirchhoff’s current law 𝑄$ = 𝑥"𝐷"$" = 𝑥~𝐷$, thus achieving the desired vector-vector dot-

product in physics. Since the dot-product of vectors measures how close the input vector is 

matched with the stored vector, the ability to implement this operation in a single read process 

allows the memristor network to conveniently and efficiently perform this important pattern 

matching task. 

In this implementation, each column is connected to a leaky-integrator output neuron 

(pink pads at the bottom), such that the total charge accumulated at neuron j is proportional to the 

dot-product of the input x with the neuron’s receptive field Dj. Afterwards the neuron activity is 

obtained through Equation (5-2), and the neuron activity coefficients form a row vector a, where 
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the jth element of a represents the activity of the jth neuron. After feeding input x to the network 

and allowing the network to stabilize through lateral inhibition, a reconstruction of x can be 

obtained as 𝐷𝑎~, and in a sparse representation only a few elements in a are non-zero while the 

other neurons’ activities are suppressed to be precisely zero.  

 

Figure	5-3:	Memristor	crossbar	network	for	sparse	coding.	A	scanning	electron	microscope	(SEM)	image	of	a	fabricated	
memristor	array	used	in	this	study	is	shown.	Upper	right	inset	shows	a	magnified	SEM	image	of	the	crossbar.	Lower	left	inset	

shows	the	memristor	chip	integrated	on	the	testing	board	after	wire-bonding.	

The hardware system used in our study is based on a 32x32 memristor crossbar array, 

with a memristor formed at each intersection in the crossbar (Figure 5-3). The WOx memristor 

devices are fabricated following the previously developed procedures21 discussed in Chapter 2. 

After fabrication, the chip of memristor crossbar array is wire-bonded and integrated on a 

custom-build testing board. The original input, such as an image, is fed to the rows of the 

memristor array and the columns of the array are connected to output neurons. The memristor 

network performs critical pattern matching and neuron inhibition operations to obtain a sparse, 

optimal representation of the input. After the memristor network stabilizes, the re-constructed 

image can be obtained based on the (sparse) output neuron activities and the features stored in 

the crossbar array. 
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5.4 Sparse Coding Experiment Results 

Figure 5-4 shows an example of encoding an image composed of horizontal and vertical 

bars using the procedures given above. The dictionary shown in Figure 5-4(a) contains 20 

features with each feature consisting of 25 weights. If the input images are restricted to only 

combinations of horizontal and vertical bars, the input dimensionality is reduced to 9. Therefore, 

the dictionary is larger than the input space to form an over-complete dictionary set. In this 

experiment, a 25x20 sub-array was used out of the 32x32 memristor array. The 20 features were 

written into the 20 columns and the inputs were fed into the 25 rows. An input signal, shown in 

Figure 5-4(b) and consisting of a combination of 3 bars, is used as a test input and the final 

reconstruction is shown in Figure 5-4(b). It can be correctly reconstructed with neurons 8 and 16, 

which are the two neurons with membrane potential larger than the threshold after certain 

iterations, as shown in Figure 5-4(c). The network not only correctly reconstructed the input 

image, but more interestingly, picked the more efficient solution – a solution based on neurons 8 

and 16, over another solution based on neurons 1, 4 and 8. This result emphasizes the sparsity of 

the coding. 

 

Figure	5-4:	Sparse	coding	results	by	WOx	memristor	crossbar	array.	a)	Dictionary	elements	base	on	horizontal	and	vertical	bars.	
b)	The	original	image	to	be	encoded	and	the	reconstructed	image.	c)	Membrane	potentials	of	the	neurons	as	a	function	of	

iteration	number	during	LCA	analysis.	
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5.5 Conclusion 

Utilizing the merits of memristor crossbar network, i.e., easy implementation of dot 

product and weight storage/modulation, an important neuromorphic algorithm, LCA, is 

implemented experimentally on a fabricated WOx memristor crossbar array. The algorithm can 

be used to code and reconstruct patterns and images with sparsity. 

Apart from encoding the bar patterns shown above, we also demonstrated that the 

memristor array can be used to experimentally code and reconstruct natural images using sparse 

coding algorithm and a learned dictionary (results to be published). The dictionary elements were 

obtained offline using a realistic memristor model and algorithm based on winner-take-all 

(WTA) approach and Oja’s learning rule. The obtained dictionary elements were programmed 

into a physical 16x32 crossbar array. Using the trained dictionary, we successfully preformed 

reconstruction of 120x120 pixel grayscale images using the 16x32 memristor crossbar array. 
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Chapter 6 

Memristor Array for Reservoir Computing 

 
Beyond using memristors to store weights and perform vector-matrix dot-products in 

place for applications discussed in Chapter 5, the internal dynamics discussed in Chapter 4 can 

be used to perform other computing tasks natively. One interesting and important application is 

reservoir computing, where the internal dynamics of memristors can be utilized for efficient 

temporal information processing. 

 

6.1 Reservoir Computing 

The concept of reservoir computing was developed to solve problems in implementing 

recurrent neural networks (RNNs). RNN is a class of artificial neural network in which 

connections between nodes form a directed cycle, creating an internal state of the network which 

allows it to exhibit dynamic temporal behaviors1. 

 

Figure	6-1:	Reservoir	computing.	
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Although RNNs are theoretically very powerful tools for solving complex temporal 

machine learning tasks, several factors still hinder the large scale deployment of RNNs in 

practical applications including factors such as not many learning rules exist and most that do 

exist suffer from slow convergence rates and require intense computation during the training of 

the network. To solve these problems, two concepts or structures were proposed independently. 

Echo State Network (ESN), proposed by Jaeger2 in 2001, and Liquid State Machine (LSM), 

proposed by Maass3 in 2002, described an improved constructive learning algorithm for RNN. 

These two structures were later unified by Verstraeten4 in 2007 as Reservoir Computing (RC) 

since they have a similar structure as shown in Figure 6-1: the whole system is separated into 

two parts: the first part, connecting to the input, will evolve dynamically with the temporal input 

signal, is called reservoir and the weight of the connections between all nodes will not be 

trained; while the second part, called readout function (red arrows in the picture), reads the state 

of the reservoir and generates the desired output. The most significant difference of RC systems 

compared with previous RNNs is that during training only the weight of connections between the 

reservoir and readout will be trained, while the connections inside the reservoir remain 

unmodified. In this way, it is much easier to perform training since for RNNs it is extremely 

difficult to find an optimal training algorithm of the network and it is usually computationally 

complex. 

Essentially, the reservoir conducts a pre-processing of the input by projecting it to a high-

dimension space, therefore converting initially linearly inseparable input signals into linearly 

separable signals after this nonlinear transformation. Afterwards, a simple readout, normally a 

single layer linear readout, can generate the desired output after training. 

 

6.2 Liquid State Machine 

Before we discuss the implementation of reservoir computing by memristor, it is worth 

mentioning the differences between ESN and LSM: 

1. Origins: ESN was proposed for machine learning and to solve engineering 

problems, while LSM was proposed for computational neuroscience, initially aiming to 

investigate the microcircuit of cortex. 
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2. Nodes: ESN, mostly using simple sigmoidal neuron, is easier to 

implement and run simulation. While for LSM, as it is derived from biological neural 

networks, in most cases Leaky Integrate and Fire (LIF) neurons are used and dynamic 

synapses are used for the connections. Therefore, LSM is more complex but potentially 

more computationally powerful. 

3. Reservoir types: although both set very loose restrictions on the reservoir, 

ESN uses recurrent neural networks so there are loops inside the network. Especially, it 

requires a feedback from the output to the reservoir to obtain the so-called "echo state 

property". LSM, on the other hand, sets a much looser requirement on the reservoir. It even 

does not need to be recurrent, meaning feed-forward networks without any loops can also 

constitute a liquid state machine as long as the reservoir obeys a quite unrestrictive 

property, which will be discussed later. 

4. Input signals: the difference between ESN and LSM with respect to the 

inputs, which could be spike trains, is that the former focuses on the firing rate as the nodes 

are simple sigmoidal neurons while the latter emphasizes the timing of each spike. As the 

spike timing is very important for our memristor device, we will also focus on the timing of 

input spikes as in the LSM case. 

Therefore we focus on LSM type RC for two reasons: 

1. The reservoir does not need to be recurrent so it can be implemented by a 

simple memristor array. 

2. WOx memristor has been intensively investigated to implement several 

dynamic synaptic functions while in LSM the dynamic synapses are commonly used in the 

reservoir as the connections between nodes or even constitute the reservoir itself. 
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Figure	6-2:	Schematic	of	a	Liquid	State	Machine.	The	system	consists	of	two	parts:	the	liquid,	which	will	generate	an	internal	
state	x(t)	according	to	the	history	of	input	u(t),	and	a	readout	function,	which	can	generate	a	desired	output	v(t)	after	training.	

The structure of a Liquid State Machine is shown in Figure 6-2. The input u(t), which is a 

temporal signal, is fed into the reservoir. The reservoir, or the liquid, will response to the input 

by changing its internal state x(t). Then the readout function f obtains the internal state of the 

liquid and generates the output v(t), which should be as close to the desired output d(t) as 

possible, after training the weight of connections between the liquid and the readout. 

The readout function only linearly maps the liquid state x(t) at time t to output v(t)=f(x(t)) 

so it is memory-less. Then how could the system obtain information at t’<t as a filter? The 

answer is that the liquid state is determined not only by the input currently applied but also those 

in a certain period in the past. Therefore, the liquid itself must have short-term memory. In fact, 

it has been mathematically proved that the Liquid State Machine should have two very 

unrestrictive properties to obtain universal computation power for time-varying inputs3: 

1) The liquid satisfies the point-wise separation property. This means that all output-

relevant differences in the preceding part of two input series u1() and u2() (before time t) are 

reflected in the corresponding liquid state x1() and x2() which are separable. 
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2) The readout function satisfies the approximation property. This means the readout 

function can map the current liquid state to the desired current output with required accuracy. 

Bearing these two properties in mind, it has been shown that a Liquid State Machine, 

which can approximate any time invariant filter with fading memory with arbitrary precision, can 

be constructed with the following simple protocol5: 

i. Choose a suitable liquid 

ii. Record liquid states in response to inputs 

iii. Train a readout function with input-output samples 

 

6.3 WOx Memristor Based Synapses as the Liquid 

With the above mentioned protocol, a Liquid State Machine, in which the liquid is built 

directly using dynamic synapses6 has been demonstrated to implement an arbitrary finite state 

machine. 

 

Figure	6-3:	Schematic	of	a	Liquid	State	Machine	with	synapses	as	the	liquid.		

The structure of this Liquid State Machine is shown in Figure 6-3. The synapses 

constituting the liquid in this case are expected to show very similar behaviors to what we have 

already observed in our WOx memristor, as shown in Figure 6-4. It is obvious that the synapse 

has a fading memory, similar to the conductance decay of WOx memristor (Figure 3-1), and 

responds differently according to the timing of spikes. In the WOx memristor, this effect is 

caused by the nonlinear conductance change by multiple pulses (Figure 3-2) and the pulse timing 

dependent conductance change (Figure 4-2).  
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Figure	6-4:	Expected	synapse's	response	to	a	spike	train.	The	EPSPs	generated	through	synapse	are	different	depending	on	the	
timing	of	the	spikes.	

To test this effect, a pulse train composed of write pulses having the same amplitude (1.4 

V, 500 µs) but different relative timing (intervals between the pulses), was applied to the device 

and the response of the memristor, which was represented by current measured by a small read 

pulse (0.6 V, 500 µs) following each write pulse, was recorded and shown in Figure 6-5. 

 

Figure	6-5:	Memristor's	temporal	response	to	a	pulse	train.	Write	pulses	(1.4	V,	500	µs)	with	different	timing	(blue	lines)	were	
applied	and	the	response,	represented	by	current	measured	by	a	small	read	pulse	(0.6	V,	500	µs)	after	each	write	pulse	is	

recorded.	A	temporal	response	is	observed.	

The response of the memristor is indeed very similar to the synapse in a LSM in at least 

two aspects: 1) if multiple pulses are applied with short intervals, the response will gradually 

increase as indicated by the red arrow in Figure 6-5, showing a cumulative effect, 2) if there is a 

certain period without any stimulation, then the response to the next stimulation will be weaker 

as indicated by the green arrow in Figure 6-5, showing the decay effect. Therefore, we think that 

EPSP 

Spike 
Train 
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by adopting the Liquid State Machine concept and structure, a reservoir computing system can 

be constructed using the WOx memristors. 

 

6.4 System and Task Design 

Apart from the dynamics of WOx memristor, which has been mentioned and compared to 

that of synapses used in LSM, it is important to design a suitable LSM for specific applications. 

The task should also be carefully selected and designed as to show the potential of using 

memristors as the liquid. In previous research, finite state machine6, speech/word recognition7, 

movement predication8 and many other nonlinear temporal applications using LSM have been 

demonstrated. Here we start from a digit recognition task and in the future we hope to 

demonstrate more powerful and universal computation abilities of WOx memristor based LSMs. 

 

6.5 LSM for Simple Digit Recognition 

Here a LSM is designed for a very specific task, that is, to recognize the digit from an 

input image, as shown in Figure 6-6. 

 

Figure	6-6:	Simple	digit	images.	Each	digit	image	contains	twenty	pixels,	either	black	or	white.	
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Figure	6-7:	LSM	for	simple	digit	recognition.	Left:	digit	“5”	as	an	example.	Right:	the	LSM	containing	the	inputs	(pulse	trains	
transformed	from	the	image),	the	liquid	(consisting	of	5	memristors)	and	the	readout	function	(a	network	with	10	output	

neurons).	

The LSM is shown in Figure 6-7, taking digit “5” as an example. The digit is shown as an 

image with 20 pixels, either black or white. Then the image is separated into 5 rows, each row 

containing 4 pixels. The pixels are transformed into either a write pulse (1.5 V, 1 ms) for white 

pixel, or no pulse (or pulse with amplitude of 0 V) for black pixel. Therefore, the spatial 

information of the image for digit “5”, which is the locations of white pixels in each row, is 

transformed into temporal information, i.e., a pulse train with pulses applied with different 

timing. From the 5 rows, 5 pulse trains are obtained and fed into 5 memristors. Here the 5 

memristors constitute the liquid and as discussed above will respond differently to each pulse 

train according to the relative timing of the pulses within the pulse train. When a write pulse is 

applied, the state of the memristor will be changed (conductance increase) and if multiple pulses 

are applied with short interval the cumulative effect will increase the conductance gradually, 

while if there is no stimulation, the state (conductance) will decay towards its resting state, i.e., 

the initial state before any pulse is applied. Therefore, the final state of the memristor after 

applying a pulse train corresponds to the result of a non-linear transformation of the temporal 

information of that pulse train, and if these states are different for different input patterns the 

patterns become linearly separable and can be identified through the readout function. Here the 

states of the 5 memristors are obtained by applying a read pulse at the end of each pulse train, 

and the measured read currents reflect the internal state of the liquid. After supervised training of 

the simple readout function, the desired output, which is the correct recognition of digit “5” can 

be obtained. More specifically, here the readout function is a 5x10 network, with the read 
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currents from the 5 memristors in the liquid as the input, and the 10 output neurons representing 

the 10 digits as the output.  Each output is connected to the memristors through 5 weights 

(totaling 50 weights for the 10 digits). During the classification task, the output from the 10 

output neurons are calculated by obtaining the dot product of the input (read currents from the 5 

memristors in the liquid) with the 5 weights for each digit, and the digit with the maximum value 

is selected as the recognition result. 

A significant advantage of using a LSM for digit recognition task is that fewer weights 

need to be trained. A normal neural network for this task will have 20 inputs as there are 20 

pixels. If there is no hidden layer, i.e., the inputs are directly connected to the output, then from 

20 inputs to 10 outputs, there are 200 weights in total that need to be trained and that number will 

quickly increase if one or more hidden layers are used. By using a LSM, the spatial information 

is encoded in the temporal domain so a smaller network (e.g. a 5x10 network) can be used for 

readout and only 50 weights need to be trained. Essentially, we are trading speed (the time 

needed to input pulse train) for space (memory to store 50 weights instead of 200 or more) and 

the computation complexity of training (fewer weights need to be trained). 

  
Figure	6-8:	Experimental	setup	for	LSM.	Left:	32x32	WOx	memristor	array	fabricated.	5	cells	from	the	array	are	used	as	the	

liquid.	Right:	the	chip	containing	the	memristor	array	is	wire	bonded	to	a	chip	carrier	and	integrated	on	a	customized	board	for	
testing.	

The experimental setup is shown in Figure 6-8. A 32 by 32 WOx memristor array is 

fabricated with 500nm line width. The chip is wire bonded to a chip carrier and mounted on a 

customized board for testing. 
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Figure	6-9:	Memristors’	variation	and	response	to	six	pulse	trains.	The	response	of	15	cells	from	the	array	to	6	different	pulse	
trains	are	shown,	indicating	1)	variations	between	cells	which	are	manageable	and	2)	similarity	of	the	temporal	response	of	

each	cell	and	clear	separation	of	those	different	inputs	by	the	final	cell	conductances.	

15 cells were chosen from the array for LSM studies. The response of these cells to 6 

different pulse trains are shown in Figure 6-9. Although there are some variations among the 

cells, especially the absolute read current levels, all cells show the same trend when subjected to 

these inputs and the read current after the forth pulse can be well separated for different inputs 

(pulse trains) in all devices. 

 
Figure	6-10:	Memristor’s	response	to	ten	pulse	trains.	Ten	pulse	trains	corresponding	to	ten	different	row	pixel	arrangements	for	
the	ten	digit	images	were	input	to	a	memristor	and	the	read	currents	after	the	forth	pulse	show	ten	different	levels	that	can	be	

well	separated.	



	

77	
	

For the ten digits represented by the 4x5 images, there are overall ten different pixel 

arrangements along each row direction, corresponding to ten different possible pulse trains as 

input. We tested the memristor’s response to these pulse trains, shown in Figure 6-10, and a 

different read current after the forth pulse was obtained for each pulse train, indicating that the 

memristor can separate those ten different inputs well. This is more clearly shown in Figure 6-

11. Here the internal states of the liquid, represented by the combination of the read currents 

from all 5 memristors in the liquid (with each memristor corresponding to a row of the input 

image), are significantly different when the liquid is subjected to the 10 different digit inputs, 

verifying the liquid can clearly separate those ten digit images. 

 
Figure	6-11:	Liquid's	internal	states	after	subjected	to	the	ten	digit	inputs.	The	read	currents	of	the	5	memristors	were	recorded	

as	the	internal	state	of	the	liquid	and	significant	differences	can	be	observed.	

After the liquid states for all the inputs were obtained, the readout function was trained 

using logistic regression which is commonly used for classification in machine learning.  

Suppose the liquid state is x, a vector containing 5 elements, i.e., the 5 read currents, and 

for each output neuron in the readout network there is a set of weights θ, which is also a vector 

with 5 elements. Then the hypothesis function is  

ℎ� 𝑥 = 𝑔 𝜃~ ∙ 𝑥                                                                                                  (6-1) 

𝑔 𝑧 = /
/��f�

                                                                                                          (6-2) 

The cost function is  
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𝐽 𝜃 = /
_

−𝑦 " 𝑙𝑜𝑔 ℎ� 𝑥 " − 1 − 𝑦 " 𝑙𝑜𝑔 1 − ℎ� 𝑥 "_
"./               (6-3) 

where m is the number of samples, 𝑦 "  is the desired output for input 𝑥 " . 

The gradient descent is 

�� �
���

= /
_

ℎ� 𝑥 " − 𝑦 "_
"./ 𝑥$

"                                                                      (6-4) 

The training of the weights is achieved by Matlab 2016b using function fmincg(), which 

is provided by Jason Rebello as a logistic regression with regularization and commonly used to 

classify hand written digits9. 

After training, any example from the original ten digit images can be recognized with 

100% accuracy after passing the input image through the memristor-based LSM and the readout 

network (each image tested 10 times). This unambiguously demonstrates the memristor array 

based LSM’s ability to encode the spatial information in temporal domain and to process the 

temporal information due to the internal dynamics of the memristor.  

To more clearly demonstrate the effect of short-term decay, or the temporal information 

processing ability of the liquid, two distorted digit images for “2” and “3” were generated by 

adding noise to the original training samples, as shown in Figure 6-12. A close inspection will 

reveal that the number of pulses in the pulse trains for these two digits are the same for each row 

(i.e., 2, 1, 2, 1, 3 pulses for row 1 to 5). The only difference is the relative timing of the pulses for 

the last two rows. As expected, the liquid states corresponding to the last two rows of the two 

noisy digit images, as shown in Figure 6-12, are significantly different, therefore enabling the 

liquid to clearly separate these two different inputs and allowing the system to successfully 

recognize these inputs as digit “2” and “3” after the readout network. 
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Figure	6-12:	The	effect	of	decay	in	separating	different	digit	images.	Noisy	digit	“2”	and	“3”	images	were	generated	by	adding	
noise	to	the	original	data.	The	corresponding	liquid	states	for	these	two	inputs	are	shown.	The	responses	to	the	last	two	rows	

are	significantly	different,	enabling	the	liquid	to	distinguish	these	two	digits.	

 
Figure	6-13:	Recognition	of	noisy	digits.	Noisy	digit	images	were	generated	by	adding	noise	to	the	original	training	samples.	The	
recognition	results	are	shown	below	each	digit	image.	Most	of	the	noisy	digits	can	still	be	successfully	recognized	until	too	much	

noise	was	added,	as	in	the	last	two	cases.	

After adding additional noise to the original training samples, the digit images can still be 

recognized correctly by the system as shown in Figure 6-13. However, if too much noise was 

added, as in the last two examples shown in the figure, the system will not be able to recognize 

them, as the liquid states will be too close to other digits thus it becomes very difficult to 

distinguish those inputs. However, it could be argued that in these two cases, the noisy “2” can 

indeed be alternatively considered as a noisy “1”, while the noisy “9” can in fact be considered 

as a noisy “8” (with a missing pixel) instead. 

 

1 2 2 2 1

2 2 4 7 8
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6.6 LSM for Handwritten Digit Recognition 

The Liquid State Machine was then tested with a more complex but real task, that is, 

recognition of handwritten digits. The data set, MNIST database (Mixed National Institute of 

Standards and Technology database) is a large database that is commonly used for training and 

testing in the field of machine learning. The database was created by “remixing” the digit 

samples written by high school students and employees of the United States Census Bureau, and 

consists of 60000 training samples and 10000 test samples. Some of the samples are shown in 

Figure 6-14. 

 
Figure	6-14:	Samples	from	the	MNIST	database.	

 
Figure	6-15:	LSM	for	handwritten	digit	recognition.	Image	of	the	digit	was	preprocessed	and	transformed	into	pulse	trains.	Then	

pulse	trains	with	different	temporal	patterns	were	input	to	the	liquid	with	different	rates.	With	a	trained	readout,	the	
recognition	results	will	be	obtained.	

Figure 6-15 shows the preprocessing of the digit images and the LSM. The original 

grayscale image was first transformed into a binary-pixel image. The unused boarder area was 

removed by reducing the original 28-by-28-pixel image into 22-by-20. For each row, there are 
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now 20 pixels. If the entire row is used as one input pulse train then in theory, there could be 220 

different input patterns which may be too difficult for one memristor to distinguish. Therefore, 

each row should be divided into several sections with each section containing fewer pixels. For 

the example shown in Figure 6-15, one row was divided into 4 sections and each section 

contained 5 pixels. 

Another strategy to increase the ability of the memristor-based liquid to separate the 

inputs is to apply pulse trains with different rates/frequencies. If the frequency is very high 

(compared to the decay time constant of the memristor), the increased conductance by each pulse 

will not decay much since the interval between pulses will be short. As a result, the number of 

pules in the input will be the dominant factor to determine the final memristor conductance (the 

liquid state) due to the cumulative effects of the conductance increase. In the other extreme, if 

the frequency is very low, the memristor has enough time to decay so the relative timing between 

pulses will play a more significant role and pulses applied later will also have a stronger effect 

than pulses applied earlier. These types of effects allow the memristor-based liquid to perform 

different non-linear transformations of the temporal information in the input and allow different 

inputs to be linearly separated by reading the liquid states. 

With these considerations, each pulse train, converted from each section, was applied 

with two different rates to the memristor based liquid, as shown in Figure 6-15. From a system 

point of view, by doubling the total number of input cells, the responses of two memristors fed 

with pulse trains with the same pattern will capture different features of the input thus improving 

the separation ability of the liquid. To associate the different liquid states with the digits, the 

readout network was trained using logistic regression discussed earlier. During training, the 

liquid states of training samples were recorded and weights in the readout networks were updated 

following the procedure used in the simple digit recognition task. After training, another set of 

samples, not in the training set, were used to test the recognition accuracy. 
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Figure	6-16:	Liquid	states	for	three	MNIST	digit	images.	Results	corresponding	to	digits	“3”,	“8”	and	“7”	at	two	different	input	
rates	are	shown,	and	significant	differences	between	the	digits	can	be	observed.	

Figure 6-16 shows the liquid states corresponding to digits “3”, “8”, “7” at two different 

input rates, demonstrating that significant difference can be achieved in the liquid states to allow 

effective separation of the inputs and subsequent classification in the readout network. 

The performance of the memristor-based LSM to analyze handwritten digits were tested 

through both experiment and simulation studies. The results are shown in Table 6-1. From 

simulation, a system with 96 input cells (24 rows, each row has 2 sections and each section is 

input at 2 rates) can already achieve more than 90% recognition accuracy. As more inputs are 

used, a system with 288 inputs (24 rows, 4 sections, 3 rates) can achieve close to 92% accuracy, 

which is very good for a neural network with no hidden layer (as the single layer readout 

network needs to be trained) as previously up to 88% accuracy was achieved by one layer neural 

network. In experiment, 14000 samples from the training sample set and 2000 samples from the 

test set were used and 88.1% accuracy were obtained from the system, using 4 sections and 2 

input rates. Note that not all the samples from the MNIST database were used in the experiment 

to prevent the device wearout.  

 Data 
Preprocessing 

Sample 
Number 

Sections of 
Each Row Rates Recognition 

Accuracy (%) 

Simulation Reduce to  
24 by 24 

Train: 60000 
Test: 10000 4 

3 91.8 

2 91.5 
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1 88.7 

3 
3 91.6 

2 90.6 

2 2 90.2 

Experiment Reduce to  
22 by 20 

Train: 14000 
Test: 2000 4 

2 88.1 

1 85.6 
Table	6-1:	Experimental	and	simulation	results	of	handwritten	digit	recognition	by	memristor-based	LSM.	

The results also verified that input with more than one rate indeed improves the 

recognition accuracy as it improves the system’s ability to process temporal information. Also by 

dividing each row into more sections, each pulse train will have fewer number of pulses, 

resulting in a better separation by the liquid. 

 

6.7 Discussion 

In those two tasks, the spatial information of an image, i.e., the location of pixels in each 

row, was transformed into temporal information, i.e., the timing of different pulses, and by 

responding differently to different temporal patterns in the pulse trains, the system can separate 

different images (digits) as inputs. By using a pulse train containing multiple pulses instead of 

processing each single pixel in the space domain, we essentially trade speed, that is, the time 

needed to process the whole pulse train, for space, i.e., the number of inputs and the memory to 

store weights, and computational power, i.e., fewer weights need to be trained. Fundamentally 

the LSM performs a non-linear transformation of the inputs and allows the inputs to be 

separated, and subsequently classified through a readout function based on a simple neural 

network without hidden layer. 

It should be mentioned that the system is not optimized for the handwritten digit 

recognition task so the performance could still be improved further. First, information from the 

original data has already been partially lost during the preprocessing, such as transforming to 

binary data and trimming off borders. Second, the pulse amplitude, width and rates could still be 

finely tuned for optimum results. More importantly, while normal neural networks aim to extract 

features across the image from several rows through training, the LSM presented here only 

processes each row separately and independently. A quick solution, by scanning the digit also in 
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vertical direction and inputting each column to the liquid to allow relations between the rows to 

be processed as well, can improve the recognition accuracy to 95.2%.  

Additionally, the experimental studies are limited by device wearout. As shown in Figure 

6-17, the read current corresponding to consecutive pulses before and after handwritten digit 

recognition are plotted, and degradation is clearly observed as 1) current level drop and 2) failure 

to increase conductance by the 3rd pulse after the device was extensively programmed. As a 

result, the internal states of the liquid will no longer correctly represent different inputs with 

device degradation, finally becomes unable to distinguish and recognize different digits. 

 
Figure	6-17:	Device	degradation	during	digit	recognition	task.	The	read	currents	corresponding	to	four	consecutive	pulses	before	
and	after	handwritten	digit	recognition	task	are	shown.	An	obvious	degradation	is	observed	as	1)	current	level	drop,	2)	failure	of	

conductance	increase	by	3rd	pulse. 

In summary, even though the system is not fully optimized for this specific task, we have 

already successfully demonstrated the ability of memristor-based system to process temporal 

information and illustrated a way of trading processing speed for less memory and computational 

power. The memristor-based LSM approach may be more preferred than conventional neural 

networks for certain applications, e.g., those do not require fast processing speed but have 

limited resources for memory and computation power. 
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6.8 Conclusion 

Neural networks have been intensively investigated as a new computing architecture for 

many years. To reduce the computation complexity required for training the whole network, 

Liquid State Machine, one instance of Reservoir Computing, is proposed as an improved neural 

network structure, in which only the readout function, i.e. the connections from the liquid to the 

output, is trained, and can process temporal information due to the short-term memory of the 

liquid. WOx memristor, with its internal ionic dynamics, has been used to implement the liquid in 

LSM. Two tasks, starting from simple digit recognition to more complex handwritten digit 

recognition, are demonstrated on memritor-based LSM with reasonably good recognition 

accuracy due to memristor’s ability of processing temporal information, both by simulation and 

experiment on real memristor array. 
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Chapter 7 

Memristor Performance Improvement 

 
In previous chapters, we discussed the rich dynamics of the internal states of memristors, 

and how these effects can enable the memristor network to perform real-world applications 

including sparse coding and handwritten digit recognition, even with memristor arrays that can 

be readily produced by research labs. However, several challenges still remain before memristor-

based neural networks can be commercially used to tackle more complex problems with the 

desired performance metrics. Below we discuss the challenges and attempts to address them in 

this study. 

 

7.1 Single Device Performance Improvement 

For analog type applications, especially neuromorphic applications, several 

characteristics are preferred: 

1) Better weight update linearity. Many algorithms require the device weight to be 

updated linearly in response to stimulations during training. For our metal oxide memristors 

using programming voltage pulses as the stimulation, we prefer the conductance update follows 

with the number of pulses as linearly as possible. This allows an accurate mapping of the 

learning rules to the memristor network during training. 

2) Larger on/off ratio. This is necessary since with a larger on/off (high/low conductance) 

ratio, different middle(interstitial) conductance states are more reliably obtained, enabling a 

larger read margin and more reliable operations. 

3) More intermediate conductance states. More intermediate states allow better 

incremental weight updates. This can probably be achieved from strict control of the stimulation 

parameter tuning rather than from additional device performance improvements, if a device with 
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a good linearity and large on/off ratio can be achieved, since weaker programming pulses could 

increase the conductance with very small steps. 

4) Control of the internal dynamics parameters. If we want to use the second order effects 

to process temporal patterns, better control of those parameters is required.  

For the WOx memristor, the decay of the second order state variable, which represent the 

ion/vacancy mobility, is most crucial for the memristor dynamics. Therefore, the decay time 

constant is the most important parameter. However, ion mobility, or the decay of enhanced ion 

mobility after stimulation is difficult to control, since the physical process is still not well 

understood and requires further study. 

For the Ta2O5-TaOx memristor, the second order state variable, representing the internal 

temperature which can be enhanced by the heat generated during stimulation and decay 

afterwards, significantly affects the switching dynamics. As the timing is encoded in the heat 

decay, we want to control the heat decay time constant. This can be achieved by engineering the 

thermal conductance of the electrode and switching material, as well as through optimized device 

structure to tailor the competition between heat generation and dissipation. 

Below we first discuss a few attempts to improve the performance of the Ta2O5-TaOx 

devices, whose switching layers can be modulated during the film deposition process. Then we 

discuss a few issues during the WOx device fabrication and solutions. 

 

7.1.1 TaOx Memristor Performance Improvement 

7.1.1.1 Better Linearity During Weight Update 

An intrinsic idea about getting better linearity during weight update is to achieve a more 

uniform oxygen vacancy distribution instead of separated VO-rich/VO-deficient layers, therefore 

the two main driving forces, i.e., drift under electric field and diffusion along VO concentration 

gradient, can be more evenly distributed and gradual resistive switching can be achieved without 

abrupt filament formation/rupture processes. 

Following this hypothesis, a device based on a single TaOx layer was fabricated, by 

removing the Ta2O5 layer from the previous device structure. The single layer device indeed can 

also be switched, following a much weaker forming process compared with the conventional 
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device. The weak forming suggests that there is no thick insulator gap between the TE and the 

TaOx switching layer, unlike the Ta2O5-TaOx device. A more gradual conductance 

increase/decrease, as shown in Figure 7-1, can indeed be observed, meaning a better linearity 

compared to previous results.  

 

Figure	7-1:	Better	linearity	in	a	TaOx	single	layer	memristor.	40	write	pulses	(-0.9	V,	100	ns)	and	40	erase	pulses	(0.95	V,	100	ns)	
were	applied	and	the	read	current	was	recorded	by	a	read	pulse	(0.3	V,	50	µs)	after	each	programming	pulse.	

 

7.1.1.2 Heat Decay Time Constant Modulation 

The heat decay time constant observed in the conventional Ta2O5-TaOx device is 

typically around 500 ns, which may be too short (for applications where power is more important 

than speed). Here we aim to achieve a longer heat decay time constant. The heat dissipation 

equation is 

𝜇𝐶�
�~
�A
− ∇ ∙ 𝜅AS∇𝑇 = 𝛾 ∙ 𝜎 ∇𝜓 V                                                                          (7-1) 

where 𝜇, 𝐶�, 𝜅AS, 𝜎 denote the density, specific heat capacity, thermal conductivity and electrical 

conductivity, respectively and 𝛾 is a fitting parameter. It shows that the mass and thermal 

conductivity of the TE strongly affect the heat dissipation process. Therefore, we could explore 

different materials as the TE to modulate the heat decay time constant. 



	

90	
	

Initial attempts of using Pt, which is twice heavier than Pd, has been tried, and the results 

are shown in Figure 7-2, although more extensive studies are needed to reliably extract the decay 

time constant. 

 

Figure	7-2:	Heat	decay	measured	in	Ta2O5-TaOx	memristor	with	Pt	TE.	A	heating	pulse	(-0.6	V,	3	µs)	was	applied,	followed	by	a	
SET	pulse	(-1	V,	80ns)	with	time	interval	dt,	and	the	conductance	change	was	recorded	as	the	read	current	increase.	From	the	

results,	the	heat	decay	time	constant	seems	to	be	still	shorter	than	1	µs.	

ITO, which has a much smaller thermal conductivity, has also been tried as the TE. 

However, it is found that the device with ITO TE is very hard to switch. One possible reason is 

that the conductance of ITO is too low therefore there is not enough voltage drop on the 

switching layer although additional studies are still needed. 

 

7.1.2 WOx Memristor Fabrication Process Optimization 

Beyond fundamental device characterizations, we also optimized the processes during the 

WOx device fabrication to improve the performance. Attempts on WOx memristor process 

optimization are discussed below. 
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7.1.2.1 Spacer for Top Electrode 

Normally two issues exist for the conventional WOx memristor structure. The first one, as 

shown in Figure 7-3, is the residues along sidewalls of the bottom electrode after oxidation. We 

are not quite sure about the chemical nature of the residue. A possible explanation is that some 

residue could be deposited near the W BEs during the W BE etching step. The residue was then 

oxidized during the W oxidation process and became expanded and visible. 

 

Figure	7-3:	Issue	of	residues	along	the	sidewalls	of	WOx	memristors.	Left:	W	bottom	electrodes	with	200	nm	line	width	before	
oxidation,	very	clean.	Right:	W	bottom	electrodes	after	oxidation,	there	are	residuals	along	the	sidewalls.	

Another issue is the breakage of TEs at the crossing points, which can be amplified by 

the former issue, although fundamentally it is due to the very thick bottom electrodes after 

oxidation (approximately 100 nm) together with the bad step coverage of evaporation deposited 

TE materials, as shown in Figure 7-4. 

  

Figure	7-4:	Broken	TE	of	WOx	memristor	without	spacer.	Due	to	the	height	of	the	oxide/BE	stack,	which	could	be	around	100	nm,	
and	the	bad	step	coverage	of	TE	materials.	The	problem	is	excerbated	by	the	residue	(ridges)	around	the	BE.	
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To solve this issue, we adopted an improved design, inspired by the spacer structure in 

CMOS technology. As shown in Figure 7-5, after the W BE was fabricated, a thick layer of SiO2 

is globally deposited by PECVD. Since the deposition is isotropic, the film can cover the edge 

well. Then the SiO2 layer was etched back vertically by RIE (reactive ion etching). Due to the 

nature of this anisotropic etching, the film was removed with equal thickness along the vertical 

direction, leaving a “spacer” structure self-aligned along the sidewalls of the BE, as shown in 

Figure 7-6. The width of the spacer is roughly the same as the thickness of the deposited film. 

The spacer suppresses the ridges formed around the BE and also creates the sloped sidewalls 

(Figure 7-6) that allows reliable step coverage by the TE. 

   

Figure	7-5:	Schematic	of	spacer	formation.	Left:	after	isotropic	deposition	of	SiO2.	Right:	after	anisotropic	etching	of	SiO2.	The	
spacer	is	formed	self-aligned	along	the	sidewall	of	BE.	

 

Figure	7-6:	SEM	image	of	self-aligned	spacer	formed	along	the	sidewall	of	BE.	

 

7.1.2.2 Recessed Structure 

Another option to address the step coverage issue would be using a recessed bottom 

electrode. The basic idea is to bury the bottom electrode, together with the oxide layer, into the 

substrate, therefore the surface will be flat when the top electrode is deposited. This is inspired 
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by the flat surface design from crossbars fabricated using nano-imprint technology. There are 

two obvious advantages of using this technology: 1) the surface will be flat, eliminating the 

broken TE problem as there is no step height thus no stress, 2) the reaction area is ideally 

restricted to only the surface of oxide where it contacts the TE, as the BE is buried in the 

substrate so the sidewall is passivated by surrounding oxide. 

Starting from a substrate with a thick enough SiO2 layer, we first pattern the BE and etch 

the SiO2 with appropriate depth, using photoresist as a mask. After that, with resist still on the 

substrate, W is deposited and lifted-off to form the BE. The subsequent steps are the same as the 

conventional crossbar structure fabrication while removing the processes for the spacer.  

This technology is still under investigation, as the biggest problem associated with the 

recessed structure is the oxidation conditions. As the contact area with oxygen environment is 

limited to only the top surface of W during RTA, the WOx film quality and thickness can be 

quite different from previous results, therefore careful calibrations are required to ensure the 

performance of final fab-out devices. 

 

7.2 Memristor Array Performance Improvement 

Although we have fabricated small scale WOx memristor arrays and used them for proof-

of-concept neuromorphic applications, additional optimizations at the array level are still 

required. Currently we can already fabricate WOx memristor array with line width of 500 nm and 

pitch of 4 µm as shown in Figure 7-7, with device yield of 100%. The size can be further scaled 

for several reasons: 1) smaller size cells require smaller programming and read currents, 

lowering the total power consumption of the chip; 2) reducing pitch size can decrease the series 

resistance of both TEs and BEs, which causes device variability issue and voltage dividing 

effect. We have tried cells with 200 nm line width and 500 nm pitch, the yield is high but not 

100%. There are a few fabrication processes and parameters to be optimized, such as: 

1. Layout design, for example adding redundancy structures at the edges of the array 

2. Ebeam lithography dose calibration for desired line width 

3. Spacer thickness and etching recipe adjustment 



	

94	
	

4. Oxidation recipe optimization 

5. BE and TE film thickness adjustment 

By further optimization of the fabrication methods and parameters for each step of WOx 

memristor array, which is an on-going project, we hope to achieve a better yield for larger scale 

networks as well. As for now, out of a 32-by-32 array, the 28-by-28 sub-array in the center as 

shown in Figure 7-8 can operate successfully for 200 nm line width. 

 

Figure	7-7:	32x32	WOx	memristor	array	with	500	nm	line	width	and	4	µm	pitch.	The	yield	is	100%	after	fabrication	process	
optimization.	

 
Figure	7-8:	32x32	WOx	memristor	array	with	200	nm	line	width	and	500	nm	pitch.	The	28x28	sub-array	out	of	32x32	array	works	

properly.	
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7.3 Transition of WOx Memristor from Analog to Digital Type Switching 

During the early stage of memristor research, the application was generally aimed for 

next generation memory, usually referred to as ReRAM (resistive random access memory), due 

to its high-density and non-volatility. Memristive devices of this type typically have two 

resistance states: high resistance state (HRS) and low resistance state (LRS). The device can be 

switched between these two states by applying certain stimulation, for example voltage pulse 

above a threshold amplitude. The switching from one state to another happens dramatically, with 

very few intermediate states that are either unstable or non-recognizable between the two stable 

states (HRS and LRS). Therefore, the device resembles a digital memory and the way its 

resistance state switches is recognized as digital type switching and we categorize this type of 

nonvolatile memristor as digital type memristor. 

Analog type memristor, in comparison, has a more gradual resistance change as shown in 

Figure 2-5. It usually has more stable "intermediate states" that resembles the gradual synaptic 

weight change in biology. 

Additionally, we observed that there could be a transition between digital and analog 

switching in the WOx memristor with thinner switching layer and more oxygen vacancies 

compared with normal analog WOx memristor devices. The transition can be triggered in two 

ways: 

1) Applying a strong DC sweep with amplitude exceeding a specific threshold 

2) Applying a pulse train with sufficient pulse amplitude and pulse number 

Here we show results from the second approach as it better resembles processes in 

biology and is more likely to be implemented in a neuromorphic circuit. 
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Figure	7-9:	Transition	of	WOx	memristor	from	analog	to	digital	type	switching	by	multiple	pulses.	After	applying	around	100	
programming	pulses	(1.3	V,	100	µs),	there	was	a	sharp	current	increase,	indicating	a	transition.	

The transition was demonstrated by applying 200 positive programming pulses (+1.3 V, 

100 µs) and the current was recorded and shown in Figure 7-9. For the first tens of pulses the 

current showed a gradual increase which means the device was still working in analog regime. 

From around 80th pulse to 120th pulse, there was a sharp current jump and after that the current 

gradually increased again. The behaviors of the WOx memristor before and after applying these 

pulses are also very different, indicating a transition has happened. 
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Figure	7-10:	Full	range	DC	sweep	after	transition.	A	typical	nonvolatile	memristor	(or	ReRAM)	I-V	characteristic	was	observed.	
Abrupt	SET	(red	arrow)	and	RESET	(blue	arrow)	were	observed. 

A DC sweep on devices after the transition resulted in a typical digital type switching 

characteristic as shown in Figure 7-10, in which abrupt SET (red arrow) and RESET (blue 

arrow) processes were observed. For comparison, a DC sweep on WOx memristor before 

transition was shown in Figure 7-11, without abrupt SET or RESET process. These results would 

suggest that after the transition, resistive switching in WOx memristor is likely dominated by the 

formation and rupture of very localized conduction filaments inside the switching layer, similar 

to the case of a typical ReRAM; while for devices before the transition, rather than conduction 

filaments, an interface-type resistive switching with a gradually moving front between the 

conductive region and resistive region, likely drives the resistance changes1, as has been 

discussed in Chapter 2. 
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Figure	7-11:	DC	sweep	before	transition.	Gradual	resistance	change,	i.e.	resistance	increase	with	positive	voltage	sweep	(red	
arrows)	and	decrease	with	negative	voltage	sweep	(blue	arrows)	were	observed. 

 

Figure	7-12:	Abrupt	resistance	state	change	by	pulses	after	transition.	20	write	pulse	(+1.5	V,	100	µs)	and	20	erase	pulses	(-1.5	V,	
100	µs)	were	applied.	Abrupt	state	change	was	observed. 

Similar effects were observed from pulse tests. Figure 7-12 shows measurement results 

by applying pulse trains consisting of 20 write pulses (+1.5 V, 100 µs) and 20 erase pulses (-1.5 

V, 100 µs). Read currents were recorded with read pulses (0.5 V, 1 ms) after each write or erase 

pulse. Very abrupt SET and RESET were observed. A single positive pulse can SET the device 

to LRS due to the formation of conduction filaments, and a single erase pulse is enough to 
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RESET the device to HRS with almost no intermediate states. The gradual increase in the LRS 

during subsequent write pulses is likely caused by the widening of the filaments.  

Since conduction filaments were formed inside the switching layer during the digital type 

switching, the retention should be improved as the filaments are typically more stable than a 

partially doped conductive region. 

 

Figure	7-13:	Retention	test	after	transition.	After	SET	to	the	LRS	with	a	DC	sweep	(up	to	+1.5	V),	the	state	can	be	maintained	
much	longer	than	in	analog	type	device. 

As shown in Figure 7-13, retention tests after the transition showed a much longer decay 

time scale (> 10 minutes) than that of the analog type devices before the transition (e.g. ~ 

seconds in Figure 3-1). 

It should be mentioned that this type of analog-to-digital transition is probably not 

reversible. There could be some structural changes inside the oxide, leading to the formation of 

conduction filaments and the entirely different switching behaviors. 

 

7.4 Conclusion 

Although some synaptic functions and neuromorphic applications have been 

implemented or demonstrated by memristors or memristor networks, the performance of 

memristors still need to be improved. Single device performance improvement has been explored 
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by optimizing the fabrication processes and employing new materials and designs for both WOx 

and TaOx memristors. For neuromorphic applications, the requirement for large scale memristor 

networks with higher yield demands further optimization of fabrication methods. By regulating 

the working region, that is, a transition from analog type switching to digital type switching, 

WOx memristor is found to show a more abrupt resistance change (but more linear subsequent 

conductance increase after being switched to LRS) with better retention, which may be preferred 

and more suitable for certain neuromorphic applications in future research. 
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Chapter 8 

Future Works 

 
In the previous chapters, we discussed the advances in WOx and TaOx based memristors 

and prototype applications using memristor networks. Several challenges remain to be resolved, 

requiring more thorough investigations in the future to fully utilize memristors for neuromorphic 

applications. 

 

8.1 Device Performance Improvement 
8.1.1 TaOx Memristor Analog Behavior Improvement 

As discussed in Chapter 7, two aspects of TaOx memristor analog behaviors still need to 

be further improved. First, the heat decay time constant still needs to be increased to a more 

reasonable range for low-power applicable neuromorphic applications. The top electrode 

materials could be explored further and new structures, for example, a heat insulting layer or a 

buffer could be added to prevent rapid heat dissipation. Second, a more linear conductance 

change, with large enough on/off ratio are required for controlled weight updates during 

learning. As oxygen vacancy movement under electric field, assisted by the elevated 

temperature, is the main mechanism for conductance change, the solution could exist in but not 

limited to, 1) optimizing the ion hopping process during oxygen vacancy migration, 2) creating 

layered oxygen vacancy gradient by depositing multiple TaOx layers under different oxygen 

partial pressures, 3) increasing the lateral movement of oxygen vacancies during switching. All 

these concepts need further investigation. 
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8.1.2 WOx Memristor Fabrication Methods Optimization 

As discussed in Chapter 7, there are several fabrication options to further improve the 

performance of the WOx memristor and the crossbar array. The critical consideration is still to 

control the quality of the oxide, limit the switching location, and resolve the issue associated 

with the height growth of vertical structure. Further research will be needed to extensively test 

these concepts.  

 

8.2 Memristor Array for Reservoir Computing 

8.2.1 Memristor Array Optimization 

As has already been discussed in Chapter 6, the simple 1-by-n memristor array is not 

optimized for handwritten digit recognition. The recognition accuracy should be further 

improved by tuning the pulse parameters, adding more input cells by different image scanning 

methods.  

However, the performance should not be improved significantly due to the intrinsic 

disadvantage of the proposed memristor array, that is, each memristor is performing information 

processing separately, without interaction or communication between each other.  

One solution could be introducing loops inside the memristor array. For example, some 

terminals of the 32x32 array can be connected randomly to create loops inside the array. 

However, while the loops in neural networks are formed by connecting neurons so the signal can 

be transmitted without loss or even with amplification, the loops formed by directly connecting 

memristors(synapses) will consume power and weaken the strength of signal along the path, 

causing the dissipation of information in the network. A more thorough investigation is required 

in the future. 

 

8.2.2 Other Neuromorphic Applications 

The Liquid State Machine is a great application utilizing memristor’s dynamics for 

temporal information processing. In this research, the system has been used for handwritten digit 
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recognition. However, handwritten digit recognition is probably not the best application to utilize 

memristor’s temporal information processing capabilities.  

A more suitable, or benchmark-like task would be the implementation of non-linear 

systems through reservoir computing. 

For example, in a 2nd order non-linear system1, the input is  

𝑢 𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚 0, 	0.5                                                                                     (8-1) 

and the output is  

𝑦 𝑘 + 1 = 0.4𝑦 𝑘 + 0.4𝑦 𝑘 𝑦 𝑘 − 1 + 0.6𝑢§ 𝑘 + 0.1                               (8-2) 

As can be seen from the equation, y(k+1) depends on y(k) and y(k-1), so this is a 2nd order 

non-linear system. 

The Liquid State Machine can be used to implement this system efficiently. The input 

u(k), after linear amplification and shift (since the original range is 0 to 0.5 so we need to 

transform it to voltage pulses with a range of 0.5 V-1.5 V as this is the normal range for write 

pulse of the memristors), is applied on a memristor and the corresponding state (read current) is 

recorded. For a certain input pulse train, the read current for each pulse is determined by not only 

the current input u(k) but also the previously applied pulses within a certain period, as the effect 

of earlier pulses will decay and eventually vanish. Therefore, the system has some short-term 

memory and appears to be very suitable for this type of tasks such as mapping Equation (8-2) to 

a physical system. The read current, reflecting the internal state of the liquid, will be used to 

generate the desired output y(k+1) through a trained readout network, similar to the approach 

discussed in Chapter 6. Moreover, the same input could be fed to different cells and the 

variations among different cells, which is normally considered detrimental for other large-scale 

applications that require good device uniformity, can be utilized to obtain different responses 

from different memristors, thus further improving the network’s ability to separate the inputs. 

More research needs to be performed with a focus on this type of applications to fully 
explore the potential of using the internal dynamics of memristors for efficient information 
processing in the temporal domain. 
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