

Bedtime, Shuteye Time and Electronic Media: Sleep Displacement is a Two-Step Process
— Liese Exelmans ${ }^{\text {a }}$, MA \| liese.exelmans@soc.kuleuven.be Jan Van den Bulck ${ }^{\text {b }}$, PhD \mid jvdbulck@umich.edu
${ }^{\text {a }}$ School for Mass Communication Research, KU Leuven, Leuven, Belgium
${ }^{\text {b }}$ Department of Communication Studies, University of Michigan, USA

The authors disclosed no conflict of interest.
Liese Exelmans conducted the data collection and performed the statistical analyses to examine the research question. She was the primary author of the manuscript. Jan Van den Bulck was involved in the design of the study and served as a consultant in preparing the manuscript.

Number of figures: 3
Number of tables: 2
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jsr. 12510

This article is protected by copyright. All rights reserved

Number of words: 4992
Number of references: 24

Corresponding author: Liese Exelmans, School for Mass Communication Research, Parkstraat 45 (PO box 3603), 3000 Leuven, Belgium.
E-mail: liese.exelmans@soc.kuleuven.be. Telephone: 003216323231

Summary

This study argues that going to bed may not be synonymous with going to sleep and that this fragmentation of bedtime results in a two-step sleep displacement. We separated bedtime (i.e., going to bed) from shuteye time (i.e., attempting to go to sleep once in bed) and assessed the prevalence of electronic media use in both time slots. A convenience sample of 338 adults (18-25 years old, 67.6% women) participated in an online survey. Results indicated a gap of 39 minutes between bedtime and shuteye time, referred to as shuteye latency. Respondents with a shuteye latency of respectively ≤ 30 minutes, ≤ 1 hour or > 1 hour, were $3.3,6.1$ and 9.3 times more likely to be rated as poor sleepers compared to those who went to sleep immediately after going to bed. Before bedtime, volume of electronic media use (17 h 55 min per week) was higher than non-media activities (14 h per week), whereas the opposite was true after bedtime ($\mathrm{media}=3 \mathrm{~h} 41 \mathrm{~min}$, non-media $=7 \mathrm{~h} 46 \mathrm{~min}$). Shuteye latency was exclusively related to pre-bedtime media use. Findings confirmed the proposed fragmentation of bedtime. Sleep displacement should therefore be redefined as a two-step process, as respondents not only engage in the delay of bedtime, but also in the delay of shuteye time once in bed. Theoretical, methodological and practical implications are discussed.

Keywords: sleep latency, shuteye latency, pre-shuteye time media

Introduction

Young people today are accustomed to a media environment that is strikingly different from that of previous generations. Because of the growing mobility, accessibility, and user-friendliness of electronic media, we spend an increasing amount of time in front of the screen (Rideout et al., 2010). As we devote more time to media, there is less time available for other activities, including sleep. One of the most profound effects of media use on sleep is sleep displacement, whereby media use leads to later bedtimes and shorter sleep duration (Cain \& Gradisar, 2010; Van den Bulck, 2000, 2010).

Over the years, electronic media have followed us not just into the bedroom, but into our beds as well. Even though most of the research on the effects of media use on bedtime behavior has focused on media use before bedtime, it has become increasingly common for media use to happen in bed (Fossum et al., 2014; Lemola et al., 2015) and even after lights out (Gradisar et al., 2013; Munezawa et al., 2011; Troxel et al., 2015; Van den Bulck, 2007). Exelmans and Van den Bulck
(2015) posited that going to bed may therefore no longer automatically imply an intention to go to sleep. In a rapidly increasing number of cases it implies an intention to use electronic media.

This study aims to present a fresh view on people's bedtime ritual, the prevalence of electronic media in it, and its implications for general sleep quality. We provided respondents with a timeline representing their bedtime ritual and distinguished bedtime - defined as the time at which respondents decided to go to bed - from shuteye time - defined as the time at which respondents decided to go to sleep. In this perspective the commonly used term sleep latency needs to be redefined. It should no longer be used to refer to the interval between bedtime and actual sleep, but rather to the interval between shuteye time and sleep. The gap between bedtime and shuteye time will therefore be referred to as shuteye latency or the time in bed before attempting to go to sleep. In this scenario, sleep displacement becomes a two-step process (see Figure 1). We formulate the following research questions:

RQ1: Do people report a shuteye time that differs sufficiently from bedtime to mark it as a separate step preceding sleep?
RQ2: How does shuteye latency affect sleep quality?
RQ3: What are people doing before bedtime and before shuteye time, and what is the role of electronic media use?

[FIGURE 1 HERE]

Method

Data Collection

Cross-sectional data were gathered among Belgian adults (18-25 years old) in February March 2016. A convenience sample was used: an invitation to participate in a study on leisure time and sleep behavior was disseminated via Facebook. Respondents were informed about the topic of the survey and voluntary nature of participation. Strict confidentiality was assured and informed consent was obtained from all respondents. The study was approved by the Social and Societal Ethics Committee of the KU Leuven. This procedure yielded 343 completed questionnaires. Five respondents exceeded the age limit proposed in the literature to define emerging adulthood (18-25 years old) (Arnett, 2000), resulting in a final sample of 338 respondents.

Measures

Bedtime and shuteye time. To capture respondents' bedtime behavior as hypothesized, we designed the Bed Time Shuteye Time (BTST) measure (see Appendix 1). Providing a similar timeline as Figure 1, respondents were also asked to carefully read a definition of bedtime (i.e., the time at which you decide to go to bed) and shuteye time (i.e., the time at which you decide to go to sleep). We also described a situation in which bedtime and shuteye time were equal (i.e., a person goes to bed, immediately switches off the lights and tries to sleep) and a situation where both differed (i.e., a person goes to bed, reads a book for half an hour and goes to sleep afterwards). Afterwards, they had
to report their usual bedtime and shuteye time on weeknights (Sunday night - Thursday night) and weekend nights (Friday and Saturday night).

Pre-bedtime and pre-shuteye time media use. Respondents were asked to report what they were usually doing (1) during the last two hours prior to bedtime (pre-bedtime activities) and (2) once they were in bed, prior to going to sleep (pre-shuteye activities). We offered them a list comprising media activities and non-media activities. The non-media activities were slightly adjusted in the preshuteye measure. We provided three blank lines in case respondents wanted to add other activities, but these were rarely used and all suggestions could be recategorized under the predefined categories. The frequency ($0=$ never, $1=1$ day per week or less, $2.5=2-3$ days per week, $4.5=4-5$ days per week, $6.5=6-7$ days per week) and duration (8 time slots representing 15 minutes each, adding up to 2 h) of each activity was multiplied to obtain an estimate of average weekly volume (hours/week).

Sleep quality. The Pittsburgh Sleep Quality Index (PSQI) comprises 19 self-report questions assessing sleep quality over the past month. The questions can be grouped into seven components (subjective sleep quality, sleep latency, sleep efficiency, sleep duration, daytime dysfunction, sleep disturbances, use of sleep medication) each weighed on a scale from 0 to 3 , resulting in an overall score between 0 and 21 . Lower scores indicate a better sleep quality, and respondents scoring over 5 are rated as poor sleepers (Buysse et al., 1989) ($\alpha=$.70).

Demographic variables. We recorded gender $(0=$ male, $1=$ female $)$, age, status ($1=$ dorm student, $2=$ non-dorm student, $3=$ working full time, $4=$ working part time, $5=$ unemployed), educational level, clinical history of sleep problems ($0=$ no, $1=$ yes), and self-perceived physical health status as confounding variables. Educational level was assessed by asking the highest educational degree they obtained: finished primary school (K6 equivalent), finished secondary school (K12 equivalent), college degree, university degree. To assess their health status, respondents were asked "in general, would you say your health is:", and response categories were $1=$ poor, $2=$ fair, $3=$ good, $4=$ very good, $5=$ excellent.

Analyses

Statistical analyses were performed using SPSS version 22 (Statistical Package for the Social Sciences, Chicago, IL). Descriptive analyses were conducted for the variables of interest. Bivariate statistics (t-tests and correlation analyses) and hierarchical and logistic regression analyses were computed. Missing values for key variables were replaced with mean values of the respondent on the remaining cases.

Sample Description

The sample ($N=338$) contained a larger proportion of females (67.6%) than males and mean age was 22.27 years old ($S D=1.77$). Almost 70% of the respondents (68.9%) were currently enrolled as student at a college or university. The majority of the students (59.7%) were dorm students. One in four respondents (24.9%) was working at a full-time job, 3.6% were doing so at a part-time job and
2.7% of the respondents was unemployed at the time of data collection. Regarding their self-perceived physical health status, 8.3% rated this as excellent, 43.2% as very good, 40.2% as good, 8.0% as fair and 0.3% as poor. Average score on the PSQI was $5.79(S D=3.22)$ and 45.3% of the sample scored over 5 , indicating a poor sleep quality. Finally, 10.1% of the sample had previously consulted a doctor regarding sleep difficulties and were therefore categorized as having a clinical history of sleep problems.

RQ 1: Do People Report a Shuteye Time That Differs Sufficiently From Bedtime to Mark it as a Separate Step Preceding Sleep?

Respondents' average bedtime was 23:15 ($S D=1 \mathrm{~h} 16 \mathrm{~min}$) during the week and 00:45 during the weekends $(S D=1 \mathrm{~h} 53 \mathrm{~min})$. Their average shuteye time was $23: 58$ ($S D=1 \mathrm{~h} 17 \mathrm{~min}$) during the week and 01:20 ($S D=1 \mathrm{~h} 54 \mathrm{~min}$) during the weekend. Consequently, there was an average gap of 43 minutes ($S D=49 \mathrm{~min}$) between their self-reported bedtime and shuteye time during the week and of 35 minutes $(S D=48 \mathrm{~min})$ during the weekend. On average, 12.1% of respondents reported that their bedtime was equal to their shuteye time. In other words, these respondents tried to go to sleep as soon as they went to bed, resulting in a shuteye latency of 0 . Shuteye latency was <15 minutes for 1 in 5 respondents (21.9%), between 15 and 30 minutes for 19.5% of respondents, between 30 and 45 minutes for 21.0% of respondents, and between 45 minutes and 1 hour for 1 in 10 respondents (9.5%). Notably, an additional 16.0% reported a difference of >1 hour. Men's bedtime $(M=00: 34, S D=$ 1 h 29 min) and shuteye time ($M=01: 16, S D=1 \mathrm{~h} 30 \mathrm{~min}$) were significantly later than the bedtime and shuteye time of women $(M=23: 43, S D=1 \mathrm{~h} 11 \mathrm{~min})(t(174.81)=5.122, p<.001),(M=00: 19, S D=$ $1 \mathrm{~h} 07 \mathrm{~min})(t(166.83)=5.820, p<.001)$, but shuteye latency did not differ according to gender. There was a small negative association between respondents' age and their shuteye latency ($r=-.121$, $p<.05$), indicating that older respondents' bedtime and shuteye time were more proximate to each other than that of younger respondents.

RQ2: How Does Shuteye Latency Affect Sleep Quality?

We related respondents' shuteye latency to their self-reported sleep quality. Correlation analyses revealed a significant positive association ($r=.226, p<.001$), indicating that a longer shuteye latency was associated with a poorer sleep quality. Logistic regression analysis was conducted to document a dose-response relationship. We recoded respondents' shuteye latency into four categories so that each contained a reasonable proportion of the sample: a shuteye latency of 0 (i.e. those who tried to go to sleep immediately after going to bed, the reference category) $(12.1 \%), 0>x \leq 30$ minutes $(41.4 \%), 30<x \leq 60$ minutes $(30.5 \%),>60$ minutes (16.0%). We controlled for respondents' gender, age, educational level (dummy-coded), status ($1=$ dorm student, $2=$ non-dorm student, $3=$ working full time, $4=$ working part time, $5=$ unemployed; dummy-coded), clinical history of sleep problems, self-perceived physical health, and bedtime (see Table 1). Results indicated that, compared to those who tried to go to sleep immediately after they went to bed, respondents who stayed awake ≤ 30 minutes were 3.25 times more likely be categorized as poor sleepers (PSQI >5). Respondents

This article is protected by copyright. All rights reserved
who stayed awake respectively ≤ 1 hour or >1 hour were 6.13 and 9.32 times more likely be categorized as poor sleepers. Attributable risk calculations were computed, which indicate the proportion of poor sleep quality in each group that is due to the duration of shuteye latency. Among respondents who reported a shuteye latency of ≤ 30 minutes, 45.1% of the incidence of poor sleep quality (PSQI >5) could be attributed to their shuteye latency. Among respondents who stayed awake respectively ≤ 1 hour or >1 hour, 58.0% and 61.7% of the incidence of poor sleep quality could be attributed to their amount of shuteye latency.

$$
■
$$

[TABLE 1 HERE]

RQ 3: What Are People Doing Before Bedtime and Before Shuteye Time, and What Is the Role of Electronic Media Use?

As shown in Figure 2, electronic media use takes up the larger share of respondents' prebedtime activities. Per week, they spent 4 hours and 58 minutes watching television $(S D=4 \mathrm{~h}), 5$ hours and 15 minutes in front of their computer or laptop ($S D=4 \mathrm{~h} 22 \mathrm{~min}$) and 4 hours and 15 minutes on their mobile phone ($S D=3 \mathrm{~h} 56 \mathrm{~min}$). Videogames and tablet computer use were far less popular, accounting for respectively 1 hour and 50 minutes ($S D=3 \mathrm{~h} 19 \mathrm{~min}$) and 1 hour and 37 minutes per week ($S D=3 \mathrm{~h} 15 \mathrm{~min}$). Together, they spent approximately 17 hours and 55 minutes ($S D=12 \mathrm{~h} 31 \mathrm{~min}$) on electronic media use per week before deciding to go to bed. Conversely, pre-bedtime non-media activities accounted for 14 hours per week ($S D=10 \mathrm{~h} 02 \mathrm{~min}$). Social activities (such as meeting friends, talking, $\ldots)(M=3 \mathrm{~h} 41 \mathrm{~min}, S D=2 \mathrm{~h} 55 \mathrm{~min})$, work or school $(M=2 \mathrm{~h} 42 \mathrm{~min}, S D=3 \mathrm{~h} 22 \mathrm{~min})$ and time spent on hygiene ($M=2 \mathrm{~h} 34 \mathrm{~min}, S D=1 \mathrm{~h} 57 \mathrm{~min}$) took up the most time.

There were some differences between men and women in their pre-bedtime activities. Overall, men spent more time on electronic media use before bedtime than women did $(t(164.957)=2.291, p<.05)$. Men spent substantially more time in front of the computer $(t(192.402)=$ $2.278, p<.05)$ or playing videogames $(t(159.717)=4.936, p<.001)$ than women did. For non-media activities, women scored significantly lower than men for time spent on hobbies $(t(138.416)=2.886$, $p<.01$).

[FIGURE 2 HERE]

The same procedure was followed to chart respondents' pre-shuteye activities (i.e. what respondents were doing once they were in bed, but before they decided to go to sleep). In total, they spent approximately 3 hours and 41 minutes ($S D=5 \mathrm{~h} 42 \mathrm{~min}$) on electronic media use per week during this time. Mobile phone and computer usage were the most popular activities in this category, taking up respectively 1 hour and 5 minutes $(S D=1 \mathrm{~h} 30 \mathrm{~min})$ and 1 hour and 3 minutes ($S D=1 \mathrm{~h} 46 \mathrm{~min}$). Non-media activities took up approximately 7 hours and 46 minutes ($S D=3 \mathrm{~h} 58 \mathrm{~min}$). In this category, sex, hobbies, and social activities (e.g. talking) took up the most time: respectively 1 hour 37 minutes $(S D=2 \mathrm{~h} 10 \mathrm{~min}), 1$ hour and 22 minutes $(S D=1 \mathrm{~h} 52 \mathrm{~min})$, and 1 hour and 13 minutes $(S D=2 \mathrm{~h} 44 \mathrm{~min})$ per week. There were no significant differences according to gender.

We explored the contribution of electronic media use to respondents' shuteye latency using hierarchical regression analysis, controlling for the aforementioned control variables and bedtime. The volume of pre-bedtime media activities was divided by the total volume of pre-bedtime activities to investigate if a larger ratio of pre-bedtime media activities was associated with a longer shuteye latency. The same procedure was followed for pre-shuteye time media activities. As shown in Table 2, a larger ratio of pre-bedtime electronic media use ($\beta=.202, p<.01$) was associated with a longer shuteye latency, thus spending more time awake in bed before going to sleep. There was no significant relationship between pre-shuteye activities and shuteye latency.
[TABLE 2 HERE]

0

Discussion

As electronic media use continues after bedtime too, this study argued that the definition of bedtime may have become increasingly problematic, and wondered whether we should reconsider what constitutes sleep displacement. We introduced an updated timeline for respondents' bedtime ritual, clearly demarcating the time at which they decide to go to bed (i.e., bedtime) from the time at which they decide to go to sleep (i.e., shuteye time) and charted to role of media use in both time slots.

Respondents went to bed at midnight on average and were mostly preoccupied with media during the two final hours before bedtime: they devoted 17 hours and 55 minutes to electronic media before bedtime per week, among which computer use, television viewing and mobile phone use were the most popular. Note that we calculated volumes of time to avoid a confounding between frequent but short and occasional but long activities. The totals are thus rescaled and no longer add up to 14 hours a week. Estimates could also be inflated because respondents may attend to several electronic media at once called media multitasking (Rideout et al., 2010). For pre-bedtime non-media activities, which amounted to 14 hours per week, most time was spent on social activities or work and school. These findings confirm earlier ones: electronic media use peaks before bedtime (Kubiszewski et al., 2013; Westerik et al., 2005).

After respondents went to bed, they spent an average of 39 minutes per day on other activities before trying to go to sleep, referred to as their shuteye latency. While a minority of respondents (12.1%) reported trying to go to sleep immediately after bedtime, 21.9% reported a shuteye latency of 15 minutes, 19.5% one of $15-30$ minutes and 21.0% one of $30-45$ minutes. Bedtime and shuteye time were more than one hour apart for 16% of the respondents. During this time in bed, they spent the most time on hobbies, sex and social activities. Media usage was thus not the most dominant activity before shuteye time, but it still accounted for 3 hours and 41 minutes per week, among which portable media outlets (i.e. mobile phone and computer) were the most popular.

A larger ratio of media activities before bedtime time predicted a longer shuteye latency. The duration of respondents' shuteye latency thus appears particularly vulnerable to the prevalence of electronic media before deciding to go to bed. The increased likelihood of sleep displacement when engaged in media use may lie in it unstructured time profile. Electronic media use typically lacks clear boundaries in time as there are often no predefined beginning or end points (Kubey, 1986). In addition to displacing bedtime, it seems the displacement of actually going to sleep once in bed by engaging in electronic media use is a distinct phenomenon. This suggests that the traditional concept of sleep displacement could or should be redefined as a two-step process.

Shuteye latency was related to a considerable decrease in sleep quality. Those with a shuteye latency of ≤ 30 minutes, were 3.3 times more likely to be rated as a poor sleeper (i.e. a PSQI-score > 5), and 45% of the incidence of poor sleep quality was due to this amount of shuteye latency. These odds increased steadily with a longer shuteye latency: those with a shuteye latency of respectively ≤ 1 hour or > 1 hour were 6.0 and 8.9 times more likely to be a poor sleeper. Attributable risk for having poor sleep quality due to shuteye latency in these groups was respectively 58% and 62%.

Together these findings point out that bedtime and sleep are no longer synonymous. Instead of considering the bedroom as a room primarily used for sleeping, it has become a multi-purpose, mediarich location where sleep is one of many competing activities. While our findings are cross-sectional and there are no baseline indications, it is safe to assume that electronic media use in bed and after lights out is a modern phenomenon that is likely to become more commonplace as media become increasingly mobile, wearable and integrated in our bedtime routine. The recent launch of Pokemon Go, for example, brought along millions of young players wandering the streets at a time where most of them would have been sleeping before. Most importantly, the displacement of shuteye time is harmful to our sleep quality. Several limitations deserve mentioning. We used a convenience sample and a cross sectional design. Reverse causality thus also remains plausible i.e., those who go to bed later use media to fill in the time before sleep. The diversity of measurement in previous studies studying post-bedtime media use precludes an accurate test of whether it has increased. We recommend the implementation of longitudinal designs to keep track of how the association between electronic media and bedtime behavior evolves. In addition to a disproportionate demographic distribution, we recruited our respondents via Facebook, inducing self-selection bias in our sample. As previous studies have highlighted that both media use and sleep behavior is dependent on age and culture (Owens, 2004; Rideout et al., 2010), our findings may not be generalizable to a larger population or other countries. Furthermore, the findings on pre-bedtime and pre-shuteye time activities warrant a cautious interpretation. Respondents had to indicate frequency and duration for each possible activity in their bedtime ritual which could have been tedious for them, resulting in missing data. Other formats (such as listing) could be valuable in future research. We calculated the volume of these activities to avoid a confounding effect, but it seems advisable to ask about their
usual activities on a weekly basis. When asking about reading a book in bed, we did not differentiate between reading on paper vs. on a screen, a distinction that could be made in future research.

As we found a significant association with sleep quality, we wonder how poor sleep advances the fragmentation of bedtime. People suffering from chronic sleep difficulties or insomnia might deliberately postpone the moment of going to sleep, thereby prolonging each step of the proposed displacement process. Notably, electronic media can be regarded as useful tools for such procrastination (Kroese et al., 2014; Tavernier \& Willoughby, 2014)

Finally, bedtime behavior was assessed using self-report measures that are vulnerable to bias. Although studies argued that surveys are as reliable as diary data and objective sleep measures (Monk et al., 2003; Westerlund et al., 2016), we wonder whether the proposed fragmentation of bedtime can also be identified in actigraphy-data. If so, this further validates our idea of two-step sleep displacement. If not, this could tell us a little bit more about the validity or added value of surveys vs. objective measures. The existence of shuteye time and shuteye latency may be artifacts of question wording, meaning that actigraphy measures are more reliable. However, it could also mean actigraphy measures are not able to detect behavior patterns that turn up as significant in survey research.

Implications

Our findings, while clearly limited by the aforementioned caveats, have methodological, theoretical and practical implications for sleep research. Although there has been some recognition that not all time in bed is spent sleeping, (such as the sleep efficiency score in the PSQI), survey measures rarely define what is to be understood when asking about people's bedtime. Almost half of our sample had a shuteye latency $>30 \mathrm{~min}$. Without a differentiation between bedtime and shuteye time, these respondents would have been categorized as having sleep-onset insomnia (Lichstein et al., 2003), even though they had no intention of trying to sleep during that time window. The use a similar timeline-format and clear definitions of each stage in the bedtime ritual could prove useful in future survey research. It could even be argued that this study warrants an update of validated sleep scales, such as a revision for bedtime along the lines of "When have you usually gone to bed, with or without the intention of going to sleep immediately " and an incorporation of an item for shuteye latency ("After going to bed, how long are you awake (doing other things than sleeping) before trying to go to sleep?").

In Cain \& Gradisar's (2010) model, sleep displacement is one of three answers to the question of how technology affects our sleep. We extend their model by adding post-bedtime activities to the picture and uncovering a second step in the displacement process. In a broader sense, our results illustrate an increased difficulty in time-managing media use to the point where we are occupied with media in bed, which highlights an important gap in Cain \& Gradisar's model: apart from asking how technology affects our sleep, we should also ask why. Why is so difficult to refrain from the screen, even when we are in bed? Research has linked this with concepts of media engagement such as flow
(Smith et al., 2016) or habitualness in media use (Exelmans \& Van den Bulck, 2016), but there is ample room for progress in this area.

Finally, assuming that bedtime equals shuteye time, sleep hygiene guidelines have, so far, mainly focused on what happens before bedtime. Recommendations on best practices after bedtime are needed. Moreover, reports keep demonstrating a steady increase in the time we devote to our screens. Facilitated by a trend towards mobile and wearable media, sleep still seems a prime candidate for many to cram a few more minutes of media use into a busy schedule. Sleep thus appears to become optional rather than essential. The cultivation and education of a pro-sleep attitude with up to date guidelines are therefore needed.

Arnett, J. J. Emerging adulthood: A theory of development from the late teens through the twenties. Am. Psychol, 2000, 55: 469-480. http://doi.org/10.1037//0003-066X.55.5.469
Buysse, D., Reynolds, C., \& Monk, T. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res., 1989, 28: 193-213.
http://doi.org/http://dx.doi.org/10.1016/0165-1781(89)90047-4
Cain, N., \& Gradisar, M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med., 2010, 11: 735-42. http://doi.org/10.1016/j.sleep.2010.02.006

Exelmans, L., \& Van den Bulck, J. Technology and sleep: How electronic media exposure has impacted core concepts of sleep medicine. Behav. Sleep Med., 2015, 13: 439-441. http://doi.org/10.1080/15402002.2015.1083025
Exelmans, L., \& Van den Bulck, J. Glued to the tube: the interplay between self-control, evening television viewing and bedtime procrastination: $24^{\text {rd }}$ Congress of the European Sleep Research Society; 13-16 September 2016; Bologna, Italy.

Fossum, I. N., Nordnes, L. T., Storemark, S. S., Bjorvatn, B., \& Pallesen, S. The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behav. Sleep Med., 2014, 12: 343-57. http://doi.org/10.1080/15402002.2013.819468

Gradisar, M., Wolfson, A. R., Harvey, A. G., Hale, L., Rosenberg, R., \& Czeisler, C. A. The sleep and technology use of Americans : findings from the National Sleep Foundation's 2011 sleep in America poll. J Clin. Sleep Med., 2013, 9: 1291-1299. http://doi.org/10.5664/jcsm. 3272

Kroese, F. M., De Ridder, D. T. D., Evers, C., \& Adriaanse, M. A. Bedtime procrastination:
introducing a new area of procrastination. Front. Psychol. 2014, 5: 1-8.
http://doi.org/10.3389/fpsyg.2014.00611
Kubey, R. Television viewing in everyday life: coping with unstructured time. J. Commun., 1986, 36:
108-123. http://doi.org/10.1111/j.1460-2466.1986.tb01441.x

This article is protected by copyright. All rights reserved

Kubiszewski, V., Fontaine, R., Rusch, E., \& Hazouard, E. Association between electronic media use and sleep habits: an eight-day follow-up study. Int. J. Adolesc. Youth, 2013, 19: 395-407. http://doi.org/10.1080/02673843.2012.751039

Lemola, S., Perkinson-Gloor, N., Brand, S., Dewald-Kaufmann, J. F., \& Grob, A. Adolescents’ Electronic Media Use at Night, Sleep Disturbance, and Depressive Symptoms in the Smartphone Age. J. Youth Adolesc., 2015, 44, 405-418. http://doi.org/10.1007/s10964-014-0176-x
Lichstein, K. L., Durrence, H. H., Taylor, D. J., Bush, A. J., \& Riedel, B. W. Quantitative criteria for insomnia. Behav. Res. Ther., 2003, 41: 427-445. http://doi.org/10.1016/S0005-7967(02)00023-2

Monk, T. H., Buysse, D. J., Kennedy, K. S., Pods, J. M., DeGrazia, J. M., \& Miewald, J. M. Measuring sleep habits without using a diary: the sleep timing questionnaire. Sleep, 2003, 26: 208-12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12683481

Munezawa, T., Kaneita, Y., Osaki, Y. et al. The association between use of mobile phones after lights out and sleep disturbances among Japanese adolescents: a nationwide cross-sectional survey. Sleep, 2011, 34: 1013-20. http://doi.org/10.5665/SLEEP. 1152
Owens, J. A. Sleep in children: Cross-cultural perspectives. Sleep and Biol. Rhythms, 2004, 2: 165173. http://doi.org/10.1111/j.1479-8425.2004.00147.x

Rideout, V., Foehr, U. ., \& Roberts, D. (2010). Generation M^{2} : media in the lives of 8-18-year-olds. Henry J. Kaiser Family Foundation. Retrieved from http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=ED527859

Smith, L. J., Gradisar, M., King, D. L., \& Short, M. Intrinsic and Extrinsic Predictors of Video Gaming Behaviour and Adolescent Bedtimes : the influence of flow states, self-perceived risktaking , device accessibility and. Sleep Medicine, 2016 (in press)

Tavernier, R., \& Willoughby, T. Sleep problems: predictor or outcome of media use among emerging adults at university? J. Sleep Res., 2014, 23, 389-396. http://doi.org/10.1111/jsr. 12132

Troxel, W. M., Hunter, G., \& Scharf, D. Say "GDNT": Frequency of adolescent texting at night. Sleep Health, 2015, 1: 300-303. http://doi.org/10.1016/j.sleh.2015.09.006.Say

Van den Bulck, J. Is television bad for your health? Behavior and body image of the adolescent "couch potato." J. Youth Adolesc., 2000, 29: 273-288. http://doi.org/10.1023/A:1005102523848

Van den Bulck, J. Adolescent use of mobile phones for calling and for sending text messages after lights out: results from a prospective cohort study with a one-year follow-up. Sleep, 2007, 30: 1220-3. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1978406\&tool=pmcentrez\&renderty pe=abstract

Van den Bulck, J. The effects of media on sleep. Adolescent Medicine: State of the Art Reviews, 2010, 21: 418-29, vii. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21302852

Westerik, H., Renckstorf, K., Wester, F., \& Lammers, J. The situational and time-varying context of routines in television viewing: An event history analysis. Communications, 2005, 30

This article is protected by copyright. All rights reserved
http://doi.org/10.1515/comm.2005.30.2.155
Westerlund, A., Lagerros, Y. T., Kecklund, G., Axelsson, J., \& Åkerstedt, T. Relationships between questionnaire ratings of sleep quality and polysomnography in healthy adults. Behav. Sleep Med., 2014, 14: 1-15. http://doi.org/10.1080/15402002.2014.974181

Table 1
Dose Response Relationship Between Shuteye-latency and Sleep
Quality Using Logistic Regression Analysis

	Exp (B)	95% CI
Gender $^{\mathrm{a}}$	1.345	$.751-2.408$
Age	1.057	$.888-1.259$
E1_secondary school	2.220	$.247-19.919$
E2_college	2.348	$.256-21.559$
E3_university	1.579	$.167-14.960$
S1_dorm	1.553	$.833-2.896$
S2_full time	1.827	$.406-8.219$
S3_partime	1.034	$.472-2.264$
S4_unemployed	.219	$.037-1.280$
Sleep problem		
Health	2.466^{*}	$1.054-5.772$
Bedtime	$.517^{* * *}$	$.362-.739$
Shuteye-latency	$1.310^{* *}$	$1.071-1.601$
$\quad 0>\mathrm{x} \leq 30$ minutes	3.251^{*}	
$\quad 30<\mathrm{x} \leq 60$ minutes	$6.134^{* * *}$	$1.317-8.027$
$\quad>60$ minutes	$9.316^{* * *}$	$2.367-15.899$

Note. ${ }^{a}$ Reference category $=$ male, ${ }^{\mathrm{b}}$ Reference category $=$ no sleep problem, ${ }^{c}$ Reference category $=0$. E1: $(0=$ primary school, $1=$ secondary school). E2: $(0=$ primary school, $1=$ college $)$. E3: $(0=$ primary school, $1=$ university $)$. S1: ($0=$ non dorm student, $1=$ dorm student). S2: $(0=$ non dorm student, $1=$ fulltime employee $)$. S3: $(0=$ non dorm student, $1=$ part-time employee $)$. S4: $(0=$ non dorm student, $1=$ unemployed). Model: $\mathrm{R}^{2}=.172$ (Cox \&Snell), . 230 (Nagelkerke)
*p<.05. **p<.01. ***p<. 001

Table 2
Hierarchical Regression Analysis Predicting Shuteye Latency

		Shuteye latency		
		B	SE	β
Step 1	Gender	-. 250	. 092	-.172**
	Age	-. 019	. 027	-. 054
	E1_secondary school	. 333	. 458	. 212
	E2 college	. 335	. 464	. 230
	E3_university	. 216	. 466	. 163
	S1_dorm	-. 051	. 098	-. 035
	S2_full time	. 015	. 234	. 004
	S3_parttime	-. 356	. 127	-.217**
	S4_unemployed	. 669	. 251	. $165^{* *}$
	Sleep problem	. 008	. 137	. 004
	Health	-. 035	. 054	-. 041
	R^{2} -	.111**		
Step 2	Bedtime	-. 094	. 032	-.187**
	$\mathrm{R}^{2 /} \Delta \mathrm{R}^{2}$. 150 / .		
Step 3	Pre bedtime media exposure/ total $^{\text {a }}$. 719	. 217	.202**
	$\mathrm{R}^{2} / \Delta \mathrm{R}^{2}$.187/.0		
Step 4	Pre shuteye media exposure/total ${ }^{\text {b }}$	-. 046	. 142	-. 020
	$\mathrm{R}^{2} / \Delta \mathrm{R}^{2}$.187/.000		

Note. E1: $(0=$ primary school, $1=$ secondary school). E2: $(0=$ primary school, $1=$ college $)$. E3: $(0=$ primary school, $1=$ university). $\mathrm{S} 1:(0=$ non dorm student, $1=$ dorm student $)$. S 2 : $(0=$ non dorm student, $1=$ fulltime employee $)$. S3: $(0=$ non dorm student, $1=$ part-time employee $)$. S4: $(0=$ non dorm student, 1 $=$ unemployed). "pre bedtime media exposure/ (pre bedtime media + pre bedtime non-media exposure) ${ }^{\mathrm{b}}$ pre shuteye media exposure/ (pre shuteye media + pre shuteye non-media exposure)
p $<.05$. ${ }^{ *} \mathrm{p}<.01$. $* * * \mathrm{p}<.001$

Figure 1 Proposed timeline

This article is protected by copyright. All rights reserved

Figure 2
Histogram of shuteye latency by gender

