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Basis of Bone Metabolism around Dental Implants during Osseointegration and 

Peri-Implant Bone Loss 

 

 

Abstract 

Background: Despite the growing number of publications in the field of implant dentistry, there 

are limited studies to date investigating the biology and metabolism of bone healing around dental 

implants and their implications in peri-implant marginal bone loss. 

 

Purpose: The aim of this review article is to provide a thorough understanding of the biological 

events taking place during osseointegration and the subsequent early and late phases of bone 

remodeling around dental implants. An update on the coupling mechanism occurring during bone 

resorption-bone remodeling is provided, focused on the relevance of the osteocytes, bone lining 

cells and immune cells during bone maintenance.  

 

Material and methods: An electronic and manual literature search was conducted by three 

independent reviewers in several databases, including MEDLINE, EMBASE, Cochrane Central 

Register of Controlled Trials and Cochrane Oral Health Group Trials Register databases for 

articles up to September 2016 with no language restriction.  

 

Results: Local bone metabolism is subject to signals from systemic calcium-phosphate 

homeostasis and bone remodeling. Three areas of interest were reviewed due to recent reported 

compromises in bone healing including the putative effects of 1) cholesterol, 2) hyperlipidemia 

and 3) low vitamin D intake. Moreover, the prominent influence of osteocytes and immune cells 

is discussed as being key regulators during dental implant osseointegration and maintenance. 

These cells are of crucial importance in the presence of biofilm accumulation and their associated 

byproducts that leads to hard and soft tissue breakdown; the so called peri-implantitis. 

 

Conclusion: Factors that could negatively impact osteoclastogenesis or osteal macrophage 

activation should be monitored in future research including implant placement/torque protocols, 

bone characteristics, as well as meticulous maintenance programs to favor osseointegration and 

future long-term stability and success of dental implants. 
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Introduction 

Primary or mechanical stability in implant dentistry is regarded as a prerequisite for 

successful osseointegration. The alveolar bone architecture of the implant drilling site dictates the 

success of anchored endosseous implants. Immediately and up to several months afterwards, a 

series of cellular and molecular events take place where host tissues biologically integrate the 

alloplastic material into the native bony structure. While cortical bone has the function of 

withstanding torsional loading and provides higher initial stability, cancellous bone is richer in 

vascular canals and thus, vasculature to supply mesenchymal progenitor cells. In this sense, the 

complex and dynamic process of osseointegration may occur via contact osteogenesis, where the 

implant surface is populated by bone cells after fixation to form de novo bone, or via distance 

osteogenesis, where bone formation is preceded by the osteoclastogenesis of the existing tissue.
1
  

Nowadays, peri-implant disease does not represent an uncommon condition where, with 

no hesitation, plaque and its byproducts in a susceptible host are the primary etiology, as it has 

been demonstrated its cause-effect relationship.
2
 Moreover, certain risk factors/indicators such as 

smoking or history of periodontal disease have been strongly linked to the prevalence of peri-

implantitis. 
3, 4

 Nonetheless, other factors such as material biocompatibility, implant placement 

and material degradation / titanium particle release have been regarded as other potential factors 

associated with peri-implant bone loss as a prominent matter of discussion of its implication on 

osseointegration breakdown even in the lack of irritants.
5
 

Into the bargain, early peri-implant marginal bone loss was controversial due to limited 

knowledge on how hard tissue remodels as a consequence of the biological width adaptation. This 

has resulted in the development of novel modifications to the implant-abutment connections as 

well as an evolution towards hydrophilic and bioactive implant surfaces for early 

osseointegration. Nevertheless, a tight link between the osteogenic and osteoclastogenic pathways 

modulated by complement factor-3 signaling seems to play a further role on osteolysis led by 

monocytes/macrophages later discussed in this article. Moreover, the inflammatory response may 

be exacerbated by tissue trauma such as overheating or compression necrosis (i.e., high insertion 

toque). These might aggravate the peri-implant bone loss even in an aseptic environment, and 

worsen the implant prognosis due to the increased exposure of developing a later anaerobic 

infection, namely peri-implantitis.  Therefore, the aim of this narrative review is to provide an 

updated understanding of the biological events that take place during implant osseointegration 

and subsequent early and late bone remodeling around implants. 

 

1. Biology of the bone remodeling  
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1.1 Role of osteocytes and bone lining cells in the remodeling process 

Osteocytes are the pivotal cells in the regulation of bone mass and structure along with 

osteoblasts and osteoclasts.
6
 Osteoblasts are derived from mesemchymal stem cells and 

synthesize new bone matrix.
7
   Osteoclasts are terminally differentiated multinucleated cells from 

the monocyte-macrophage lineage and beyond their role in bone resorption, these cells are also a 

source of cytokines that play an important role in bone homeostasis. 
8
 

Osteocytes are terminally differentiated osteoblasts with a primary function to support 

bone structure and mechanosensation.
7
 They act as regulators of bone remodeling by modulating 

osteoclast and osteoblast activities. 
8
 These stellate-shapped cells are located within lacunae 

surrounded by mineralized bone matrix and present with connections through cytoplasmic 

prolongations with surface bone lining cells and also with bone marrow.
9
 
8
  

Bone lining cells (BLC) are cells involved in bone formation much like pre-osteoblasts, 

osteoblasts and osteocytes.
10

 They are characterized by a flat-shaped architecture along bony 

surfaces
8
 (Figure 1) and may be considered as latent osteoblasts.

11
 In human cancellous bone, 

around 65% of osteoblasts undergo apoptosis with approximately 30% differentiating into 

osteocytes,
12

 and the reduced remnants becoming BLC and chondroid-like cells.
10, 12

 BLCs 

maintain their proliferative capability and often differentiate into other osteogenic cells.
13, 14

 

Various studies have shown that some factors can induce their proliferation prior to bone 

formation,
15

 while mature osteolasts are unable to divide.
10

 Osteoblasts may also undergo a 

quiescent stage when there is no bone resorption or remodeling,
13

 but the function of BLCs might 

be more complex than a simple latent state,
16

 including catabolic and anabolic bone processes
15

 

and rapid bone formation under osteogenic signaling.
16

 

 

1. 2 Bone remodeling process 

As bone remodeling is a complex process previously discussed in various other 

excellent review articles1
 
17 and exceeds the limits of this review, we focus specifically on the 

pivotal implications of osteocytes and BLCs during this process (Figure 2 A). External factors 

such as mechanichal loading, irradiation, parathyroid hormone (PTH), fibroblast growth factor-2 

(FGF2), sclerostin inhibition or inflammation may lead BLCs to exit the quiescent stage into an 

active function phase by reforming cuboidal appearance and their secretory capability.
8, 15, 18

 The 

presence of BLCs observed histologically indicates a strong sign of osteogenic potential
13

 and 

often regarded as a major source of osteoblasts and proliferating pre-osteoblasts in the adult 

population.
15

 This prominent role in new bone formation was previously highlighted
12, 16

 when 

rapid bone formation after mechanical loading without previous bone resorption was observed. 
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Early peak of bone formation after three days was only possible if BLCs underwent reactivation 

and reaquired their secretory capacities.
12, 16

 

 

Moreover, BLCs exert a prominent function during bone resorption
19

 demonstrated by 

their ability to express key ostoclastogenesis markers including macrophage colony -stimulating 

factor receptor (M-CSFR) and  receptor activator of nuclear factor kappa-B ligand (RANKL).
15

  

BLCs have been shown to be in close contact with osteoclasts and may also modulate bone 

remodeling.
19

 These cells have been shown to digest the protrusive nonmineralized collagen 

fibers mediated by matrix metalloproteinases (MMPs) and clean the bone surface in order to 

facilitate osteoclast attachment to their surface and subsequent resorption process. Furthermore, 

the activation of BLCs after osteocyte apoptosis leads to the formation of the so-called bone 

remodeling compartment
17

 where osteoclasts resorb bone without damaging the surrounding 

environment. Later, the osteoprogenitor cells colonize these remaining surfaces left by 

osteoclastic cells.  

After the modulation of bone resorption, BLCs play another important role in the early 

stages of bone formation by entering the resorption lacunae to remove collagen fibers and debris 

left by osteoclasts (Figure 2B). Subsequentially to this cleaning function, BLCs secrete a layer of 

fibrillar collagen allowing osteoblasts to attach and deposit new osteoid.
19

 

 

1. 3 Loading and bone resorption 

Osteocytes and BLCs are part of a functional syncytium which regulates communication through 

gap junctions during their mechanoreceptive function.
6
 Based on finite element analysis/models, 

it has previously been shown that slight loading increases bone formation and inhibits 

resorption.
20, 21

 During this function, BLCs are remodeling activators
22

 and promote bone 

resorption unless an inhibitory signal from osteocytes is present.
23

 Bone formation by osteoblasts 

is downregulated by this inhibitory signal, proportional to the mechanical loading sensed by 

osteocytes.
23, 24

 Thus, an increase in bone remodeling may be observed when the strength of the 

inhibitory signal is low, triggered by a small generation signal or transmission failure. Bone 

disuse state without mechanical loading is an example of low strain-generated signal and the 

consequence is the activation of BLCs and bone loss. Transmission failure can be observed in 

cyclic loading, microdamage (microcracks) or difuse bone damage.
23

 Presence of microcracks or 

difuse damage may impair the intracellular and/or extracellular flow of signals between 

osteocytes and BLCs and also may increase the presence of cytokines or Ca
++

 ions resulting in 

signal reduction.
23
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Moreover, excesive loading and microdamage have been related to higher osteocyte 

apoptosis.
24 36  

Interestingly, computer simulations stated that the inhibitory signal from osteocytes 

are significantly lower when cell apoptosis is present.
25

 Indeed, the greatest reduction in signal is 

when osteocyte apoptosis occurs nearest to the bone surface.
25

 Bone surface is mechanically more 

sensitive than the inner portions of the bone
25, 26

 and therefore apoptosis location is more relevant 

than the total amount of cellular programmed death.
27

 In addition, osteocyte apoptosis is followed 

by an increase release of RANKL in bone leading to osteoclastogenesis and bone resorption.
28, 29

 

Under functional loading conditions, the molecular signals from osteocytes leads to a 

coupling of bone formation and bone resorption, being first increased in higher levels of loading 

and later in lower levels of strain.
16

 A study utilizing a simulation model by finite elements
21

 has 

demonstrated that strain-induced signals from osteocytes guide the osteoclast resorption 

direction,
6
 meanwhile unloading leads to random resorption.

21
 Among other factors, this 

osteoclast guidance is related to the differences in canalicular flow and the levels of nitric oxide 

(NO) in the osteocytes.
6, 30

 

 

 

1.4 Regulation of osteocytes 

Osteocytes maintain an important role during bone formation and resorption and are the 

major source of RANKL in bone,
29

 required for osteoclast differentiation and function.
31

 

Osteocytes also function through Wnt signaling pathways and regulate osteoblast proliferation, 

differentiation and survival.
29, 32

  Wnt has also been suggested to be involved in the induction of 

bone formation even in cases where fibrous encapsulation predominates.
33

 

 

Some pathologies may also influence RANKL expression of osteocytes. For example, the 

presence of estrogens promotes osteocyte viability and reduces cortical bone resorption, but lower 

levels has also been shown to promote osteocyte apoptosis and raise the levels of RANKL.
34

 

Inflammatory mediators such as interleukin –I (IL-1), IL-6 and tumor necrosis-factor (TNF) alpha 

also increase the levels of RANKL and induce osteocyte death.
35

 Finally, PTH basal levels seem 

to maintain bone remodeling by raising RANKL and lowering osteoprotegerin (OPG) release by 

osteocytes.
29
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1.5 Bone remodeling around dental implants 

After dental implants are anchored, a sequence of immune-inflammatory responses 

followed by angiogenesis and eventually osteogenesis take place to achieve osseointegration. 

This is influenced by the implant surface characteristics owing to the ability for protein 

adsorption based on implant surface topography and hydrophilicity. Accordingly, thrombin and 

fibrinogen adhere to the implant surface. Later, neutrophils populate the implant recipient site 

before the monocytes and macrophages infiltrate the area. These events fulfill a key role on the 

early homeostasis as they release the cytokines and growth factors that stimulate collagen matrix 

deposition around the titanium oxide layer leading to newly-formed woven bone (usually occurs 

5 days later). In a matter of 8 to 12 weeks, lamellar bone initiates the biological stability, namely 

osseointegration.
1
  

As it occurs with the natural dentition, implants are subjected to soft and hard tissue 

remodeling after restoration delivery. Biologic width in humans around dental implants has 

recently been shown to be ~3.5mm.
36

 This physiological bone remodeling mechanism to a foreign 

body is led by RANKL, which promotes macrophage activation into osteoclasts. When early 

implant marginal bone loss exposes the implant microtexture, contamination by bacterial and its 

byproducts is facilitated and thus, the infiltration of large proportions of CD68- and 

myeloperoxidase (MPO)-positive cells are capable of breaking down the peri-implant structures.
37

 

It has been suggested that the microgap in two-piece implants might be associated with the up 

regulation of the inflammatory cell infiltrate leading to crestal bone loss.
38, 39

 The abutment 

connection on the endosseous portion of the implant leaves a gap in a range of 10- to 50- 

micrometers.
 38

 A pumping effect of the fluid contained in the implant cavities might shift 

inwards to the peri-implant compartment due to the cyclical loading of the implant/abutment 

interface
38 40

 and facilitate the colonization of the gap by putative pathogens. These organic fluids 

with bacteria products and endotoxins could upregulate the expression of pro-inflammatory 

cytokines in the peri-implant tissues and stimulate the chemotaxis of active osteoclasts.
38

 Over the 

time, leakage associated to micromovements leads to steady inflammatory reaction,
41

 bone loss 

around the implant neck and later, in the presence of biofilm, to peri-implantitis.
42

 It seems that 

internal implant connections provide better sealing than the external ones.
42

 
43

  Tesmer et al. 

reported a higher number of colonies former unit (CFU) of Aggregatibacter 

actinomycetemcomitans and Porphyromonas gingivalis in samples of trilobe connection vs. 

morse cone connection in an in vitro study.
44

 Moreover, conical seal systems have been related to 

less crestal bone loss.
43

 Nonetheless, it remains to be elucidated the association of the gap size or 

microbial leakage at the implant-abutment connection with the crestal bone loss.
45

 In addition, it 
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remains controversial the influence of the position of the implant-abutment connection on crestal 

bone loss.
45

 Even though, a greater density of neutrophils have been reported in subcrestal 

interfaces vs. supracrestal location. 
38, 39

 Further improvements on the implant-abutment sealing 

together with encouraging to use the original components might minimize the crestal bone loss 

associated to microgap inflammation. 

 

As aforementioned, peri-implant implant bone undergoes remodeling after surgery 

trauma and due to the biological width establishment, but also it keeps in active bone remodeling 

during years as stimulated by the masticatory loading after the post-implantation healing.
46-48

 In a 

short-term follow-up study in dogs, Gyoon-Kim et al. reported that newly formed bone had lower 

ability to resist elastic, plastic and viscous deformation but higher viscoelastic capacity to absorb 

deformation energy than the old resorbed bone. This fact might explain why bone is able to bear 

the impact of masticatory loading transmitted from the implant in absence of the periodontal 

ligament.
46

 Baldassarri et al. demonstrated that bone only reaches maturity after 5 years of 

loading and an increase of elastic modulus and hardness have been observed during that time in 

human retrieved implants.
47

 Interestingly, a reduction in osteocyte density in samples after long 

period of loading have been reported,
48

 and a possible explanation was the limited number of 

cells needed to maintain bone homeostasis after bone is matured, well aligned and 

biomechanically competent.
48

  In this sense, initial healing process takes up to the first year of 

loading and imply the remodeling of initial woven bone and a high number of osteocytes. The 

second stages comprises up to the fifth year when bone matures after another active remodeling 

period and also a higher presence of osteocytes. Last, the third stage seems to imply a reduction 

in osteocytes numbers and bone remodeling.
48

  

 

2. Excess of implant torque on bone healing 

2.1. Bone biology under implant insertion  

Adequate implant insertion torque (IT) values (25-45 Ncm) have been suggested to 

prevent micro-movement that could lead to fibrous encapsulation. On the flip side, high insertion 

torque has also been associated with an increase in critical pressure triggering microfractures and 

bone necrosis (Figure 3). It has been shown in animal models that high IT elicits a complex 

microdamage being a strong stimulator for initiating targeted bone remodeling. Moreover, it was 

evidenced that cortical bone resorption occurs on the surface of differently oriented Haversian 

and Volkmann canals.
49

 This was in agreement with a radiographic, histomorphometrical and 

histological investigation that clearly identified that implants with a high IT (>50 Ncm) are 
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subject to greater peri-implant bone loss in the early stages of healing compared to those more 

passively placed.
50

 Additionally, a recent multiscale analysis revealed that under drilling to 

achieve high IT, a double layer of dead and dying osteocytes was observed when compared to 

low IT.
51

 Moreover, it was shown that osteocyte lacunar density in human cortical bone is 

associated with micro-cracks accumulation and porosity increase with age.
48 52

 This finding 

highlights the importance of minimizing microfractures as a consequence of high IT to 

predictably preserve the peri-implant bone level. Thereby, it seems highly coherent to state that 

the lack of primary stability may potentially jeopardize osseointegration, high IT might not favor 

the preservation of the peri-implant tissue level.  

 

Finite elements studies have shown that loading increases bone formation and inhibits the 

resorption and that bone disuse promote bone loss,
20

 
21

 so a contradiction between recommending 

low IT levels and may be observed. However, increased IT may lead to osteocyte apoptosis and 

consequently may promote higher levels of RANKL and VEGF secretion to the surrounding 

environment to remove apoptotic cells.
29

 
53

 Higher levels of RANKL has previously been 

reported 100-200 microns away from microcracks and lower levels of OPG were observed up to 

200 microns away from microcracks.
53

 Verborgt et al. reported that viable osteocytes next to 

microdamaged areas promoted cell apoptosis by expressing higher levels of Bax gene and that the 

highest levels of the anti-apoptotic protein Bcl-2 was reached 1-2 mm away from microcracks.
54

 

Moreover, osteoclasts not only remodel disused bone, but also damaged bone like microcracks.
55

 

23
 In this area two stimuli promote osteoclast activation.

21
 First of all, dying osteocytes release 

chemotactil signals to attract osteoclasts and raise RANKL levels. Secondly, osteocyte-dead areas 

do not emit the osteoclast inhibitory signals. These signals might be transmitted preferently 

following the direction where the bone was deposited,
21

 triggering greater peri-implant bone loss 

in the crestal area. 

 

Alveolar bone density further influences primary stability. An early publication in the 

field of implantology classified the maxillary ridges in four major types.
56

 Accordingly, denser 

bone is located in the anterior mandibular region, whereas more porous trabecular bone is 

detected in the posterior maxillary area. Recent findings seem to point to the influence of bone 

atrophy on bone density.
57

 Cortical bone has a higher elastic modulus
58

 and compressive strength 

when compared to cancellous bone.
59

 Nonetheless, it is worth noting that the restrained 

vascularity of compact bone, implying minimal to no migration of differentiating osteogenic 

cells, may result in peri-implant bone loss in the event of trauma. In the same way,  Kristensen et 
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al. reported the three main routes of osteblast recruitment during remodeling: aproximately 20% 

of the osteoblastic cells come from reactivation of BLC on quiescent surfaces, 50% are canopy 

cells from the mesenchymal bone marrow and the last third are vascular-associated 

osteoprogenitors like pericytes that reach the bone remodeling area by the canopies.
60

 Limited 

blood supply and abscence of bone marrow might limit the amount of osteoblast cells in the bone 

remodeling area, and in some cases the area may not reach the critical osteoblastic cell density 

needed for bone formation to occur,
60

 showing an arrested reversal area where only bone 

resorption can take place.
61

 

 

Simons et al. studied the association of the proportion of cancellous/cortical bone on 

marginal bone loss.
62

 The authors identified that higher cancellous proportion (>50-60%), and 

early bone loss was significantly minimized (~0.6-0.7mm) when compared to implant recipient 

sites (<30%) of cancellous content (~1.5mm). Therefore, high IT should be omitted, in particular 

in the presence of a thick cortical layer. In order to avoid microfractures as a consequence of high 

IT, tapping should be advocated. 

 

In summary, cortical bone presents with several disadvantages when compared to 

trabecular bone. The limited bone supply may impair osteoprogenitors presence and the critical 

osteoblastic cell density required for bone repair might not be reached.
60

 Secondly, the crestal 

bone is exposed to the highest strain levels
63

 and correlates with the most mechanically sensitive 

area in bone.
25, 26

 This highest strain levels are located on the area of first contact when two 

differents materials are in contact and one is loaded.
64

 Moreover, osteocyte apoptosis at the 

surface promotes a more potent resorptive signal than found in deeper bone tissues.
25, 26

 Thirdly, 

according to histological reports, the highest density of osteocyte canaliculi are observed at the 

bone surface perpendicular to the loading force,
6
 therefore a greater amount of damage in this 

zone might be occuring. For such reasons, implant placement protocols (including IT) are crucial 

parameters necessitating adequate control according to their bone characteristics. 

 

2.2. Implant outcomes under high and low implant torque 

While the belief behind achieving high primary stability has been the goal for many 

clinicians based on the belief that osseointegration would be better warrantied, current clinical 

research seems to indicate that high implant torque might be pernicious for the peri-implant bone 

level. Certainly, for immediate implant placement with/-out immediate loading, solid primary 

stability is necessary (>32 Ncm). 
65, 66

 Nonetheless, in delayed implant placement, understanding 
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the resorption process of the bundle bone and the establishment of the bone macro-architecture 

and bone density might dictate the drilling sequence and IT.  As such, when implant placement is 

applied under high IT (≥50 Ncm), it has been shown to be more prone to marginal bone loss and 

recession, notably in the presence of a thin buccal bone.
67

 Alike, when compared to even higher 

IT threshold (>70 Ncm), it was evidenced that marginal bone loss was substantially higher.
68

 

Strikingly, an association was found statistically correlated when including all the values (up to 

176 Ncm). This finding further reflects the role that bone structure plays and its influence on the 

fate of the peri-implant bone level.  

For the aforementioned reasons, novel approaches for implant placement are being 

investigated. One example is the use of simplified drilling methods that have not seemed to 

jeopardize the process of osseointegration.
67, 68

 For example, wider implants installed under 

higher IT have shown adequate secondary stability and high bone-to-implant contact (BIC); 

although it was demonstrated that a certain healing delaying was found due to the necrosis of the 

existing bone.
69

 Alike, findings from another group also indicated that even submerged implants 

inserted at 0 Ncm torque displayed similar outcomes compared to those inserted at 30 Ncm or 70 

Ncm at 4 months.
70

 In partial agreement, Campos et al. found that although the BIC was not 

affected, adequate drilling to achieve passive implantation outperformed over-/under-drilling by 

means of the bone area fraction occupied.
71

 Hence, clinical outcomes echo the uncertain impact 

high IT might have on peri-implant bone loss compared to low IT. Future research are currently 

investigating alternative strategies including the application of osseodensification protocols,
72

 

lasers
73

 
74

 or ultrasound tools
75

 
76

 
77

 
78

 to enhance osseointegration.  

 

3. Trauma from occlusion 

Although peri-implantitis and overload in conjunction with the host characteristics may 

be the major etiological agents causing late failures, 
79

 the influence of trauma from occlusion on 

peri-implant disease has not been yet elucidated.
80

 In a systematic review based on animal 

studies, Chambrone et al. reported that occlusal overload may lead to bone loss in the presence of 

dental plaque and to a higher bone density if plaque control is performed.
81

 Heitz-Mayfield et al. 

reported in a dog study that overload did not impact on healthy implants, with no differences in 

BIC.
82

 It is important to highlight also the series of animal studies from Miyata et al., who 

reported that inadequate oral hygiene and trauma from occlusion resulted in peri-implant tissue 

breakdown in monkeys, 
83, 84

 even in the lack of plaque-induced inflammation.
83

 Along these 

lines, a systematic review
85

 reported that supra-occlusal contacts on non-inflamed peri-implant 

bone tissues did not cause bone catabolism, whereas supra-occlusal contacts combined with 
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inflammation significantly increased the plaque-induced bone loss. Accordingly, it was concluded 

that the effect of implant overloading on bone/implant loss in clinically well-integrated implants 

is poorly reported and there is not enough evidence to support a cause-and-effect relationship.
85

 

Moreover, a clinical and radiographic study in Macaca Fascicularis confirmed that overloading 

might trigger the loss of osseointegration 4.5-15.5 months after the overload was commenced in 

the vast majority of implants examined. Interestingly, it was further shown that, although 

excessive marginal bone loss was observed (1.8mm), no implant was lost when plaque was 

disrupted but in the lack of occlusal overloading.
86
 

In summary, cautious conclusions should be done on this topic due to a limited and risk-

biased literature and also due to the fact that most of the knowledge in this field is derived from 

animal experimental studies.  

 

 

4. Factors affecting bone metabolism 

 

4.1 Cholesterol and fatty acids 

 In the last three decades, the consumption of high-fat and high-cholesterol-diets have 

increased
87

 and as a consequence, the morbidity and mortality of obesity-related diseases such as 

cardiovascular disease and hyper-inflamed conditions have also increased.
88, 89

 Obesity has also 

been related with an enhanced hazard of periodontal disease in man.
90, 91

 

 Although obesity and high levels of cholesterol production have been linked for years, the 

relation between obesity and serum levels is low.
92

 
93

 
94

  Similarly, the relationship between bone 

and body fat is complex and not totally understood to now.
95

 Bone marrow fat (BMF) is the 

accumulation of fat cells inside the bone marrow tissue.
96

 An inverse correlation between bone 

mass and BMF has been reported.
95-98

 Higher adipogenesis in BM may result in lower 

osteoblastogenesis and these adipocytes can secrete saturated fatty acids which may impair 

osteoblast viability by inducing apoptosis and autophagy.
96, 97

 Adipocytes can also release pro-

inflammatory and osteoclastogenic cytokines (e.g., TNFα and IL-6), adipokines and express 

RANKL.
95, 96, 98-100

 

 In other words, fatty acids
97

 and high levels of cholesterol
101

 may disturb the bone 

formation/bone resorption equilibrium by down-regulating the Wnt signaling pathway.
102

 This is 

probably due to the effects of higher levels of TNFα and sclerostin.
103

  Wnt pathway balances the 

mesenchymal stem cells differentiation by inhibiting of adipogenesis and promoting osteoblast 

proliferation, maturation and differentiation.
97

 Animal studies have shown more bone resorption, 
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less bone formation and bone mass and higher levels of bone turnover markers after rich-

cholesterol diets.
97

 
101

 
104

 
105

 
106

 

 In addition, obesity induces a systemic inflammation condition with high levels of 

circulating cytokines and increased production of monocytes, neutrophils
107, 108

 and adipose tissue 

macrophages.
109, 110

 These cytokines and the accumulation of cholesterol in macrophages can alter 

the ratio of M1/M2 macrophages promoting an M1 pro-inflammatory environment thereby 

increasing the numbers of monocytes/macrophages in circulation.
109, 111 

The influence of obesity and increased levels of cholesterol and triglycerides have been 

extensively described in the medical field but the effect of hyperlipidemia on dental implant 

osseointegration has not yet been fully elucidated.
112

  Significantly more peri-implant bone loss, 

reduced bone formation and lower strength in the bone-implant interface has previously been 

reported in mice after a 12 week high-fat diet.
112

 On the other hand, Dündar et al. (2016) reported 

that there was no difference in BIC 12 weeks after implant placement between rabbits following a 

3-month high-fat diet versus normal diet.
113

 As hyperlipidemia might impair bone quantity and 

density, negative effects might be speculated on implant osseointegration although no conclusive 

evidence to date has been found. 

 

4.2 Vitamin D 

Vitamin D is a fat-soluble hormone that regulates calcium phosphate homeostasis and 

mineral bone metabolism.
114

 It is transformed into the active form (1,25-dyhydroxy vitamin D3) 

by hydroxylation, firstly in the liver and then in the kidney.
115

 This vitamin can stimulate 

osteoblast bone matrix production, coupling bone resorption to formation and optimize bone 

remodeling.
116

 It increases calcium absorption in the intestine leading to a reduction in PTH 

secretion and lower systemic bone resorption
115, 117, 118

 with a possible inhibition of 

osteoclastogenesis.
119

 1,25-dyhydroxy vitamin D3 can stimulate bone resorption by binding to 

osteoblast vitamin D receptors (VDR) and by altering the balance between RANKL and OPG.
120-

123
 

Vitamin D is a common substance in the prevention and treatment of osteoporosis but 

research investigating its effects during dental implant osseointegration remains limited.
118

 In 

animals, Kelly et al. (2009) studied the osseointegration process in rats with deficiency in 

Vitamin D and reported lower BIC values and mechanical bone strength after 2 weeks post-

implant placement.
124

 Noteworthy however is that implant failure might be confounded by the 

rising insufficiency of vitamin D prevalence in various patient populations.
124

 Zhou et al. (2012) 

reported an improved titanium screw fixation in ovariectomized rats after 8 weeks of oral 
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treatment with vitamin D, showing a significant increment of peri-implant bone density, bone-

implant contact (1.5 times higher) and peri-implant trabecular microarchitecture.
118

 Similar 

results were reported in mice with chronic kidney disease (CKD), suggesting that vitamin D 

treatment may be an effective approach for implant placement in patients with CKD.
125

 Recently, 

the effect of topical application of vitamin D (10%)
126

  and melatonin (5%)
127

 solutions on the 

surface of immediate implants placed in dogs was evaluated. Both topical applications improved 

significantly new bone formation around implants and reduced crestal bone loss at 12 weeks 

following surgery, 
127

 standing out the positive correlation between vitamin D and early stages of 

osseointegration. Therefore, these results may suggest that vitamin D has a protective effect on 

bone healing after implant insertion.
118

  

Schulze-Spate et al. (2016), in a randomized, double-blind, placebo-controlled clinical 

trial in humans, reported no differences in bone formation nor in graft resorption after maxillary 

sinus augmentation procedure with vitamin D and calcium supplement.
123

 Only a difference in the 

number of bone-resorbing osteoclasts was assessed, finding a higher bone remodeling activity 

related to higher vitamin D levels.
123

 A retrospective study to correlate early implant failure and 

low serum levels of vitamin D
128

 showed a higher incidence of the implant failure rate in these 

patients but a correlation between both factors could not be determined. Therefore, vitamin D 

seems to improve bone health and implant healing but further research is needed to obtain an 

adequate level of evidence. 

 

 

4.3 Hyperglycemia 

The number of adults with diabetes in the world increased from 108 million in 1980 to 

422 million in 2014.
129

 Type 1 diabetes (previously known as insulin-dependent, juvenile or 

childhood-onset) is characterized by deficient insulin production and requires daily administration 

of insulin. Type 2 diabetes (formerly called non-insulin-dependent or adult-onset) results from the 

body’s ineffective use of insulin. Type 2 diabetes comprises the majority of people with diabetes 

around the world and is largely the result of excess body weight and physical inactivity. It is 

characterized by hyperglycemia, insulin resistance and relative insulin deficiency.
130

 

Diabetes mellitus has been related to a deficient metabolism of the skeletal tissue due to a 

supressed osteoblastic function and lower bone formation potential, independently of the type of 

bone, the location and mechanical loading.
131

 A higher risk of implant failures have been related 

to uncontrolled diabetes
132

 and non-diagnosed diabetes might be a possible reason of failed 

implants for unknown reasons.
133
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Ajami et al. reported a delayed bone formation and remodeling in hyperglycemic rats. 

Early bone mineralization might be affected due to a compromised intra-fibrillar collagen 

mineralization whereas inter-fibrillar and cement line mineralization remained normal.
134

 Other 

mechanism could be the fact that diabetes promotes a hypercogulative state and a delay in fibrin 

clot resolution due to an increased thrombin formation, platelet activation and fibrin resistance.
133

 

135
 These facts hinder platelet cytokines and growth factor release and cause a limited pericytes 

and endothelial migration into the implant surface together with a reduced angiogenesis.
136

 

Moreover, hyperglycemic conditions are related to a reduction in bone formation markers like 

osteocalcin and bone-specific alkaline phosphatase and also bone resorption markers like C-

terminal telopeptide of collagentype I (CTX).
137

 Serum levels of osteoprotegerin (OPG) are 

increased following an episode of hyperglycemia and it also leads to a lower bone density due to 

the accumulation of advanced glycation end products (AGEs) that affect the organic bone matrix, 

reduce osteoblast proliferation and function and increase osteoclast resorption.
137

 
138, 139

  

Moraschini et al. concluded in a systematic review that the rate of implant failure is not 

higher for diabetic subjects than non-diabetic ones, nor between type 1 and type 2 diabetic 

subjects.
140

 However, non-diabetic patients showed a statistically significant less crestal bone loss 

than diabetic patients.
140

 Furhter studies are needed to elucidate the impact of hyperglycemia 

upon dental implants. 

 

 

4.4 Other factors 

Not only metabolic issues can influence bone remodeling. Some patient-specific factors 

like medication intake might induce changes in bone cells and bone turnover and lead to bone 

loss around dental implants.
141

 Higher bone turnover seems to expose more implant surface
140

 and 

mandible might be a particularly vulnerable location.
141

 Serotonin reuptake inhibitors and proton 

pump inhibitors have been related to an increase in bone loss and higher implant failure
142

.  so an 

updated and thorough medical records are advocated to avoid complications.  

Other patients might present some degree of hypersensivity to titanium particles
143

 or 

ions released from implant surface.
141

 The corrosion of the implant surface or the dioxide layer 

titanium degration can release  particles that induce inflammatory reactions in the peri-implant 

tissues.
144

 Aseptic loosening is the main reason for implant hip long-term failures.
145

 According 

this model, wear particles are recognized as foreign body substances and phagocytosed by 

macrophages.
144

 Later, M1 cells release inflammatory cytokines that promote osteoclastogenesis 

and osteolysis of the peri-implant bone.
144
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5.  Role of macrophages in bone and peri-implant breakdown and regeneration 

Macrophages play a prominent and central role in bone homeostasis and bone/biomaterial 

integration around dental implants.
146

 Specifically in bone tissues, a special subset of 

macrophages, termed osteal macrophages (or OsteoMacs), have recently been hypothesized to 

play a pivotal role in the fate of implant osseointegration.
146

 The general role of OsteoMacs in 

bone is to act as immune surveillance cells within their microenvironment.
147, 148

 Yet when a 

foreign body biomaterial such as a dental implant is inserted trans-mucosally into the alveolar 

bone, a rapid accumulation of macrophages is typically found at the implant surface.
149

 Chehroudi 

et al. clearly showed that bone formation on rough titanium dental implant surfaces was routinely 

preceded by macrophage accumulation (prior to bone deposition).
149

 Despite this prominent 

finding, it is interesting to note that over 90% of research to date has focused on osteoblast and 

fibroblast behavior to material surfaces with only a small percentage (10%) dedicated to immune 

cell interactions including monocytes, macrophages, osteoclasts, leukocytes and multinucleated 

giant cells (MNGCs).
150

 This major discrepancy is difficult to understand given the fact that 

macrophages and immune cells in general dictate how biomaterials will eventually be integrated 

into host tissues. 

 Studies from basic research have been pivotal to better understand the role of 

macrophages in bone biology. A series of key studies on OsteoMacs has shown that their removal 

during bone development is consistently found associated with a reduction in bone modeling, 

bone remodeling and bone repair.
151-154

 Furthermore, in primary osteoblast cultures (containing 

macrophages), the simple removal of macrophages from these in vitro systems leads to a 23-fold 

decrease in the mineralization potential of bone-cells.
153, 155

 Therefore, while basic studies have 

clearly pointed to their vast and substantial role in bone biology, much less information is 

available concerning the response of macrophages to implanted biomaterials. It is therefore 

pivotal to better characterize how immune cells and macrophages behave in relation to dental 

implant osseointegration and maintenance. 

5.1. Macrophage polarization: M1-M2 phenotypes 

While the objective of this review is not to highlight macrophage biology, it is important 

to note that they are some of the most plastic cell types found in the human body. They polarize 

completely from the classical M1 macrophage (involved in tissue pro-inflammation) towards M2 

(tissue regeneration) macrophages. They may also fuse into osteoclasts and resorb bone or fuse 
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into multinucleated giant cells (MNGCs) where their role remains poorly defined.
156, 157

 Major 

differences between M1 and M2 macrophages is that M1 macrophages have their arginine 

metabolism shifted to nitric oxide (NO) and citrulline, whereas M2 macrophages are shifted 

towards ornithine and polyamines.
158

 M1-macrophages produce NO as a main effector molecule 

capable of inhibiting cell proliferation,
159

 while M2-macrophages generate ornithine increasing 

cell proliferation and repair through polyamine and collagen synthesis.
160
 

During dental implant osseointegration, classical M1-macrophages secrete a wide array 

of pro-inflammatory cytokines including TNF-alpha, IL-1Beta, IL-6, Il-12, MMP2, MMP9 

typically induced by IFN-γ + LPS or TNF-α (in vitro).
159, 161

 In contrast, M2-macrophages are 

produced in response to IL-4 or IL-13 and also secrete a wide variety of pro-regenerative 

cytokines including PDGF-BB, TGB1, VEGF, IL-4, IL-10, CCL18  (Table 1). As can be 

expected, their polarization around implant surfaces is highly relevant for implant integration and 

long-term stability. Interestingly, Spiller et al. showed that macrophages can completely polarize 

from M2 wound-healing macrophages towards M1 pro-inflammatory macrophages within as little 

as 3 days and vice versa.
162

 Therefore, their role, especially as it relates to peri-implant infection, 

is extremely vital for the long-term maintenance of dental implants. 

 

5.2 Impact of implant surface topography and chemistry on macrophage behavior 

 

As previously mentioned, one area of research that has been largely omitted is the effect 

of implant surface material, topography, chemistry and composition on immune cell behavior. 

While this topic has recently been reviewed,
146

 it is important to note that surface roughness in 

general tends to increase a pro-inflammatory response. It has been shown that roughness [e.g., 

sandblasted acid etched (SLA)] surfaces tends to increase M1 macrophage polarization,
163-165

 

whereas a modification to their surface chemistry has been shown to reduce this pro-

inflammatory response (modified-SLA surfaces).
164, 165

 Despite this, a great deal of information 

concerning the behavior of monocytes/macrophages as well as their fusion to MNGCs remains 

unknown. A small percentage of dental implants are lost every year for yet known reasons 

unassociated with peri-implant infections.
146, 166

 This is most likely caused by immune cell 

biocompatibility interactions not yet fully understood and future research in this field is likely to 

further advance of understanding of the prominent role of immune cells during early and late 

stages of implant osseointegration. 
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5.3 Macrophages, Immune Cells and the Foreign Body Reaction 

It has been reported that implant osseointegration is a long-term equilibrium between host 

immune cells and bone biomaterials.
167-169

 The literature showed MNGC accumulation on implant 

surfaces leads to biomaterial breakdown and possible implant failure/rejection.
167-169

  These 

papers provide a platform whereby implant osseointegration and eventual peri-implant bone loss 

is likely a direct result of a M1/M2 shift in macrophage polarization. Interestingly, invading 

periodontal pathogens are known to secrete lipopolysaccharides (LPS), a known and direct 

molecule influencing pro-inflammatory M1-macrophage polarization.
170

 Hence, it is important to 

examine foreign body reaction, equilibrium between M1 and M2 macrophage and MNGC 

polarization. Furthermore, these papers stressed heavily on material rejection with MNGCs 

accumulation on the implant surface. While MNGCs have certainly been implicated in bone 

biomaterial material rejection,
167-169

 it is interesting to note that accumulating evidence has now 

shown that MNGCs (which are hypothetically derived from the fusion of macrophages) are also 

capable of polarizing towards M1-MNGCs and M2-MNGCs. In addition, other researchers have 

shown that MNGCs are capable of expression M2-macrophage markers following macrophage 

accumulation on their biomaterial surface.
171

 Specifically around bone grafting materials, 

MNGCs have been shown to exist in stable human bone many years following their 

implantation
172-174

 and have been associated with a rapid increase in tissue vascularization.
175-178

 It 

is evident that much further research is needed to better understand their role in bone biomaterial 

integration and implant osseointegration. 

It is therefore a necessity to accurately characterize immune cells such as macrophages 

and MNGCs and their interaction with dental implants, their osseointegration and their 

maintenance. It is likely that both cells are prone to reversibly shifting their polarization from 

M1/M2 macrophage/MGNCs yet little research to date has been performed as it relates to dental 

implants. Furthermore, many cell types are found in small spaces within the oral cavity around 

dental implants including osteoblasts, osteoclasts, osteocytes, fibroblasts, endothelial cells, 

leukocytes etc. Since macrophages (and most likely MNGCs) express high levels of cytokines, it 

becomes highly relevant to determine how cell-cell communication occurs between 

macrophages/MNGCs and other cell types (via direct cell contact or paracrine activity) during 

bone remodeling of implants. This field of study has thus far been left entirely unstudied yet 

possesses major clinical implications. 
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It is also interesting to note that more recent research from the field of cardiovascular 

disease has shown that the calcification of arteries is a direct result of macrophages and MNGC 

polarization towards M2-macrophage/M2-MNGCs in the intima layers of arterial walls where 

they express high levels of IFN-gamma.
179, 180

 It has been shown that macrophages polarize 

towards M2 phenotypes and begin to form ectopic bone in areas where bone should otherwise not 

be formed.
146

 Hence, it is interesting to point out that in this scenario, immune cells (such as 

macrophages) are dictating new bone formation. Therefore, growing evidence from many fields 

has now shown that macrophages playing a vast and substantial role in bone modeling and 

homeostasis.  

Conclusions 

The present review highlights some of the recent advancements in the area of bone remodeling 

around dental implants in both health and disease conditions. While peri-implant bone 

remodeling has received much attention, it remains important to better understand how loading 

and implant bed preparation affects bone lining cells and osteocyte viability and signaling at early 

stages of healing. Furthermore, the effects of systemic levels of cholesterol, fatty acids and 

vitamin D are discussed as potential responsible factors for early implant loss and long-term 

implant stability. We also stress out the prominent role of immune cells (e.g., OsteoMacs and 

multinucleated giant cells) and their impact during dental implant osseointegration and 

maintenance.  
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Figures and legends. 

 

Table 1. Cytokines released by M1 and M2 macrophages. 

Figure 1. Histological section of maxillary sinus lateral wall with cortical bone surface covered 

by bone lining cells (Immunofluorescence for Tubulin and DAPI, 20x). 

 

Figure 2.  Bone remodeling diagram. A; Cells involved in the process (modified from 

Weilbaecher, K. N., Guise, T. A., & McCauley, L. K. (2011). Cancer to bone: a fatal 

attraction. Nature Reviews Cancer, 11(6), 411-425. B; Bone remodeling after excessive implant 

torque. 1) Excesive torque promotes bone damage including the osteocyte network. 2) 

Osteoblasts and osteoclasts are recruited from the blood, the marrow or from BLCs to populate 

the bone remodeling compartment. 3) Osteoclasts remove the damaged bone. 4) Bone lining cells 

clean the debris after osteoclast resorption. 5) BLCs secrete fibrillar collagen. 6) This collagen 

layer  allows osteoblasts to attach. 7) Osteoblasts deposit osteoid to fill the compartment. 8) 

Osteoblasts trapped into the osteoid become osteocytes or bone lining cells where most undergo 

apoptosis (modified from Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene 

Expr 2009; 19: 219-233). 

 

Figure 3. Bone microcracks as a consequence of excesive implant torque (modified from Cha JY, 

Pereira MD, Smith AA, Houschyar KS, Yin X, Mouraret S, Brunski JB, Helms JA. Multiscale 

analyses of the bone-implant interface. J Dent Res 2015; 94: 482-490. 

Upper images (A, B, C) : Schematic of the osteotomy relative to the implant’s external diameter. 

Image A shows an oversized preparation with the presence of a gap (*) between the implant and 

bone. This gap is filled with fibrous tissue. Image B shows a osteotomy where the implant 

reached low torque and a smaller gap (*) is observed. Image C shows an undersized osteotomy 

that induces a high torque without gap bone-implant.  

Image D: Illustration of compressive strain fields around an implant placed with low torque. Only 

15-20 microns of the thread engaged in bone and promoted a small region of moderate strain. 

Image E: Illustration of increased compresive strain fields around an implant placed under 
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increased torque. The threads engaged deeply in bone and created a larger region of high strain 

around the threads and the implant body. Image F: Illustration of photoelastic stress around an 

high-torque implant. 
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Figure 1. Histological section of maxillary sinus lateral wall with cortical bone surface covered by bone lining 
cells (Immunofluorescence for Tubulin and DAPI, 20x).  
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Figure 2.  Bone remodeling diagram. A; Cells involved in the process (modified from Weilbaecher, K. N., 
Guise, T. A., & McCauley, L. K. (2011). Cancer to bone: a fatal attraction. Nature Reviews Cancer, 11(6), 
411-425. B; Bone remodeling after excessive implant torque. 1) Excesive torque promotes bone damage 

including the osteocyte network. 2) Osteoblasts and osteoclasts are recruited from the blood, the marrow or 
from BLCs to populate the bone remodeling compartment. 3) Osteoclasts remove the damaged bone. 4) 
Bone lining cells clean the debris after osteoclast resorption. 5) BLCs secrete fibrillar collagen. 6) This 
collagen layer  allows osteoblasts to attach. 7) Osteoblasts deposit osteoid to fill the compartment. 8) 

Osteoblasts trapped into the osteoid become osteocytes or bone lining cells where most undergo apoptosis 
(modified from Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 2009; 19: 219-

233).  
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Figure 3. Bone microcracks as a consequence of excesive implant torque (modified from Cha JY, Pereira MD, 
Smith AA, Houschyar KS, Yin X, Mouraret S, Brunski JB, Helms JA. Multiscale analyses of the bone-implant 

interface. J Dent Res 2015; 94: 482-490.  
Upper images (A, B, C) : Schematic of the osteotomy relative to the implant’s external diameter. Image A 
shows an oversized preparation with the presence of a gap (*) between the implant and bone. This gap is 
filled with fibrous tissue. Image B shows a osteotomy where the implant reached low torque and a smaller 
gap (*) is observed. Image C shows an undersized osteotomy that induces a high torque without gap bone-

implant.  

Image D: Illustration of compressive strain fields around an implant placed with low torque. Only 15-20 
microns of the thread engaged in bone and promoted a small region of moderate strain. Image E: 

Illustration of increased compresive strain fields around an implant placed under increased torque. The 
threads engaged deeply in bone and created a larger region of high strain around the threads and the 

implant body. Image F: Illustration of photoelastic stress around an high-torque implant.  
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Table 1: Markers of macrophages of M1 and M2 phenotypes, adapted from 
136

. Those 

highlighted in yellow are most common markers utilized to investigate M1 and M2 

macrophage polarization. 
 

 

M1 M2 

В 7 (CD80) M130 (CD163) 

В7.2 (CD86) CD206 (MRC1, mannose receptor) 

CCR7 (МСР-3) FceRII (CD23) 

CCL22 (MDC1) 

CD64 

CD36 

CXCL10 (IP-10) 

SOCS1 

IL-1 Ra 

TLR-2 Nucleotide receptors (GPR86, GPR105, 

TLR-4 P2Y8, P2Y11, P2Y12) 

FcyRIII (CD16) С-type lectin-like receptor dectin-1 

FcyRII (CD32) DC-SIGN (CD209) 

LAM-1 (CD62) DCIR (CLECSF6) 

IL-1 R1 CLACSF13 

IL-7R (CD127) FIZZ1, ST2 (mouse) 

IL-2R (α chain) Phagocyte receptors (SR-A, М60) 

IL-15R (α chain) CXCR4, fusin (CD184) 

IL-17R (CTLA8) (CDw217) TRAIL 
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