



## **Gas-Phase Reactions**

## Efficient Room-Temperature Activation of Methane by TaN<sup>+</sup> under C–N Coupling

Shaodong Zhou, Jilai Li, Maria Schlangen, and Helmut Schwarz\*

Dedicated to Gerhard Ertl on the occasion of his 80th birthday

**Abstract:** The thermal reaction of diatomic tantalum nitride cation  $[TaN]^+$  with methane has been explored using FT-ICR mass spectrometry complemented by high-level quantum chemical calculation; based on this combined experimental/ computational approach, mechanistic aspects of this novel, highly efficient C–N coupling process have been uncovered. In distinct contrast to  $[TaN]^+$ , its lighter congeners  $[VN]^+$  and  $[NbN]^+$  are inert towards methane under ambient conditions, and the origins of the remarkably variable efficiencies of the three metal nitrides are uncovered by CCSD(T) calculations.

**G**as-phase activation of methane under C–N coupling is important to convert this abundantly available feedstock into value-added commodities;<sup>[1]</sup> for example, this task has been accomplished in the large-scale DEGUSSA (BMA)<sup>[2]</sup> and the Andrussow<sup>[3]</sup> processes for producing hydrogen cyanide [Equations (1) and (2), respectively].

$$CH_4 + NH_3 \rightarrow HCN + 3H_2 \tag{1}$$

$$CH_4 + NH_3 + 1.5 O_2 \rightarrow HCN + 3 H_2 O \tag{2}$$

Despite the enormous economic importance of these transformations, there are only a few studies aimed at elucidating the mechanistic aspects of methane activation, accompanied with C-N coupling, at a strictly molecular level in the gas phase.<sup>[1b]</sup> For example, to mimic the DEGUSSA process, bare atomic and platinum cluster ions have been allowed to react with methane and ammonia. Generation of a platinum carbene intermediate was identified as the key step, and C-N coupling is brought about by nucleophilic addition of NH<sub>3</sub> to the methylene ligand.<sup>[4]</sup> This sequence of events, however, is not confined to M = Pt; also the atomic transition-metal cations Rh<sup>+</sup>, W<sup>+</sup>, Os<sup>+</sup>, Ir<sup>+</sup>, and Au<sup>+</sup> are capable to mediate this transformation.<sup>[5]</sup> Further, C-N coupling of methane and ammonia promoted by Pt-based hetero-bimetallic clusters has also been explored, and the diatomic platinum-coinage metal ions  $[PtM]^+$  (M = Cu, Ag, Au)<sup>[6]</sup> proved particularly active. While the carbene complexes of homonuclear larger platinum clusters also react with ammonia, C–N coupling does not take place; rather, NH<sub>3</sub> will coordinate to the polynuclear metal core accompanied by dehydrogenation of the methylene ligand.<sup>[7]</sup>

In addition to the above mentioned processes, C-N coupling in the gas phase was also observed for a few other systems.<sup>[1b,8]</sup> For example, while [NiCH]+ reacts with ammonia to generate the products  $Ni/[CH_2NH_2]^+$ ,  $[Ni,C,H_2,N]^+/H_2$ , and  $[Ni,C,H_3,N]^+/H$ ,<sup>[9]</sup> the carbyne complexes  $[Pt_nCH]^+$  (n = 1, 2) give rise to the formation of  $Pt_n/[CH_2NH_2]^+$ ,  $[Pt_n, C, H_2, N]^+/H_2$ , and  $Pt_nC/NH_4^+$  under the same conditions.<sup>[10]</sup> Further, the  $[MCH_3]^+$  ions (M = Zn, Cd, Hg) react with ammonia in a rather unusual gas-phase  $S_N 2$  process to give  $M/[CH_3NH_3]^+$ and, additionally, the long-lived encounter complex [M(CH<sub>3</sub>)- $(NH_3)]^+$ .<sup>[11]</sup> C–N coupling has also been noted in the thermal reaction of  $[Ni(NH_2)]^{\scriptscriptstyle +}$  with  $C_2H_4$  to form  $Ni/[C_2H_6N]^{\scriptscriptstyle +}$  and  $[Ni(C_2H_4N)]^+/H_2$ .<sup>[12]</sup> Finally, an unprecedented alkyne/nitrile gas-phase metathesis was observed for the high-valent iron nitrido dication [LFeN]<sup>2+</sup> when treated with alkynes to form RCN and [LFe(CR)]<sup>+</sup>.<sup>[13]</sup>

Herein, we report that at ambient conditions cationic tantalum nitride  $[TaN]^+$  activates methane rather efficiently under C–N coupling to generate exclusively  $[Ta(NCH_2)]^+/H_2$ . This behavior is in distinct contrast to that of its lighter congeners,  $[VN]^+$  and  $[NbN]^+$ , which are inert towards methane under the same conditions. Mechanistic aspects of the reactions are described, and the origins of the rather varying reactivities of the  $[MN]^+/CH_4$  (M = V, Nb, Ta) couples are discussed.

Mass-selected and thermalized  $[TaN]^+$  reacts with CH<sub>4</sub> to afford  $[Ta,C,H_2,N]^+/H_2$  as the sole product ion, Figure 1 a and Equation (3) (for technical details, see the Supporting Infor-

$$[TaN]^+ + CH_4 \rightarrow [Ta, C, H_2, N]^+ + H_2$$
(3)

mation); the reaction efficiency amounts to  $\phi = 50\%$ , relative to the collision rate,<sup>[14]</sup> with a rate constant of  $k = (3.1 \pm 0.9) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ . Owing to the uncertainty in the determination of the absolute pressure, an error of  $\pm 30\%$ is associated with these measurements.<sup>[15]</sup> In the reaction of [TaN]<sup>+</sup> with CD<sub>4</sub>, the rate constant did not change within detection limit; thus, isotopic substitution has no effect on the reaction rate. However, when [TaN]<sup>+</sup> is treated with CH<sub>2</sub>D<sub>2</sub>, the neutral products H<sub>2</sub>, HD, and D<sub>2</sub> are formed in a ratio of 1:3.3:0.7. Thus, an intramolecular kinetic isotope effect of KIE = 1.2 affects the branching ratio. Finally, when massselected [Ta,C,H<sub>2</sub>,N]<sup>+</sup> is subjected to collisional activation (CA), up to a collision energy of  $E_{coll} = 7.8 \text{ eV}$ , only Ta<sup>+</sup> is

<sup>[\*]</sup> Dr. S. Zhou, Prof. Dr. J. Li, Dr. M. Schlangen, Prof. Dr. H. Schwarz Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 135, 10623 Berlin (Germany) E-mail: helmut.schwarz@tu-berlin.de Prof. Dr. J. Li Institute of Theoretical Chemistry, Jilin University Changchun, 130023 (P.R. China)
Supporting information for this article can be found under:

Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie.201606259.



**Figure 1.** Mass spectra of the thermal reactions of mass-selected  $[TaN]^+$  with methane: a) CH<sub>4</sub>, b) CD<sub>4</sub>, d) Ar; all with a reaction delay of 2 s, and c) CH<sub>2</sub>D<sub>2</sub> with a reaction delay of 5 s ( $p=2 \times 10^{-9}$  mbar); e) CA spectrum for  $[Ta,C,H_2,N]^+$  upon collision with Ar at  $E_{coll} = 7.8$  eV; the signal labeled as **C** is due to the reaction of  $[TaN]^+$  with back-ground water; the longer reaction delay for the couple  $[TaN]^+/CH_2D_2$ , spectrum (c), was used to detect all isotopic variants.

generated; this finding points to the presence of an intact "CH<sub>2</sub>N" ligand.

Next, the reaction mechanisms were interrogated by quantum chemical calculations. The potential-energy surfaces (PESs) of the most favorable reaction pathways as well as



**Figure 2.** PES and selected structural information for the generation of  $[Ta(NHCH_3)]^+$  from  $[TaN]^+/CH_4$  as calculated at the CCSD(T)/BSII// PBE0/BSI level of theory. Zero-point corrected, relative energies are given in kJ mol<sup>-1</sup> and bond lengths in Å; charges are omitted for the sake of clarity.

Angew. Chem. Int. Ed. 2016, 55, 11678-11681

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

some structural information of relevant species are shown in Figure 2 and Figure 3. Figure 2 refers to the initial phase of



**Figure 3.** The energetically most favorable PES and selected structural information for the generation of  $[Ta(NCH_2)]^+$  from 4 as calculated at the CCSD(T)/BSII//PBE0/BSI level of theory. Zero-point corrected, relative energies are given in kJ mol<sup>-1</sup> and bond lengths in Å; charges are omitted for the sake of clarity.

the ion/molecule reaction, while Figure 3 deals with the liberation of molecular hydrogen.

Two spin states of  $[TaN]^+$  had to be considered. While doublet <sup>2</sup>[TaN]<sup>+</sup> corresponds to the ground state, it will be shown that also the excited quartet state plays a role in the generation of the  $[Ta(NHCH_3)]^+$  intermediate (Figure 2), and its dehydrogenation (Figure 3). As shown in Figure 2, formation of  $[Ta(NHCH_3)]^+$  can occur on the doublet PES. Thus, starting from the encounter complex <sup>2</sup>1, the insertion of <sup>2</sup>[TaN]<sup>+</sup> into the H<sub>3</sub>C–H bond takes place via <sup>2</sup>TS1/2 to form the rather stable intermediate <sup>2</sup>2. Next, the newly formed methyl group rebinds to the N atom via <sup>2</sup>TS2/4 to generate <sup>2</sup>[Ta(NHCH<sub>3</sub>)]<sup>+</sup> (<sup>2</sup>4); both transition states are lower in energy compared to the ground-state entrance channel (<sup>2</sup>R). Liberation of the methyl ligand from <sup>2</sup>2 to produce  $[TaNH]^+ + CH_3$ is calculated to be 17 kJ mol<sup>-1</sup> higher in energy relative to <sup>2</sup>R, and is thus inaccessible under thermal conditions.

The "insertion-rebound" pathway has also been located on the quartet surface, that is,  ${}^{4}R \rightarrow {}^{4}TS1/2 \rightarrow {}^{4}2 \rightarrow {}^{4}TS2/4 \rightarrow$ <sup>4</sup>4. Thus, starting from <sup>4</sup>1, a conventional hydrogen-atom transfer (HAT)<sup>[16]</sup> from CH<sub>4</sub> to the N-atom takes place via <sup>4</sup>TS1/3 to generate <sup>4</sup>3, which is to be followed by a rebound of the methyl group to form <sup>4</sup>[Ta(NHCH<sub>3</sub>)]<sup>+</sup> (<sup>4</sup>4). This HAT pathway profits from the high spin density at the N-atom of <sup>4</sup>[TaN]<sup>+</sup> (0.6). However, all intermediates and transition structures of the quartet PES are higher in energy as compared to the doublet species except for the C–N coupling intermediate **4**, which possesses a quartet ground state (<sup>4</sup>**4**). Thus, a minimum energy crossing point (MECP)<sup>[17]</sup> has been searched for and was located between **2** and **4** (9 kJ mol<sup>-1</sup> below <sup>2</sup>**TS2/4**); at **MECP1** the doublet and quartet surfaces intersect.

As shown in Figure 3, dehydrogenation of the CH<sub>3</sub>NH ligand attached to Ta<sup>+</sup> preferably proceeds via consecutive activations of the N-H and C-H bonds, again involving both the doublet and quartet spin states. On the doublet PES, a hydrogen-atom is first transferred from N to Ta via  $^{2}TS4/5$  to form  $^{2}5$ ; the second transfer of a hydrogen atom from the methyl group is achieved via two steps, that is,  ${}^{2}5 \rightarrow {}^{2}6 \rightarrow {}^{2}7$ . Although <sup>2</sup>7 corresponds to a genuine metal dihydride ( $d_{\text{H-H}} =$ 2.77 Å), molecular hydrogen can be eliminated from this complex directly without imposing a barrier according to a relaxed scan of the H-Ta-H angle to produce <sup>2</sup>[Ta- $(CH_2N)$ ]<sup>+</sup> +H<sub>2</sub> (<sup>2</sup>P1). The N-H/C-H bond transformations on the quartet surface are similar to the ones on the doublet surface except that only two steps,  ${}^{4}4 \rightarrow {}^{4}5 \rightarrow {}^{4}8$ , are involved; the intermediate 6 which on the doublet surface is stabilized by agostic interaction has not been located on the quartet PES. In addition, <sup>4</sup>8 corresponds to a dihydrogen complex ( $d_{\rm H-}$ <sub>H</sub> = 0.81 Å). Comparing the overall processes  $4 \rightarrow \rightarrow P1$  for the two spin-state surfaces, the quartet species are in general much higher in energy than those on the doublet potential surface except for <sup>4</sup>4 and <sup>4</sup>P1. Thus, at least two additional MECPs exist on the PESs: MECP2 is located between 4 and TS4/5 (1 kJ mol<sup>-1</sup> below <sup>2</sup>TS4/5), and MECP3 matters in the final step  ${}^{2}7 \rightarrow {}^{2}P1$  (105 kJ mol<sup>-1</sup> above  ${}^{2}7$ ).

For the overall reaction from **R** to **P1** the energetically most favorable route involves a two-state reactivity  $(TSR)^{[18]}$ scenario, that is,  ${}^{2}R \rightarrow {}^{2}1 \rightarrow {}^{2}2 \rightarrow MECP1 \rightarrow {}^{4}4 \rightarrow MECP2 \rightarrow {}^{2}5 \rightarrow {}^{2}6 \rightarrow {}^{2}7 \rightarrow MECP3 \rightarrow {}^{4}P1$ . However, the spin-crossings are not essential to produce  $[Ta(NCH_2)]^+$ , as the doublet pathway itself is available under thermal conditions. In any case, for both the TSR and a single-spin state reactivity (SSR) scenario, the elimination of molecular hydrogen from  ${}^{2}7$  corresponds to the rate-limiting step; this is in line with the intermolecular KIE = 1, as determined experimentally from the  $[TaN]^+/CH_4/$  $CD_4$  couples. The KIE = 1.2 which affects the branching ratio for the production of  $H_2/HD/D_2$  from  $[TaN]^+/CH_2D_2$  is, most likely, due to the barriers involved in the various intracomplex H/D migrations via  $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$ .

In addition to the pathways presented in Figure 2 and Figure 3, several other possible reaction scenarios have been considered theoretically, for example, dehydrogenation of the CH<sub>3</sub>NH ligand via a sequence of first C–H and then N–H bond cleavage, as well as pathways for producing the isomeric complex [Ta(NHCH)]<sup>+</sup>. However, these routes are much less competitive energetically (for more details, see the Supporting Information). With regard to other conceivable products, for example,  $[(H_2C)TaN]^+$  and  $[(HC)Ta(NH)]^+$ , both are calculated to be higher in energy than <sup>2</sup>**R** (63 kJ mol<sup>-1</sup> and 5 kJ mol<sup>-1</sup>, respectively); thus, they are inaccessible at ambient conditions.

To explore the scope and limitations of this selective C–N coupling process, we have also generated the two nitrides

 $[VN]^+$  and  $[NbN]^+$ ; both species are, however, unreactive towards methane under the same conditions as employed for  $[TaN]^+/CH_4$ . Computational results suggest that the pathways for the initial H<sub>3</sub>C–H bond activation by  $[MN]^+$  (M = V, Nb) resemble mechanistically those for  $[TaN]^+/CH_4$ ; the respective energetic data are shown in Table 1 (for structural

Table 1: Energetics for bond activation reactions of the systems  $[MN]^+/$  CH\_4  $(M\!=\!V,\,Nb).^{[a]}$ 

| Species            | $\Delta H_{r}$ kJ mol <sup>-1</sup> |        |
|--------------------|-------------------------------------|--------|
|                    | M = V                               | M = Nb |
| ²R                 | 0                                   | 0      |
| <sup>2</sup> 1     | -98.0                               | -92.1  |
| <sup>2</sup> TS1/2 | 8.4                                 | 25.7   |
| <sup>2</sup> 2     | -83.7                               | -145.9 |
| ⁴R                 | 196.2                               | 215.9  |
| 41                 | 107.5                               | 125.6  |
| <sup>4</sup> TS1/2 | _[b]                                | 193.7  |
| <sup>4</sup> 2     | _[b]                                | 25.5   |
| <sup>4</sup> TS1/3 | 170.6                               | 254.6  |
| <sup>4</sup> 3     | 117.4                               | 122.9  |

[a] For structural representations, see the Supporting Information.

[b] These species were not located for  $[VN]^+/CH_4$ .

information, see Supporting Information). However, the inspection of the data clearly indicates that even the most favorable initial step,  ${}^{2}\mathbf{R} \rightarrow {}^{2}\mathbf{1} \rightarrow {}^{2}\mathbf{TS1/2} \rightarrow {}^{2}\mathbf{2}$ , is inaccessible for [MN]<sup>+</sup>/CH<sub>4</sub> (M = V, Nb) as  ${}^{2}\mathbf{TS1/2}$  is for both couples located above  ${}^{2}\mathbf{R}$ . This result is in line with the experimental findings.

When comparing the pathways  ${}^{2}R \rightarrow {}^{2}1 \rightarrow {}^{2}TS1/2 \rightarrow {}^{2}2$  for the three couples, for  $[TaN]^+/CH_4$  all three species <sup>2</sup>1, <sup>2</sup>TS1/2, and  $^{2}2$  are much lower in energy than those calculated for [VN]<sup>+</sup>/CH<sub>4</sub> and [NbN]<sup>+</sup>/CH<sub>4</sub>, respectively. This is due to a much stronger Ta-C interaction as compared to the V-C and Nb-C interactions. Most likely, lanthanide contraction leads to tightening of the valence s and p orbitals thus resulting in stronger metal-carbon bonds for 5d metals.<sup>[19]</sup> As analyzed earlier in a broader context, these features originate from the operation of strong relativistic effects.<sup>[20]</sup> The stronger Ta-C interaction is reflected by the BDE- $((HN)Ta^+-CH_3)$  (ca. 328 kJ mol<sup>-1</sup>), which is considerably higher than  $BDE((HN)V^+-CH_3)$  (ca. 236 kJ mol<sup>-1</sup>), and  $BDE((HN)Nb^+-CH_3)$  (ca. 294 kJ mol<sup>-1</sup>), respectively. Accordingly, for the tantalum-containing systems, <sup>2</sup>1, <sup>2</sup>TS1/2, and  $^{2}2$  are more energetically favorable on the PES. Moreover, an NBO analysis provides further insight. In all <sup>2</sup>[MN]<sup>+</sup> cations investigated (M = V, Nb, Ta), the N atom is bound to the metal core via one  $\sigma$ - and two  $\pi$ -bonds, and one unpaired electron is located in the 5d orbital of the metal. The occupancies and characters of these orbitals do not change during the step  ${}^{2}1 \rightarrow {}^{2}2$ , that is, they serve as innocent spectators. In contrast, the 2s electron lone pair of the nitrogen atom in <sup>2</sup>1 is transformed to a  $\sigma$ (N–H) orbital in <sup>2</sup>2 when making the N-H bond; the electron pair of the original H<sub>3</sub>C-H bond has been transferred to a  $\sigma$ (M-C) orbital to form the M–C bond. Thus, the process  ${}^{2}1\rightarrow {}^{2}2$  has all the features of a proton-coupled electron transfer (PCET).<sup>[21]</sup> Accordingly, the higher electron density at the N atom of <sup>2</sup>[TaN]<sup>+</sup> (charge on N: -0.56) as compared to that of <sup>2</sup>[VN]<sup>+</sup> (charge on N: -0.29) and of <sup>2</sup>[NbN]<sup>+</sup> (charge on N: -0.45) favors accepting a proton from methane; this effect also contributes to the high reactivity of the [TaN]<sup>+</sup>/CH<sub>4</sub> couple as compared to its lighter congeners.

In summary, we have presented a novel example for a highly efficient thermal activation of methane by  $[TaN]^+$ and uncovered details of the mechanistic scenarios for an "insertion-coupling" process that eventually generates  $[Ta-(NCH_2)]^+$ . While the TSR pathway involves three MECPs to form the energetically most favorable products, a SSR channel is also available under thermal conditions. In distinct contrast to the high reactivity of  $[TaN]^+$ , its lighter congeners  $[VN]^+$  and  $[NbN]^+$  are inert towards methane; this inertness can be traced back to relativistic effects and a higher ionic character of  $[TaN]^+$ . The relativistic effects results in a much stronger Ta-C interaction, and the higher ionic character facilitates the operation of PCET in the initial  $H_3C$ -H bond activation.

## Acknowledgments

Generous financial support by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft ("UniCat") is appreciated. We thank Dr. Thomas Weiske for technical assistance.

Keywords: C–N coupling  $\cdot$  gas-phase reactions  $\cdot$  methane activation  $\cdot$  quantum chemical calculations  $\cdot$  tantalum nitride

How to cite: Angew. Chem. Int. Ed. 2016, 55, 11678–11681 Angew. Chem. 2016, 128, 11851–11855

- a) R. Horn, R. Schlögl, *Catal. Lett.* 2015, *145*, 23–39; b) "Mechanisms of Metal-Mediated C-N Coupling Processes: A Synergistic Relationship between Gas-Phase Experiments and Computational Chemistry": R. Kretschmer, M. Schlangen, H. Schwarz in *Understanding Organometallic Reaction Mechanisms and Catalysis* (Ed.: V. P. Ananikov), Wiley-VCH, Weinheim, 2014, pp. 1–16.
- [2] a) A. Bockholt, I. S. Harding, R. M. Nix, *J. Chem. Soc. Faraday Trans.* 1997, *93*, 3869–3878; b) D. Hasenberg, L. D. Schmidt, *J. Catal.* 1986, *97*, 156–168.
- [3] a) L. Andrussow, Angew. Chem. 1935, 48, 593–595; b) L.
   Andrussow, Ber. Dtsch. Chem. Ges. 1927, 60, 2005–2018.
- [4] M. Aschi, M. Brönstrup, M. Diefenbach, J. N. Harvey, D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 1998, 37, 829–832; Angew. Chem. 1998, 110, 858–861.
- [5] M. Diefenbach, M. Brönstrup, M. Aschi, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 1999, 121, 10614–10625.
- [6] a) K. Koszinowski, D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 2004, 43, 121–124; Angew. Chem. 2004, 116, 124–127; b) K. Koszinowski, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 2003, 125, 3676–3677.
- [7] a) K. Koszinowski, D. Schröder, H. Schwarz, Organometallics 2004, 23, 1132–1139; b) K. Koszinowski, D. Schröder, H. Schwarz, Organometallics 2003, 22, 3809–3819.
- [8] R. Kretschmer, M. Schlangen, H. Schwarz, Chem. Eur. J. 2012, 18, 40–49.

- [9] R. Kretschmer, M. Schlangen, H. Schwarz, *Dalton Trans.* 2013, 42, 4153-4162.
- [10] B. Butschke, H. Schwarz, Chem. Eur. J. 2011, 17, 11761-11772.
- [11] a) R. Kretschmer, M. Schlangen, M. Kaupp, H. Schwarz, Organometallics 2012, 31, 3816–3824; b) R. Kretschmer, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2011, 50, 5387– 5391; Angew. Chem. 2011, 123, 5499–5503.
- [12] R. Kretschmer, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2012, 51, 3483–3488; Angew. Chem. 2012, 124, 3541–3546.
- [13] a) J. P. Boyd, M. Schlangen, A. Grohmann, H. Schwarz, *Helv. Chim. Acta* 2008, *91*, 1430–1434; b) for other, intracomplex C–N coupling processes, of high-valent [LFeN]<sup>2+</sup>, see: M. Schlangen, J. Neugebauer, M. Reiher, D. Schröder, J. P. López, M. Haryono, F. W. Heinemann, A. Grohmann, H. Schwarz, *J. Am. Chem. Soc.* 2008, *130*, 4285–4294.
- [14] M. T. Bowers, J. B. Laudenslager, J. Chem. Phys. 1972, 56, 4711– 4712.
- [15] D. Schröder, H. Schwarz, D. E. Clemmer, Y. M. Chen, P. B. Armentrout, V. I. Baranov, D. K. Bohme, *Int. J. Mass Spectrom. Ion Processes* 1997, 161, 175–191.
- [16] For recent Reviews on HAT, see: a) M. Salamone, M. Bietti, Acc. Chem. Res. 2015, 48, 2895-2903; b) H. Schwarz, Chem. Phys. Lett. 2015, 629, 91-101; c) C. T. Saouma, J. M. Mayer, Chem. Sci. 2014, 5, 21-31; d) N. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2012, 51, 5544-5555; Angew. Chem. 2012, 124, 5638-5650; e) W. Z. Lai, C. S. Li, H. Chen, S. Shaik, Angew. Chem. Int. Ed. 2012, 51, 5556-5578; Angew. Chem. 2012, 124, 5652-5676; f) X. L. Ding, X. N. Wu, Y. X. Zhao, S. G. He, Acc. Chem. Res. 2012, 45, 382-390; g) J. M. Mayer, Acc. Chem. Res. 2011, 44, 36-46.
- [17] J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, *Theor. Chem. Acc.* 1998, 99, 95–99.
- [18] a) J. N. Harvey, WIREs Comput. Mol. Sci. 2014, 4, 1-14; b) S. Shaik, Int. J. Mass Spectrom. 2013, 354, 5-14; c) S. Shaik, H. Hirao, D. Kumar, Acc. Chem. Res. 2007, 40, 532-542; d) W. Nam, Acc. Chem. Res. 2007, 40, 522-531; e) P. E. M. Siegbahn, T. Borowski, Acc. Chem. Res. 2006, 39, 729-738; f) S. Shaik, D. Kumar, S. P. de Visser, A. Altun, W. Thiel, Chem. Rev. 2005, 105, 2279-2328; g) H. Schwarz, Int. J. Mass Spectrom. 2004, 237, 75-105; h) S. Shaik, S. P. de Visser, F. Ogliaro, H. Schwarz, D. Schröder, Curr. Opin. Chem. Biol. 2002, 6, 556-567; i) D. Schröder, S. Shaik, H. Schwarz, Acc. Chem. Res. 2000, 33, 139-145; j) S. Shaik, M. Filatov, D. Schröder, H. Schwarz, Chem. Eur. J. 1998, 4, 193-199; k) P. B. Armentrout, Science 1991, 251, 175-179.
- [19] a) S. Zhou, J. Li, M. Schlangen, H. Schwarz, *Chem. Eur. J.* 2016, 22, 7225–7228; b) J. J. Carroll, J. C. Weisshaar, *J. Phys. Chem.* 1996, 100, 12355–12363; c) K. K. Irikura, J. L. Beauchamp, *J. Phys. Chem.* 1991, 95, 8344–8351; d) J. A. M. Simoes, J. L. Beauchamp, *Chem. Rev.* 1990, 90, 629–688.
- [20] a) P. Pyykkö, Annu. Rev. Phys. Chem. 2012, 63, 45–64; b) H.
   Schwarz, Angew. Chem. Int. Ed. 2003, 42, 4442–4454; Angew.
   Chem. 2003, 115, 4580–4593; c) K. K. Irikura, J. L. Beauchamp,
   J. Am. Chem. Soc. 1991, 113, 2769–2770.
- [21] For recent Reviews on PCET, see a) S. Hammes-Schiffer, J. Am. Chem. Soc. 2015, 137, 8860–8871; b) A. Migliore, N. F. Polizzi, M. J. Therien, D. N. Beratan, Chem. Rev. 2014, 114, 3381–3465; c) D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016–4093; d) J. J. Warren, T. A. Tronic, J. M. Mayer, Chem. Rev. 2010, 110, 6961–7001; e) P. E. M. Siegbahn, M. R. A. Blomberg, Chem. Rev. 2010, 110, 7040–7061; f) S. Hammes-Schiffer, Chem. Rev. 2010, 110, 6937–6938.

Received: June 28, 2016 Published online: August 11, 2016

Angew. Chem. Int. Ed. 2016, 55, 11678-11681

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org 11681

