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Abstract: We examine capacity allocation mechanisms in a supply chain comprising a monopolistic supplier and two competing
retailers with asymmetric market powers. The supplier allocates limited capacity to retailers according to uniform, proportional, or
lexicographic mechanism. We study the impact of these allocation mechanisms on supplier pricing decisions and retailer ordering
behavior. With individual order size no greater than supplier capacity, we show that all three mechanisms guarantee equilibrium
ordering. We provide precise structures of retailer ordering decisions in Nash and dominant equilibria. Further, we compare the
mechanisms from the perspective of the supplier, the retailers, and the supply chain. We show that regardless of whether retailer
market powers are symmetric, lexicographic allocation with any priority sequence of retailers is better than the other two mech-
anisms for the supplier. Further, under lexicographic allocation, the supplier gains more profit by granting higher priority to the
retailer with greater market power. We also extend our study to the case with multiple retailers. © 2017 Wiley Periodicals, Inc. Naval
Research Logistics 64: 85–107, 2017

Keywords: capacity allocation; uniform allocation; proportional allocation; lexicographic allocation; supply chain; Nash
equilibrium

1. INTRODUCTION

Capacity shortfall frequently occurs in various industries
when retailers’ total order size exceeds a supplier’s available
capacity. For example, capacity shortages often arise in the
fashion goods, telecommunications, and electricity industries
[8]. Also, it is common practice for an automobile manufac-
turer to sell through multiple dealers in the same geographic
region, who compete for both the manufacturer’s limited sup-
ply capacity and customer demand for popular vehicle models
[10]. However, capacity expansion is often costly and dif-
ficult to achieve, particularly for such products as vehicles
and seasonal products. Thus, the supplier must price and
allocate scarce capacity effectively. In this work, we study
how various allocation mechanisms affect supplier pricing
and retailer ordering decisions, and how the supplier chooses
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an allocation mechanism with pricing decisions to increase
profit.

Specifically, we investigate a two-echelon supply chain in
which a monopolistic supplier (he) sells through two com-
peting retailers (she) with demand competition. The capac-
ity allocation mechanisms considered work in the following
way. First, the supplier announces his capacity level, the unit
wholesale price of this capacity, an allocation rule that defines
how capacity will be allocated as a function of retailer order
sizes, and a requirement that no order can be more than
total capacity. Second, the retailers place their orders. Third,
the supplier allocates capacity to retailers using the prean-
nounced allocation rule. Finally, the retailers sell the received
capacity to their customers. In our framework, an allocation
rule applies within an allocation mechanism. We henceforth
refer to a mechanism with a specific rule (e.g., uniform)
by its specific rule name (in this case, uniform allocation
mechanism).
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The problem under investigation fits within two strategic
interactions in a multistage noncooperative game. The ver-
tical interaction is modeled as a Stackelberg game between
the supplier as the leader and the two retailers as followers.
We assume that the supplier’s capacity is given exogenously,
and the supplier’s decisions are limited to the allocation rule
and wholesale price. The horizontal interaction captures the
competition between the retailers, who are in the same mar-
ket and compete for both the supplier’s capacity and demand
from a common customer population. We consider Cournot
competition, in which the two retailers sell at retail prices
as functions of the total capacity provided in the retail mar-
ket by the two retailers. The two retailers have asymmetric
market powers, where the retailer with greater market power,
high-type retailer, sells at a higher price than the other low-
type retailer. The difference between the market powers of
the two retailers is referred to as competitive gap.

Three widely studied allocation rules are considered: uni-
form, proportional, and lexicographic. Under uniform allo-
cation, if a retailer orders no more than the equal share of total
available capacity, then she receives her order and other retail-
ers share the remaining capacity in a similar way. Uniform
allocation is individually unresponsive (IU), in that allocation
is not strictly increasing with order size. When retailers are
local monopolists, uniform allocation guarantees equilibrium
orders and is truth-inducing in that it incentivizes retailers to
order their individually optimal order sizes, thus eliminating
the gaming effect [1, 2, 11]. However, when retailers compete
for customer demand, even though uniform allocation still
warrants equilibrium orders, it does not prevent the gaming
effect [6, 10].

Proportional allocation is more intuitive in that it allocates
capacity in proportion to order size; it thus strictly increases
with order size and is individually responsive (IR). Even for
monopolistic retailers, proportional allocation does not guar-
antee equilibrium orders and is well-known for causing order
inflation [1, 2, 9].

Under lexicographic allocation, retailers are prioritized
such that the retailer with the highest priority always has
her order filled first. Lexicographic allocation is a type of IU
allocation. Cachon and Lariviere [1] demonstrate that lexico-
graphic allocation is truth-inducing and guarantees equilib-
rium orders when retailers face independent demand. When
retailers compete for demand, equilibrium orders still exist
under lexicographic allocation, but the gaming effect may
also occur [4]. Hence, lexicographic allocation behaves sim-
ilarly to uniform allocation with respect to the existence of
equilibrium orders and the gaming effect.

Another popular IR allocation rule is linear allocation,
which allocates each retailer her order size minus a common
deduction. Linear allocation performs similarly to propor-
tional allocation in the presence of equilibrium orders and
the gaming effect [1, 10]. In fact, consistent with the findings
of [10] in a similar problem setting, linear allocation performs

nearly identically to proportional allocation for our problem;
hence, we omit this allocation.

The prespecified upper bound on order size, total capac-
ity, is practically meaningful, as the supplier’s capacity is
publicly known, and ordering more than supplier capac-
ity obviously exceeds the supplier’s capability to fill the
order [4]. Further, allowing unbounded orders can induce
arbitrarily large orders from competing retailers, leading to
unpredictable allocations [1, 2]. The upper bound can also be
considered as embedded in allocation rules. That is, any order
larger than the upper bound will be truncated to the bound.

Capacity allocation is studied extensively in the operations
literature. Hall and Liu [7] survey the problem and provide
classification schemes based on whether a game is coopera-
tive or noncooperative, capacity is sufficient or insufficient,
single or multiple types of capacity are considered, the timing
issue is addressed, and what kinds of mechanisms (including
auctions, contracts, pricing, and rules) are used. Our problem
is a type of noncooperative game with a single type of defi-
cient capacity allocated through rules without timing issues.
We next review the literature on this problem class.

Sprumont [11] establishes important theories for rule-
based allocations. This author shows that for a general capac-
ity allocation problem where each retailer has a single-peaked
preference for capacity size, uniform allocation is the unique
rule that is truth-inducing, efficient, and anonymous; here,
efficiency means that if total order size is greater (less) than
the available capacity, then no retailer receives an allocation
greater (less) than her order, and anonymity means that retail-
ers with equal orders receive the same allocation. Lee et al.
[9] show that, despite its intuitive attraction and popularity,
proportional allocation can lead to order inflation and con-
tributes to the well-known bullwhip effect. Cachon and Lar-
iviere [1, 2] analyze equilibrium ordering decisions, supplier
capacity choice, and supply chain performance under var-
ious allocation mechanisms, including linear, proportional,
lexicographic, and uniform. These authors find that, with
asymmetric information, proportional allocation is not resis-
tant to the gaming effect and may distort supplier capacity
selection. Uniform and lexicographic allocations are both
truth-inducing, but may result in lower profit for supply chain
members. Cachon and Lariviere [3] investigate a two-period
allocation using a turn and earn mechanism, where alloca-
tion in the current period is based on sales in the preceding
period. These authors show that this mechanism can increase
the supplier’s profit at the cost of the retailers, and even
the supply chain. Chen et al. [5] study the gaming effect
caused by proportional allocation, using laboratory exper-
iments. These authors find that retailers often order much
less than the Nash equilibrium. They propose a bounded
rationality model and find that retailers learn to be more
rational through repeated games, but their orders still may
not converge to Nash equilibrium.
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A common assumption in the aforementioned literature
is that each retailer is a local monopolist and her demand
is independent from other retailers. To our knowledge, only
four papers consider capacity allocation with demand compe-
tition. Liu [10] considers demand competition between two
competing retailers where retail prices are linear functions of
sales volume. This author investigates how different alloca-
tions affect supplier, retailers, and supply chain profits. Liu
finds that a supplier can sell more with less capacity, and
retailers may earn more when the supplier has less capacity.
Cho and Tang [6] extend Liu [10] to a case with multiple
retailers, focusing on the gaming effect caused by uniform
allocation. These authors identify exact conditions under
which the gaming effect is present. They then propose a com-
petitive allocation that eliminates the gaming effect under
demand competition. Chen et al. [4] analyze supplier whole-
sale pricing decisions under proportional and lexicographic
allocations, with retailers possessing identical market power
in demand competition. These authors show that lexico-
graphic allocation can bring higher profit to both the supplier
and the supply chain. Yang et al. [12] consider a supplier
who sells both by himself and through a retailer, and thus
allocates capacity between himself and the retailer. These
authors find that the supplier, the retailer, and consumers
may simultaneously benefit from the supplier’s limited
capacity.

We now clarify our contribution relative to [2, 4, 6, 10].
First, Cachon and Lariviere [2] assume local monopolistic
retailers, while we consider the case where retailers engage
in demand competition such that a retailer’s profit depends
on allocations to all retailers. Besides, we endogenize the
supplier’s wholesale price as his decision variable. Second,
Cho and Tang [6] and Liu [10] consider demand competition
among retailers, but do not consider lexicographic allocation
or wholesale pricing decisions, as we do. Third, Chen et al.
[4] consider identical retailers, while our consideration of
asymmetric retailers is more general, and we study uniform
allocation that is not considered in [4].

Overall, using a more general model setting, we regard
our contribution as unifying and generalizing various results
from the literature on capacity allocation with demand
competition, as follows:

• We endogenize the supplier’s wholesale price as a
decision variable and consider all three common
allocation mechanisms: uniform, proportional, and
lexicographic.

• We consider demand competition among retailers
with asymmetric market powers.

• We consider cases with two and multiple retailers, and
analytically characterize the relative performance of
the three mechanisms for the supplier, the retailers,
and the supply chain.

Specifically, we show that under uniform or proportional
mechanism, when the wholesale price is relatively low, each
retailer places an order equal to the prespecified upper bound,
and thus receives half the capacity. However, lexicographic
mechanism performs differently; although both retailers pre-
fer greater allocation, the retailer with higher priority can
receive the entire capacity. Conversely, if the wholesale price
is sufficiently high, then under all mechanisms considered,
the retailer with lower market power would be driven out
of the market. For the supplier, we find that the whole-
sale pricing decision is sensitive to his capacity level and
the competitive gap. Among the three mechanisms, lexico-
graphic allocation is best for the supplier, and proportional
allocation outperforms uniform allocation. Specifically, for
any given wholesale price, the supplier can sell at least the
same size of capacity from lexicographic allocation as from
the other two allocations. Further, using lexicographic allo-
cation, the supplier can sell more capacity by granting higher
priority to the high-type retailer, especially when the compet-
itive gap is large. We also extend our study to the case with
multiple retailers. We analytically show that proportional
allocation dominates uniform allocation and lexicographic
allocation with a priority sequence of retailers in nonincreas-
ing market powers dominates proportional allocation from
the perspective of the supplier for any number of retailers.
We numerically show that lexicographic allocation with any
priority sequence of retailers dominates uniform allocation
for any number of retailers. With multiple retailers, for the
supplier, the relative performance of lexicographic alloca-
tion compared with proportional allocation depends on the
priority sequence of retailers: lexicographic allocation may
outperform (underperform) proportional allocation if prior-
ity is given to retailers with higher (lower) market power.
We also analytically characterize the relative performance of
the three allocation mechanisms for both the retailers and the
supply chain.

This article proceeds as follows. In Section 2, we formally
describe our model, specifically with two retailers. Sections
3 and 4 conduct equilibrium analysis for retailer ordering
and supplier wholesale pricing decisions under uniform, pro-
portional, and lexicographic mechanisms, respectively. In
Section 5, we compare the three mechanisms from the per-
spective of the supplier, the retailers and the supply chain.
Results are developed for extended cases with multiple retail-
ers in Section 6. Section 7 summarizes our work. All proofs
are in the Appendix.

2. THE MODEL

Consider a two-echelon supply chain consisting of a sin-
gle supplier and two downstream retailers. The retailers order
a single type of product from the supplier, who has a fixed
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capacity in the quantity of K . Each retailer will receive her
ordered quantity if capacity is ample. However, when the
supplier’s capacity is limited such that it cannot satisfy the
sum of orders, an allocation rule should be implemented
to allocate the capacity between the two retailers. Suppose
retailer i, who places an order with quantity ri (i = 1, 2)
receives an allocation with quantity qi(r1, r2). Without loss
of generality, the supplier’s production cost associated with
unit capacity is normalized to zero for succinctness. The sup-
plier charges a wholesale w for each unit of capacity sold.
As discussed in Section 1 and as discussed in [4], we do not
allow a retailer’s order size to exceed total capacity, that is,
we require ri ≤ K . After receiving allocations, the retailers
in turn sell the product to the same market and compete for
customer demand. Following widely adopted convention in
the capacity allocation literature, we assume that information
is symmetric and complete for all parties, that is, supplier
capacity, unit capacity wholesale price, the allocation rule,
the upper bound for each individual order, and the customer
demand functions are common knowledge of the supplier and
retailers.

Let pi be the retail price of retailer i (i = 1, 2). The retail
price is determined by a linear demand function

pi = zi − q1(r1, r2) − q2(r1, r2),

where zi represents retailer i’s market power, which may cap-
ture retailer i’s comparative advantage over the other retailer
because of certain factors, such as ease of access, customer
preference, and brand equity. Without loss of generality, we
assume z1 ≥ z2, and refer to retailer 1 as a high-type retailer
and retailer 2 as a low-type retailer.

Note that we characterize a duopoly model of two retailers,
and it is necessary to have z2 > (z1 + w)/2 to retain both
retailers in the market when the supplier has ample capac-
ity; otherwise, retailer 2 cannot survive in competition with
retailer 1. Such an assumption is adopted by [6, 10]. How-
ever, in our problem w is a decision variable of the supplier,
and it would be artificial to impose a lower bound on w other
than 0. Henceforth, we assume z2 > z1/2.

We next describe the sequence of events and decisions.
First, before the selling season starts, the supplier announces
his capacity level, unit wholesale price of the capacity, an
allocation rule, and an upper bound equal to his capacity
size for any order. Second, the retailers place their orders.
Third, the supplier allocates capacity to retailers using the
preannounced allocation rule. Finally, the retailers sell the
allocated capacity to their customers. This is a Stackelberg
game in which the supplier is the leader and the retailers
are followers. For a given capacity level and allocation rule,
the supplier’s problem is to choose a wholesale price w to
maximize his profit:

�s = maxw {w · (q1(r1, r2) + q2(r1, r2))} .

Given the wholesale price, capacity level, and allocation
rule, the retailers’ problems are

�i(rj , w) = maxri
{(zi − qi(ri , rj ) − qj (ri , rj )

− w) · qi(ri , rj )},
where i, j = 1, 2 and i �= j .

Here, we consider three commonly used allocation rules:
uniform, proportional, and lexicographic allocations. First,
consider two retailers under uniform allocation. A retailer
receives her order if she orders less than half of the capacity,
and the other retailer receives the minimum of her order and
the remaining capacity; if the retailer with smaller order size
orders more than half the capacity, then she will share the
capacity equally with the other retailer. Formally, uniform
allocation with two retailers is defined as follows:

qi(ri , rj ) =

⎧⎪⎨
⎪⎩

ri if ri + rj ≤ K ,

min {ri , K/2} if ri + rj > K , ri ≤ rj ,

max
{
K − rj , K/2

}
if ri + rj > K , ri > rj ,

where i, j = 1, 2 and i �= j .
Under proportional allocation, a retailer receives the allo-

cation size she orders if the capacity is sufficient; otherwise,
she obtains allocation in proportion to her order size. Hence,

qi(ri , rj ) =
{

ri if ri + rj ≤ K ,
Kri

ri+rj
if ri + rj > K ,

where i, j = 1, 2 and i �= j .
Under lexicographic allocation, the supplier grants prior-

ity to one of the retailers and satisfies her order first as far as
possible; the supplier then allocates the remaining capacity
to the other retailer. Suppose priority is given to retailer i and
ri , rj ≤ K . We have

qi(ri , rj ) = ri and

qj (ri , rj ) =
{

rj if ri + rj ≤ K ,

K − ri if ri + rj > K ,

where i, j = 1, 2 and i �= j .
Before examining the allocation mechanisms, we first

derive order/allocation sizes in equilibrium when the supply
of product is unlimited. In this case, retailer i’s order quantity
equals her capacity allocation size. We do not allow capac-
ity to be withheld by retailers, and the allocation size is the
same as the selling quantity to the market. Such an assump-
tion is used by [2, 4, 6, 10]. From retailer i’s profit function
πi(r1, r2) = (zi − w − r1 − r2)ri , i = 1, 2, we obtain the
equilibrium order quantity without capacity constraint:

r∗
1 = 2z1 − z2 − w

3
, and r∗

2 = 2z2 − z1 − w

3
.
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In addition, q∗
i = r∗

i , and the total allocated capacity is
q∗

1 + q∗
2 = z1+z2−2w

3 .
For convenience, in our analysis, we adopt the following

notations. First, we map real value interval to nonnegative
interval as

[a, b] =

⎧⎪⎨
⎪⎩

∅ if b < a or b < 0;

[0, b] if b > 0 and a < 0;

[a, b] if 0 ≤ a ≤ b.

Also, we denote [x1, x2] × [y1, y2] orders (a, b) for any
x1 ≤ a ≤ x2 and y1 ≤ b ≤ y2. In addition, we define
x1 ∧ x2 = min {x1, x2} and x1 ∨ x2 = max {x1, x2}.

3. UNIFORM ALLOCATION

We first examine uniform allocation mechanism. Given the
supplier’s wholesale price and capacity level, we express the
retailers’ optimization problems as:

�̃i(rj , w) = max
ri≤K

{(zi − q̃i (ri , rj ) − q̃j (ri , rj )

− w) · q̃i (ri , rj )},
= max

ri≤K

{
�̃1

i = max
ri≤K−rj

(zi − w − ri − rj )ri ,

�̃2
i = max

ri>K−rj ;ri≤rj

(
zi − w −

(
ri ∧ K

2

)

−
(

(K − ri) ∨ K

2

) )
·
(

ri ∧ K

2

)
,

�̃3
i = max

ri>K−rj ,ri>rj

(
zi − w −

(
(K − rj ) ∨ K

2

)

−
(

rj ∧ K

2

) )
·
(

(K − rj ) ∨ K

2

)}
,

where i, j = 1, 2 and i �= j . The following lemma charac-
terizes the retailers’ best response functions and associated
profits.

LEMMA 1: Given retailer j ’s order quantity rj , let r̃i (rj )

be retailer i’s best response function (i, j = 1, 2 and i �= j ).
Define α̃i = zi − w − √

2K(zi − w − K), we then have:

i. w ∈ (0, zi − 2K]: if rj < K/2, then r̃i (rj ) ∈
[K−rj , K] with �̃i(rj , w) = (zi−w−K)(K−rj ); if
rj ≥ K/2, then r̃i (rj ) ∈ [K/2, K] with �̃i(rj , w) =
(zi − w − K)K/2.

ii. w ∈ (zi − 2K , zi − 3K/2]: if rj ≤ 2K − zi + w,
then r̃i (rj ) = (zi − w − rj )/2 with �̃i(ri , w) =
(zi − w − rj )

2/4; if 2K − zi +w < rj ≤ K/2, then
r̃i (rj ) ∈ [K − rj , K] with �̃i(rj , w) = (zi − w −

K)(K − rj ); if rj > K/2, then r̃i (rj ) ∈ [K/2, K]
with �̃i(rj , w) = (zi − w − K)K/2.

iii. w ∈ (zi − 3K/2, zi − K]: if rj ≤ α̃i , then r̃i (rj ) =
(zi−w−rj )/2 with �̃i(rj , w) = (zi − w − rj )

2/4;if
rj > α̃i , then r̃i (rj ) ∈ [K/2, K] with �̃i(rj , w) =
(zi − w − K)K/2.

iv. w ∈ (zi − K , zi): if rj ≤ zi − w, then r̃i (rj ) =
(zi −w− rj )/2 with �̃i(rj , w) = (zi − w − rj )

2/4;
if rj > zi − w, then r̃i (rj ) = 0 with �̃i(rj , w) = 0.

The results show that a retailer’s best response order quan-
tity directly depends on the supplier’s wholesale price and the
other retailer’s order size. In line with the definition of uni-
form allocation, a very intuitive observation is that retailer i

would always receive the same allocation K/2 by ordering
from K/2 to K (the maximum allowed order) if retailer j ’s
order size is no less than K/2. This explains the last part of
(i), (ii), and (iii). However, if the wholesale price is very high,
then the retailers cannot afford it and order nothing (see the
second part of (iv)). Further, given an appropriate wholesale
price, if the competitor orders a reasonably small quantity
such that total capacity is sufficient for both retailers, then
the best response function is the same as in the case without
capacity limit. The first parts of (ii), (iii), and (iv) illustrate
this effect. Conversely, from the second part of (i), we can
see that if the wholesale price is very low, together with the
fact that the other retailer’s order quantity is less than K/2,
then retailer i will order from K − r2 to K and gain the same
resulting allocation K − r2.

3.1. Equilibrium Analysis under Uniform Allocation

In this section, our objective is to characterize retailer order
sizes in equilibrium and the optimal wholesale pricing for the
supplier. Using backward induction, under uniform alloca-
tion, we first derive the retailers’ equilibrium orders given any
wholesale price, and then examine the supplier’s wholesale
pricing decisions.

The following theorem characterizes Nash equilibria of the
retailers’ order quantities.

THEOREM 1: Suppose the Nash equilibrium orders are
(r̃∗

1 , r̃∗
2 ) under uniform mechanism. Define w̃+ = 2z2 − z1 −

9
4K + 3

4

√
K2 + 8K(z1 − z2), then we have

(I) K ≤ z1 − z2:
(i) if w ∈ (0, z2 − 3K/2], then any point in

[K/2, K]×[K/2, K] is a Nash equilibrium;
(ii) if w ∈ (z2 − 3K/2, z2 − K], then any point

in [α̃2, K]×[K/2, K] is a Nash equilibrium;
(iii) if w ∈ (z2 −K , z1 − 2K], then there exists a

unique Nash equilibrium (r̃∗
1 , r̃∗

2 ) = (K , 0);
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(iv) if w ∈ (z1 − 2K , z1), then there exists a
unique Nash equilibrium (r̃∗

1 , r̃∗
2 ) = ((z1 −

w)/2, 0).
(II) K > z1 − z2:

(i) if w ∈ (0, z2 − 3K/2], then any point in
[K/2, K]×[K/2, K] is a Nash equilibrium;

(ii) if w ∈ (z2 − 3K/2, w̃+], then any point in
[α̃2, K] × [K/2, K] is a Nash equilibrium;

(iii) if w ∈ (w̃+, z1 − 3K/2], then (r̃∗
1 , r̃∗

2 ) =
((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a
Nash equilibrium and any point in [α̃2, K]×
[K/2, K] is also a Nash equilibrium. Fur-
ther, the former equilibrium dominates the
latter by generating greater profits for both
retailers;

(iv) if w ∈ (z1 − 3K/2, z2 − K], then (r̃∗
1 , r̃∗

2 ) =
((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a
Nash equilibrium and any point in [α̃2, K]×
[α̃1, K] is also a Nash equilibrium. Further,
the former equilibrium dominates the latter
one by generating greater profits for both
retailers;

(v) if w ∈ (z2 −K , 2z2 − z1], then there exists a
unique equilibrium (r̃∗

1 , r̃∗
2 ) = ((2z1 − z2 −

w)/3, (2z2 − z1 − w)/3);
(vi) if w ∈ (2z2 − z1, z1), then there exists

a unique equilibrium (r̃∗
1 , r̃∗

2 ) = ((z1 −
w)/2, 0).

Theorem 1 presents equilibrium orders when the two retail-
ers compete for demand with different market powers. Equi-
librium analysis is conducted for the cases K ≤ z1 − z2 and
K > z1 − z2 separately. The results are quite intuitive. First,
when capacity is no greater than z1−z2, if the wholesale price
is fairly low, with w ∈ (0, z2 −K], then both retailers seek to
gain higher allocations, but any one of them can receive only
K/2 by ordering no less than K/2. Second, as the wholesale
price increases, the low-type retailer cannot afford it and thus
is driven out of the game. As a result, the problem reduces
to a simple capacity allocation consisting of a single sup-
plier and a single retailer. In this special case, the high-type
retailer’s profit function is �̃1 = (z1 − w − q̃1)q̃1. Taking
the first-order condition with respect to q̃1, the optimal order
follows that q̃∗

1 = (z1 − w)/2 without capacity constraint.
Consequently, (a) if w ≤ z1 − 2K , that is, K ≤ (z1 − w)/2,
which implies that the capacity is limited for the retailer, then
the equilibrium orders and the allocations are both (K , 0); (b)
if w > z1 − 2K , that is, K > z1−w

2 , where the capacity is
sufficient to satisfy the retailer’s order, then the equilibrium
orders and allocations are both ((z1 − w)/2, 0).

Moreover, when the capacity level exceeds the value
z1−z2, certain results are similar to the case with K ≤ z1−z2

when the wholesale price is very low or sufficiently high. We

also find several other interesting results. In particular, when
w ∈ (z2−3K/2, w̃+], as 2z2−z1−3K/2 < (z1+z2−3K)/2,
it follows that if 2q∗

2 < q∗
1 + q∗

2 < K < K(w̃+), where

K(w̃+) = (z2 −w+
√

(z2 − w)2 − 8(2z2 − z1 − w)2/9)/2,
then the low-type retailer would inflate her order size to be
no less than K/2 so as to gain more profit from the allo-
cations (K/2, K/2) than from the ideal allocations ((2z1 −
z2 − w)/3, (2z2 − z1 − w)/3). This result reflects the fact
that uniform mechanism has potential to favor the low-type
retailer by offering an opportunity to diminish her compet-
itive gap relative to the high-type retailer. Note that when
w ∈ (w̃+, z2 − K], although there exist multiple equilibrium
orders, the equilibrium (r̃∗

1 , r̃∗
2 ) = ((2z1 − z2 − w)/3, (2z2 −

z1 − w)/3) dominates other equilibria by generating more
profits for both retailers.

Cho and Tang [6] and Liu [10] also study equilibrium
ordering under uniform allocation. Cho and Tang [6], mostly
study whether the gaming effect presents under uniform allo-
cation and does not provide complete equilibrium orders
under different conditions of K and w. The analysis in
Lemma 1 and Theorem 1 makes the following major dis-
tinctions comparing with [10]: (1) we assume an upper
bound (supplier’s capacity K) on order size, while Liu (2012)
assumes no upper bound on order size; (2) Liu [10] assumes
z2 > (z1 + w)/2, while in our problem w is a decision vari-
able of the supplier, and it would be artificial to impose a
lower bound on w other than 0, thus our article, relax the
assumption as z2 > z1/2; (3) we provide complete and pre-
cise structures for retailers’ ordering decisions in Nash and
dominant equilibrium in Theorem 1, while Liu [10] focuses
on allocations in stead of equilibrium orders and only pro-
vides a representative equilibrium when multiple equilibria
result in the same allocation. In addition, Liu [10] classi-
fies equilibria based on capacity level K , while we clas-
sify equilibria based on wholesale price w, for the ease of
subsequent analysis of the supplier’s wholesale pricing deci-
sion, which [10] does not consider. In fact, if we transform
from w̃(K) to K(w̃), it follows that K = (z2 − w)/2 +
(

√
−8z2

1 + 32z1z2 − 23z2
2 − 16z1w + 14z1w + 14z2w + w2) /6,

which is actually the threshold K+
2 used in [10]. Therefore,

our results essentially are consistent with the results in [10],
and are more complete from the perspective of equilibrium
analysis.

3.2. Supplier’s Decisions under Uniform Allocation

Now, we consider the supplier’s decisions on wholesale
price. By anticipating the retailers’ best response order quan-
tities and the allocations they will receive, the supplier
chooses an optimal wholesale price to maximize his profit.

First, we establish the supplier’s profit function. Note that
when K ≤ z1 − z2, if w ∈ (0, z1 − 2K], then the total
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Table 1. Supplier’s pricing decisions and profits under uniform allocation

K (0, z1
4 ] (

z1
4 , z1 − z2] (z1 − z2, K̃+

2 ] (K̃+
2 , +∞) -

w̃∗ z1 − 2K z1/2 argmax
w∈{w̃+ ,z1/2}

max
{
Kw̃+, z2

1/8
} z1

2 < z2 ≤ 5z1
7

�̃∗
s K(z1 − 2K) z2

1/8 max
{
Kw̃+, z2

1/8
}

w̃∗ z1 − 2K z1/2 argmax
w∈{w̃+ ,z1/2}

max
{
Kw̃+, z2

1/8
}

argmax
w∈{w̃+ ,(z1+z2)/4,z1/2}

max
{
Kw̃+, (z1 + z2)

2/24, z2
1/8

} 5z1
7 < z2 ≤ 3z1

4

�̃∗
s K(z1 − 2K) z2

1/8 max
{
Kw̃+, z2

1/8
}

max
{
Kw̃+, (z1 + z2)

2/24, z2
1/8

}
w̃∗ z1 − 2K argmax

w∈{w̃+ ,2z2−z1}
max

{
Kw̃+, (2z2 − z1)(z1 − z2)

}
argmax

w∈{w̃+ ,(z1+z2)/4,2z2−z1}
max

{
Kw̃+, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)
} 3z1

4 < z2 < z1

�̃∗
s K(z1 − 2K) max

{
Kw̃+, (2z2 − z1)(z1 − z2)

}
max

{
Kw̃+, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)
}

K̃+
2 = 3z2−z1

8 + 1
24

√
−191z2

1 + 506z1z2 − 311z2
2, w̃+ = 2z2 − z1 − 9

4 K + 3
4

√
K2 + 8K(z1 − z2); the three w̃∗’s and �̃∗

s ’s are the supplier’s optimal wholesale prices and the
corresponding maximum profits under different levels of K , z1, and z2, respectively.

allocated capacity is K; thus, in this scenario the supplier’s
profit is Kw. Otherwise, if w ∈ (z1 − 2K , z1), then retailer
2 would be driven out of the market, and thus the sup-
plier’s profit would be w(z1 −w)/2. Therefore, the supplier’s

maximum profit can be characterized as max
{
�̃1

s , �̃2
s

}
,

where

�̃1
s = max

w∈(0,z1−2K]
Kw, �̃2

s = max
w∈(z1−2K ,z1)

w(z1 − w)

2
.

Similarly, when K > z1 − z2, the supplier’s problem is

maxw

{
�̃3

s , �̃4
s , �̃5

s

}
, where

�̃3
s = max

w∈(0,w̃+]
Kw, �̃4

s = max
w∈(w̃+,2z2−z1]

w(z1 + z2 − 2w)

3
,

�̃5
s = max

w∈(2z2−z1,z1)

w(z1 − w)

2
.

To determine the optimal wholesale price w̃∗ and the cor-
responding profit �̃∗

s for the supplier, we need to compare
�̃1

s , �̃2
s and �̃3

s , �̃4
s , �̃5

s . The corresponding results are in
Proposition 1 in the Appendix. We illustrate the supplier’s
optimal wholesale pricing decisions in Table 1, where the
first row presents different levels of the capacity K where
a full range of K > 0 is covered, and the last column
denotes the competitive gap between the two retailers’ market
powers where a full range of z1/2 < z2 < z1 is cov-
ered. For any capacity level K and competitive gap between
z1 and z2, the optimal wholesale price w̃∗ and associated
profit �̃∗

s are listed in the corresponding cells of the tables.
We can see that under different conditions, the supplier
can strategically alter the wholesale price to maximize his
profit.

4. PROPORTIONAL AND LEXICOGRAPHIC
ALLOCATIONS

First, we investigate proportional allocation. Under this
mechanism, the retailers’ optimization problem can be
expressed as

�̂i(rj , w) = max
ri≤K

{(zi − q̂i (ri , rj )

− q̂j (ri , rj ) − w) · q̂i (ri , rj )}
= max

ri≤K

{
zi −

(
Kri

ri + rj

∧ ri

)

−
(

Krj

ri + rj

∧ rj

)
− w

}
·
(

Kri

ri + rj

∧ ri

)
,

where i, j = 1, 2 and i �= j .
Due to space limit, retailers’ best response functions and

equilibrium ordering decisions are provided in Lemma 2 and
Proposition 2 in the Appendix. Using the same approach
as for uniform allocation, we derive the supplier’s optimal
wholesale price and the associated maximum profit under
proportional allocation, as shown in Table 2, in a similar
structure as Table 1. Table 2 shows that proportional allo-
cation performs similar uniform allocation with respect to
the supplier’s pricing decision. Specifically, the supplier’s
capacity level and the competitive gap between the two retail-
ers’ market powers both directly affect the supplier’s pricing
decisions.

Now, we consider lexicographic allocation. Suppose pri-
ority is given to retailer i; then the retailers’ profit function
can be rewritten as:

�̌i(rj , w) = max
ri≤K

{(zi − w − q̌i (ri , rj )

− q̌j (ri , rj ) · q̌i (ri , rj )},
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Table 2. Supplier’s pricing decisions and profits under proportional allocation

K (0, z1
4 ] (

z1
4 , z1 − z2] (z1 − z2, K̂+

2 ] (K̂+
2 , +∞) -

ŵ∗ z1 − 2K z1/2 argmax
w∈{ŵ− ,z1/2}

max
{
Kŵ−, z2

1/8
} z1

2 < z2 ≤ 5z1
7

�̂∗
s K(z1 − 2K) z2

1/8 max
{
Kŵ−, z2

1/8
}

ŵ∗ z1 − 2K z1/2 argmax
w∈{ŵ− ,z1/2}

max
{
Kŵ−, z2

1/8
}

argmax
w∈{ŵ− ,(z1+z2)/4,z1/2}

max
{
Kŵ−, (z1 + z2)

2/24, z2
1/8

} 5z1
7 < z2 ≤ 3z1

4

�̂∗
s K(z1 − 2K) z2

1/8 max
{
Kŵ−, z2

1/8
}

max
{
Kŵ−, (z1 + z2)

2/24, z2
1/8

}
ŵ∗ z1 − 2K argmax

w∈{ŵ− ,2z2−z1}
max

{
Kŵ−, (2z2 − z1)(z1 − z2)

}
argmax

w∈{ŵ− ,(z1+z2)/4,2z2−z1}
max

{
Kŵ−, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)
} 3z1

4 < z2 < z1

�̂∗
s K(z1 − 2K) max

{
Kŵ−, (2z2 − z1)(z1 − z2)

}
max

{
Kŵ−, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)
}

K̂+
2 = z1+z2

12 + 1
24

√
−136z2

1 + 304z1z2 − 136z2
2, ŵ− = 3K+ z1+z2

2 − 3
2

√
8K2 + (z1 − z2)

2; the three w̃∗’s and �̃∗
s ’s are the supplier’s optimal wholesale prices and the corresponding

maximum profits under different levels of K , z1, and z2, respectively.

Table 3. Supplier’s pricing decisions and profits under lexicographic allocation

K (0, z1
4 ] (

z1
4 , z1 − z2] (z1 − z2, Ǩ+

i ] (Ǩ+
i , +∞) -

w̌∗ z1 − 2K z1/2 argmax
w∈

{
w̌

+
i

,z1/2
} max

{
Kw̌+

i , z2
1/8

} z1
2 < z2 ≤ 5z1

7

�̌∗
s K(z1 − 2K) z2

1/8 max
{
Kw̌+

i , z2
1/8

}
w̌∗ z1 − 2K z1/2 argmax

w∈
{
w̌

+
i

,z1/2
} max

{
Kw̌+

i , z2
1/8

}
argmax

w∈
{
w̌

+
i

,(z1+z2)/4,z1/2
} max

{
Kw̌+

i , (z1 + z2)
2/24, z2

1/8
} 5z1

7 < z2 ≤ 3z1
4

�̌∗
s K(z1 − 2K) z2

1/8 max
{
Kw̌+

i , z2
1/8

}
max

{
Kw̌+

i , (z1 + z2)
2/24, z2

1/8
}

w̌∗ z1 − 2K argmax
w∈

{
w̌

+
i

,2z2−z1

} max
{
Kw̌+

i , (2z2 − z1)(z1 − z2)
}

argmax
w∈

{
w̌

+
i

,(z1+z2)/4,2z2−z1

} max
{
Kw̌+

i , (z1 + z2)
2/24, (2z2 − z1)(z1 − z2)

} 3z1
4 < z2 < z1

�̌∗
s K(z1 − 2K) max

{
Kw̌+

i , (2z2 − z1)(z1 − z2)
}

max
{
Kw̌+

i , (z1 + z2)
2/24, (2z2 − z1)(z1 − z2)

}
Ǩ+

i = 3zi−zj

8 + 1
24

√
−91z2

i + 226zizj − 115z2
j , w̌+

i = 2zi − zj − 9
2 K + 3

2

√
5K2 − 4K(zi − zj ), i, j = 1, 2, i �= j ; the three w̃∗’s and �̃∗

s ’s are the supplier’s optimal wholesale

prices and the corresponding maximum profits under different levels of K , z1, and z2, respectively.

= max
ri≤K

{
�̌1

i = max
ri≤K−rj

(zi − ri − rj − w) · ri ,

�̌2
i = max

ri>K−rj

(zi − K − w) · ri

}
,

�̌j (ri , w) = max
rj ≤K

{(zj − q̌i (ri , rj )

− q̌j (ri , rj ) − w) · q̌j (ri , rj )},
= max

rj ≤K

{
�̌1

j = max
rj ≤K−ri

(zj − w − ri − rj ) · rj ,

�̌2
j = max

rj >K−ri

(zj − K − w) · (K − ri)
}

,

where i, j = 1, 2 and i �= j .
Due to space limits, equilibrium analysis and the corre-

spondent discussions for lexicographic allocation are pro-
vided in Proposition 3 in the Appendix. We only present the

supplier’s wholesale pricing associated with the profits in
Table 3.

5. COMPARISONS OF THREE MECHANISMS

We have investigated uniform, proportional, and lexico-
graphic allocations with regard to how they affect the sup-
plier’s whole pricing decision in a duopoly model with
demand competition. An interesting question is which of the
three allocations is preferred by the supplier, the retailers
and the supply chain when the total order size exceeds the
available capacity. Because the supplier is the Stackelberg
leader in the capacity allocation game, in this section, we
first compare the performances of the three allocations from
the perspective of the supplier, then from the perspectives of
the retailers and the supply chain, respectively.
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For notational convenience, for any given capacity level,
we denote the maximum profit of the supplier obtained
from uniform allocation, proportional allocation, and lexi-
cographic allocation–1 (order priority to high-type retailer),
and lexicographic allocation–2 (order priority to low-type
retailer) by U , P , L1, and L2, respectively. To elaborate the
comparisons of U , P , L1, and L2, we establish a benchmark
by considering the case where the two retailers’ market pow-
ers are symmetric. Let z1 = z2 = z. Comparing the supplier’s
profits between uniform and proportional allocation (Tables
1 and 2), we obtain the results as: (i) If K < z/3, then the
supplier’s profits under uniform and proportional allocations
are �̃∗

s = K(z − 3K/2) and �̂∗
s = K[z − 3(

√
2 − 1)K)],

respectively. It is easy to check that �̂∗
s > �̃∗

s , and therefore
the latter allocation rule is a better choice for the supplier; and
(ii) If z/3 ≤ K < (2 + √

2)z/6, then recall that �̃∗
s = z2/6

and �̂∗
s = K(z − 3K/2) (clearly, proportional allocation

still outperforms uniform allocation, as �̂∗
s > �̃∗

s ); and (iii)
If capacity is sufficiently large, then �̃∗

s = �̂∗
s = z2/6, which

implies that the two allocation mechanisms are indifferent in
allocating capacity from the supplier’s perspective. Hence,
we conclude that proportional mechanism is better than uni-
form allocation, independent of the supplier’s capacity level.
Chen et al. [4] show that lexicographic allocation is better
than proportional allocation for the supplier, through earn-
ing greater profit, in the symmetric case with z1 = z2 and
L1 = L2. Hence, we have that U ≤ P ≤ L2 = L1, not
affected by the supplier’s capacity level.

Now, we consider the case when the retailers’ market pow-
ers are asymmetric with z1 > z2. Note that we assume
z2 > z1/2. Tables 1–3 show that from the perspective of
the supplier, it is indifferent among the three mechanisms
when the capacity level is below the threshold level z1 − z2.
This result is intuitive. Within a limited capacity, the two
retailers both order large quantities such that the supplier’s
capacity is fully sold. Consequently, the supplier maximizes
his profit by charging the same wholesale price under all the
three mechanisms.

However, when K > z1 − z2, the problem becomes more
complex. Take uniform and proportional mechanisms, for
example. Observing the supplier’s profit functions under the
two allocations, since ŵ− > w̃+, the profits are differ-
ent only when w is in the interval [w̃+, ŵ−]. Recall that
�̃s = (z1 +z2 −2w)w/3, and �̂s = Kw. To show �̃s < �̂s ,
it suffices to show (z1 + z2 − 2w)/3 < K , which is equiv-
alent to w > (z1 + z2 − 3K)/2. When w ∈ [w̃+, ŵ−], it
is easy to verify that w̃+ > (z1 + z2 − 3K)/2. Hence, this
implies that proportional mechanism outperforms uniform
allocation by generating more profit for the supplier. Equiva-
lently, we may conclude that the supplier can sell more under
proportional mechanism than under uniform mechanism at
a given wholesale price in this problem setting. Similarly, it
is not difficult to verify that for the supplier, lexicographic

mechanism performs at least equally well as proportional
mechanism.

Further, it is interesting to find that, for the supplier, lex-
icographic allocation that grants order priority to the high-
type retailer outperforms the case that grants priority to the
low-type retailer. We interpret this finding as follows. In gen-
eral, as the wholesale price increases, retailers will shrink
their order sizes, and consequently the supplier may have
excess capacity. To earn more profit, the supplier would
like his capacity to be fully sold with higher profit. When
w ∈ (0, w̌+

i ], (i = 1, 2), the retailer with order priority
orders the entire capacity and there is no excess capacity.
As w̌+

1 > w̌+
2 , the supplier can sell more when priority is

given to the high-type retailer.
In summary, we have the following result.

THEOREM 2: U ≤ P ≤ L2 ≤ L1, for any capacity level.

We note that Lemma 3 and Remark 1 by [10] indicate the
result U ≤ P in Theorem 2. To verify our findings and gain
further insight, we conduct numerical studies, as shown in
the Appendix. On examining the results, we have the fol-
lowing observations. First, when the supplier’s capacity is
relatively small or sufficiently large, the supplier is indif-
ferent among the three allocation mechanisms. Second, the
supplier’s optimal wholesale price is not necessarily decreas-
ing with the capacity level, and the associated profit is not
necessarily increasing with the capacity level. Third, lexico-
graphic allocation (especially when priority is given to the
high-type retailer) can be evidently more profitable for the
supplier than uniform and proportional allocations for any
given capacity level and competitive gap. Fourth, the advan-
tage of the superior allocation in each comparison becomes
more obvious as downstream demand competition grows.

Now, we compare the total retailer and total supply chain
profits under the three allocation mechanisms, respectively.

THEOREM 3: Let �̃∗
r , �̂∗

r and �̌∗
ri (i = 1, 2) be the total

retailer profits, and �̃∗
sc, �̂∗

sc and �̌∗
sci (i = 1, 2) be the total

supply chain profits under uniform, proportional and lexico-
graphic (with order priority giving to retailer i) mechanisms,
respectively. We have

(I) K ≤ z1 − z2:
(i) When w ≤ z2 −K , �̌∗

r2 ≤ �̃∗
r = �̂∗

r ≤ �̌∗
r1

and �̌∗
sc2 ≤ �̃∗

sc = �̂∗
sc ≤ �̌∗

sc1.
(ii) When w > z2 −K , �̃∗

r = �̂∗
r = �̌∗

r2 = �̌∗
r1

and �̃∗
sc = �̂∗

sc = �̌∗
sc2 = �̌∗

sc1.
(II) K > z1 − z2:

(i) When w ≤ w̃+, �̌∗
r2 ≤ �̃∗

r = �̂∗
r ≤ �̌∗

r1

and �̌∗
sc2 ≤ �̃∗

sc = �̂∗
sc ≤ �̌∗

sc1.
(ii) When w̃+ < w ≤ ŵ−, �̃∗

r ≥ �̂∗
r , �̌∗

r1 ≥
�̂∗

r ≥ �̌∗
r2, �̌∗

sc1 ≥ �̂∗
sc ≥ �̌∗

sc2; �̌∗
r1 ≥ �̃∗

r
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if and only if 2w2 − 2(z1 + z2 − K)w +
5z2

1 + 5z2
2 − 8z1z2 − 9(z1 − K)K ≤ 0; and

�̌∗
sc1 ≥ �̃∗

sc if and only if 4w2−(z1+z2)w−
5(z2

1 + z2
2) + 8z1z2 + 9

2K(z1 − K) ≥ 0.

(iii) When ŵ− < w ≤ w̌+
2 , �̃∗

r = �̂∗
r , �̃∗

sc =
�̂∗

sc; �̌∗
ri ≥ �̃∗

r (�̂
∗
r ) if and only if 2w2 −

2(zi + zj −K)w + 5(z2
i + z2

j −K)− 9(zi −
K)K ≤ 0; and �̌∗

sci ≥ �̃∗
sc(�̂

∗
sc) if and only

if 4w2 − (zi + zj )w − 5(z2
i + z2

j ) + 8zizj +
9
2K(zi − K) ≥ 0.

(iv) When w̌+
2 < w ≤ w̌+

1 , �̃∗
r = �̂∗

r = �̌∗
r2,

�̌∗
sc2 = �̃∗

sc = �̂∗
sc; �̌∗

r1 ≥ �̃∗
r (�̂

∗
r , �̌∗

r2)

if and only if 2w2 − 2(z1 + z2 − K)w +
5z2

1 + 5z2
2 − 8z1z2 − 9(z1 − K)K ≤ 0;

and �̌∗
sc1 ≥ �̃∗

sc(�̂
∗
sc, �̌∗

r2) if and only if
4w2 − (z1 + z2)w − 5(z2

1 + z2
2) + 8z1z2 +

9
2K(z1 − K) ≥ 0.

(v) When w > w̌+
1 , �̃∗

r = �̂∗
r = �̌∗

r2 = �̌∗
r1

and �̃∗
sc = �̂∗

sc = �̌∗
sc2 = �̌∗

sc1.

The first part of Theorem 3 has intuitive explanations.
When K ≤ z1 − z2, if the wholesale price is sufficiently
low, then each retailer will order as much as possible for her
best interest. Under uniform and proportional allocations, the
Nash equilibrium orders are (K , K), resulting in allocations
(K/2, K/2), that is, the two retailers have the same profit.
While under lexicographic allocation, the retailer with higher
order priory will obtain the entire capacity K . As the retailer
with greater market power can sell with a higher retail price,
with allocation K she can earn more profit than the total
retailer profit under the other two mechanisms. Therefore,
the total retailer profit is the highest under lexicographic allo-
cation with order priority to the high-type retailer. Note that
the total allocated capacity is K under all the three alloca-
tions, and thus the total supply chain profit is also the highest
under lexicographic allocation with order priority to the high-
type retailer. Conversely, if the wholesale price is sufficiently
high, then each retailer has no incentive to order more than
her ideal allocation. Thus, the three allocation mechanisms
result in the same total retailer profit and total supply chain
profit. When K > z1 − z2 and w is neither very low nor
very high, lexicographic allocation may bring the retailers
and the supply chain either more or less profit than the other
two mechanisms.

6. EXTENSIONS: AN ARBITRARY NUMBER OF
RETAILERS

A key finding in earlier sections is the analytical charac-
terization on the supplier’s preference ranking of capacity
allocation rules with two competing retailers, as in Theorem

2: (1) lexicographic with priority to high-type retailer; (2)
lexicographic with priority to low-type retailer; (3) propor-
tional; and (4) uniform. An interesting question is whether
the finding still holds with an arbitrary number of retailers.
We precede to answer the question in this section.

Suppose there are n(n ≥ 3) retailers with market
power vector z = (z1, z2, . . . , zn). Without loss of gen-
erality, we assume z1 ≥ z2 ≥ · · · ≥ zn. Suppose that
retailer i with order quantity ri receives allocation qi , i =
1, 2, . . . , n. Also, for notational convenience, let r−i =
(r1, r2, . . . , ri−1, ri+1, . . . , rn), R−i = �n

j=1,j �=i rj , q−i =
(q1, q2, . . . , qi−1, qi+1, . . . , qn), and Q−i = �n

j=1,j �=iqj .
Similar to the case with two competing retailers, with-

out capacity constraint, from retailer i’s profit function
�i(ri , r−i ) = (zi − w − ri − R−i )ri , i = 1, 2, . . . , n, we can
obtain the equilibrium order quantity for each retailer r∗

i =
((n+1)zi −�n

j=1zj −w)/(n+1). In this case, every retailer’s
order will be satisfied with ideal allocation q∗

i = r∗
i , and the

total allocated capacity is Q∗ = (�n
j=1zj − nw)/(n + 1).

In Section 2, we describe uniform, proportional, and lex-
icographic allocation rules for the case with two competing
retailers, which can be easily extended to the case with n

retailers and readers can refer to [7] for more details. Our
objective is to find the supplier’s preference of these rules.
We next achieve this objective through comparison of total
allocated capacity: for any given capacity K and wholesale
price w, the more the supplier sells under a mechanism, the
better the mechanism performs from the perspective of the
supplier.

Under all the three allocation mechanisms considered, our
previous analysis shows two intuitive results regarding the
total allocated capacity with a given wholesale price: (i) if
the supplier’s capacity level is sufficiently low, then the total
order quantity exceeds the capacity and the total allocated
capacity is K; (ii) if the supplier’s capacity is sufficiently
high, then every retailer will order her ideal allocation and
the total allocated capacity is Q∗. That is, when the supplier’s
capacity level is either too low or too high, the three allocation
mechanisms perform the same for the supplier.

However, when the supplier’s capacity is at a medium level,
which can be even sufficient to supply the total ideal allo-
cation, that is, K ≥ Q∗, the three allocation mechanisms
provide different incentives for retailers with demand com-
petition to inflate their order quantities to obtain more than
ideal allocation. Specifically, under each allocation mecha-
nism, there is a threshold K∗ such that, (i) if K < K∗, then
the total allocated capacity is K; (ii) if K ≥ K∗, then the
total allocated capacity is Q∗. Because of order inflation, we
have Q∗ ≤ K∗. Observation that for any given capacity K

and wholesale price w, the larger the threshold K∗ under an
allocation mechanism, the more the supplier can sell under
the mechanism. Let the thresholds under uniform, propor-
tional and lexicographic mechanisms be K∗

u , K∗
p, and K∗

lt
,
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respectively, where t ∈ {1, 2, . . . , n!} denotes one permuta-
tion, that is, priory sequence, of the n retailers. Specifically,
let l∗ denote the priority sequence 1 → 2 → . . . n, that is,
the sequence of retailers in nonincreasing market powers.

THEOREM 4: For any wholesale price w, we have K∗
u ≤

K∗
p ≤ K∗

l∗ .

Theorem 4 means that the lexicographic allocation with
priority sequence of retailers in nonincreasing market powers
dominates proportional allocation, and proportional alloca-
tion dominates uniform allocation, from the perspective of
the supplier, for any number of retailers.

Analytical results for lexicographic allocation with all
sequences are more difficult to obtain as there are n! pri-
ority sequences of n retailers that can be used. Next, we
compare the performance of the three allocation mechanisms
through numerical study, in terms of threshold K∗. Note that
it is not only hard to find closed-form for K∗, but also hard
to compute K∗ numerically. We provide in the Appendix a
method for computing K∗ for the considered mechanisms. To
compare all the priority sequences used by lexicographic allo-
cation, we consider n = 3, with (z1, z2, z3) = (100, 85, 80).
There are 3! = 6 priority sequences of the three retailers
can be used under lexicographic allocation, denoted l1 =
(80, 85, 100), l2 = (80, 100, 85), l3 = (85, 80, 100), l4 =
(85, 100, 80), l5 = (100, 80, 85), l6 = (100, 85, 80), respec-
tively. To ensure that each retailer’s ideal allocation is posi-
tive, that is, q∗

i = r∗
i = ((n+1)zi−�n

j=1zj −w)/(n+1) > 0,
i = 1, 2, 3, we consider w ≤ 55.

For wholesale prices w = 5, 10, . . . , 55, Table 4 summa-
rizes the results of the thresholds K∗ under different mech-
anisms. Consistent with Theorem 4, we have K∗

p > K∗
u for

any w considered. Also, we see K∗
l > K∗

u for any whole-
sale price considered and any priority sequence of retailers,
consistent with Theorem 2, theoretical result for the case
with two retailers. In addition, we have K∗

l1
< K∗

p when
w ≤ 40, K∗

l1
> K∗

p when w ≥ 45, and K∗
lt

> K∗
p for any

w, for t = 2, . . . , 6. That is, with three or more retailers, the
relative performance of lexicographic allocation compared
with proportional allocation depends on priority sequence of
retailers: lexicographic allocation may outperform (under-
perform, resp.) proportional allocation if priority is given to
retailers with high (low, resp.) market powers.

For a clearer view of the relative performance of different
mechanisms, we directly compare the allocated capacities in
Fig. 1. The total allocated capacities under uniform, propor-
tional and lexicographic (with priority sequence l6) mecha-
nisms are depicted by lines O-A-D-G (Q∗

u), O-B-E-G (Q∗
p),

O-C-F-G (Q∗
l6

), respectively. Conversely, under all mecha-
nisms, when the capacity is below the respective threshold
K∗, the suppliers’ total selling quantity is equal to the avail-
able capacity K . Conversely, when the capacity level exceeds

Table 4. Thresholds K∗ under different allocations, n = 3

w K∗
u K∗

p K∗
l1

K∗
l2

K∗
l3

K∗
l4

K∗
l5

K∗
l6

5 69.20 75.43 75.11 79.16 75.97 77.36 82.15 82.15
10 65.22 70.88 70.55 74.58 71.30 72.71 77.38 77.38
15 61.22 66.32 65.99 70.01 66.63 68.03 72.61 72.61
20 57.20 61.73 61.41 65.42 61.95 63.33 67.82 67.82
25 53.16 57.13 56.84 60.82 57.28 58.60 63.00 63.00
30 49.10 52.51 52.25 56.21 52.60 53.81 58.16 58.16
35 45.01 47.84 47.66 51.59 47.92 48.96 53.27 53.27
40 40.88 43.14 43.06 46.94 43.23 44.00 48.33 48.33
45 36.72 38.37 38.44 42.28 38.55 38.86 43.32 43.32
50 32.51 33.51 33.80 37.57 33.85 33.85 38.17 38.17
55 28.23 28.51 29.15 32.81 29.15 29.15 32.81 32.81

Figure 1. Total Allocated Capacities under Different Mecha-
nisms, as Capacity Changes. [Color figure can be viewed at
wileyonlinelibrary.com]

the respective threshold K∗, the total selling quantity is equal
to Q∗.

Our numerical studies show that with more retailers, there
exist more priority sequences with which proportional mech-
anism outperforms lexicographic mechanism. For example,
with n = 5 with (z1, z2, z3, z4, z5) = (100, 99, 98, 97, 96),
results with lexicographic allocation with priority sequences
l1 = (96, 97, 98, 99, 100), l2 = (97, 96, 98, 99, 100), l3 =
(98, 96, 97, 99, 100), l4 = (99, 96, 97, 98, 100), and l5 =
(100, 99, 98, 97, 96) are summarized in Table 5, where pro-
portional mechanism outperforms lexicographic mechanism
with priority sequences l1, l2 and l3. Note that lexicographic
mechanism performs better for the supplier when giving
higher priority to retailers with higher market power. When
there are more retailers, the gap between retailers’ mar-
ket powers is relatively large and lexicographic mechanism
becomes less efficient when giving higher priority to retail-
ers with lower market power, which makes the mechanism
outperformed by proportional mechanism with n ≥ 3.

Next, we compare the total retailer and total supply chain
profits under the three allocation mechanisms, respectively.
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Table 5. Thresholds K∗ under different allocations, n = 5

w K∗
u K∗

p K∗
l1

K∗
l2

K∗
l3

K∗
l4

K∗
l5

10 75.96 84.51 84.40 84.80 85.49 86.16 86.80
20 67.52 75.01 74.45 75.09 75.77 76.44 77.09
30 59.05 65.49 65.18 65.37 66.06 66.73 67.37
40 50.55 55.98 55.63 55.66 56.35 57.01 57.64
50 42.01 46.46 46.07 46.07 46.63 47.29 47.92
60 33.41 36.94 36.51 36.51 36.92 37.57 38.19
70 24.71 27.39 27.00 27.00 27.20 27.85 28.44
80 16.01 17.81 17.63 17.63 17.63 18.12 18.67

THEOREM 5: Let �̃∗
r , �̂∗

r and �̌∗
r be the total retailer

profits, and �̃∗
sc, �̂∗

sc and �̌∗
sc be the total supply chain profits

under uniform, proportional and lexicographic (with prior-
ity sequence of retailers nonincreasing in market power)
mechanisms. We have

(i) When K ≤ K∗
u , �̃∗

r = �̂∗
r ≤ �̌∗

r and �̃∗
sc = �̂∗

sc ≤
�̌∗

sc.
(ii) When K∗

u < K ≤ K∗
p, �̃∗

r ≥ �̂∗
r , �̌∗

r ≥ �̂∗
r ,

�̌∗
sc ≥ �̂∗

sc; �̌∗
r ≥ �̃∗

r if and only if K2 − (z1 −
w)K + ∑n

i=1(zi − w − Q∗)q∗
i ≥ 0; and �̌∗

sc ≥ �̃∗
sc

if and only if K2 − z1K + ∑n
i=1(zi − Q∗)q∗

i ≥ 0.
(iii) When K∗

p < K ≤ K∗
l∗, �̃∗

r = �̂∗
r , �̃∗

sc = �̂∗
sc;

�̌∗
r ≥ �̃∗

r (�̂
∗
r ) if and only if K2 − (z1 − w)K +∑n

i=1(zi − w − Q∗)q∗
i ≥ 0; and �̌∗

sc ≥ �̃∗
sc(�̂

∗
sc) if

and only if K2 − z1K + ∑n
i=1(zi − Q∗)q∗

i ≥ 0.
(iv) When K > K∗

l∗, �̃∗
r = �̂∗

r = �̌∗
r and �̃∗

sc = �̂∗
sc =

�̌∗
sc.

Similar to the case with two retailers, for any wholesale
price, when capacity level is sufficiently low, lexicographic
mechanism with priority sequence of retailers nonincreas-
ing in market power generates the highest total profit for the
retailers and the supply chain among the three mechanisms.
On the other extreme, if the capacity level is sufficiently
high, then the three mechanisms perform the same. When the
capacity is at a medium level, whether lexicographic mech-
anism with priority sequence of retailers nonincreasing in
market power dominates the other two mechanisms depends
on conditions specified in Theorem 5.

7. CONCLUSIONS

In the practice of production and operations, capacity allo-
cation is an important problem when retailer total order quan-
tity exceeds supplier available capacity. This article analyzes
three capacity allocation mechanisms, uniform, proportional,
and lexicographic allocations, in the presence of demand
competition between retailers in a two-echelon decentralized

supply chain. We consider the supplier’s wholesale pricing
decision together with his choice of allocation mechanisms,
for any given capacity level. The pricing decision is impor-
tant, as with exogenously given scarce capacity and the sup-
plier’s anticipation of retailers’ ordering behavior, it can be
more or profitable for the supplier to adjust his wholesale
price.

From a modeling perspective, we consider both horizontal
and vertical interactions between the supplier and two retail-
ers. Specifically, in the horizontal interaction, the two com-
peting retailers compete for demand from the same group of
customers and the supplier’s capacity simultaneously. Their
desired orders are determined by Cournot competition under
complete information. In the vertical interaction, the supplier
acts as a leader who first announces his capacity, wholesale
price, and an allocation rule with upper bound restriction on
order size. Then, the retailers determine their order quantities.
Finally, capacity is allocated and market demand is realized.
Our analysis focuses particularly on the impact of allocation
mechanisms on supplier pricing decisions and retailer order
behavior.

Our results show that there may exist multiple Nash equi-
libria as the wholesale price changes under each allocation
mechanism considered. Via equilibrium analysis, we identify
exact conditions under which the gaming effect is present.
Also, in our model, equilibrium orders are guaranteed under
all mechanisms considered. This allows us to exactly com-
pare the three mechanisms at any capacity level with regard
to the supplier, the retailers and the supply chain.

From the perspective of the supplier, and in the asymmetric
case, we show that when the capacity level is either very low
or sufficiently high, the supplier is indifferent among the three
mechanisms. The result is intuitive. When capacity is very
small, retailers order large quantities and the supplier’s capac-
ity is fully sold under all mechanisms considered. As a result,
the supplier can sell the total capacity K by charging the same
reasonably high wholesale price under all three mechanisms.
Conversely, when the capacity level is sufficiently high, each
retailer would like to order her ideal order size as if capacity
is unlimited. However, for an intermediate range in capacity
level, the supplier can sell more from lexicographic alloca-
tion than from uniform or proportional allocation, especially
when giving order priority to the high-type retailer. Our fur-
ther numerical studies verify this finding. We find that the
advantage of lexicographic allocation becomes more obvi-
ous as the low-type retailer’s market power is closer to that
of the high-type retailer.

For the case with three or more retailers, we analytically
prove that proportional allocation dominates uniform alloca-
tion and lexicographic allocation with priority sequence of
retailers in nonincreasing market powers dominates propor-
tional allocation from the perspective of the supplier. Also,
we numerically show that lexicographic allocation with any
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priority sequence of retailers dominates uniform allocation
for any number of retailers. With three or more retailers, the
relative performance of lexicographic allocation compared
with proportional allocation depends on priority sequence of
retailers: lexicographic allocation may outperform (underper-
form, respectively) proportional allocation if priority is given
to retailers with higher (lower, respectively) market powers.
Further, we compare the mechanisms from the perspective of
the retailers and the supply chain. We hope that these find-
ings can provide a reference for suppliers in their selection of
allocation mechanism and for their efficient pricing decisions.

In a two-echelon supply chain with a single supplier and
multiple competing retailers, this article examines the impact
of capacity allocation mechanisms on supplier pricing deci-
sions and retailer ordering behavior. This model provides a
foundation for future studies, for example, extending the sup-
ply chain to be more general, for example, some retailers
have an alternative supplier or multiple suppliers with mul-
tiple retailers. Also, it is important to study how the supplier
plans production if the down stream retailers face uncertainty
of market demand. Further, incorporation of other allocation
mechanisms, different kinds of market demand competition,
and risk aversion for supply chain members, are interesting
research questions.

APPENDIX

PROOF OF LEMMA 1: Because the ordering decisions are symmetric
between the two retailers, to obtain retailer i’s best response function ri (rj ),
we only need to consider retailer 1’s optimal problem:

�̃1(r2, w) = max
r1∈[0,K]

{
max

r1≤K−r2
�̃1

1, max
r1>K−r2;r1≤r2;r1< K

2

�̃
2,1
1 ,

max
r1>K−r2;r1≤r2;r1≥ K

2

�̃
2,2
1 , max

r1>K−r2,r1>r2;r2< K
2

�̃
3,1
1 ,

max
r1>K−r2,r1>r2;r2≥ K

2

�̃
3,2
1

}
,

where �̃1
1=(z1−w−r1−r2)·r1; �̃

2,1
1 =(z1−w−K)·r1; �̃

2,2
1 =(z1−w−K)· K

2 ;

�̃
3,1
1 =(z1−w−K)·(K−r2); �̃

3,2
1 =(z1−w−K)· K

2 .

The five subproblems can be solved as follows:

r̃1∗
1 = arg max

r1∈[0,K−r2]
�̃1

1 =

⎧⎪⎨
⎪⎩

0, if z1−w−r2
2 < 0,

z1−w−r2
2 , if 0 ≤ z1−w−r2

2 ≤ K − r2,

K − r2, if z1−w−r2
2 > K − r2.

(1)

�̃1∗
1 = max

r1∈[0,K−r2]
�̃1

1 =

⎧⎪⎨
⎪⎩

0, if z1−w−r2
2 < 0,

(z1−w−r2)2

4 , if 0 ≤ z1−w−r2
2 ≤ K − r2,

(z1 − w − K)(K − r2), if z1−w−r2
2 > K − r2.

(2)

r̃23∗
1 = arg max

r1∈(K−r2,K]

{
�̃

2,1
1 , �̃2,2

1 , �̃3,1
1 , �̃3,2

1

}

=

⎧⎪⎨
⎪⎩

(K − r2, K], if r2 < K
2 , w ≤ z1 − K ,

[ K
2 , K], if r2 ≥ K

2 , w ≤ z1 − K ,

0, if w > z1 − K .

(3)

�̃23∗
1 = max

r1∈(K−r2,K]

{
�̃

2,1
1 , �̃2,2

1 , �̃3,1
1 , �̃3,2

1

}

=

⎧⎪⎨
⎪⎩

(z1 − w − K)(K − r2), if r2 < K
2 , w ≤ z1 − K ,

(z1 − w − K) K
2 , if r2 ≥ K

2 , w ≤ z1 − K ,

0, if w > z1 − K .

(4)

(i) Consider the case when w ∈ (0, z1 − 2K]. Since w ≤ z1 − 2K , it
follows that (z1 − w − r2)/2 > K − r2, from Equations (1) and
(2), we have r̃1∗

1 ∈ (K − r2, K] and �̃1∗
1 = (z1 −w −K)(K − r2).

Furthermore, since w ≤ z1 − 2K < z1 − K , from Equations
(3) and (4), we have (a) if r2 < K/2, then r̃23∗

1 ∈ (K − r2, K]
with �̃23∗

1 = (z1 − w − K)(K − r2); (b) if r2 ≥ K/2, then
r23∗

1 ∈ [K/2, K] with �̃23∗
1 = (z1 − w − K)K/2. Note that

(z1 − w − K)(K − r2) ≤ (z1 − w − K)K/2 due to r2 ≥ K/2,
thus Lemma 1(i) is easily verified.

(ii) To prove the remaining results of Lemma 1, let us first establish
some useful results in the following lemma. �

LEMMA A1: Define α̃1 = z1 − w − √
2K(z1 − w − K), β =

z1 − w + √
2K(z1 − w − K), if w ∈ (z1 − 3K/2, z1 − K], then α̃1 and β

are real numbers with K/2 < α̃1 < 2K + w − z1 ≤ K ≤ β.

PROOF: Given any w ∈ (z1 − 3K/2, z1 − K], we have 2K + w − z1 −
K/2 = w − (z1 − 3K/2) < 0, thus 2K + w − z1 > K/2. To show
α̃1 > K/2 is equivalent to show (z1 − w − K/2) − √

2K(z1 − w − K) >

0, or [2(z1 − w) − K]2 > 8K(z1 − w − K). We can derive that
[2(z1 − w) − 3K]2 > 0, and thus we have α̃1 > K/2. Similarly, to show
α̃1 < 2K + w − z1 − K/2, which is equivalent to 2(z1 − w − K) −√

2K(z1 − w − K) < 0, or 2(z1 − w − K) <
√

2K(z1 − w − K), it suf-
fices to show

√
2(z1 − w − K) <

√
K . As z1−w−3K/2 > 0, then we have

α̃1 < 2K +w−z1. Furthermore, to verify α̃1 < K is the equivalent to show
α̃1−K = z1−w−K−√

2K(z1 − w − K) < 0, or
√

z1 − w − K <
√

2K .
As z1 − 3K − w < z1 − 2K − w < 0, we have α̃1 < K . Similarly, we
have β −K = z1 −w −K +√

2K(z1 − w − K) ≥ 0, thus β ≥ K . Hence,
Lemma A1 is proved. �

LEMMA A2: Suppose w ∈ (z1 − 3K/2, z1 − 2K], then we have:

(a) if r2 ≤ α̃1, then (z1 − w − r2)
2/4 ≥ (z1 − w − K)K/2,

(b) if r2 > α̃1, then (z1 − w − r2)
2/4 < (z1 − w − K)K/2.

PROOF: Through simple algebra, we obtain (z1 − w − r2)
2/4 − (z1 −

w−K)K/2 = 1
4 (r2−α̃1)(r2−β), thus, the lemma follows from Lemma A1.

Now, we discuss the scenario as w ∈ (z1−2K , z1−3K/2]. Consider three
cases: (a) if r2 ≤ 2K − z1 + w, or equivalently (z1 − w − r2)/2 ≤ K − r2,
then it follows that r1∗

1 = (z1 −w− r2)/2 and �̃1∗
1 = (z1 − w − r2)

2/4. On
the other hand, if r2 ≤ 2K−z1+w ≤ K/2, then we have r23∗

1 ∈ (K−r2, K]
and �̃23∗

1 = (z1 − w − K)(K − r2). Comparing �̃1∗
1 with �̃23∗

1 , we have
�̃1∗

1 − �̃23∗
1 = (r2 + z1 − w − 2K)2 ≥ 0. Hence, we can derive the results

as follows: (a) if r2 ≤ 2K−z1 +w, then r1(r2) = r1∗
1 = (z1 −w−r2)/2 and

�̃1(r2, w) = �̃1∗
1 = (z1 − w − r2)

2/4; (b) if 2K − z1 + w < r2 ≤ K/2,
or equivalently (z1 − w − r2)/2 > K − r2, it follows that r1∗

1 = r23∗
1 ∈

(K−r2, K] and �̃1∗
1 = �̃23∗

1 = (z1 −w−K)(K−r2); (c) if r2 > K/2, then
(z1 −w −K)(K − r2) < (z1 −w −K)K/2, and r1(r2) = r23∗

1 ∈ [K/2, K]
with �̃1(r2, w) = �̃23∗

1 = (z1 − w − K)K/2. Using the same procedure,
we can verify Lemma 1(iii).

(iv) w ∈ (z1 − K , z1). As w > z1 − K , from Equation 4, we know that
�̃23∗

1 = 0, so we only need to consider �̃1∗
1 from Equations (1) and (2). Con-

sider two cases: (a) if r2 ≤ z1 − w, then 0 ≤ z1−w−r2
2 ≤ K − r2, and thus

r1(r2) = r1∗
1 = (z1−w−r2)/2, and �̃1(r2, w) = �̃1∗

1 = (z1 − w − r2)
2/4;

(b) if r2 > z1 − w, then z1−w−r2
2 < 0, and thus r1(r2) = r1∗

1 = 0 with

�̃1(r2, w) = �̃1∗
1 = 0. �
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PROOF OF THEOREM 1: To find Nash equilibrium outcome resulting
from the ordering quantity game, we draw the response curves from Lemma
1 for both retailers. First, we compartmentalize the following feasible inter-
vals with different capacity constraints. There are five possible scenarios: (I)
if z1 − z2 < K/2, i.e., K > 2(z1 − z2), we have z2 − 2K < z1 − 2K <

z2 − 3K/2 < z1 − 3K/2 < z2 − K < z1 − K < z2 < z1; (II) if
K/2 ≤ z1 − z2 < K , that is, z1 − z2 < K ≤ 2(z1 − z2)], then we have
z2 − 2K ≤ z2 − 3K/2 < z1 − 2K < z2 − K < z1 − 3K/2 ≤ z1 − K ≤
z2 ≤ z1; (III) if K ≤ z1 − z2 < 3K/2, that is, 2(z1 − z2)/3 < K ≤ z1 − z2,
then we have z2 − 2K ≤ z2 − 3K/2 ≤ z2 − K ≤ z1 − 2K ≤
z1 − 3K/2 < z2 ≤ z1 − K < z1; (IV) if 3K/2 ≤ z1 − z2 < 2K , that
is, (z1 −z2)/2 < K ≤ 2(z1 −z2)/3, then we have z2 −2K < z2 −3K/2 <

z2 −K < z1 −2K < z2 ≤ z1 −3K/2 < z1 −K < z1; (V) if z1 −z2 ≥ 2K ,
i.e., K ≤ (z1 −z2)/2, then we have z2 −2K < z2 −3K/2 < z2 −K < z2 ≤
z1 − 2K < z1 − 3K/2 < z1 − K < z1. Next, we analyze Nash equilibrium
in each scenario.

(I) K ∈ (2(z1 − z2), +∞):
(i) w ∈ (0, z2 − 2K). In this case, See Fig. (A-a), it is

clear that any point in [K/2, K] × [K/2, K] is a Nash
equilibrium.

(ii) w ∈ (z2 − 2K , z1 − 2K]. Although it adds a new bound
line r1 = 2K − z2 + w as r1 ≤ 2K − z2 + w, and the
response curve for retailer 2 is r2(r1) = (z2 −w − r1)/2,
thus the equilibrium orders are the same as (i).

(iii) w ∈ (z1 − 2K , z2 − 3K/2]. See Fig. (A-c), any point in
[K/2, K] × [K/2, K] is in equilibrium.

(iv) w ∈ (z2 − 3K/2, z1 − 3K/2]. As showed in Fig. (A-
d), any point in [α̃2, K] × [K/2, K] is a Nash equilib-
rium. Next we determine whether the point ((2z1 − z2 −
w)/3, (2z2 − z1 − w)/3) is in equilibrium. It suffices to
verify the conditions: (a) (2z1 − z2 − w)/3 ≤ α̃2; (b)
(2z2 − z1 − w)/3 ≤ 2K − z1 + w. Note from (a), it is

equivalent to w ≤ w̃− or w̃+ ≤ w ≤ 2z2 − z1, where
w̃± = 2z2 − z1 − 9K/4 ± 3

√
K2 + 8K(z1 − z2)/4.

Recall that w ∈ (z2 − 3K/2, z1 − 3K/2], together
with w̃− < z2 − 3K/2 and z2 − 3K/2 < w̃+ <

z1 − 3K/2 < 2z2 − z1, simple algebra shows that condi-
tion (a) always holds ifw ∈ (w̃+, z1−3K/2]. Conversely,
for condition (b), it satisfies w ≥ (z1 + z2 − 3K)/2
if it holds. Note that (z1 + z2 − 3K)/2 < w̃+, as
a result, if w ∈ (z2 − 3K/2, w̃+], then any point in
[α̃2, K] × [K/2, K] is a Nash equilibrium. Otherwise if
w ∈ (w̃+, z1 − 3K/2], then ((2z1 − z2 − w)/3, (2z2 −
z1 − w)/3) is an equilibrium and any point in [α̃2, K] ×
[K/2, K] is also a Nash equilibrium. Moreover, when
w ∈ (w̃+, z1 − 3K/2], in this case, retailer 2’s profit
is �̃1

2((2z2 − z1 − w)/3, w) = (2z2 − z1 − w)2/9 if the
Nash equilibrium is ((2z1−z2 −w)/3, (2z2 −z1−w)/3),
and �̃2

2(K/2, w) = (z2−w−K)K/2 if the Nash equilib-
rium is any point in [α̃2, K]×[K/2, K], it is easy to verify
that �̃1

2((2z1 − z2 − w)/3, w) ≥ �̃2
2(K/2, w), thus the

former equilibrium dominates the latter one by gaining
more profits for retailer 2. Similarly, we can prove that the
equilibrium ((2z1 − z2 −w)/3, (2z2 − z1 −w)/3) domi-
nates the other equilibrium by generating more profits for
retailer 1. Hence, ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3)

is a dominant strategy for both retailers.
(v) w ∈ (z1 − 3K/2, z2 − K]. In this case (Fig. A-e), it

implies that K/2 ≤ (z1 − w)/2 ≤ K and K/2 ≤
(z2 − w)/2 ≤ K . Furthermore, if r2 = K/2, then
r1(K/2) = (z1 − w − K/2)/2, it is easy to check
that r1(K/2) ≤ K/2. Similarly, if r1 = K/2, it is
easy to check that r2(K/2) ≤ K/2, then there must
exist a crossing point ((2z1 − z2 − w)/3, (2z2 − z1 −
w)/3) between the two response curves. Consequently,
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((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a Nash equilib-
rium and any point in [α̃2, K] × [α̃1, K] is also a Nash
equilibrium. Similar to (iv), we can check that the former
equilibrium dominates the latter one for both retailers by
generating more profits if w ∈ (z1 − 3K/2, z2 − K].

(vi) w ∈ (z2 − K , z1 − K]. From the response curves in
Fig. (A-f), there exists a unique equilibrium ((2z1 − z2 −
w)/3, (2z2 − z1 − w)/3).

(vii) w ∈ (z1−K , z2]. See Fig. (A-g), ifw ∈ (z1−K , 2z2−z1],
we have (2z1−z2−w)/3 ≤ z2−w and (2z2−z1−w)/3 ≤
z1 − w, thus it is clear that there exists a unique equilib-
rium ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3). Otherwise,
the equilibrium is ((z1 − w)/2, 0) if w ∈ (2z2 − z1, z2].

(viii) w ∈ (z2, z1). In this special case, the wholesale price is
so high that retailer 2 would be driven out of the mar-
ket. Therefore, see Fig. (A-i), the unique equilibrium is
((z1 − w)/2, 0).

Moreover, we find that when z1 − z2 < K ≤ 2(z1 − z2), the equilibrium
orders are identical to the case as K > 2(z1 −z2). Similarly, we use the same
approach to analyze other scenarios when K lies (0, z1 − z2]. Therefore, we
can summarize the results that show in Theorem 1. �

PROPOSITION 1: Under uniform allocation mechanism with asymmet-
ric retailers, the supplier’s optimal wholesale price w̃∗ and the associated
maximum profit denoted by �̃∗

s , are as follows:

(I) K ≤ z1 − z2:
(i) if z2 ≤ 3z1/4, when K ≤ z1/4, the supplier’s optimal

wholesale price is w̃∗ = z1 − 2K and the maximum
profit for the supplier is �̃∗

s = K(z1 − 2K); when
z1/4 < K ≤ z1 − z2, the supplier’s optimal whole-
sale price is w̃∗ = z1/2 and the maximum profit for the
supplier is �̃∗

s = z2
1/8;

(ii) if z2 > 3z1/4, when K ≤ z1−z2, then the supplier’s opti-
mal wholesale price is w̃∗ = z1 − 2K and the maximum
profit for the supplier is �̃∗

s = K(z1 − 2K).
(II) K > z1 − z2:

(i) if z2 ≤ 5z1/7, when K > z1 − z2, the supplier’s
optimal wholesale price is w̃∗ = arg maxw∈{w̃+ ,z1/2}�̃∗

s

and the maximum profit for the supplier is �̃∗
s =

max{Kw̃+, z2
1/8};

(ii) if 5z1/7 < z2 ≤ 3z1/4, when z1 − z2 <

K ≤ K̃+
2 , the supplier’s optimal wholesale price is

w̃∗ = arg maxw∈{w̃+ ,z1/2}�̃∗
s and the maximum profit
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for the supplier is �̃∗
s = max{Kw̃+, z2

1/8}. Other-
wise, the supplier’s optimal wholesale price is w̃∗ =
arg maxw∈{w̃+ ,(z1+z2)/4,z1/2}�̃∗

s and the maximum profit

for the supplier is �̃∗
s = max{Kw̃+, (z1 + z2)

2/24, z2
1/8}.

(iii) if z2 > 3z1/4, when z1 − z2 < K ≤ K̃+
2 ,

the supplier’s optimal wholesale price is w̃∗ =
arg maxw∈{w̃+ ,2z2−z1}�̃∗

s and the maximum profit for

the supplier is �̃∗
s = max{Kw̃+, (2z2 − z1)(z1 −

z2)}. Otherwise, the supplier’s optimal wholesale
price is w̃∗ = arg maxw∈{w̃+ ,(z1+z2)/4,2z2−z1}�̃∗

s and

the maximum profit for the supplier is �̃∗
s =

max{Kw̃+, (z1 + z2)
2/24, (2z2 − z1)(z1 − z2)}.

PROOF: Consider the following two cases.
Case (I): K ≤ z1 − z2:

(i) w ∈ (0, z1 − 2K]. It is easy to show that w̃∗ = z1 − 2K with
�̃1

s = K(z1 − 2K);
(ii) w ∈ (z1 − 2K , z1). (a) If z1 − 2K < z1/2, which is equiv-

alent to K > z1/4, then w̃∗ = z1/2 with �̃2
s = z2

1/8. (b) if
K ≤ z1/4, then w̃∗ = z1 − 2K with �̃2

s = �̃2
s = K(z1 − 2K).

Since z2
1/8 − K(z1 − 2K) = (8K − z1)

2/8 ≥ 0, it follows that
z2

1/8 ≥ K(z1 − 2K).

Case (II): K > z1 − z2:

(i) w ∈ (0, w̃+]. It is easy to show that w̃∗ = w̃+ with �̃3
s = Kw̃+;

(ii) w ∈ (w̃+, 2z2 − z1]. (a) Consider the scenario where 2z2 −
z1 > (z1 + z2)/4, i.e., z2 > 5z1/7. If w̃+ < (z1 + z2)/4,
which is equivalent to K ≥ K̃+

2 , then w̃∗ = (z1 + z2)/4 with
�̃4

s = (z1 + z2)
2/24. If w̃+ ≥ (z1 + z2)/4, then w̃∗ = w̃+ with

�̃4
s = (z1 + z2 − w̃+)w̃+/3. (b) Consider the scenario where

2z2 − z1 ≤ (z1 + z2)/4, i.e., z2 ≤ 5z1/7. It is easy to verify that
w̃∗ = 2z2 − z1 with �̃4

s = (2z2 − z1)(z1 − z2).
(iii) w ∈ (2z2 − z1, z1). (a) If 2z2 − z1 ≤ z1/2, i.e., z2 ≤ 3z1/4, then it

follows that w̃∗ = z1/2 with �̃5
s = z2

1/8. (b) If 2z2 − z1 > z1/2,
that is, z2 > 3z1/4, then it follows that w̃∗ = 2z2 − z1 with
�̃5

s = (2z2 − z1)(z1 − z2).

The proposition directly follows the above discussions. �

LEMMA 2: Let r̂i (rj ) be retailer i’s best response order quantity given
retailer j ’s order (i, j = 1, 2 and i �= j ). Define α̂i = (K + zi − w −√

(zi − w − K)(zi − w + 7K))/2; then we have

(i) w ∈ (0, zi − 2K]: for any rj , r̂i (rj ) = K , and �̂i (rj , w) =
K2(zi − K − w)/(K + rj ).

(ii) w ∈ (zi − 2K , zi − K]: if rj ≤ α̂i , then r̂i (rj ) = (zi − w − rj )/2
with �̂i (rj , w) = (zi − w − rj )

2/4;if rj > α̂i , then r̂i (rj ) = K

with �̂i (rj , w) = K2(zi − w − K)/(K + rj ).
(iii) w ∈ (zi −K , zi ): if rj ≤ zi −w, then r̂i (rj ) = (zi −w−rj )/2 with

�̂i (rj , w) = (zi − w − rj )
2/4; if rj > zi − w, then r̂i (rj ) = 0

with �̂i (rj , w) = 0.

The proof of Lemma 2 is similar to the symmetric case (retailers have
the same market power) of Chen et al. (2013), and thus, here we omit the
details. Note that by involving asymmetric market power, each retailer’s best
response order size is not only affected by the wholesale price but also by
the other retailer’s order quantity. Take retailer 1 for example. We interpret
Lemma 2 as follows. First, consider the case where the wholesale price is
very low; that is, when w ∈ (0, zi −2K]. Lemma 2(i) suggests that no matter

what quantity the other retailer orders, retailer 1 will order K to maximize
her profit. This is because, when w ≤ z1 − 2K , that is, K ≤ (z1 − w)/2,
if the capacity level is relatively low, then retailer 1 would order as much as
possible. Second, as Lemma 2(iii) states, when the wholesale price is very
high, each retailer will not order much (≤ K): (a) retailer 1 may not order
when z1 − w − K < 0 under the condition that retailer 2 orders more than
z2 − w; (b) if retailer 2’s order size is no more than z1 − w, which means
that the remaining capacity is ample for retailer 1, then the best response
for retailer 1 is the same as the case without capacity constraint. Third, con-
sider the case where the wholesale price is in the intermediate range, that is,
w ∈ [z1 − 2K , z1). Observe from the second part of Lemma 2(ii), if retailer
2 orders sufficiently high (> α̂i ), then the remaining capacity is scarce for
retailer 1. As the profit margin for retailer 1 remains z1 − w − K ≥ 0, it
follows that her profit is increasing in her order size and thus ordering the
maximum capacity K is her best response. If retailer 2 orders no more than
α̂i , then the result is consistent with the first part of Lemma 2(iii).

PROPOSITION 2: Let (r̂∗
1 , r̂∗

2 ) be equilibrium orders under proportional

mechanism. Define ŵ− = 3K + z1+z2
2 − 3

2

√
8K2 + (z1 − z2)

2, then we
have

(I) K ≤ z1 − z2:
(i) if w ∈ (0, z2−K], then there is a unique Nash equilibrium

(r̂∗
1 , r̂∗

2 ) = (K , K);
(ii) if w ∈ (z2 − K , z1 − 2K], then there is a unique Nash

equilibrium (r̂∗
1 , r̂∗

2 ) = (K , 0);
(iii) if w ∈ (z1 − 2K , z1), then there is a unique Nash

equilibrium (r̂∗
1 , r̂∗

2 ) = ((z1 − w)/2, 0).
(II) K > z1 − z2:

(i) if w ∈ (0, ŵ−], then there is a unique Nash equilibrium
(r̂∗

1 , r̂∗
2 ) = (K , K);

(ii) if w ∈ (ŵ−, z2 − K], then there exists two Nash equilib-
rium (K , K) and ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3).
Furthermore, the latter equilibrium dominates the former
one by generating more profits for both retailers.

(iii) if w ∈ (z2 − K , 2z2 − z1], then there is a unique Nash
equilibrium (r̂∗

1 , r̂∗
2 ) = ((2z1 − z2 − w)/3, (2z2 − z1 −

w)/3);
(iv) if w ∈ (2z2 − z1, z1), then there is a unique Nash

equilibrium (r̂∗
1 , r̂∗

2 ) = (q̂∗
1 , q̂∗

2 ) = ((z1 − w)/2, 0).

PROOF: Before the equilibrium analysis, from Lemma 2, we also obtain
some critical values of w, that is, z1 − 2K , z1 − K , z2 − 2K , z2 − K , z1, z2.
Using simple algebraic calculus, it follows that: (I) when K > z1 − z2, we
have z2 − 2K < z1 − 2K ≤ z2 − K < z1 − K < z2 < z1; (II) when
(z1 − z2)/2 < K ≤ z1 − z2, we have z2 − 2K < z2 − K ≤ z1 − 2K <

z2 ≤ z1 − 2K < z2 ≤ z1 − K ≤ z1; and (III) when K ≤ (z1 − z2)/2, we
have z2 − 2K ≤ z2 − K < z1 − 2K ≤ z2 < z1 − K ≤ z1.

We first discuss the case when K ∈ (z1 − z2, +∞).

(i) w ∈ (0, z2 −2K]∪ (z2 −2K , z1 −2K]. See the curves of response
functions pictured in Fig. (B-a) and Fig. (B-b), it is easy to see that
(K , K) is the unique equilibrium.

(ii) w ∈ (z1 − 2K , z2 − K]. First let us introduce a critical value ŵ−.
From Lemma 1, the sufficient and necessary conditions for the
ideal equilibrium orders ((2z1 − z2 −w)/3, (2z2 − z1 −w)/3) are
(2z1 − z2 − w)/3 ≤ α̂2 and (2z2 − z1 − w)/3 ≤ α̂1, which is
equivalent to satisfy ŵ− ≤ w ≤ ŵ+, where ŵ± = 3K + z1+z2

2 −
3
2

√
8K2 + (z1 − z2)

2. Due to ŵ+ > z1 and the constraint w < z1,
therefore, (2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is in equilibrium
if and only if w ≥ ŵ−. Recall that (K , K) is in equilibrium as
w ∈ (z1 − 2K , z2 − K], then we have the following results: (a) if
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w ∈ (z1−2K , ŵ−], there exists a unique Nash equilibrium (K , K);
(b) otherwise, (K , K) and ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3)

are both in equilibrium. Figure (B-c) and Fig. (B-d) illustrate the
above results, respectively. Similar to the proof of Theorem 1, we
can show that ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) dominates
(K , K) by generating more profits for both retailers.

(iii) w ∈ (z2 − K , z1 − K]. In this scenario, if the orders ((2z1 − z2 −
w)/3, (2z2 − z1 −w)/3) are in equilibrium, it needs to satisfy two
conditions: (2z1 − z2 −w) ≤ (z1 −w)/2 and (2z2 − z1 −w)/3 ≤
(z2 − w)/2. And the conditions are equivalent to w ≤ 2z2 − z1.
Together with the constraint w ∈ (z2 − K , z1 − K], we obtain
the results as follows: (a) when z1 − z2 < K ≤ 2(z1 − z2),
if w ∈ (z2 − K , 2z2 − z1], there exist a unique Nash equi-
librium ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3); otherwise, the
unique equilibrium is ((z1 − w)/2, 0); (b) when K > 2(z1 − z2),
z1 − K < 2z1 − z2, then there exists a unique Nash equilibrium
((2z1 −z2 −w)/3, (2z2 −z1 −w)/3). See Fig. (B-e) and Fig. (B-f),
respectively. Specifically, the Figure of (b) is the same as the case
with (a) when w ∈ (z2 − K , 2z2 − z1].

(iv) w ∈ (z1 − K , z2]. As pictured in Fig. (B-g) and (B-h), we have:
(a) when z1 − z2 < K ≤ 2(z1 − z2), there exists a unique
Nash equilibrium ((z1 − w)/2, 0); (b) when K > 2(z1 − z2),
if w ∈ (z1 −K , 2z2 − z1], then there exists a unique Nash equilib-
rium ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3), otherwise, the unique
equilibrium is ((z1 − w)/2, 0). Specifically, the figure of scenario
(a) is the same as the case (b) when w ∈ (2z2 − z1, z2).

(v) w ∈ (z2, z1). It is the same as Fig. (A-i), in which the low-type
retailer is driven out of the supply chain, then there is a unique
Nash equilibrium ((z1 − w)/2, 0).

Based on the above analysis, we can obtain the equilibrium outcome when
K > z1 − z2 in Theorem 2. Similarly, the remaining results follow from the

same approach. As the step is similar to the case we have analysed, here we
omit the details.

We interpret Proposition 2 in conjunction with the impact of wholesale
price w on orders in equilibrium, for any given capacity level satisfying
0 < K ≤ z1 − z2. When the wholesale price is very low, it is easy to check
that the profit margin for each retailer is zi −w −K ≥ 0, (i = 1, 2). Hence,
both retailers order as much as possible (by ordering K as allowed). There-
fore, there exists a unique Nash equilibrium orders (K , K). Conversely, when
the wholesale price is sufficiently high, retailer 2 may be driven out of the
game due to her lower market power; consequently, the equilibrium order
quantity is always zero for retailer 2 in this case.

If capacity exceeds z1−z2, then we drive the equilibrium orders in four sce-
narios. First, consider the scenario with w ∈ (0, ŵ−]. As 2z2 −z1 −3K/2 <

(z1 + z2 − 3K)/2 ≤ ŵ−, it follows that if q∗
1 + q∗

2 < K ≤ K(ŵ−), where

K(ŵ−) = (z1 +z2 −2w+
√

−7z2
1 + 22z1z2 − 7z2

2 − 8w(z1 + z2 − w))/6,
then gaming effect will occur, that is, both retailers will strategically inflate
their orders from q∗

i to K . As a result, unique equilibrium orders (K , K) exist
when the wholesale price is relatively low. Second, when w ∈ (ŵ, 2z2 −z1],
there exist two equilibria (K , K) and ((2z1 − z2 −w)/3, (2z2 − z1 −w)/3).
It is easy to verify that when substituting the resulted allocations into
each retailer’s profit function, the latter equilibrium dominates the for-
mer by generating higher profits for both retailers. Third, we consider
w ∈ (z2 − K , 2z2 − z1]. In this case, the capacity is regarded as ample
by both retailers, which order as in the case without a capacity limit. Fourth,
we have the scenario w ∈ (2z2 − z1, z1). In this case, retailer 2 would
be driven out of the market, which results in both equilibrium orders and
allocations ((z1 − w)/2, 0).

From Proposition 2, we have the following observation. When 0 < K ≤
z1 − z2, as w increases, the total equilibrium order quantities in the three
scenarios of w are (i)2K , (ii)K , and (iii) z1−w

2 , respectively. Simple algebra
shows that 2K > K ≥ z1−w

2 . This is consistent with the intuition that total

Naval Research Logistics DOI 10.1002/nav



102 Naval Research Logistics, Vol. 64 (2017)

order quantity is decreasing with wholesale price. This implies that retailers
are inclined to order more when the supplier offers a lower wholesale price,
given fixed capacity level. Moreover, the allocated capacity drops from K to
z1−w

2 as the wholesale price crosses the threshold z1 −2K . Further, it is easy
to confirm that when the capacity level satisfies K > z1−z2, if the wholesale
price exceeds the threshold ŵ−, then total allocated capacity drops from K

to values strictly less than K , since K > (z1 + z2 − 2w)/3 > (z1 − w)/2.
However, it is not obvious which pricing option is most profitable for the
supplier. �

PROPOSITION 3: First, suppose order priority is given to the high-
type retailer (retailer 1). Let (ř∗

1 , ř∗
2 ) be equilibrium orders under lexico-

graphic allocation. Define α̌1 = z1 − w − √
4K(z1 − w − K), w̌+

1 =
2z1 − z2 − 9

2 K + 3
2

√
5K2 − 4K(z1 − z2). We have

(I) K ≤ z1 − z2:
(i) if w ∈ (0, z2 − K], then any point in {K} × [0, K] is a

Nash equilibrium;
(ii) if w ∈ (z2 − K , z1 − 2K], then there is a unique Nash

equilibrium (ř∗
1 , ř∗

2 ) = (K , 0);
(iii) if w ∈ (z1 − 2K , z1), then there is a unique Nash

equilibrium (ř∗
1 , ř∗

2 ) = ((z1 − w)/2, 0).
(II) K > z1 − z2:

(i) if w ∈ (0, z1 − 2K], then any point in {K} × [0, K] is a
Nash equilibrium;

(ii) if w ∈ (z1 − 2K , w̌+
1 ], then any point in {K} × [α̌1, K]

is a Nash equilibrium;
(iii) if w ∈ (w̌+

1 , z2 − K], then ((2z1 − z2 − w)/3, (2z2 −
z1 − w)/3) is a Nash equilibrium and any point in
{K}×[α̌1, K] is also a Nash equilibrium. Further, the for-
mer equilibrium dominates the latter by generating more
profits for both retailers.

(iv) if w ∈ (z2 − K , 2z2 − z1], then there is a unique Nash
equilibrium (ř∗

1 , ř∗
2 ) = ((2z1 − z2 − w)/3, (2z2 − z1 −

w)/3);
(v) if w ∈ (2z2 − z1, z1), then there is a unique Nash

equilibrium (ř∗
1 , ř∗

2 ) = ((z1 − w)/2, 0).

Second, suppose order priority is given to the low-type retailer (retailer
2). With a slight abuse of notation, let (ř∗

1 , ř∗
2 ) be equilibrium orders under

lexicographic allocation, and define α̌2 = z2 − w − √
4K(z2 − w − K),

w̌+
2 = 2z2 − z1 − 9

2 K + 3
2

√
5K2 + 4K(z1 − z2). We have

(I) K ≤ z1 − z2:
(i) if w ∈ (0, z2 − K], then any point in [0, K] × {K} is a

Nash equilibrium;
(ii) if w ∈ (z2 − K , z1 − 2K], then there is a unique Nash

equilibrium (ř∗
1 , ř∗

2 ) = (K , 0);
(iii) if w ∈ (z1 − 2K , z1), then there is a unique Nash

equilibrium (ř∗
1 , ř∗

2 ) = ((z1 − w)/2, 0).
(II) K > z1 − z2:

(i) if w ∈ (0, z1 − 2K], then any point in [0, K] × {K} is a
Nash equilibrium;

(ii) if w ∈ (z1 − 2K , w̌+
2 ], then any point in [α̌2, K] × {K}

is a Nash equilibrium;
(iii) if w ∈ (w̌+

2 , z2 − K], then ((2z1 − z2 − w)/3, (2z2 −
z1 − w)/3) is a Nash equilibrium and any point in
[α̌2, K]×{K} is also a Nash equilibrium. Further, the for-
mer equilibrium dominates the latter by generating more
profits for both retailers.

(iv) if w ∈ (z2 − K , 2z2 − z1], then there is a unique Nash
equilibrium (ř∗

1 , ř∗
2 ) = ((2z1 − z2 − w)/3, (2z2 − z1 −

w)/3);
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(v) if w ∈ (2z2 − z1, z1), then there is a unique Nash
equilibrium (ř∗

1 , ř∗
2 ) = ((z1 − w)/2, 0).

The proof of Proposition 3 is similar to that of Theorems 1 and 2, and here
we omit the details. Proposition 3 is intuitive. Observe that for any given
capacity level, the retailer with order priority is allowed to obtain the entire
capacity if the wholesale price is very low. Interestingly, when the capacity
level is relatively high, gaming effect also occurs. Note that when K > z1 −
z2, if w ∈ ((zi +zj −3K)/2, w̌+

i ], satisfying q∗
1 +q∗

2 < K ≤ K(w̌+
i ), where

K(w̌+
i ) = zi−w

2 + 1
6

√
−7z2

i − 2zi w̌i + 5w̌2
i + 16zizj − 4z2

j − 8zj w̌, then

retailer i with order priority will order K , which is more than her ideal order
size r∗

i . Further, if the wholesale price lies in the interval (w̌∗
i , 2z2 −z1), then

the retailers will order their ideal orders (r∗
1 , r∗

2 ) and lexicographic allocation
is truth-inducing. However, if the wholesale price is sufficiently high, then
the low-type retailer will order nothing whether or not she has order priority.

PROOF OF THEOREM 2: The theorem follows the discussions preced-
ing the theorem in Section 5. �

Numerical Examples with Two Competing Retailers

Figure 2 graphically illustrates the above finding for symmetric retailers.
It is evident that as the capacity K increases, the wholesale price in each
allocation mechanism initially follows a descending trend and then remains
unchanged when capacity becomes sufficiently large. Further, the supplier’s
profit under proportional allocation is no less than that under uniform allo-
cation, but is no more than that under lexicographic allocation. We set forth
the following interpretations for these results. As the supplier’s capacity
increases, to maximize his profit, it is beneficial for the supplier to reduce
the wholesale price so as to entice the retailers to order more. But when the
capacity is sufficiently large to meet all the retailer demand, both the total
order quantity and the supplier’s profit will stay at a constant level.

From Tables 1–3, our numerical studies are based on the following data:
(I) when z1

2 < z2 ≤ 5z1
7 , we have (z1, z2) = (100, 60) or (100, 65); (II)

when 5z1
7 < z2 ≤ 3z1

4 , we have (z1, z2) = (100, 72) or (100, 74); (III)

when 3z1
4 < z1 < z2, we have (z1, z2) = (100, 80) or (100, 90). Results are

depicted in Figures 3–8.
Note that as K increases, the supplier has the potential to sell more in the

sense that he could obtain more profits unless the total ordering quantity by
the two retailers is not increasing any more. The supplier may change the
wholesale price strategically with capacity, as illustrated in Figures 3–8.

From Figures 3 and 4, it is evident that lexicographic allocation performs
no differently than the other two allocations. Technically, this is because,
although Kw̌+

1 > Kw̌+
2 > Kŵ− > Kw̃+, the maximum of the four val-

ues is less than z2/8 for our numerical examples. Therefore, the supplier is
indifferent among the three allocation mechanisms if the retailers’ market
powers are significantly different. However, as the low-type retailer’s mar-
ket power becomes closer to the high-type retailer’s power, we observe from
Figs. 5–8 that the supplier’s profit obtained from lexicographic allocation is
much higher than from uniform or proportional allocations, especially when
order priority is given to the high-type retailer. This demonstrates that the
advantage of superior mechanism in each comparison becomes more evident
when the competition between the two retailers is more intense.

PROOF OF THEOREM 3: The proof is a similar to that of Theorem 5
and is omitted for preciseness. �

PROOF OF THEOREM 4: First, we derive the values of K∗
u , K∗

p , K∗
l∗ .

Let q̃max
i , q̂max

i , q̌max
i be retailer i’s largest received allocations under uni-

form, proportional and lexicographic (with priority sequence l∗) allocations

given r−i = q∗−i , respectively. Specifically, we have

q̃max
i = 1

ñ′
i + 1

⎛
⎝K −

∑
j=ñ′

i
+1,...,n;j �=i

q∗
j

⎞
⎠ , (5)

q̂max
i = K

K + Q∗−i

K , (6)

q̌max
i = K − (q∗

1 + · · · + q∗
i−1), (7)

where ñ′
i is defined as the largest integer less than i such that q∗

ñ′
i

≥
1

ñ′
i+1

(K − ∑
j=ñ′

i
+1,··· ,n;j �=i q∗

j ). To ensure a positive marginal profit for

retailer i when the capacity is fully utilized, we assume that zi −w−K > 0,
and thus for any retailer, an upper bound with K < zn − w is neces-
sary for the assumption z1 > z2 > · · · > zn. Let �i(x, y) be retailer
i’s profit with retailer i’s allocation x and the other retailers’ total allo-
cation y. Under uniform allocation, it is obvious that if there exists any
retailer i such that �i(q̃

max
i , K − q̃max

i ) ≥ �i(q
∗
i , Q∗−i ), then the sup-

plier’s total allocated capacity is K . Otherwise, each retailer obtains her ideal
allocation value. For notational convenience, let δ = ∑

j=ñ′
i
+1,...,n;j �=i q∗

j .

We next obtain the threshold Ki∗
u for retailer i as follows. Noting that

Q∗ = (�n
j=1zj −nw)/(n+1) and q∗

i = ((n+1)zi −�n
j=1zj −w)/(n+1)

for their definitions, we immediately have the following equation,

Q∗ = zi − w − q∗
i . (8)

With Eq. (8), we have that �i(q̃
max
i , K − q̃max

i ) ≥ �i(q
∗
i , Q∗−i ), which is

equivalent to zi−w−K

ñ′
i
+1

(K − δ) ≥ (zi − w − Q∗)q∗
i . Therefore, we have

K2 − (zi − w + δ)K + (zi − w)δ + (ñ′
i + 1)q∗2

i ≤ 0. (9)

Solving Eq. (9), we have

zi − w + δ −
√

[zi − w + δ]2 − 4[(zi − w)δ + (ñ′
i + 1)q∗2

i ]
2

≤ K

≤
zi − w + δ +

√
[zi − w + δ]2 − 4[(zi − w)δ + (ñ′

i + 1)q∗2
i ]

2
.

Note that
zi−w+δ−

√
[zi−w+δ]2−4[(zi−w)δ+(ñ′

i
+1)q∗2

i
]

2 ≤ Q∗ ≤
zi−w+δ+

√
[zi−w+δ]2−4[(zi−w)δ+(ñ′

i
+1)q∗2

i
]

2 . Now we focus on the case
with K > Q∗ in the theorem. We can obtain the threshold of

retailer i: Ki∗
u = zi−w+δ+

√
[zi−w+δ]2−4[(zi−w)δ+(ñ′

i
+1)q∗2

i
]

2 and K∗
u =

max{K1∗
u , K2∗

u , . . . , Kn∗
u }. Similar to the analysis in Fig. 1, gaming effect

occurs when K ∈ [Q∗, K∗
u ].

Furthermore, we can use the same method to derive K∗
l∗ =

max{K1∗
l∗ , K2∗

l∗ , . . . , Kn∗
l∗ }, where Ki∗

l∗ =
zi−w+∑

j=1,··· ,i−1 q∗
j
+

√
[zi−w+∑

j=1,··· ,i−1 q∗
j
]2−4q∗2

i

2 . Next, we need to obtain
the value of K∗

p . We know that �i(q̂
max
i , K − q̂max

i ) > �i(q
∗
i , Q∗−i ),

which is equivalent to (zi − w − K) K2

K+Q∗−i
> q∗2

i . Then, we have that

−K3 + (zi − w)K2 − q∗2
i K − q∗2

i Q∗−i > 0. Let f (K) = −K3 + (zi −
w)K2 − q∗2

i K − q∗2
i Q∗−i . It is obvious that function f (K) is monotone and

decreasing when K ∈ [Q∗, zi − w). From Eq. (8), we have

f (Q∗) = −Q∗3 + (zi − w)Q∗2 − q∗2
i Q∗ − q∗2

i Q∗−i

= −Q∗3 + (Q∗ + q∗
i )Q∗2 − q∗2

i Q∗ − q∗2
i (Q∗ − q∗

i )

= q∗
i (Q∗ − q∗

i )
2

> 0,
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Figure 2. Comparison of Supplier’s Pricing Decisions with Symmetric Retailers. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 4. Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 6. Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 8. Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers. [Color figure can be viewed at wileyonlinelibrary.com]

and f (zi − w) = −(zi − w)3 + (zi − w)3 − q∗2
i (zi − w) − q∗2

i Q∗−i < 0.
Consequently, there exists a value Ki∗

p that belongs to [Q∗, zi −w) such that

f (K) = 0. Therefore, K∗
p = max{K1∗

p , K2∗
p , . . . , Kn∗

p }.
Next, we compare the values of K∗

u , K∗
p , K∗

l∗ .

(i) We prove that K∗
u ≤ K∗

p . Consider any retailer i whose profits
under proportional and uniform allocations are (zi − w − K)q̂max

i

and (zi − w − K)q̃max
i , respectively. As q̃max

i = 1
ñ′
i
+1

(K −∑
j=ñ′

i
+1,...,n;j �=i q∗

j ) < K
2 < K

K+Q∗−i
K = q̂max

i , it follows that

�i(q̃
max
i , K − q̃max

i ) ≤ �i(q̂
max
i , K − q̂max

i ). Recall that Ki∗
u

satisfies �i(q̃
max
i , K − q̃max

i ) ≥ �i(q
∗
i , Q∗−i ), and thus Ki∗

u also
satisfies �i(q̂

max
i , K − q̂max

i ) ≥ �i(q
∗
i , Q∗−i ), for any i. As Ki∗

p is
defined as upper bound of K that satisfies �i(q̂

max
i , K − q̂max

i ) ≥
�i(q

∗
i , Q∗−i ), we can derive that Ki∗

u ≤ Ki∗
p . Hence, we have

K∗
u ≤ K∗

p .
(ii) We prove that K∗

p ≤ K∗
l∗ . Note that �i(q̂

max
i , K − q̂max

i ) ≥
�i(q

∗
i , Q∗−i ) is equivalent to (zi − w − K) K2

K+Q∗−i
− q∗2

i ≥ 0 with

Eq. (8), and �1(q̌
max
1 , K − q̌max

1 ) ≥ �1(q
∗
1 , Q∗−1) is equivalent to

(z1 − w − K)K − q∗2
1 ≥ 0.

Note that

(z1 − w − K)K − q∗2
1 ≥ (zi − w − K)

K2

K + Q∗−i

− q∗2
i ,

which is equivalent to

[z1 − w − Q∗−i − (zi − w)]K2

+ [(z1 − w)Q∗−i − q∗2
1 + q∗2

i ]K − (q∗2
1 − q∗2

i )Q∗−i ≥ 0.

Note that we have

(Q∗ − q∗
1 )K2 − [(z1 − w)Q∗−i − q∗2

1 + q∗2
i ]K + (q∗2

1 − q∗2
i )Q∗−i ≤ 0.

Letg(K) = (Q∗−q∗
1 )K2−[(z1−w)Q∗−i−q∗2

1 +q∗2
i ]K+(q∗2

1 −q∗2
i )Q∗−i .

We can see that g(Q∗) ≤ 0 and g(zn − w) ≤ 0. Because of the convexity

of g(K), we have that (z1 − w − K)K − q∗2
1 ≥ (zi − w − K) K2

K+Q∗−i
− q∗2

i

when K ∈ [Q∗, zn − w), for any i. Thus, we conclude that if K satis-
fies �i(q̂

max
i , K − q̂max

i ) ≥ �i(q
∗
i , Q∗−i ), then we have that �1(q̌

max
1 , K −

q̌max
1 ) ≥ �1(q

∗
1 , Q∗−1), that is, {K|�i(q̂

max
i , K − q̂max

i ) ≥ �i(q
∗
i , Q∗−i )} ⊆

{K|�1(q̌
max
1 , K − q̌max

1 ) ≥ �1(q
∗
1 , Q∗−1)}. Consequently, if the value of

K induces the total order quantity to be no less than the supplier’s avail-
able capacity under proportional allocation, then it also induces retailer 1
to order the whole capacity under lexicographic allocation. Hence, we have
K∗

p ≤ K∗
l∗ . �

PROOF OF THEOREM 5:

(i) When K∗
u < K ≤ K∗

p , the capacity level is sufficiently low such
that retailer i’s profit is (zi − w − K)qi , and thus each retailer
orders K . The unique allocation vector is (K/n, K/n, . . . , K/n)

under uniform and proportional mechanisms. Because retailer 1
has the highest priority under lexicographic allocation, the alloca-
tion vector under lexicographic allocation is (K , 0, . . . , 0). In this
case, the total retailer profit �̃r = �̂r = �n

i=1(zi −w −K) K
n

and

�̌∗
r = (z1−w−K)K . It is easy to verify that �n

i=1(zi−w−K) K
n

≤
(z1 − w − K)K due to z1 ≥ 1

n
�n

i=1zi . Together with the supplier
profit, we have the results as shown in case (i).

(ii) When K∗
p < K ≤ K∗

l∗, the allocation vector under uni-
form allocation is (q∗

1 , q∗
2 , . . . , q∗

n). In the meanwhile, alloca-
tion vectors under proportional and lexicographic allocations are
(K/n, K/n, . . . , K/n) and (K , 0, . . . , 0), respectively. Thus, the
total retailer profit can be expressed as �̃r = �n

i=1(zi −w−Q∗)q∗
i ,

�̂r = �n
i=1(zi −w−K) K

n
, and �̌∗

r = (z1−w−K)K . Let g(K) =
�n

i=1(zi −w −Q∗)q∗
i −�n

i=1(zi −w −K) K
n

. Note that g(K) is a
function of K and is minimized at K∗ = �n

i=1(zi − w)/(2n). We
can prove that K∗ ≤ Q∗ and g(Q∗) > 0, and it follows that g(K)

is increasing in K ∈ [Q∗, ∞). Thus, we have �̃∗
r ≥ �̂∗

r . Similar
to case (i), we have (z1 − w − K)K ≥ �n

i=1(zi − w − K) K
n

. As

�̌∗
r − �̃∗

r = K2 − K
n

�n
i=1zi + �n

i=1(zi − Q∗)q∗
i + w(K − Q∗),

taking into consideration the difference in the supplier’s profits
wQ∗ − wK , we obtain the sufficient and necessary condition for
the relationships of �̌∗

r and �̃∗
r and of �̌∗

sc and �̃∗
sc as shown in

case (ii) of the theorem.
(iii) When K∗

p < K ≤ K∗
l∗, the unique allocation vector from equi-

librium orders under uniform and proportional mechanisms is
(q∗

1 , q∗
2 , . . . , q∗

n), while under lexicographic mechanism the unique
allocation vector from equilibrium orders is (K , 0, . . . , 0). It is
straightforward to verify that uniform and proportional alloca-
tions generate the same total retailer profit �̃∗

r = �̂∗
r . Note that

under uniform and proportional allocations, the supplier sells Q∗
units of capacity and achieves profit wQ∗. Consequently, we have
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�̃∗
sc = �̂∗

sc . Following this logic, it is straightforward to prove the
remaining results in case (iii) of the theorem.

(iv) When K > K∗
l∗, the supplier’s capacity is sufficiently high, and

under all the three mechanisms, each retailer orders her ideal order
size and the resulted allocation vector is (q∗

1 , q∗
2 , . . . , q∗

n). There-
fore, the retailers and the supply chain obtain the same profit under
the three mechanisms, respectively. �

Numerical Computation of Thresholds K∗

The thresholds K∗
u , K∗

p , K∗
lt

under uniform, proportional, and propor-
tional (with priority sequence lt , where retailers are indexed as 1, 2, . . . , n,
without loss of generality) can be characterized by equilibrium ordering,
as follows. Given any supplier’s wholesale price w and supplier’s capacity
K ≥ Q∗,

(i) under uniform mechanism, the order quantity vector (q∗
1 , q∗

2 , . . . , q∗
n)

is in equilibrium only if �i(q̃
max
i , K − q̃max

i ) ≤ �i(q
∗
i , q∗−i )

for any i, where q̃max
i = 1

ñ′
i
+1

(K − �
j=ñ′

i
+1,...,n;j �=i

q∗
j ) and ñ′

i

is defined as the largest integer less than i such that q∗
ñ′
i

≥
1

ñ′
i
+1

(K − �
j=ñ′

i
+1,...,n;j �=i

q∗
j );

(ii) under proportional mechanism, the order quantity vector
(q∗

1 , q∗
2 , . . . , q∗

n) is in equilibrium only if �i(K
2/(K + q∗−i ), K −

K2/(K + q∗−i )) ≤ �i(q
∗
i , q∗−i ) for any i;

(iii) under lexicographic mechanism, the order quantity vec-
tor (q∗

1 , q∗
2 , . . . , q∗

n) is in equilibrium only if �i(K −
�

j=1,...,i−1
q∗

j , �
j=1,...,i−1

q∗
j ) ≤ �i(q

∗
i , q∗−i ) for any i.

The results are intuitive. Under a specific allocation mechanism, when
the supplier’s wholesale price w and capacity level K are given, retailer i

will order the ideal allocation q∗
i if the profit generating from the inflated

allocation (i.e., ordering as much as possible) is less than the profit resulting
from the ideal allocation (q∗

1 , q∗
2 , . . . , q∗

n). In other words, if every retailer’s
profit satisfies this condition, then all retailers will order their ideal order
quantities, that is, the Nash equilibrium order vector (q∗

1 , q∗
2 , . . . , q∗

n), and
consequently the total allocation is Q∗. On the other hand, if there exists at
least one retailer i, whose profit is larger when ordering as much as possible
(i.e., K) so as to receive the maximum possible allocation given that the
total allocation is K . Accordingly, the total allocation will be equal to the
available capacity K , and any retailer will order at least K/n for her best
interest. Hence, the equilibrium allocation vector is (K/n, K/n, . . . , K/n).

Under each allocation mechanism, the minimum value of K , given that
K ≥ Q∗, satisfying the correspondent condition is the threshold K∗ for
the mechanism. Numerically, it is straightforward to use a binary search to
locate the threshold K∗ with specific precision for each mechanism.
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