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its Inhibitory Activity on Voltage-gated Sodium Channels 

Chao Wang,[a] Mana Oki,[a] Toru Nishikawa,[a]  Daisuke Harada,[a] Mari Yotsu-Yamashita[b] and Kazuo 

Nagasawa*[a]   
 
Abstract: 11-Saxitoxinethanoic acid (SEA) is a member of the 

saxitoxin family of paralytic shellfish poisons, but unusually contains 

a C-C bond at the C11 position.  Herein, we reported a total 

synthesis of SEA.  The key to our synthesis lies in a Mukaiyama-

aldol condensation reaction of silyl enol ether with glyoxylate in the 

presence of an anhydrous fluoride reagent, [Bu4N][Ph3SnF2], which 

directly constructs the crucial C-C bond at the C11 position in SEA.  

The NaVCh-inhibitory activity of SEA and its derivatives was 

evaluated by means of cell-based assay.  SEA showed an IC50 value 

of 4712 nM, being approximately twice as potent as decarbamoyl-

STX (dcSTX). 

Saxitoxin (1, STX, Figure 1), which was first isolated as a 

paralytic shellfish poison,[1] is an inhibitor of voltage-gated 

sodium channels (NaVCh).[2]  So far, more than 50 analogs have 

been discovered,[3]  and they have attracted considerable interest 

from synthetic chemists.[1c,d,4] Among the STX analogs, only 

zetekitoxin AB (6, ZTX)[5] and 11-saxitoxinethanoic acid (7, 

SEA)[6] contain a C-C bond at the C11 position.  It is extremely 

difficult to understand how this C-C bond arises, in terms of 

proposed biosynthetic pathways for STXs.[7] 
 

 
Figure 1  Structures of saxitoxin (1) and its derivatives 2-5, zetekitoxin AB (6,     
ZTX), 11-saxitoxinethanoic acid (7, SEA) and its derivatives 8 and 9. 

We are interested in developing subtype-selective NaVCh 

inhibitors, and in this work we focused on the synthesis of SEA 

(7) and its analogs as candidate NaVCh modulators.[8]   SEA (7) 

was originally isolated from xanthid crab Atergatis floridus in 

1995,[6] and it contains a saxitoxin core with an acetic acid group 

at the C11 position; the natural product is a 9:1 mixture of 

stereoisomers.  The toxicity of SEA (7) was reported as 830 

mouse units per µmol on i.p. injection into mice, which 

corresponds to approximately one-third of the toxicity of STX 

(1).[3,6]   In this communication, we describe the synthesis of SEA 

(7)[9] and its derivatives 8 and 9.  The NaVCh-inhibitory activity of 

these new STX derivatives in cell-based assay is also reported. 

 

 

 
 

 
Scheme 1.  Synthesis of fully protected saxitoxinol 11 in our group. 

We have recently developed a synthesis of fully protected 

saxitoxinol 11[4g] by utilizing neighboring acyl group-assisted 

construction of the 5-membered cyclic guanidine structure in 

STXs under mild conditions (Scheme 1).  Compound 11 is a key 

intermediate for the synthesis of STX and its derivatives, which 

have highly polar nature due to the two guanidine groups.  We 

have employed 11 in syntheses of dcSTX (2), GTX III (4), and 

artificial STX derivatives.[4g,8b]  Here, we envisaged application of 

11 to the synthesis of SEA (7) through C-C bond formation at 

the C11 position. 

 
 
 
 
 
 
 

Scheme 2  Synthetic strategies to SEA (7). 

Regarding synthetic approaches to SEA (7), there are two 

possibilities to construct the C-C bond at the C11 position 

(Scheme 2), i.e., direct alkylation of the enolate 12 with halides 

in the presence of base, and Mukaiyama-aldol reaction of the 

silyl enol ether 13 with glyoxylate.  

We initially investigated the alkylation strategy.   However, the 

conversions were extremely low, and only trace amounts of the 

corresponding alkylation product were obtained.  

Then, the Mukaiyama aldol reaction was investigated for 

construction of the C-C bond at the C11 position.  The silyl enol 

ether 14 was synthesized from the fully protected saxitoxinol 11 

in three steps, i.e., (i) hydrolysis of acetate with 
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potassiumcarbonate, (ii) oxidation of the resulting alcohol by 

means of Ley oxidation,[10] and (iii) silyl enol ether formation from 

the resulting ketone with TBSCl in the presence of NaHMDS 

(Scheme 3).  With the silyl enol ether 14 in hand, the Mukaiyama 

aldol reaction was investigated with ethyl glyoxylate under 

various conditions.  At first, Lewis acid-promoted conditions with 

TiCl4 or BF3·Et2O were tested,[11] but substrate 14 decomposed 

to generate mostly Boc-deprotected compounds, and no aldol 

reaction products were obtained.  Next, fluoride anion-promoted 

reaction conditions were investigated.  In the case of Bu4NF,[12] 

no reaction occurred.  On the other hand, in the case of 

[Bu4N][Ph3SnF2],
[13] which is an anhydrous fluoride anion reagent, 

the condensation product 15 was obtained in 96% yield as a 

mixture of stereoisomers of the double bond (5:1). 

 
 
 
 

 
 
 
 
 
 

Scheme 3   Mukaiyama aldol reaction of 14 with ethyl glyoxylate. 

Since the Mukaiyama aldol condensation reaction appears to 

be a powerful tool for constructing the C-C bond at C11 in STXs, 

the scope of the reaction was investigated.  Thus, various 

aromatic aldehydes were subjected to reaction with 14, and the 

corresponding aldol condensation adducts (16a-f) were obtained 

in 4580% yields (Table 1). 

Table 1. Substrate scope of the Mukaiyama aldol condensation reaction of 14 

with aromatic aldehydes.  

 

 

 

 

entry Ar time(h) product E/Z
 b
 yield(%) 

1 4-Me-C6H4 48 16a >10:1 45 
2 C6H5 24 16b >10:1 60 
3 3-F-C6H4 24 16c >10:1 63 
4 4-Cl-C6H4 24 16d >10:1 65 
5

a
 4-NO2-C6H4  2 16e 6:1 80 

6
a
 2-furyl  2 16f >10:1 80 

a
Reaction was carried out at 0 °C.  

b
Ratios at C11 were determined by 

1
H 

NMR.
[14]    

 

After construction of the crucial C-C bond at the C11 position 

of SEA (7), the double bond in 15 had to be reduced, followed 

by deprotection of the MPM group at the C13 position.  For the 

reduction, after extensive investigation,[15] L-selectride was found 

to be quite effective, giving 17 in 76% yield as a single 

diastereomer (Scheme 4).[17]  Unfortunately, subsequent  depro- 

 
 
 
 
 
 
 
 
 
 

Scheme 4  Investigation of the reduction at C11 and deprotection of the MPM 

group at C13. 

tection of MPM group at the C13 failed under all the conditions 
we investigated, e.g., NBS-Et3B,[4g] DDQ or CAN.[18]

  Finally, we 
decided to change the protecting group from MPM to TBS ether 
at an earlier stage. 

Thus, silyl enol ether 19 with TBS ether at the C13 position 
was synthesized by following a similar procedure to that used for 
14,[19] and the Mukaiyama aldol condensation reaction with ethyl 
glyoxylate was examined in the presence of [Bu4N][Ph3SnF2].  
Under these conditions, aldol condensation adduct 20 was 
obtained in 85% yield.  Interestingly, the TBS ether at C13 
remained intact under these conditions (Scheme 5).  After 
reduction of the double bond with L-selectride, deprotection of 
the silyl ether in 21 at C13 took place smoothly on treatment with 
HF·Et3N complex to give 22 in 87% yield.[20]  The resulting 
hydroxyl group was further converted to a carbamoyl group by 
reaction with trichloroisocyanate followed by hydrolysis with 
triethylamine in methanol to give 23 in 68% yield.  Finally, 11-
saxitoxinethanoic acid (7) was obtained by further hydrolysis of 
the ethyl ester with lithium hydroxide and deprotection of all four 
Boc groups with TFA, in 90% yield.[21]  The stereochemistry at 
C11 of synthetic 7 was found to be a mixture of ca. 9:1 ratio, 
which is identical with that of the natural product reported by 
Onoue.[6] 

 

 

 

 

 

 

 

 

 

 

 

 

 Scheme 5 Synthesis of SEA (7).  Reagents and conditions: a) ethyl 

glyoxylate, [Bu4N][Ph3SnF2], THF, 0 °C, 85%; b) L-Selectride, THF, –78 °C, 

76%; c) HF·Et3N, THF/Et3N (5:1), rt, 87%; d) CCl3C(O)NCO, CH2Cl2, 0 °C, 

then Et3N, MeOH, rt, 68%; e) LiOH, THF/H2O (3:1), 0 °C; then, TFA, CH2Cl2, rt, 

90%. L-Selectride = lithium tri-sec-butyl(hydrido)borate(1-), TFA = 

trifluoroacetic acid. 

 The inhibitory activities towards NaVCh of SEA (7) and its 

synthetic derivatives decarbamoyl-11-saxitoxinethanoic acid (8, 

dcSEA), 11-saxitoxinethanoic ethyl ester (9, SEE), which were 

obtained from 21 and 23, respectively (Scheme 6), were 

evaluated in a cell-based assay.  In addition, 11-benzyliden-

saxitoxin (25, 11-benzylidenSTX), synthesized from 19 via 24 

(Scheme 6), was also tested.[22]  Specifically, the NaVCh-

inhibitory activity of ligands was evaluated in terms of 

cytotoxicity to mouse neuroblastoma Neuro-2a cells, which 

express NaVCh.[23]  In this cell-based assay, Neuro-2a is treated 

with a sodium channel activator, veratridine, in the presence of 

ouabain, an inhibitor of Na+/K+ ATPase.  This blocks sodium ion 

efflux, and decreases the cell viability.  NaVCh inhibition by 

tetrodotoxin (TTX), STX and related compounds antagonizes 

this effect, and rescues the cells in a dose-dependent 

manner.[23e,8]  The inhibitory activities of 7, 8, 9 and 25 were 

calculated from the cell viability in the above assay, and the 

results are summarized in Table 2.  SEA (7), dcSEA (8), SEE (9), 

and 11-benzylidenSTX (25) showed a concentration-dependent 

NaVCh-inhibitory effect, and their IC50 values were determined to 

be 4712 nM, 5.73.1 µM, 18574 nM, and 166.9 nM,[24] 

respectively (the IC50 values of synthetic dcSTX (2)[4g] and TTX, 

used as controls, were 8936 nM and 5.01.6 nM, respectively).  

Thus, SEA (7) was twice as potent as dcSTX (2) on its NaVCh-
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inhibitory activity.  In the case of dcSEA (8), the inhibitory activity 

was markedly decreased, and it was approximately hundred 

times less potent than dcSTX (2).  SEE (9) showed about half 

weaker inhibitory activity than dcSTX (2).  Interestingly, 11-

benzylidenSTX (25) showed the same level inhibitory activity 

with dcSTX (2), although hydrated form of ketone at C12 in 

STXs is suggested to be important for their NaVCh-inhibitory 

activity.[25]  Further structure-activity relationship studies are 

under way to examine the inhibitory activity of other STX 

derivatives having a C-C bond at the C11 position. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6  Synthesis of dcSEA (8), SEE (9) and (25). 

 

Table 2  NaVCh-inhibitory activity of SEA (7) and its derivatives dcSEA (8), 

SEE (9) and 11-benzylidenSTX (25) in a cell-based assay with Neuro-2a cells. 

Compound IC50 (mean  SD) n 

SEA (7) 4712 nM 3 

dcSEA (8) 5.73.1 µM 3 

SEE (9) 18574 nM 4 

11-benzylidenSTX (25) 166.9 nM
[24]

 5 

dcSTX (2)
[4g]

 8936 nM 3 

TTX 5.01.6 nM 6 

In conclusion, a total synthesis of SEA (7) has been achieved 

from the silyl enol ether 19 in 35% overall yield.  The synthesis 

features a Mukaiyama aldol condensation reaction to construct 

the C-C bond at the C11 position of STX.  The derivatives (8, 9, 

and 25) were similarly synthesized.  In a cell-based assay, SEA 

(7) showed approximately twice more potent NaVCh-inhibitory 

activity than dcSTX (2), but dcSEA (8) showed about hundred 

times less potent activity, in marked contrast to the relationship 

between STX (1) and dcSTX (2).[26]  Interestingly, the inhibitory 

activity of 11-benziidenSTX (25) was in a similar level with 

dcSTX (2), and interacting mode of 25 with NaVCh is quite 

intrigued. 
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13

C NMR in 

D2O), which is different from the other member of STX derivatives.   
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S. Y. Lee, J. M. Hungerford, Y. Hokama, R. W. Dickey, H. R. Granade, 

R. Lewis, T. Yasumoto, M. M. Wekell, J. AOAC Int. 1995, 78, 521–527; 

d) T. Yasumoto, M. Fukui, K. Sasaki, K. Sugiyama, J. AOAC Int. 1995, 

78, 574–582; e) M. Yotsu-Yamashita, D. Urabe, M. Asai, T. Nishikawa, 

M. Isobe, Toxin 2003, 42, 557–560. 

[24] In the case of 11-benzylidenSTX (25), the IC50 values of dsSTX (2) and 

TTX, used as controls were, 182.1 nM (n = 3) and 5.02.8 nM (n = 4), 

respectively. 

[25] D. B. Tikhonov, B. S. Zhorov, Biophysical Journal 2005, 88, 184–197. 

[26] The NaVCh inhibitory activity of dcSTX (2) has been reported to be 

2~10 fold less potent than that of STX.
[27] 
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1.	  General	   	  

    Flash chromatography was performed on Silica gel 60 (spherical, particle size 

40~100 µm; Kanto), Chromatorex NH (particle size 75~150 µm; Fuji Silysia).  Optical 

rotations were measured on a JASCO P-2200 polarimeter, using the sodium D line. 
1H and 13C NMR spectra were recorded on JEOL JNM-ECX 300 or 400.  The 

spectra are referenced internally according to residual solvent signals of CDCl3 (1H 

NMR; δ = 7.26 ppm, 13C NMR; δ = 77.16 ppm), D2O (1H NMR; δ = 4.80 ppm).  For 

compounds 7, 8, 9 and 25, 1,4-dioxane was used as internal standard, which is 

referenced at 3.75 ppm (1H NMR) and 67.4 ppm (13C NMR), respectively.  Data for 
1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s, singlet; d, 

doublet; t, triplet; m, multiplet; br, broad), integration, coupling constant (Hz).  Data 

for 13C NMR are reported in terms of chemical shift (δ, ppm).  Mass spectra were 

recorded on a JEOL JMS-T100X spectrometer with ESI-MS mode using methanol or 

methanol/H2O as solvent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



This article is protected by copyright. All rights reserved 

SI-SEA-Nagasawa

	   S3 

2.	  Experimental	  Procedures	  for	  S2-S8,	  7-9,	  14-17,	  19-25	  

Synthesis	  of	  silyl	  enol	  ether	  14:	  

 

 

 

    To a solution of protected STXol 11 (100 mg, 0.125 mmol) in methanol (2 mL) 

was added K2CO3 (35 mg, 0.25 mmol) at 0 °C. After stirring for 15 min, the reaction 

was diluted with EtOAc (5 mL) and H2O (5 mL), and extracted with EtOAc (5 mL) 

three times. The organic layer was dried over MgSO4, filtered and concentrated in 

vacuo to give alcohol, which was used without further purification. 

To a solution of the alcohol in CH2Cl2 (2 mL) was added NMO (59 mg, 0.5 

mmol) and 4Å MS (63 mg) at 0 °C. After stirring for 10 min, TPAP (5 mg, 0.0125 

mmol) was added, and the reaction mixture was stirred for another 1 h at room 

temperature. Then, reaction mixture was diluted with hexane/EtOAc (1:1) (2 mL) and 

filtered through a pad of neutral silica gel, and then, washed with hexane/EtOAc (1:1) 

(10 mL). The filtrates were concentrated in vacuo to give ketone.   

To a solution of the ketone in CH2Cl2 (1 mL) was added NaHMDS (0.33 mL, 

0.63 mmol) under Ar atmosphere at –40 °C. After stirring for 10 min, TBSCl (75 mg, 

0.5 mmol) was added and the reaction mixture was stirred overnight at –40 °C. Then, 

the reaction was quencher with H2O (2 mL) and warmed to room temperature and 

extracted with CH2Cl2 (3 mL) three times. The organic layer was dried over MgSO4, 

filtered and concentrated in vacuo. The residue was purified by neutral silica gel 

column chromatography (hexane/EtOAc; 5:1 to 3:1) to give silyl enol ether 14 (87 mg，

80% three steps). 

Spectral data for 14: [α]25
D = +19.9 (c 1.4 in CHCl3); 1H NMR (300 MHz, CDCl3) 

δ 7.16 (d, J = 8.3 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 4.82 (t, J = 4.1 Hz, 1H), 

4.58-4.54 (m, 2H), 4.33 (s, 2H), 4.09 (d, J = 14.8 Hz, 1H), 3.80 (s, 3H), 3.73-3.69 (m, 

1H), 3.64-3.58 (m, 1H), 3.51 (d, J = 15.1 Hz, 1H), 1.51 (s, 9H), 1.45 (s, 18H), 1.44 (s, 

3. TBSCl, NaHMDS
    CH2Cl2, –40 °C
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9H), 0.87 (s, 9H), 0.18 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 159.7, 159.1, 151.0, 

150.7, 149.1, 146.5, 146.2, 129.9, 129.7, 113.4, 98.5, 84.9, 83.9, 82.8, 81.2, 79.2, 77.4, 

73.2, 70.9, 58.8, 55.2, 52.4, 28.2, 28.1, 28.0, 27.8, 25.3, 17.8, -4.7, -5.2; HRMS (ESI, 

M+Na)+ calcd for C43H68N6O11SiNa 895.4613 found 895.4579. 

 

Synthesis	  of	  Mukaiyama	  aldol	  condensation	  adduct	  15:	   	  

 

 

 

 

To a solution of silyl enol ether 14 (87 mg, 0.10 mmol) in THF (4 mL) was 

added ethyl glyoxylate (80 µL) at 0 °C. After stirring for 10 min, [Bu4][Ph3SnF2] (67 

mg, 0.11 mmol) was added and the reaction was stirred for another 2 hrs at the same 

temperature. Then, the reaction was quenched with sat. NH4Cl aq (3 mL), and the 

solution was extracted with EtOAc (5 mL) three times. The combined organic layers 

was dried over MgSO4, filtered and concentrated in vacuo. The residue was purified 

by neutral silica gel column chromatography (hexane/EtOAc; 3:1) to give 15 (81 mg, 

96%). 

Spectral data for 15: [α]25
D = +24.6 (c 2.1 in CHCl3); 1H NMR (300 MHz, CDCl3) 

δ 9.53 (s, 1H), 7.02 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 8.6 Hz, 1H), 6.40 (t, J = 2.4 Hz, 

0.75H), 6.34-6.28 (m, 0.15H), 4.92 (d, J = 2.4 Hz, 1H), 4.72-4.44 (m, 3H), 4.27-4.10 

(m, 4H), 3.82 (d, J = 10.3 Hz, 1H), 3.78 (s, 3H), 3.67-3.57 (m, 1H), 1.53 (s, 9H), 1.45 

(s, 18H), 1.34 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 197.7, 

164.5, 159.5, 151.2, 151.1, 149.1, 145.9, 143.9, 130.0, 128.8, 121.0, 113.9, 88.3, 83.7, 

81.9, 79.9, 78.2, 77.4, 73.54, 73.45, 71.7, 61.5, 57.8, 55.4, 55.2, 29.8, 28.3, 28.0, 27.9, 

27.8, 14.3; HRMS (ESI, M+Na)+ calcd for C41H58N6O13Na 865.3960 found 865.3959. 
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Synthesis	  of	  Mukaiyama	  aldol	  condensation	  adduct	  16a-f	  

    General procedure for the Mukaiyama aldol condensation: 

 

 

 

 

To a solution of silyl enol ether 14 (1 equiv) in THF was added aldehyde (5 

equiv) at 0 °C. After stirring for several minutes, [Bu4][Ph3SnF2] (1.05 equiv) was 

added and the reaction was stirred at the same temperature. Upon completion of the 

reaction (2-48 h), the reaction was quenched with sat. NH4Cl aq., and the solution was 

extracted with EtOAc three times. The combined organic layers was dried over 

MgSO4, filtered and concentrated in vacuo. The residue was purified with preparative 

thin layer chromatography (hexane/EtOAc; 1:1).  

 

Spectral data for (E)-16a-f: 

 

(E)-16a: [α]25
D = +13.2 (c 0.6 in CHCl3); 1H NMR (400 

MHz, CDCl3) δ 9.58(s, 1H), 7.39 (s, 1H), 7.22-7.16 (m, 4H), 

6.91 (d, J = 8.2 Hz, 2H), 6.45 (d, J = 8.6 Hz, 2H), 4.90 (t, J = 2.8 

Hz, 1H), 4.69 (s, 1H), 4.64 (d, J = 17.4 Hz, 1H), 4.31 (d, J = 17.4 

Hz, 1H), 4.11 (s, 2H), 3.84-3.78 (m, 1H), 3.62 (dd, J = 3.6, 

10.1Hz, 1H), 3.60 (s, 3H), 2.41 (s, 1H), 1.56 (s, 9H), 1.47 (s, 18H), 1.27 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 197.2, 159.7, 159.1, 152.0, 151.5, 151.1, 149.2, 146.2, 

141.8, 134.7, 131.5, 131.0, 130.0, 129.8, 129.0, 128.5, 113.6, 87.2, 83.6, 81.7, 79.9, 

78.6, 77.8, 77.4, 73.7, 73.6, 71.8, 58.6, 54.9, 52.1, 29.8, 28.4, 28.1, 28.0, 27.9, 21.8; 

HRMS (ESI, M+Na)+ calcd for C45H60N6O11Na 883.4217 found 883.4175. 
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 (E)-16b: [α]25
D = +16.8 (c 1.7 in CHCl3); 1H NMR (300 

MHz, CDCl3) δ 9.58 (s, 1H), 7.44-7.38 (m, 4H), 7.31-7.27 (m, 

2H), 6.91 (d, J = 8.6 Hz, 2H), 6.46 (d, J = 8.6 Hz, 2H), 4.91 (t, 

J = 3.0, 1H), 4.71-4.62 (m, 2H, overlap), 4.35 (d, J = 15.5 Hz, 

1H), 4.11 (s, 2H), 3.86-3.79 (m, 1H), 3.66-3.57 (m, 4H, 

overlap), 1.58 (s, 9H), 1.46 (s, 18 H), 1.27 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 

197.2, 159.6, 159.0, 151.9, 151.4, 151.1, 149.2, 146.2, 134.5, 133.6, 131.3, 130.9, 

129.7, 129.5, 129.2, 128.9, 113.6, 87.3, 83.6, 81.7, 79.9, 78.5, 77.4, 73.7, 73.5, 71.8, 

58.5, 55.0, 52.1, 28.3, 28.1, 28.0, 27.8; HRMS (ESI, M+Na)+ calcd for C44H58N6O11Na 

869.4061 found 869.4048. 

 

 (E)-16c: [α]25
D = +17.9 (c 1.0 in CHCl3); 1H NMR (300 

MHz, CDCl3) δ 9.57 (s, 1H), 7.37 (dd, J = 7.9, 14.1 Hz, 1H), 

7.30 (s, 1H), 7.16-7.07 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.91 (d, 

J = 8.3 Hz, 2H), 6.45 (d, J = 8.3 Hz, 2H), 4.91 (s, 1H), 4.69 (s, 

1H), 4.61 (d, J = 15.5 Hz, 1H), 4.28 (d, J = 15.5 Hz, 1H), 4.14 (d, 

J = 11.2 Hz, 1H), 4.09 (d, J = 11.0 Hz, 1H), 3.86 (d, J = 8.3 Hz, 1H), 3.69-3.58 (m, 

4H), 1.57 (s, 9H), 1.47 (s, 18H), 1.26 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 197.3, 

164.6, 159.6, 159.1, 151.8, 151.4, 151.1, 149.2, 146.2, 135.6, 135.5, 132.9, 130.7, 

129.8, 128.9, 127.0, 118.0, 117.8, 117.6, 117.4, 113.5, 87.4, 83.7, 81.8, 80.0, 78.4, 

78.0, 77.4, 73.8, 73.7, 72.2, 58.5, 55.0, 51.9, 28.4, 28.1, 28.0, 27.9; HRMS (ESI, 

M+Na)+ calcd for C44H57N6O11FNa 887.3967 found 887.3966. 

 

 (E)-16d: [α]25
D = +21.0 (c 1.1 in CHCl3); 1H NMR (300 

MHz, CDCl3) δ 9.57 (s, 1H), 7.36 (d, J = 8.6 Hz, 2H), 7.29 (s, 

1H), 7.15 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.40 (d, 

J = 8.3 Hz, 2H), 4.91 (t, J = 2.4 Hz, 1H), 4.69 (s, 1H), 4.58 (dd, 

J = 2.1, 15.8 Hz, 1H), 4.22 (dd, J = 2.1, 15.8 Hz, 1H), 4.11 (dd, 

J = 11.0, 14.4 Hz, 2H), 3.88 (dd, J = 2.1, 10.3 Hz, 1H), 3.66 (dd, J = 3.5,10.0 Hz, 1H), 

3.59 (s, 3H), 1.57 (s, 9H) , 1.47 (s, 9H) , 1.46 (s, 9H), 1.24 (s, 9H); 13C NMR (75 
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MHz, CDCl3) δ 197.2, 159.6, 159.1, 151.9, 151.4, 151.1, 149.2, 146.2, 137.2, 132.9, 

132.4, 132.0, 129.8, 129.5, 128.9, 113.5, 87.3, 83.7, 81.8, 80.0, 78.4, 78.0, 77.4, 73.8, 

72.4, 58.6, 54.9, 51.9, 28.3, 28.1, 28.0, 27.8; HRMS (ESI, M+Na)+ calcd for 

C44H57N6O11ClNa 903.3672 found 903.3691. 

 

 (E)-16e: [α]25
D = +32.7 (c 0.8 in CHCl3); 1H NMR (300 

MHz, CDCl3) δ 9.54 (s, 1H), 8.20 (d, J = 8.6 Hz, 2H), 7.35-7.28 

(m, 3H), 6.88 (d, J = 8.6 Hz, 2H), 6.31 (d, J = 8.6 Hz, 2H), 4.92 

(s, 1H), 4.69 (s, 1H), 4.66-4.57 (m, 1H), 4.30-4.20 (m, 1H), 4.14 

(d, J = 11.0 Hz, 1H), 4.07 (d, J = 10.7 Hz, 1H), 3.91 (d, J = 9.3 

Hz, 1H), 3.75-3.65 (m, 2H), 3.52 (s, 3H), 1.57 (s, 9H) , 1.47 (s, 9H) , 1.46 (s, 9H), 

1.24 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 197.2, 159.5, 159.0, 151.8, 151.2, 151.0, 

149.2, 148.4, 146.1, 139.2, 133.1, 131.6, 130.9, 129.8, 128.9, 124.2, 113.4, 87.5, 83.9, 

81.9, 80.2, 78.2, 77.4, 73.9, 72.8, 58.6, 54.8, 51.9, 28.3, 28.0, 27.9, 27.8; HRMS (ESI, 

M+Na)+ calcd for C44H57N7O13Na 914.3912 found 914.3900. 

 

 (E)-16f: [α]25
D = +27.5 (c 1.3 in CHCl3); 1H NMR (300 

MHz, CDCl3) δ 9.58 (s, 1H), 7.57 (s, 1H), 7.11 (s, 1H), 6.97 (d, J 

= 8.9 Hz, 2H), 6.68 (d, J = 3.5 Hz, 1H), 6.54 (d, J = 8.6 Hz, 2H), 

6.52-6.49 (m, 1H), 4.90 (t, J = 2.8 Hz, 1H), 4.68 (s, 1H), 4.61 (d, 

J = 16.8 Hz, 1H), 4.33 (d, J = 16.8 Hz, 1H), 3.83 (dd, J = 2.4, 

10.0 Hz, 1H), 3.70-3.60 (m, 4H, overlap), 1.55 (s, 9H) , 1.46 (s, 9H) , 1.45 (s, 9H), 

1.26 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 196.5, 159.7, 159.1, 151.8, 151.5, 151.1, 

150.8, 149.2, 147.1, 146.2, 129.8, 129.1, 127.0, 119.7, 119.0, 113.4, 113.0, 87.2, 83.5, 

81.7, 79.8, 79.0, 78.0, 77.4, 73.6, 71.9, 58.5, 55.0, 52.1, 28.3, 28.1, 27.9, 27.8; HRMS 

(ESI, M+Na)+ calcd for C42H56N6O12Na 859.3854 found 859.3899. 
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Synthesis	  of	  17:	  

 

 

 

 

To a solution of 15 (20 mg, 0.024 mmol) in THF (1 mL) was added L-selectride 

(71 µL, 0.071 mmol) at −78 °C. After stirring for 5 min, the reaction was quenched 

with sat. NH4Cl aq (1 mL), and the solution was extracted with EtOAc (2 mL) three 

times. The combined organic layers was dried over MgSO4, filtered and concentrated 

in vacuo. The residue was purified immediately by neutral silica gel column 

chromatography (hexane/EtOAc; 2:1) to give 17 (15.4 mg, 76%). 

Spectral data for 17: [α]25
D = +13.3 (c 2.6 in CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 8.29 (s, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 4.86 (t, J = 4.1 Hz, 

1H), 4.54 (s, 1H), 4.39 (dd, J = 11, 17.4 Hz, 2H), 4.17-4.09 (m, 2H), 3.98 (t, J = 10.1 

Hz, 1H), 3.78 (s, 3H), 3.75-3.63 (m, 2H), 3.49 (t, J = 9.2 Hz, 1H), 2.78 (dd, J = 4.6, 

17.0 Hz, 1H), 2.72-2.62 (m, 1H), 2.38 (dd, J = 8.7, 13.3 Hz, 1H), 1.52 (s, 9H) , 1.50 (s, 

9H) , 1.45 (s, 9H), 1.44 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 208.7, 171.4, 159.6, 

151.2, 148.6, 144.0, 130.2, 129.1, 114.0, 87.7, 83.4, 82.0, 79.5, 78.6, 77.4, 73.4, 71.8, 

70.9, 60.9, 58.2, 55.3, 51.6, 42.5, 33.3, 28.3, 28.0, 14.3; HRMS (ESI, M+Na)+ calcd 

for C41H60N6O13Na 867.4116 found 867.4090.  

 

Synthesis	  of	  silyl	  enol	  ether	  19:[1]	  

    The route was commenced with the known compound S1 (Scheme S1), acylation 

of the hydroxyl group with acetic anhydride followed by removal of the MPM group 

with DDQ afforded S2 and further protection with TBS gave S3.  Hydrolysis of the 

acetate with potassium carbonate followed by Swern oxidation gave ketone S4.   

With the ketone S4 in hand, oxidation at the C-4 position was carried out with IBX 

followed by reduction with NaBH4 generated diol S5.  Remove the Cbz group with 
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Pd(OH)2 in MeOH then the second guanidine group was introduced by treatment with 

bis(Boc)-2-methyl-2-thiopeudourea in presence of Mercury(II) chloride to give S6. 

Esterification of the diol with acetic anhydride and cyclization in presence of ZnCl2 

yielded the fully protected saxitoxinol S7 with TBS protecting group at the C13 

position.  With intermediate S7 in hand, following the same reaction conditions 

abovementioned (Scheme 3), silyl enol ether 19 with TBS protecting group at the C13 

position was obtained. 

 

 

 

 

 

 

 

 

 

 
Scheme S2.  Synthesis of silyl enol ether 19 with TBS protecting group at the C13              
position. Reagents and conditions: a) Ac2O (10 equiv), pyridine (20 equiv), rt, 10 h; b) 
DDQ (10 equiv), CH2Cl2/H2O (2:1), rt, overnight, 79% (2 steps); c) TBSOTf (2 equiv), 
2,6-lutidine (4 equiv), CH2Cl2, rt, 20 min, 87%; d) K2CO3 (2 equiv), MeOH, 0 °C, 20 
min; e) (COCl)2 (3.5 equiv), DMSO (4.2 equiv), CH2Cl2, –78 °C, 1 h, then Et3N (10 
equiv), –78 °C, 10 min; f) IBX (1.1 equiv), DMSO, 50 °C, 1 h; g) NaBH4 (0.5 equiv), 
MeOH, 0 °C, 20min, 68% (4 steps); h) Pd(OH)2 (20% wt), MeOH, rt, 2.5 h; i) 
NBoc=C(SMe)NHBoc (1 equiv), HgCl2 (1 equiv), Et3N (3 equiv), DMF, rt, 1 h, 94% 
(2 steps); j) Ac2O (10 equiv), DMAP (0.1 equiv), pyridine (20 equiv), rt, 3 h; k) ZnCl2 
(1.5 equiv), CH2Cl2, –20 °C, 5 h, 80% (2 steps); l) K2CO3 (2 equiv), MeOH, 0 °C, 20 
min; m) NMO (4.0 equiv), 4Å MS (500 mg/mmol), CH2Cl2, 0 °C, 10 min; then, 
TPAP (0.1 equiv), rt, 1 h; n) NaHMDS (5 equiv), TBSCl (4 equiv), CH2Cl2, –40 °C, 
overnight, 85% (3 steps). DDQ = 2,3-dichloro-5,6-dicyano-p-benzoquinone, TBSOTf 
= tert-butyldimethylsilyl trifluoromethanesulfonate, DMSO = dimethyl sulfoxide, 
IBX = 2-iodoxybenzoic acid, DMAP = 4-(dimethylamino)pyridine, NMO = 
N-methylmorpholine-N-oxide, TPAP = tetrapropylammonium perruthenate. 
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Synthesis	  of	  S2	  

 

 

 

To a solution of alcohol S1 (7.6 g, 11.38 mmol) in pyridine (10 mL) was added 

acetic anhydride (5 mL) at room temperature. After stirring for 3 hrs, the reaction 

mixture was concentrated in vacuo to give ester. 

    To a solution of ester in a mixture solvent (CH2Cl2 = 130 mL, H2O = 65 mL) was 

added DDQ (25.85 g, 113.8 mmol) at 0 °C. After stirring overnight at room 

temperature, the reaction was quenched with sat. NaHCO3 aq (75 mL), and the 

solution was extracted with CH2Cl2 (100 mL) three times. The combined organic 

layers was dried over MgSO4, filtered and concentrated in vacuo. The residue was 

purified by silica gel column chromatography (hexane/EtOAc; 2:1 to 1:1) to give S2 

(5.2 g, 79% two steps). 

Spectral data for S2: [α]25
D = +117.9 (c 1.0 in CHCl3); 1H NMR (400 MHz, 

CDCl3) δ 7.37-7.32 (m, 5H), 5.37 (br, 1H), 5.29 (d, J = 8.7 Hz, 1H), 5.22 (d, J = 3.2 

Hz, 1H), 5.17 (d, J = 9.2 Hz, 1H), 5.10 (d, J = 9.0 Hz, 1H),  3.99-3.80 (m, 4H), 

3.66-3.55 (m, 3H), 2.33-2.21 (m, 1H), 2.10-2.04 (m, 4H), 1.49 (s, 9H), 1.48 (s, 9H); 
13C NMR (100 MHz, CDCl3) δ 170.9, 162.4, 156.1, 150.6, 136.1, 128.6, 128.3, 128.1, 

83.3, 80.0, 77.4, 75.6, 67.3, 64.5, 61.7, 60.8, 52.7, 46.4, 28.8, 28.3, 28.2, 21.1; HRMS 

(ESI, M+Na)+ calcd for C28H40N4O9Na 599.2693 found 599.2644. 

 

Synthesis	  of	  S3	  

 

 

 

 

To a solution of alcohol S2 (5.2 g, 9.02 mmol) in CH2Cl2 (55 mL) was added 

2,6-lutidine (4.20 mL, 36.08 mmol) at 0 °C, then TBSOTf (4.14 mL, 18.04 mmol) 

was added and the reaction mixture was stirred at rt for 1 h. After that, the reaction 
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was quenched with sat. NaHCO3 aq (30 mL), and the solution was extracted with 

CH2Cl2 (50 mL) three times. The combined organic layers was dried over MgSO4, 

filtered and concentrated in vacuo. The residue was purified by silica gel column 

chromatography (hexane/EtOAc; 5:1 to 2:1) to give S3 (5.42 g, 87%). 

    Spectral data for S3: [α]25
D = +58.0 (c 2.5 in CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 7.36-7.30 (m, 5H), 5.30 (d, J = 5.8 Hz, 1H), 5.21 (d, J = 3.9 Hz, 1H), 5.14 (d, J = 

9.3 Hz, 1H), 5.10 (d, J = 9.3 Hz, 1H), 4.12 (s, 1H), 4.09-3.99 (br, 1H), 3.91-3.82 (m, 

2H), 3.75-3.70 (m, 1H), 3.66-3.59 (m, 1H), 3.43 (d, J = 11.5 Hz, 1H), 2.24-2.11 (m, 

1H), 2.10-2.01 (m, 4H), 1.47 (s, 18H), 0.86 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ 170.9, 159.0, 156.0, 151.6, 151.1, 136.2, 128.5, 128.2, 

128.0, 82.6, 78.1, 77.4, 75.9, 67.0, 64.7, 64.3, 61.0, 53.7, 45.8, 29.1, 28.6, 28.2, 25.9, 

21.1, 18.4, -5.3, -5.8; HRMS (ESI, M+Na)+ calcd for C34H55N4O9SiNa 691.3738 

found 691.3780. 

 

Synthesis	  of	  S4	  

  

 

 

    To a solution of S3 (5.42g, 7.84 mmol) in methanol (50 mL) was added K2CO3 

(2.17 g, 15.69 mmol) at 0 °C under N2 atmosphere. After stirring for 15 min, the 

reaction was quenched with water (40 mL) and extracted with EtOAc (50 mL) three 

times. The organic layer was dried over MgSO4, filtered and concentrated in vacuo to 

give crude alcohol. 

    To a solution of DMSO (2.36 mL, 32.95 mmol) in CH2Cl2 (150 mL) was slowly 

added oxalychloride (2.40 mL, 27.46 mmol) at –78 °C under N2 atmosphere. The 

reaction mixture was stirred for 30 min, and then crude alcohol was added as a 

solution in CH2Cl2 (30 mL) under N2 atmosphere. After stirring for 1 h, Et3N (10.93 

mL, 78.45 mmol) was added to the reaction mixture. After stirring for another 5 min, 

the reaction was rapidly quenched with water (20 mL), warmed to room temperature 

and extracted with CH2Cl2 (50 mL) three times. The combined organic layer was 
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dried over MgSO4, filtered and concentrated in vacuo to give ketone S4. 

 

Synthesis	  of	  S5	  

 

 

    

 

    To a solution of ketone S4 in DMSO (65 mL) and H2O (0.24 mL) was added 

IBX (2.43 g, 8.63 mmol) at room temperature. Then the reaction mixture was warmed 

to 50 °C and stirred for 1 h.  After that, the reaction was quenched with 10% 

Na2S2O3 aq (30 mL) and saturated NaHCO3 aq (30 mL). Then, the solution was 

diluted with EtOAc (50 mL). The organic layer was washed with water (100 mL) 

three times.  The organic layer was dried over MgSO4, filtered and concentrated in 

vacuo to give aminal. 

To a solution of aminal in methanol (45 mL) was added NaBH4 (0.15g, 3.92 

mmol) at 0 °C. After stirring for 15 min, the reaction was quenched with water (60 

mL), and the solution was extracted with EtOAc (100 mL) three times. The combined 

organic layers was dried over MgSO4, filtered and concentrated in vacuo. The residue 

was purified by silica gel column chromatography (hexane/EtOAc; 4:1 to 1:1) to give 

diol S5 (3.56g, 68% four steps). 

Spectral data for S5: [α]25
D = +41.8 (c 1.9 in CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 7.40-7.33 (m, 5H), 5.30 (d, J = 9.0 Hz, 1H), 5.16 (d, J = 9.0 Hz, 1H), 5.09 (d, J = 

9.2 Hz, 1H), 4.95 (s, 1H), 4.56 (dd, J = 6.0, 9.2 Hz, 1H), 2.17-2.05 (m, 1H), 2.00-1.95 

(m, 1H), 1.47 (s, 9H), 1.46 (s, 9H), 0.85 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 158.8, 157.3, 151.7, 149.1, 135.7, 128.7, 128.5, 128.3, 91.3, 

83.0, 78.8, 77.4, 67.8, 64.3, 58.9, 52.4, 46.4, 29.1, 28.4, 28.3, 25.8, 18.1, -5.4, -5.6; 

HRMS (ESI, M+Na)+ calcd for C32H52N4O9SiNa 687.3401 found 687.3438.  
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Synthesis	  of	  S6	   	  

 

 

  

  

    To a solution of diol S5 (3.56 g, 5.36 mmol) in methanol (45 mL) was added 20% 

Pd(OH)2 (0.71 g). The suspension was vigorously stirred under H2 atmosphere 

(balloon) at room temperature for 3 hrs and then was filtered through a pad of Celite. 

The filtrates were concentrated in vacuo to give amine. 

To a solution of the amine, Et3N (2.24 mL, 16.08 mmol) and 

bis(Boc)-2-methyl-2-thiopseudourea (1.92 g, 5.36 mmol) in DMF (30 mL) was added 

HgCl2 (1.46 g, 5.36 mmol) at room temperature under N2 atmosphere. After stirring 

for 1 h, the reaction mixture was diluted with EtOAc (45 mL) and filtered through a 

pad of Celite. The filtrate was washed with water (50 mL) and brine (50 mL) twice. 

The organic layer was dried over MgSO4, filtered and concentrated in vacuo to give 

yellow oil. The crude mixture was purified by chromatorex NH gel column 

chromatography (hexane/EtOAc; 4:1 to 1:1) to give bis-guanidine S6 (3.89 g, 94% 

two steps).  

    Spectral data for S6: [α]25
D = +27.7 (c 1.9 in CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 11.40 (s, 1H), 8.74 (d, J = 13.2 Hz, 1H), 6.90 (s, 1H), 4.88 (dd, J = 5.5, 8.7 Hz, 1H), 

4.21-4.16 (m, 1H), 4.00-3.90 (m, 3H), 3.70-3.62 (m, 2H), 2.30 (s, 1H), 2.18-1.99 (m, 

2H), 1.51 (m, 18H), 1.48 (s, 9H), 1.45 (s, 9H), 0.83 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); 
13C NMR (100 MHz, CDCl3) δ 162.3, 158.8, 155.8, 152.8, 151.5, 148.7, 91.5, 83.9, 

83.1, 79.8, 78.9, 77.4, 76.2, 64.6, 59.0, 52.6, 46.5, 29.0, 28.4, 28.21, 28.17, 28.1, 25.7, 

18.1, -5.4, -5.6; HRMS (ESI, M+Na)+ calcd for C35H64N6O11SiNa 795.4300 found 

795.4312. 
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Synthesis	  of	  S7	  

 

 

 

 

    To a solution of bis-guanidine S6 (3.89 g, 5.03 mmol) in pyridine (16 mL) was 

added catalytic amount of DMAP (62 mg, 0.05 mmol) and acetic anhydride (8 mL) at 

room temperature. After stirring for 1 h, the reaction mixture was concentrated in 

vacuo to give diester. 

    To a solution of diester in CH2Cl2 (60 mL) was added ZnCl2 (1.03 g, 7.55 mmol) 

under Ar atmosphere at –20 °C. After stirring for 3 hrs, the reaction mixture was 

quenched with saturated NaHCO3 (30 mL) and extracted with CH2Cl2 (50 mL) three 

times. The organic layer was dried over MgSO4, filtered and concentrated in vacuo. 

The residue was purified by Chromatorex NH column chromatography 

(hexane/EtOAc; 10:1 to 6:1) to give protected STXol S7 (3.20 g, 80% two steps).  

Spectral data for S7: [α]25
D = +45.2 (c 1.9 in CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 9.49 (br, 1H), 5.90 (t, J = 9.2 Hz, 1H), 4,96 (s, 1H), 4. 64 (dd, J = 5.5, 10.1 Hz, 1H), 

3.90 (dd, J = 5.5, 10.5 Hz, 1H), 3.84-3.77 (m, 1H), 3.64 (t, J = 10.1 Hz, 1H), 3.40 (t, J 

= 10.1 Hz, 1H), 2.42-2.35 (m, 1H), 2.08 (s, 3H), 1.89-1.78 (m, 1H), 1.58 (s, 9H), 1.48 

(s, 9H), 1.45 (s, 9H), 1.44 (s, 9H), 0.91(s, 9H), 0.09 (s, 3H), 0.07 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 170.2, 159.2, 151.1, 150.9, 149.3, 149.2, 146.3, 86.5, 83.7, 83.0, 

81.5, 79.5, 77.4, 76.7, 66.6, 62.5, 60.1, 46.7, 29.0, 28.4, 28.2, 28.1, 27.8, 26.0, 20.8, 

18.4, -5.2, -5.3; HRMS (ESI, M+Na)+ calcd for C37H64N6O11SiNa 819.4300 found 

819.4311. 

 

Synthesis	  of	  silyl	  enol	  ether	  19	  
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To a solution of protected STXol S7 (0.95 g, 1.19 mmol) in methanol (12 mL) 

was added K2CO3 (0.33 g, 2.38 mmol) at 0 °C. After stirring for 15 min, the reaction 

was diluted with EtOAc (10 mL)and H2O (10 mL), and extracted with EtOAc (15 mL) 

three times. The organic layer was dried over MgSO4, filtered and concentrated in 

vacuo to give crude alcohol. 

    To a solution of crude alcohol in CH2Cl2 (12 mL) was added NMO (0.56 g, 4.76 

mmol) and 4Å MS (0.60 g) at 0 °C. After stirring for 10 min, TPAP (42 mg, 0.119 

mmol) was added, and the reaction mixture was stirred for another 1 h at room 

temperature. Then, reaction mixture was diluted with hexane/EtOAc (2:1) (12 mL) 

and filtered through a pad of neutral silica gel, and then, washed with hexane/EtOAc 

(2:1) (50 mL). The filtrates were concentrated in vacuo to give ketone. 

    To a solution of ketone in CH2Cl2 (8 mL) was added NaHMDS (3.14 mL, 5.97 

mmol) under Ar atmosphere at –40 °C. After stirring for 10 min, TBSCl (0.72 g, 

4.77mmol) was added and the reaction mixture was stirred overnight at –40 °C. Then, 

the reaction was quenched with H2O (10 mL) and warmed to room temperature and 

extracted with CH2Cl2 (10 mL) three times. The combined organic layer was dried 

over MgSO4, filtered and concentrated in vacuo. The residue was purified by neutral 

silica gel column chromatography (hexane/EtOAc; 8:1 to 3:1) to give silyl enol ether 

19 (0.88 g, 85% three steps). 

    Spectral data for 19: [α]25
D = +13.6 (c 1.2 in CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 4.80 (s, 1H), 4.72-4.68 (m, 2H), 4.35 (d, J = 18.8 Hz, 1H), 3.92-3.84 (m, 2H), 3.37 

(t, J = 12.4 Hz, 1H), 1.50 (s, 9H), 1.48 (s, 9H), 1.45 (s, 18H), 0.88 (s, 9H), 0.86 (s, 

9H), 0.21 (s, 6H), 0.03 (s, 3H), 0.01 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.5, 

151.1, 150.0, 149.1, 147.3, 146.4, 97.7, 85.1, 83.5, 82.9, 81.2, 79.4, 77.4, 69.0, 62.4, 

60.1, 52.1, 28.19, 28.15, 28.0, 27.8, 26.0, 25.3, 18.4, 17.8, -4.7, -4.9, -5.2, -5.6; 

HRMS (ESI, M+Na)+ calcd for C41H75N6O10Si2Na 867.5083 found 867.5045. 
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Synthesis	  of	  20	  

 

 

 

   To a solution of silyl enpl ether 19 (0.23 g, 0.27 mmol) in THF (10 mL) was 

added ethyl glyoxylate (210 µL) at 0 °C. After stirring for several minutes, 

[Bu4][Ph3SnF2] (0.177 g, 0.28 mmol) was added and the reaction was stirred for 

another 2 hrs at the same temperature. Then, the reaction was quenched with sat. 

NH4Cl aq (5 mL), and the solution was extracted with EtOAc (10 mL) three times. 

The combined organic layers was dried over MgSO4, filtered and concentrated in 

vacuo. The residue was purified by neutral silica gel column chromatography 

(hexane/EtOAc; 3:1) to give 20 (0.19 g, 85%).  

    Spectral data for 20: [α]25
D = +11.3 (c 0.7 in CHCl3); 1H NMR (300 MHz, CDCl3) 

δ 9.50 (s, 1H), 6.70 (t, J = 2.4 Hz, 0.75 H), 6.62-6.57 (m, 0.15 H), 4.86-4.78 (m, 4H), 

4.33-4.25 (m, 2H), 3.89 (dd, J = 5.2, 10.7 Hz, 1H), 3.44 (dd, J = 7.6, 10.6 Hz, 1H), 

1.51 (s, 9H), 1.47 (s, 9H), 1.45 (s, 9H), 1.39 (s, 9H), 1.31 (t, J = 7.2 Hz, 3H), 0.79 (s, 

9H), -0.03 (s, 3H), -0.10 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 196.9, 164.6, 

159.3151.0, 149.1, 145.8, 143.3, 122.9, 88.5, 83.8, 81.9, 80.1, 77.8, 77.4, 72.2, 63.2, 

61.9, 59.0, 51.4, 28.3, 28.0, 27.9, 27.8, 26.0, 18.6, 14.4, -5.4, -5.6; HRMS (ESI, 

M+Na)+ calcd for C39H64N6O12SiNa 859.4249 found 859.4262. 

 

Synthesis	  of	  21	  

 

 

 

 

    To a solution of 20 (190 mg, 0.23 mmol) in THF (8 mL) was added L-selectride 

(0.68 mL, 0.68 mmol) at −78 °C. After stirring for 5 min, the reaction was quenched 

BocN

NBocN

TBSO
H
N

NBoc

NBoc

O

CO2Et20

BocN

N

H
N

NBoc
BocN

TBSO
NBoc

OTBS

19

CO2EtH

O

[Bu4N][Ph3SnF2]
THF, 0 °C

BocN

NBocN

TBSO
H
N

NBoc

NBoc

O

CO2Et

BocN

NBocN

TBSO
H
N

NBoc

NBoc

O

CO2Et

L-Selectride

20 21

THF, –78 °C



This article is protected by copyright. All rights reserved 

SI-SEA-Nagasawa

	   S17 

with sat. NH4Cl aq (10 mL), and the solution was extracted with EtOAc (10 mL) three 

times. The combined organic layers was dried over MgSO4, filtered and concentrated 

in vacuo. The residue was purified immediately by neutral silica gel column 

chromatography (hexane/EtOAc; 3:1) to give 21 (145 mg, 76%). 

Spectral data for 21: [α]25
D = +5.2 (c 1.3 in CHCl3); 1H NMR (300 MHz, CDCl3) 

δ 8.30 (s, 1H), 4.35 (dd, J = 5.9, 8.3 Hz, 1H), 4.75 (s, 1H), 4.30 (dd, J = 8.9, 10.3 Hz, 

1H), 4.21-4.13 (m, 2H), 3.95 (dd, J = 5.8, 10.6 Hz, 1H), 3.66 (dd, J = 8.9, 11.0 Hz, 

1H), 3.50 (t, J = 9.5 Hz, 1H), 3.04-2.94 (m, 2H), 2.60 (dd, J = 10.3, 17.9 Hz, 1H), 

1.52 (s, 9H), 1.49 (s, 9H), 1.47 (s, 9H), 1.44 (s, 9H), 1.28 (t, J = 6.9 Hz, 3H), 0.84 (s, 

9H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (75MHz, CDCl3) δ 207.6, 171.5, 159.3, 

151.2, 150.0, 148.8, 148.5, 143.8, 87.8, 83.6, 81.9, 79.7, 78.0, 77.4, 69.9, 62.5, 61.1, 

59.0, 51.3, 42.9, 33.4, 29.7, 28.2, 27.9, 25.9, 18.3, 14.3, -5.4; HRMS (ESI, M+Na)+ 

calcd for C39H66N6O12SiNa 861.4406 found 861.4400. 

 

Synthesis	  of	  22	  

 

 

 

To a solution of 21 (145 mg, 0.17 mmol) in a mixture solvent (THF = 4 mL, 

Et3N = 0.8 mL) was added HF·Et3N (150 µL) at 0 °C. After stirring for 5 hrs at room 

temperature, the reaction was quenched with sat. NaHCO3 aq (5 mL), and the solution 

was extracted with EtOAc (5 mL) three times. The combined organic layers was dried 

over MgSO4, filtered and concentrated in vacuo. The residue was purified by neutral 

silica gel column chromatography (hexane/EtOAc; 2:1 to 1:1) to give 22 as 

diastereomers mixture (109 mg, 87%). Major diastereomer was obtained by further 

purified with preparative thin layer chromatography (hexane/EtOAc; 1:1).  

Spectral data for 22: [α]25
D = –1.4 (c 0.8 in CHCl3); 1H NMR (300 MHz, CDCl3) 

δ 8.29 (s, 1H), 4.92 (d, J = 3.5 Hz, 1H), 4.89 (d, J = 3.8 Hz, 1H), 4.41 (dd, J = 9.3, 
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11.0 Hz, 1H), 4.21-4.14 (m, 2H), 3.69-3.57 (m, 2H), 3.44 (t, J = 11.3 Hz, 1H), 

3.03-2.92 (m, 2H), 2.58 (dd, J = 10.0, 17.5 Hz, 1H), 1.52 (s, 9H), 1.50 (s, 9H), 1.46 (s, 

9H), 1.45 (s, 9H), 1.28 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 207.5, 171.2, 

161.2, 151.1, 150.3, 148.8, 148.4, 143.9, 88.3, 83.6, 82.1, 81.0, 78.0, 77.4, 70.8, 61.5, 

61.2, 60.3, 50.8, 42.7, 33.2, 28.0, 27.9, 27.84, 27.78, 14.2; HRMS (ESI, M+Na)+ 

calcd for C33H52N6O12Na 747.3541 found 747.3551. 

 

Synthesis	  of	  23	  

 

 

 

To a solution of 22 (109 mg, 0.15 mmol) in CH2Cl2 (6 mL) was added 

CCl3C(O)NCO (90 µL, 0.75 mmol). After stirring for 15 min, Et3N (0.48 mL) and 

MeOH (2 mL) were added, and the reaction temperature was increased to room 

temperature. After stirring for another 5 hrs, the resulting mixture was concentrated in 

vacuo. The residue was purified by neutral silica gel column chromatography 

(hexane/EtOAc; 1:1) to give 23 as diastereomers mixture (78 mg, 68%). Major 

diastereomer was obtained by further purified with preparative thin layer 

chromatography (hexane/EtOAc; 1:2).  

Spectral data for 23: [α]25
D = –58.0 (c 1.1 in CHCl3); 1H NMR (300 MHz, CDCl3) 

δ 8.31 (s, 1H), 4.93 (dd, J = 5.5, 9.3 Hz, 1H), 4.49 (s, 1H), 4.42-4.30 (m, 2H, overlap), 

4.17 (dd, J = 7.2, 14.4 Hz, 2H), 4.15-4.08 (m, 1H), 3.69 (dd, J = 9.3, 10.3 Hz, 1H), 

3.38-3.29 (m, 1H), 3.03 (dd, J = 3.8, 17.5 Hz, 1H), 2.59 (dd, J = 10, 17.5 Hz, 1H), 

1.52 (s, 9H), 1.49 (s, 9H), 1.48 (s, 9H), 1.44 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H); 13C 

NMR (100 MHZ, CDCl3,): 207.6, 171.8, 159.3, 156.1, 150.9, 149.5, 148.8, 148.5, 

144.4, 88.1, 83.9, 82.1, 80.0, 78.1, 77.4, 70.3, 62.9, 61.2, 57.2, 51.3, 42.6, 33.3, 28.3, 

28.0, 27.9, 14.4; HRMS (ESI, M+Na)+ calcd for C34H53N7O13Na 790.3599 found 

790.3606. 
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Synthesis	  of	  7,	  8,	  9	  

Synthesis	  of	  11-saxitoxinethanoic	  acid	  (7)	   	  

 

 

 

 

    To a solution of 23 (78 mg, 0.10 mmol) in a mixture solvent (THF = 2 mL, H2O 

= 0.6 mL) was added LiOH·H2O (21 mg, 0.51 mmol) at 0 °C. After stirring for 1.5 h, 

the reaction was quenched with 1.2 N HCl aq until the pH reached 1, and the solution 

was extracted with EtOAc (3 mL) three times. The combined organic layers was dried 

over MgSO4, filtered and concentrated in vacuo to give crude carboxylic acid. 

To a solution of crude carboxylic acid in CH2Cl2 (1 mL) was added TFA (0.5 mL) 

at room temperature. After stirring for 1 h, the reaction was concentrated in vacuo. 

The residue was dissolved in milli-Q (2 mL), and filtered through Millex filter unit 

(Millipore, 0.45 µm). The filtrate was lyophilized and the residue was perified by 

reverse phase HPLC (CH3CN: 0.1% CH3COOH aq. = 15: 85, Shiseido Cancel Pak 

AQ C18 column, Rt= 8.5 min, 214 nm UV detection) to give SEA (7) as diacetate 

salt. 

    Spectral data for 7: [α]25
D = +15 (c 0.1 in MeOH); 1H NMR (300 MHz, D2O, 

after 12 h), δ 4.74 (s, 1H), 4.25 (dd, J = 9.3, 11.7 Hz, 1H), 4.02 (dd, J = 5.5, 11.7 Hz, 

1H), 3.90 (d, J = 10 Hz, 1H) 3.80 (dd, J = 5.2, 8.9 Hz, 1H), 3.18 (t, J = 10.0 Hz, 1H), 

2.68 (d, J = 16.5Hz, 1H), 2.49 (d, J = 16.1 Hz, 1H), 1.90 (s, 6H); 13C NMR (100 MHz, 

D2O; 1,4-dioxan (67.4 ppm) was used as internal standard) δ 182.2, 181.0, 159.3, 

158.3, 156.1, 99.3, 83.6, 63.6, 57.5, 53.5, 48.2, 39.9, 34.1, 24.0; HRMS (ESI, M+H)+ 

calcd for C12H20N7O6 358.1475 found 358.1482. 
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Synthesis	  of	  8	  

 

 

 

 

    To a solution of 21 (22 mg, 0.0256mmol) in a mixture solvent (THF = 0.6 mL, 

H2O = 0.2 mL) was added LiOH·H2O (6 mg, 0.128 mmol) at 0 °C. After stirring for 2 

h, the reaction was quenched with 1.2 N HCl aq until the pH reached 1, and the 

solution was extracted with EtOAc (2 mL) three times. The combined organic layers 

was dried over MgSO4, filtered and concentrated in vacuo to give crude carboxylic 

acid. 

To a solution of crude carboxylic acid in CH2Cl2 (1 mL) was added TFA (0.5 mL) 

at room temperature. After stirring for 1 h, the reaction was concentrated in vacuo. 

The residue was dissolved in milli-Q (2 mL), and filtered through Millex filter unit 

(Millipore, 0.45 µm). The filtrate was lyophilized to give 8 as an analytically pure 

material (7 mg, 90%). 

    Spectral data for 8: [α]25
D = +48.3 (c 0.4 in MeOH); 1H NMR (300 MHz, D2O, 

after 12 h in D2O) δ 4.72 (s, 1H), 3.98 (d, J =10 Hz, 1H), 3.71-3.55 (m, 3H), 3.19 (d, 

J = 10 Hz, 1H), 2.80 (d, J = 16.8 Hz, 1H), 2.57 (d, J = 17.1 Hz); 13C NMR (100 MHz, 

D2O; 1,4-dioxan (67.4 ppm) was used as internal standard) δ 177.4, 158.1, 156.1, 99.6, 

83.1, 61.7, 57.2, 56.0, 48.3, 31.7; HRMS (ESI, M+H)+ calcd for C11H18N6O5 315.1417 

found 315.1430. 
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Synthesis	  of	  9	  

 

 

 

 

To a solution of 23 (11.8 mg, 0.015 mmol) in CH2Cl2 (1 mL) was added TFA 

(0.5 mL) at room temperature. After stirring for 1 h, the reaction was concentrated in 

vacuo. The residue was dissolved in milli-Q (2 mL), and filtered through Millex filter 

unit (Millipore, 0.45 µm). The filtrate was lyophilized to give 9 as an analytically 

pure material (6 mg, quant.). 

Spectral data for 9: [α]25
D = +49.5 (c 0.6 in MeOH); 1H NMR (300 MHz, D2O, 

after 12 h in D2O) δ 4.75 (d, J = 1.1Hz, 1H), 4.25 (dd, J = 9.6, 11.7 Hz, 1H), 4.17 (dd, 

J = 7.2, 14.4 Hz, 2H), 4.05-3.96 (m, 2H), 3.80 (dd, J = 5.2, 10.3 Hz, 1H), 3.25 (d, J = 

10.3 Hz, 1H), 2.83 (d, J = 16.5 Hz, 1H), 2.62 (d, J = 16.8 Hz, 1H), 1.25 (t, J = 7.2 Hz, 

3H); 13C NMR (75 MHz, D2O, 1,4-dioxan (67.4 ppm) was used as internal standard) δ 

174.0, 158.3, 157.2, 155.1, 98.4, 82.1, 62.5, 62.0, 56.5, 52.5, 47.3, 38.5, 30.7, 13.1; 

HRMS (ESI, M+H)+ calcd for C14H24N7O6 386.1788 found 386.1766.	    
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Synthesis	  of	  25	  

 
 
 
 
 
 
 
 
 
 
 
 
 

Scheme S2.  Synthesis of 25 
 
Synthesis	  of	  24	   	   	    
 

 

 

 

To a solution of silyl enol ether 19 (140mg, 0.162 mmol) in THF (3 mL) was 

added benzaldehyde (164 µL, 1.62 mmol) at 0 °C. After stirring for several minutes, 

[Bu4N][Ph3SnF2] (107 mg, 0.17 mmol) was added. After stirring for 24 hrs at room 

temperature, the reaction was quenched with sat. NH4Cl aq (5 mL), and the solution 

was extracted with EtOAc (10 mL) three times. The combined organic layers was 

dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by 

neutral silica gel column chromatography (hexane/EtOAc; 4:1 to 1:1) to give 24 (57 

mg, 42%).  

Spectral data for 24: [α]25
D = −10.4 (c 5 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 

9.57 (s, 1H), 7.58 (s, 1H), 7.49 (s, 5H), 4.81- 4.90 (m, 3H), 4.65 (d, J = 15.57 Hz, 1H), 

3.85 (dd, J = 5.0, 10.6 Hz, 1H), 3.38 (t, J = 10.1, 8.7 Hz, 1H), 1.52 (s, 9H), 1.48 (s, 

9H), 1.46 (s, 9H), 1.35 (s, 9H), 0.75 (s, 9H), −0.09 (s, 3H), −0.19 (s, 3H); 13C NMR 

(75 MHz, CDCl3) δ 196.4, 159.4, 151.4, 151.1, 150.9, 149.2, 146.1, 136.2, 133.6, 
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131.4, 131.3, 129.5, 129.0, 87.5, 83.8, 81.7, 80.2, 78.0, 77.4, 71.9, 62.9, 59.4, 51.1, 

28.3, 28.1, 28.0, 25.9, 18.5, -5.4, -5.6; HRMS (ESI, M+Na)+ calcd for 

C42H64N6O10SiNa 863.4350 found 863.4385. 
	  
Synthesis	  of	  S8	  
 

 

 

 

To a solution of 24 (8 mg, 0.009 mmol) in a mixture solvent (THF = 0.5 mL, 

Et3N = 0.1 mL) was added HF·Et3N (40 µL) at 0 °C. After stirring for 5 h at room 

temperature, the reaction was quenched with sat. NaHCO3 aq (1 mL), and the solution 

was extracted with EtOAc (3 mL) three times. The combined organic layers was dried 

over MgSO4, filtered and concentrated in vacuo. The residue was purified by neutral 

silica gel column chromatography (hexane/EtOAc; 2:1 to 1:1) to give S8 (6.8 mg, 

98%).  

Spectral data for S8: [α]25
D = –20.9 (c 2.3 in CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 9.53 (s, 1H), 7.62 (s, 1H), 7.50 (s, 5H), 4.92- 4.88 (m, 2H), 4.75 (d, J = 16.0 Hz, 

1H), 4.33 (s, 1H), 3.53 (dd, J = 3.7, 11.9 Hz, 1H), 3.16 (dd, J = 11.9 Hz, 1H), 1.53 (s, 

9H), 1.47 (s, 18H), 1.35 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 196.1, 161.4, 151.3, 

151.2, 150.1, 149.1, 146.3, 137.3, 133.2, 131.8, 131.5, 129.6, 127.8, 87.9, 84.1, 82.0, 

81.8, 77.9, 77.4, 72.7, 61.6, 60.9, 50.8, 28.11, 28.1, 27.9; HRMS (ESI, M+Na)+ calcd 

for C36H50N6O10Na 749.3486 found 749.3473. 
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To a solution of S8 (7 mg, 0.0096 mmol) in CH2Cl2 (0.5 mL) was added 

CCl3C(O)NCO (5.7 µL, 0.048 mmol). After stirring for 15 min, Et3N (48 µL) and 

MeOH (0.2 mL) were added, and the reaction temperature was increased to room 

temperature. After stirring for another 5 hrs, the resulting mixture was concentrated in 

vacuo to give S9 (5.4 mg), which was used without further purification.  

To a solution of S9 (5.4 mg) in CH2Cl2 (0.5 mL) was added TFA (0.25 mL) at 

room temperature. After stirring for 1 h, the reaction was concentrated in vacuo. The 

residue was dissolved in milli-Q (1 mL), washed with CH2Cl2 (5 mL) and filtered 

through Millex filter unit (Millipore, 0.45 µm). The filtrate was lyophilized to give 25 

as an analytically pure material (2.6 mg, 73% 2 steps). 

    Spectral data for 25: [α]25
D = –36.4 (c 0.2 in MeOH); 1H NMR (300 MHz, D2O) 

δ 7.92 (s, 1H), 7.63-7.57 (m, 5H), 4.96 (s, 1H), 4.85 (s, 1H), 4.75 (s, 1H), 4.26 (dd, J 

= 4.5, 12.4 Hz, 1H), 4.16 (dd, J = 3.8, 12.4 Hz, 1H), 3.96 (t, J = 3.8, 4.2 Hz, 1H); 13C 

NMR (100 MHz, D2O; 1,4-dioxan (67.4 ppm) was used as internal standard) δ 194.1, 

158.6, 158.1, 157.0, 142.6, 133.6, 133.4, 132.7, 130.3, 124.7, 76.4, 65.9, 61.9, 53.0, 

48.8; HRMS (ESI, M+H)+ calcd for C17H20N7O3 370.1627 found 370.1660. 

 

Reference:	  

[1] O. Iwamoto, K. Nagasawa, Org. Lett. 2010, 12, 2150–2153. 

 

 

 

 

 

 

3.	   	   Copies	  of	  NMR	  spectra	  of	  intermediates	  for	  S2-S8,	  7-9,	  14-17,	  19-25	  
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Precise	  assignment	  of	  7	  

 

  

 

 

 

                    	   	   	   	   	   	   	   	   	   	   	  

	  

 

 

	   	    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

HN

NH2N

H
N
NH

NH2

OH2N

O

OH
OH

2CH3COO

COOH

HN

NH2N

H
N
NH

NH2

OH2N

O

2CH3COO

COOH

O
HN

NH2N

H
N
NH

NH2

OH2N

O

OH
OH

2CH3COO

COOH

(β)-SEA SEA (keto form) (α)-SEA 

ab
un

da
nc

e
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

X : parts per Million : 1H

4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3

   
4.

91
22

   
4.

85
49

   
4.

80
00

   
4.

74
28

   
4.

28
61

   
4.

25
52

   
4.

24
72

   
4.

21
74

   
4.

05
49

   
4.

03
66

   
4.

01
60

   
3.

99
77

   
3.

92
10

   
3.

88
78

   
3.

82
37

   
3.

80
65

   
3.

79
39

   
3.

77
68

   
3.

19
88

   
3.

16
56

   
2.

70
09

   
2.

64
59

   
2.

52
12

   
2.

46
74

HA-13�

HB-13�

HA-13�
HA-10α�

HA-6�
HB-10� HC-10�

HA-10β�

HB-15�

HA-15� HA-15�

HC-15�

HA-5�

HB-5�

HC-5�



This article is protected by copyright. All rights reserved 

SI-SEA-Nagasawa

	   S66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
	  
	  
	  

 

 (thousandths)
0 10.0 20.0 30.0 40.0 50.0X

 : parts per M
illion : 13C

220.0
210.0

200.0
190.0

180.0
170.0

160.0
150.0

140.0
130.0

120.0
110.0

100.0
90.0

80.0
70.0

60.0
50.0

40.0
30.0

20.0
10.0

0
-10.0

-20.0

 182.2155
 180.9665

 159.3325
 158.2646
 156.1479

  99.3027

  83.5516

  67.4000
  63.6052

  57.4650
  53.5272

  48.2355

  39.8546

  34.1338

  24.0081

H
N

N
H
2 N

HNN
H

N
H
2

O
H
2 N

O

O
H

O
H

2C
H
3 C
O
O

C
O
O
H

11-saxitoxinethanoic acid (7)
13C N

M
R, 100 M

H
z, D

2 O
A

fter 12 h in D
2 O

1,4-dioxane as internal standard



This article is protected by copyright. All rights reserved 

SI-SEA-Nagasawa

	   S67 

Spectral	  data	  for	  synthetic	  and	  natural	  SEA	  (7)	  

1H NMR data for synthetic and natural SEA (7). 

After H-D exchange, signal of H-11 was disappeared. 
	  

 Synthetic Natural 
Position  1H  1H 
5 4.74 (s, 1H) 4.74 (s, 1H) 
6 3.80 (dd, J = 5.2, 8.9 Hz, 1H) 3.80 (dd, J = 5, 9 Hz, 1H)   
10 3.90 (d, J = 10 Hz, 1H); 

3.18 (d, J = 10 Hz, 1H) 
3.91 (d, J = 10 Hz, 1H); 
3.18 (d, J = 10 Hz, 1H) 

11 ---- ---- 
13 4.25 (dd, J = 9.3, 11.7 Hz, 1H) 

4.02 (dd, J = 5.5, 11.7 Hz, 1H) 
4.24 (dd, J = 9, 12 Hz, 1H) 
4.03 (dd, J = 5, 12 Hz, 1H) 

15 2.68 (d, J =16.5 Hz, 1H) 
2.49 (d, J =16.1 Hz, 1H) 

2.68 (d, J = 16 Hz, 1H) 
2.51 (d, J = 16 Hz, 1H) 

 

13C NMR data for synthetic and natural SEA (7) 

 
 Synthetic Natural 
Position  13C NMR 13C NMR 
C-2 156.1 156.2 
C-4 83.6 83.5 
C-5 57.5 57.5   
C-6 53.5 53.5 
C-8 158.3 158.3 
C-10 48.2 48.2 
C-11 39.9 39.9 
C-12 99.3 99.3 
C-13 63.6 63.6 
C-14 159.3 159.3 
C-15 34.1 33.9 
C-16* 182.2 180.6 

 

* The 13C NMR chemical shift values of C16 were greatly influenced by pH.   
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HPLC	  data	  of	  the	  SEA	  (7)	  

The purity of the purified SEA (7) was checked by using reverse phase HPLC 

(CH3CN: 0.1% CH3COOH aq. = 15: 85, Shiseido Cancel Pak AQ C18 column, Rt = 

8.5 min, 214 nm UV detection).   
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Precise	  assignment	  of	  8	  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ab
un

da
nc

e
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

X : parts per Million : 1H
5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2

H-6, H-13, A+B+C�
     +    +�

HA-10α

HB-10�

HA-10β�

HB-15�

HA-15�
HA-15�

HB-15�

HB-10�

HC-10�

HC-10�

HN

NH2N

H
N
NH

NH2

HO

OH
OH

6
5

13

10
11

15

1111

1111A B C
OH

O

HN

NH2N

H
N
NH

NH2

HO

6
5

13

10
11

15

OH
O

HN

NH2N

H
N
NH

NH2

HO

OH
OH

6
5

13

10
11

15

OH
O

O



This article is protected by copyright. All rights reserved 

SI-SEA-Nagasawa

	   S71 
 

 (thousandths)
0 10.0 20.0 30.0 40.0 50.0 60.0X

 : parts per M
illion : 13C

220.0
210.0

200.0
190.0

180.0
170.0

160.0
150.0

140.0
130.0

120.0
110.0

100.0
90.0

80.0
70.0

60.0
50.0

40.0
30.0

20.0
10.0

0
-10.0

-20.0

 177.4101

 158.1121
 156.1194

  99.6078

  83.1035

  67.4000

  61.7269
  57.1980
  55.9680

  48.3499

  31.7406

13C N
M

R (75 M
H

z, D
2 O

)  �

1,4-dioxane as internal standard�

H
N

N
H
2 N

HNN
H

N
H
2

O
H

O
H

11 C
F
3 C
O
O

O
O

H
O8�



This article is protected by copyright. All rights reserved 

SI-SEA-Nagasawa

	   S72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

abundance
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0X

 : parts per M
illion : 1H

10.0
9.0

8.0
7.0

6.0
5.0

4.0
3.0

2.0
1.0

   4.9145
   4.8561
   4.8000
   4.7531
   4.7496
   4.2540
   4.2231
   4.1877
   4.1636
   4.0434
   4.0251
   4.0091

   3.2709
   3.2365

   2.8600
   2.8050
   2.6448
   2.5887

   1.2724
   1.2484
   1.2244 3.15

3.10
1.96

1.13

1.00

0.96

0.94

1.01

H
N

N
H
2 N

HNN
H

N
H
2

O
H
2 N

O

O
H

O
H

2C
F
3 C
O
O

C
O
2 E
t

9

A
fter 12 h in D

2 O
1H

 N
M

R, 300 M
H

z, D
2 O

containing 1,4-dioxane



This article is protected by copyright. All rights reserved 

SI-SEA-Nagasawa

	   S73 

Precise	  assignment	  of	  9	  
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