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ABSTRACT

We consider a supply chain consisting of a supplier and two retailers. The supplier
sells a single product to the retailers, who, in turn, retail the product to customers. The
supplier has limited production capacity, and the retailers compete for the supplier’s
capacity and are duopolists engaged in Cournot competition for their customers. When
the sum of the retailers’ orders exceeds the supplier’s capacity, the supplier allocates
his capacity according to a preannounced allocation rule. We propose a new capacity
allocation rule, fixed factor allocation, which incorporates the ideas of proportional
and lexicographic allocations: it prioritizes retailers as in lexicographic allocation, but
guarantees only a fixed proportion of the total available capacity to the prioritized
retailer. We show that (1) the fixed factor allocation rule incorporates lexicographic and
proportional allocations from the perspectives of the supplier and the supply chain; (2)
under fixed factor allocation, the supply chain profit is not affected by the allocation
factor when it is greater than a threshold; (3) the retailers share the supply chain profit
with the supplier depending on the value of the allocation factor; and (4) the fixed factor
allocation coordinates the supply chain when the market size is sufficiently large. We
also compare fixed factor with proportional and lexicographic allocations, respectively.
Furthermore, we demonstrate how the supplier can optimize his capacity level and
wholesale price under fixed factor allocation. [Submitted: May 19, 2015. Revised: April
20, 2016. Accepted: May 10, 2016.]
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INTRODUCTION

In practice, a supplier with limited capacity often puts capacity on allocation, i.e.,
rationing capacity through quantity competition of retailers rather than through a
pricing mechanism. Capacity allocation is a common occurrence in industries in
which capacity expansion is costly and time-consuming and price is given exoge-
nously (e.g., for steel and paper). A supplier can use his prior beliefs on his own
and the retailers’ needs to construct a capacity allocation mechanism for allocation
of his capacity among retailers. Commonly used capacity allocation mechanisms
contain allocation rules that allocate capacity based on retailers’ order sizes, such
as proportional allocation and lexicographic allocation. When the supplier’s ca-
pacity is insufficient to fill all the orders received, proportional allocation allocates
capacity in proportion to order size, and lexicographic allocation allocates capacity
in the order of a predetermined priority sequence.

Lexicographic and proportional allocation mechanisms are widely used
by companies in practice. Even though lexicographic allocation dominates
proportional allocation in terms of increasing the profits for both the supplier and
the supply chain when there exists downstream competition (Chen, Li, & Zhang,
2013), lexicographic allocation treats retailers with identity discrimination and
thus puts the supplier under risk of losing future business from some retailers.
Specifically, retailers with low priority may turn to other suppliers for better
wholesale price and order fulfillment. In addition, lexicographic allocation can
easily drive retailers with low priority out of the market, and with fewer retailers
retaining in the market, the supplier will suffer from reduced order size. Thus,
these potential drawbacks motivate us to propose a new capacity allocation rule,
namely, fixed factor allocation. Fixed factor allocation incorporates the principles
underlying both proportional and lexicographic allocations: it prioritizes retailers
as in lexicographic allocation, but guarantees only a fixed proportion of the total
available capacity to the prioritized retailer, as in proportional allocation. The allo-
cation corresponds with existing practice in pharmaceutical industry. For example,
Zhong and Wu (2013) report that a manufacturer of Pien Tze Huang (traditional
Chinese medicine) allocated restricted capacity to distributors based on fixed
proportions. Due to the scarcity of the raw material, the short supply of Pien Tze
Huang often occurred, in which cases the manufacturer guaranteed each distributor
a fixed proportion of the total capacity, which resembles a fixed factor allocation.

We consider a supply chain consisting of a supplier and two retailers. The
supplier sells a product to the two retailers, and then the retailers sell the product to
customers in a common market. The supplier has limited capacity. If the total order
size from the two retailers does not exceed the supplier’s capacity, then each retailer
receives what she orders; otherwise, the supplier allocates his capacity between
the two retailers using a preannounced capacity allocation rule. We assume that
the retail prices charged by the two retailers depend on the quantity of the product
they each receive from the supplier, which is equal to the quantity they each sell in
the market. Thus, the two retailers face order quantity competition, i.e., Cournot
competition.

The decision sequence of the supplier and retailers is as follows. First, the
supplier determines a wholesale price and announces his capacity level and a
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capacity allocation rule. Second, the two retailers submit their order quantities
simultaneously. This constitutes a Stackelberg game, with the supplier as leader
and the two retailers as followers. We investigate how the supplier optimizes
his wholesale price to maximize his value as a leader and how the two retailers
compete for limited capacity in their order quantity determination to maximize their
values. We specifically study how the proposed fixed factor allocation rule affects
the decisions of the supplier and the retailers. We also compare the fixed factor
allocation with proportional and lexicographic allocations, respectively. We show
that the fixed factor allocation rule incorporates both proportional and lexicographic
allocations from the perspectives of the supplier and the whole supply chain, but
not necessarily the retailers. Under fixed factor allocation, we demonstrate that the
supply chain profit is not affected by the allocation factor when it is greater than a
threshold, and the retailers can share the supply chain profit with the supplier by
negotiating the allocation factor value.

Capacity allocation mechanisms have been employed widely in industries, in-
cluding automobiles, pharmaceuticals, and toys (e.g., Hwang & Valeriano, 1992;
Blumenstein, 1996). For the properties of a large variety of capacity allocation
rules, we refer to the survey paper by Hall and Liu (2010). Next, we review the
studies on proportional and lexicographic allocation rules, which are also examined
in our work. Lee, Padmanabhan, and Whang (1997) recognize that proportional
allocation creates incentive for retailers to raise their orders above their desired
allocations in multiechelon supply chains. Cachon and Lariviere (1999a) demon-
strate that proportional allocation with fixed price can lead retailers to order more
than they desire to receive a favorable allocation, even when they directly or-
der from the supplier. These authors also show that lexicographic allocation is
truth-inducing in that it provides no incentive for retailers to order more than they
desire. However, under proportional allocation, both the supplier and the whole
supply chain can earn higher profits. These authors further demonstrate that a
truth-inducing allocation with fixed price cannot maximize retailers’ total profit.
Cachon and Lariviere (1999b) more specifically compare proportional and lexico-
graphic allocations. These authors show that whether order inflation incentivized
by proportional allocation helps or harms a supply chain depends on how profits
are distributed within the supply chain. In general, encouraging order inflation
increases supplier’s profit but decreases retailers’ profits.

The following three papers on capacity allocation are closely related to this
article in that they consider demand competition among retailers. Liu (2012) stud-
ies how different capacity allocation rules affect profits of different supply chain
members, where retail prices linearly depend on the total sales volume of two
competing retailers. An interesting finding is that the supplier can sell more with
less capacity, and retailers may earn more when the supplier has less capacity, due
to the demand competition between the two retailers. Cho and Tang (2014) develop
an important extension of Liu (2012)’s work by solving the case with multiple re-
tailers. These authors specifically investigate the gaming effect caused by uniform
allocation. They also propose a new allocation, namely, competitive allocation,
which can eliminate the gaming effect with demand competition among retailers.
Chen et al. (2013) consider capacity allocation in a supply chain consisting of a
supplier and multiple retailers with the same market power in demand competition.
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These authors consider the supplier’s wholesale pricing decision when using pro-
portional and lexicographic allocations. They show that lexicographic allocation
can generate higher profits for both the supplier and the supply chain.

Models for capacity allocation in different settings either illustrate the com-
putational difficulties of achieving a desirable allocation (e.g., Clark & Scarf,
1960), or show that a desirable allocation can be obtained (e.g., Eppen & Schrage,
1981; Federgruen & Zipkin, 1984; Jonsson & Silver, 1987; Schwarz, 1989; Chen &
Zheng, 1994; Kumar, Schwarz, & Ward, 1995). Note that the definition of desirable
allocation varies from model to model. Several author groups (e.g., Topkis, 1969;
Ha, 1997; Deshpande & Schwarz, 2002; Deshpande, Cohen, & Donohue, 2003)
examine allocation of inventory with sequentially arriving customers of different
priority classes in a centralized setting. Cachon and Lariviere (1999c) investigate
a turn-and-earn allocation mechanism over two periods, where capacity allocation
in the second period is based on sales volume in the first period.

The remainder of this article proceeds as follows. In section “Model Descrip-
tion,” we define the model and introduce the fixed factor allocation rule. Retailers’
best response decisions in Nash equilibrium are derived in section “Retailers’ De-
cisions.” In section “Supplier’s Decision,” we characterize the supplier’s optimal
decision. In section “Impacts of Fixed Factor α,” we investigate how allocation
factor affects profits of different supply chain members. In section “Comparison
with Centralized Supply Chain,” we compare the supply chain profit under fixed
factor allocation with the profit of a centralized supply chain. We then compare
fixed factor allocation with proportional and lexicographic allocations, respec-
tively, in section “Comparison with Other Allocations,” and study the optimal
capacity choice of the supplier in section “Optimal Capacity Choice.” Finally,
concluding remarks and suggestions for future research are set forth in the last
section. All proofs are in the Appendix.

MODEL DESCRIPTION

We consider a one-period setting in which a single supplier sells one product to
two retailers, who, in turn, retail the product to customers in a common market.
The quantity ordered by a retailer may not be the same as what she finally receives,
which depends on how the supplier allocates his capacity when the total order
quantity by the two retailers exceeds his capacity. We assume that order quantity by
each retailer cannot exceed the supplier’s capacity and the retail price is market size
minus the total quantity that the supplier allocates to the two retailers. Specifically,
for each retailer i ∈ {1, 2}, given the other retailer’s allocated quantity, the market
price is decreasing in her own allocated quantity, and consequently her profit
function is concave with her allocated quantity.

Prior to the decision period, we have the following assumptions. First, the
supplier has a fixed capacity size. Second, the supplier preannounces publicly the
allocation rule he will use to allocate his capacity. While both the capacity level
and allocation rule are taken as given in our model, essentially they could be
determined by the supplier, who wants to maximize his own profit. We investigate
the supplier’s decision on capacity level and allocation rule.
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During the decision period, events occur in the following sequence. First,
the supplier determines the wholesale price. Second, the two retailers determine
their order quantities and simultaneously submit them to the supplier. Third, the
supplier fills orders according to the preannounced allocation rule. Fourth, retailers
sell the products in a common market and realize their profits.

Note that retailers submit orders independently, and orders are the only
communication between the retailers and the supplier. No retailer can credibly
announce her information to other players, including the supplier and the other
retailer, and no side contract between the supplier and any retailer is allowed. In
short, a retailer can influence her allotment and the other retailer’s allotment only
through her order. The supplier charges a wholesale price that is determined after
he chooses an allocation rule, and a retailer must accept the price and pay for any
allocation up to her full order. The supplier cannot deliver to a retailer more than
she has ordered.

We use the following notation throughout the article:

K: the supplier’s capacity,

w: the wholesale price,

M: the market size,

mi : retailers i’s order quantity, i = 1, 2,

m: order vector m = (m1, m2),

g(m): allocation rule defined by function g for order vector m,

gi(m): retailer i’s allocated quantity under allocation function g for order
vector m, i = 1, 2,

c: unit production cost.

Recall that each retailer’s order quantity is no more than the supplier’s ca-
pacity, i.e., mi ≤ K, i = 1, 2. An allocation rule g(m) ≡ g(m1, m2) is a func-
tion of the retailers’ order vector m = (m1, m2), and defines an allocation vector
(g1(m), g2(m)). Note that for an allocation vector to be feasible, we require that∑2

i=1 gi(m) ≤ K . Also, the supplier can never allocate to a retailer more than her
order quantity, i.e., gi(m) ≤ mi, i = 1, 2.

Next, we introduce three allocation rules: proportional, lexicographic, and
fixed factor allocations. Proportional allocation allocates capacity in proportion to
order size if capacity is insufficient to fill all orders. Specifically, we have

g1(m1, m2) =
{

m1 if m1 + m2 ≤ K,
m1

m1+m2
K if m1 + m2 > K,

(1)

g2(m1, m2) =
{

m2 if m1 + m2 ≤ K,
m2

m1+m2
K if m1 + m2 > K.

(2)

Lexicographic allocation prioritizes retailers and always tries to fill the order
of the retailer with the highest priority. Without loss of generality, we assume that
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retailer 1 is granted a priority higher than retailer 2. We have

g1(m1, m2) = m1 ∧ K, (3)

g2(m1, m2) = m2 ∧ (K − m1). (4)

Now, we define our fixed factor allocation rule. The fixed factor allocation
incorporates the principles of proportional and lexicographic allocations: it priori-
tizes retailers as in lexicographic allocation, but guarantees only a fixed proportion
of the total available capacity to the prioritized retailer, as in proportional allo-
cation. We denote 0 ≤ α ≤ 1 as the proportion of total capacity reserved for the
retailer with higher priority. Without loss of generality, we assume that retailer 1
is granted a priority higher than retailer 2. For any order vector m = (m1, m2), the
fixed factor allocation rule is given by

g1(m1, m2) =

⎧⎪⎨
⎪⎩

m1 if m1 + m2 ≤ Kor m1 + m2 > K, m1 ≤ αK,

αK if m1 > αK, m2 > (1 − α)K,

K − m2 if m1 + m2 > K, m2 ≤ (1 − α)K,

(5)

g2(m1, m2) =

⎧⎪⎨
⎪⎩

m2 if m1+ m2 ≤ Kor m1 + m2 > K, m2 ≤ (1−α)K,

(1 − α)K if m1 > αK, m2 > (1 − α)K,

K − m1 if m1 + m2 > K, m1 ≤ αK.

(6)

When capacity is insufficient, the fixed factor allocation rule guarantees an allo-
cation of a certain proportion of capacity to each retailer, i.e., αK to retailer with
high priority, (1 − α)K to retailer 2 with low priority. If retailer i orders less than
its guaranteed allocation, she will receive the quantity she orders; otherwise, she
will receive at least the guaranteed quantity.

Note that we consider two symmetric retailers. We regard retailer 1 as
prioritized with higher priority in capacity allocation, and hence assume that
α ∈ [1/2, 1]. Fixed factor allocation degenerates to lexicographic allocation when
α = 1, and to uniform allocation (see, e.g., Hall & Liu, 2010) when α = 1/2.

For allocation rule g(·), the market price of the product is expressed as

M − g1(m1, m2) − g2(m1, m2),

where M represents market size. The supplier’s problem is to choose a wholesale
price w to maximize his profit,

�s(α) = max
w

{w · (g1(m1, m2) + g2(m1, m2))}; (7)

while retailers simultaneously choose their order quantities (m1, m2) to maximize
their individual profit as follows:

�1(w, m2) = max
m1

(M − g1(m1, m2) − g2(m1, m2) − w)g1(m1, m2), (8)

�2(w, m1) = max
m2

(M − g1(m1, m2) − g2(m1, m2) − w)g2(m1, m2). (9)
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Here, the supplier and two retailers constitute a Stackelberg game with the supplier
as leader and the two retailers as followers. Meanwhile, the two retailers play a
Cournot game in a common retail market.

RETAILERS’ DECISIONS

In this section, we analyze the best response function of each retailer given whole-
sale price and the other retailer’s order quantity, and then characterize the two
retailers’ equilibrium order quantities for a given wholesale price, under fixed
factor allocation by the supplier. Because the fixed factor allocation rule is not
symmetric for the two retailers, retailer decisions will differ. Thus, we investigate
the decisions of the two retailers separately. In the remainder of this section, we an-
alyze the decisions of retailer 1 (with higher priority in capacity allocation), retailer
2 (with lower priority in capacity allocation), and the two retailers in equilibrium,
respectively.

Retailer 1’s Best Response Function

From Equation (8), it is difficult to determine the concavity of retailer 1’s profit
function. Thus, we analyze the profit function (8) by dividing the problem into
two scenarios: Scenario 1: m1 + m2 ≤ K (i.e., retailers’ total order quantity is no
greater than the supplier’s capacity); and Scenario 2: m1 + m2 > K (i.e., retailers’
total order quantity is greater than the supplier’s capacity).

We can rewrite retailer 1’s profit function as follows under fixed factor
allocation:

�1(w, m2) = max
m1

(
M − g1(m1, m2) − g2(m1, m2) − w

)
g1(m1, m2)

= max
{

max
m1≤K−m2

G11(m1, m2), max
m1∈(K−m2,K]

G12(m1, m2)
}
, (10)

where

G11(m1, m2) = (M − m1 − m2 − w)m1, (11)

G12(m1, m2) =
{

(M − K − w)(K − m2) m2 ≤ (1 − α)K
(M − K − w)(m1 ∧ αK) m2 > (1 − α)K,

(12)

where G11(m1, m2) represents retailer 1’s profit in scenario 1, in which the total
order quantity of two retailers is no more than the supplier’s capacity K , and
G12(m1, m2) denotes retailer 1’s profit in scenario 2, in which the two retailers’
total order quantity is greater than K . Note that in scenario 1, each retailer obtains
her desired order quantity, while in scenario 2, each retailer is allocated a quantity
as specified by fixed factor allocation.

It is straightforward to determine the optimal solution of m1 for profit function
G11(m1, m2) in scenario 1. If retailer 2 orders a small quantity (i.e., m2 ≤ 2K −
(M − w) and m2 ≤ M − w), then retailer 1 will order her desired quantity (M −
m2 − w)/2 and gains an optimal profit (M − w − m2)2/4; if retailer 2 orders a
very large quantity (i.e., m2 > M − w), then retailer 1 will order nothing and
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gains no profit. In addition, if retailer 2 orders a moderately large quantity (i.e.,
m2 > 2K − (M − w)), then retailer 1 will order just the surplus capacity (K − m2)
to gain an optimal profit of (M − K − w)(K − m2).

Next, we maximize profit function G12 in scenario 2, as in the following
lemma.

Lemma 1: Let m∗
12 and G∗

12 be the optimal order quantity and profit of the function
G12 for given w and m2, respectively.

(i) Suppose m2 ≤ (1 − α)K:
m∗

12 ∈ (K − m2, K] and G∗
12 = (M − K − w)(K − m2).

(ii) Suppose m2 ∈ ((1 − α)K, K]:
if w < M − K , then m∗

12 ∈ [αK, K] and G∗
12 = (M − K − w)αK;

if w ≥ M − K , then m∗
12 = (K − m2)+ and G∗

12 = (M − K − w)(K −
m2)+.

Lemma 1 illustrates retailer 1’s best response function when the total order
quantity is greater than the supplier’s capacity K . Comparing results in Lemma 1
with those obtained under scenario 1, we can locate retailer 1’s global best response
function given retailer 2’s order quantity in Theorem 1, as follows. Note that there
are other ways to present the results of Theorem 1. We develop Theorem 1 in terms
of the wholesale price. For simplicity, let α̂ = M − w − 2

√
(M − w − K)αK .

Note that α̂ ≥ (1 − α)K .

Theorem 1: Let m1(m2) be retailer 1’s best response function; i.e., if retailer 2
orders m2, then it is optimal for retailer 1 to order m1(m2).

(i) Suppose w ∈ (M − K, M] :
if m2 ∈ [0, M − w), then m1(m2) = M−w−m2

2 and �1(w, m2) =
(M−w−m2)2

4 ;
if m2 ∈ [M − w, K], then m1(m2) = 0 and �1(w, m2) = 0.

(ii) Suppose w ∈ (M − (1 + α)K, M − K] :
if m2 ∈ [0, α̂], then m1(m2) = M−w−m2

2 and �1(w, m2) = (M−w−m2)2

4 ;
if m2 ∈ (α̂, K], then m1(m2) ∈ [αK, K] and �1(w, m2) = (M − K −
w)αK .

(iii) Suppose w ∈ (M − 2K, M − (1 + α)K] :
if m2 ∈ [0, 2K − (M − w)), then m1(m2) = M−w−m2

2 and �1(w, m2) =
(M−w−m2)2

4 ;
if m2 ∈ [2K − (M − w), (1 − α)K), then m1(m2) ∈ [K − m2, K] and
�1(w, m2) = (M − w − K)(K − m2);
if m2 ∈ [(1 − α)K, K], then m1(m2) ∈ [αK, K] and �1(w, m2) =
(M − w − K)αK .

(iv) Suppose w ≤ M − 2K :
if m2 ∈ [0, (1 − α)K), then m1(m2) ∈ [K − m2, K] and �1(w, m2) =
(M − w − K)(K − m2);
if m2 ∈ [(1 − α)K, K], then m1(m2) ∈ [αK, K] and �1(w, m2) =
(M − w − K)αK .
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The intuition behind Theorem 1 is fairly easy to see. First, it is evident
that if the wholesale price is high (i.e., w > M − 2K) and retailer 2 orders little,
then retailer 1 will not order much either (just (M − w − m2)/2), and the capacity
constraint does not affect her order decision. In this case, the best response function
is the same as if there does not exist capacity constraint. This explains the first
element in (i)–(iii), above. Also, if retailer 2 orders large (m2 ≥ M − w), then
retailer 1 will order nothing because she cannot earn any positive profit, which
explains the second part of (i). Second, if the capacity limit is exceeded by total
order size with retailer 2’s order quantity no less than (1 − α)K , then retailer 1
will order no less than αK . This is because if total order quantity exceeds capacity,
then the total supply to the market will be K , which means that the margin profit
for each retailer is fixed at M − K − w, and consequently retailer 1’s profit is
increasing in her allocation, and thus she will order [αK, K] to maximize her
allocation at αK . This explains the last element in (ii)–(iv), above. Third, when w

is smaller and retailer 2 does not order much, retailer 1 will order no less than the
surplus capacity K − m2, as in the second part of (iii) and first part of (iv), above.

Retailer 2’s Best Response Function

Because of the asymmetry of retailers caused by higher priority of retailer 1 in
fixed factor allocation, we need to analyze retailer 2’s best response function to
derive the Nash equilibrium ordering quantities of the two retailers. We proceed to
analyze retailer 2’s best response function given the supplier’s wholesale price and
retailer 1’s order quantity. Retailer 2 will choose her order quantity to maximize
her profit function, defined by Equation (9), which we rewrite as follows:

�2(w, m1) = max
m2≤K

(
M − g1(m1, m2) − g2(m1, m2) − w

)
g2(m1, m2)

= max
{

max
m2≤K−m1

G21(m1, m2), max
m2∈(K−m1,K]

G22(m1, m2)
}
, (13)

where

G21(m1, m2) = (M − m1 − m2 − w)m2,

G22(m1, m2) =
{

(M − K − w)(K − m1) m1 ≤ αK

(M − K − w)(m2 ∧ (1 − α)K) m1 > αK.

Note that G21 is symmetric with G11, and we can maximize G21 in a similar way
as we maximize G11, as in section “Retailer 1’s Best Response Function,” and
hence we omit the details. Next, we maximize G22(m1, m2).

Lemma 2: Let m∗
22 and G∗

22 be the optimal order quantity and profit of the function
G22 for given w and m1, respectively.

(i) Suppose m1 ≤ αK:
m∗

22 ∈ (K − m1, K] and G∗
22 = (M − K − w)(K − m1).

(ii) Suppose m1 ∈ (αK, K]:
if w < M − K , then m∗

22 ∈ [(1 − α)K, K] and G∗
22 = (M − K −

w)(1 − α)K;
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if w ≥ M − K , then m∗
22 = (K − m1)+ and G∗

22 = (M − K − w)(K −
m1)+.

In view of Lemma 2, we next characterize retailer 2’s best response function
for a given wholesale price and retailer 1’s order quantity, as the wholesale price
changes. Let

β = M − w − 2
√

(M − K − w)(1 − α)K.

Note that β > αK .

Theorem 2: Let m2(m1) be retailer 2’s best response function, i.e., if retailer 1
orders m1, then it is optimal for retailer 2 to order m2(m1).

(i) Suppose w ∈ (M − K, M] :
if m1 ∈ [0, M − w), then m2(m1) = M−w−m1

2 and �2(w, m1) =
(M−w−m1)2

4 ;
if m1 ∈ [M − w, K], then m2(m1) = 0 and �2(w, m1) = 0.

(ii) Suppose w ∈ (M − (2 − α)K, M − K] :
if m1 ∈ [0, β], then m2(m1) = M−w−m1

2 and �2(w, m1) = (M−w−m1)2

4 ;
if m1 ∈ (β, K], then m2(m1) ∈ [(1 − α)K, K] and �2(w, m1) = (M −
K − w)(1 − α)K .

(iii) Suppose w ∈ (M − 2K, M − (2 − α)K] :
if m1 ∈ [0, 2K − (M − w)), then m2(m1) = M−w−m1

2 and �2(w, m2) =
(M−w−m1)2

4 ;
if m1 ∈ [2K − (M − w), αK), then m2(m1) ∈ [K − m1, K] and
�2(w, m1) = (M − w − K)(K − m1);
if m1 ∈ [αK, K], then m2(m1) ∈ [(1 − α)K, K] and �2(w, m1) =
(M − w − K)(1 − α)K .

(iv) Suppose w ≤ M − 2K :
if m1 ∈ [0, αK), then m2(m1) ∈ [K − m1, K] and �2(w, m1) = (M −
w − K)(K − m1);
if m1 ∈ [αK, K], then m2(m1) ∈ [(1 − α)K, K] and �2(w, m1) =
(M − w − K)(1 − α)K .

We explain Theorem 2 as follows. First, it is evident that if the wholesale
price is high (i.e., w > M − 2K) and retailer 1 orders little, then retailer 2 will
order her desired quantity (M − w − m1)/2, because the capacity constraint is
not binding. In this case, the best response function is the same as if there were
no capacity limit; each retailer will order her desired quantity. This explains the
first part in (i)–(iii), above. Also, it is intuitive that if retailer 1 orders more
(m1 ≥ M − w), then retailer 2 will order nothing due to negative marginal profit,
as reflected by the second part of (i), above. Second, if the wholesale price belongs
to [M − (2 − α)K, M − K], then retailer 2 will order no less than the guaranteed
capacity (1 − α)K when she assumes that retailer 1’s order quantity is more than
M − w − 2

√
(M − K − w)(1 − α)K , as in the second part of (ii). Third, if the

wholesale price is small, i.e., the marginal profit for the two retailers is large, then
retailer 2 will order to receive the maximum possible allocation, ordering a quantity
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in (K − m1, K] assuming that retailer 1’s order quantity is small, and ordering a
quantity in [(1 − α)K, K] assuming that retailer 1’s order is sufficiently large. The
results are reflected in the last two parts of (iii) and the whole of (iv), above.

Nash Equilibrium

With Theorems 1 and 2, we now characterize the two retailers’ order quan-
tities, which are in Nash equilibrium. Let wc(α) = M − γ (α), where γ (α) =
9αK−3

√
(9α−4)αK

2 . As will be seen, there are two scenarios based on the order
between wc(α) and M − (2 − α)K . What is more, wc(α) is a critical value of
wholesale price that affects the retailers’ ordering decisions in equilibrium.

Theorem 3: Denote (m∗
1, m

∗
2) as an order pair in Nash equilibrium, we have:

(i) Suppose 1/2 ≤ α ≤ 4/5 (i.e., wc(α) ≥ M − (2 − α)K)
(i.a) if w ≤ M − (1 + α)K , then there exist multiple Nash equilibria

m∗
1 × m∗

2 ∈ [αK, K] × [(1 − α)K), K];
(i.b) if w ∈ (M − (1 + α)K, M − (2 − α)K], then there exist multiple

Nash equilibria m∗
1 × m∗

2 ∈ [αK, K] × [α̂, K];
(i.c) if w ∈ (M − (2 − α)K, wc(α)), then there exist multiple Nash equi-

libria m∗
1 × m∗

2 ∈ [β, K] × [α̂, K];
(i.d) if w ∈ [wc(α), M − K], then there exist multiple Nash equilib-

ria (m∗
1, m

∗
2) = (M−w

3 , M−w
3 ) and m∗

1 × m∗
2 ∈ [β, K] × [α̂, K]. In

the later set of equilibria, retailers 1 and 2 are allocated αK

and (1 − α)K , respectively. Furthermore, the former equilibrium
(M−w

3 , M−w
3 ) dominates any equilibrium in the later set of equilibria

in that it brings higher profit to each retailer;
(i.e) if w > M − K , then there exists a unique Nash equilibrium

(m∗
1, m

∗
2) = (M−w

3 , M−w
3 ) and the total order quantity of the two

retailers is less than the supplier’s capacity level K .

(ii) Suppose 4/5 < α ≤ 1 (i.e., wc(α) < M − (2 − α)K)
(ii.a) if w ≤ M − (1 + α)K , then there exist multiple Nash equilibria

m∗
1 × m∗

2 ∈ [αK, K] × [(1 − α)K), K];
(ii.b) if w ∈ (M − (1 + α)K, wc(α)), then there exist multiple Nash equi-

libria m∗
1 × m∗

2 ∈ [αK, K] × [α̂, K];
(ii.c) if w ∈ [wc(α), M − (2 − α)K], then there exist multiple Nash equi-

libria (m∗
1, m

∗
2) = (M−w

3 , M−w
3 ) and m∗

1 × m∗
2 ∈ [αK, K] × [α̂, K].

In the later set of equilibria, retailers 1 and 2 are allocated αK

and (1 − α)K , respectively. Furthermore, the former equilibrium
(M−w

3 , M−w
3 ) dominates any equilibrium in the later set of equilibria

in that it brings higher profit to each retailer;
(ii.d) if w ∈ (M − (2 − α)K, M − K], then there exist multiple

Nash equilibria (m∗
1, m

∗
2) = (M−w

3 , M−w
3 ) and m∗

1 × m∗
2 ∈ [β, K] ×

[α̂, K]. In the later set of equilibria, retailers 1 and 2 are allocated
αK and (1 − α)K , respectively. Furthermore, the former equilibrium
(M−w

3 , M−w
3 ) dominates any equilibrium in the later set of equilibria

in that it brings higher profit to each retailer;
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(ii.e) if w > M − K , then there exists a unique Nash equilibrium
(m∗

1, m
∗
2) = (M−w

3 , M−w
3 ) and the total order quantity of the two

retailers is less than the supplier’s capacity level K .

Note that if w < wc(α), then the profit of each retailer and the supplier is the
same at any equilibrium order pair in (αK, (1 − α)K).

Theorem 3 is in terms of the wholesale price w and conveniently describes the
retailers’ total order quantity as a function of the wholesale price. For w < wc(α),
total order quantity is K . That is, the supplier’s capacity will be used up when the
wholesale price is low. While the wholesale price is slightly higher (w ≥ wc(α)),
the total quantity ordered is 2(M − w)/3, which achieves its maximum value
of 2γ (α)/3 when w = wc(α). Note that the retailers’ total order quantity is a
nonincreasing function of the wholesale price, as expected. What is interesting is
that as the wholesale price crosses the critical level wc(α), total order quantity drops
from K to a value strictly less than K . This discontinuity is due to the concurrent
presence of the capacity limit by the supplier and the competition between the two
retailers.

As Theorem 3 shows, there exist multiple Nash equilibria in the two retailers’
ordering. For cases (i.a),(i.b), and (i.c) of the theorem, in all equilibria, retailer 1
orders no less than αK , if w ≤ M − (2 − α)K , then retailer 1 orders more than
αK; while if w ∈ (M − (2 − α)K, wc(α)), then retailer 1 orders no less than β

to reach an equilibrium, and in both cases, it receives the maximum possible
allocation from the supplier, as specified by the allocation factor α. Accordingly,
if w ≤ M − (1 + α)K , then retailer 2 orders more than (1 − α)K; while if w ∈
(M − (1 + α)K, wc(α)), then retailer 2 orders at least α̂ to reach an equilibrium;
and both cases bring retailer 2 an allocation of (1 − α)K . Note that all these
equilibria lead to the same profits to all the supply chain members as when the
two retailers order (αK, (1 − α)K). For case (i.d) of Theorem 3, we proceed by
adopting the equilibrium (M−w

3 , M−w
3 ), because it provides the two retailers higher

profits than any other equilibrium. Note that in this case, total order quantity is
strictly less than K . The analysis of scenario (ii) is similar to (i).

Theorem 3 also shows that both retailers may inflate their orders under
fixed factor allocation, relative to the order pair (M−w

3 , M−w
3 ) under sufficiently

large capacity. This happens when the wholesale price is medium. For example,
under conditions that 1/2 ≤ α ≤ 4/5 and M − (2 − α)K < w < wc(α), an order
in equilibrium [β, K] × [α̂, K] is strictly larger than M−w

3 . In such cases, the
supplier’s capacity is sold out and retailer 1 maximizes her profit when she receives
an allocation of αK in equilibrium ordering. Specifically, retailer 1 will inflate her
order to guarantee an allocation of αK , which induces retailer 2 to also inflate her
order to guarantee an allocation of (1 − α)K .

SUPPLIER’S DECISION

In this section, we consider how the supplier, the Stackelberg game leader, deter-
mines his wholesale price to maximize his own profit. Theorem 3 illustrates how
the two retailers react to the change in wholesale price, and thus it is straight-
forward to determine the supplier’s optimal wholesale price. As noted in section
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Figure 1: Supplier’s profit as a function of market size M .
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“Nash Equilibrium,” for w < wc(α), total order quantity in the nondominated
Nash equilibrium equals total capacity K , and thus the total sale to the retailers is
also K . In this case, the supplier’s profit is wK . On the other hand, if w ≥ wc(α),
then the total quantity ordered is less than the supplier’s capacity, because the total
order quantity 2(M − w)/3 is strictly less than K . Consequently, the supplier’s
maximum profit �∗

s (α), as a function of the allocation factor α, can be expressed
as

�∗
s (α) = max

{
max

w∈(0,wc(α))
wK; max

w∈[wc(α), M)

2(M − w)w

3

}
. (14)

For notational simplicity, let λ(α) = 3K − 3
√√

(9α − 4)α + 1 − 3αK ,
which have the following properties.

Lemma 3:

(i) λ(α) is decreasing in α.

(ii) If M > λ(α), then the supplier’s optimal profit �∗
s (α) = wc(α)K , which

is increasing in α.

Theorem 4: If 0 < M ≤ λ(α), then the optimal wholesale price is w∗(α) = M/2
and the supplier’s maximum profit is �∗

s (α) = M2/6; otherwise, i.e., M > λ(α),
the optimal wholesale price is w∗(α) = wc(α)−(which is greater than 0 for λ(α) >

γ (α)) and the supplier’s maximum profit is �∗
s (α) = wc(α)K .

In Theorem 4, the term wc(α)− means that the supplier should choose his
wholesale price less than but as close as possible to wc(α). This is due to the
discontinuity of total order quantity as a function of the wholesale price when the
wholesale price equals wc(α).

Theorem 4 indicates that for any fixed factor α, as the market size M in-
creases, the supplier’s profit increases continuously, which is shown by Figure 1.
This is intuitive, because M represents the market potential of the supplier’s prod-
uct. What is not so intuitive is that as M increases, the optimal wholesale price is
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Figure 2: Supplier’s optimal wholesale price as a function of market size M .
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Table 1: Supply chain members’ optimal decisions and profits.

Item M ≤ λ(α) M > λ(α)

w∗ w∗(α)) = M/2 w∗(α) = (M − γ (α))−
m∗

1 m∗
1 = M/6 m∗

1 ≥ K − m∗
2

m∗
2 m∗

2 = M/6 m∗
2 ≥ K − m∗

1
�∗

s (α) �∗
s (α) = M2/6 �∗

s (α) = (M − γ (α))K
�∗

1(α) �∗
1(α) = M2/36 �∗

1(α) = (γ (α) − K)αK

�∗
2(α) �∗

2(α) = M2/36 �∗
2(α) = (γ (α) − K)(1 − α)K

�∗
r (α) �∗

r (α) = M2/18 �∗
r (α) = (γ (α) − K)K

�∗
sc(α) �∗

sc(α) = 2M2/9 �∗
sc(α) = (M − K)K

not necessarily increasing. When the market size M is relatively small, the supplier
chooses his wholesale price to induce retail demand, which is below capacity, and
thus purposely allows certain capacity to go unused, and when the market size
M exceeds a threshold level, i.e., λ(α), the supplier suddenly reduces his whole-
sale price to achieve full capacity utilization. Therefore, behind the continuously
increasing supplier profit as M increases is a sudden drop in wholesale price, a
sudden increase in total retail order quantity, and a transition from excess capacity
to 100% capacity utilization, as shown in Figure 2.

From Theorems 3 and 4, we can locate supply chain members’ optimal de-
cisions and their corresponding profits under different market sizes, as in Table 1.
Table 1 illustrates that if M ≤ λ(α), then the optimal wholesale price is w∗(α) =
M/2 and the supplier’s maximum profit is �∗

s (α) = M2/6, and the retailers order
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m∗
1 = m∗

2 = M−w∗
3 = M/6 and receive profits �∗

1(α) = �∗
2(α) = M2

36 . In this sce-
nario, total order quantity is strictly less than K , i.e., the supplier maintains a capac-
ity surplus to maximize his profit. On the other hand, under condition M > λ(α),
the optimal wholesale price is w∗(α) = (M − γ (α))− and the supplier’s maximum
profit is �∗

s (α) = wc(α)K , and the two retailers’ order sizes satisfy m∗
1 + m∗

2 ≥ K

and they receive allocations g1(m∗
1, m

∗
2) = αK and g2(m∗

1, m
∗
2) = (1 − α)K , re-

spectively. Correspondingly, retailers 1 and 2 obtain profits (from Equations (8) and
(9)) �∗

1(α) = (γ (α) − K)αK and �∗
2(α) = (γ (α) − K)(1 − α)K , respectively.

IMPACTS OF FIXED FACTOR α

In this section, we investigate how the fixed factor α affects supply chain member
decisions. Recall that the fixed factor allocation offers priority to retailer 1. In case
the two retailers’ total order size exceeds the supplier’s available capacity, retailer
1 receives an allocation of max{αK, K − m2} if she orders at least αK; otherwise,
she receives an allocation as she orders. Then, the remaining capacity is allocated
to retailer 2.

Since the supplier is a game leader making wholesale price decision that
directly decides retailers’ equilibrium order quantity. We first study the effects of α

on supplier’s decision. Recall that in Theorem 4, λ(α) is a threshold of the market
size that determines supplier’s optimal wholesale price, and by transformation,

we can get M = λ(α) is equivalent to α = ( M
K

)2

54
( M

K
−6)2

6M
K

−6−( M
K

)2 when M ≤ 3K . For

notational simplicity, it is useful to introduce the following: u = M
K

and τ =
u2

54
(u−6)2

6u−6−u2 . Here, u is the ratio of market size to capacity. And the value of τ

serves as a threshold of α, where α ≤ τ is equivalent to M ≤ λ(α) and α > τ

is equivalent to M > λ(α) under condition u ≤ 3. Besides, for u > 3, M > λ(α)
for any α ∈ [ 1

2 , 1]. Then, with market size and capacity exogenously given, the
supplier’s optimal decision relies on the value of α. As α belongs to interval
[ 1

2 , 1], it is necessary to find out how τ values with u ≤ 3. Figure 3 depicts the
relationship between τ and u. Figure 3 shows that for u ∈ (u0, u1), τ > 1; for
u ∈ [u1, u2], τ ∈ [ 1

2 , 1]. Here, u0 = 3 − √
3, u1 ≈ 1.5425, u2 = 3.

Now by Theorem 4 and the definitions of u and τ , we can precisely express
the supplier’s optimal wholesale price decision and profit in terms of fixed factor
α, as in the following theorem.

Theorem 5:

(i) M < u1K . We have M < λ(α) for any α. Thus, the optimal wholesale
price is w∗(α) = M/2 and the supplier’s maximum profit is �∗

s (α) =
M2/6.

(ii) M ∈ [u1K, u2K]. If α ∈ [ 1
2 , τ ], then M ≤ λ(α), w∗(α) = M/2, and

�∗
s (α) = M2/6; if α ∈ (τ, 1], then M > λ(α), w∗(α) = wc(α)−, and

�∗
s (α) = wc(α)K .

(iii) M > u2K . We have M > λ(α) for any α. Thus, the optimal wholesale
price is w∗(α) = wc(α)− and the supplier’s maximum profit is �∗

s (α) =
wc(α)K .



538 Allocating Capacity with Demand Competition

Figure 3: Relationship between τ and u.
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Table 2: Optimal decisions and profits in small or large market.

Item M < u1K M > u2K

w∗ w∗(α) = M/2 w∗(α) = wc(α)−

�∗
s (α) �∗

s (α) = M2/6 �∗
s (α) = wc(α)K

m∗
1 m∗

1 = M−w∗
3 = M

6 m∗
1 ∈ [αK,K]

m∗
2 m∗

2 = M−w∗
3 = M

6 m∗
2 ∈ [α̂, K]

�∗
1(α) �∗

1(α) = M2/36 �∗
1(α) = (γ (α) − K)αK

�∗
2(α) �∗

2(α) = M2/36 �∗
2(α) = (γ (α) − K)(1 − α)K

�∗
r (α) �∗

r (α) = M2/18 �∗
r (α) = (γ (α) − K)K

�∗
sc(α) �∗

sc(α) = 2M2/9 �∗
sc(α) = (M − K)K

We define three types of market based on market size. Specifically, we
refer to the market as small, medium, and large under conditions M < u1K ,
M ∈ [u1K, u2K] and M > u2K , respectively. With Theorem 5, we characterize
the optimal decisions and profits of the supply chain members in Tables 2 and 3.
Specifically, Table 2 characterizes the scenarios that the market size is either
relatively small or sufficiently large, and Table 3 covers the remaining scenario
with medium market size.

From Table 2, when market size is small but can still be larger than the capac-
ity level K (M < u1K, u1 ≈ 1.5), the supplier always sets his optimal wholesale
price as M/2, which maintains a strict capacity surplus to maximize his profit at
M2/6. If the market size is less than K , then this result is consistent with our
intuition. It is interesting that the supplier still chooses to sell less than K even
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Table 3: Optimal decisions and profits in medium market.

Item α ≤ τ α > τ

w∗ w∗(α) = M/2 w∗(α) = wc(α)−

�∗
s (α) �∗

s (α) = M2/6 �∗
s (α) = wc(α)K

m∗
1 m∗

1 = M−w∗
3 = M

6 m∗
1 ∈ [αK,K]

m∗
2 m∗

2 = M−w∗
3 = M

6 m∗
2 ∈ [α̂, K]

�∗
1(α) �∗

1(α) = M2/36 �∗
1(α) = (γ (α) − K)αK

�∗
2(α) �∗

2(α) = M2/36 �∗
2(α) = (γ (α) − K)(1 − α)K

�∗
r (α) �∗

r (α) = M2/18 �∗
r (α) = (γ (α) − K)K

�∗
sc(α) �∗

sc(α) = 2M2/9 �∗
sc(α) = (M − K)K

when M ≥ K (slightly). In this scenario, the two retailers both order M/6 and
gain the corresponding profit M2/36, and thus the supply chain’s total profit is
2M2/9. As a result, the allocation factor α does not affect the supplier’s decisions
when the market size is small, which can be explained as follows. The fixed factor
allocation provides priority to retailer 1, with α ≥ 1/2. When the market size is
small, retailer 1 orders (M − w)/3 (her desired quantity), which is less than the
quantity reserved for her (αK). Consequently, the remaining capacity is greater
than retailer 2’s optimal order quantity. Therefore, the fixed factor α does not affect
the supplier and the retailers’ decisions.

When market size is sufficiently large (M > u2K, u2 = 3), the retailers will
order as much as possible so long as the marginal profit is positive. Bearing this
in mind, the supplier sets an optimal wholesale price that is increasing in α and
sells out his full capacity, and consequently his optimal profit is increasing in
α. That is, it is optimal for the supplier to set α = 1 if α is a decision variable.
Note that retailer 1’s order quantity and allocated quantity are both increasing in
α and retailer 2’s allocated quantity is decreasing in α. The supplier always faces
beyond-capacity-demand and sells out his capacity. These results are consistent
with our intuition. The profits of retailers 1 and 2 are both decreasing in α. As in
the case M > u2K , the supply chain’s total profit does not vary with α. That is,
varying α only reallocates the profit among these members of the supply chain.

Remark 1:

(i) When market size is sufficiently small, each supply chain member’s
profit is independent of the allocation factor α.

(ii) When market size is sufficiently large, the supplier prefers a large alloca-
tion factor (α = 1, i.e., lexicographic allocation) and his profit is related
to market size, but the two retailers both prefer a small allocation factor
(α = 1/2) and their profits are independent of market size.

Thus far, we have analyzed cases where the market size is either sufficiently
small or sufficiently large. Next, we investigate the scenario with medium market
size, i.e., M ∈ [u1K, u2K]. By Theorem 5, we immediately obtain the results
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Table 4: Supply chain members’ optimal decisions when α approaches τ .

Item α = τ α = τ+ Comparison

w∗ M/2 wc(τ )− M/2 > wc(τ )−

�∗
s M2/6 (M − γ (τ ))K M2/6 = (M − γ (τ ))K

g1(m∗
1,m

∗
2) M

6 τK M
6 < τK

g2(m∗
1,m

∗
2) M

6 (1 − τ )K if M ∈ [u1K, (6 − 3
√

2)K), M
6 >

(1 − τ )K; if
M ∈ [(6 − 3

√
2)K,u2K],

M
6 ≤ (1 − τ )K

�∗
1 M2/36 (γ (τ ) − K)τK M2/36 < (γ (τ ) − K)τK

�∗
2 M2/36 (γ (τ ) − K)

(1 − τ )K
if M ∈ [u1K, 1.8351K),M2/36 >

(γ (τ ) − K)(1 − τ )K; if
M ∈ [1.8351K,u2K],
M2/36 ≤ (γ (τ ) − K)(1 − τ )K

�sc 2M2/9 (M − K)K 2M2/9 < (M − K)K

shown in Table 3. To better understand the results in Table 3, we need the following
lemma.

Lemma 4: Under condition that M ∈ [u1K, u2K] (i.e., u ∈ [u1, u2], which implies
that τ ∈ [ 1

2 , 1]), we provide the comparisons in Table 4 in terms of the supply chain
members’ optimal decisions when α = τ and α = τ+ (τ+ means that α values more
than but as close as possible to τ ).

Table 4 in Lemma 4 shows changes of supplier’s optimal wholesale price,
retailers’ allocated quantity, and respective supply chain members’ profits when
α approximates the threshold point τ . With Lemma 4, we can characterize the
scenario with medium market size, as illustrated in Figures 4–10, where we show
different quantities of interest as a function of α. We show the values for three
different market sizes M1, M2, M3. The values τ1, τ2, τ3 indicate the τ values
that correspond to the three different market sizes, respectively. Figure 4 shows
how the supplier’s optimal wholesale price changes with α at medium market
size. At the point α = τ , the optimal wholesale price has a sudden drop, which
implies the selling of more capacity, and then is increasing in α. Furthermore, if
M ∈ [u1K, (9 − 3

√
5)K) (the case of M1), then the optimal wholesale price when

α > τ is less than that when α ≤ τ (M/2). Then, Figures 5 and 6 show how two
retailers’ allocated quantities in equilibrium ordering change with α at medium
market size corresponding to the optimal wholesale price. Retailer 1’s allocated
quantity jumps at the point α = τ , then is increasing in proportion with α. It
indicates that when α > τ , retailer 1 will always order more than αK regardless of
the increase of optimal wholesale price and is also allocated that quantity. Different
from retailer 1, retailer 2’s allocated quantity experiences a drop or jump at the point
α = τ that depends on the market size (M < (6 − 3

√
2)K or M > (6 − 3

√
2)K),

then is decreasing in proportion with (1 − α). However, in spite of a low allocated
quantity, retailer 2 always orders more than (1 − α)K to reach an equilibrium.
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Figure 4: Optimal wholesale price in medium market.
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Figures 7–10 show how the supplier members’ optimal profits change with
α at medium market size. The supplier’s profit is increasing in α. Although the
supplier’s optimal wholesale price has a sudden drop at the point α = τ , the
supplier’s optimal profit increases continuously with α. Besides, both retailers’
profits have a sudden jump at the point α = τ when the market size is relatively
large (M ∈ [1.8351K, u2K]), while both they are decreasing in α when α > τ

because of the increasing optimal wholesale price. Intuitively, the two retailers
both prefer allocation factor α = τ+ because that the supplier adjusts her wholesale
price according to the value of α. It is interesting to see that the supply chain profit
jumps at the point α = τ and then maintains a constant value for any α ∈ (τ, 1] at
the given market size. The reason is when α > τ , the supplier can always sell out
all its capacity at its optimal wholesale price.

Remark 2: In medium market, the supplier prefers an allocation factor to be as
large as possible (α = 1), but the two retailers prefer allocation factor α = τ+,
which is related to market size M and capacity level K (M ∈ [1.8351K, u2K]).
The supply chain achieves the same maximum profit in the region α ∈ (τ, 1].

COMPARISON WITH CENTRALIZED SUPPLY CHAIN

In this section, we compare the supply chain profit under fixed factor allocation
with the profit of a centralized supply chain.

Let �c∗
sc denote the maximum supply chain profit under centralized decisions.

To obtain �c∗
sc , let q be the total quantity sold. The supply chain profit can be
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Figure 5: Retailer 1’s equilibrium allocated quantity in medium market.
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Table 5: Comparison with centralized supply chain.

M Decentralized system Centralized system Comparison

M ∈ [0, u1K) �∗
sc(α) = 2M2/9 �c∗

sc = M2

4 �∗
sc(α) < �c∗

sc

M ∈ (u1K, 2K] �∗
sc(α) = 2M2/9 for α ≤ τ �c∗

sc = M2

4 �∗
sc(α) < �c∗

sc

�∗
sc(α) = (M − K)K for α > τ �c∗

sc = M2

4 �∗
sc(α) < �c∗

sc

M ∈ (2K,u2K] �∗
sc(α) = 2M2/9 for α ≤ τ �c∗

sc = (M − K)K �∗
sc(α) < �c∗

sc

�∗
sc(α) = (M − K)K for α > τ �c∗

sc = (M − K)K �∗
sc(α) = �c∗

sc

M ∈ (u2K,+∞) �∗
sc(α) = (M − K)K �c∗

sc = (M − K)K �∗
sc(α) = �c∗

sc

written as �C
sc = (M − q)q. Note that the optimal selling quantity q∗ =

min{K, M
2 }. Thus, �c∗

sc = M2

4 for M ≤ 2K and �c∗
sc = (M − K)K for M > 2K .

The value �c∗
sc provides a benchmark for measuring the loss of efficiency in a

decentralized supply chain using the fixed factor allocation, where the supplier
chooses wholesale price to maximize his own value instead of the supply chain
value. Table 5 illustrates the results of comparing supply chain profits obtained
from decentralized and centralized supply chains.

An important observation from Table 5 is that the supply chain profit in
the decentralized supply chain with fixed factor allocation is the same as in the
centralized supply chain when M >> K , i.e., the supplier chooses his optimal
wholesale price that coordinates the supply chain, i.e., obtains the same supply
chain profit as in a centralized supply chain. Specifically, the optimal decision
in the centralized system is to sell the whole capacity to the market when the
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Figure 6: Retailer 2’s equilibrium allocated quantity in medium market.
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market size is large enough (roughly, M > 2K). In the decentralized system with
two retailers’ equilibrium order quantities in consideration, the supplier’s optimal
decision is to set a wholesale price to sell out the total capacity. Accordingly, under
the manufacturer’s selected wholesale price, the two retailers each orders as much
as possible (K) because of quantity competition. Consequently, each retailer is
allocated her guaranteed quantity, i.e., αK by retailer 1 and (1 − α)K by retailer
2. As a result, the centralized and decentralized systems sell the same quantity K

and achieve the same supply chain profit (M − K)K .

Remark 3: The fixed factor allocation coordinates the supply chain when M ∈
(2K, u2K] with α > τ , and when M > u2K with α ≥ 1/2.

COMPARISON WITH OTHER ALLOCATIONS

Note that fixed factor allocation degenerates to lexicographic allocation when
α = 1. We next compare fixed factor allocation with proportional allocation. We
first cite a result from Chen, Li, & Zhang (2013), as in the following proposition.

Proposition 1: (Chen, Li, & Zhang, 2013) Under proportional allocation,

(i) if M ≤ 3(2 − √
2)K , then the supplier’s optimal wholesale price is w∗ =

M/2, achieving a profit of �∗
s = M2/6;

(ii) if M > 3(2 − √
2)K , then the supplier’s optimal wholesale price is

w∗ = (M + 3K − 3
√

2K)−, achieving a profit of �∗
s = K(M + 3K −

3
√

2K)−.
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Figure 7: Supplier’s optimal profit in medium market.
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Figure 8: Retailer 1’s profit in medium market.
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With Theorem 4 and Proposition 1, we can immediately obtain the following
result from the view of the supplier and supply chain.

Theorem 6: If α = √
2/2, then

(i) the supplier and supply chain will obtain the same profit under fixed
factor and proportional allocations;
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Figure 9: Retailer 2’s profit in medium market.
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Figure 10: Supply chain profit in medium market.
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(ii) in equilibrium, under fixed factor allocation, retailer 1 gains more profit,
retailer 2 gains less profit, and the total profit of the two retailers is the
same, compared with under proportional allocation.

Theorem 6 indicates that fixed factor allocation is a general rule that is
equivalent to proportional allocation with α = √

2/2 in terms of the supplier’s and
the supply chain profits, under the supplier’s optimal wholesale price decision and
the retailers’ equilibrium ordering. Next, we compare fixed factor, lexicographic,



546 Allocating Capacity with Demand Competition

Figure 11: Supply chain profits under three allocations, as a function of α.
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and proportional allocations numerically in terms of supply chain profit. There
are three cases characterized by different levels of market size M in terms of
comparing the supply chain profit under the three allocations. Specifically, (1) if
M < u1K , then the supply chain profits are the same under the three allocations,
which are 2M2/9; (2) if u1K ≤ M ≤ 3(2 − √

2)K , then the supply chain obtains
the same profit (M − K)K under fixed factor (with α > τ ) and lexicographic
allocations, which is larger than that of 2M2/9 under proportional allocation,
while when α < τ , the supply chain gains the same profit under fixed factor
and proportional allocations; (3) if M > 3(2 − √

2)K , then the three allocations
induce the same supply chain profit (M − K)K . Comparisons under case 2 (u1K ≤
M < 3(2 − √

2)K) are illustrated in Figure 11. The figure shows that the supply
chain obtains more profit under fixed factor allocation than that under proportional
allocation with market size at certain levels. And for a large range of α, instead of
single point α = 1, fixed factor allocation offers the same supply chain profit as
lexicographic allocation does.

OPTIMAL CAPACITY CHOICE

In this section, we consider how to choose optimal capacity and optimal wholesale
price from the view of the supplier. From Theorem 4, for each capacity level K ,
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the supplier’s optimal profit is

�∗
s (K) =

⎧⎪⎪⎨
⎪⎪⎩

maxK{wc(α)K − cK}, if K ∈
[

0, M

3−3
√√

(9α−4)α+1−3α

)
,

maxK{M2

6 − cK}, if K ∈
[

M

3−3
√√

(9α−4)α+1−3α
, +∞

)
,

(15)

where c is the cost for each capacity unit. To make the supplier’s profit positive,
we assume M > c.

Theorem 7: For the supplier, the optimal capacity is K∗(α) = M−c

9α−3
√

(9α−4)α
, and

optimal wholesale price is (M+c
2 )−, which is independent of the allocation factor

α, and the corresponding optimal profit is (M−c)2

2(9α−3
√

(9α−4)α)
.

From Theorem 7, we see that the supplier can achieve the maximum profit
(M−c)2

2(9α−3
√

(9α−4)α)
by choosing capacity level K∗(α) = M−c

9α−3
√

(9α−4)α
and wholesale

price (M+c
2 )−. This optimal setting for the supplier induces that total order quantity

from the two retailers be greater than K∗. That is, the capacity M−c

9α−3
√

(9α−4)α
is

allocated in full.

CONCLUDING REMARKS

This article considers a supply chain consisting of one supplier and two compet-
ing retailers. The important components of our model are the supplier’s limited
production capacity and the Cournot competition between the retailers. Because
of the capacity constraint, an allocation rule is needed for capacity allocation in
case the retailers’ total order size exceeds the supplier’s available capacity. The
fixed factor allocation rule is proposed, which first guarantees a certain proportion
of capacity to a prioritized retailer, then the surplus capacity can be allocated to
the other retailer, incorporating the ideas of proportional and lexicographic alloca-
tions. Under fixed factor allocation, with exogenously given capacity and market
demand, the supplier should carefully choose the allocation factor and the whole-
sale price to maximize his profit, keeping in mind that retailers order in equilibrium
to maximize their own individual profits.

Under fix factor allocation, we show that in both sufficiently small and suf-
ficiently large markets, the allocation factor has no effects on the supply chain
profit. However, in medium market, the supply chain profit is not affected by the
allocation factor only when the factor is greater than a particular threshold, and
accordingly, the retailers share the supply chain profit with the supplier depend-
ing on the value of the allocation factor. Also, we prove that retailers prefer an
allocation factor different from that preferred by the supplier, but the preferred
allocation factor values by both the retailers and the supplier are in the range that
maximizes total supply chain profit. Furthermore, we show that the fixed factor
allocation coordinates the supply chain when the market size is sufficiently large.
We also compare fixed factor with proportional and lexicographic allocations, re-
spectively. We show that fixed factor allocation can incorporate both lexicographic
and proportional allocations from the perspective of the supplier and the supply
chain. Moreover, the supply chain obtains more profit under fixed factor allocation
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than that under proportional allocation with market size at certain levels. And for
a large range of α, instead of single point α = 1, fixed factor allocation offers the
same supply chain profit as lexicographic allocation does. Finally, we demonstrate
how the supplier can optimize his capacity level and wholesale price under fixed
factor allocation.

Our work can be extended in several ways. First, it would be interesting to
consider asymmetric retailers with different market powers. Second, it would be
valuable to study a case with more than two retailers. Third, it would be worthwhile
to compare fixed factor allocation with other allocations, such as linear and uniform
allocations. Finally, it would be helpful to study the gaming effect caused by fixed
factor allocation and bounded rationality using laboratory experiments, as by Chen,
Su, and Zhao (2012) for proportional allocation.
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Appendix

Proof of Lemma 1: Note that G12(m1, m2) in Equation (12) can be written as
follows:

G∗
12 = max

m1∈(K−m2,K]
G12(m1, m2)

=

⎧⎪⎨
⎪⎩

π∗
1 = maxm1∈(K−m2,K] π1, if m2 ≤ (1 − α)K,

π∗
23 = max

{
π∗

2 = maxm1∈(K−m2,αK] π2; π∗
3 = maxm1∈(αK,K] π3

}
,

if m2 ∈ ((1 − α)K, K],

(A1)
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where

π1 = (M − K − w)(K − m2),

π2 = (M − K − w)m1,

π3 = (M − K − w)αK.

Namely, we divide G12(m1, m2) into two subscenarios based on retailer 2’s order
quantity: subscenario 1: m2 ≤ (1 − α)K , and subscenario 2: m2 ∈ ((1 − α)K, K].

Immediately, we can gain the optimal value π∗
1 = (M − K − w)(K − m2)

and optimal solution m∗
12−1 ∈ (K − m2, K] with the subscenario 1: m2 ≤ (1 −

α)K .
Under the subscenario 2: m2 ∈ ((1 − α)K, K], we have

m∗
12−2 = arg max

m1∈(K−m2,αK]
π2 =

{
(K − m2)+, if M − w ≤ K,

αK, if M − w > K,

π∗
2 =

{
(M − K − w)(K − m2)+, if M − w ≤ K,

(M − K − w)αK, if M − w > K,
(A2)

and

m∗
12−3 = arg max

m1∈(K−m2,αK]
π3 ∈ [αK, K],

π∗
3 = max

m1∈(αK,K]
π3 = (M − K − w)αK. (A3)

Comparing π∗
2 in Equation (A.2) with π∗

3 in Equation (A.3), we can directly gain
the following result with condition m2 ∈ ((1 − α)K, K] holding:

m∗
23 = arg max

m1

{π∗
2 ; π∗

3 } =
{

(K − m2)+ if M − w ≤ K,

∈ [αK, K] if M − w > K.

π∗
23 = max{π∗

2 ; π∗
3 } =

{
(M − K − w)(K − m2)+, if M − w ≤ K,

(M − K − w)αK, if M − w > K.

Consequently, by the analysis of subscenario 1 and subscenario 2, we prove the
lemma. �
Proof of Theorem 1: To prove the theorem, we first introduce Lemma 5. �
Lemma 5: Under condition M − w ∈ [K, (1 + α)K], if m2 ≤ α̂ or m2 ≥ M −
w + 2

√
(M − w − K)αK , then (M−w−m2)2

4 ≥ (M − w − K)αK . Furthermore, we
have

a) M − w + 2
√

(M − w − K)αK > 2K − (M − w);

b) α̂ > (1 − α)K;

c) α̂ < 2K − (M − w).

Proof: Under condition M − w ∈ [K, (1 + α)K], inequality (M−w−m2)2

4 ≥ (M −
w − K)αK is equivalent to

m2
2 − 2(M − w)m2 + (M − w)2 − 4(M − w − K)αK ≥ 0,
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and is also equivalent to

m2 ≥ M − w + 2
√

(M − w − K)αK or m2 ≤ M − w − 2
√

(M − w − K)αK.

Note that M − w + 2
√

(M − w − K)αK > 2K − (M − w) is equiva-
lent to 2(M − w − K) + 2

√
(M − w − K)αK > 0, and that M − w −

2
√

(M − w − K)αK > (1 − α)K is equivalent to M − w − (1 − α)K >

2
√

(M − w − K)αK . Further, we have that M − w − 2
√

(M − w − K)αK <

2K − (M − w). Thus, the lemma holds. �

Now we prove the theorem. By Equation (10), we compare G∗
11 and G∗

12
according the range of w, which can be divided into two cases:

Case 1: w ≥ M − K . In the case, we have

G∗
11 =

{
0, m∗

11 = 0 if m2 ∈ (M − w, K],
(M−w−m2)2

4 , m∗
11 = M−w−m2

2 if m2 ∈ [0, M − w],

G∗
12 =

{
(M − K − w)(K − m2), m∗

12 ∈ [K − m2, K] if m2 ∈ [0, (1 − α)K],
(M − K − w)(K − m2)+, m∗

12 = (K − m2)+ if m2 ∈ ((1 − α)K, K].

Case 1 can be divided into the following two subcases to analyze.
Case 1.a. w ∈ (M − (1 − α)K, M].
In this subcase, 0 ≤ M − w < (1 − α)K < K . Thus, we have:
if 0 ≤ m2 < M − w, then G∗

11 = (M−w−m2)2

4 > G∗
12 = (M − K − w)(K −

m2). Hence, �1(w, m2) = (M−w−m2)2

4 and m1(m2) = m∗
11 = M−w−m2

2 ;
if m2 ∈ [M − w, K], then G∗

11 = 0 and G∗
12 is negative. Hence, �1(w, m2) =

0 and m1(m2) = m∗
11 = 0.

Case 1.a is illustrated as follows:

0 M − w (1 − α )K

m 2

K

G∗
1 1 = (M −w −m 2 ) 2

4 > G∗
1 2

G∗
1 2 = (M − K − w )(K − m 2 )

G∗
1 1 = 0 > G∗

1 2

G∗
1 2 = (M − K − w )(K − m 2 )

G∗
1 1 = 0 > G∗

1 2

G∗
1 2 = (M − K − w )(K − m 2 )+

Case 1.b. w ∈ [M − K, M − (1 − α)K].
In this subcase, we have 0 < (1 − α)K < M − w < K . Thus, we have:
if m2 ∈ (0, (1 − α)K], then G∗

11 = (M−w−m2)2

4 and G∗
12 = (M − K −

w)(K − m2). We have that G∗
11 > G∗

12. Hence, �1(w, m2) = (M−w−m2)2

4 and
m1(m2) = m∗

11 = M−w−m2
2 ;

if m2 ∈ ((1 − α)K, M − w], then G∗
11 = (M−w−m2)2

4 , and G∗
12 = (M − K −

w)(K − m2)+ is negative. Thus, we have that G∗
11 > G∗

12. Hence, �1(w, m2) =
(M−w−m2)2

4 and m1(m2) = m∗
11 = M−w−m2

2 ;
if m2 ∈ (M − w, K], then G∗

11 = 0 and G∗
12 = (M − K − w)(K − m2)+ is

negative. Thus, we have that G∗
11 > G∗

12. Hence, �1(w, m2) = 0 and m1(m2) =
m∗

11 = 0.
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Case 1.b is illustrated as follows:

0 (1 − α ) MK − w

m 2

K

G∗
1 1 = (M −w −m 2 ) 2

4 > G∗
1 2

G∗
1 2 = (M − K − w )(K − m 2 )

(M −w −m 2 ) 2

4 > G∗
1 2

G∗
1 2 = (M − K − w )(K − m 2 )+

G∗
1 1 = 0 > G∗

1 2

G∗
1 2 = (M − K − w )(K − m 2 )+

Combining cases 1.a and 1.b, we have (i).
Case 2: w < M − K . In this subcase, we have

G∗
11 =

{
(M−w−m2)2

4 , m∗
11 = M−w−m2

2 if m2 ≤ 2K − (M − w),
(M − K − w)(K − m2), m∗

12 = K − m2 if m2 ∈ (2K − (M − w), K],

G∗
12 =

{
(M − K − w)(K − m2), m∗

1 ∈ [K − m2, K] if m2 ∈ [0, (1 − α)K],
(M − K − w)αK, m∗

1 ∈ [αK, K] if m2 ∈ ((1 − α)K, K].

The case can be divided into the following three subcases to analyze:
Case 2.a. w ∈ (M − (1 + α)K, M − K).
In this subcase, we know that 0 < (1 − α)K < α̂ < 2K − (M − w) < K .

By Lemma 5, we consider the following conditions:
if m2 ∈ [0, (1 − α)K), then G∗

11 = (M−w−m2)2

4 and G∗
12 = (M − K −

w)(K − m2), which implies G∗
11 > G∗

12. Therefore, we have �1(w, m2) =
(M−w−m2)2

4 and m1(m2) = M−w−m2
2 ;

if m2 ∈ [(1 − α)K, α̂], then G∗
11 = (M−w−m2)2

4 and G∗
12 = (M − K − w)αK ,

which implies G∗
11 > G∗

12 by Lemma 5. Therefore, we have �1(w, m2) =
(M−w−m2)2

4 and m1(m2) = M−w−m2
2 ;

if m2 ∈ (α̂, 2K − (M − w)), then G∗
11 = (M−w−m2)2

4 and G∗
12 = (M − K −

w)αK , which implies G∗
11 ≤ G∗

12. Therefore, we have �1(w, m2) = (M − K −
w)αK and m1(m2) ∈ [αK, K];

if m2 ∈ [2K − (M − w), K], then G∗
11 = (M − K − w)(K − m2) and

G∗
12 = (M − K − w)αK , which implies G∗

11 < G∗
12. Therefore, we have

�1(w, m2) = (M − K − w)αK and m1(m2) ∈ [αK, K].
Case 2.a is illustrated as follows:

1(0 − α )K 2K − (M − w )

m 2

K

G∗
1 1 = (M −w −m 2 ) 2

4 > G∗
1 2

G∗
1 2 = (M − K − w )(K − m 2 )

G∗
1 1 = (M −w −m 2 ) 2

4 > G∗
1 2

G∗
1 2 = (M − K − w )αK

G∗
1 1 = (M −w −m 2 ) 2

4 < G∗
1 2

G∗
1 2 = (M − K − w )αK

α̂ = M − w − 2 (M − w − K )αK

G∗
1 1 = (M − K − w )(K − m 2 ) < G∗

1 2

G∗
1 2 = (M − K − w )αK

From the analysis of case 2.a, we have (ii).
Case 2.b. w ∈ (M − 2K, M − (1 + α)K].
In this subcase, 0 < 2K − (M − w) ≤ (1 − α)K < K . Thus, we have
if m2 ∈ [0, 2K − (M − w)), then G∗

11 = (M−w−m2)2

4 and G∗
12 = (M − K −

w)(K − m2), which implies G∗
11 > G∗

12. Therefore, we have �1(w, m2) =
(M−w−m2)2

4 and m1(m2) = M−w−m2
2 ;

if m2 ∈ [2K − (M − w), (1 − α)K), then G∗
11 = (M − K − w)(K − m2)

and G∗
12 = (M − K − w)(K − m2), which implies G∗

11 = G∗
12. Therefore, we

have �1(w, m2) = (M − K − w)(K − m2) and m1(m2) ∈ [K − m2, K];
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if m2 ∈ [(1 − α)K, K], then G∗
11 = (M − K − w)(K − m2) and G∗

12 =
(M − K − w)αK , which implies G∗

11 < G∗
12. Therefore, we have �1(w, m2) =

(M − K − w)αK and m1(m2) ∈ [αK, K].
Case 2.b is illustrated as follows:

20 K − (M − w ) (1 − α )K

m 2

K

G∗
1 1 = (M −w −m 2 ) 2

4 > G∗
1 2

G∗
1 2 = (M − K − w )(K − m 2 )

G∗
1 1 = (M − K − w )(K − m 2 ) = G∗

1 2

G∗
1 2 = (M − K − w )(K − m 2 )

G∗
1 1 = (M − K − w )(K − m 2 ) < G∗

1 2

G∗
1 2 = (M − K − w )αK

From the analysis of case 2.b, we have (iii).
Case 2.c. w ≤ M − 2K .
In this subcase, 0 < (1 − α)K < K , then we have
if m2 ∈ [0, (1 − α)K), then we can obtain that G∗

11 = (M − K − w)(K −
m2) and G∗

12 = (M − K − w)(K − m2), which implies that G∗
11 = G∗

12. There-
fore, we have �1(w, m2) = (M − K − w)(K − m2) and m1(m2) ∈ [K − m2, K];

if m2 ∈ [(1 − α)K, K], then we can obtain that G∗
11 = (M − K − w)(K −

m2) and G∗
12 = (M − K − w)αK , which implies that G∗

11 ≤ G∗
12. Therefore, we

have �1(w, m2) = (M − K − w)αK and m1(m2) ∈ [αK, K].
Case 2.c is illustrated as follows:

0 (1 − α )K

m 2

K

G∗
1 1 = (M − w − K )(K − m 2 ) = G∗

1 2

G∗
1 2 = (M − K − w )(K − m 2 )

G∗
1 1 = (M − w − K )(K − m 2 ) < G∗

1 2

G∗
1 2 = (M − w − K )αK

From the analysis if case 2.c, we have (iv).

Proof of Lemma 2: Note that G22(m1, m2) can be written as follows:

G∗
22 = max

m2∈(K−m1,K]
G22(m1, m2)

=

⎧⎪⎪⎨
⎪⎪⎩

π̂∗
1 = maxm2∈(K−m1,K] π̂1, if m1 ≤ αK,

π̂∗
23 = max

{
π̂∗

2 = maxm2∈(K−m1,(1−α)K] π̂2; π̂∗
3

= maxm2∈((1−α)K,K] π̂3

}
, if m1 ∈ (αK, K],

(A4)

where
π̂1 = (M − K − w)(K − m1),

π̂2 = (M − K − w)m2,

π̂3 = (M − K − w)(1 − α)K.

It is easy to obtain that
m∗

21 = arg max
m2∈(K−m1,K]

π̂1 ∈ (K − m1, K],

π̂∗
1 = (M − K − w)(K − m1). (A5)

With condition m1 ∈ (αK, K], we have

π̂∗
2 = max

m2∈(K−m1,(1−α)K]
π̂2

=
{

(M − K − w)(K − m1)+, if M − w ≤ K,

(M − K − w)(1 − α)K, if M − w > K,



554 Allocating Capacity with Demand Competition

π̂∗
3 = max

m2∈((1−α)K,K]
π̂3 = (M − K − w)(1 − α)K, m∗

2 ∈ ((1 − α)K, K].

Comparing π∗
2 with π∗

3 , we can directly gain the following result with condition
m1 ∈ (αK, K] holding:

m∗
23 = arg max

m2

{π̂∗
2 ; π̂∗

3 }

=
{

(K − m1)+ if M − w ≤ K,

∈ [(1 − α)K, K] if M − w > K,

π̂∗
23 = max{π̂∗

2 ; π̂∗
3 }

=
{

(M − K − w)(K − m1)+, if M − w ≤ K,

(M − K − w)(1 − α)K, if M − w > K.

Hence, the lemma holds.

Proof of Theorem 2: First, we would like to introduce the following result: in-
equality (M−w−m1)2

4 > (M − K − w)(1 − α)K is equivalent to m1 < β or m1 >

M − w + 2
√

(M − K − w)(1 − α)K . Note that inequality (M−w−m1)2

4 > (M −
K − w)(1 − α)K is equivalent to M − w − m1 > 2

√
(M − K − w)(1 − α)K or

M − w − m1 < −2
√

(M − K − w)(1 − α)K , and thus the result holds. This re-
sult will be implicitly used in the following proof.

With Equation (13) and Lemma 2, we can divide the problem into the fol-
lowing two cases to compare G∗

21 and G∗
22 according the range of w

Case 1: w ≥ M − K . In the case, we have

G∗
21 =

{
0, m∗

21 = 0 if m1 ∈ (M − w, K].
(M−w−m1)2

4 , m∗
21 = M−w−m1

2 if m1 ∈ [0, M − w],

G∗
22 =

{
(M − K − w)(K − m1), m∗

22 ∈ [K − m1, K] if m1 ∈ [0, αK],
(M − K − w)(K − m1)+, m∗

22 = (K − m1)+ if m1 ∈ (αK, K].

Case 1 can be divided into the following two subcases to analyze.
Case 1.a. w ∈ (M − αK, M].
In this subcase, 0 ≤ M − w < αK < K . Thus, we have:
if 0 ≤ m1 < M − w, then G∗

21 = (M−w−m1)2

4 > G∗
22 = (M − K − w)(K −

m1). Hence, �2(w, m1) = (M−w−m1)2

4 and m2(m1) = m∗
21 = M−w−m1

2 ;
if m1 ∈ [M − w, K], then G∗

21 = 0 and G∗
22 is negative. Hence, �1(w, m1) =

0 and m2(m1) = m∗
21 = 0.

Case 1.a is illustrated as follows:

0 M − w αK

m 1

K

G∗
2 1 = (M −w −m 1 ) 2

4 > G∗
2 2

G∗
2 2 = (M − K − w )(K − m 1 )

G∗
2 1 = 0 > G∗

2 2

G∗
2 2 = (M − K − w )(K − m 1 )

G∗
2 1 = 0 > G∗

2 2

G∗
2 2 = (M − K − w )(K − m 1 )+

Case 1.b. w ∈ [M − K, M − αK].
In this subcase, we have 0 < αK < M − w < K . Thus, we have:
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if m1 ∈ (0, αK], then G∗
21 = (M−w−m1)2

4 and G∗
22 = (M − K − w)(K − m1).

We have that G∗
21 > G∗

22. Hence, �2(w, m1) = (M−w−m1)2

4 and m2(m1) = m∗
21 =

M−w−m1
2 ;

if m1 ∈ (αK, M − w], then G∗
21 = (M−w−m1)2

4 , and G∗
22 = (M − K −

w)(K − m1)+ is negative. Thus, we have that G∗
21 > G∗

22. Hence, �2(w, m1) =
(M−w−m1)2

4 and m2(m1) = m∗
21 = M−w−m1

2 ;
if m1 ∈ (M − w, K], then G∗

21 = 0 and G∗
22 = (M − K − w)(K − m1)+ is

negative. Thus, we have that G∗
21 > G∗

22. Hence, �2(w, m1) = 0 and m2(m1) =
m∗

21 = 0.
Case 1.b is illustrated as follows:

0 αK M − w

m 1

K

G∗
2 1 = (M −w −m 1 ) 2

4 > G∗
2 2

G∗
2 2 = (M − K − w )(K − m 1 )

(M −w −m 1 ) 2

4 > G∗
2 2

G∗
2 2 = (M − K − w )(K − m 1 )+

G∗
2 1 = 0 > G∗

2 2

G∗
2 2 = (M − K − w )(K − m 1 )+

Combining cases 1.a and 1.b, we have (i).
Case 2: w < M − K . In this subcase, we have

G∗
21 =

{
(M−w−m1)2

4 , m∗
2 = M−w−m1

2 if m1 ≤ 2K − (M − w),
(M− K− w)(K− m1), m∗

2 = K − m1 if m1 ∈ (2K − (M − w), K],

G∗
22 =

{
(M − K − w)(K − m1), m∗

2 ∈ (K − m1, K] if m1 ∈ [0, αK],
(M − K − w)(1 − α)K, m∗

2 ∈ [(1 − α)K, K] if m1 ∈ (αK, K].

The case can be divided into the following three subcases to analyze:
Case 2.a. M − w ∈ (M − (2 − α)K, M − K).
In this subcase, we know that 0 < αK < β < 2K − (M − w) < K . By

Lemma 5, we consider the following conditions:
if m1 ∈ [0, αK), then G∗

21 = (M−w−m1)2

4 and G∗
22 = (M − K − w)(K − m1),

which implies G∗
21 > G∗

22. Therefore, we have �2(w, m1) = (M−w−m1)2

4 and
m2(m1) = M−w−m1

2 ;

if m1 ∈ [αK, β], then G∗
21 = (M−w−m1)2

4 and G∗
22 = (M − K − w)(1 − α)K ,

which implies G∗
21 ≥ G∗

22 by Lemma 5. Therefore, we have �2(w, m1) =
(M−w−m1)2

4 and m2(m1) = M−w−m1
2 ;

if m1 ∈ (β, 2K − (M − w)), then G∗
21 = (M−w−m1)2

4 and G∗
22 = (M − K −

w)(1 − α)K , which implies G∗
21 < G∗

22. Therefore, we have �2(w, m1) = (M −
K − w)(1 − α)K and m2(m1) ∈ [(1 − α)K, K];

if m1 ∈ [2K − (M − w), K], then G∗
21 = (M − K − w)(K − m1) and

G∗
22 = (M − K − w)(1 − α)K , which implies G∗

21 < G∗
22. Therefore, we have

�2(w, m1) = (M − K − w)(1 − α)K and m2(m1) ∈ [(1 − α)K, K].
Case 2.a is illustrated as follows:

0 αK 2K − (M − w )

m 1

K

G∗
2 1 = (M −w −m 1 ) 2

4 > G∗
2 2

G∗
2 2 = (M − K − w )(K − m 1 )

G∗
2 1 = (M −w −m 1 ) 2

4 > G∗
2 2

G∗
2 2 = (M − K − w )(1 − α )K

G∗
2 1 = (M −w −m 1 ) 2

4 < G∗
2 2

G∗
2 2 = (M − K − w )(1 − α )K

β = M − w − 2 (M − w − K )(1 − α )K

G∗
2 1 = (M − K − w )(K − m 1 ) < G∗

2 2

G∗
2 2 = (M − K − w )(1 − α )K

From the analysis of case 2.a, we have (ii).
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Case 2.b. w ∈ (M − 2K, M − (2 − α)K].
In this subcase, 0 < 2K − (M − w) ≤ (2 − α)K < K . Thus, we have
if m1 ∈ [0, 2K − (M − w)), then G∗

21 = (M−w−m1)2

4 and G∗
22 = (M − K −

w)(K − m1), which implies G∗
21 > G∗

22. Therefore, we have �2(w, m1) =
(M−w−m1)2

4 and m2(m1) = M−w−m1
2 ;

if m1 ∈ [2K − (M − w), αK), then G∗
21 = (M − K − w)(K − m1) and

G∗
22 = (M − K − w)(K − m1), which implies G∗

21 = G∗
22. Therefore, we have

�2(w, m1) = (M − K − w)(K − m1) and m2(m1) ∈ [K − m1, K];
if m1 ∈ [αK, K], then G∗

21 = (M − K − w)(K − m1) and G∗
22 = (M −

K − w)(1 − α)K , which implies G∗
21 < G∗

22. Therefore, we have �2(w, m1) =
(M − K − w)(1 − α)K and m2(m1) ∈ [(1 − α)K, K].

Case 2.b is illustrated as follows:

20 K − (M − w ) αK

m 1

K

G∗
2 1 = (M −w −m 1 ) 2

4 > G∗
2 2

G∗
2 2 = (M − K − w )(K − m 1 )

G∗
2 1 = (M − K − w )(K − m 1 ) = G∗

2 2

G∗
2 2 = (M − K − w )(K − m 1 )

G∗
2 1 = (M − K − w )(K − m 1 ) < G∗

2 2

G∗
2 2 = (M − K − w )(1 − α )K

From the analysis of case 2.b, we have (iii).
Case 2.c. w ≤ M − 2K .
In this subcase, 0 < αK < K , then we have
if m1 ∈ [0, αK), then we can obtain that G∗

21 = (M − K − w)(K − m1)
and G∗

22 = (M − K − w)(K − m1), which implies that G∗
21 = G∗

22. Therefore,
we have �2(w, m1) = (M − K − w)(K − m1) and m2(m1) ∈ [K − m1, K];

if m1 ∈ [αK, K], then we can obtain that G∗
21 = (M − K − w)(K − m1)

and G∗
22 = (M − K − w)(1 − α)K , which implies that G∗

21 ≤ G∗
22. Therefore, we

have �2(w, m1) = (M − K − w)(1 − α)K and m2(m1) ∈ [(1 − α)K, K].
Case 2.c is illustrated as follows:

0 αK

m 1

K

G∗
2 1 = (M − w − K )(K − m 1 ) = G∗

2 2

G∗
2 2 = (M − K − w )(K − m 1 )

G∗
2 1 = (M − w − K )(K − m 1 ) < G∗

2 2

G∗
2 2 = (M − w − K )(1 − α )K

From the analysis if case 2.c, we have (iv).

Proof of Theorem 3: Case 1: w ∈ [0, M − 2K) In this case, we have:

m1(m2) ∈
{

[K − m2, K], if m2 ∈ [0, (1 − α)K),
[αK, K], if m2 ∈ [(1 − α)K, K],

m2(m1) ∈
{

[K − m1, K], if m1 ∈ [0, αK),
[(1 − α)K, K], if m1 ∈ [αK, K].

In this case, we can obtain the Nash equilibria m∗
1 × m∗

2 ∈ [αK, K] × [(1 −
α)K, K].

Case 2: w ∈ [M − 2K, M − (1 + α)K). In this case, we have:

m1(m2)

⎧⎨
⎩

= M−w−m2
2 , if m2 < 2K − (M − w),

∈ [K − m2, K], if m2 ∈ [2K − (M − w), (1 − α)K),
∈ [αK, K], if m2 ∈ [(1 − α)K, K],
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m2(m1)

⎧⎨
⎩

= M−w−m1
2 , if m1 < 2K − (M − w),

∈ [K − m1, K], if m1 ∈ [2K − (M − w), αK),
∈ [(1 − α)K, K], if m1 ∈ [αK, K].

In this case, we can prove that 2K − (M − w) < M−w
3 and obtain the Nash equi-

libria m∗
1 × m∗

2 ∈ [αK, K] × [(1 − α)K, K].
Case 3: w ∈ [M − (1 + α)K, M − (2 − α)K). In this case, we have:

m1(m2)

{= M−w−m2
2 , if m2 ≤ α̂,

∈ [αK, K], if m2 ∈ (α̂, K],

m2(m1)

⎧⎨
⎩

= M−w−m1
2 , if m1 < 2K − (M − w),

∈ [K − m1, K], if m1 ∈ [2K − (M − w), αK),
∈ [(1 − α)K, K], if m1 ∈ [αK, K].

Note that if w ≥ M − 9αK−3
√

(9α−4)αK

2 , then there exist multiple Nash equilibria
(m∗

1, m
∗
2) = (M−w

3 , M−w
3 ) and m∗

1 × m∗
2 ∈ [αK, K] × [α̂, K], where in the later set

of equilibria, we have that g1(m∗
1, m

∗
2) = αK and g2(m∗

1, m
∗
2) = (1 − α)K . Further-

more, the former equilibrium (M−w
3 , M−w

3 ) dominates any equilibrium belonging
to [αK, K] × [α̂K, K] in the sense of it gains larger profit for both retailers. If
w < M − 9αK−3

√
(9α−4)αK

2 , then we have that in equilibrium, the two retailers’ total
order size is no less than K , and the equilibria are m∗

1 × m∗
2 ∈ [αK, K] × [α̂, K].

Case 4: w ∈ [M − (2 − α)K, M − K). In this case, we have:

m1(m2)

{= M−w−m2
2 , if m2 ≤ α̂,

∈ [αK, K], if m2 ∈ (α̂, K],

m2(m1)

{= M−w−m1
2 , if m1 ≤ β,

∈ [(1 − α)K, K], if m1 ∈ (β, K].

Note that if w ≥ M − 9αK−3
√

(9α−4)αK

2 , then there exist multiple Nash equilibria
(m∗

1, m
∗
2) = (M−w

3 , M−w
3 ) and m∗

1 × m∗
2 ∈ [β, K] × [α̂, K], where in the later set of

equilibria, we have that g1(m∗
1, m

∗
2) = αK and g2(m∗

1, m
∗
2) = (1 − α)K . Further-

more, the former equilibrium (M−w
3 , M−w

3 ) dominates any equilibrium belonging
to [β, K] × [α̂, K] in the sense that it gains larger profit for both retailers. If
w < M − 9αK−3

√
(9α−4)αK

2 , then we have that in equilibrium, the two retailers’ to-
tal order size is no less than K , and the equilibria are m∗

1 × m∗
2 ∈ [β, K] × [α̂, K].

Case 5: w ∈ [M − K, M]. In this case, we have:

m1(m2) =
{

M−w−m2
2 , if m2 < M − w,

0, if m2 ∈ [M − w, K],

m2(m1) =
{

M−w−m1
2 , if m1 < M − w,

0, if m1 ∈ [M − w, K].

From the equations, we can gain the Nash equilibrium (m∗
1, m

∗
2) = (M−w

3 , M−w
3 ).

Combining cases 1–5, the theorem holds. �

Proof of Lemma 3: (i) To prove 3K − 3
√√

(9α − 4)α + 1 − 3α is decreasing
in α ∈ [ 1

2 , 1] is equivalent to prove that
√√

(9α − 4)α + 1 − 3α is increasing in
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α ∈ [ 1
2 , 1], which is further equivalent to√

[9(α + 	) − 4](α + 	) + 1 − 3(α + 	) >
√

(9α − 4)α + 1 − 3α,

where 	 > 0. After straightforward algebra operations, we have proven (i).
Part (ii) can be proven similarly. �

Proof of Theorem 4: In view of Equation (14), the supplier will choose his
optimal wholesale price to maximize her profit:

max

⎧⎨
⎩ max

w∈
(

0,M− 9αK−3
√

(9α−4)αK

2

)wK; max
w∈

[
M− 9αK−3

√
(9α−4)αK

2 ,M
] 2(M − w)w

3

⎫⎬
⎭ . (A6)

Note that

K

(
M − 9αK − 3

√
(9α − 4)αK

2

)
>

(
M − 9αK − 3

√
(9α − 4)αK

2

)

(3α −
√

(9α − 4)α)K, (A7)

arg max
w

{
2(M − w)w

3

}
= M

2
, (A8)

max
w

{
2(M − w)w

3

}
= M2

6
. (A9)

Therefore, if M
2 ≤ M − 9αK−3

√
(9α−4)αK

2 , i.e., M ≥ 9αK − 3
√

(9α − 4)αK ,

then by (A.7) and (A.8), we have w∗(α) = (M − 9αK−3
√

(9α−4)αK

2 )− and �∗
s (α) =

K[(M − 9αK−3
√

(9α−4)αK

2 )−].

When M
2 > M − 9αK−3

√
(9α−4)αK

2 , i.e., M < 9αK − 3
√

(9α − 4)αK , we can
show that

K

[(
M − 9αK − 3

√
(9α − 4)αK

2

)
−
]

≤ M2

6

for M ∈ (0, 3K − 3
√√

(9α − 4)α + 1 − 3αK], (A10)

and K

[(
M − 9αK − 3

√
(9α − 4)αK

2

)
−
]

>
M2

6

for M ∈ (3K − 3
√√

(9α − 4)α + 1 − 3αK, 9αK − 3
√

(9α − 4)αK). (A11)

Hence, we have that
if M ∈ (0, 3K − 3

√√
(9α − 4)α + 1 − 3αK], then by (A.8), (A.9), and

(A.10), we have that w∗(α) = M
2 and �∗

s (α) = M2

6 ;
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if M ∈ (3K − 3
√√

(9α − 4)α + 1 − 3αK, 9αK − 3
√

(9α − 4)αK), then
by (A.8), (A.9), and (A.11), we have w∗ = M − 9αK−3

√
(9α−4)αK

2 and �∗
s (α) =

K[(M − 9αK−3
√

(9α−4)αK

2 )−].
Consequently, the theorem holds.

Proof of Theorem 5: The theorem follows Theorem 4 with straightforward
algebra operations, and hence we omit the proof for preciseness. �
Proof of Lemma 4: The lemma can be proven using straightforward algebra
operations, and hence we omit the proof for preciseness. �
Proof of Theorem 6: Part (i) follows Theorem 4 and Proposition 1.

If M < 3(2 − √
2)K , then retailers’ profits are �∗

1 = M2/36, �∗
2 = M2/36

and �∗
1 + �∗

2 = M2/18 under proportional allocation, the same as under fixed

factor allocation with α =
√

2
2 . If M ≥ 3(2 − √

2)K , then retailers’ profits are

�∗
1 = 3

√
2−4
2 K2, �∗

2 = 3
√

2−4
2 K2, and �∗

1 + �∗
2 = (3

√
2 − 4)K2 under propor-

tional allocation. Under fixed factor allocation with α =
√

2
2 , retailers’ prof-

its are �∗
1(α) = (3 − 2

√
2)K2 > �∗

1, �∗
2(α) = (5

√
2 − 7)K2 < �∗

2, and �∗
1(α) +

�∗
2(α) = (3

√
2 − 4)K2 = �∗

1 + �∗
2. Hence, part (ii) of the theorem holds. �

Proof of Theorem 7: Following Equation (15), the proof is divided into two cases.
Case 1. If K ∈ [0, M

3−3
√√

(9α−4)α+1−3α
), then the first order condition is

∂�̂∗
s (K)

∂K
= (M − c) − (

9α − 3
√

(9α − 4)α
)
K = 0.

which follows from 0 < (M−c)
9α−3

√
(9α−4)α

< M

3−3
√√

(9α−4)α+1−3α
. Hence,

arg max
K∈

[
0, M

3−3
√√

(9α−4)α+1−3α

]
{(

M − 9α − 3
√

(9α − 4)α

2
K

)
K − cK

}

= M − c

9α − 3
√

(9α − 4)α
,

max
K∈

[
0, M

3−3
√√

(9α−4)α+1−3α

]
{(

M − 9α − 3
√

(9α − 4)α

2
K

)
K − cK

}

= (M − c)2

2(9α − 3
√

(9α − 4)α)
.

Case 2. It is clear that

arg max
K∈

[
M

3−3
√√

(9α−4)α+1−3α
, ∞

]
{

M2

6
− cK

}
= M

3 − 3
√√

(9α − 4)α + 1 − 3α
,

max
K∈

[
M

3−3
√√

(9α−4)α+1−3α
, ∞

]
{

M2

6
− cK

}
= M2

6
− cM

3 − 3
√√

(9α − 4)α + 1 − 3α
.
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Note that

(M − c)2

2(9α − 3
√

(9α − 4)α)
−
(

M2

6
− cM

3 − 3
√√

(9α − 4)α + 1 − 3α

)

=
[
M

(√√
(9α − 4)α − 3α + 1

)
+ c

]2

> 0.

So, the optimal capacity is that K∗(α) = M−c

9α−3
√

(9α−4)α
. Using Theorem 4 and Equa-

tion (15), the optimal wholesale price and profit are (M+c
2 )− and (M−c)2

2(9α−3
√

(9α−4)α)
,

respectively.
Therefore, the theorem holds. �
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