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SUMMARY

Refactoring is widely recognized as a crucial technique applied when evolving object-oriented software
systems. If applied well, refactoring can improve different aspects of software quality including readability,
maintainability and extendibility. However, despite its importance and benefits, recent studies report that
automated refactoring tools are underused much of the time by software developers. This paper introduces
an automated approach for refactoring recommendation, called MORE, driven by three objectives: (1) to
improve design quality (as defined by software quality metrics), (2) to fix code smells, and (3) to introduce
design patterns. To this end, we adopt the recent non-dominated sorting genetic algorithm, NSGA-III, to
find the best trade-off between these three objectives. We evaluated the efficacy of our approach using a
benchmark of seven medium and large open-source systems, seven commonly-occurring code smells (god
class, feature envy, data class, spaghetti code, shotgun surgery, lazy class, and long parameter list), and four
common design pattern types (visitor, factory method, singleton and strategy). Our approach is empirically
evaluated through a quantitative and qualitative study to compare it against three different state-of-the art
approaches, two popular multi-objective search algorithms, as well as random search. The statistical analysis
of the results confirms the efficacy of our approach in improving the quality of the studied systems while
successfully fixing 84% of code smells and introducing an average of six design patterns. In addition, the
qualitative evaluation shows that most of the suggested refactorings (an average of 69%) are considered by
developers to be relevant and meaningful.
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1. INTRODUCTION

Software systems are continuously subject to maintenance and evolution activities to add new
features, to fix bugs or to adapt to new environmental changes [1]. Such activities are often
performed in an undisciplined manner due to many reasons including time pressure, poorly planned
changes or limited knowledge/experience of some developers about the system’s design [2, 3].
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2 A. OUNI

Refactoring techniques are a fundamental support for improving software quality that has been
practiced for many years [4]. Refactoring has been defined by Fowler as “the process of changing a
software system in such a way that it does not alter the external behavior of the code yet improves
its internal structure” [2]. If applied well, refactoring brings many benefits to support software
developers in terms of understanding, changing, maintaining and evolving the existing software
implementation. To this end, various refactoring recommendation approaches have been proposed
in the literature [5–8].

Despite its significant benefits, recent studies show that automated refactoring tools are underused
much of the time [5, 9, 10]. One of the possible reasons is that most of existing refactoring
tools [6, 11, 12] focus mainly only on improving some specific aspects of a system (e.g., coupling,
cohesion, complexity, etc.). Indeed, improving some quality metrics in a software system does not
necessary fix existing code smells [13]. Thus, quality metric values can be significantly improved
but the original program may still contain a considerable number of code smells, which may lead
to several maintenance and evolution difficulties. On the other hand, design patterns are known
as “good” solutions to recurring design problems, conceived to increase reuse, code quality, code
readability and, above all, maintainability and resilience to change [14]. Design patterns can be
automatically introduced using refactoring [15, 16], however, most existing refactoring tools do not
consider the use of design patterns to fix code smells and improve the quality of software systems.
To make the situation worse, applying a design pattern where it is not needed is highly undesirable
as it introduces an unnecessary complexity to the system for no benefit [17–20]. In addition, an
excessive introduction of design patterns can make the system less maintainable and understandable,
and even create performance problems [19]. For instance, introducing the Strategy design pattern to
an inappropriate class will decrease the cohesion of the class and increase the overall coupling in
the system.

A further challenge is that while it may appear that introducing design patterns, improving
software quality metrics and removing code smells are all non-competing goals and hence can
be simultaneously optimized, empirical evidence indicates otherwise. Studies by Soetens and
Demeyer [21], Stroggylos and Spinellis [22] and Kannangara and Wijayanayake [23] all found
little or no correlation between refactoring activity and improvement in software quality metrics.
In a similar vein, Wilking et al. [24] found that refactored code was neither more maintainable nor
easier to modify than unrefactored versions of the same code. Studies by Counsell et al. [25] and
Chatzigeorgiou and Manakos [26] found no evidence to support the claim that refactoring is used to
remove code smells. Even considering software quality metrics on their own, Ó Cinnéide et al. [27]
found such conflict between the cohesion metrics they studied that it is likely that any observed
correlation with a software quality metric will not extend to other software quality metrics.

To address the above-mentioned challenges, we developed a search-based refactoring
recommendation approach [28] to fix code smells, introduce design patterns, and improve quality
attributes of a system while preventing semantic incoherencies in the refactored program. This
multi-objective search-based approach was embodied in a tool called MORE, based on the non-
dominated sorting genetic algorithm (NSGA-II) [29]. The proposed approach aims to recommend
refactoring operations to (1) improve software quality attributes (i.e., understandability, flexibility,
maintainability, etc.), (2) introduce “good” design practices (i.e., design patterns) and (3) fix “bad”
design practices (i.e., code smells). In addition, MORE is based on a set of constraints, for each
refactoring operation, in order to ensure the semantic coherence of the refactored program, e.g., that
a method is not moved to a class where it makes no sense.

This paper extends our previous work [28] that was published in the proceedings of the North
American Search Based Software Engineering Symposium (NasBASE) in three ways.

1. Our initial approach was based on the popular multi-objective algorithm NSGA-II [29]. In
this paper, we adopt NSGA-III, a recent many-objective search algorithm proposed by Deb et
al. [30], to improve the performance of our approach. We conduct a experiment to compare the
performance of NSGA-III against other popular multi-objective algorithms including NSGA-
II and MOEA/D, as well as random search.
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MORE: A MULTI-OBJECTIVE REFACTORING RECOMMENDATION APPROACH 3

2. We extend MORE to support (1) three additional code smell types (shotgun surgery, lazy
class, and long parameter list) and (2) one additional design pattern (Strategy). Moreover,
we provide detailed descriptions of the refactoring transformations for each of the considered
design patterns, and the semantic constraints employed to preserve the design semantics when
applying refactorings.

3. We present an empirical study based on a quantitative and qualitative evaluation on an
extended benchmark composed of seven real-world Java software systems of various sizes.
The quantitative evaluation investigates the efficacy (ability to achieve the intended effect
under experimental conditions) of our approach in fixing seven common code smell types
(god class, feature envy, data class, spaghetti code, shotgun surgery, lazy class, and long
parameter list), introducing four types of design patterns (factory method, visitor, singleton,
and strategy), and improving six quality attributes according to the popular software quality
model QMOOD [31]. For the qualitative evaluation, we conducted a non-subjective evaluation
with software developers to evaluate the meaningfulness and usefulness of our refactoring
approach from a user’s perspective.

The remainder of this paper is organized as follows. Section 2 describes necessary background
and basic concepts related to our approach. Section 3 introduces our search-based approach, MORE.
Section 4 describes in more detail the adaptation of NSGA-III to the refactoring recommendation
problem. Section 5 describes the design of the empirical study we employ to evaluate our approach,
while in Section 6 we present and discuss the experimental results. Section 7 describes the threats
to validity and the limitations of the present study. Section 8 outlines the related work. Finally, in
Section 9, we conclude and describe our future research directions.

2. BACKGROUND

2.1. Definitions

Refactoring is the process of changing the structure of software while preserving its external
behavior. The term refactoring was introduced by Opdyke and Johnson [32], and popularized by
Martin Fowler’s book [2]. The idea is to reorganize variables, classes and methods to facilitate future
adaptations and extensions. This reorganization is used to improve different aspects of software
quality such as maintainability, extensibility, reusability, etc. [33, 34].

Refactoring is widely recognized as an efficient technique to fix code smells and reduce the
increasing complexity of software systems. Code smells, also called bad smells, design defects,
design flaws or antipatterns, are symptoms of poor design and implementation practices that
describe a bad solution to a recurring design problem that leads to negative effects on code quality
[13]. Software developers may introduce code smells unintentionally during initial design or during
software development due to bad design decisions, ignorance or time pressure. Table I describes
the studied code smells in this paper: god class, feature envy, data class, spaghetti code, shotgun
surgery, long parameter list and lazy class. Indeed, we selected these code smell types because (i)
they are representative of problems with data, complexity, size, and the features provided by classes;
and (ii) they are the most important and frequently-occurring ones in open-source and industrial
projects based on recent studies [35–39].

On the other hand, design patterns are “good” solutions to recurring design problems, conceived
to increase reuse, code quality, code readability and, above all, maintainability and resilience to
change [14]. We focus in this paper on four of the Gamma et al. design patterns namely factory
method, visitor, singleton and strategy [14]. Table II provides definitions and characteristics of
these design patterns. We choose these patterns because they are partially automatable [16], and
also because they address problems related to classes and their associations and are commonly used
to improve the structure of an object-oriented software design.
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4 A. OUNI

Table I. code smell types supported by MORE.

Name Description

God class It is found in design fragments where one large class monopolizes the behavior of a system
(or part of it), and the other classes primarily contain data. It is a large class that declares
many fields and methods with low cohesion [2, 40, 41].

Feature Envy It is found when a method heavily uses attributes from one or more external classes, directly
or via accessor methods. [2].

Data Class It contains only data and performs no processing on this data. It is typically composed of
highly cohesive fields and accessors [13].

Spaghetti Code It is code with a complex and tangled control structure. This code smell is characteristic of
procedural thinking in object-oriented programming. Spaghetti Code is revealed by classes
with no structure, declaring long methods with few or no parameters, and utilizing global
variables. Names of classes and methods may suggest procedural programming. Spaghetti
Code does not exploit, and indeed prevents, the use of object-oriented mechanisms such as
polymorphism and inheritance [13].

Shotgun surgery It occurs when a method has a large number of external operations calling it, and these
operations are spread over a significant number of different classes. As a result, the impact
of a change in this method will be large and widespread [2].

Long Parameter List It is found when a method signature declares numerous parameters. Long parameter lists
are prone to continuous change, difficult to use, and hard to understand and maintain. In
object-oriented programming one should use objects instead of passing a large number of
parameters. [2].

Lazy class It refers to a class that is not doing enough to justify its existence. It represents a class
having very small dimensions, few methods and with low complexity [2].

Table II. Design pattern types supported by MORE.

Name Description

Visitor The visitor pattern represents an operation to be performed on the elements of an object
structure. In essence, the visitor pattern allows a new method to be added to a family of
classes without modifying the classes themselves; instead, one creates a visitor class that
implements all of the appropriate specializations of the dynamically-bound method [14].

Factory Method Factory method is a creational pattern that uses factory methods to deal with the problem of
creating objects without specifying the exact class of object that will be created. It defines
an interface for creating an object, but defers to subclasses the decision as to exactly which
class to instantiate [14].

Singleton It restricts the instantiation of a class to one single object. This is useful when exactly
one object is needed to coordinate actions across the system. The concept is sometimes
generalized to systems that operate more efficiently when only one object exists [14].

Strategy It defines a family of algorithms, encapsulates each one, and makes them interchangeable
at runtime. Strategy lets the algorithm vary independently from clients that use it. There
are common situations when classes differ only in their behavior. In this case, best design
practice suggests isolating the algorithms in separate classes in order to have the ability to
select different algorithms at runtime [14].

2.2. Search-Based Software Engineering

Our approach is largely inspired by contributions in the field of Search-Based Software Engineering
(SBSE). The term SBSE was coined by Harman and Jones in 2001, and the goal of the field is to
move software engineering problems from human-based search to machine-based search, using a
variety of techniques from the metaheuristic search and evolutionary computation paradigms [42].
The idea is to exploit human creativity with machine tenacity and reliability, rather than requiring
humans to perform the more tedious, error-prone and thereby costly aspects of the engineering
process.
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MORE: A MULTI-OBJECTIVE REFACTORING RECOMMENDATION APPROACH 5

In 2007, Harman reviewed the state of the SBSE field [43] and found a strong adoption of a variety
of metaheuristic search techniques (e.g., hill climbing, genetic algorithms, simulated annealing.
etc.) by software practitioners to solve different software engineering problems. In later studies
Harman et al. [44, 45] observed that multi-objective evolutionary optimization techniques (NSGA-
II, MOGA, etc.) were becoming popular. In fact, this new tendency to adopt multi-objective search
techniques to software engineering is justified by the new challenges that software practitioners face
to solve more complex software engineering problems.

3. APPROACH

This section describes our approach, its components and the semantic constraints employed.

3.1. The General Architecture of MORE

The general structure of our approach is described in Figure 1. It takes as input the source code of
the program to be refactored, and as output it recommends a sequence of refactorings that should
provide a near-optimal trade-off between: (1) improving quality, (2) fixing code smells, and (3)
introducing design patterns. The proposed approach comprises seven main components:

Search-Based Refactoring

(NSGA-III)

Design Patterns 

Detector

Code Quality 

Evaluator

Code-smells 

Detector

Input:
source code

Source-code Parser 

and analyzer

(SOOT)

Recommended 
Refactorings

Semantic 

constraints

List of 

Refactorings

A

CB

F ED

Figure 1. Overview of MORE architecture.

A) Source code parser and analyzer (Label A). This component is responsible for parsing and
analyzing the source code of the program being refactored. Our approach is based on Soot [46], a
Java optimization framework. The original source code is analyzed in order to extract from it the
relevant code elements (i.e., classes, methods, attributes, etc.) and the existing relationships between
them. The outputs are (1) the parsed code in a specific representation that is simple to manipulate
during the search process, and (2) a call graph for the entire program that will be used for calculating
semantic constraints and software metrics (e.g. coupling, cohesion, etc.).

B) Code smell detector (Label B). This component scans the entire software program in order
to find existing code smell instances using a set of code smell detection rules [37]. Detection rules
are expressed in terms of metrics and threshold values. Each rule detects a specific code smell type
(e.g., god class, feature envy, etc.) and is expressed as a logical combination of a set of quality
metrics/threshold values. These detection rules are generated from real instances of code smells
using genetic programming [37].

C) Design pattern detector (Label C). This component is responsible for detecting existing
design pattern instances in the code being refactored. Extensive research has been devoted to develop
techniques to automatically detect instances of design patterns both at code and design levels. In
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6 A. OUNI

our approach, we use a detection mechanism that is inspired by the work of Heuzeroth et al. [47]. A
design pattern P is defined by a tuple of program elements such as classes and methods conforming
to the restrictions or rules of a certain design pattern. The detection strategy [47] is based on static
and dynamic specifications of the pattern. In MORE, we use only the static specifications, along
with a post-processing step to eliminate redundancies. Static specifications are based on predicates
to identify the types of code elements, e.g., classes, methods, calls, etc., and relates them to the roles
in the pattern.

D) Code quality evaluator (Label D). This component consists of a set of software metrics that
serves to evaluate the software design improvement achieved by refactoring. Indeed, the expected
benefit from refactoring is to enhance the overall software design quality as well as fixing code
smells [2]. In our approach we use the QMOOD (Quality Model for Object-Oriented Design)
model [31] to estimate the effect of the suggested refactoring solutions on quality attributes.

E) List of refactorings (Label E). MORE currently supports the following refactoring operations:
move method, move field, pull up field, pull up method, push down field, push down method, inline
class, extract method, extract class, move class, extract superclass, extract subclass, and extract
interface [2]. We selected these refactorings because they are the most frequently used refactorings
and they are implemented in most contemporary IDEs such as Eclipse and Netbeans. In addition,
we considered four specific blocks of refactorings to automatically introduce different types of
design pattern instances: factory method refactoring, visitor pattern refactoring, singleton pattern
refactoring and strategy pattern refactoring. We referred to some guidelines from the literature for
introducing instances of design patterns [17, 34, 48]. MORE currently supports the following four
design pattern types: visitor, factory Method, singleton and strategy.

• Visitor Pattern Refactoring. To introduce a visitor pattern, a sequence of refactoring operations
should be applied in the right order. Algorithm 1 illustrates the necessary refactorings
to be applied to introduce a visitor. The starting point is a class hierarchy H that has a
superclass/interface SC and a set of subclasses CC. The first step is to create, for each
functional method, a corresponding visitor class (lines 6-11). Then, functional code fragments
should be moved from the class hierarchy H to the visitor classes. To this end, we apply the
Extract Method refactoring to extract the functional code from the functional methods (Line
15). The original method will now simply delegate the new extracted one (at a later stage,
these methods can be deleted and their call sites updated to use the appropriate visitor). The
extracted method will be moved from the class hierarchy to the appropriate newly-created
visitor class (Line 16). The new methods in visitor classes are named “visit*” using a Rename
Method refactoring (Line 18). An abstract Visitor class is introduced as a superclass for all the
created visitors using an Extract Superclass refactoring (Line 21). Now, an “accept” method
is introduced in all the subclasses CC in H by extracting it from the initial methods, using
an Extract Method refactoring (Line 24). All functional methods now call the accept method
with an instance of the appropriate Visitor subclass. Therefore, their definition can be pulled
up to the SC class by using a Pull Up Method refactoring.

• Factory Method Refactoring. As described in Algorithm 2, which uses the approach developed
by Ó Cinnéide and Nixon [17], a factory method pattern can be introduced starting from
a Creator class that creates instances of Product class(es). The first step is to apply
an extract interface refactoring (Line 3) to abstract the public methods of the Product
classes into an interface. All references to the Product classes in the Creator class are
then updated to refer to this interface (Lines 4-7). Then, for each constructor in each of the
Product classes, a similar method is added in the Creator class that returns an instance
of the corresponding Product class (Lines 9-16). Finally all creations of Product objects
in the Creator class are updated to use these new methods (Lines 17-20).

• Singleton Pattern Refactoring. Our formulation for the singleton pattern is derived from
[49] and [3]. Algorithm 3 describes the basic steps to introduce the singleton pattern. A
singleton class can be introduced starting from a candidate class Singleton. The first
step (Line 3) is to apply the classic refactoring operation, defined in Fowlers catalogue [2],
Replace Constructor with Factory Method. The aim of this step is to make the constructor
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MORE: A MULTI-OBJECTIVE REFACTORING RECOMMENDATION APPROACH 7

Algorithm 1 Pseudo-code of the Visitor Pattern Refactoring

1: Input: hierarchy H
2: Input: SC = getSuperClass(H)
3: Input: CC = getSubClasses(H)
4: Input: visitors = ∅
5: Process:
6: for each method m in SC do
7: if m /∈ SC.constructors() then
8: v = createEmptyClass(m.name)
9: v = renameClass(c.name+“visitor”)

10: visitors = visitors ∪ {v}
11: end if
12: end for
13: for each class c in CC do
14: for each method m in c do
15: visClass = V(m) //find visitor class that maps to the name of method
16: extractMethod (c, m, m’)
17: moveMethod (c, m’, visClass )
18: renameMethod (visClass, m’, “visit”+c.name )
19: end for
20: end for
21: Visitor=extractSuperClass (Visitors,“Visitor”+SC.name )
22: for each class c in CC do
23: for each method m in c do
24: extractMethod (c, m, “accept” )
25: pullUpMethod (m, c, SC )
26: end for
27: end for

Algorithm 2 Pseudo-code of the Factory Method Refactoring

1: Input: Class Creator, Class [] Products
2: Process:
3: extractInterface(Products[], “abstract”+ Products.getName() )
4: for each Object o in Creator do
5: if o.getType ∈ Products[] then
6: o.renameType (o.getType()+“abstract”+ o.getType() )
7: end if
8: end for
9: for each p ∈ Products[] do

10: for each constructor c in p do
11: m = addMethod (Creator, “create”+p.name() )
12: m.setReturnType (“abstract”+p.name())
13: m.setParamList (c.paramList)
14: m.setBody (“return new P(“+c.paramList+”);”))
15: end for
16: end for
17: for each Object o in Creator do
18: if o.getType ∈ Products[] then
19: Creator.replaceObjectCreations(o.getType(), “create”+ o.getType())
20: end if
21: end for

private. Then access to this class will be performed via the newly-generated static method
getSingleton(), which will be the global access point to the Singleton instance.
The second step is to create a static field singleton of type Singleton with access level
private (Line 4) that will be initialized to new Singleton() in the body of the new
method getSingleton() (Line 6). The selection statement ensures that the field singleton
is instantiated only once, i.e., when it is null.

• Strategy Pattern Refactoring. Algorithm 4 describes the main steps to introduce a strategy
pattern. The starting point of a strategy pattern is a method m. m can be turned into a strategy
pattern by creating a new interface i (called with same name as m followed by “ Strategy”)
(Line 3) where the strategy method m is moved to (Line 4). Then for each ‘if’ statement
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8 A. OUNI

Algorithm 3 Pseudo-code of the Singleton Pattern Refactoring

1: Input: Class Singleton
2: Process:
3: Replace Constructor with Factory Method(Singleton.constructor, “get”+ Singleton.name)
4: addField(singleton, Singleton, private, static)
5: if singleton == null then
6: initialize(singleton, “new Singleton()”)
7: end if

Algorithm 4 Pseudo-code of the Strategy Pattern Refactoring

1: Input: Method m
2: Process:
3: i = addNewInterface(m.name + “ Strategy ”)
4: addMethod(i, m)
5: for each ‘if’ statement in m do
6: c = addNewClass ( getName() + m.name + “ Strategy ”);
7: extractMethod (m, c )
8: c.setInterface (i )
9: f = addNewField (m.getClass(), c )

10: f.setType (i)
11: end for

in m, a concrete class is created (Line 6) to implement the interface i (Line 8). An extract
method refactoring is applied in order to move the correspondent code fragment from the
correspondent ‘if’ statement (Line 7). A field of the concrete class type is added to the
original class implementing m.

We selected these four design patterns because they are frequently used in practice, and it is
widely believed that they embody good design practice [14]. Note that the four algorithms apply a
typical implementation of the pattern, and leave some unfinished work to the developer to complete.
Furthermore, if an atomic refactoring fails due to a non-satisfied precondition, the whole refactoring
sequence that applies the design pattern will be rejected.

F) Semantic constraints checker (Label F). The aim of this component is to prevent arbitrary
changes to code elements. Most refactorings are relatively simple to implement, and it is
straightforward to show that they preserve behaviour assuming their pre-conditions are true [33].
However, until now there has been no consensual way to investigate whether a refactoring operation
is semantically feasible and meaningful [50]. Preserving behavior does not mean that the coherence
of the refactored program is also preserved. For instance, a refactoring solution might move a
method calculateSalary() from the class Employee to the class Car. This refactoring
could improve program structure by reducing the complexity and coupling of the class Employee
while preserving program behavior. However, having a method calculateSalary() in the
class Car does not make sense from the domain semantics standpoint. To avoid this kind of problem,
we use a set of semantic coherence constraints that must be satisfied before applying a refactoring
in order to prevent arbitrary changes to code elements. This will be described further in Section 3.2.

G) Search process (Label G). Our approach is based on multi-objective optimization search
using the recent NSGA-III algorithm [30] to formulate the refactoring recommendation problem. We
selected NSGA-III because it is a recent improvement of its previous version NSGA-II [29] which
is widely-used in the field of multi-objective optimization, and demonstrates good performance
compared to other existing metaheuristics in solving many software engineering problems [51].
Thus our approach can be classified as Search Based Software Engineering (SBSE) [42, 44, 45] for
which it is established best practice to define a representation, fitness functions and computational
search algorithm. Referring to Figure 1, the search process (NSGA-III) takes as input the source
code that is then parsed into a more manipulable representation (Label A), a set of code smell
detectors (Label B), a set of design patterns detectors (Label C), a code quality evaluator (Label D)
that evaluates post-refactoring software quality, a set possible refactoring operations to be applied
(Label E), and set of constraints (Label F) to ensure semantic coherence of the code after refactoring.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

This article is protected by copyright. All rights reserved.



MORE: A MULTI-OBJECTIVE REFACTORING RECOMMENDATION APPROACH 9

As output, our approach suggests a list of refactoring operations that should be applied in the
appropriate order to find the best compromise between fixing code smells, introducing design
patterns, and improving code quality.

3.2. Semantic Constraints

MORE defines and uses a set of semantic constraints to prevent arbitrary changes that may affect
the semantic coherence of the refactored program. Indeed, applying a refactoring where it is not
needed is highly undesirable as it may introduce semantic incoherence and unnecessary complexity
to the original design. To this end, we have defined the following semantic constraints to steer the
evolutionary process toward meaningful and useful refactoring solutions.

Vocabulary-based similarity constraint (VS). This kind of constraint is interesting to consider
when moving methods, fields, or classes. For example, when a method has to be moved from one
class to another, the refactoring would make sense if both actors (source class and target class)
use similar vocabularies [50, 52]. The vocabulary can be used as an indicator of the semantic
similarity between different actors (e.g., method, field, class, etc.) that are involved when performing
a refactoring operation. We start from the assumption that the vocabulary of an actor is derived from
the domain terminology and therefore can be used to determine which part of the domain semantics
is encoded by an actor (e.g., class, method, package, interface, etc.). Thus, two actors are likely to
be semantically similar if they use similar vocabularies.

The vocabulary can be extracted from the names of methods, fields, variables, parameters, types,
etc. Tokenisation is performed using the Camel Case Splitter which is one of the most used
techniques in Software Maintenance tools for the preprocessing of identifiers. A more pertinent
vocabulary can also be extracted from comments, commit information, and documentation. We
calculate the semantic similarity between actors using information retrieval-based techniques (e.g.,
cosine similarity). Equation 1 calculates the cosine similarity between two actors. Each actor is
represented as a n dimensional vector, where each dimension corresponds to a vocabulary term. The
cosine of the angle between two vectors is considered as an indicator of similarity. Using cosine
similarity, the conceptual similarity between two actors c1 and c2 is determined as follows:

Sim(c1, c2) = Cos(−→c1 ,−→c2) =
−→c1 .−→c2

‖ −→c1 ‖ × ‖ −→c2 ‖
=

n∑
i=1

(wi,1 × wi,2)√
n∑

i=1

(wi,1)2 ×
n∑

i=1

(wi,2)2
∈ [0, 1] (1)

where −→c1 = (w1,1, ..., wn,1) is the term vector corresponding to actor c1 and −→c2 = (w1,2, ..., wn,2)
is the term vector corresponding to c2. The weightswi,j can be computed using information retrieval
based techniques such as the Term Frequency - Inverse Term Frequency (TF-IDF) method.

Dependency-based similarity constraint (DS). This constraint aims at approximating semantics
closeness between actors starting from their mutual dependencies. The intuition is that actors that
are strongly connected (i.e., having dependency links) are semantically related. As a consequence,
refactoring operations requiring semantic closeness between involved actors are likely to be
successful when these actors are strongly connected. We consider two types of dependency link:

• Shared Method Calls (SMC) can be captured from call graphs derived from the whole program
using CHA (Class Hierarchy Analysis) [53]. A call graph is a directed graph that represents
the different calls (call in and call out) among all methods of the entire program. Nodes
represent methods, and edges represent calls between these methods. CHA uses a basic call
graph that considers class hierarchy information, e.g., for a call c.m(...) it assumes that any
m(...) is reachable that is declared in a subclass of the declared class of c. For a pair of actors,
shared calls are captured through this graph by identifying shared neighbours of nodes related
to each actor. We consider both shared call-out and shared call-in. Equations 2 and 3 are used
to measure respectively the shared call-out and the shared call-in between two actors c1 and
c2 (two classes, for example).

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

This article is protected by copyright. All rights reserved.



10 A. OUNI

SharedCallOut(c1, c2) =
| callOut(c1) ∩ callOut(c2) |
| callOut(c1) ∪ callOut(c2) |

∈ [0, 1] (2)

SharedCallIn(c1, c2) =
| callIn(c1) ∩ callIn(c2) |
| callIn(c1) ∪ callIn(c2) |

∈ [0, 1] (3)

where callOut(c) returns the set of methods called by the methods of the class c, and callIn(c)
returns the set of external methods that call any method in the class c. Shared Method Calls
(SMC) is then defined as the average of shared call-in and call-out.

• Shared Field Access (SFA) can be calculated by capturing all field references uncovered using
static analysis to identify dependencies based on field accesses (read or modify). We assume
that two software elements are semantically related if they read or modify the same fields. The
rate of shared fields (read or modified) between two actors c1 and c2 is calculated according
to Equation 4. In this equation, fieldRW (ci) returns the set of fields that may be read or
modified by each method of the actor ci. Thus, by applying suitable static program analysis
to the whole method body, all field references that occur could be easily computed.

sharedF ieldRW (c1, c2) =
| fieldRW (c1) ∩ fieldRW (c2) |
| fieldRW (c1) ∪ fieldRW (c2) |

∈ [0, 1] (4)

Implementation-based Similarity constraint (IS). Methods that have similar implementations
in all subclasses of a superclass should usually be moved to the superclass using the Pull Up Method
refactoring [2], assuming certain constraints are satisfied. The implementation similarity between
methods is investigated at two levels: signature level and body level. To compare the signatures of
methods, a semantic comparison algorithm is applied that takes into account the methods names,
the parameter lists, and return types. Let Sig(mi) be the set of elements in the signature of method
mi. The signature similarity for two methods m1 and m2 is computed as follows:

sig sim(m1,m2) =
| Sig(m1) ∩ Sig(m2) |
| Sig(m1) ∪ Sig(m2) |

∈ [0, 1] (5)

To compare method bodies, MORE compares the statements in the body, the used local variables,
the exceptions handled, the call-out, and the field references. Let Body(m) (set of statements, local
variables, exceptions, call-out, and field references) be the body of method m. The body similarity
for two methods m1 and m2 is computed as follows:

body sim(m1,m2) =
| Body(m1) ∩Body(m2) |
| Body(m1) ∪Body(m2) |

∈ [0, 1] (6)

The IS score between two methods corresponds to the average score of their sig sim and
body sim values. Although we simply used Jaccard similarity to compute the IS constraint in order
to reduce the computational time of MORE, further improvement of the IS could be based on code
clone detection techniques [54].

Feature Inheritance Usefulness constraint (FIU). This constraint is useful when applying
refactorings such as Push Down Method or Push Down Field operations. In general, when a method
or field is used by only few subclasses of a superclass, it is better to move it, i.e., push it down, from
the superclass to the subclasses using it [2]. To do this for a method, we need to assess the usefulness
of the method in the subclasses in which it appears. We use a call graph and consider polymorphic
calls derived using XTA (Separate Type Analysis) [55]. XTA is more precise than CHA is it yields
a more local view of what types are available. We use Soot [46] as a standalone tool to implement
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MORE: A MULTI-OBJECTIVE REFACTORING RECOMMENDATION APPROACH 11

and test all the program analysis techniques required in our approach. The inheritance usefulness of
a method is given by Equation 7:

FIU(m, c) = 1−

n∑
i=1

call(m, i)

n
∈ [0, 1] (7)

where n is the number of subclasses of the superclass c, m is the method to be pushed down, and
call is a function that returns 1 if m is used (called) in the subclass i, and 0 otherwise.

For the refactoring operation Push Down Field, a suitable field reference analysis is used. The
inheritance usefulness of a field is given by Equation 8:

FIU(f, c) = 1−

n∑
i=1

use(f, ci)

n
∈ [0, 1] (8)

where n is the number of subclasses of the superclass c, f is the field to be pushed down, and use
is a function that returns 1 if f is used (read or modified) in the subclass ci, and 0 otherwise.

Furthermore, we introduced other semantic constraints related to the introduction of design
patterns. Before introducing a design pattern to a particular design fragment, the basic intent of
the pattern should exist in that design fragment already. This starting point is termed a precursor
in the nomenclature of Ó Cinnéide and Nixon [17], and is not taken into account in much of
the existing work in automated refactoring. MORE formulates the notion of precursor as a set of
semantic constraints that should be satisfied before introducing a design pattern.

Factory Method constraint (FMC). The semantic constraint we use for the Factory Method
pattern is that the Creator class must create a concrete instance of a Product class [17]. This situation
could require the application of the Factory Method pattern, if the developer decides that the Creator
class should be able to handle several different types of Product. MORE analyzes, using Soot [46],
all the method bodies of a candidate Creator class to retrieve statements containing the operator
“new” that occur within its functional methods’ bodies. If the candidate Creator class does not
create instances of the Product class, then there is no need to introduce a Factory Method pattern.

Visitor pattern constraint (VPC). The semantic constraints for the Visitor pattern involve
the situation when a class do not support additional behavior. This relates in general to complex
hierarchies that have a large number of inherited methods or with God classes that can be detected
[17]. The goal is to increase the ability to add new operations to existing object structures without
modifying those structures.

Singleton pattern constraint (SPC). The semantic constraints we use for the Singleton pattern
is that the class under refactoring (the candidate Singleton): 1) has only one instance, 2) does
not employ inheritance, and 3) provides a global point of access to it, i.e., a method called from
other classes in the system [3]. These two constraints can be checked using static program analysis.
Using Soot, all class instances, method calls and field accesses can be captured, thus classes that
are instantiated once or accessed through static methods or fields are potential candidates for the
Singleton pattern refactoring. Dynamically, we can simply check if at most one instance of the
candidate singleton class is created during runtime. That would ensure that there are no false
positives.

Strategy pattern constraint (StPC). The semantic constraint for the Strategy pattern is when a
class defines many behaviors, and these appear as multiple conditional statements in its methods.
Consider the situation where a method is structured as one large ‘if’ statement. This situation
suggests that Strategy could be applied by extracting each branch of the if statement into its own
class, where each class implements a common interface. The decision on which class to use can be
moved to the original class, and made settable by the client.
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4. SEARCH-BASED REFACTORING USING NSGA-III

This section shows how the refactoring problem can be addressed using NSGA-III. We first present
an overview of NSGA-III, then we provide the details of our approach.

4.1. NSGA-III Overview

NSGA-III is a recent many-objective search algorithm proposed by Deb et al. [30]. The basic
framework remains similar to the original NSGA-II algorithm [29] with significant changes in its
selection mechanism.

Algorithm 5 gives the pseudo-code of the NSGA-III procedure for a particular generation t. First,
the parent population Pt (of size N ) is randomly initialized in the specified domain, and then the
binary tournament selection, crossover and mutation operators are applied to create an offspring
population Qt. Thereafter, both populations are combined and sorted according to their domination
level and the best N members are selected from the combined population to form the parent
population for the next generation. The fundamental difference between NSGA-II and NSGA-III
lies in the way the niche preservation operation is performed. Unlike NSGA-II, NSGA-III starts
with a set of reference points Zr. After non-dominated sorting, all acceptable front members and
the last front Fl that could not be completely accepted are saved in a set St. Members in St/Fl are
selected right away for the next generation. However, the remaining members are selected from Fl

such that a desired diversity is maintained in the population. The original NSGA-II algorithm uses
the crowding distance measure for selecting a well-distributed set of points, however, in NSGA-
III the supplied reference points (Zr) are used to select these remaining members (cf. Figure 2).
To accomplish this, objective values and reference points are first normalized so that they have an
identical range. Thereafter, orthogonal distance between a member in St and each of the reference
lines (joining the ideal point and a reference point) is computed. The member is then associated
with the reference point having the smallest orthogonal distance. Next, the niche count for each
reference point, defined as the number of members in St/Fl that are associated with the reference
point, is computed for further processing. The reference point having the minimum niche count is
identified and the member from the last front Fl that is associated with it is included in the final
population. The niche count of the identified reference point is increased by one and the procedure
is repeated to fill up population Pt+1.

hyperplane
Normalized

line
Reference

point
Reference

Ideal point

 1

1
f1

f3

1 f2

Figure 2. Normalized reference plane for a three-objective problem with p = 4.

It is worth noting that a reference point may have one or more population members associated
with it, or need not have any population member associated with it. Let us denote this niche count as
ρj for the j-th reference point. We now devise a new niche preserving operation as follows. First, we
identify the reference point set Jmin = {j : argminj(ρj)} having minimum ρj . In case of multiple
such reference points, one (j∗ ∈ Jmin) is chosen at random. If ρj∗ = 0 (meaning that there is no
associated Pt+1 member to the reference point j∗), two scenarios can occur. First, there exists one
or more members in front Fl that are already associated with the reference point j∗. In this case, the
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MORE: A MULTI-OBJECTIVE REFACTORING RECOMMENDATION APPROACH 13

one having the shortest perpendicular distance from the reference line is added to Pt+1. The count
ρj∗ is then incremented by one. Second, the front Fl does not have any member associated with the
reference point j∗. In this case, the reference point is excluded from further consideration for the
current generation. In the event of ρj∗ ≥ 1 (meaning that already one member associated with the
reference point exists), a randomly chosen member, if exists, from front Fl that is associated with
the reference point Fl is added to Pt+1. If such a member exists, the count ρj∗ is incremented by
one. After ρj counts are updated, the procedure is repeated for a total of K times to increase the
population size of Pt+1 to N .

Note that the set of reference points can either be predefined in a structured manner or supplied
preferentially by the user. Our adopted version of NSGA-III in this paper is based on Das and
Dennis’s [56] systematic approach that automatically places points on a normalized hyper-plane
– an (M-1)-dimensional unit simplex – which is equally inclined to all objective axes and has an
intercept of one on each axis (cf. Figure 2). If p divisions are considered along each objective, the
total number of reference points (H) in an M-objective problem is given by:

H =

(
M + p− 1

p

)
(9)

For our refactoring recommendation problem, which is a three-objective problem (M = 3), the
reference points are created on a triangle with apex at (1, 0, 0), (0, 1, 0) and (0, 0, 1). If four

divisions (p = 4) are chosen for each objective axis, H =

(
3 + 4− 1

4

)
, or 15 reference points will

be created. For clarity, these reference points are shown in Figure 2, where each axis f1, f2, and
f3 corresponds to an objective function, code smells correction ratio, quality metrics improvement,
and the number of introduced patterns. Note that all fitness values are normalized in the range [0..1]
so that they have an identical range with the reference points.

Algorithm 5 Generation t of NSGA-III procedure

1: Input: H structured reference points Zs or supplied aspiration points Za, parent population Pt

2: Output: Pt+1
3: St = ∅, i = 1
4: Qt = Recombination+Mutation(Pt)
5: Rt = Pt ∪Qt

6: (F1, F2,...) = Non-dominated-sort(Rt)
7: repeat
8: St = St ∪ Fi and i = i+ 1
9: until | St |≥ N

10: Last front to be included: Fl = Fi
11: if | St |= N then
12: Pt+1 = St, break
13: else
14: Pt+1 =

⋃l−1
j=1 Fj

15: Points to be chosen from Fl : K = N− | Pt+1 |
16: Normalize objectives and create reference set Zr:

Normalize(fn, St, Zr , Zs, Za)
17: Associate each member s of St with a reference point:

[π(s),d(s)]= Associate(St, Zr)
%π(s): closest reference point,
d: distance between s and π(s)

18: Compute niche count of reference point j ∈ Zr:
ρj =

∑
s∈St/Fl

((π(s) = j)?1 : 0)

19: Choose K members one at a time from Fl to construct Pt+1:
Niching(K, ρj , π, d, Zr, Fl, Pt+1)

20: end if
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14 A. OUNI

4.2. NSGA-III Adaptation for the Refactoring Recommendation Problem

4.2.1. Problem formulation The refactoring problem involves searching for a near-optimal
refactoring solution among the set of candidate ones, which constitutes a huge search space. A
refactoring solution is a sequence of refactoring operations where the goal is to apply the sequence
to a software system S so as to to (1) minimize the number of code smells in S, (2) maximize
the number of design patterns, and (3) improve the overall quality (using software metrics). This
formulation is given as follows:

 Minimize F (x, S) = [f1(x, S), f2(x, S), f3(x, S)]

Subject to x = (x1, x2, ..., xn) ∈ X

where X is the set of all legal refactoring sequences starting from S that satisfy the semantic
constraints described in Section 3.2 , xi is the i-th refactoring operation, and fk(x, S) is the k-
th objective. Note that we formulate the refactoring problem as a minimization multi-objective
problem (MOP) and observe that maximization can be easily turned to minimization based on the
duality principle.

4.2.2. Solution approach This subsection describes how we adapted NSGA-III to the problem of
refactoring recommendation in terms of solution representation, variation and evaluation.

Solution representation. As defined in the previous section, a solution consists of a sequence of n
refactoring operations applied to different code elements in the source code. In order to represent
a candidate solution (individual/chromosome), we use a vector-based representation. As depicted
in Figure 3, each vector’s dimension represents a refactoring operation where the order of applying
these refactoring operations corresponds to their positions in the vector. For each of these refactoring
operations, we specify pre-conditions in the style of Opdyke [33] to ensure the feasibility of their
application. The initial population is generated by assigning randomly a sequence of refactorings
to some code fragments. To apply a refactoring operation we need to specify which actors, i.e.,
code fragments, are involved/impacted by this refactoring and which roles they play in performing
the refactoring operation. An actor can be a package, class, field, method, parameter, statement, or
variable.

1 move field (Person, Employee, salary)

2 extract class(Person, Adress, streetNo, city, zipCode, getAdress(), updateAdress())

3 move method (Person, Employee, getSalary())

4 push down field (Person, Student, studentId)

5 inline class (Car, Vehicle)

6 move method (Person, Employee, setSalary())

7 move field (Person, Employee, tax)

8 extract class (Student, Course, courseName, CourseCode, addCourse(), rejectCourse())

Figure 3. Example of solution representation in MORE.

Moreover, each refactoring operation should comply with its semantic constraints to be
considered ‘valid’. In Table III, we specify, for each refactoring operation, which semantic
constraints are taken into account to ensure that the refactoring operation preserves design
coherence.

Solution variation. In each search algorithm, the variation operators play the key role of moving
within the search space with the aim of driving the search towards optimal solutions. For crossover,
we use the one-point crossover operator. It starts by selecting and splitting at random two parent
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MORE: A MULTI-OBJECTIVE REFACTORING RECOMMENDATION APPROACH 15

Table III. Semantic constraints considered for each refactoring operation.

Refactorings VS DS IS FIU FMC VPC SPC StPC

Move method x x
Move field x x
Pull up field x x x
Pull up method x x x
Push down field x x x
Push down method x x x
Inline class x x
Extract class x x
Move class x x
Extract interface x x
Visitor pattern refactoring x
Factory method refactoring x
Singleton pattern refactoring x
Strategy pattern refactoring x

solutions. Then, this operator creates two child solutions by putting, for the first child, the first
part of the first parent with the second part of the second parent, and vice versa for the second
child (cf. Figure 4). This operator must ensure to respect the length limits by eliminating randomly
some refactoring operations. It is important to note that in multi-objective optimization, it is better
to create children that are close to their both parents in order to have a more efficient search
process [30]. For this reason, we control the cutting point k of the one-point crossover operator
by restricting its position to be either belonging to the first third of the refactoring sequence or
belonging to the last third, i.e., k ∈]0, 0.33], or k ∈ [0.66, 1[, respectively. For example, in Figure 4,
k = 0.3 which corresponds to cutting 30% of Parent 1, and therefore the point-cut position is 2 in the
vector of each parent solution. For mutation, we use the bit-string mutation operator. As depicted in
Figure 5, the mutation operator picks probabilistically one or more refactoring operations from the
associated sequence and replaces them by other ones from the initial list of possible refactorings.

1 move field (f18_2, c18, c23) 1 move field (f18_2, c18, c23) 

2 move method (m4_6, c4, c89) 2 move method (m4_6, c4, c89) 

3 extract class (c31, f31_1 , m31_1, m31_4) 3 extract class (c31, f31_1 , m31_1, m31_4) 

4 pull up field (f8_1, c8, c14) 4 move field (f12_10, c12, c119) 

5 move method (f41_2, c41, c129) 5 inline class (c24, c82)

6 move field (f12_8, c12, c52) 

1 move method (m5_1, c5, c112) 

1 move method (m5_1, c5, c112) 2 Inline class (c5, c31) 

2 Inline class (c5, c31) 3 push down method (m231_3, c231, c19) 

3 push down method (m231_3, c231, c19) 4 pull up field (f8_1, c8, c14) 

4 move field (f12_10, c12, c119) 5 move method (f41_2, c41, c129) 

5 inline class (c24, c82) 6 move field (f12_8, c12, c52) 

Parent 1

Before crossover After crossover

Crossover 

(k = 0.3)

Parent 2

Child 2

Child 1

Figure 4. Example of crossover operator used.

Solution evaluation. To evaluate the fitness of each refactoring solution x to a system S, we used
three objective functions according to each objective.
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16 A. OUNI

1 move field (f18_2, c18, c23) 1 move field (f18_2, c18, c23)

2 move method (m4_6, c4, c89) 2 move method (m5_2, c5, c36)

3 extract class (c31, f31_1 , m31_1, m31_4) 3 extract class (c31, f31_1 , m31_1, m31_4)

4 pull up field (f8_1, c8, c14) 4 inline class (c24, c82)

5 move method (f41_2, c41, c129) 5 move method (f41_2, c41, c129)

6 move field (f12_8, c12, c52) 6 move field (f12_8, c12, c13)

Before mutation After mutation

Mutation 

Parent solution Child solution 

Figure 5. Example of mutation operator used.

1. Code smells objective function: It calculates the ratio of the number of corrected code smells
to the initial number of code smells using the code smells detector component. The code
smells correction ratio (CCR) is given by Equation 10:

CCR(x, S) =
number of corrected code smells

initial number of code smells
(10)

2. Design patterns objective function: It calculates the number of produced design pattern
instances (NP) using the design patterns detector component. NP is given by Equation 11:

NP (x, S) = DPA−DPB (11)

where DPA and DPB are the number of design patterns, respectively, after and before
refactoring. The NP values are then normalized in the range [0,1] using min–max
normalization.

3. Quality objective function: It calculates the change in software quality using the QMOOD
(Quality Model for Object-Oriented Design) model [31] to estimate the effect of the suggested
refactoring solutions on quality attributes. We calculate the overall quality gain (QG) for
the six QMOOD quality factors (reusability, flexibility, understandability, effectiveness,
functionality, and extendibility) that are formulated using 11 low-level design metrics. Full
details about these metrics are defined in Bansiya and Davis original work [31]. Let Q =
{q1, q2, ...q6} andQ′ = {q′1, q′2, ...q′6} be respectively the set of quality attribute values before
and after applying the suggested refactorings, and W = {w1, w2, ...w6} the weights assigned
to each of these quality factors. Then the total quality gain (QG) is estimated as follows:

QG(x, S) =

6∑
i=1

wi × (q′i − qi) (12)

Creation of the initial population of solutions. To generate an initial population, we start by
defining the maximum vector length (maximum number of operations per solution). The vector
length is proportional to the number of refactorings that are considered and the size of the program
to be refactored. A higher number of operations in a solution do not necessarily mean that the results
will be better. Ideally, a small number of operations should be sufficient to provide a good trade-
off between the fitness functions. This parameter can be specified by the user or derived randomly
from the sizes of the program and the given refactoring list. During the creation, the solutions have
random sizes inside the allowed range. To create the initial population, we normally generate a set
of solutions (PopSize) randomly in the solution space.

5. THE DESIGN OF THE EMPIRICAL STUDY

In this section, we present our experimental study to evaluate the efficacy of our approach in fixing
code smells, introducing design patterns and improving design quality.
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Table IV. Program statistics.

System Release #Classes KLOC #code smells #Design patterns

Xerces-J v2.7.0 991 240 97 36
JFreeChart v1.0.9 521 170 84 23
GanttProject v1.10.2 245 41 56 16
AntApache v1.8.2 1191 255 112 38
JHotDraw v 6.1 585 21 26 18
Rhino v1.7R1 305 42 74 16
ArtOfIllusion v2.8.1 459 87 63 13

5.1. Research Questions

Our study aims at addressing the following three research questions:

• RQ1. (Sanity check) How does the proposed approach perform compared to random search
and other existing mataheuristic search methods?

• RQ2. (Efficacy) To what extent can the proposed approach improve the quality of software
systems?

• RQ3. (Comparison to state-of-the-art) How does our approach perform compared to existing
search-based refactoring approaches?

5.2. Software Systems Studied

We applied our approach to a set of seven well-known and well-commented industrial-size open
source Java projects: Xerces-J†, JFreeChart‡, GanttProject§, Apache Ant¶, JHotDraw‖, Rhino∗∗,
and ArtofIllusion††. Xerces-J is a family of software packages for parsing XML. JFreeChart is
a powerful and flexible Java library for generating charts. GanttProject is a cross-platform tool
for project scheduling. Apache Ant is a build tool and library specifically conceived for Java
applications. JHotDraw is a GUI framework for drawing editors. Rhino is a JavaScript interpreter
and compiler written in Java and developed for the Mozilla/Firefox browser. Finally, ArtOfIllusion
is a 3D-modeler, renderer, and raytracer written in Java.

We selected these systems for our validation because they came from seven different
organisations, involved different kinds of software engineering development and had different sizes,
ranging from 245 to 1191 classes with a large number of both design pattern and code smell
instances. Table IV provides some descriptive statistics about these seven programs.

Furthermore, as we previously note, in these corpora, we considered seven different types of code
smell (god class, feature envy, data class, spaghetti code, shotgun surgery, long parameter list and
lazy class) and four design patterns (abstract method factory, visitor, singleton and strategy).

5.3. Evaluation methodology

To answer our research questions, we conducted a set of experiments to apply MORE to our
benchmark of seven medium and large-size open source software systems. Each experiment is
repeated 31 times, and the obtained results are subsequently statistically analyzed with the aim of
comparing our approach with existing multi-objective search algorithms as well as state-of-the-art
refactoring recommendation approaches.

†http://xerces.apache.org/xerces-j
‡http://www.jfree.org/jfreechart
§www.ganttproject.biz
¶http://ant.apache.org/
‖http://www.jhotdraw.org/
∗∗http://www.mozilla.org/rhino
††www.artofillusion.org
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NSGA-III returns a set of near-optimal solutions instead of a single one; however, for our
validation, we require that MORE proposes one single solution. To this end, and in order to fully
automate our approach, MORE extracts and suggests only one optimal solution from the returned
set of solutions. To this end, we used a technique based on Euclidean distance as described in [37].
Equation 13 is used to choose the solution that corresponds to the best trade-off between (i) CCR,
(ii) NP and (iii) QG. The ideal solution should have the best CCR, NP and QG scores (ideally, their
normalized score equals to 1). Hence, we select the nearest suggested solution to the ideal solution
in terms of Euclidean distance. Let PF the set of solutions in the Pareto front, then the best solution
to be returned by MORE is defined as follows:

BestSol = min
∀s∈PF

√
(1− CCR(s))2 + (1−NP (s))2 + (1− PF (s))2) (13)

5.3.1. Research method for RQ1. To answer RQ1, we compared our NSGA-III formulation against
random search (RS) [57] in terms of search space exploration. The goal is to make sure that there is a
need for an intelligent method to explore our huge search space of possible refactoring solutions. In
addition, to justify the adoption of NSGA-III, we compared our approach against two other popular
search algorithms namely NSGA-II [29], and MOEA/D [58]. RQ1 serves the role of a sanity check
and standard ‘baseline’ question asked in any attempt at an SBSE formulation [42].

Unlike mono-objective search algorithms, multi-objective evolutionary algorithms return as
output a set of non-dominated (also called Pareto optimal) solutions obtained so far during the
search process. A number of performance metrics for multi-objective optimization have been
proposed and discussed in the literature, which aim to evaluate the performance of multi-objective
evolutionary algorithms. Most of the existing metrics require the obtained set to be compared
against a specified set of Pareto optimal reference solutions. In this study, the generational distance
(GD) [59] and inverted generational distance (IGD) [60] are used as the performance metrics since
thay have been shown to reflect both the diversity and convergence of the obtained non-dominated
solutions.

• Generational Distance (GD): computes the average distance between the set of solutions, S,
from the algorithm measured and the reference set RS. The distance between S and RS in an
n objective space is computed as the average n-dimensional Euclidean distance between each
point in S and its nearest neighbouring point in RS. GD is a value representing how “far” S is
from RS (an error measure).

• Inverted Generational Distance (IGD): is used as a performance indicator since it has been
shown to reflect both the diversity and convergence of the obtained non-dominated solutions
[60]. The IGD corresponds to the average Euclidean distance separating each reference
solution set (RS) from its closest non-dominated one S. Note that for each system we use the
set of Pareto optimal solutions generated by all algorithms over all runs as reference solutions.

5.3.2. Research method for RQ2. To answer RQ2, we conducted a quantitative and qualitative
study.

Quantitative evaluation. The quantitative study evaluates the efficacy of our approach for 1)
fixing code smells, 2) introducing design patterns, 3) improving software quality.

• To evaluate the efficacy of our approach in fixing code smells, we calculated the code smells
correction ratio (CCR) as given by Equation 10 on our benchmark.

• To evaluate the efficacy of our approach in introducing design patterns, we calculated the
number of new design pattern instances (NP) that are introduced as given by Equation 11.

• To evaluate the efficacy of our approach for improving software quality, we calculated the
overall quality gain (QG) using the QMOOD (Quality Model for Object-Oriented Design)
model [31] as given by Equation 12.
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Qualitative evaluation. In addition to the quantitative evaluation which is widely used to
evaluate existing refactoring approaches [6, 11, 12, 38], it is important to qualitatively evaluate the
applicability and meaningfulness of the recommended refactorings from developer’s perspective.
That is, the recommended refactorings can be successfully applied, improve the code quality, but
this can lead to arbitrary changes that affect the semantic coherence of the refactored program.
Hence, the recommended refactoring operations should not only remove code smells and improve
quality, but most importantly, should be meaningful from a developer’s point of view.

To this end, we conducted a qualitative evaluation with potential users of our technique.
Our evaluation is based on a survey to collect the feedback of developers about MORE’s
recommendations. Our study is conducted as follows:

Subjects: Our study involves seven volunteer participants to conduct our experiments; five
participants are PhD students in software engineering at the University of Michigan, and two
participants are working at General Motors as senior software developers. Participants were first
asked to fill out a pre-study questionnaire containing six questions. The aim of the questionnaire
is to collect background information of 1) their programming experience, 2) their familiarity with
software refactoring, 3) their knowledge about code smells, 4) their knowledge about deign patterns,
5) their experience with quality assurance and software metrics; and 6) their experience with the
studied open-source systems. The participants had a programming experience in Java ranging from
4 to 11 years. All participants were familiar with refactoring, code smells and design patterns. They
have also an experience with some of the studied systems.

Process: All the participants who agreed to participate to the study received a questionnaire, a
guide that advises on how to fill out the questionnaire, and the source code of the studied systems,
in order to evaluate the relevance of the recommended refactorings to apply. The questionnaire is
organized in an Excel file with hyperlinks to visualize the source code of the affected code elements
easily. Participants were aware that they are going to evaluate the semantic coherence of refactoring
operations, but do not know the particular experimental research questions (the approaches and
algorithms being compared). We asked the participants to manually evaluate, for each system, 10
refactoring operations that are selected at random from the suggested list of refactoring solutions of
each approach. Participants are asked to assign a correctness score for each refactoring according to
its relevance and meaningfulness. Possible answers follow a five-point Likert scale [61] to express
their level of agreement by a score in the range [0,5]: 1. Not at all relevant; 2. Slightly relevant;
3. Moderately relevant; 4. Relevant, and 5. Extremely relevant. Note that no ‘neutral’ option was
offered, as we require that developers form and express an opinion regarding each evaluated
refactoring.

Since the application of refactorings is a subjective process that depends on the developer’s
intention, it is normal that not all the participants have the same opinion. To this end, we consider
a refactoring operation as meaningful if its assigned score is > 3. Then for each refactoring
operation, we consider the majority of votes (at least 4 out of 7 of the participants) to determine
if a recommended refactoring is relevant or not. We therefore define the metric refactoring
meaningfulness (RM) that corresponds to the number of relevant refactoring operations over the
total number of refactorings given to the participants to evaluate. RM is given by Equation 14.

RM =
# meaningful refactorings
# evaluated refactorings

(14)

Note that the questionnaire is completed anonymously thus ensuring confidentiality. During the
entire process, participants were encouraged to think aloud and to share their opinions, issues,
detailed explanations and ideas with the organizers of the study (one graduate student and one
faculty from the University of Michigan) and not only answering the questions. In addition, a
brief tutorial session was organized for every participant around refactoring to make sure that all
of them have a minimum background to participate in the study. All the developers performed
the experiments in a similar environment: similar configuration of the computers, tools (Eclipse,
Excel, etc.) and facilitators of the study. We also added a short description of this instruction for
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the participants. The average time required to finish all the questions was 4h20min divided into two
sessions.

5.3.3. Research method for RQ3. To answer RQ3, we compared MORE results against three state-
of-the-art refactoring approaches: Seng et al. [11], Jensen et al. [18], and Kessentini et al. [62],
in terms of CCR, NP, and QG. These approaches are designed each for a specific purpose. Seng
et al.’s approach [11] aims to find a sequence of refactoring operations that improves specific
quality metrics in the program being refactored. Jensen et al. [18] aim to find a combination of
refactorings that introduces new design patterns to the initial software system, while Kessentini et
al.’s approach [62] aims to find refactoring solutions that minimize as much as possible the number
of code smells in the code being refactored. To make the comparison fair, we apply the refactorings
suggested by each approach, and then calculate our evaluation metrics (CCR, NP, and QG).

5.4. Algorithms Parameter Tuning

An important aspect of metaheuristic search algorithms lies in parameter selection and tuning,
something that is necessary to ensure not only fair comparison, but also potential replication. The
initial population/solution of NSGA-III, NSGA-II, MOEA/D, and RS is completely random. The
stopping criterion is when the maximum number of fitness evaluations, set to 350,000, is reached.
After several trial runs of the simulation, the parameter values of the four algorithms are fixed to 100
solutions per population (popSize) and 3,500 iterations. For the variation operators, the crossover
rate, pc, is set to 0.9 and mutation, pm, to a probability of 0.4. We used a high mutation rate to
ensure the diversity of the population and to avoid premature convergence [63]. After several trial
runs of the simulation, these parameter values are fixed. For instance, the popSize parameter was
tested with several values including 50, 100, 150, 200, 300, 500 and 1000; both pc and pm were
tested with different values in the range [0, 1] with a step equal to 0.1; the number of iterations was
tested with values of 200,000, 250,000, 300,000, 350,000, 400,000 and 500,000. Indeed, there are
no general rules to determine these parameters, and thus we set the combination of parameter values
by trial-and-error, a method that is commonly used by the SBSE community [64, 65].

5.5. Inferential Statistical Tests Used

Due to the stochastic nature of the employed algorithms, they may produce different results when
applied to the same problem instance over different runs. In order to cope with this stochastic
nature, the use of statistical testing is essential to provide support and draw statistically sound
conclusions derived from analyzing such data [64]. To this end, we used the Wilcoxon rank sum
test in a pairwise fashion [66, 67] in order to detect significant performance differences between
the algorithms under comparison. The Wilcoxon test does not require that the data sets follow a
normal distribution since it operates on values’ ranks instead of operating on the values themselves.
We set the confidence limit, α, at 0.05. In these settings, each experiment is repeated 31 times, for
each algorithm and for each system. The obtained results are subsequently statistically analyzed
with the aim to compare our NSGA-III approach with NSGA-II, MOEA/D and random search
(RS). Furthermore, we used the Bonferroni [68] correction to reduce the chances of obtaining false-
positive results when multiple pair wise tests are performed on a single set of data to compare
NSGA-II, NSGA-III, and MOEA/D.

While the Wilcoxon rank sum test verifies whether the results are statistically different or not, it
does not give any idea about the difference magnitude. To this end, we investigate the effect size
using Cliff’s delta statistic [69]. The effect size is considered: (1) negligible if | d |< 0.147, (2) small
if 0.147 ≤| d |< 0.33, (3) medium if 0.33 ≤| d |< 0.474, or (4) high if | d |≥ 0.474.

6. RESULTS

This section reports the results of our empirical study. We first start by answering our research
questions. We then present further discussions on the obtained results.
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Table V. Median values of the quality indicators GD and IGD for the four compared algorithms NSGA-III,
NSGA-II, MOEA/D and RS (best values are in bold).

System
GD IGD

NSGA-III NSGA-II MOEA/D RS NSGA-III NSGA-II MOEA/D RS

Xerces-J 4.077E-03 4.705E-03 7.682E-03 5.012E-03 6.912E-02 8.864E-02 7.542E-02 6.687E-01

JFreeChart 5.6139E-02 4.491E-01 4.657E-01 1.701E+00 5.591E-04 8.815E-04 7.687E-04 4.091E-02

GanttProject 7.636E-03 6.385E-03 2.645E-02 4.278E-01 3.827E-03 2.912E-03 4.336E-03 8.827E-02

AntApache 4.777E-03 6.118E-03 8.301E-03 1.528E-01 3.592E-02 6.392E-02 7.110E-02 4.705E-01

JHotDraw 5.337E-03 3.318E-02 1.947E-02 8.594E-02 6.231E-02 7.684E-02 5.816E-02 7.439E-01

Rhino 5.398E-02 2.906E-02 7.150E-02 8.0613E-01 2.002E-03 7.846E-03 7.123E-03 4.005E-01

ArtOfIllusion 7.583E-03 1.06677E-02 3.090E-02 5.529E-01 4.603E-03 8.440E-02 8.529E-02 6.756E-01

6.1. Results for RQ1: Sanity check

Tables V and VI present respectively the results of the metric indicators GD and IGD, and the results
of the statistical significance and effect size tests. We observe that NSGA-III clearly outperforms
RS in all the seven studied systems with a Cliff’s delta effect size of ‘high’ in both performance
indicators GD and IGD. This is mainly due to the large search space to explore in order to find
suitable combinations of refactoring operations. This requires a heuristic-based search rather than
random search.

In more detail, Figure 6 and Table VI report our results for RQ1. We observe that over 31 runs,
NSGA-III outperforms NSGA-II, in terms of GD, in 5 out of 7 systems with ‘high’ effect size. In the
cases of Xerces-J and ArtOfIllusion the effect size was ‘medium’. Similarly, NSGA-III significantly
outperforms MOEA/D in the 7 systems with a ‘high’ effect size in 6 out of 7 cases; for JHotDraw,
the effect size was ‘medium’. In terms of IGD, NSGA-III provides better performance than both
NSGA-II and MOEA/D in 5 out of 7 systems with ‘high’ effect size. NSGA-II provides better IGD
results for GanttProject with high effect size, and MOEA/D achieved better results on JHotDraw
with ‘medium’ effect size. Overall, we observed that NSGA-III tends to achieve better performance
for large software systems when comparing to NSGA-II and MOEA/D.

Furthermore, we can also get a more informative sense of the distributions of results for the three
competitive algorithms from the boxplots shown in Figure 6. From these boxplots, we can see that
the variance in the results from NSGA-III is lower for both GD and IGD than the other two. The
obtained results suggest that this is because there are simply fewer solutions that converge toward
the last generation of NSGA-III. In addition, because IGD and GD metrics combine the information
of convergence and diversity, the results indicate that NSGA-III has the best overall performance.
This is very promising in multi-objective search problems, and it would be interesting to adopt it in
solving other software engineering problems.

To conclude, the obtained results provide evidence that NSGA-III is the best search technique
for the refactoring recommendation problem, particularly for the larger systems that we studied.
Consequently, we can conclude that there is empirical evidence that our formulation passes the
sanity check (RQ1).

6.2. Results for RQ2: Efficacy

The results for RQ2 are summarized in Table VII. After applying the refactoring operations
proposed by MORE using NSGA-III, we found that, on average, 84% of the detected code smells
were fixed (CCR) for all the seven studied systems. This high score is considered significant in
improving the quality of the refactored systems by fixing the majority of existing code smells of
varying types (god class, feature envy, data class, spaghetti code, shotgun surgery, long parameter
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Table VI. Statistical significance p-value (α=0.05) and effect size comparison results of NSGA-III against
NSGA-II, MOEA/D and RS. A statistical difference is accepted at p 6 0.05.

System NSGA-III vs NSGA-II NSGA-III vs MOEA/D NSGA-III vs RS

GD IGD GD IGD GD IGD

Xerces-J p-value 0.06062 <0.05 <0.05 <0.05 <0.05 <0.05
effect size medium high high high high high

JFreeChart p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
effect size high high high high high high

GanttProject p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
effect size high high high high high high

AntApache p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
effect size high high high high high high

JHotDraw p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
effect size high high high medium high high

Rhino p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
effect size high high high high high high

ArtOfIllusion p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
effect size mehuim high high high high high
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Figure 6. Boxplots for the quality measures GD and IGD results over 31 independent simulation runs of
NSGA-III, NSGA-II, and MOEA/D.

list and lazy class, as described in Table I). It is worth observing that we found the majority of non-
fixed code smells are related to the god class type. Indeed, this type of code smell usually requires a
large number of refactoring operations and is known to be very difficult to fix.

Moreover, MORE succeeded in introducing a reasonable number of instances of design patterns.
Table VII shows the number of new design pattern instances, NP, introduced for each system.
MORE successfully introduced an average of 6 design patterns (NP) per system, covering all types
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Figure 7. QMOOD quality factors gain obtained for MORE.

of supported design patterns: factory method, visitor, singleton and strategy. The recommended
refactorings can support software developers who might be interested in automatically introducing
new design patterns to make their software systems more understandable, flexible, and maintainable.
The lowest NP value was recorded for JHotDraw (NP = 3). JHotDraw was developed by Erich
Gamma and Thomas Eggenschwiler [14] as a design exercise to promote design patterns, so it is to
be expected that many design patterns already exist in JHotDraw and there is little opportunity to
add new design pattern instances.

It should be noted that introducing a design pattern does not necessarily imply that the design
has been improved, and frequently the result of excessive pattern application is an over-engineered,
hard-to-maintain system [70]. The fact that only a limited number of design patterns were introduced
to each application suggests that our multi-objective approach, coupled with the semantic constraints
of Section 3.2, did indeed prevent the blind application of many useless pattern instances. Whether
or not the design patterns introduced by MORE make sense to a developer is assessed in the
qualitative evaluation conducted with developers.

In terms of quality improvement (QG), as reported in Table VII, MORE succeeded in improving
the quality of all the studied systems, with an average QG score of 0.4 in terms of QMOOD quality
attributes. In more detail, Figure 7 shows the QG values for each QMOOD quality attribute after
applying the recommended refactorings by MORE, for each studied system. We found that the
systems quality increase across the six QMOOD quality factors. We observe that understandability
is the quality factor that has the highest QG score; whereas the effectiveness quality factor has the
lowest one. This finding can be explained in two possible ways: 1) the majority of non-fixed code
smells are god class and spaghetti code which are known to increase the coupling (DCC) within
classes (which heavily affect the quality index calculation of the effectiveness factor); 2) the vast
majority of suggested refactoring types were move method, move field, and extract class (Figure
10) that are known to have a high impact on coupling (DCC), cohesion (CAM) and the design
size in classes (DSC) that serves to calculate the understandability quality factor. Furthermore, we
noticed that JHotDraw produced the lowest quality increase for the four quality factors. This can
be justified by the fact that JHotDraw is known to be of high quality due to its exemplary design,
its development model, and its widespread use. Indeed, it contains a few number of code smells
comparing to the six other studied systems (cf. Table IV).

We can also get a more qualitative sense, we assess the relevance/meaningfulness of the suggested
refactoring solutions from developers’ perspective. To this end, we report in Figure 8 the results of
the empirical study conducted with seven participants to evaluate the recommended refactorings
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Table VII. CCR, # Patterns, and QG median values of 31 independent runs of MORE, Seng et al., Jensen et
al., and Kessentini et al.

System Approach CCR (%) # Patterns QG

Xerces-J

MORE 90 12 0.49
Seng et al. 23 0 0.54
Jensen et al. 14 31 0.41
Kessentini et al. 88 0 0.32

JFreeChart

MORE 88 6 0.54
Seng et al. 21 0 0.59
Jensen et al. 24 19 0.42
Kessentini et al. 86 0 0.41

GanttProject

MORE 88 7 0.35
Seng et al. 24 1 0.33
Jensen et al. 33 14 0.35
Kessentini et al. 84 0 0.21

AntApache

MORE 86 4 0.51
Seng et al. 7 0 0.52
Jensen et al. 12 28 0.51
Kessentini et al. 87 0 0.39

JHotDraw

MORE 83 3 0.17
Seng et al. 38 0 0.19
Jensen et al. 25 9 0.14
Kessentini et al. 88 0 0.1

Rhino

MORE 72 4 0.51
Seng et al. 12 0 0.54
Jensen et al. 18 11 0.32
Kessentini et al. 78 0 0.36

ArtOfIllusion

MORE 83 6 0.26
Seng et al. 10 0 0.29
Jensen et al. 17 12 0.18
Kessentini et al. 90 0 0.21

MORE 84 6 0.4
Seng et al. 26 0.14 0.43
Jensen et al. 20 18 0.31

Average
(all systems)

Kessentini et al. 86 0 0.29

on our studied systems. We observe from the figure that most of the recommended refactorings
are evaluated as relevant with an average of 69% of the proposed refactoring operations being
considered as semantically meaningful. The lowest RM value was 59% for Xerces. In fact, Xerces
is known for its high change frequency and its complex design that have led to extensive refactoring
activities in the coiurse of the past 15 years [71]. Moreover, we observed that, in general, for large-
size programs (e.g., AntApache and JFreeChart, but excluding Xerces), the performance in terms of
RM achieved by MORE is more notable than it is for the smaller programs.

Looking at this in more detail, Figure 9 shows the relevance (meaningfulness) of the
recommended refactorings achieved by MORE for each refactoring type. Only less than 13% of
recommended refactorings were marked as not at all relevant (score = 1) by the participants; and
an average of 18% of recommended refactorings are assessed as slightly relevant. An average of
28.64% are marked as moderately relevant, 29.71% as relevant and 10.64% as extremely relevant.
This confirms the importance of the recommended refactorings for developers, and shows that they
recognize that these refactorings can be useful in improving the quality of the studied software
systems.

On the negative side, 31% of MOREs recommendations (13% definitely not at all relevant and
18% slightly relevant) were rejected by the participants. Indeed, we believe that it is difficult to
automatically understand the semantics of source code through pre-defined heuristics and semantic
constraints. The role of the developer remains fundamental to decide whether a refactoring could be
applied or not.
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Figure 9. The average relevance score (RM) of the recommended refactorings by MORE. 1. Not at all
relevant; 2. Slightly relevant; 3. Moderately relevant; 4. Relevant, and 5. Extremely relevant.

To better evaluate the relevance of the recommended refactorings, we investigated the types
of refactorings that developers might consider more or less meaningful than others. Figure 10
shows that move method, extract class and move class are considered as the extremely relevant
refactorings. In addition, the recommended inline class and move field are also considered relevant
and meaningful. This can be explained by the fact that the developers are more focusing on
quality issues that are related to class size, feature distribution, and coupling/cohesion problems.
Additionally, the vocabulary-based similarity constraint (VS) was pertinent to prevent incoherent
refactorings especially for move method and move class. On the other hand, pull up field, extract
interface and visitor pattern refactoring recorded the lowest values for “extremely relevant”. One
possible explanation is that approving such refactorings requires in general that several coupled
classes be investigated and studied and this is likely to be a more complex task for the developer.

It is also worth to notice that the worst results was obtained with singleton pattern refactoring
where the RM score was relatively poor compared to the other refactorings. The reason might be
due to intention to identify the singleton opportunity based only on static analysis. Dynamically, we
can check if at most one instance of the candidate singleton class is created during runtime. That
would ensure that there are no false positives. As future work, we plan to combine both static and
dynamic analysis to improve the recommendation of singleton patterns refactorings.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

This article is protected by copyright. All rights reserved.



26 A. OUNI

push down method

push down field

pull up method

pull up field

move method

move field

move class

inline class

extract interface

extract class

Refactoring Meaningfulness score (RM)

0 20 40 60 80 100

(1) Not at all relevant
(2) Slightly relevant
(3) Moderately relevant

(4) Relevent
(5) Extremely relevant

(a) The RM results obtained for each refactoring type.

visitor pattern refactoring

strategy pattern refactoring

singleton pattern refactoring

factory method refactoring

Refactoring Meaningfulness score (RM)

0 20 40 60 80 100

(1) Not at all relevant
(2) Slightly relevant
(3) Moderately relevant

(4) Relevent
(5) Extremely relevant

(b) The RM results obtained for each design pattern refactoring type.

Figure 10. The average refactoring meaningfulness score (RM) of different types of recommended
refactorings by MORE.

6.3. Results for RQ3: Comparison to state-of-the-art

The results for RQ3 are presented in Table VII, that presents the median values of CCR, NP and QG
over 31 independent simulation runs after applying the refactoring operations proposed by MORE,
Seng et al., Jensen et al., and Kessentini et al.

As described in Table VII, after applying the refactoring operations proposed by MORE, we
found that more than 84% of detected code smells were fixed (CCR) as an average across all the
seven studied systems. For instance, for GanttProject, 75% (9 out of 12) of god classes, 86% (6
out of 7) of feature envy, 94% (15 out of 16) of spaghetti code, 93% (13 out of 14) of data classes
are fixed. This score is comparable to the correction score achieved Kessentini et al. (an average of
86%). However, MORE achieved a significantly higher results than those of Seng et al., and Jensen
et al., having respectively only 26% and 20% on average for all the studied systems.

In terms of introduced design patterns (NP), Jensen et al. achieves the highest score by introducing
on average 18 design patterns for the seven systems. This score is higher than the one obtained by
MORE (an average of 6 patterns per system). This can be explained by the fact that Jensen et al.
apply design patterns without considering whether the design pattern is needed or not in that code
fragment, i.e., the sole aim is to add as many design patterns as possible. From our perspective,
this is unlikely to be useful and efficient in practice. For Seng et al. and Kessentini et al. we found
that they are not able to produce design patterns (only 0.14 and 0 pattern per system respectively).
This might be mainly due to the lists of generic refactorings they use which are not geared for the
introduction of design patterns.
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Furthermore, MORE achieves a QG score of 0.4 which is slightly less that the value of 0.43
achieved by Seng et al. This is mainly due to the fact that quality metrics improvement is the main
component in the objective function of Seng et al. Furthermore, MORE provides comparable QG
results to those of Jensen et al. (0.4). On the other hand, Kessentini et al. turns out to be the worst
approach with a QG score of 0.29. Indeed, the approach of Kessentini et al. is driven only by code
smell correction and not directed at improving quality metrics. This interesting result confirms that
fixing code smells does not always mean that quality metrics will also be significantly improved.
On the other hand, despite the significant improvement in terms of QG for Seng et al. (the highest
score among the four compared approaches), it is not effective at fixing code smells (only 26% of
code smells are fixed). Thus, these results provide further evidence that improving quality metrics
does not necessarily mean that existing code smells are fixed. Indeed, the link between code smells
and software metrics is not obvious [72].

In terms of refactoring meaningfulness (RM) from a developers perspective, Figure 8 reports
the achieved results for the seven studied systems. We observe that MORE achieved 69% of RM
which is significantly superior compared to Seng et al., Kessentini et al. and Jensen et al. having
respectively only 39%, 38% and 34% as RM scores. This is mainly due the semantic constraints that
are required to be satisfied before recommending refactorings, hence preventing arbitrary changes,
unlike Seng et al., Kessentini et al. and Jensen et al. who do not consider the semantics of the
program being refactored. Another reason can be that MORE provides a diversified sequence of
refactorings to cover as much as possible the detected code smells and other quality issues.

This finding has actionable conclusions for software developers conducting software refactoring.
Providing a trade-off between different conflicting quality objectives from different perspectives,
i.e. code smells, design patterns and quality metrics, is required, which is one of the main purposes
of MORE. Thus, developers who are interested mainly in fixing code smells can select solutions
from the Pareto surface that provide high CCR values independently from the two other objectives.
If the developer seeks to introduce design pattern instances to their code then they need to focus on
the part of the Pareto surface that provides high NP values. Similarly, the developer who seeks to
improve quality metrics of the code can the ignore the parts of the Pareto surface related to code
smells and design patterns, and select a solution from the Pareto surface that maximizes the value of
QG. If the developer seeks a trade-off between all the objectives, they should focus their attention
on the middle part of the Pareto surface. Hence, as the three objectives are conflicting, maximizing
the code smell correction score is indeed possible, but only at the cost of sacrificing some of the
other objectives.

6.4. Discussions

To get more qualitative sense, we asked some of the participants to comment on their decisions
in order to get a deeper view of the achieved results and to help us in future improvements
of MORE. One of the refactoring operations suggested by MORE for Xerces-J is to move the
method fillXMLAttributes() (cf. Figure 11) from the class SchemaContentHandler
to the class XMLAttributesImpl. One of the participants comment on this as follows: “I would
strongly recommend apply this refactoring as the method fillXMLAttributes() manipulates
objects of type XMLAttributesImpl and calls three of the methods of this type which are:
removeAllAttributes(), addAttributeNS() and setSpecified().” Furthermore,
the participant commented that the latter two methods are called by the original method within
a for loop which may, in their opinion, significantly increase coupling. On the other hand,
fillXMLAttributes() accesses only one service (fillQName()) from its current class. The
participant explained that this method is in charge of removing all of the XML attributes along with
all its associated entities. Then it adds a set of new attributes; each added attribute will be marked
as specified in the XML instance document unless set otherwise using the setSpecified()
method. It is clear that both source and target classes share several common identifiers (vocabulary)
and therefore they are semantically related. Thus, it makes more sense to move the method
fillXMLAttributes() to XMLAttributesImpl.
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private void fillXMLAttributes(Attributes atts) {

fAttributes.removeAllAttributes();

final int attrCount = atts.getLength();

for (int i = 0; i < attrCount; ++i) {

fillQName(fAttributeQName, atts.getURI(i), atts.getLocalName(i), atts.getQName(i));

String type = atts.getType(i);

fAttributes.addAttributeNS(fAttributeQName, (type != null) ? type : 
XMLSymbols.fCDATASymbol, atts.getValue(i));

fAttributes.setSpecified(i, true);

}

}

Figure 11. An example of one of MORE’s refactoring suggestions for Xerces-J: move the
method fillXMLAttributes() from the class SchemaContentHandler to the class

XMLAttributesImpl.

We asked another participant to justify their decision to accept (with a relevant
vote) an extract class refactoring suggest by MORE for the class GanttGraphicArea
in GanttProject‡‡.MORE suggests to extract the following attributes: margY, drag,
arrayColor, myUIConfiguration along with the following methods: paintTasks(),
paintATaskBilan(), paintATaskFather(), paintATaskchild(). The participant
confirmed that the class proposed to be extracted describes a separate entity which aims to
draw different tasks in a specified graphic area. It is worth noting that MORE recommended
another extract class refactoring for the same class GanttGraphicArea. This second extract
class refactoring suggests extracting the following set of methods: zoomMore(), zoomLess(),
getZoom(), setZoom() and the attributes: zoomValue and oldDate to a new class. The
participant mentioned that although the first extract class would not be enough to fix the god class
GanttGraphicArea, it is interesting to reapply other refactorings to the same smelly entity
until the code smell is fixed. Furthermore, the participant commented: “I would apply these two
recommended refactorings as they would, in my opinion, significantly improve the understandability
and flexibility of this badly implemented class GanttGraphicArea”. An interesting observation
is that the participant indicated that even if some methods and attributes do not clearly describe a
new concept, they can still be extracted into a new class only if they are structurally related, i.e.,
cohesive.

For the same class GanttGraphicArea depicted in Figure 12, MORE recommended applying
a strategy pattern refactoring to the method paintTasks(). Indeed, strategy pattern is used
when we have multiple algorithms for a specific task and the client should decide the actual
implementation to be used according to the context. For this refactoring, the participant commented
that “paintTasks() would be a nice application of the strategy pattern that the original
developers of GanttProject clearly missed”. This method aims at deciding which paint method to
execute for a GanttTask object (i.e., task) from 3 possible options: paintATaskBilan(),
paintATaskFather(), or paintATaskChild(). Thus, this method could be easily turned
into a strategy by extracting each branch of the ‘if’ statement into its own class such that each
class implements a common interface, and the decision on which one to use can be moved to the
original class. Introducing several decision statements can obscure any calculation and make it likely
to be misunderstood by others and harder to maintain, debug and extend, as shown in Figure 12.
As recommended by MORE and validated by the participants, the strategy refactoring applied to
paintTasks() is a suitable design solution that deals well with this situation. This refactoring
may lighten the original method by moving the conditional calculation logic to a small collection
of independent calculation objects (strategies), each of which can handle one of the various ways of
doing the calculation, making the design easier to understand and maintain.

‡‡http://sourceforge.net/projects/ganttproject/files/OldFiles/ganttproject-1.10.
2.zip
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  /** Paint all tasks  */ 
  public void paintTasks(Graphics g) { 

  int sizex = getWidth(); 
  int sizey = getHeight(); 
  int headery = 45; 
  float fgra = (float) sizex / (float) getGranit(true); 

g.setFont(myUIConfiguration.getChartMainFont());

  //Get all task 
  //Probably optimised on next release 
  listOfParam.clear(); 

  int y = 0; 
  for (Iterator tasks = listOfTask.iterator(); tasks.hasNext();) { 

 DefaultMutableTreeNode treeNode = (DefaultMutableTreeNode) tasks.next(); 
 GanttTask task = (GanttTask) treeNode.getUserObject(); 

//Is the task is visible, the task could be draw 
 if (isVisible(task)) { 

 int x1 = -10, x2 = sizex + 10; 
 int e1; //ecart entre la date de debut de la tache et la date du debut du calendrier 
 int fois; 

 int type = 2; 
 y++; 

//difference between the start date of the task and the end 
 e1 = date.diff(task.getStart()); 

//Calcul start and end pixel of each task 
 float fx1, fx2; 
 if (task.isMilestone()) { 

  fx1 = (float) e1 * fgra * 
  ((date.compareTo(task.getStart()) == 1) ? -1 : 1); 

   x1 = (int) fx1; 
 } else { 

  fx1 = (float) e1 * fgra * 
  ((date.compareTo(task.getStart()) == 1) ? -1 : 1); 

  fx2 = fx1 + (float) task.getLength() * fgra; 

  x1 = (int) fx1; 
  x2 = (int) fx2; 

 } 

 int percent = 0; 

//Meeting task 
 if (task.isMilestone()) { 

  paintATaskBilan(g, x1, y, task); 
  x2 = x1 + (int) fgra; 
  type = 0; 

  } 
//A mother task 

 else if (tree.getAllChildTask(treeNode).size() != 0) { 

  //Compute percent-complete 
  tree.computePercentComplete(treeNode); 

  paintATaskFather(g, x1, x2, y, task); 
  if (drawPercent) { 

 percent = paintAdvancement(g, x1, x2, y, task.getCompletionPercentage(), task.getShape(), task.getColor(), true); 
  } 

  type = 1; 
  } 

//A normal task 
 else { 

  paintATaskChild(g, x1, x2, y, task); 
  if (drawPercent) { 

 percent = paintAdvancement(g, x1, x2, y, task.getCompletionPercentage(), task.getShape(), task.getColor(), false); 
  } 
  type = 2; 

  } 
//Add parameters on the array 

 listOfParam.add(new GanttPaintParam(task.getName(), task.getTaskID(), 
 x1, x2, percent, y, type)); 

 } 
  } 

  } 

Figure 12. An example of MORE’s refactoring recommendation for GanttProject: the strategy pattern
refactoring to be applied to the method paintTasks() in the class GanttGraphicArea.

Another example of MORE’s suggestions for the Rhino project is depicted in Figure 13.
This refactoring involves moving the method initFunction() from the class IRFactory
to the class FunctionNode. Another participant commented on this refactoring: “ Looking at
the initFunction() method which is implemented in IRFactory but it does not access
any service in its original class; instead it uses services from the class FunctionNode. This
method is calling the following methods from the class FunctionNode: addChildToBack(),
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Node initFunction(FunctionNode fnNode, int functionIndex, Node statements, int functionType)

{

fnNode.itsFunctionType = functionType;

fnNode.addChildToBack(statements);

int functionCount = fnNode.getFunctionCount();

if (functionCount != 0) {

// Functions containing other functions require activation objects

fnNode.itsNeedsActivation = true;

}

if (functionType == FunctionNode.FUNCTION_EXPRESSION) {

String name = fnNode.getFunctionName();

if (name != null && name.length() != 0) {

// A function expression needs to have its name as a

// variable (if it isn't already allocated as a variable).

// See ECMA Ch. 13.  We add code to the beginning of the

// function to initialize a local variable of the

// function's name to the function value.

Node setFn = new Node(Token.EXPR_VOID,

new Node(Token.SETNAME,

Node.newString(Token.BINDNAME, name),

new Node(Token.THISFN)));

statements.addChildrenToFront(setFn);

}

}

// Add return to end if needed.

Node lastStmt = statements.getLastChild();

if (lastStmt == null || lastStmt.getType() != Token.RETURN) {

statements.addChildToBack(new Node(Token.RETURN));

}

Node result = Node.newString(Token.FUNCTION, fnNode.getFunctionName());

result.putIntProp(Node.FUNCTION_PROP, functionIndex);

return result;

}

Figure 13. An example of MORE’s refactoring suggestion for Rhino: move the method initFunction()
from the class IRFactory to the class FunctionNode.

getFunctionCount(), and getFunctionName(), and 2) access/modify two attributes
itsFunctionType and itsNeedsActivation”. This might in turn cause a high coupling
and there is no doubt that this method suffers from the feature envy code smell. For these reasons,
the participant accepted the application of this refactoring.

To conclude, it was clear to our participants that MORE can provide useful refactoring
recommendations that improve the design of the program under study. The refactoring of large
systems can be time consuming and involves the improvement of several quality issues. We asked
the participants to provide additional feedback. Firstly, MORE does not provide any ranking to
prioritize the suggested refactorings. In fact, in practice, developers are unlikely to have enough
time to understand, evaluate and apply all the suggested refactorings; rather they prefer to focus
only on the most severe quality issues. Secondly, MORE does not provide support to fix or replace
refactoring solutions that are not approved by the developer. Finally, most of participants mention
that they prefer to include a procedure to automatically applies regression testing and generates
test cases for the modified code fragments after refactoring. This is an interesting future research
direction to explore in extending MORE.

7. THREATS TO VALIDITY

Several factors can bias the validity of empirical studies. In this section, we discuss the different
threats that can limit the validity of our study based on four types of threats, namely construct,
conclusion, internal, and external validity.
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Construct validity: It concerns the methodology employed to construct the experiment. The
experiment conducted with the participants to evaluate the suggested refactorings represents a
construct threat. As previously explained, we selected seven experienced participants in our
study based on their programming experience with refactoring, code smells, design patterns, and
software quality metrics. Furthermore, we diversified our participants from PhD students in software
engineering to senior developers. To mitigate the diffusion threat, the participants were instructed
not to share information about the experience prior to the completion of the study. We also
randomized the ordering in which the refactorings were shown to the participants, to mitigate any
sort of learning or fatigue effect. Another threat can be related to the number of evaluated refactoring
operations. Applying a long sequence of refactoring operations can be a time-consuming task for
participants who should understand the entire design of the systems being refactored, which range
in size from 245 classes to 1,191 classes as reported in Table IV. In addition, the participants are
asked to evaluate four solutions for each system; one solution per approach. Consequently, the
task of evaluating the whole sequences of refactorings may potentially bias our experiments as
fatigue threats to validity may arise, and can negatively affect their human judgement. To deal with
this situation, we decided to focus on evaluating a random sample of the suggested solutions for
each approach, which we believe a feasible and realistic scenario for the seven studied systems.
Additionally, our results were compared to three other state-of-the-art approaches applied to the
same subject systems and participants with the same settings.

Conclusion validity: Due to the stochastic nature of the implemented algorithms, we used the
Wilcoxon rank sum test and effect size measures over 31 repeated runs of the algorithms with a 95%
confidence level. The aim is to test whether significant differences exist between the measurements
for different treatments. This test makes no assumption on the data distribution and is suitable for
ordinal data. We are thus confident that the observed statistical relationships are significant.

Internal validity: It concerns the possible biases in the way in which the results were obtained.
A possible threat to the internal validity concerns the technique used for detecting code smells,
which may lead to a small number of false positives. While the employed detection rules are
able to detect code smells with more than 90% of precision and recall scores as shown in [37],
false positives/negatives may have an impact on the results of our experiments. To mitigate this
threat, we manually inspect and validate each detected code smells. Moreover, our refactoring tool
configuration is flexible and can support other state-of-the-art detection rules.

External validity: It concerns the possible biases related to the choice of experimental
subjects/objects. Although we were able to select a set of subject systems that have a good degree
of diversity in size, application domains and project teams, we cannot claim that our results can be
generalized beyond these subject systems to other industrial contexts, other programming languages,
and to other practitioners. Moreover, even if our approach succeeded in introducing four different
design patterns (factory method, visitor, singleton, and strategy) and seven code smell types (god
class, feature envy, data class, spaghetti code, shotgun surgery, lazy class, and long parameter list),
we cannot generalize the results for other design pattern and code smell types.

In addition to these threats, and despite our encouraging results, our approach presents some
limitations that should be addressed. First, some design pattern instances are difficult to implement
and require an extra manual effort from the developer to tailor the implementation to fit the context.
Second, some refactoring solutions require a significant number of code changes, which may take
the code away from its initial design. To address this issue, we plan to consider new criteria to reduce
the amount of code changes when recommending refactoring. Furthermore, in large-scale systems,
the number of code smells to fix can be very large and not all of them can be fixed automatically.
Thus, the prioritization of the list of detected code smells is required based on different criteria such
as the severity and the risk.

8. RELATED WORK

Search-based Software Engineering (SBSE) has been successfully employed to automate many
software engineering tasks [44], including the problem of automated refactoring to improve various
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aspects of the software [6,7,11,18,36,37,73]. These approaches cast refactoring as an optimization
problem using a variety of optimisation techniques such as hill climbing, genetic algorithms,
simulated annealing, etc. Most existing automated refactoring approaches can be classified into
three main categories depending on the goal: (1) to improve quality factors; (2) to fix code smells;
and (3) to introduce design patterns [14]. We explore each of these areas in the subsections below.

8.1. Automated Improvement of Design Quality

The majority of existing search-based refactoring approaches use software metrics as objective
function(s) to find a good sequence of refactorings. This problem was initially studied by O’Keeffe
and Ó Cinnéide [7, 74], who proposed an automated search-based refactoring approach for
improving the quality of object-oriented programs based on standard software metrics from the
QMOOD design quality model [31]. They conducted experiments on several medium-sized Java
applications, where they found a significant and minimal improvements in Understandability and
Flexibility respectively [7], but discovered that the Reusability function, as defined in the QMOOD
suite, is unsuitable for a search-based refactoring process as it resulted in the addition of a large
number of featureless classes.

Seng et al. [11] propose a single-objective optimization approach that uses a genetic algorithm to
suggest a list of refactorings to improve software quality. The search process employs a single fitness
function to maximize a weighted sum of several quality metrics (coupling, cohesion, complexity
and stability). In contrast to fully-automated approaches, it is the designer’s responsibility to take
the decision that a suggested refactoring should be applied to the system or not.

Contrary to the aforementioned approaches that use a weighted-sum approach to combine metrics
into a single objective fitness function, Harman and Tratt [6] use Pareto optimality to combine two
metrics, CBO (coupling between objects) and SDMPC (standard deviation of methods per class),
into a single fitness function. They demonstrated that this approach has several advantages over the
weighted-sum approach in detecting opportunities to apply the Move Method refactoring.

Fatiregun et al. [75] showed how search-based transformations could be used to reduce code size
and construct amorphous program slices. However, they use small atomic level transformations,
rather than refactorings. In addition, their aim was to reduce program size rather than to improve its
structure/quality.

Recently Simons et al. [76] conducted a survey with professionals to investigate the relationship
between popular SBSE refactoring metrics and the subjective opinions of software engineers. The
empirical study results suggest that (i) there is a little or no correlation between the two, and (ii)
a simple static view of software is insufficient to assess software quality, and that software quality
is dependent on factors that are not amenable to measurement via metrics. To address these issues,
we introduced a set of semantic constraints to better drive the search process towards the optimal
refactoring solutions. In addition, we evaluated our results from developers point of view as only
metrics improvement would not be enough to guarantee that a suggested refactoring is good.

Although the approaches cited above are indeed powerful enough to improve quality as expressed
by software quality metrics, this improvement does not mean that they are successful in removing
actual instances of code smells.

8.2. Automated Correction of Code Smells

Search-based refactoring has been used to correct code smells by several authors. Kessentini et
al. [62] proposed an approach using a mono-objective genetic algorithm to find a sequence of
refactorings that attempts to minimize the number of code smells detected in the source code. Ouni et
al. [50] proposed a multi-objective formulation of refactoring to find the best compromise between
fixing code smells, and semantic coherence using two heuristics related to vocabulary similarity
and structural coupling. The idea behind these two heuristics is to avoid violations of semantic
coherence when moving methods/fields between classes. Jdeodorant [38, 77, 78] is a well-known
tool for detecting and repairing code smells, and currently supports four types of code smell. In a
recent study [78] they propose a technique for detecting opportunities to apply the Extract Method
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refactoring and find in their study that in 42% of cases the applied refactoring resolved (or helped
resolve) a code smell, usually Long Method or Duplicated Code.

Batova et al. [52] propose a technique based on relational topic models to identify Move Method
refactoring opportunities and remove the Feature Envy smell from source code. A study with
industrial developers indicated that their approach could provide meaningful recommendations for
Move Method refactoring operations. In related work, these authors [79] also propose a method for
automating the Extract Class refactoring by analyzing both structural and semantic relationships
between the methods in a class to identify sets of strongly related methods, which are then used
to define new classes with higher cohesion than the original class. They empirically evaluated this
approach on Blobs in open source systems, and found that it outperformed the previous state-of-the-
art and was found to be useful by industrial developers. Recently, Ouni et al, explored antipatterns
detection and refactoring in service-oriented architectures [80–83]

Furthermore, there are different research works related to our vocabulary-based similarity
measure that have studied the semantic relatedness of source code elements, also called ‘conceptual
coupling’. Poshyvanyk et al. [84] first introduced the conceptual coupling measure, to capture
new dimensions of coupling based on semantic information encoded in source code identifiers
and comments. Later, Marcus et al. [85] introduced a new measure for the cohesion of classes in
object-oriented software systems based on the analysis of the unstructured information embedded
in the source code, such as comments and identifiers in order to construct models for predicting
software faults. Bavota et al. [86] investigated several coupling measures including structural,
dynamic, semantic, and logical coupling measures with respect to developer perception of coupling.
An interesting result of this study indicates that the peculiarity of the semantic coupling measure
allows it to better estimate the mental model of developers than other coupling measures, because
interactions between classes are mostly encapsulated in the source code vocabulary. In common
with [79], we show in MORE that the vocabulary in source code provides valuable information to
guide the refactoring recommendation task.

8.3. Automated Introduction of Design Patterns

In one of the earliest works in this area, Eden et al. [87] noted that many design patterns could be
described in terms of a common set of micro-patterns. They implemented transformations for these
micro-patterns, thus creating a prototype ‘patterns wizard’ that could apply a number of design
patterns to an Eiffel program. Another early work in the automated introduction of design patterns
was that of Ó Cinnéide and Nixon [15, 17] who presented a methodology for the development
of design pattern transformations in a behavior preserving fashion. They identified a number of
‘pattern aware’ composite refactorings called mini-transformations that, when composed, can create
instances of design patterns. They defined a starting point for each pattern transformation, termed
a precursor, which is where the basic intent of the pattern is present in the code, but not in its most
flexible pattern form.

In more recent work, Jensen and Cheng [18] developed the first search-based refactoring approach
that makes the introduction of design patterns a primary goal of the refactoring process. They
used genetic programming, software metrics, and the set of mini-transformations identified by
Ó Cinnéide and Nixon [17] to identify a sequence of mini-transformations that introduces the
maximum number of design patterns to a software design.

Recently, Ajouli et al. [48] have described how to use refactoring tools (IntelliJ and Eclipse) to
transform a Java program conforming to the Composite design pattern into a program conforming
to the Visitor design pattern with the same external behavior, and vice versa. They consider several
variations on each of the patterns, and validate their approach with a study of the JHotDraw system.

El Boussaidi and Mili [88] define a formal representation for the problem solved by a design
pattern, the design pattern solution itself, and a transformation that converts an instance of the
problem into an instance of the solution. They found that only 13 of the 23 Gamma et al. design
patterns could be represented using this approach, and even where a pattern could be represented,
the codification of the solution was found to be too simplistic. In their conclusions they suggest that
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this could be due to textbook pattern examples being ‘too perfect’ or patterns being more widely
applicable than their authors envisaged.

8.4. Related Refactoring Research

Researchers have examined various ways to improve automated refactoring. For instance, Murphy-
Hill et al. [5, 89–91] proposed several techniques and empirical studies to support refactoring
activities. In [90, 91], the authors proposed new tools to assist software engineers in applying
refactoring manually such as selection assistant, box view, and refactoring annotation based
on structural information and program analysis techniques. Recently, Ge and Murphy-Hill [92]
proposed a new refactoring tool called GhostFactor that allows the developer to transform code
manually, but check the correctness of their transformations automatically. However, the correction
is based mainly on the structure of the code and does not consider its semantics. Mens et al.
formalize refactoring by using graph transformations [93]. Bavota et al. [94] automatically identify
method chains and refactor them to cohesive classes using the Extract Class refactoring. The aim of
these approaches is to provide specific refactoring strategies; the aim of our approach is to provide
a generic and automated refactoring framework to help developers to refactor their code.

Several works have taken a scripting approach to applying refactorings [95, 96], the most recent
of these being the work of Kim et al. [16], which is relevant to our research as it also focuses on
design patterns. They created a Java package to automate the creation of classical design patterns
and encoded 18 out of the 23 Gang-of-Four design patterns [14] in their Java-based scripting
language. In their experiments with a six real-world, non-trivial Java applications, they found that
their approach could apply a complex pattern in a fraction of the time it would take a developer to
perform the same process. This work does not attempt to find where a pattern should be applied
however. By contrast, MORE applies a design pattern only when it is beneficial to do so, taking into
account overall software quality, existing code smells in the code, and overall design coherence of
the code base.

In summary, the area of identification of refactoring opportunities is a lively one [97] and
significant contributions have been made in each of the areas on which we focus: design quality
improvement, code smell removal, and introduction of design patterns. Our work is the first
to our knowledge that combines all these research strands into a single coherent refactoring
recommendation system.

9. CONCLUSION AND FUTURE WORK

This paper presented a search-based refactoring approach called MORE, that takes into
consideration multiple perspectives to recommend refactoring solutions to: 1) improve software
quality, 2) fix code smells, and 3) introduce design patterns. The selection of refactorings to
propose is also guided by a set of semantic constraints to preserve the semantic coherence of
the original program. MORE succeeded in finding near-optimal trade-offs between these multiple
perspectives while providing more semantic and meaningful refactorings. To evaluate our approach,
we conducted an empirical evaluation on seven medium and large-size open-source systems, and
compared our results to three state-of-the-art approaches and two popular multi-objective algorithms
as well as random search. Our empirical study shows the efficacy of our approach in improving
the quality of the studied systems while successfully fixing 84% of code smells and introducing
an average of six design patterns. In addition, the qualitative evaluation shows that most of the
suggested refactorings (an average of 69%) are considered as relevant and meaningful by software
developers.

As future work, we are planning to conduct an empirical study to investigate the correlation
between fixing code smells, introducing design patterns and improving quality metrics to better
understand the nature of relationship between them. We also plan to extend MORE to include other
code smells and design pattern types and evaluate our approach in an industrial context. In addition,
we are planning to include a procedure to automatically apply regression testing techniques and
generate test cases for the modified code fragments after refactoring.
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  /** Paint all tasks  */ 
  public void paintTasks(Graphics g) { 

  int sizex = getWidth(); 
  int sizey = getHeight(); 
  int headery = 45; 
  float fgra = (float) sizex / (float) getGranit(true); 

g.setFont(myUIConfiguration.getChartMainFont());

  //Get all task 
  //Probably optimised on next release 
  listOfParam.clear(); 

  int y = 0; 
  for (Iterator tasks = listOfTask.iterator(); tasks.hasNext();) { 

 DefaultMutableTreeNode treeNode = (DefaultMutableTreeNode) tasks.next(); 
 GanttTask task = (GanttTask) treeNode.getUserObject(); 

//Is the task is visible, the task could be draw 
 if (isVisible(task)) { 

 int x1 = -10, x2 = sizex + 10; 
 int e1; //ecart entre la date de debut de la tache et la date du debut du calendrier 
 int fois; 

 int type = 2; 
 y++; 

//difference between the start date of the task and the end 
 e1 = date.diff(task.getStart()); 

//Calcul start and end pixel of each task 
 float fx1, fx2; 
 if (task.isMilestone()) { 

  fx1 = (float) e1 * fgra * 
  ((date.compareTo(task.getStart()) == 1) ? -1 : 1); 

   x1 = (int) fx1; 
 } else { 

  fx1 = (float) e1 * fgra * 
  ((date.compareTo(task.getStart()) == 1) ? -1 : 1); 

  fx2 = fx1 + (float) task.getLength() * fgra; 

  x1 = (int) fx1; 
  x2 = (int) fx2; 

 } 

 int percent = 0; 

//Meeting task 
 if (task.isMilestone()) { 

  paintATaskBilan(g, x1, y, task); 
  x2 = x1 + (int) fgra; 
  type = 0; 

  } 
//A mother task 

 else if (tree.getAllChildTask(treeNode).size() != 0) { 

  //Compute percent-complete 
  tree.computePercentComplete(treeNode); 

  paintATaskFather(g, x1, x2, y, task); 
  if (drawPercent) { 

 percent = paintAdvancement(g, x1, x2, y, task.getCompletionPercentage(), task.getShape(), task.getColor(), true); 
  } 

  type = 1; 
  } 

//A normal task 
 else { 

  paintATaskChild(g, x1, x2, y, task); 
  if (drawPercent) { 

 percent = paintAdvancement(g, x1, x2, y, task.getCompletionPercentage(), task.getShape(), task.getColor(), false); 
  } 
  type = 2; 

  } 
//Add parameters on the array 

 listOfParam.add(new GanttPaintParam(task.getName(), task.getTaskID(), 
 x1, x2, percent, y, type)); 

 } 
  } 

  } 
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1 move field (Person, Employee, salary)

2 extract class(Person, Adress, streetNo, city, zipCode, getAdress(), updateAdress())

3 move method (Person, Employee, getSalary())

4 push down field (Person, Student, studentId)

5 inline class (Car, Vehicle)

6 move method (Person, Employee, setSalary())

7 move field (Person, Employee, tax)

8 extract class (Student, Course, courseName, CourseCode, addCourse(), rejectCourse())
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5 move method (f41_2, c41, c129) 5 inline class (c24, c82)

6 move field (f12_8, c12, c52) 

1 move method (m5_1, c5, c112) 

1 move method (m5_1, c5, c112) 2 Inline class (c5, c31) 

2 Inline class (c5, c31) 3 push down method (m231_3, c231, c19) 

3 push down method (m231_3, c231, c19) 4 pull up field (f8_1, c8, c14) 

4 move field (f12_10, c12, c119) 5 move method (f41_2, c41, c129) 

5 inline class (c24, c82) 6 move field (f12_8, c12, c52) 
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1 move field (f18_2, c18, c23) 1 move field (f18_2, c18, c23)

2 move method (m4_6, c4, c89) 2 move method (m5_2, c5, c36)

3 extract class (c31, f31_1 , m31_1, m31_4) 3 extract class (c31, f31_1 , m31_1, m31_4)

4 pull up field (f8_1, c8, c14) 4 inline class (c24, c82)

5 move method (f41_2, c41, c129) 5 move method (f41_2, c41, c129)

6 move field (f12_8, c12, c52) 6 move field (f12_8, c12, c13)

Before mutation After mutation
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private void fillXMLAttributes(Attributes atts) {

fAttributes.removeAllAttributes();

final int attrCount = atts.getLength();

for (int i = 0; i < attrCount; ++i) {

fillQName(fAttributeQName, atts.getURI(i), atts.getLocalName(i), atts.getQName(i));

String type = atts.getType(i);

fAttributes.addAttributeNS(fAttributeQName, (type != null) ? type : 
XMLSymbols.fCDATASymbol, atts.getValue(i));

fAttributes.setSpecified(i, true);

}

}
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Node initFunction(FunctionNode fnNode, int functionIndex, Node statements, int functionType)

{

fnNode.itsFunctionType = functionType;

fnNode.addChildToBack(statements);

int functionCount = fnNode.getFunctionCount();

if (functionCount != 0) {

// Functions containing other functions require activation objects

fnNode.itsNeedsActivation = true;

}

if (functionType == FunctionNode.FUNCTION_EXPRESSION) {

String name = fnNode.getFunctionName();

if (name != null && name.length() != 0) {

// A function expression needs to have its name as a

// variable (if it isn't already allocated as a variable).

// See ECMA Ch. 13.  We add code to the beginning of the

// function to initialize a local variable of the

// function's name to the function value.

Node setFn = new Node(Token.EXPR_VOID,

new Node(Token.SETNAME,

Node.newString(Token.BINDNAME, name),

new Node(Token.THISFN)));

statements.addChildrenToFront(setFn);

}

}

// Add return to end if needed.

Node lastStmt = statements.getLastChild();

if (lastStmt == null || lastStmt.getType() != Token.RETURN) {

statements.addChildToBack(new Node(Token.RETURN));

}

Node result = Node.newString(Token.FUNCTION, fnNode.getFunctionName());

result.putIntProp(Node.FUNCTION_PROP, functionIndex);

return result;

}

This article is protected by copyright. All rights reserved.



Node initFunction(FunctionNode fnNode, int functionIndex, Node statements, int functionType)

{

fnNode.itsFunctionType = functionType;

fnNode.addChildToBack(statements);

int functionCount = fnNode.getFunctionCount();

if (functionCount != 0) {

// Functions containing other functions require activation objects

fnNode.itsNeedsActivation = true;

}

if (functionType == FunctionNode.FUNCTION_EXPRESSION) {

String name = fnNode.getFunctionName();

if (name != null && name.length() != 0) {

// A function expression needs to have its name as a

// variable (if it isn't already allocated as a variable).

// See ECMA Ch. 13.  We add code to the beginning of the

// function to initialize a local variable of the

// function's name to the function value.

Node setFn = new Node(Token.EXPR_VOID,

new Node(Token.SETNAME,

Node.newString(Token.BINDNAME, name),

new Node(Token.THISFN)));

statements.addChildrenToFront(setFn);

}

}

// Add return to end if needed.

Node lastStmt = statements.getLastChild();

if (lastStmt == null || lastStmt.getType() != Token.RETURN) {

statements.addChildToBack(new Node(Token.RETURN));

}

Node result = Node.newString(Token.FUNCTION, fnNode.getFunctionName());

result.putIntProp(Node.FUNCTION_PROP, functionIndex);

return result;

}

This article is protected by copyright. All rights reserved.



Node initFunction(FunctionNode fnNode, int functionIndex, Node statements, int functionType)

{

fnNode.itsFunctionType = functionType;

fnNode.addChildToBack(statements);

int functionCount = fnNode.getFunctionCount();

if (functionCount != 0) {

// Functions containing other functions require activation objects

fnNode.itsNeedsActivation = true;

}

if (functionType == FunctionNode.FUNCTION_EXPRESSION) {

String name = fnNode.getFunctionName();

if (name != null && name.length() != 0) {

// A function expression needs to have its name as a

// variable (if it isn't already allocated as a variable).

// See ECMA Ch. 13.  We add code to the beginning of the

// function to initialize a local variable of the

// function's name to the function value.

Node setFn = new Node(Token.EXPR_VOID,

new Node(Token.SETNAME,

Node.newString(Token.BINDNAME, name),

new Node(Token.THISFN)));

statements.addChildrenToFront(setFn);

}

}

// Add return to end if needed.

Node lastStmt = statements.getLastChild();

if (lastStmt == null || lastStmt.getType() != Token.RETURN) {

statements.addChildToBack(new Node(Token.RETURN));

}

Node result = Node.newString(Token.FUNCTION, fnNode.getFunctionName());

result.putIntProp(Node.FUNCTION_PROP, functionIndex);

return result;

}

This article is protected by copyright. All rights reserved.


	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Search-Based Software Engineering

	3 Approach
	3.1 The General Architecture of MORE
	3.2 Semantic Constraints

	4 Search-based Refactoring Using NSGA-III
	4.1 NSGA-III Overview
	4.2 NSGA-III Adaptation for the Refactoring Recommendation Problem
	4.2.1 Problem formulation
	4.2.2 Solution approach


	5 The design of the empirical study
	5.1 Research Questions
	5.2 Software Systems Studied
	5.3 Evaluation methodology
	5.3.1 Research method for RQ1.
	5.3.2 Research method for RQ2.
	5.3.3 Research method for RQ3.

	5.4 Algorithms Parameter Tuning
	5.5 Inferential Statistical Tests Used

	6 Results
	6.1 Results for RQ1: Sanity check
	6.2 Results for RQ2: Efficacy
	6.3 Results for RQ3: Comparison to state-of-the-art
	6.4 Discussions

	7 Threats to Validity
	8 Related Work
	8.1 Automated Improvement of Design Quality
	8.2 Automated Correction of Code Smells
	8.3 Automated Introduction of Design Patterns
	8.4 Related Refactoring Research

	9 Conclusion and Future Work

