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Statistical consequences of a successful
lung allocation system – recovering
information and reducing bias in
models for urgency
Nabihah Tayoba*† and Susan Murrayb

The lung allocation system has reduced the number of waitlist deaths by ranking transplant candidates on the
basis of a lung allocation score that requires estimation of the current 1-year restricted mean waitlist survival
(urgency). Fewer waitlist deaths and the systematic removal of candidates from the waitlist for transplantation
present statistical challenges that must be addressed when using recent waitlist data. Multiple overlapping 1-year
follow-up windows are used in a restricted mean model that estimates patient urgency on the basis of updated
risk factors at the start of the window. In simulation studies, our proposed multiple imputation procedure was
able to produce unbiased parameter estimates with similar efficiency to those obtained if censoring had never
occurred. The analysis of 10,740 lung transplant candidates revealed that for most risk factors incorporating
additional follow-up windows produced more efficient estimates. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

Since 2005, national lung allocation policy in the United States of America for those aged 12 and over
has relied on the statistical estimation of a lung transplant candidate’s 1-year restricted mean lifetime
without opportunity for transplant (urgency) and the number of days to be gained in the next year if a
transplant is offered immediately (benefit) [1]. The United Network for Organ Sharing (UNOS) is charged
with collecting and updating patient risk factors so that the lung allocation score (LAS) that determines
transplantation priority can change with a candidate’s prognosis. In fact, patients are required to update
their allocation factors every 6 months or be penalized with a zero LAS value that effectively puts them
at the end of the candidate list (OPTN Policy 3.7; https://optn.transplant.hrsa.gov/PoliciesandBylaws2/
policies/pdfs/policy_9.pdf).

In terms of statistical development and maintenance of the LAS, only risk factors collected at a candi-
date’s entry into the waitlist have been used to model urgency to date and only the first year of follow-up
after listing had been used for restricted mean lifetime estimation. This reflects an unfortunate waste of
statistical information in a setting where fewer and fewer waitlist deaths are being observed, due in part
to the successful allocation to patients more likely to die. There is also the statistical challenge of depen-
dent censoring of waitlist outcomes that are circumvented by a timely transplant intervention. Additional
information on 1-year prognosis using windows of follow-up after listing would (1) potentially improve
efficiency of estimation from additional events occurring beyond 1 year and (2) potentially expand the
knowledge base of measured risk factors that progress beyond the listing stage, increasing the applicabil-
ity of urgency scores to those on the waitlist beyond 1 year. This latter feature would be particularly useful
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because listing recommendations tend to catch patients at a similar state of urgency at the time these
listing risk factors are collected, whereas patients progress at quite different rates thereafter. In general,
we believe that being able to model the restricted mean survival across a mixture of multiple short-term
windows of follow-up provides an alternative and potentially superior understanding of time-dependent
risk factors.

Gong and Schaubel [2] model the distribution of survival time from a set of specified calendar times,
conditional on the risk factors measured at each specified calendar time, through Cox-regression models.
They account for dependent censoring through inverse probability of censoring weights. An estimate
of restricted mean survival can be obtained from a Cox-regression model by integrating the estimated
survival curve over the follow-up window of interest. Because our interest lies in estimation of a 1-year
restricted mean survival for the lung transplant urgency model, we have chosen to model the restricted
mean survival directly.

We extend a multiple imputation procedure developed by Xiang, Murray and Liu [3] for dependently
censored data to address issues of removal from the lung candidate pool based on LAS values involving
urgency. While they were able to use time-dependent LAS scores to obtain consistent estimates of survival
via the inverse probability of censoring weighted (IPCW) method of Robins [4], they were not able to
incorporate updated covariate information directly into their restricted mean model for transplant urgency.

The designers of the LAS were specifically tasked with producing a score that does not change accord-
ing to the length of time spent on the waitlist. However, they are equally interested in using information
collected beyond the first year of listing. Our approach is to build a restricted mean model that estimates
transplant urgency across the mixture of available follow-up windows. The (possibly) censored survival
times within each follow-up window are treated as correlated multivariate (longitudinal) outcomes. The
updated risk factors available at the start of each follow-up window become the covariates for the cor-
responding restricted time-to-event recorded for that window. Although there is no technical restriction
from including the waiting time accrued by the start of each follow-up window as a covariate, our goal
of estimating each patient’s urgency score in a manner that does not depend on waitlist time precludes
the use of this covariate.

A clear advantage of our proposed model is the broader range of patient experience that contributes
to estimation of 1-year restricted mean lifetime. Standard methods do not take additional follow-up after
the first year from listing into account. This is unfortunate, because follow-up extending beyond the
initial year of listing has a great deal of information to contribute regarding candidate transplant urgency.
Our method takes advantage of available, but neglected, follow-up data when fitting the model for the
estimating 1-year restricted mean lifetime. In terms of using the final fitted model to produce urgency
estimates for currently listed patients, a patient’s urgency estimate would be calculated using parameters
from the final fitted model with predictors taken from that patient’s most recent risk factor update. As
this patient’s risk profile changes, the calculation is repeated, substituting the most recent predictors into
the linear predictor of the model. Arguably, the mixture distribution of 1-year follow-up windows used
to produce our urgency model’s parameter estimates is a more relevant sample of follow-up times than
data from the first year of listing alone because the urgency model is used to score all waitlisted patients
for lung allocation, including patients that continue to wait beyond the first year from listing.

Methods are summarized in Section 2. Notation and the data structure induced by using multiple fol-
low up windows are described in Sections 2.1 and 2.2. An outline of our multiple imputation procedure
is given in Section 2.3, and the details are provided in Section 2.6. The multiple imputation procedure
results in imputed datasets with no censoring, which allows us to take advantage of generalized esti-
mating equation (GEE) methods [5] to account for the particular flavor of correlation induced from
incorporating (overlapping) follow-up windows from the same patient. The use of GEE methods applied
to imputed datasets in this setting is described in Section 2.4. Methods for combining the analyses from
multiply imputed datasets are described in Section 2.5. Section 3 assesses our approach versus alterna-
tive approaches for estimating lung candidate urgency via simulation. We then analyze a recent release of
lung transplant data collected by UNOS in Section 4, providing updated urgency measures in this cohort
as well as evaluating urgency changes over time. A discussion follows in Section 5.

2436

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2435–2451



N. TAYOB, AND S. MURRAY

2. Multiple Imputation Methodology

2.1. Notation

Failure and censoring times are denoted by Ti and Ci, respectively, for patient i = 1,… , n. The observed
event time is Xi = min(Ti,Ci) with associated failure indicator variable 𝛿i = I(Ti < Ci). 𝐕i(t) and 𝐙i(t)
are covariates affecting Ci and Ti, respectively. We denote the recorded histories of 𝐕i(t) and 𝐙i(t) up to
time t by V̄i(t) = {𝐕i(u); 0 ⩽ u ⩽ t} and Z̄i(t) = {𝐙i(u); 0 ⩽ u ⩽ t}, respectively. The event counting
process is defined as Ni(t) = I(Xi ⩽ t, 𝛿i = 1) and the at-risk process is defined as Yi(t) = I(Xi ⩾ t). We
also define the counting process for censoring, NQi

(t) = I(Xi ⩽ t, 𝛿i = 0).
Our proposed method incorporates information from several follow-up windows of length 1 year,

spaced 6 months apart; that is, windows start at {0, 6, 12,…} months until removal from the candidate
list for transplantation. More generally, windows of length 𝜏 start at times {t1,… , tni

}, where the ith

patient contributes ni follow-up windows. For notational convenience, we define b as the maximum num-
ber of follow-up windows any patient could potentially contribute over the entire study duration, that is,
b = max{n1,… , nn} subject to having at least 25 events in the final window.

2.2. Model and data structure

Our data structure is similar in nature to longitudinal data with potentially time-varying covariates. The
key differences between our data structure and the standard longitudinal data analysis structure are as
follows: (1) our time-dependent outcomes are short-term restricted times-to-event in the different follow-
up windows; (2) our outcomes are subject to dependent censoring; and (3) our potentially time-dependent
covariates, 𝐙, are captured at the start of the corresponding follow-up window (as opposed to being
measured concurrently as in a standard longitudinal data structure). As in longitudinal data analysis, our
goal is to model the average outcome based on covariates.

The outcome variable of interest, T∗, denotes a 𝜏-restricted survival time when sampling from follow-
up windows of length 𝜏 among patients at-risk in the cohort. Each patient contributes ni longitudinal
measures of T∗, regularly spaced by design for all patients in the cohort. Our urgency model is then

E{log(T∗)|𝐙} = 𝜷T𝐙. (1)

Although time and time by covariate interactions theoretically may be modeled as part of 𝐙, we do
not include these terms when estimating lung waitlist urgency in our application. This modeling choice
satisfies the mandate that lung allocation formulas not involve waiting time in a formulaic manner, which
patients could use to their advantage.

For bookkeeping purposes, we find it convenient to include window-start-time notation to keep track
of unique components in the data structure. For individuals with available follow-up during a window
starting at t, where t ∈ {t1,… , tb}, we define T∗

i (t) = min(Ti−t, 𝜏) as the 𝜏-restricted time to event from t.
The multivariate data for each individual become {T∗

i (t1),𝐙i(t1)}, {T∗
i (t2),𝐙i(t2)}, … , {T∗

i (tni
),𝐙i(tni

)}.
In Figure 1, we illustrate the relationships between Ti, T∗

i (t) and 𝐙i(t) for t = 0, 6, 12, and 18 months.
In our first example, patient 1 dies at 20 months post listing (T1 = 20). Hence, patient 1 contributes infor-
mation on 1-year survival via the data pairs {T∗

1 (0) = 12 months,𝐙1(0)}, {T∗
1 (6) = 12 months,𝐙1(6)},

{T∗
1 (12) = 8 months,𝐙1(12)}, and {T∗

1 (18) = 2 months,𝐙1(18)}. Patient 2 is has T2 = 7 months and
is therefore observed for two follow-up windows with start times {0, 6} and corresponding data pairs
{T∗

2 (0) = 7 months,𝐙2(0)} and {T∗
2 (6) = 1 month,𝐙2(6)}. Patient 3 was transplanted at C3 = 7 months

and is therefore also observed for two follow-up windows with start times {0, 6}. In Section 2.3, we
describe a multiple imputation procedure for missing failure times that will be used in our analysis.
Hence, if a failure time of 10 months is imputed for patient 3, this patient would contribute data pairs
{T∗

3 (0) = 10 months,𝐙3(0)} and {T∗
3 (6) = 4 months,𝐙3(6)} to the analysis for one of the M multiply

imputed datasets. The corresponding longitudinal data structure that we would use to fit Model (1) is
shown at the bottom of Figure 1, where the columns ID, T∗ and 𝐙 are the subject ID, outcome and covari-
ate vector respectively. In our setting, the waitlist time/follow-up window start time (column t in the data
structure) cannot be included in Model (1). However, the modeling procedure has no such limitation and
time and interactions between time and other covariates can be included in Model (1).

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2435–2451
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Figure 1. Example of how to construct the random variables T∗
i (t) = min{Ti(t), 12} in each of the follow-up

windows for which the patients are under observation in three cases. Patient 1 dies at 20 months post-listing;
patient 2 dies at 7 months post-listing; and patient 3 is transplanted at 7 months post-listing. For patient 3, we
impute M death times, one of which is equal to 10 months and use the imputed death times in the longitudinal data
analysis with M complete datasets. The associated data structure for the example patients is shown at the bottom

of the figure.

2.3. Outline of imputation algorithm

Each censored patients’ current follow-up window has measured covariates 𝐙(tni
) and a censored event

time C(tni
) = min(Ci − tni

, 𝜏) that requires multiple imputation for generation of convenient complete
datasets for analysis. There are many different approaches for multiple imputation in the presence of
dependent censoring. We extend the inverse transform imputation algorithm used by Xiang, Murray and
Liu [3] to the setting with multiple follow-up windows.

2.3.1. Inverse transform imputation. The simplest case of the inverse transform imputation method
is based on a Kaplan–Meier estimate, ŜT (t), that is consistent for the survival function, ST (t). In this
case, Taylor, Murray and Hsu [6] showed that multiple imputation reproduces the the Kaplan–Meier on
average. We review this simplest case to avoid additional notation in delivering the concept.

For a patient censored at Ci, imputes are generated by sampling from the distribution with survival
function ST (t|T > Ci). Because ST (t|T > Ci) is not a known function, it is consistently estimated with
ŜT (t|T > Ci) in applying the inverse transform. The impute, t, is sampled by (a) generating a uniform(0,1)
random variable, u, and (b) finding the smallest value t where ŜT (t|T > Ci) ⩽ u. The risk set, Ri, is
defined as the set of patients with comparable risk to the patient censored at Ci and in this simple case it
is comprised of patients with Tk > Ci for k = 1,… , n. Step (b) can be equivalently expressed as finding
the smallest value t where ŜT (t|Ri) ⩽ u when using risk set notation.

2.3.2. Proposed imputation. Our proposed multiple imputation method follows the same inverse trans-
form imputation procedure but with a different risk set definition for Ri and a consistent survival estimate
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that accounts for dependent censoring within the risk set, both of which will be given in later in
Section 2.6. An outline of the steps needed to generate our imputed datasets is as follows:

(1) Obtain a consistent estimate of the survival function in the presence of dependent censoring due to
transplantation.

(a) Fit a Cox model for censored outcomes.
(b) Construct inverse weights based on the Cox model above.
(c) Compute the IPCW survival estimate.

(2) Estimate model parameters 𝜷 via the pseudo-observation approach to use in risk set formation.
(3) For each patient censored at Ci,

(a) Form risk set Ri by including at-risk patients similar to the ith patient at censoring based on
model (1) and the pseudo-observation estimate of 𝜷.

(b) Compute the IPCW survival estimate within the risk set.
(c) Sample a valid impute.

2.4. Generalized estimating equations for complete data

Once we have constructed the longitudinal data structure as described in Section 2.2 via the imputa-
tion procedure in Section 2.3, the correlation between observations from different follow-up windows
within each patient must be accounted for when fitting model (1). GEE provides a framework that eas-
ily allows the correlation between overlapping and non-overlapping follow-up windows to differ via the
unstructured working correlation matrix. In addition, the robust sandwich variance provides protection
against misspecification of working correlation matrix. Currently, available statistical software for corre-
lated censored survival outcomes assumes that correlated event times follow an exchangeable correlation
structure between any two pairs of outcomes, which does not accommodate our data well. For example,
the overlapping follow-up windows should have a different correlation structure than the windows that
do not overlap. The easy implementation of unstructured correlation matrices makes GEE software ideal.

2.5. Analysis of the M multiply imputed datasets

We repeat the imputation procedure until we obtain M completed datasets. In practice M=10 is usu-
ally sufficient to produce valid results. The analysis of the M multiply imputed datasets is given by Li,
Raghunathan and Rubin [7]. For each complete dataset, we fit model (1) using GEE methods described
in Section 2.4. The parameter estimates for dataset m are denoted by 𝜷̂

MI

m , and the estimate of their

variance–covariance matrix is denoted by 𝚺̂
MI

m , m = 1,… ,M.

The estimates of 𝜷 based on the multiple imputation procedure are 𝜷̂
MI =

∑M
m=1 𝜷̂

MI

m ∕M. The associated

variance–covariance matrix estimate is 𝚺̂
MI

= (1 + r)W where r = (1 + M−1)tr(BW−1)∕p and p is the

length of 𝜷. The average within imputation variance–covariance is W =
∑M

m=1 𝚺̂
MI

m ∕M and the between

imputation variance–covariance is B =
∑M

m=1(𝜷̂
MI

m − 𝜷̂
MI)(𝜷̂MI

m − 𝜷̂
MI)T∕(M − 1).

The hypothesis tests and 95% confidence intervals for 𝜷̂
MI

are constructed based on the statistic (𝜷̂MI −
𝜷)T (𝚺̂

MI
)−1(𝜷̂MI −𝜷)∕p that asymptotically follows an F-distribution with p and 𝜈 = (M − 1)( p+ 1)(1+

r−1)2∕2 degrees of freedom.

2.6. Details of multiple imputation algorithm

In Section 2.3.2, we gave an outline of the proposed multiple imputation procedure. We now provide
details of each step of the algorithm.

2.6.1. Step 1: IPCW survival estimation. The method to construct inverse weighted survival estimates,
ŜW

T (t), that are consistent for the survival function, ST (t), in the presence of dependent censoring proceeds
as follows. First, we fit a Cox model for censored outcomes via the model,

𝜆Q{t|V̄(t)} = 𝜆Q0
(t) exp{𝛄T𝐕(t)},

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2435–2451
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where 𝜆Q{t|V̄(t)} = limΔt→0 P{t ⩽ Xi < t + Δt, 𝛿i = 0|Xi ⩾ t, V̄(t)}∕Δt is the hazard function for the
censoring distribution that depends on the recorded history of covariates V̄(t) via a proportional hazards
model and 𝜆Q0

(t) is an unspecified baseline hazard for the censoring distribution. The parameters from
the model, 𝛄, are consistently estimated by 𝛄̂ and the estimates can be obtained using most standard
statistical software.

For each patient i = 1,… , n, we define K𝐕
i (u) = P{Ci > u|V̄i(u)} based on the model above. Then

patient i’s estimated weight becomes

Ŵi(u) = K̂𝐕
i (u)

−1 = exp

{
−

n∑
j=1

∫
u

0

e𝛄̂
T𝐕i(v)dNQj

(v)∑n
j′=1 Yj′ (v)e𝛄̂

T𝐕j′ (v)

}
.

We can then estimate the IPCW cumulative hazard by

Λ̂W
T (t) =

n∑
i=1

∫
t

0

dNi(u)Ŵi(u)∑n
j=1 Yj(u)Ŵj(u)

and the IPCW survival estimate adjusted for dependent censoring captured by 𝐕(t) becomes ŜW
T (t) =

exp{−Λ̂W
T (t)}.

2.6.2. Step 2: restricted mean model via pseudo-observations adjusted for dependent censoring. Ander-
sen, Hansen and Klein [8] developed a pseudo observation approach to modeling (1), with a single
follow up window at time t = 0. Xiang and Murray [9] later extended the methodology by incorpo-
rating the inverse weighted survival estimates, described in Step 1, to account for dependent censoring.
Although pseudo observation methods sometimes struggle with intercept bias in small samples, the result-
ing restricted mean estimates are useful in defining risk sets for imputation because these sets are invariant
to intercept estimation. These models also have the advantage of being extremely easy to implement. With
the ultimate goal of defining risk sets that will be used in our imputation procedure, we now summarize
how to estimate pseudo observations from each follow-up window.

For each patient i = 1,… , n at the start of each follow-up window, tj where j = 1,… , ni, the follow-up
window specific pseudo-observation is defined to be

𝒫 𝒪 ij = ñj𝛿j − (ñj − 1)𝛿−i
j (2)

where ñj is the number of patients at-risk at time tj, and 𝛿j and 𝛿−i
j are estimates of E[log{T∗

i (tj)}] based
on datasets with and without patient i, respectively. The expectation of log{T∗

i (tj)} can be written as

−∫
𝜏

0
log(u)dP(Ti − tj > u|Ti > tj) + log(𝜏)P(Ti − tj > 𝜏|Ti > tj).

The estimate of P(Ti − tj > u|Ti > tj) from the entire dataset is given by

P̂(Ti − tj > u|Ti > tj) =
ŜW

T (tj + u)

ŜW
T (tj)

and the estimate of P(Ti − tj > u|Ti > tj) from the dataset without patient i is given by

P̂(−i)(Ti − tj > u|Ti > tj) =
ŜW(−i)

T (tj + u)

ŜW(−i)
T (tj)

where ŜW(−i)
T (t) = exp

{
−

n∑
j=1,j≠i

∫
t

0

dNj(u)Ŵj(u)∑n
j′=1,j′≠i Yj′ (u)Ŵj′ (u)

}
.

We then estimate 𝛿j and 𝛿−i
j with

𝛿j = −∫
𝜏

0
log(u)dP̂(Ti − tj > u|Ti > tj) + log(𝜏)P̂(Ti − tj > 𝜏|Ti > tj), and

𝛿−i
j = −∫

𝜏

0
log(u)dP̂(−i)(Ti − tj > u|Ti > tj) + log(𝜏)P̂(−i)(Ti − tj > 𝜏|Ti > tj),
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inserting these into equation (2) to obtain 𝒫 𝒪 ij, i = 1,… , n and j = 1,… , ni. GEE methodology applied

to data pairs {𝒫 𝒪 ij,𝐙i(tj)}, i = 1,… , n and j = 1,… , ni give us model (1) parameter estimates, 𝜷̂
POW

.

2.6.3. Step 3(a): Risk set formation. As in the simplest case of risk set formation, the minimal constraint
for belonging to Ri is Tk > Ci, k = 1… , n. The covariates𝐙i(t) are related to survival, and we can improve
our imputation by selecting patients with similar urgency at the censoring time Ci based on our linear

model (1). The second constraint for belonging to risk set Ri is then |𝜷̂POW T𝐙k(Ci) − 𝜷̂
POW T𝐙i(Ci)| < 𝜖

where 𝜖 is the parameter that controls how closely the linear predictors should match at Ci. The choice of
epsilon is based on defining a risk set large enough to produce valid multiple imputes but as homogeneous
as possible with respect to urgency. In simulations, epsilon was chosen to ensure at least five patients
in the risk set. In the lung transplant setting, we require that patient k is in the same diagnosis group as
patient i and that LASk(Ci) = LASi(Ci) so that patients have similar urgency and transplant probability.
The parameter epsilon was chosen to ensure at least 20 patients in the risk set.

2.6.4. Step 3(b): Inverse weighted survival estimation within risk set. Within the risk set, the inverse
probability of censoring weight for the kth patient is defined as

WRi

k (u) = 1∕P{Ck > u|Ck > Ci, V̄k(u)}

=
P{Ck > Ci|V̄k(u)}
P{Ck > u|V̄k(u)}

=
K𝐕

k (Ci)

K𝐕
k (u)

.

Then the inverse weighted survival estimate within the risk set is ŜW
T∗

i (tni
)(t|Ri) = exp{−ΛW

T∗
i (tni

)(u|Ri)} for

Ci(tni
) ⩽ u < 𝜏 and ŜW

T∗
i (tni

)(t|Ri) = 0 for u > 𝜏 where Λ̂W
T∗

i (tni
)(u|Ri) is defined as

∑
k∈Ri

∫
u+tni

Ci

dNk(v)Ŵ
Ri

k (v)∑
j∈Ri

Yj(v)Ŵ
Ri

j (v)
.

2.6.5. Step 3(c): Sampling a valid impute. We require an impute for an individual censored at Ci(tni
) < 𝜏,

where imputes are sampled from the survival distribution of T∗
i (tni

) within the risk set, Ri. The impute, t,
is sampled by (a) generating a uniform(0,1) random variable, u, and (b) finding the smallest value t where
ŜW

T∗
i (tni

)(t|Ri) ⩽ u. Then by (c) identifying the observed event time, T∗
k (tni

), that corresponds to t, we can

solve for the associated residual 𝜀 using model (1) where log{T∗
k (tni

)} = 𝜷̂
POW T𝐙k(tni

) + 𝜀. Lastly, (d) if

t = 𝜏 then impute T̃∗
i (tni

) = 𝜏, otherwise impute T̃∗
i (tni

) = exp{𝜷̂POW T𝐙i(tni
) + 𝜀}. If T̃∗

i (tni
) < Ci(tni

) then
sample another impute using steps (a)-(d) until the imputed value is greater than Ci(tni

).

3. Simulations

In order to better understand finite sample behavior of our methods in relation to other available
approaches, we summarize simulation results from 500 Monte Carlo iterations with n = 300 patients.
Each iteration gives GEE parameter estimates for model (1), via (a) the IPCW pseudo-observation method
applied to the first follow-up window as in Xiang and Murray [9], (b) Xiang, Murray and Liu [3]’s
multiple imputation method applied to the first follow-up window and (c) our proposed multiple impu-
tation method that incorporates information from multiple follow up windows. As a benchmark, we also
present (d) results in the absence of censoring when multiple follow-up windows are used in estimation.
Each method assumes 𝜏 = 1 year. Methods using follow-up beyond year 1 in estimation incorporate
information from 1-year windows starting at t1 = 0, t2 = 6 months and t3 = 12 months.

In the first simulation scenario, the data are generated as follows.

Step 1: A time-dependent covariate, Z1i(tj), is simulated from a uniform(0,1) at t1 = 0, t2 = 6 months
and t3 = 12 months. It will be convenient to denote the history of this time-dependent covariate by
Z̄1i(t) = {Z1i(u); 0 ⩽ u ⩽ t}. A time-independent covariate Z2i is simulated from a uniform(0,0.8).

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2435–2451
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Step 2: Each failure time Ti is simulated from a piecewise exponential distribution with hazard equal to
𝜆i1 in the interval [0, 6], 𝜆i2 in the interval (6, 12] and 𝜆i3 in the interval (12,∞). The patient-specific
hazards are chosen to ensure that the model coefficients are the same, regardless of the number of follow-
up windows used. This allows us to compare existing methods that use only the first follow-up window
to our proposed method that uses all the follow-up windows. In Appendix A, we give further details on
the algebra involved.
Step 3: The dependent censoring time Ci is generated from the piecewise exponential distribution
with hazard 𝜆C

i (u) = 𝜆C
0 (u) exp{0.3Z1i(0) + 0.35Z1i(6) × I(u > 6) + 0.01Z1i(0)Z1i(6)I(6 < u ⩽

12)+0.4Z1i(12)I(u > 12)+0.001Z1i(0)×Z1i(6)Z1i(12)I(u > 12)+0.1Z2i} where 𝜆C
0 (u) is equal to 0.01 in

the interval [0, 6], 0.011 in the interval (6, 12] and 0.012 in the interval (12,∞), producing approximately
25% censoring prior to 24 months.

Table I presents the results under the null hypothesis with 𝛽0 = 2.1, 𝛽1 = 0 and 𝛽2 = 0 and when covariates
affect survival with 𝛽0 = 2.1, 𝛽1 = −0.125 and 𝛽2 = 0.1. For each of the parameters, we present the
empirical mean, bias, empirical mean standard error, empirical standard deviation and coverage of the
95% confidence interval for each of the analysis approaches under consideration.

On the basis of the results in Table I, we observe that the parameter estimates from all methods have
minimal bias under both the null hypothesis and for non-zero 𝛽’s. Inclusion of follow-up windows starting
at t2 = 6 and t3 = 12 months results in more efficient estimates. The asymptotic relative efficiency (ARE)
of our proposed method versus the IPCW pseudo-observation method is between 1.79 and 2.52 for each
of the parameters. The ARE of our proposed method versus the multiple imputation method of Xiang
and Murray is between 1.72 and 2.49. The ARE comparing our proposed method with versus without
censoring is between 0.96 and 0.99, indicating that our method effectively handles dependent censoring
and produces parameter estimates with nearly the same efficiency as if censoring never occurred. We have
also conducted simulations with larger sample size (n = 400), and the results are similar (see Supporting
Information ).

In the second set of simulation scenarios, we highlight the operating characteristics of the various
approaches in the case where there is an important predictor (for example, waiting time) that is not

Table I. Comparison of parameter estimates from the IPCW pseudo-observation
method (IPCW-PO) and the multiple imputation method (MI), which both use one
follow-up window; and estimates using uncensored observations (uncensored) and
our multiple imputation method (MI*), which both use three follow-up windows,
under two scenarios with 500 Monte Carlo simulations. M=10 in both multiple
imputation methods.

Parameter IPCW-PO MI Uncensored MI*

𝛽0 = 2.1 2.110 2.110 2.078 2.058
[0.010, 0.125, [0.010, 0.124, [−0.022, 0.085, [−0.042, 0.087,
0.120, 0.968] 0.120, 0.964] 0.086, 0.944] 0.085, 0.940]

𝛽1 = 0 −0.010 −0.010 −0.001 0.002
[−0.010, 0.163, [−0.010, 0.163, [−0.001, 0.100, [0.002, 0.104,
0.161, 0.946] 0.160, 0.948] 0.100, 0.950] 0.101, 0.954]

𝛽2 = 0 −0.008 −0.008 −0.003 −0.003
[−0.008, 0.204, [−0.008, 0.204, [−0.003, 0.150, [−0.003, 0.152,
0.211, 0.958] 0.210, 0.958] 0.153, 0.936] 0.155, 0.936]

𝛽0 = 2.1 2.096 2.096 2.067 2.051
[−0.004, 0.127, [−0.004, 0.127, [−0.033, 0.088, [−0.049, 0.090,
0.126, 0.960] 0.126, 0.962] 0.082, 0.954] 0.085, 0.932]

𝛽1 =-0.125 −0.121 −0.120 −0.123 −0.118
[0.004, 0.167, [0.005, 0.167, [0.002, 0.103, [0.007, 0.107
0.175, 0.934] 0.174, 0.930] 0.110, 0.942] 0.110, 0.952]

𝛽2 = 0.1 0.111 0.111 0.120 0.111
[0.011, 0.208, [0.011, 0.208, [0.020, 0.153, [0.011, 0.155,
0.207, 0.960] 0.207, 0.964] 0.152, 0.960] 0.155, 0.950]

Empirical Mean
[Bias, Empirical Mean Standard Error,
Empirical Standard Deviation, Coverage of 95% Confidence Interval]
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Table II. Comparison of parameter estimates when there is an interaction between
the follow-up window start time (tj) and the time-dependent covariate (Z1i(tj)) with
coefficient set to −0.05 but time is excluded from the fitted models.

Parameter IPCW-PO MI Uncensored MI*

Excluding time in the fitted model
𝛽0 = 2.1 2.198 2.199 2.188 2.165

[0.098, 0.118, [0.099, 0.118, [0.088, 0.079, [0.065, 0.081,
0.115, 0.848] 0.115, 0.842] 0.075, 0.762] 0.078, 0.860]

𝛽1 =-0.125 −0.127 −0.128 −0.371 −0.342
[−0.002, 0.154, [−0.003, 0.154, [−0.246, 0.097, [−0.217, 0.101,
0.164, 0.938] 0.164, 0.938] 0.100, 0.290] 0.101, 0.430]

𝛽2 = 0.1 0.091 0.089 0.080 0.074
[−0.009, 0.192, [−0.011, 0.192, [−0.020, 0.141, [−0.026, 0.144,
0.189, 0.960] 0.188, 0.962] 0.146, 0.936] 0.147, 0.938]

We compare the IPCW pseudo-observation method (IPCW-PO) and the multiple imputation
method (MI), which both use one follow-up window; and using uncensored observations
(Uncensored) and our multiple imputation method (MI*), which both use three follow-up
windows, with 500 Monte Carlo simulations. M=10 in both multiple imputation methods.
Empirical Mean
[Bias, Empirical Mean Standard Error,
Empirical Standard Deviation, Coverage of 95% Confidence Interval]

included in model (1). For each of the simulations summarized in Tables II and III, the outcomes are
generated assuming an interaction between follow-up window time tj and the time-dependent predic-
tor Z1i(tj) with coefficient 𝛽4 = −0.05. The coefficient of the main effect of tj is assumed to be 0
(i.e 𝛽3 = 0). All remaining coefficients are the same as those used to generate Table I results. The coef-
ficients corresponding to Z1i(0), Z1i(6) and Z1i(12) are −0.125, −0.425 and −0.725, respectively, after
incorporating the influence from the interaction term in the urgency model. Excluding the interaction
term from model (1) in this scenario results in a mixture coefficient of −0.37 for Z1i(tj) that describes the
association between Z1i(tj) and the restricted mean across the mixture of Z1i(tj) values seen in the cohort
at times 0, 6 and 12 months. Further details regarding data generation for this setting are relegated to
Appendix A.

Table II gives results when model (1) is fit without the interaction term between follow-up window
time tj and the time-dependent predictor Z1i(tj). Results show very little bias in estimating the mixture
coefficient using our method. Alternatively, the IPCW pseudo-observation (IPCW-PO) and MI methods
that use only information during the first follow-up window give estimates for 𝛽1 that do not reflect later
changes in risk associated with Z1i(tj). Table III shows good model performance when the interaction
term between tj and Z1i(tj) that generated the data is included in model (1).

4. Example

The lung waitlist consists of 10,740 transplant candidates aged 12 years and older who were newly listed
between September 1, 2006 and March 2, 2012; 7,359 of these patients received a transplant, 884 died
while on the waitlist, 1,125 dropped off the waitlist without a transplant, and 1,372 were alive on the
waitlist on March 2, 2012. In addition to mortality data maintained by UNOS, the Social Security Death
Master File was used to supplement vital status information in our cohort. From these records, 503 of
1,125 patients who chose to leave the waitlist died during the approximate 5.5-year follow-up period and
622 remained at risk at the end of this same period. Risk factors used to model LAS urgency are given
by the OPTN Thoracic Committee (OPTN Policy 3.7) and have been vetted as worthy of inclusion in the
algorithm. Most have proven historical statistical significance in at least one previous analysis of lung
candidate data.

The data reported here have been supplied by the Minneapolis Medical Research Foundation as the
contractor for the Scientific Registry of Transplant Recipients (SRTR). The interpretation and reporting
of these data are the responsibility of the author(s) and in no way should be seen as an official policy of or
interpretation by the SRTR or the U.S. Government. This study used data from the SRTR. The SRTR data
system includes data on all donor, wait-listed candidates, and transplant recipients in the USA, submitted
by the members of the Organ Procurement and Transplantation Network (OPTN) and has been described

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2435–2451
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Table III. Comparison of parameter estimates
when there is an interaction between the
follow-up window start time (tj) and the time-
dependent covariate (Z1i(tj)) with coefficient
set to −0.05.

Parameter Uncensored MI*
Including time in the fitted model

𝛽0 = 2.1 2.236 2.234
[0.136, 0.097, [0.134, 0.099,
0.095, 0.672] 0.096, 0.688]

𝛽1 =-0.125 −0.121 −0.122
[0.004, 0.138, [0.003, 0.140,
0.145, 0.936] 0.146, 0.934]

𝛽2 = 0.1 0.087 0.082
[−0.013, 0.148, [−0.018, 0.152,
0.152, 0.944] 0.154, 0.946]

𝛽3 = 0 −0.012 −0.017
[−0.012, 0.012, [−0.017, 0.013,
0.013, 0.820] 0.013, 0.720]

𝛽4 =-0.05 −0.043 −0.038
[0.007, 0.022, [0.012, 0.023,
0.022, 0.926] 0.023, 0.914]

We compare using uncensored observations (uncen-
sored) and our multiple imputation method (MI*),
which both use three follow-up windows, with 500
Monte Carlo simulations. M=10 in the multiple
imputation method.
Empirical Mean
[Bias, Empirical Mean Standard Error,
Empirical Standard Deviation, Coverage of 95%
Confidence Interval]

elsewhere. The Health Resources and Services Administration, U.S. Department of Health and Human
Services provides oversight to the activities of the OPTN and SRTR contractors.

Patients are divided into four overarching diagnosis groups, A through D, by the OPTN Thoracic Com-
mittee that are considered to be similar with respect to waitlist and post-transplant survival. The details
of the diagnoses that comprise each group are given in OPTN Policy 3.7. In our dataset at listing, of
the 3618 patients in Group A, 2924 (81%) were diagnosed with chronic obstructive pulmonary disease;
in Group B, 262 (56%) out of 468 were diagnosed with primary pulmonary hypertension; in Group C,
1284 (99%) out of 1296 were cystic fibrosis patients; and in Group D, 3633 (68%) out of 5358 patients
were diagnosed with idiopathic pulmonary fibrosis. A few group A and D diagnoses are allowed to enter
the urgency model as their own risk factors. For group A, these are bronchiectasis, lymphangioleiomy-
omatosis and sarcoidosis with PA mean⩽30mm Hg. For group D, these are obliterative bronchiolitis,
pulmonary fibrosis other and sarcoidosis with PA mean>30 mm Hg. Eisenmenger syndrome, from group
B, is also listed as a risk factor in LAS. Most of these smaller diagnosis groups are not statistically differ-
ent from their larger conglomerate group designation but having a separate parameter has been important
in obtaining public approval of the algorithm.

In Table IV, we summarize the risk factors at listing within each of the four diagnoses groups. These
factors are age, body mass index (BMI), cardiac index prior to any exercise, central venous pressure
(CVP) at rest, whether they were on continuous mechanical ventilation, serum creatinine, whether they
were diabetic, percent predicted forced vital capacity (FVC), whether they required assistance with the
activities of daily living (ADL), O2 requirement at rest needed to maintain adequate oxygen saturation,
partial pressure of carbon dioxide (PCO2), pulmonary artery (PA) systolic pressure at rest, and 6-minute
walk distance obtained while receiving supplemental oxygen to maintain oxygen saturation of 88% or
greater at rest. Those familiar with the LAS may recall that bilirubin has recently been approved as an
urgency risk factor. However, this measure has only recently started being collected by the OPTN and
was unavailable in the March 2012 release data used for our analyses. In our cohort, those who become
inactive or otherwise remove themselves from the waitlist have often deteriorated to the point of having
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Table IV. Summary of LAS urgency covariates at listing, by diagnosis group, in 10,740 lung
transplant candidates†.

Group A Group B Group C Group D
LAS Covariates n=3618 n=468 n=1296 n=5358

Age (years) 58.1 (8.3) 45.7 (14.7) 28.4 (10.3) 57.1 (11.0)
BMI (kg/m2) 24.6 (4.3) 25.1 (4.7) 19.3 (2.9) 27.0 (4.4)
Cardiac Index<2.0 (L/min/m2) 150 (4.1%) 82 (17.5%) 16 (1.2%) 271 (5.1%)
CVP (mm Hg) 7.7 (4.2) 10.8 (6.5) 5.2 (3.8) 5.5 (4.3)
Continuous Mechanical Ventilation 26 (0.7%) 10 (2.1%) 82 (6.3%) 196 (3.7%)
Creatinine (serum mg/dL) 0.8 (0.2) 1.0 (0.6) 0.7 (0.3) 0.9 (0.3)
Diabetes 430 (11.9%) 64 (13.7%) 627 (48.4%) 1249 (23.3%)
FVC (% predicted) 54.0 (17.5) 66.4 (22.7) 40.0 (11.8) 47.6 (17.0)
No assistance with ADL 368 (10.2%) 32 (6.8%) 249 (19.2%) 506 (9.4%)
O2 requirement at rest (L/min) 3.0 (2.5) 4.0 (4.4) 2.9 (3.5) 4.9 (5.2)
PCO2 (mm Hg) 49.9 (10.8) 42.4 (6.4) 53.4 (17.4) 44.7 (8.2)
PA systolic (mm Hg) 38.3 (10.8) 76.7 (25.7) 39.0 (10.6) 43.2 (16.2)
6-min walk distance (feet) 783.4 (347.9) 776.7 (438.4) 970.6 (465.8) 797.2 (464.2)

†For continuous variables, numbers shown are mean (standard deviation)
For binary variables, numbers shown are number (proportions)
Body mass index (BMI); cardiac index (CI); central venous pressure (CVP)
Activities of daily living (ADL); pulmonary artery (PA)

poor surgical risk. Because urgency estimates in our application are meant to capture the natural course
of mortality without a transplant, all time at risk after listing is included in urgency estimation regardless
of active or inactive status for accepting organ offers.

Patients in group C are on average the youngest transplant candidates (mean age is 29.4 years), and
this is expected because the group consists almost entirely of patients with cystic fibrosis, a genetic dis-
order that results in lung disease from a very young age. The main diagnoses in the other groups are lung
diseases that develop over time, so most patients are older when they require a lung transplant. Having
a cardiac index less than 2 L/min/m2 is considered to be an indicator that the heart is not functioning
well. On the basis of this measure, patients in group B tend to be the most severely ill with 17.5% of the
patients having a cardiac index < 2 L/min/m2. The proportion of patients requiring continuous mechani-
cal ventilation is highest in group C (6.3%) and lowest in group A (0.7%). FVC % predicted is a measure
of lung function, and in terms of this measure, the diagnoses groups are ranked C, D, A, and B from most
severely ill to least severely ill. However, the patients in group C are also most likely to need no assistance
with activities of daily living (19.2%) and are able to walk much long distances in the 6-minute walk test
compared with the other groups. Group B consists of patients with various hypertensive disorders and as
we would expect, patients in this group have the highest average PA systolic pressure at rest (76.7 mm
Hg). Patients from different diagnosis groups are transplanted at different rates according to their LAS
scores, which incorporates diagnosis as a predictor. For example, in our cohort described in Table 2, the
number (%) of transplants was 2359 (65.2%), 238 (50.9%), 873 (67.4%), and 3889 (72.6%) for groups
A–D, respectively.

As urgent patients receive transplants, they are removed from the waitlist. This systematic removal of
patients creates a problem of dependent censoring that we adjust for using inverse probability of censoring
weights in the survival estimation procedure discussed in Section 2.6.1. For each patient on the waitlist,
the probability of being censored is estimated from a time-dependent Cox model, the results of which are
presented in Table V. The covariates that influence censoring are gender, race (white, black, and other),
height, blood type (A, B, O, and AB) and time-dependent LAS and listing status (active and inactive).

Gender, race, and height are all seen to be highly significant characteristics for differentiating which
patients will be censored. Blood types A, B, and AB were observed to be similar in terms of censoring
hazard but patients with blood type O had a lower hazard of censoring compared with blood type A (haz-
ard ratio=0.9, 95% confidence interval: 0.92–0.99). Patients with an LAS of 0 have the lowest possible
score with a very low chance of transplant (censoring) that obtains ameliorated a bit by geography when
higher risk patients are not in competition for an organ. A one-unit increase in LAS when the 0<LAS⩽30
results in a decreasing hazard that reflects the low probability of being offered a transplant for low LAS
scores. The effect of a one unit increase in LAS decreases for higher ranges of LAS scores. This may

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2435–2451
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Table V. Proportional hazards censoring model for 10,740 lung transplant candidates

Hazard ratio 95% Confidence interval p-value

Time-independent characteristics
Female (vs Male) 0.76 (0.72,0.81) < 0.0001
Black (vs White) 0.78 (0.72,0.84) < 0.0001
Other (vs White) 0.79 (0.73,0.85) < 0.0001
Height: < 5′3′′ (versus > 5′9′′) 0.60 (0.56,0.65) < 0.0001
Height: 5′3′′-5′6′′ (versus > 5′9′′) 0.77 (0.72,0.83) < 0.0001
Height: 5′6′′-5′9′′ (versus > 5′9′′) 0.86 (0.82,0.91) < 0.0001
Blood type: B (versus A) 1.01 (0.94,1.08) 0.8118
Blood type: O(versus A) 0.95 (0.91,0.99) 0.0194
Blood type: AB (versus A) 1.08 (0.96,1.20) 0.2048
Time-dependent characteristics
LAS> 0 (versus LAS= 0) 1190 (7.03, > 3000) 0.0068
Unit increase in LAS: 0<LAS⩽30 0.77 (0.65,0.92) 0.0031
Unit increase in LAS: 30<LAS⩽35 1.14 (1.11,1.17) < 0.0001
Unit increase in LAS: 35<LAS⩽40 1.10 (1.08,1.11) < 0.0001
Unit increase in LAS: 40<LAS⩽60 1.04 (1.03,1.04) < 0.0001
Unit increase in LAS: LAS>60 1.02 (1.02,1.02) < 0.0001
Active vs inactive status 4.73 (4.34,5.15) < 0.0001

Figure 2. Waitlist probability of survival estimated by the Kaplan-Meier method and the IPCW-survival method.
The 95% point-wise confidence intervals for each estimated survival curve are depicted by dashed lines.

N = number of patients at risk at the start of each follow-up window.

seem counterintuitive; however, the probability of being censored is counterbalanced by the probability
of surviving until a transplant becomes available.

Figure 2 compares the IPCW survival estimate of waitlist survival to the Kaplan-Meier estimate of
waitlist survival from listing up to five years post listing. The Kaplan-Meier estimate does not adjust
for dependent censoring resulting from transplantation and therefore estimates higher waitlist survival
probabilities compared to the IPCW survival. The Wald type 95% point-wise confidence interval for the
IPCW survival estimate is calculated using 100 bootstrap replicates to estimate the variance of the IPCW
survival estimate.

We define 1-year follow-up windows starting at 0, 6, 12, 18, 24, 30, and 36 months, where the start time
of the final follow-up window was chosen to ensure we had at least 25 risk set deaths in each follow-up
window. UNOS required patients on the waitlist to update their covariates every 6 months, and therefore
our choice of follow-up windows that start every 6 months is appropriate in this setting. The IPCW
pseudo-observations are constructed and used to fit model (1), which describes lung candidate urgency
based on LAS risk factors, and the parameter estimates are then used to define risk sets.
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In Table VI, we present the results of fitting the restricted mean model to estimate lung candidate
urgency using three different methods, (a) the IPCW pseudo-observation method applied to the first
follow-up windows [9], (b) the multiple imputation method applied to the first follow-up window [3]
and (c) our proposed multiple imputation method that incorporates information from multiple follow up
windows. The exponentiated parameters (e𝛽), 95% confidence intervals, and p-values are presented for
each risk factor and are therefore interpreted in terms of their multiplicative effect on the number of days
lived in the next year. Note that results presented in [9] and [3] are based on an older release of waitlist
candidate data.

The intercept estimated from the IPCW-PO method is larger than that of the multiple imputation
method applied to the first follow-up window. In addition, most of the effect size confidence intervals
from the IPCW-PO method are wider than those obtained using the multiple imputation method applied
to the first follow-up window. In general, the conclusions reached regarding statistically significant risk
factors are the same even if the effect sizes sometimes differ between the two methods. The exceptions
include BMI, Diabetes, Eisenmenger Syndrome, Sarcoidosis with PA mean>30 mm Hg and PCO2 (per
10 mm Hg).

Our proposed multiple imputation procedure estimates the effect of the risk factors across the seven
follow-up windows viewed during the 4 years since listing. Hence, our parameter estimates should be
comparable with the other methods if time since listing does not play a strong role. Again, the intercept
was the most different between our proposed method, and the others, approximately 20 days smaller than
the multiple imputation method based on only the first follow-up window. Our proposed method gave
shorter confidence intervals compared with the other methods indicating increased efficiency resulting
from the incorporation of additional follow-up windows. Comparing the two multiple imputation pro-
cedures, we observe that time since listing plays a role for the risk factor indicating whether they were
on continuous mechanical ventilation. The reduction in expected number of days lived for patients on
continuous mechanical ventilation decreases over time. This observation is confirmed when we include
interactions between risk factors and time into the model. The additional information contained in later
follow-up windows also allows us to confirm the statistical significance of some of the risk factors
including CVP in group B, Creatinine, Sarcoidosis with PA mean ⩽30 mm Hg and PCO2.

5. Discussion

LAS implementation has successfully reduced waitlist deaths, which reflects vitally important improve-
ments for end stage lung disease care. This same reduction in deaths results in less power to estimate
waitlist survival in current cohorts. It is therefore critical to develop statistical methodology that is able
extract as much information as possible from available data. As we saw in Section 4, incorporating addi-
tional follow-up windows to estimate transplant urgency resulted in greater efficiency, as evidenced by
narrower confidence intervals for parameter estimates. We were also able to confirm that low central
venous pressure remained a statistically significant risk factor for patients in diagnosis group B for the
current cohort. Measuring this risk factor is an invasive procedure, so it is reassuring that its collection is
useful for ranking patients.

UNOS requires lung waitlisted patients to update their risk factors every 6 months and therefore
1-year follow-up windows timed to begin at 6-month intervals are a natural choice in this setting. In the
special case where there are no covariates used in 𝜏-restricted mean estimation via our method, we have
previously shown that windows starting every 𝜏/2 units have attractive operating characteristics [10]. In
settings where covariate data is updated more frequently, the only operational cost to including more
frequently spaced follow-up windows is computational time.

One feature that was intentionally designed into the LAS was a lack of influence of waiting time
on a patient’s score. The allocation method that preceded the LAS was based entirely on waiting time,
with those waiting longer given higher priority for transplantation. This influenced listing behavior to
the extent that candidates would enter the waitlist before being willing to accept an organ, just to accrue
waiting time in the event they needed a transplant later. This also resulted in a high number of deaths
among those who were too urgent to accrue the needed waitlist time to obtain to the top of the list.
Therefore, our restricted mean estimation of waitlist urgency is similar for patients with a similar covariate
risk profile, regardless of time on the waitlist.

A key challenge addressed by our method is how to account for dependent censoring while minimizing
model assumptions. We followed the multiple imputation approach of Xiang, Murray and Liu in imput-
ing the dependently censored values. One advantage of this approach is that each censored outcome is
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imputed from a risk set of patients, with similar urgency to the censored patient, who also remain at risk
beyond the patient’s censoring time. Risk set selection that additionally restricts patients to have similar
censoring risk has also been proposed in the literature with an argument that the additional restriction
confers double robustness to model misspecification of either the mortality or censoring model [11].
Along these lines, we additionally required our risk set to have a similar LAS to the censored patient at
the corresponding follow-up time, which was the most influential factor driving a loss-to-follow-up on
the waitlist. Because the multiple imputation approach of Xiang, Murray and Lin additionally adjusts for
dependent censoring within the risk set via an inverse weighting method, we feel comfortable that our
approach has sufficiently addressed dependent censoring in our application. It should be noted, however,
that the inverse weighting method used to produce an impute from each censored patient’s compara-
ble urgency risk set does not employ doubly-robust inverse weighting methods seen in the literature, for
instance, [12–16]. So it is possible that further modest improvements to our method could be found using
different inverse weighting approaches.

Notation used in developing our model overlaps to some degree with notation used in restricted mean
residual life estimation [17] and in landmark analyses methods [2, 18–20]. Restricted mean residual life
estimation focuses on the conditional estimation of survival among progressively more restrictive risk
sets. Similarly, the landmark analyses approach initially proposed by Anderson et al. [18] also focuses
on conditional analyses from various fixed landmark times and neither attempts to combine information
across the multiple follow-up windows defined by the landmark times. More recent approaches [2,20] do
consider combining information across the follow-up windows within the context of the proportional haz-
ards modeling framework. Therefore, our approach could be considered to fall within the broad spectrum
of research that encompasses landmark analyses methods.

In the example data analysis, we have presented results for the analysis that uses only the first follow-
up window and the analysis that uses all the available follow-up windows. We believe that including the
later follow-up windows gives a more accurate picture of the distribution of risk factors among patients
on the waitlist rather than just capturing the characteristics of the waitlist at listing.

6. Software

Software, in the form of R code, is available in the Supporting Information online or on request from the
corresponding author (ntayob@mdanderson.org).

Appendix A: Patient specific hazards

Let Ti for i = 1,… , n be the failure times of the patients in the simulated dataset. We assume that Ti
follows a piecewise exponential model with subject-specific hazards equal to 𝜆i1 in the interval [0, 6],
𝜆i2 in the interval (6, 12] and 𝜆i3 in the interval (12,∞). In our simulation setting, we consider three
follow-up windows of length 𝜏 = 12 months, starting at times t1 = 0, t2 = 6, and t3 = 12 months. The
subject-specific hazards are chosen to ensure the following is true:

E[log{min(Ti − t3, 𝜏)}|Ti > t3, Z̄1i(Ti),Z1i(t3) = z∗1,Z2i = z∗2]
= E[log{min(Ti − t2, 𝜏)}|Ti > t2, Z̄1i(Ti),Z1i(t2) = z∗1,Z2i = z∗2]
= E[log{min(Ti − t1, 𝜏)}|Ti > t1, Z̄1i(Ti),Z1i(t1) = z∗1,Z2i = z∗2]
= 𝛽0 + 𝛽1z∗1 + 𝛽2z∗2,

for constants z∗1 and z∗2. This results in coefficients for model (1) that are the same regardless of the number
of follow-up windows used and allows us to compare the results from methods that apply to only the first
follow-up window to our proposed method, which applies to all three follow-up windows.

For the piecewise exponential distribution,

E[log{min(Ti − tj, 𝜏)}|Ti > tj, Z̄1i(Ti),Z2i]

= −∫
𝜏

0
log(u)dP{Ti − tj > u|Ti > tj, Z̄1i(Ti),Z2i}

+ log(𝜏)P{Ti − tj > 𝜏|Ti > tj, Z̄1i(Ti),Z2i},

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2435–2451
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where P{Ti − tj > u|Ti > tj, Z̄1i(Ti),Z2i} = exp{− ∫ tj+u
tj

[𝜆i1I(t1 ⩽ v ⩽ t2) + 𝜆i2I(t2 < v ⩽ t3) + 𝜆i3I(t3 <

v < ∞)]dv}.
Therefore, we have three nonlinear equations with three unknown parameters that we need to solve for:

𝜆i1, 𝜆i2 and 𝜆i3. In each case, the solution is obtained using numerical algorithms for nonlinear equations.
In the first simulation scenario (Table I), the data are generated as follows. Starting with the follow-up

window t3 = 12, we have

𝛽0 + 𝛽1Z1i(12) + 𝛽2Z2i

= ∫
12

0
log(u)𝜆i3 exp{−u𝜆i3}du + log(12) exp{−12𝜆i3},

where 𝜆i3 is the only unknown quantity.
For t2 = 6, we have

𝛽0 + 𝛽1Z1i(6) + 𝛽2Z2i

= ∫
6

0
log(u)𝜆i2 exp{−u𝜆i2}du + ∫

12

6
log(u)𝜆i3 exp{−6𝜆i2 − u𝜆i3 + 6𝜆i3}du

+ log(12) exp{−6𝜆i2 − 6𝜆i3},

where 𝜆i2 is the only unknown quantity.
For t1 = 0, we have

𝛽0 + 𝛽1Z1i(0) + 𝛽2Z2i

= ∫
6

0
log(u)𝜆i1 exp{−u𝜆i1}du + ∫

12

6
log(u)𝜆i2 exp{−6𝜆i1 − u𝜆i2 + 6𝜆i2}du

+ log(12) exp{−6𝜆i1 − 6𝜆i2},

where 𝜆i1 is the only unknown quantity.
In the second set of simulations (Tables II and III), the data are generated as follows. Starting with the

follow-up window t3 = 12, we have

𝛽0 + 𝛽1Z1i(12) + 𝛽2Z2i + 𝛽3 ∗ 12 + 𝛽4 ∗ 12 ∗ Z1i(12)

= ∫
12

0
log(u)𝜆i3 exp{−u𝜆i3}du + log(12) exp{−12𝜆i3},

where 𝜆i3 is the only unknown quantity.
For t2 = 6, we have

𝛽0 + 𝛽1Z1i(6) + 𝛽2Z2i + 𝛽3 ∗ 6 + 𝛽4 ∗ 6 ∗ Z1i(6)

= ∫
6

0
log(u)𝜆i2 exp{−u𝜆i2}du + ∫

12

6
log(u)𝜆i3 exp{−6𝜆i2 − u𝜆i3 + 6𝜆i3}du

+ log(12) exp{−6𝜆i2 − 6𝜆i3},

where 𝜆i2 is the only unknown quantity.
For t1 = 0, we have

𝛽0 + 𝛽1Z1i(0) + 𝛽2Z2i + 𝛽3 ∗ 0 + 𝛽4 ∗ 0 ∗ Z1i(0)

= ∫
6

0
log(u)𝜆i1 exp{−u𝜆i1}du + ∫

12

6
log(u)𝜆i2 exp{−6𝜆i1 − u𝜆i2 + 6𝜆i2}du

+ log(12) exp{−6𝜆i1 − 6𝜆i2},

where 𝜆i1 is the only unknown quantity.
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