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Abstract 

 

We examine how analysts‟ changing incentives driven by changes in market uncertainty affect their 

forecast optimism. Analysts issue more optimistically biased earnings forecasts and buy 

recommendations under high market uncertainty (VIX). The lower reputational costs and larger 

benefits of optimistic output explain the increased optimistic output: Analysts are less likely to be 

penalized for inaccuracy and can stimulate more trading activity from optimistically biased output 

when market uncertainty is high. We find that the likelihood of analysts‟ turnover decreases, while the 

trading volume associated with optimistic output increases, with VIX. No evidence suggests that 

analysts‟ self-selection affects our findings on optimism and market uncertainty. 
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1. Introduction 

Starting with Schipper (1991) and Brown (1993), and more recently Ramnath, Rock, and 

Shane (2008) and Bradshaw (2011), researchers have suggested that the analyst-forecasting literature 
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focus more on the context in which analysts make their decisions. Schipper (1991) and Brown (1993) 

emphasize the roles of macroeconomic factors in formulating stock price forecasts and 

recommendations. Ramnath, Rock, and Shane (2008) describe the analyst reporting environment, in 

which macroeconomic conditions are an important factor in obtaining and analyzing information to 

produce earnings forecasts and stock recommendations. Stock-market volatility is viewed as a market-

based measure of economic uncertainty (Bloom, 2009).  

Volatile market conditions not only increase firms‟ earnings volatility, but also increase the 

volatility of information signals about a firm‟s value, since the firm is not independent of the business 

conditions in which it operates. This increase in the operational and information uncertainty affects all 

analysts in gathering information about the effect of market-level factors on firm performance 

(Amiram, Landsman, Owens, and Stubben, 2014; Loh and Stulz, 2015). In this context, this study 

examines whether the changes in market uncertainty affect sell-side analysts‟ optimism when they 

issue earnings forecasts and stock recommendations. Our goal is to shed new light on information 

contained in analysts‟ output and deepen our understanding of the role of analysts‟ incentives in their 

decision-making process. 

Sell-side analysts face a tradeoff of incentives between issuing accurate forecasts to enhance 

their reputation and issuing optimistic forecasts to generate brokerage trading activity (Hayes, 1998; 

Hong, Kubik, and Solomon, 2000; Jackson, 2005; Cowen, Groysberg, and Healy, 2006; Beyer and 

Guttman, 2011) or to maintain a favorable relationship with firm management (Francis and Philbrick, 

1993; Chen and Matsumoto, 2006; Mayew, 2008; Soltes, 2014; Brown, Call, Clement, and Sharp, 

2015). Maintaining forecast accuracy enhances the analysts‟ reputation (Jackson 2005), enables 

analysts to move to larger brokerage houses (Hong and Kubik, 2003), and helps maintain job security 

(Hong, Kubik, and Solomon, 2000). Despite the reputational effects and career concerns associated 

with issuing optimistic forecasts, however, there is vast evidence that analysts are on average 

optimistically biased (Stickel, 1990; Abarbanell, 1991; Dreman and Berry, 1995; Chopra, 1998; Lim, 

2001, among others).  
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Most of the studies mentioned above examine the cross-sectional relationship between 

analysts‟ incentives and optimistic output. In particular, the literature has largely examined cross-

sectional measures of uncertainty (e.g., analyst-forecast dispersion) in studying analyst optimism 

(Ackert and Athanassakos, 1997). We extend the rich literature by taking a different approach and 

exploiting the time variation in market-level uncertainty to study analyst incentives and output. The 

benefits of using market-level uncertainty are two-fold. The first is that it allows us to exploit an 

exogenous variation in the analysts‟ information environment that affects all analysts, whereas cross-

sectional firm-level uncertainty measures may be correlated with analyst or firm characteristics. The 

second is that changes in market uncertainty provide a framework in which we can analyze the costs 

and benefits of analysts‟ optimistic output, by which we explain analysts‟ incentives for optimistic 

output. The scope of past empirical studies was largely limited to the benefits or the negative 

consequences of optimistic output. We contribute to the literature by enlarging the scope of our study 

to comprehensively investigating the effect of uncertainty on the costs and benefits of analysts‟ 

optimistic output, and the level of optimistic output, all at the individual analyst level.  

We set up a simple framework in which an analyst decides the optimal level of optimistic 

output to maximize her utility, which is determined by her reputation level and trading commissions. 

Building on prior cross-sectional studies, we expect that an increase in optimistic output decreases the 

analyst‟s reputation but increases trading-commission benefits. When the level of uncertainty in the 

information environment changes, the marginal costs and benefits of issuing optimistic output also 

change, and therefore we expect the level of the analyst‟s optimism to vary accordingly over time.
3
 

We use stock-market uncertainty as a proxy for the aggregate fundamental volatility of firms 

and, hence, the uncertainty of analysts‟ information environment in issuing earnings forecasts and 

stock recommendations. Market uncertainty is measured by the VIX index, which is the forward-

looking 30-day implied volatility of stock options. VIX is often used as a measure of stock-market 

                                                           
3
 Our marginal benefit-cost framework can easily be expanded to incorporate other benefits and costs of 

optimistic output. We use trading commission as an example of a benefit of issuing optimistic output in our 

main analysis, but we also examine other explanations such as maintaining a favorable relationship with 

management in section 5. 
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volatility or uncertainty.
4
 Bloom (2009) shows that stock-market volatility (VIX) is strongly correlated 

with firm and industry earnings growth dispersion, as well as GDP forecast dispersion. In a similar 

vein, Bekaert, Hoerova, and Lo Duca (2013) find that the fluctuations in VIX appear to heavily reflect 

movements in aggregate-level uncertainty. 

We first examine the changes in the marginal cost and benefit of analysts‟ optimistic output to 

better understand the underlying changes in analysts‟ incentives. We hypothesize that the reputational 

cost of optimistic output decreases with the level of market uncertainty. When there is high 

uncertainty in the analysts‟ information environment, forecast inaccuracy can be attributed to noisy 

signals instead of the analysts‟ forecasting ability. To the extent that inaccurate forecasts lead to 

analysts‟ reputational loss, we expect that analysts with poor performance due to optimistically biased 

forecasts are more likely to be penalized by, for example, having to leave the industry (Hong, Kubik, 

and Solomon, 2000; Groysberg, Healy, and Maber, 2011) or move down to low-status brokerage 

firms (Hong and Kubik, 2003). Accordingly, we examine how the relationship between prior 

optimism and the likelihood of experiencing unfavorable career outcomes changes under different 

levels of market uncertainty. Indeed, we find that analysts are less likely to leave the industry or move 

to a low-status brokerage firm for optimistically biased forecasts when VIX is high.  

We next examine whether the marginal benefit of optimistic output changes with uncertainty. 

Trading commissions are known to be an important benefit related to analysts‟ optimistic bias since 

optimistic forecasts generate more trading activity than pessimistic forecasts (Jackson, 2005; Beyer 

and Guttman, 2011). Recent studies show that analysts‟ forecasts and recommendations have a larger 

effect on investor beliefs during times of high market uncertainty (Amiram, Landsman, Owens, and 

Stubben, 2014; Loh and Stulz, 2015).
 
Together, these prior studies lead us to expect that analysts can 

increase their utility by issuing optimistic forecasts during high-uncertainty periods, as their output 

would have a stronger effect on investor beliefs, which would lead to more trading commissions. Our 

empirical work provides evidence for the increase in marginal benefit of optimistic output when 
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 See Bloom, 2009; Bekaert, Hoerova, and Lo Duca, 2013; Nyborg and Östberg, 2014; Chung and 

Chuwonganant, 2014, among others.  
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market uncertainty is high. We estimate the amount of trading activity around an analyst‟s forecast-

issue date and examine the association between the level of VIX, analysts‟ output, and trading activity. 

We find that when VIX is high, trading volume increases with the level of optimism in both earnings 

forecasts and stock recommendations.  

Another important benefit of optimistic output is maintaining a favorable relationship with 

firm management to gain better access to inside information. We expect the demand for information 

from management to be stronger for firms with more firm-level information relative to market-level 

information (Frankel, Kothari, and Weber, 2006). Consistent with this view, we find that forecasts and 

recommendations are more optimistic for firms with higher firm-level information when VIX 

increases. In sum, our findings indicate that analysts‟ marginal benefit of optimistic output increases 

and its marginal cost decreases under higher market uncertainty. 

Our main hypothesis is that the decrease in the marginal cost and the increase in the marginal 

benefit of issuing optimistic forecasts will lead to an increase in the level of optimistic output under 

higher market uncertainty. Consistent with our prediction, we find that an increase in market 

uncertainty increases analysts‟ optimistic forecast bias at the aggregate market level, the firm level, 

and the individual analyst level. We show that market uncertainty plays an important role in analysts‟ 

forecasts after controlling for well-known determinants of analysts‟ forecasting performance, such as 

experience, All-star status, brokerage size, coverage, firm size, etc. The effect of VIX on optimistic 

forecasts is economically and statistically significant: an increase in one standard deviation of the 

level of VIX is associated with a 13% increase in optimistic forecast relative to the average forecast 

error.
5
 We also find that stock recommendations become more optimistic when VIX is high. Analysts 

act more aggressively by issuing a higher percentage of buy recommendations for a given firm under 

high levels of VIX.  

An alternative explanation for increased optimism is that when information uncertainty is 

high, analysts drop coverage if they have pessimistic information they decide not to disseminate 

                                                           
5
 Our findings are consistent with prior literature that examines the relationship between analysts‟ forecasts and 

firm-level uncertainty (Lim, 2001; Jackson, 2005). Jackson (2005) empirically tests how the conflicting 

incentives affect analyst output and finds that analyst optimism level increases with analyst-forecast dispersion, 

which is frequently used as a proxy for firm-level information uncertainty (Zhang, 2006).  
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(McNichols and O‟Brien, 1997). This self-selection of firms will lead to optimistic output. However, 

we observe that both the number of analysts covering a given firm and the earnings-forecast 

frequency increase with the level of VIX.  

Another possible explanation for lower forecast accuracy under uncertainty is that analysts‟ 

forecasting ability declines when there is high market uncertainty. Making forecasts when market 

uncertainty is high is more challenging, since the analyst must understand macro-level data and 

analyze its direct effect on the firm, as well as its indirect effects through the firm‟s suppliers, 

customers, and competitors (Amiram, Landsman, Owens, and Stubben, 2014). Although this 

alternative explanation predicts that analysts‟ forecast accuracy declines under uncertainty, it does not 

explain the direction of the bias that we observe in our empirical analysis, i.e., the presence of 

optimistic bias (as opposed to pessimistic bias), nor can it explain why analysts become more 

aggressive in making stock recommendations. 

This study contributes to the finance, accounting, and economics literature in several ways. 

Recent studies examine the effect of market uncertainty in financial markets on market liquidity 

(Chung and Chuwonganant, 2014), equity risk premium (Nagel, 2012; Graham and Harvey, 2013), 

and investor learning from new information (Loh and Stulz, 2015; Choi, 2015). However, the 

interaction between market conditions and analysts‟ forecasts has received comparatively little 

attention in the literature. A closely related paper is Amiram, Landsman, Owens, and Stubben (2014), 

which finds that analysts issue less timely and more inaccurate forecasts during periods of high 

market uncertainty. They use a behavioral explanation of analysts‟ underreaction to news in 

explaining forecast inaccuracy, while the current paper focuses on the direction of the forecast bias 

and directly examines the changes in analysts‟ incentives (i.e., by costs and benefits) in explaining the 

optimistic bias under market uncertainty. We find strong evidence that analysts‟ incentives vary with 

the level of market uncertainty, which is a novel finding. A related working paper by Loh and Stulz 

(2015) examines the role of analyst incentives in explaining why analysts have a greater impact 

during bad times (i.e., crises and recessions). Their research question is different from ours: They 

focus on explaining that analysts expend more effort during crises due to career concerns, while we 
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explore reputational costs and trading-commission benefits to explain analysts‟ optimism during high-

market-uncertainty periods. Moreover, Loh and Stulz (2015) obtain mixed results on the estimated 

relationship between forecast accuracy and macroeconomic conditions, depending on their measure of 

forecast error. All three studies use different proxies for market uncertainty and macroeconomic 

conditions.
6
 

Exploiting market uncertainty as the source of variation in studying analysts‟ incentives and 

output also adds novelty to our paper. The VIX index measures uncertainty related to the firm‟s 

market environment and thereby captures the degree of uncertainty all analysts face. Using an 

uncertainty measure exogenously determined outside analysts‟ reports can yield new insights into 

analysts‟ forecasts and incentives.
7
  

Although sell-side analyst behavior has been examined extensively in the literature, there is 

mixed evidence on whether analysts provide valuable information and positively fulfill their role in 

the price-formation process (Dimson and Marsh, 1984; Womack, 1996) or opportunistically bias their 

output (O‟Brien, 1988; Lys and Sohn, 1990; Brown, 1993). Periods of high market uncertainty are 

times when investors‟ demand for information is strong. Information generated by analysts is more 

valuable to investors at such times, as high-uncertainty periods are when investors are more uncertain 

about the state of the economy and the stock market, both of which affect individual firm 

performance. The findings of this study show that the increase in uncertainty in the information 

environment exacerbates the conflict of interest between analysts and investors: analysts face 

increased incentives to issue biased information just when investor demand for accurate information is 

at its highest. 

Lastly, this study contributes to the economics literature on the importance of reputation 

formation. Fama (1980) shows that managers‟ reputational concerns help discipline the opportunistic 

                                                           
6
 Amiram, Landsman, Owens, and Stubben (2014) use market-return volatility as a measure for market 

uncertainty, whereas this study uses the VIX index (Bloom, 2009). Loh and Stulz (2015) use crises and 

recessions as a proxy for bad states of the economy. A discussion of various uncertainty proxies appears in 

section 3.1. 
7
 Prior studies use analysts‟ forecast dispersion as a measure for firm-level information uncertainty (Barron, 

Kim, Lim, and Stevens, 1998; Zhang, 2006). 
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behavior of managers.
8
 Hong, Kubik, and Solomon (2000) show that performance affects career 

outcomes and thereby induces herding behaviors. This paper applies the basic insights from research 

on reputation effects to a sell-side analyst setting, by showing how the decrease in the expected 

reputation cost leads to more opportunistic behavior.  

The rest of the paper is organized as follows. Section 2 includes the related literature and 

hypotheses development. Section 3 discusses the uncertainty proxies and describes the sample data 

and variables, and Section 4 describes the research design and reports the main empirical results. 

Section 5 includes additional tests for alternative explanations and extensions, and Section 6 includes 

robustness checks. Section 7 concludes.  

 

2. Related literature and hypotheses development 

2.1 Prior literature and marginal cost-benefit framework 

There is a large body of literature on analysts‟ optimistic bias.
9
 One stream of the literature 

posits and finds supporting evidence for the notion that the higher trading commissions stimulated by 

optimistic output explain the optimistic bias (Hayes, 1998; Irvine, 2004; Jackson, 2005). Analysts are 

rewarded partly on the trading commissions they help to generate, as their bonuses are often tied to 

the commissions their recommendations generate for the brokerage firm (Irvine, 2004; Jackson, 2005; 

Cowen, Groysberg, and Healy, 2006). Such compensation schemes provide incentives for analysts to 

opportunistically promote trading activity.
10

 Other studies focus on analysts‟ incentives to maintain a 

favorable relationship with management, as firm management is an important source of private 

information (Francis and Philbrick, 1993; Das, Levine, and Sivaramakrishnan, 1998; Chen and 

Mastumoto, 2006, among others).  

                                                           
8
 See also Lazear and Rosen (1981) and Holmström (1999). 

9
 An ample amount of evidence suggests that there is a systematic optimistic bias in analysts‟ earnings forecasts 

(Stickel, 1990; Abarbanell, 1991; Griffin and Tversky, 1992; Dreman and Berry, 1995; McNichols and O‟Brien, 

1997; Chopra, 1998; Lim, 2001; Hong and Kubik, 2003; Chen and Jiang, 2006; Cowen, Groysberg, and Healy, 

2006, among others). 
10

 In addition, analysts from brokerage houses that have underwriting relationships tend to issue more optimistic 

forecasts than analysts from nonaffiliated houses (see Dugar and Nathan, 1995; Lin and McNichols, 1998; 

Michaely and Womack, 1999; Dechow, Hutton, and Sloan, 2000). 
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However, there is a cost for the opportunistic behavior of optimistic output. Analysts‟ forecast 

accuracy is an important factor in performance assessment, and poor forecast accuracy could lead to 

negative career outcomes (Hong, Kubik, and Solomon, 2000; Hong and Kubik, 2003). Since analysts 

interact with investors repeatedly, analysts‟ opportunistic behavior in generating optimistic output is 

constrained by their reputational and career concerns. Therefore, analysts face a tradeoff between the 

incentive to issue optimistically biased forecasts to generate more trade (or to maintain a favorable 

relationship with management) and the incentive to issue accurate forecasts to build a good reputation.  

Given the costs and benefits of optimistic output that prior studies have shown, we develop 

three testable hypotheses related to the effect of market uncertainty on the changes in the marginal 

cost and benefit of analysts‟ optimistic output, and the level of analysts‟ optimistic output.  

 

2.2 Hypotheses development 

We adopt a simple utility-maximizing framework of marginal benefit and marginal cost to 

determine the analyst‟s choice on the level of optimistic output. In our framework, the optimal level 

of optimistic output is determined by the marginal cost and the marginal benefit of producing 

optimistic output that shifts by the level of market uncertainty.  

We first consider reputational loss as the cost of producing optimistic output. Fama (1980) 

argues that reputation formation plays an important role in the labor market by disciplining the 

opportunistic behavior of managers.
11

 In a study more directly related to security analysts, Mikhail, 

Walther, and Willis (1999) show that poor relative performance leads to job turnover among security 

analysts. Hong, Kubik, and Solomon (2000) find that inaccurate earnings forecasts are penalized by 

termination and that such career concerns lead to herding with other analysts, especially for 

inexperienced analysts who have yet to establish their reputations. In sum, prior evidence shows that 

reputation matters for analysts when they issue earnings forecasts or stock recommendations.  

                                                           
11

 Reputation has also been applied to alleviating agency problems associated with sovereign debt (Eaton and 

Gersovitz, 1981), risky corporate debt (John and Nachman, 1985; Diamond, 1989), and outside equity (Gomes, 

2000). 
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Such reputational costs for issuing inaccurate forecasts vary with the changes in the 

information environment. For instance, Hong and Kubik (2003) find that analysts were less likely to 

be terminated for inaccurate forecasts during the stock-market boom of the early 2000s. When there is 

high uncertainty in the information environment, information signals contain more noise. In this case, 

analysts are less likely to be penalized for sending a biased signal to investors, since they can attribute 

the bias to noisy information signals. Therefore, the expected reputational loss of the analyst 

decreases under high market uncertainty. Following Hong, Kubik, and Solomon (2000), we expect 

that analysts are less likely to experience turnover when there is less reputational loss, and use analyst 

turnover as our proxy for the cost of producing optimistic output. Accordingly, we predict that 

analysts are less likely to experience turnover for optimistic forecasts when market uncertainty is high.  

However, the marginal benefit of producing optimistic output can also change with the level 

of market uncertainty. Stimulating more trading activity, and thereby more trading commissions, is 

one important reason analysts tend to issue optimistically biased forecasts (Cowen, Groysberg, and 

Healy, 2006; Beyer and Guttman, 2011; Brown, Call, Clement, and Sharp, 2015). Jackson (2005) 

presents a dynamic game model of incomplete information, which implies that optimistic forecasts 

generate more trade than pessimistic forecasts under binding short-sale constraints. Hayes (1998) 

presents a model in which trading commission incentives affect analysts‟ production of inaccurate 

information to maximize trading volume. Her model shows that this effect is increasing with the level 

of investors‟ uncertainty about the individual stock‟s performance, which is likely to be higher during 

periods of high market uncertainty. When investors have high uncertainty about the firm‟s 

performance, their demand for information produced by analysts increases. In a similar vein, recent 

working papers directly show that new information has a greater effect on investors‟ beliefs under 

high market uncertainty (Amiram, Landsman, Owens, and Stubben, 2014; Choi, 2015; Loh and Stulz, 

2015). These findings, combined with the prediction that optimistic forecasts generate more trading 

activity than pessimistic forecasts, lead us to hypothesize that analysts‟ incentives to issue 

optimistically biased output increase due to the increased marginal benefits from producing optimistic 

output under high market uncertainty. 
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The marginal cost and benefit of producing optimistic output determines the analyst‟s choice 

on the level of optimistic output under different levels of market uncertainty, as illustrated in Figure 1. 

Let MB0 and MC0 represent the analyst‟s marginal benefit and marginal cost of issuing optimistically 

biased forecasts when uncertainty is low. The optimal amount of optimistic output when uncertainty is 

low is OO0, where MB0 = MC0. When market uncertainty is high, the marginal benefit curve and 

marginal cost curve of optimistic output shift to MB1 and MC1, and the analyst adjusts by choosing a 

new, higher level of optimistic output, OO1.
12

 

Our framework leads to three testable hypotheses: We predict that analysts‟ optimistic output 

increases with the level of market uncertainty. The increase in analysts‟ optimistic output is explained 

by the decrease in marginal cost and the increase in marginal benefit of producing optimistic output. 

Therefore, we predict that the likelihood of analyst turnover in regards to optimistic output decreases 

with the level of market uncertainty. Our last prediction is that analysts‟ optimistic output is 

associated with more trading activity during periods of high market uncertainty than during periods of 

low market uncertainty.  

 

3. Market uncertainty measure, data and variables 

3.1 Market uncertainty measure 

Not surprisingly, there is no single perfect measure of uncertainty, but a range of proxies like 

market volatility and forecast dispersion have been suggested (Bloom, 2009). We use the VIX index, 

which is the forward-looking 30-day implied volatility of stock options, as our measure of market 

uncertainty. The VIX index has been used in prior studies that examine the effect of market 

uncertainty in financial markets. Stock-market volatility is viewed as a market-based measure of 

economic uncertainty, and Bloom (2009) shows that stock-market volatility (VIX) is strongly 

correlated with firms‟ earning growth and industry productivity growth, as well as other real 

macroeconomic indicators.  
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 We do not assume that the marginal cost and the marginal benefit curves always shift simultaneously. The 

level of optimistic output can change from either one of the curve shifts as well. 
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We are interested in VIX as a measure of market uncertainty that exogenously affects the 

information environment of all sell-side equity analysts. An increase in market uncertainty affects all 

analysts in gathering information about the effect of market-level factors on firm performance 

(Amiram, Landsman, Owens, and Stubben, 2014; Loh and Stulz, 2015). On the other hand, 

uncertainty measures used in previous studies, such as idiosyncratic volatility or analyst-forecast 

dispersion, are firm-level proxies that can be affected by confounding firm characteristics or analyst 

characteristics. These firm-level confounding factors vary across the cross-section of analysts and 

covered firms, whereas market uncertainty is common across all analysts and firms being covered. 

We believe that using VIX as opposed to firm-level uncertainty measures lessens the effects of the 

confounding unobservables that the firm-level uncertainty measures could carry. Using market-level 

uncertainty is also advantageous in establishing the link between uncertainty and the cost and benefit 

of optimistic output for each analyst. That is, because each analyst covers multiple firms, we can more 

accurately estimate the effect of uncertainty on the cost and benefit of optimistic output at the analyst 

level when exploiting cross-time variation than when exploiting cross-firm variation in uncertainty.  

To verify that our market-level uncertainty measure, VIX, is a relevant variable for the 

analysts‟ information environment, we examine the relationship between VIX and analyst-forecast 

dispersion. In untabulated results, we find that the two measures are highly positively correlated, at 

both the aggregate market level and firm level. This indicates that VIX, as our measure of market 

uncertainty, is positively associated with the uncertainty in the analysts‟ information environment.  

The remaining question about using VIX as our uncertainty measure is how it compares with 

other market-level uncertainty measures. Since VIX is a 30-day forward-looking measure of expected 

market volatility, we think that VIX is a more exogenous ex-ante measure than the ex-post market-

return volatility used by Amiram, Landsman, Owens, and Stubben, 2014. Schwert (2011) and Bekaert 

and Hoerova (2014) examine the relationship between the VIX index and market-return volatility, and 

find that the two market-uncertainty proxies are highly correlated. 

The VIX index can also reflect investor sentiment or risk aversion in addition to fundamental 

market volatility (Bekaert, Hoerova, and Lo Duca, 2013). It is often called the investors‟ “fear index” 
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(Whaley, 2000). Our interest in using VIX is to capture the fundamental volatility in the market, but 

not the investor sentiment it could also carry. As a way to examine the effect of volatility and not the 

sentiment that is potentially contained in VIX, we also repeat our main analyses after controlling for 

the level of investor sentiment, using the measures by Baker and Wurgler (2006) and Baker, Bloom 

and Davis (2015), and we find results similar to our baseline results. In addition, if VIX captures 

mostly negative investor sentiment (or risk aversion), then it would be difficult to explain why 

analysts are more optimistic when investors are more pessimistic, when VIX is high. 

Daily VIX data are from the Chicago Board Options Exchanges website. We construct       

by averaging the daily VIX data for month m of year t. We use the average VIX at one month prior (m-

1) to the analysts‟ forecast or recommendation announcement date. Using the contemporaneous VIX 

level in month m yields materially similar results.   

3.2 Analyst-output measures 

Analysts‟ earnings forecasts, analysts‟ stock recommendations, firms‟ actual earnings, and 

earnings-announcement dates come from the Institutional Brokers Estimate System (IBES) annual 

update U.S. Detail History and Recommendations data sets. Using this source of data, we construct 

three variables of analyst output: analyst-forecast accuracy, stock recommendations, and stock-

recommendation percentages. 

We use annual earnings forecasts that are one-year-ahead forecasts. We use the unadjusted 

file to mitigate the rounding problem in IBES (see, for instance, Diether, Malloy, and Scherbina, 

2002). Using split-adjustment factors from IBES, we adjust the unadjusted forecast so that it is on the 

same per-share basis as the unadjusted actual earnings. We examine four measures of analyst-forecast 

accuracy: the aggregate market-level forecast error, the firm-level consensus forecast error, the 

individual analyst-forecast error, and an optimistic forecast indicator variable. Analyst-level forecast 

error is denoted as       , which is the adjusted forecast error (analyst forecast minus actual earnings, 

scaled by the ending stock price in year t-1) of analyst i, firm j, month m, year t.
13

 The consensus-

                                                           
13

 The forecast-error variable        ) is winsorized at the 1
st
 and the 99

th
 percentiles to reduce the impact of 

extreme outlier values of earnings surprises, as these values might be the result of measurement errors. 
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forecast-error variable is the mean forecast error of all analysts issuing forecasts for firm j in month m, 

year t. To compute the aggregate market-level measure of forecast error across all firms, we sum the 

consensus forecast error of all firms for each month m. Our fourth measure is an alternative unscaled 

measure of forecast bias, Optimistic Flag, which equals one if the analyst forecast is greater than the 

actual earnings.
14

 In some specifications, we include analyst i‟s forecast of firm j only in the month 

closest to July (but not after July) in year t, as in Mikhail, Walther, and Willis (1999) and Hong and 

Kubik (2003), to mitigate econometric problems associated with high serial correlation between 

monthly analyst forecasts.
15

 

As an alternative measure of analyst output, we examine stock recommendations at the 

individual analyst level and at the firm level. Individual analyst stock recommendations follow from 

the coded IBES text in reverse order to create a variable that increases with analyst optimism. 

         is the numeric value of the stock recommendations, where strong buy =5, buy =4, hold =3, 

underperform =2, and sell =1. To have a sample consistent with that of the earnings-forecast analysis, 

we include only stock recommendations issued by analysts who also issue earnings forecasts. We also 

limit our stock recommendations to those that are announced closest to July of year t, since 

recommendations are even more highly serially correlated than earnings forecasts (Hong and Kubik, 

2003). Stock-recommendation percentages are also calculated as proportions of buy, sell, and hold 

recommendations for a stock j, in the month of July in year t. The resulting sample contains 240,891 

individual analysts‟ earnings forecasts and 17,939 individual stock recommendations with non-

                                                           
14

 One advantage of this variable is that it is unscaled. However, we do not use it as our main forecast-accuracy 

measure since an indicator variable drops information about the magnitude of the forecast error. In addition, we 

do not examine analysts‟ relative forecast accuracy (as in Hong, Kubik, and Solomon, 2000; Clarke, Khorana, 

Patel, and Raghavendra Rau, 2007) for our analysis on how market uncertainty affects analyst output, since we 

are interested in the effect of market uncertainty across all analysts. 
15

 We include only firms with fiscal year ending in December to standardize the reporting period and make the 

forecasting horizon consistent across firms (Hong and Kubik, 2003). In addition, individual analysts‟ forecasts 

are not updated from month to month. Therefore, analysts‟ forecasts and recommendations exhibit high serial 

correlation across months throughout the year, which imposes econometric problems. Another advantage of 

examining mid-year forecasts is that we can separate out the effect of changes in optimism throughout the fiscal 

year (Richardson, Teoh, and Wysocki, 1999).  
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missing analyst-characteristic variables. There are 18,092 stock-recommendation percentages. The 

sample period extends from 1996 to 2012.
16

 

 

3.3 Analyst characteristics 

We consider the following analyst characteristics:          ,                        , 

           ,           ,           , and                 . Coverage is the number of firms 

covered by analyst i in year t. Experience is the natural logarithm of the number of years since analyst 

i started issuing forecasts.
17

 Horizon is the natural logarithm of the number of days from the analyst‟s 

forecast-issue date to the actual earnings-announcement date for analyst i, firm j, month m, year t. All-

Star is the indicator variable for the analyst i identified as an All-star analyst by the All-American 

Institutional Investors magazine for year t. Boldness is the percentage of bold earnings forecasts 

issued by analyst i in year t, where a forecast is defined as bold if the forecast is above both the 

analyst‟s prior forecast and the consensus forecast immediately before the forecast revision, or if the 

forecast is below both the analyst‟s prior forecast and the consensus forecast immediately before the 

forecast revision. Rounding is the percentage of rounded earnings forecasts issued by analyst i in year 

t, where a forecast is rounded if it occurs at nickel intervals. Brokerage Size is the natural logarithm of 

the number of analysts employed by the brokerage firm of analyst i for year t. These analyst-

characteristic variables have been used as proxies for analysts‟ reputation and ability in prior studies 

(for example, see Clement, 1999; Clarke, Khorana, Patel, and Rau, 2007).  

3.4 Firm characteristics affecting analysts’ output 

As Lim (2001) finds that forecast accuracy varies predictably as a function of firm size, we 

construct firm-characteristic variables as control variables from various data sets. Firm-level variables 

are obtained from Compustat Annual Updates, and institutional-holdings data are from the Thomson 

                                                           
16

 The sample size of individual stock recommendations is smaller than that of stock-recommendation 

percentages because we exclude analysts who do not issue earnings forecasts for that year, and because we drop 

observations with missing values for analyst-characteristic variables created from the earnings-forecast data. 

(When comparing the sample sizes between earnings forecast data and stock recommendations data in IBES, we 

see that the earnings forecast data sample is almost twice as large as the stock recommendation data sample.) 

 
17

 We measure analyst experience from the starting year reported in IBES, and not from the starting year of our 

main sample period, to minimize the left-censored count of analyst experience. 
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Reuters Spectrum database. We include firms that appear in all three data sets (IBES, CRSP and 

Compustat) in our analysis. 

Firm size, denoted as        for firm j in year t, is the log of market value of equity. The 

market-to-book ratio, denoted as               for firm j in year t, is calculated as the market 

value of the firm‟s equity at the end of the fiscal year plus the difference between the book value of 

the firm‟s assets and the book value of the firm‟s equity at the end of the year, divided by the book 

value of the firm‟s assets at the end of the year (Fich and Shivdasani, 2006). Size and market-to-book 

ratios also function as controls for firm-risk characteristics (Fama and French, 1992, 1993). Since the 

presence of institutional investors also affects the incentives of analysts and the information 

environment of the firm (see Ljungqvist, Marston, Starks, Wei, and Yan, 2006), we also control for 

the percentage of institutional investors. Spectrum collects quarterly data on stock holdings from the 

13F reports that institutions are required to file if their holdings exceed $100 million. The holdings are 

aggregated over all institutions to arrive at the institutional-holdings number, and we construct the 

percentage of institutional investors (                          for firm j in the last quarter of 

year t. 

 

3.5 Analyst turnover and performance Measures 

We construct two measures of analyst turnover. The first is a measure of the analyst leaving 

the industry, which we term “industry turnover” hereafter. To identify industry turnover, we look at 

whether the analyst issues earnings forecasts for any firm in the following year (Hong, Kubik, and 

Solomon, 2000). We assume that the analyst has left the industry in year t if the analyst issued 

forecasts in the previous year t−1 but does not issue any forecasts in year t. Our turnover measure 

includes both voluntary and forced turnover, although forced turnover due to poor performance is 

more relevant to our hypothesis. However, voluntary turnover adds noise to our estimation of the 
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relationship between job turnover, performance, and uncertainty, which should typically bias against 

finding a significant relationship.
18

  

Our second measure of analyst turnover is a measure for the analyst moving to another 

brokerage firm in year t, which we term “job turnover” hereafter.  Brokerages firms are sorted by size 

(i.e., the number of analysts) each year. The 10 largest brokerage firms each year are identified as 

high-status brokerage firms, while the rest are identified as low-status firms (Hong and Kubik, 2003). 

An analyst is identified as moving down (up) if the analyst worked for a high-status (low-status) 

brokerage firm in year t-1 and moves to a low-status (high-status) brokerage firm in year t. We 

assume that moving down proxies for the reputational cost of the analyst.  

As our measure for analyst optimism that triggers industry turnover or job turnover, we 

construct a performance measure of relative optimism for each analyst, in the spirit of Hong, Kubik, 

and Solomon (2000). First, for each year t, firm j that an analyst i follows, we create a dummy 

variable that equals one if the analyst‟s forecast is greater than the consensus average forecast. The 

average of these dummy variables across the firms that the analyst covers yields an optimism score 

for analyst i in year t. We then identify analysts with poor, biased performance by ranking the 

analysts‟ optimism scores by deciles for each year. An analyst is identified as most optimistic if the 

analyst falls into the highest decile for a given year. We create a dummy variable, Flag, which equals 

one if the analyst is ranked within the highest 10% of optimism scores in year t−1. 

3.6 Trading-activity measures 

Data on stock returns and trading volume are from the daily and monthly stock files of the 

Center for Research in Security Prices (CRSP). We measure the effect of analyst optimism on trading 

activity by examining the abnormal trading volume around individual analysts‟ forecast or 

recommendation announcement dates. For analysts‟ earnings forecasts, we identify each analyst-

                                                           
18

 Hong, Kubik, and Solomon (2000) support the idea that sell-side analysts are not likely to switch industries 

for a better job, noting that sell-side analysts, unlike buy-side analysts, are not likely to leave a job in the IBES 

sample to find a better job. Furthermore, in previous studies (Mikhail, Walther, and Willis, 1999; Groysberg, 

Healy, and Maber, 2011), analyst turnover is observed for analysts with low performance, rather than analysts 

with high performance. Mikhail, Walther, and Willis (1999) state that it is the worst-performing analysts who 

leave the analyst database.  
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forecast-announcement date and measure the average trading volume around the analyst-forecast-

announcement window of [0, +1] days (in logs). We construct our abnormal-trading-activity measure 

as the difference between the average trading volume around the announcement window and expected 

trading volume (average trading volume 30 days prior to the analyst‟s announcement). We similarly 

measure abnormal trading volume around individual analysts‟ stock-recommendation-announcement 

dates as well.  

 

4. Empirical results 

4.1 Descriptive statistics 

Table 1 presents sample descriptive statistics for the monthly VIX level, the analyst forecast 

error and stock recommendations, trading-activity variables, and analyst- and firm-characteristic 

variables. The summary statistics show that analysts‟ outputs are optimistic overall, and that they 

become more optimistic during high-market-uncertainty periods.  

Forecast error is defined as the analysts‟ forecasts minus the actual earnings of the firm. If 

forecast error is positive, it means that the analysts‟ predictions are higher than actual earnings, so the 

forecast is optimistic. Consistent with prior research showing that analysts‟ reports are optimistically 

biased (O‟Brien, 1988; Kang, O‟Brien, and Sivaramakrishnan, 1994, among many others), Panel A 

shows that the mean forecast error is positive at 0.522 (scaled), although the median is zero. We find 

that the optimistic bias is also present in analysts‟ stock recommendations. The median individual 

analyst stock recommendation is a “buy.” Similarly, the average percentage of buy recommendations 

is around 56%. The percentage of sell recommendations is much lower than that of buy 

recommendations, with a mean value of around 5%, which also shows a significant asymmetry in 

analysts‟ stock recommendations. 

Panel B shows the comparisons of analysts‟ forecasts and recommendations between high- 

and low-VIX periods. We find that the analyst-forecast error, optimistic flag, and analyst stock 

recommendations all are more optimistic during high-VIX periods. The differences in both the 

forecast error and stock recommendations are highly significant at the 1% significance level.  
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4.2 Analyst optimism and market uncertainty 

We first examine whether the level of analysts‟ optimism in earnings forecasts changes with 

the level of market uncertainty. Figure 2 illustrates a descriptive relationship between market 

uncertainty and analysts‟ optimism. The x-axis is the monthly VIX level, and the y-axis is the 

corresponding monthly aggregate forecast error (the sum of the consensus forecast error of all firms). 

The scatter plot, as well as a simple regression line between the two variables, shows a positive 

relationship between the VIX level and aggregate optimistic forecast error.  

We next proceed to a multivariate analysis. In Panel A of Table 2, we examine the 

relationship between analysts‟ forecast error and VIX, controlling for analyst and firm characteristics, 

using equation (1). 

                            

                                               

                               

where i, j, m and t index analyst, firm, month and year, respectively. In specification (1), the forecast 

error is measured at the aggregate market level; in specification (2), at the firm level; and in 

specification (3)-(5), at the individual analyst level. X is the vector of analyst characteristics of 

coverage, experience, boldness, rounding, All-star status, and brokerage size in year t-1.         

denotes the forecasting horizon, which is the number of days between the analyst-forecast date and 

the forecast-period end date (in natural logrithm). Y is the vector of firm characteristics of size, 

market-to-book ratio, and institutional holdings in year t-1.    denotes the vector of firm fixed effects. 

Standard errors are clustered by firm in specification (2), and by analyst and firm in specifications (3)-

(5).
19

 Our main coefficient of interest is 1b , which estimates the association between analyst-forecast 

error and market uncertainty. A positive 1b  indicates that analysts‟ forecasts are more optimistically 

biased when VIX increases, i.e., when there is a higher level of market uncertainty. 

                                                           
19

 Results are also robust to clustering by analyst in specifications (3)-(5). 
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The results in Table 2, Panel A show that analysts do indeed tend to issue more optimistic 

forecasts when market uncertainty is high, regardless of the level of forecast error being measured. 

The coefficients for VIX are significantly positive in all specifications (1)-(5), indicating that 

optimistic forecast bias increases during high-uncertainty times. From specification (1), we find that 

there is a significantly positive relationship between VIX and the aggregate market-level forecast error 

each month. In specification (2), we observe that this relationship holds for the firm-level consensus 

forecasts as well. In specification (3), we also find consistent results when forecast error is measured 

at the individual analyst level. We are primarily interested in analyst-level data since it includes the 

most information on the individual analyst. The economic magnitude is large: in our main 

specification (3), a one-standard-deviation increase in the VIX level increases analysts‟ optimistic bias 

by 13% relative to the mean forecast error.  

In specifications (4)-(5) of Table 2, Panel A, we examine an alternative unscaled measure of 

forecast error, which is the Optimistic Flag indicator variable. Optimistic Flag equals one if the 

analyst forecast is greater than the actual earnings (i.e., if the forecast is optimistic). We estimate the 

likelihood of an optimistic forecast using a linear probability model in specification (4), and a 

conditional logit model in specification (5). Our findings are consistent with prior specifications, and 

the signs and the magnitudes of the estimated coefficients are robust to our choice of the regression-

model specification.  

In specifications (2) - (5), we include only forecasts made in (or closest to) July, which is the 

mid-year of the firms‟ fiscal year ending in December. This is to address the concern that monthly 

forecasts are highly serially correlated (Hong and Kubik, 2003). Since our research focus is on 

individual analyst behavior, we examine the mid-year forecasts at the analyst level, with clustering 

standard errors by analyst and firm.
20

 This approach addresses the concern of serial correlation and 

preserves the information contained in the individual analyst-level data. 

We control for analyst characteristics considered to be important covariates for analysts‟ 

forecasting performance in existing studies. In our main specification (3), we find, consistent with 
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 Untabulated estimation results are materially robust to including all months or only the mid-year month. 
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past studies, that analysts‟ optimistic bias increases with analyst experience (Hong, Kubik, and 

Solomon, 2000), tendency to round forecasts (Herrmann and Thomas, 2005), and brokerage size 

(Clement and Tse, 2005). Meanwhile, optimistic output decreases with the number of firms the 

analyst covers and the percentage of bold forecasts. We also observe that forecasts are more 

optimistic when forecasts are made earlier in the year.
21

  

When looking at the coefficients of the firm-characteristic variables, we find that forecasts are 

more optimistic for firms with low market-to-book ratios and firms with fewer institutional 

investors.
22

 We also observe a positive association between forecast optimism and firm size. One 

possible explanation is that because larger trades can be executed for larger firms, the incentive to 

issue optimistic forecasts for larger trading commissions is stronger for larger firms. These findings 

imply the presence of the cost and benefits of optimism when analysts issue forecasts, which is 

consistent with our incentive-based cost-benefit framework of analyst optimism.  

In Panel B, we examine the effect of market uncertainty on analyst-forecast error across 

different forecasting horizons. We categorize analyst forecasts into four groups based on the number 

of days from the forecast-announcement date to the forecast-period end date: [0-60], [61-180], [181-

270], and [271-360] days. The effect of VIX on individual analyst-forecast error is significant and 

positive throughout all short and long forecasting horizons. Consistent with prior literature, we find 

that analysts issue more optimistic forecasts under high market uncertainty, earlier in the year. The 

magnitude of the VIX coefficient of the longest horizon ([271- 360] days) is more than twice that of 

other forecasting horizons.  

Lastly, we find that results for the post-Regulation FD period (after October, 2000) are very 

similar to those for the whole sample period in Panel A. The findings suggest that Regulation FD did 

not significantly change analysts‟ incentives to issue optimistic forecasts, as suggested by recent 

                                                           
21

 This is consistent with prior studies, which show that analysts tend to give more optimistic reports in the 

beginning of the year and then revise their estimates downward as the earnings-announcement dates approach at 

the end of the year (Ackert and Athanassakos, 1997; Richardson, Teoh, and Wysocki, 1999; Ke and Yu, 2006). 
22

 Our finding that growth firms (those with high Market/Book) tend to have lower forecast error than value 

firms is consistent with Dechow and You (2012).  
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survey studies (Brown, Call, Clement, and Sharp, 2015).
23

  In sum, we find a significant positive 

effect of market uncertainty on analysts‟ optimistic earnings forecasts throughout various 

specifications. The overall evidence supports our hypothesis that analysts‟ optimism increases with 

market uncertainty.  

4.3 Stock recommendations and market uncertainty 

We next examine an alternative output of analysts, stock recommendations. One advantage of 

analyzing stock recommendations is that stock recommendations are summaries of analysts‟ opinions 

about a firm that incorporate all of the information analysts possess, and are not based solely on 

information related to the firm‟s next-period earnings. Therefore, stock recommendations provide a 

directly comparable measure of analysts‟ opinions across different market-uncertainty levels. Since 

high-uncertainty periods tend to be highly correlated with recessionary periods, firms might 

experience more difficulty in meeting analysts‟ expectations during bad times. Stock 

recommendations do not suffer from the issue of firms‟ actual earnings not meeting analysts‟ 

expectations, as they are independent of the firms‟ actual performance. Stock recommendations are 

also independent of managerial incentives to meet or beat analysts‟ earnings forecasts.  

We examine whether stock recommendations change with level of market uncertainty in 

Table 3. In Table 3, Panel A, we examine the relationship between individual analyst stock 

recommendations and VIX, using equation (1) by replacing forecast error with         . The 

dependent variable, Recid, is a numeric variable that translates the recommendation text of analyst i 

for firm j in the month closest to July of year t into numeric values. A larger Recid value indicates a 

more optimistic view of the firm. We find that the coefficient of VIX is significantly positive in 

specifications (1)-(2), which indicates that analysts have more optimistic recommendations when 

market uncertainty is high. This optimism remains after the Global Settlement (untabulated).
24
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 The findings (untabulated) are available from the authors. Our results are also robust to excluding the 

financial crisis period, which was a period of extreme uncertainty (untabulated). 
24

 The number of observations between specifications (1) and (2) differ since there are analysts who issue 

earnings forecasts but not stock recommendations and the control variables are constructed from earnings 

forecast data. 
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In Table 3, Panel B, we use the percentage of stock recommendations as the dependent 

variable. The dependent variable is the buy-, sell-, or hold-recommendation percentage of a stock. 

Equation (2) shows the empirical model with the buy-recommendation percentage of a stock, 

        , as the dependent variable.          is the buy-recommendation percentage of firm j in 

July of year t. VIX is the monthly average VIX level in June. 

 

                                                                                                                              

As in equation (1), j is the firm index, and t is the year index. Other firm characteristics 

control variables are size, market-to-book ratio, and institutional holdings, collectively denoted as Y. 

The term    denotes the vector for firm fixed effects.  

Table 3, Panel B shows that only the percentage of buy recommendations increases when 

market uncertainty increases. In specification (1), the dependent variable is the percentage of buy 

recommendations (        ). The coefficient of VIX in specification (1) is highly positive and 

significant, whereas it is significantly negative or insignificant for sell or hold recommendations in 

specifications (2)-(3). A one-standard-deviation increase in the level of VIX is associated with an 

increase of 3.21% in buy recommendations, while sell and hold recommendation percentages 

decrease by 1.14% and 2.09%, respectively. We find that stock recommendations remain optimistic 

under higher uncertainty even after the Global Settlement (untabulated).  

In sum, we find strong evidence of an increased level of analyst optimism under higher 

market uncertainty, in both earnings forecasts and stock recommendations. We next explore possible 

explanations for the changes in analyst optimism in the following two sections, under our analyst 

utility-maximization framework. 

4.4 Reputation, optimism, and uncertainty 

If inaccurate forecasts serve as a signal for inferior forecasting ability, then we expect analysts‟ 

reputation to decrease if they issue optimistic forecasts. However, we expect analysts‟ reputation to 

suffer less from inaccurate biased forecasts when there is high market uncertainty, as discussed in 

section 2. We use analysts‟ turnover measures as proxies for reputational cost. Our measures of 
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turnover are the event of leaving the industry (“industry turnover”) and the event of moving from one 

brokerage firm to another (“job turnover”), as discussed in section 3. We predict that analysts are less 

likely to experience industry turnover or move to smaller brokerage firms under high market 

uncertainty. We test this hypothesis by examining whether poor prior forecasting performance 

(defined by the analyst performance measure Flag, as discussed in section 3) is associated with a 

lower likelihood of future turnover when VIX is high, controlling for analyst attributes that have been 

shown to affect turnover in the literature: 

                              

                                                                    

Equation (3) is estimated by a logit probability model with robust standard errors, and the 

estimation results are reported in Table 4. In Panel A, the dependent variable             is a binary 

variable that equals one if analyst i leaves the industry in year t. In Panel B, the dependent variable is 

MoveDownit (MoveUpit), which equals one if analyst i changes from a high-status firm to a low-status 

firm (from a low-status firm to a high-status firm) in year t.
25

 VIX is averaged at the annual level 

(scaled by 1/100) since Flag is at the annual level, and we are interested in the coefficient of their 

interaction term. X denotes the vector of analyst-characteristic variables of coverage, experience, 

boldness, rounding, All-star status, and brokerage size. The coefficient of interest is    in equation 

(3). We predict    to be negative, which means that the most optimistically biased analysts are less 

likely to experience turnover when market uncertainty is high. 

The b3 coefficient estimates reported in Table 4, Panel A are in accord with our predictions. 

The interaction of Flag and VIX is significantly negative, which shows that the likelihood of industry 

turnover for an analyst in the highest 10% of optimism is lower under high market uncertainty. The 

relation between VIX and industry turnover is also economically meaningful. In specification (4), a 

one-standard-deviation increase in VIX leads to a 7% decrease in the probability of industry turnover 

(relative to the mean value) when the analyst is the most optimistic.  

                                                           
25

 The Move Down dummy variable equals one when the analyst leaves the industry as well. All results are 

robust to the exclusion of industry turnover. We exclude analysts with less than three years of experience, as in 

Hong and Kubik (2003). 
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The findings in Panel B regarding analysts‟ job turnover under market uncertainty are also 

consistent with those in Panel A. The interaction of Flag and VIX is significantly negative when the 

dependent variable is the Move Down dummy variable (specifications (1)-(3)), while it is positive but 

insignificant when the dependent variable is the Move Up dummy variable (specifications (4)-(6)). 

This finding indicates that the likelihood of an optimistic analyst moving down in brokerage-firm 

status decreases when market uncertainty is high. 

In sum, we find that analysts‟ career outcomes also vary with market uncertainty and that 

analysts‟ reputational costs decrease with the level of market uncertainty.  

4.5 Trading activity, analysts’ optimism, and uncertainty 

We next explore the effect of analysts‟ optimism on trading activity under different levels of 

market uncertainty. We focus on the trading activity around analyst-announcement dates. As in 

section 2, we predict that optimistic output has a stronger effect on investors‟ beliefs, and hence on 

trading activity, when market uncertainty is high. Therefore, we are primarily interested in the 

interaction term between analyst-earnings-forecast error (or stock recommendations) and the VIX 

index when the dependent variable is trading volume. The dependent variable,          is the average 

abnormal trading volume of firm j around the forecast (recommendation) announcement window ([0, 

+1 days]) of analyst i in (or closest to but not after) July of year t (in natural logarithm). Abnormal 

trading volume is the difference between trading volume and expected trading volume (average 

trading volume 30 days prior to the analyst‟s announcement). 

                                                                 

                                              

                                                                                                               

As in equation (1), i, j, m, and t index analyst, firm, month and year, respectively. VIX is the 

average monthly VIX level, one month prior to the analyst announcement date.          denotes the 

forecasts horizon. X denotes the vector of analyst characteristics of coverage, experience, All-star 

status, boldness, rounding, and brokerage size. Y denotes the vector of firm characteristics of size, 

market-to-book ratio, and institutional holdings.    denotes the vector of firm fixed effects. Standard 
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errors are clustered by analyst and firm. The coefficient of interest is b3. Since      is positive for 

optimistic forecasts, a positive b3 coefficient indicates that optimistic forecasts during high-

uncertainty times lead to more trading activity. 

The results in Table 5, Panel A show that analyst optimism is indeed associated with more 

trading activity when market uncertainty is high.
26

 The coefficient of the interaction term between 

forecast error and VIX is significantly positive in all specifications. This relationship between 

optimism, uncertainty, and trading activity is significant, even after we control for various analyst and 

firm characteristics.
27, 28

  

In Table 5, Panel B, we repeat the analysis in Panel A by looking at the effect of optimistic 

stock recommendations on trading activity. We repeat equation (4) after replacing the forecast-error 

term (       with the numeric value of the stock-recommendations term (        ). We find that the 

interaction term between individual stock recommendations and VIX is significantly positive, which 

indicates that optimistic recommendations are associated with increased trading activity under high 

uncertainty.
29

 

Our empirical findings show that the marginal benefit and marginal cost of issuing optimistic 

output change with the level of market uncertainty. We find that analysts‟ reputational costs of issuing 

optimistic output are lower while the benefits of optimistic output are larger when the level of market 

uncertainty is high. These results are consistent with the three incentive-based predictions on the 

positive relationship between optimistic output and market uncertainty. 

 

5. Extensions   

5.1 Relationship with firm management 

                                                           
26

 We suppress the coefficient estimates of the control variables in Table 6 for brevity. 
27

 We find robust results when examining the post-Regulation FD period.  
28

 While further study is required to understand why only optimistic views have a stronger impact on investors‟ 

trading activity under high uncertainty than under low uncertainty, one possible explanation is that short-sale 

constraints are more binding when uncertainty is high. Under short-sale constraints, pessimistic trading activity 

is limited while optimistic trading activity is not (Jackson, 2005). We do not formally test this explanation since 

it is beyond the scope of our paper. 
29

 At the firm level, we also find that a higher percentage of buy recommendations is associated with more 

trading volume when VIX is high, while sell and hold recommendations are not (untabulated). 
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Another important benefit of issuing optimistic output is maintaining a favorable relationship 

with firm management (Francis and Philbrick, 1993; Das, Levine, and Sivaramakrishnan, 1998; Lim, 

2001; Chen and Matsumoto, 2006; Ke and Yu, 2006; Mayew, 2008; Soltes, 2014). The literature has 

shown that the benefits of maintaining a good relationship with firm management are larger for 

analysts who cover firms with earnings that are difficult to forecast. Brown, Call, Clement, and Sharp 

(2015) find that gaining private information from inside management remains important even after the 

passage of Regulation FD. In this section, we examine how this alternative benefit of optimistic 

output changes when market uncertainty changes. We posit that the demand for information from firm 

management is stronger for firms with more firm-level than market-level information. The higher the 

correlation between the firm and market return, the larger the market component of the firm‟s return 

and the smaller the effect of firm-specific information on the firm‟s return (Bhushan, 1989). 

Following Frankel, Kothari, and Weber (2006), we measure the degree of firm-level information by 

calculating the correlation between the firm and market return, and use it as a proxy for the 

importance of maintaining a favorable relationship with firm management. A firm has a high (low) 

degree of market-level (firm-level) information if the R
2
 from firm j‟s market-model regression in 

year t is high. RSQ is the variable name that corresponds to the R
2
 from the market model.  

We then examine the interaction effect of VIX and RSQ on analyst output to test whether 

analysts yield more optimistic output for firms with less market-level information during high-VIX 

times. We expect that when VIX increases, gaining private information from management becomes 

more important for firms with low RSQ. Therefore, we expect a negative relationship between the 

RSQ*VIX interaction term and analyst output. 

The results are reported in Table 6, specifications (1)-(4). The dependent variable is the 

individual analyst-earnings-forecast error (FE) in specifications (1)-(2), and stock recommendations 

(Recid) in specifications (3)-(4). Consistent with the findings in Tables 3 and 4, the coefficient of VIX 

is positive and statistically significant in specifications (1)-(4), which indicates that analysts issue 

optimistically biased output when market uncertainty is high. The coefficient of interest is RSQ*VIX, 

which is significantly negative throughout most specifications (with the exception of stock 
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recommendations after the Global Settlement). Since firms with more firm-level information are firms 

with low RSQ, a negative coefficient implies that analysts issue more optimistic output for firms with 

higher firm-level information when market uncertainty increases. The findings suggest that the benefit 

of issuing optimistically biased output is stronger for firms with relatively more firm-level 

information. We find that access to management remains an important incentive for optimistic output 

during periods of high uncertainty, in particular.
30

 Overall, we find relationship with firm management 

to be another important benefit of analyst optimism, especially during periods of high market 

uncertainty. 

5.2 Analyst experience, optimism, and uncertainty  

Hong, Kubik, and Solomon (2000) find that analysts‟ experience is an important factor in the 

consequence of analyst output and performance on analyst reputation. In this section, we explore 

whether analysts‟ prior experience affects their level of optimism under market uncertainty. Our 

incentive-based hypotheses of analyst optimism predict that the optimism level increases when the 

reputational cost of optimistic output is lower. Hong, Kubik, and Solomon (2000) find that 

inexperienced analysts, who have yet to establish their reputation, are more likely to experience 

negative career outcomes following poor performance than experienced analysts. Accordingly, we 

expect that increased market uncertainty would downwardly shift the marginal cost of optimistic 

output further for inexperienced analysts. We therefore exploit the difference in analysts‟ experience 

level to compare the relative magnitude of the marginal cost changes across analysts, and explore how 

this affects the changes in optimism.  

To test whether analysts‟ optimism under market uncertainty depends on analysts‟ prior 

experience, we construct an indicator variable, INEXP, which equals one if the analyst has experience 

below the median value of eight years in our sample. In Table 6, specifications (5)-(8), we compare 

forecast errors and stock recommendations between the above-median- and below-median-experience 
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 In untabulated tables, we find that incentive to maintain a good relationship with management did not change 

after the passage of Regulation FD, which is consistent with the recent survey work by Brown, Call, Clement, 

and Sharp (2015). In contrast, we find that the benefits associated with firm management decreased after the 

Global Settlement for stock recommendations. 
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analysts. Specifications (5)-(6) compare the forecast errors. We observe that analysts with less 

experience issue more optimistic forecasts when market uncertainty increases. The coefficient of 

INEXP*VIX is positively significant. Specifications (7)-(8) compare stock recommendations, and we 

find that the difference across the analyst experience groups in the effect of VIX on recommendation 

output is also positive, although statistically insignificant.  

From Table 6, specifications (5)-(6), we find that analysts‟ experience matters for issuing 

optimistic forecasts under high market uncertainty. Next, in Table 7, we test whether such an 

asymmetric result can be attributed to a greater shift in the marginal cost curve for inexperienced 

analysts. We repeat the analysis in Table 4 separately for the above- and below-median experience 

groups. Observing the interaction term between Flag and VIX, we find that compared to experienced 

analysts, inexperienced analysts are less likely to be penalized for issuing optimistically biased 

forecasts under high market uncertainty. The decrease in the likelihood of industry turnover (or 

moving down to low-status brokerage firms) due to optimistic output under high uncertainty is larger 

for inexperienced analysts. The evidence in Table 7 indicates that the effect of market uncertainty on 

analyst optimism differs across the cross-section of analysts, based on their prior experience.  

 

6. Robustness tests 

6.1 Investor sentiment and analyst optimism 

To ensure that our findings are not driven by the investor sentiment effect that is potentially 

contained in the VIX index, we repeat our main analyses on analyst optimism, after controlling for 

investor sentiment using two measures developed in past studies: the Baker and Wurgler (2006) 

investor sentiment index and the Baker, Bloom, and Davis (2015) economic policy uncertainty index. 

In untabulated results, we find that the VIX coefficient remains significantly positive after we control 

for investor sentiment. Thus, we conclude that our findings are driven by the fundamental volatility 

that is captured in the VIX index, rather than the investor sentiment that the VIX index may 

incorporate.  

6.2 Analysts’ self-selection under uncertainty 
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McNichols and O‟Brien (1997) were the first to show self-selection in analyst coverage. They 

find that analysts with sufficiently low private estimates might decide to drop coverage due to 

economic incentives. If analysts give pessimistic recommendations, firms are likely to withhold inside 

information from these analysts; therefore, analysts prefer to focus on stocks for which they can issue 

a “strong buy” or “buy” recommendation. The missing negative opinions introduce an optimistic bias 

to the mean reported forecast. The positive relationship between optimistic output and uncertainty 

may be explained by this selection of firms being covered, as the analysts‟ private estimates are likely 

to be low in high-uncertainty times. 

However, we do not find that analysts drop coverage during high-uncertainty times. In Table 

8, specifications (1)-(2), we regress the number of analysts issuing earnings forecasts or stock 

recommendations on market uncertainty. We find that both the number of analysts issuing earnings 

forecasts and the number of analysts issuing stock recommendations increase with the VIX level for a 

given firm. Our findings show that this alternative explanation cannot explain analyst optimism under 

market uncertainty.   

6.3 Analyst-forecast frequency and timeliness 

Increased optimism may also be explained by analysts producing less information (and only 

favorable information) when there is much noise in the information environment. Jacob, Lys, and 

Neale (1999) find that analysts‟ forecast frequency proxies for analysts‟ effort and the amount of 

information produced by analysts. We thus compare analysts‟ forecast frequency across different 

levels of uncertainty in Table 8, specifications (3)-(4). The dependent variables are measures of the 

number of forecasts issued. In specification (3), the dependent variable is the natural logarithm of the 

total number of forecasts issued by analyst i in year t. In specification (4), the dependent variable is 

the natural logarithm of the average number of forecasts issued by analyst i per firm j covered in year 

t. The results show that analysts issue forecast revisions more frequently and put in more effort when 

uncertainty is high, which is evidence against the informational story that analysts produce less 

information when they have less accurate information.  
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Another alternative explanation for the positive relationship between optimistic output and 

market uncertainty is that analysts try to be more timely at the cost of being less accurate in high-

market-uncertainty times. Analysts generally trade off timeline and accuracy, as forecasts issued later 

in the year are likely to include more information and provide a more accurate forecast (Ramnath, 

Rock, and Shane, 2008). If investors‟ demand for information increases with uncertainty, it could be 

that analysts issue timelier forecasts to meet investors‟ demands, which could lead to less accurate, 

and perhaps more optimistic output (given that analyst outputs are optimistic rather than pessimistic in 

general). However, Amiram, Landsman, Owens, and Stubben (2014) find that analysts‟ forecasts are 

less timely when market uncertainty is high, which is inconsistent with the above alternative 

explanation. 

We find that the overall evidence is consistent with our incentive-based hypothesis that 

analysts issue more optimistic forecasts during high-uncertainty times, due to decreased marginal 

costs and increased marginal benefits. We do not find evidence that supports the alternative 

explanations. 

 

7. Conclusion 

The performance and incentives of analysts have important implications for studies on capital 

markets. This research investigates the properties of analysts‟ forecasts and decision-making 

processes by examining the effect of market uncertainty on analysts‟ output. We show that market 

uncertainty is an important factor that affects analysts‟ forecasts and recommendations. We find that 

analyst optimism increases with the level of market uncertainty. We also find that market uncertainty 

affects the consequences of analyst optimism. Analysts‟ reputation loss is less severe, as high-

uncertainty times are when the information environment is noisy. On the other hand, their trading 

commissions increase with the increased trading activity that follows optimistic output. Our findings 

suggest that the tradeoff decision that analysts make between reputation building and generating 

trading commissions varies across time.  
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The findings on time-varying analyst optimism add to the prior literature on static analyst-

forecast incentives and trading activity (Hayes, 1998; Jackson, 2005; Beyer and Guttman, 2011). This 

paper also complements studies that examine the relationship between firm-level uncertainty and 

analysts‟ forecasts and its effect on prices (Imhoff and Lobo, 1992; Ackert and Athanassakos, 1997; 

Zhang, 2006) by exploiting an alternative exogenous measure of uncertainty. Using a market-level 

uncertainty measure of the information environment, we are able to circumvent the potential 

endogeneity in firm-level uncertainty measures in explaining analysts‟ output.  

Finally, it is noteworthy that analysts‟ biased output has a stronger impact on trading activity 

in high-uncertainty periods, since high-uncertainty periods are when investor demand for information 

is at its highest. We find that investors are not receiving more accurate information or 

recommendations from analysts in these periods. Increased analyst optimism in times of high market 

uncertainty suggests that there is a greater conflict of interest between analysts and investors when the 

demand for information is high. Investors should account for analysts‟ time-varying optimistic 

forecasts and recommendations, since optimistic biases have a direct effect on firm valuation and 

hence on investors‟ wealth.   
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Figure 1 The marginal cost and marginal benefit of optimistic output 

 

 

MC0 and MB0 denote the marginal cost curve and the marginal benefit curve when market uncertainty 

is low. MC1 and MB1 denote the marginal cost curve and the marginal benefit curve when market 

uncertainty is high. The downward shift in the marginal cost and the upward shift in the marginal 

benefit result in an increase in the level of optimistic output from OO0 to OO1 when market 

uncertainty increases. 

Figure 2 Scatter plot of VIX and aggregate analyst optimism 
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Figure 2 displays a scatterplot of the monthly VIX level and the monthly aggregate mean forecast 

error (Aggregate FE). Aggregate FE is the sum of all firm-level Consensus FE, which is the 

difference between the mean consensus forecast and actual earnings for firm j in month m. A simple 

regression line shows a positive relationship between the VIX level and aggregate analyst-forecast 

optimism. 

 

Table 1 Summary statistics of key variables 

Panel A reports the descriptive statistics of the main variables. The sample period is from 1996 to 

2012. Market uncertainty is measured using the average monthly VIX index one month prior to the 

analyst announcement date. Analyst-output variables include forecast error (FE); Optimistic Flag; 

stock recommendations (Recid); and buy, sell, hold percentage of stock recommendations (BuyPct, 

SellPct, HoldPct). FE is the forecast error (analysts‟ forecasts minus actual earnings), scaled by the 

stock price of year t-1 (multiplied by 100). Optimistic Flag is an indicator variable for the analyst 

forecast being greater than the actual earning. Recid is the numeric value of the stock recommendation, 

where strong buy =5, buy =4, hold =3, underperform =2, and sell =1. Buy, sell, and hold percentages 

of stock recommendations are ratios of buy, sell, and hold recommendations to total number of stock 

recommendations for the stock. In Panel B, analyst-output variables are subsampled into high- and 

low-market-uncertainty periods based on the highest (lowest) quintile levels of VIX, and t-tests are run 

across the subsamples. 

 

Analyst-characteristic variables are Experience, Boldness, Rounding, Coverage, All-Star, and 

Brokerage Size. Experience is the log of the number of years an analyst issues a forecast for any given 
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firm. Boldness is the percentage of bold earnings forecasts issued by analyst i in year t. A forecast is 

defined as bold if the forecast is above both the analyst‟s prior forecast and the immediate consensus 

forecast before the forecast revision, or if the forecast is below both the analyst‟s prior forecast and 

the consensus forecast immediately before the forecast revision. Rounding is the percentage of 

rounded earnings forecasts issued by analyst i in year t. A forecast is rounded if the forecast occurs at 

nickel intervals. Coverage is the number of firms covered by analyst i in year t, in logs. All-Star is an 

indicator variable, which equals one if the analyst is included in the All-star analyst list by 

Institutional Investors magazine in year t. Brokerage Size is measured as the log of the number of 

analysts in a given brokerage firm in year t.  

 

Firm-characteristic variables include Size, Market-to-Book Ratio, and Institutional Holdings. Size is 

the log of the market value of equity of firm j in year t-1. Market/Book is calculated as the market 

value of the firm‟s equity at the end of year t-1 plus the difference between the book value of the 

firm‟s assets and the book value of the firm‟s equity in year t-1, divided by the book value of the 

firm‟s assets in year t-1. Institutional Holdings is the percentage of institutional investor holdings of 

firm j in year t-1.  

 

Panel A 
    

Market-uncertainty and analyst-output variables   Mean Median Stddev 

VIX   20.401 19.261 7.825 

Forecast error (FE) 0.522 0 3.607 

Optimistic flag 0.459 0 0.498 

Stock recommendations (Recid) 4.343 4 0.962 

Buy recommendation % (BuyPct) 55.731 57.142 27.423 

Sell recommendation % (SellPct) 4.957 0 9.765 

Hold recommendation % (HoldPct) 39.315 40 24.392 

     
Analyst-characteristic variables       

    

Experience (in logs) 1.910 1.946 0.778 

Boldness 
 

0.150 0.178 0.150 

Rounding 
 

0.024 0.018 0.026 

Coverage (in logs) 
 

3.000 2.996 0.836 

All-Star 
 

0.136 0 0.343 

Brokerage size (in logs) 3.678 3.829 1.029 

     
Firm-characteristic variables       

Size 
 

7.667 7.581 1.788 

Market/book 2.177 1.538 1.787 

Institutional holdings 0.666 0.697 0.248 

    

Panel B 
      

Analyst-output variables    High VIX Low VIX   
T-

statistic 
P-value 

Forecast error (FE) 0.581 0.373  12.619 <0.001 

Optimistic flag 0.470 0.443  11.172 <0.001 
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Stock recommendations (Recid) 3.724 3.512  9.989 <0.001 

Buy recommendation % (BuyPct) 56.333 49.708  48.4917 <0.001 

Sell recommendation % (SellPct) 4.993 6.2989  -24.852 <0.001 

Hold recommendation % (HoldPct) 38.6736 43.992  -43.9739 <0.001 

 

Table 2 Market uncertainty and forecast bias 

Panel A: The effect of market uncertainty on analyst forecasts 

Panel A reports the relationship between VIX and analyst-forecast error at the aggregate market level, 

firm level, and individual analyst level. Forecast error (FE) is the difference between the analysts‟ 

forecasts and actual earnings, scaled by the stock price of year t-1 (multiplied by 100). In specification 

(1), the dependent variable is Aggregate FE, which is the sum of all firm-level Consensus FE for each 

month m. In specification (2), the dependent variable is the Consensus FE, which is the difference 

between the mean consensus forecast and actual earnings for firm j in July. In specification (3), the 

dependent variable is the individual analyst-forecast error and includes the analyst forecast closest to 

July but not after July (Hong and Kubik, 2003). In specifications (4)-(5), the dependent variable is an 

Optimistic Flag indicator variable, which equals one if the analyst forecast is greater than actual 

earnings. Specifications (1)-(4) report estimates using the linear probability model, and specification 

(5) reports estimates using the conditional logit model. Market uncertainty is measured using the 

average monthly VIX index one month prior to the analyst announcement date (scaled by 1/100). 

Analyst and firm-characteristic variables follow the definitions in Table 1. Specifications (2)-(5) 

include firm fixed effects. Standard errors are clustered by year in specification (1), by firm in 

specification (2), and by firm-analyst in specifications (3)-(5).   

Dependent variable Aggregate FEmt 
Consensus 

FEjmt 

Individual 

FEijmt 
Optimistic Flagijmt 

Sample 
All 

 months 
July July July July 

                               (1) (2) (3) (4) (5) 

      VIX                           0.241** 0.023*** 0.858*** 0.112*** 0.548*** 

                               (0.112) (0.004) (0.130) (0.017) (0.193) 

Coverage                        -0.045*** -0.011*** -0.050*** 

                                 (0.016) (0.002) (0.012) 

Experience                          0.032*** 0.005*** 0.023*** 

                                 (0.010) (0.001) (0.008) 

Horizon                       0.102** -0.009 -0.040 

                                 (0.049) (0.007) (0.048) 

All-Star   -0.043** -0.065*** -0.313*** 

 
  (0.021) (0.007) (0.045) 

Boldness                           -0.290*** 0.105*** 0.477*** 

                                 (0.048) (0.033) (0.182) 

Rounding                          0.635** -0.000 -0.000 

                                 (0.263) (0.003) (0.016) 

Brokerage Size   0.031*** 0.002** 0.009* 

 
  (0.007) (0.001) (0.005) 

Size  0.066 0.191*** 0.101*** 0.486*** 
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                                (0.061) (0.020) (0.002) (0.031) 

Market/Book  -0.035* -0.097*** -0.007*** -0.032** 

                                (0.021) (0.006) (0.001) (0.016) 

Institutional Holdings  0.002 -0.222*** -0.092*** -0.433*** 

                                (0.242) (0.073) (0.008) (0.102) 

Constant 6.828** -0.183 -1.237*** -0.161***  

                               (2.799) (0.359) (0.305) (0.043)  

N                              182 30288 240891 240891 232276 

R-sq (or Chi-sq)                        0.040 0.393 0.271 0.184 351.31 

Firm fixed effects No Yes Yes Yes Yes 

Conditional logit No No No No Yes 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively.  

Panel B: The effect of market uncertainty on analyst-forecast bias over different forecasting 

horizons 

The dependent variable is the individual analyst-forecast error for firm j in month m in year t. 

Definitions of variables follow from Table 1. All specifications include firm fixed effects. Standard 

errors are clustered by firm and analyst.  

Dependent variable Individual FEijmt 

Horizon 0-90 days 91-180 days 181-270 days 271-360 days 

                               (1) (2) (3) (4) 

     VIX                           1.803*** 1.043*** 1.459*** 3.615*** 

                               (0.062) (0.105) (0.169) (0.156) 

Coverage                      0.015 0.034* 0.065*** 0.064*** 

                               (0.014) (0.018) (0.022) (0.024) 

Experience                        0.003 0.017 0.036*** 0.051*** 

                               (0.008) (0.011) (0.013) (0.015) 

Horizon                     0.031*** 0.398*** -0.121* 0.046 

                               (0.007) (0.034) (0.067) (0.137) 

All-Star -0.053 -0.202*** -0.334*** -0.764*** 

 
(0.038) (0.054) (0.068) (0.073) 

Boldness                         0.499** 1.124*** 1.248*** 1.753*** 

                               (0.214) (0.301) (0.361) (0.407) 

Rounding                        -0.013 -0.017 -0.036 -0.079** 

                               (0.017) (0.024) (0.030) (0.034) 

Brokerage Size -0.003 0.004 0.014 0.027*** 

 
(0.005) (0.007) (0.009) (0.010) 

Size 0.013 0.186*** 0.221*** 0.284*** 

                               (0.017) (0.022) (0.026) (0.029) 

Market/Book -0.014*** -0.035*** -0.074*** -0.145*** 

                               (0.005) (0.006) (0.007) (0.010) 

Institutional Holdings 0.075 -0.058 -0.124 -0.167 

                               (0.072) (0.097) (0.105) (0.113) 

Constant -0.529*** -3.196*** -0.689* -2.365*** 
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                               (0.125) (0.224) (0.409) (0.801) 

N                              299337 302081 302376 241338 

R-sq  0.233 0.282 0.300 0.296 

Firm fixed effects Yes Yes Yes Yes 

 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Table 3 Market uncertainty and stock recommendations 

Panel A: Individual analyst stock recommendations 

Panel A reports the relationship between VIX and individual analyst stock recommendations. The 

dependent variable is Recid, which is the numeric value of the stock recommendation, where strong 

buy =5, buy =4, hold =3, underperform =2, and sell =1. Market uncertainty is measured using the 

average monthly VIX index one month prior to the analyst announcement date (scaled by 1/100). 

Analyst- and firm-characteristic variables follow the definitions in Table 1. All specifications include 

firm fixed effects. Standard errors are clustered by firm and analyst.   

   
                               (1) (2) 

VIX                           0.139*** 0.203*** 

                               (0.035) (0.052) 

Coverage                      
 

-0.012 

                               
 

(0.008) 

Experience                        
 

0.015** 

                               
 

(0.008) 

All-Star 
 

-0.065*** 

  
(0.010) 

Boldness                         
 

0.012 

                               
 

(0.023) 

Rounding                        
 

-0.463*** 

                               
 

(0.122) 

Brokerage Size 
 

-0.064*** 

  
(0.004) 

Size 
 

-0.020*** 

                               
 

(0.007) 

Market/Book 
 

0.086*** 

                               
 

(0.003) 

Institutional Holdings 
 

-0.491*** 

                               
 

(0.028) 

Constant              3.736*** 4.157*** 

                               (0.007) (0.059) 

N                              200908 84858 

R-sq                           0.107 0.157 

Firm fixed effects Yes Yes 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Panel B: Firm-level stock-recommendation percentages  

 

Panel B reports the relationship between VIX and firm-level stock-recommendation percentages. The 

dependent variable is the percentage of buy, sell, or hold recommendations for firm j in July of year t. 

In specification (1), the dependent variable is the percentage of buy recommendations of a stock. In 

specification (2), the dependent variable is the percentage of sell recommendations of a stock. In 

specification (3), the dependent variable is the percentage of hold recommendations of a stock. 
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Market uncertainty is measured using the average monthly VIX index one month prior to the analyst 

announcement date (scaled by 1/100). Firm-characteristic variables follow the definitions in Table 1. 

All specifications include firm fixed effects. Standard errors are clustered by firm.   

    
Dependent variable BuyPct SellPct HoldPct 

 (1) (2) (3) 

        

VIX                           0.410*** -0.145*** -0.265*** 

                               (0.026) (0.010) (0.024) 

Size 0.049*** -0.013*** -0.036*** 

                               (0.005) (0.002) (0.004) 

Market/Book 0.019*** -0.003*** -0.016*** 

                               (0.003) (0.001) (0.003) 

Institutional Holdings -0.214*** 0.056*** 0.157*** 

                               (0.013) (0.004) (0.011) 

Constant 0.184*** 0.150*** 0.665*** 

                               (0.029) (0.010) (0.026) 

N                              31017 31017 31017 

R-sq                           0.445 0.353 0.428 

Firm fixed effects Yes Yes Yes 

    

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Table 4  

 

Analyst turnover, market uncertainty, and optimism 

 

Panel A: Industry turnover 

This table reports the relationship between VIX, forecast accuracy, and analyst leaving the profession 

(denoted as “Industry Turnover” hereafter). The dependent variable is Industry Turnover, which 

equals one if the analyst stops making earnings forecasts in year t. Flag is a dummy variable that 

equals one if the analyst is in the highest 10% in the distribution of average forecast optimism across 

analysts in year t-1. Average forecast optimism is the average of an indicator variable for the analyst 

forecast being above the consensus forecast. Market uncertainty is measured using the average annual 

VIX index in year t-1, scaled by 1/100. Analyst-characteristic variables follow the definitions in Table 

1. All specifications are estimated using a logit model with robust standard errors.  

 

Dependent variable Industry turnover 

                               (1) (2) (3) (4) 

          

VIX                      1.316 1.660 1.614 1.504 

 
(3.622) (3.725) (3.702) (3.710) 

Flag                          
 

0.221 0.221 0.176 

                               
 

(0.175) (0.175) (0.190) 

Flag*VIX                        
 

-1.609** -1.722** -1.540** 

                               
 

(0.715) (0.732) (0.732) 

Coverage                      
  

-0.125** -0.095 
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(0.062) (0.072) 

Experience                        
  

0.256* 0.318* 

                               
  

(0.154) (0.174) 

All-Star 
   

-0.869* 

    
(0.445) 

Brokerage Size 
   

0.067*** 

    
(0.021) 

Constant -1.921*** -1.969*** -2.165*** -2.494*** 

                               (0.669) (0.691) (0.756) (0.794) 

N                              19845 19845 19836 19836 

chi2                           0.13 9.80 32.28 56.09 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Panel B: Job turnover 

This table reports the relationship between VIX, forecast accuracy, and analyst job turnover. Job 

turnover is defined as analysts‟ changing employment. In specifications (1)-(3), the dependent 

variable is the Move Down indicator variable, which equals one if the analyst moves down from a 

large brokerage firm to a small brokerage firm in year t. In specifications (4)-(6), the dependent 

variable is the Move Up indicator variable, which equals one if the analyst moves up from a small 

brokerage firm to a large brokerage firm in year t. Flag is a dummy variable that equals one if the 

analyst is in the highest 10% in the distribution of average forecast optimism across analysts in year t-

1. Average forecast optimism is the average of an indicator variable for the analyst forecast being 

above the consensus forecast. Market uncertainty is measured using the average annual VIX index in 

year t-1. Analyst-characteristic variables follow the definitions in Table 1. All specifications are 

estimated using a logit model with robust standard errors.  

 

Dependent variable Move Down Move Up 

                               (1) (2) (3) (4) (5) (6) 

             

VIX                      2.167 2.130 2.033 0.913 0.945 1.100 

 
(3.456) (3.435) (3.416) (2.111) (2.124) (2.096) 

Flag                           0.242 0.238 0.219 -0.756 -0.695 -0.622 

                               (0.163) (0.161) (0.176) (0.875) (0.862) (0.864) 

Flag *VIX                        -1.605** -1.709** -1.615** 2.372 2.612 2.346 

                               (0.680) (0.695) (0.678) (3.619) (3.560) (3.551) 

Coverage                      

 

-0.125** -0.113 

 

0.520*** 0.468*** 

                               

 

(0.059) (0.073) 

 

(0.152) (0.171) 

Experience                        

 

0.228 0.298* 

 

-0.400** -0.499*** 

                               

 

(0.157) (0.173) 

 

(0.202) (0.192) 

All-Star 

  

-0.788* 

  

0.838*** 

 
  

(0.406) 

  

(0.217) 

Brokerage Size 

  

0.162*** 

  

-0.020 

 
  

(0.041) 

  

(0.083) 

Constant -1.999*** -2.139*** -2.790*** -4.601*** -5.196*** -4.985*** 

                               (0.666) (0.720) (0.671) (0.453) (0.747) (0.775) 

N                              19845 19836 19836 19845 19836 19836 
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chi2                           10.65 33.92 134.50 1.42 13.19 201.26 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Table 5 Trading activity, market uncertainty, and optimism 

This table reports the relationship between VIX, analyst optimism, and trading activity. Panel A 

reports the relationship between trading volume and optimistic forecasts. Panel B reports the 

relationship between trading volume and optimistic recommendations. The dependent variable is the 

average abnormal trading volume (in logs) around analyst-announcement windows ([0, 1] days). 

Abnormal trading volume is the difference between trading volume and expected trading volume, 

which is the average trade volume (in logs) of the firm 30 days prior to the announcement date ([-35, -

6] days). Forecast accuracy and stock recommendations, as well as analyst and firm-characteristic 

variables, follow the definitions in Table 1. Analyst characteristics include Coverage, Experience, All-

Star, Boldness, Rounding, and Brokerage Size. Firm characteristics include Size, Market/Book, and 

Institutional Holdings. All specifications include firm fixed effects. Standard errors are clustered by 

firm and analyst.  

 

Panel A 
  

Forecast error  (1) (2) 

VIX                           -0.791*** -0.707*** 

                               (0.022) (0.022) 

FE                           -0.004** -0.005*** 

                               (0.002) (0.002) 

FE*VIX                          0.015** 0.021*** 

                               (0.007) (0.007) 

Analyst characteristics                             Yes Yes 

Firm characteristics                           No Yes 

Firm fixed Effects Yes Yes 

  

Panel B 
 

Individual stock recommendations  (1) (2) 

VIX                           -0.251* -0.244 

                               (0.149) (0.150) 

Recid                           -0.040*** -0.040*** 

                               (0.014) (0.014) 

Recid*VIX                          0.103* 0.102* 

                               (0.055) (0.055) 

Analyst characteristics                             Yes Yes 

Firm characteristics                           No Yes 

Firm fixed Effects Yes Yes 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Table 6 Cross-Sectional Characteristics, Market Uncertainty, and Optimism 

 

This table reports the relationship between the cross-sectional firm/analyst characteristics of the 

degree of firm-level information/analyst experience, VIX, and analyst optimism. Specifications (1)-(4) 

examine the effect of firm-level information on the relationship between VIX and analyst optimism, 

and specifications (5)-(8) examine the effect of analysts‟ experience on the relationship between VIX 

and analyst optimism. The dependent variable is the individual analyst-forecast error (FE) in 

specifications (1)-(2) and (5)-(6). In specifications (3)-(4) and (7)-(8), the dependent variable is 

analyst stock recommendation (Recid). The degree of firm-level information (firm-level information 

versus market-level information) is measured by the correlation between firm return and market return 
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(Frankel, Kothari, and Weber, 2006). RSQ is the R-squared value from the market model, regressing 

the value-weighted market return on firm return for firm j in year t. INEXP is an indicator variable 

that equals one if the analyst is defined as inexperienced, i.e., if the number of years since the 

analyst‟s first forecast year is below the median of eight years. Analyst characteristics include 

Coverage, Experience, All-Star, Boldness, Rounding, and Brokerage Size. Firm characteristics include 

Size, Market/Book, and Institutional Holdings. Analyst- and firm-characteristic variables follow the 

definitions in Table 1. All specifications include firm fixed effects. Standard errors are clustered by 

firm and analyst.   
 

Dependent variable Forecast Error Recommendation Forecast Error Recommendation 

                               (1) (2) (3) (4) (5) (6) (7) (8) 

VIX                          4.414*** 4.871*** 
1.686**

* 

1.685**

* 

1.250**

* 

1.297**

* 

0.134*

* 

0.180**

* 

                               (0.287) (0.288) (0.231) (0.230) (0.080) (0.079) (0.066) (0.066) 

RSQ 2.955*** 2.711*** -0.303 -0.208     

                               (0.160) (0.162) (0.210) (0.211)     

RSQ*VIX                         

-

12.383**

* 

-

12.733**

* 

-

2.101** 

-

1.803** 
    

                               (0.716) (0.721) (0.881) (0.877)     

INEXP     

-

0.116**

* 

-

0.111**

* 

-

0.056*

* 

-0.044* 

     (0.028) (0.028) (0.023) (0.023) 

INEXP*VIX     
0.008**

* 

0.007**

* 
0.025 0.047 

     (0.001) (0.001) (0.087) (0.087) 

Analyst 

characteristics 
Yes Yes Yes Yes Yes Yes Yes Yes 

Firm characteristics No Yes No Yes No Yes No Yes 

Firm fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Table 7 Analyst experience, optimism, and job outcomes 

This panel reports the effect of analysts‟ experience on the relationship between VIX, analyst 

optimism, and job outcomes. In specifications (1)-(4), the dependent variable is the Industry Turnover 

indicator variable, which equals one if the analyst stops making earnings forecasts in year t. In 

specifications (5)-(8), the dependent variable is the Move Down indicator variable, which equals one 

if the analyst moves down from a large brokerage firm to a small brokerage firm in year t. Flag is a 

dummy variable that equals one if the analyst is in the highest 10% in the distribution of average 

forecast optimism across analysts in year t-1. Average forecast optimism is the average of an indicator 

variable for the analyst forecast being above the consensus forecast. The analyst is defined as 

experienced if the number of years since his or her first forecast year is above the median of eight 

years, and estimation samples are subsampled by the median. Analyst characteristics include 

Coverage, Experience, All-Star, Boldness, Rounding, and Brokerage Size, and are included in 

specifications (2), (4), (6), and (8). Analyst-characteristic variables follow the definitions in Table 1. 

All specifications are estimated using a logit model with robust standard errors.  

 
 

          

Dependent variable Industry Turnover  Move Down 
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Subsample by 

experience 
Above Below  Above Below 

                               (1) (2) (3) (4)  (5) (6) (7) (8) 

          

VIX                          1.390 1.258 1.871 1.796  1.790 1.688 2.518 2.436 

                               
(4.118

) 

(4.12

7) 

(3.224

) 

(3.221

) 
 

(3.91

1) 

(3.88

5) 
(2.904) (2.891) 

Flag                          0.128 0.034 0.341 0.278  0.084 0.006 0.424** 0.395* 

                               
(0.170

) 

(0.17

9) 

(0.225

) 

(0.234

) 
 

(0.19

8) 

(0.19

9) 
(0.216) (0.228) 

Flag*VIX                        

-

1.583

* 

-

1.285 

-

1.637*

* 

-

1.624*

* 

 
-

1.179 

-

0.941 

-

2.053**

* 

-

2.147**

* 

 
(0.896

) 

(0.80

1) 

(0.808

) 

(0.824

) 
 

(1.10

5) 

(0.98

8) 
(0.733) (0.773) 

Analyst 

characteristics 
No Yes No Yes  No Yes No Yes 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 

Table 8 Analyst following and forecast frequency 

This table reports the relationship between VIX and the number of analysts issuing earnings forecasts 

and stock recommendations, as well as the relationship between VIX and analyst-forecast frequency. 

In specification (1), the dependent variable is the number of analysts issuing earnings forecasts for 

firm j in year t. In specification (2), the dependent variable is the number of analysts issuing buy, sell, 

or hold recommendations for firm j in year t. In specification (3), the dependent variable is the natural 

logarithm of the total number of forecasts issued by analyst i in year t. In specification (4), the 

dependent variable is the natural logarithm of the average number of forecasts issued by analyst i per 

firm j covered in year t. Market uncertainty is measured using the average monthly VIX index one 

month prior to the analyst announcement date. Firm and analyst-characteristic variables follow the 

definitions in Table 1. Specifications (1)-(2) include firm fixed effects, and specifications (3)-(4) 

include analyst fixed effects. In specifications (1)-(2), standard errors are clustered by firm and year. 

In specifications (3)-(4), standard errors are clustered by firm and analyst.   

 

Dependent variable 
Number of Analysts Issuing 

Earnings Forecasts  

Number of Analysts 

Issuing   

Recommendations 
Number of Forecasts  

  (1) (2) (3) (4) 

VIX                           0.460** 0.370* 0.004*** 0.001* 

                               (0.233) (0.203) (0.001) (0.000) 

Size 1.680*** 2.170***   

                               (0.105) (0.077)   

Market/Book                          -0.175** -0.350***   

                               (0.078) (0.032)   

Institutional Holdings 0.912*** 2.731***   

                               (0.255) (0.166)   

Coverage                        -0.089*** 0.022*** 

                                 (0.014) (0.008) 

Experience                          0.004 0.008 

                                 (0.027) (0.017) 

Boldness                           -0.533*** -0.143 

                                 (0.163) (0.096) 
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Rounding                          0.474*** 0.010 

                                 (0.018) (0.011) 

All-Star   0.051** -0.007 

                                 (0.023) (0.015) 

Brokerage Size   -0.016* -0.008* 

   (0.008) (0.005) 

Constant -3.880*** -5.348*** 2.617*** 1.246*** 

                               (0.603) (0.461) (0.054) (0.031) 

N                              31143 27052 29291 29291 

R-sq                           0.820 0.760 0.668 0.587 

Firm fixed effects Yes Yes No No 

Analyst fixed effects No No Yes Yes 

***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 


