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ABSTRACT 

Rationale, aims and objectives: Stratification is a popular propensity score (PS) adjustment 

technique. It has been shown that stratifying the PS into 5 quantiles can remove over 90% of the 

bias due to the covariates used to generate the PS. Due to this finding, many investigators 

partition their data into 5 quantiles of the PS without examining whether a more robust solution 

(one that increases covariate balance while potentially reducing bias in the outcome analysis) can 

be found for their data. Two approaches (referred to herein as PSCORE and PSTRATA) obtain 

the optimal stratification solution by repeatedly dividing the data into strata until balance is 

achieved between treatment and control groups on the PS. These algorithms differ in how they 

partition the data and it is not known which is better, or if either is better than a 5 quantile default 

approach, for reducing bias in treatment effect estimates.   

Method: Monte Carlo simulations and empirical data are used to assess whether PS strata defined 

by PSCORE, PSTRATA, or 5 quantiles is best at reducing bias in treatment effect estimates, 

when used within a marginal mean weighting framework (MMWS). These estimates are further 

compared to results derived using inverse probability of treatment weights (IPTW). 

Results: PSTRATA was slightly better than PSCORE in balancing covariates and reducing bias, 

while both approaches outperformed the 5 quantiles approach. Overall MMWS using any 

stratification method outperformed IPTW. 

Conclusions: Investigators should routinely employ stratification approaches that obtain the 

optimal stratification solution, rather than simply partitioning the data into 5 quantiles of the 

This article is protected by copyright. All rights reserved.



propensity score. Moreover MMWS (in conjunction with an optimal stratification approach), 

should be considered as an alternative to IPTW in studies that utilize propensity score weights.  
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1. INTRODUCTION 

When conducting a randomized-controlled trial (RCT) is not feasible, investigators typically use 

observational data and rely on statistical methods to adjust for confounding. Although 

conventional regression modeling remains the most common adjustment approach, methods that 

explicitly model the treatment assignment -- such as those using instrumental variables [1,2] or 

the propensity score [3] -- are now being used more widely. In health research in particular, 

propensity scoring techniques have become increasingly popular as a means of controlling for 

confounding when estimating treatment effects [4,5,6,7]. 

 The propensity score is defined as the probability of assignment to the treatment group 

given the observed characteristics [3]. It has been demonstrated that in large samples, when 

treatment and control groups have similar distributions of the propensity score, they generally 

have similar distributions of the underlying covariates used to create the propensity score. This 

implies that observed pre-intervention covariates can be considered independent of treatment 

assignment (as if they were randomized), and therefore will not bias treatment effect estimates 

[3].  

 Stratification (also known as subclassification [8,9]) is a principal propensity score 

adjustment technique that is straightforward to implement and more interpretable than most other 

adjustment approaches [10]. Stratification may be considered a coarser version of matching, 

where treated and non-treated individuals within each stratum are expected to be comparable on 

pre-treatment characteristics. It has been shown that stratifying the propensity score into 5 
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quantiles can remove over 90% of the initial bias due to the covariates used to generate the 

propensity score [8,9]. Given this finding, many investigators simply partition their data into 5 

quantiles of the propensity score without examining whether a more robust solution (one that 

increases covariate balance while potentially reducing bias in the outcome analysis) can be found 

for their data.  

 Fortunately, two alternative approaches exist for obtaining the optimal stratification 

solution. The first approach initially splits the data into 5 quantiles of the propensity score, tests 

whether the treated and control groups are balanced on the propensity score within each quantile, 

and splits the quantile in half if balance is not achieved. The process of splitting quantiles into 

smaller strata is repeated until balance on the propensity score is achieved within each and every 

strata (we will refer to this approach as PSCORE, following the name of the user-written 

program for Stata) [11]. The second approach initially splits the data into 5 quantiles of the 

propensity score and tests whether the treated and control groups are balanced on the propensity 

score within each quantile. The overall number of quantiles is incrementally increased by 1 until 

balance on the propensity score is achieved between treatment and control groups, within all 

quantiles (we will refer to this approach as PSTRATA, following the name of the user-written 

program for Stata) [12]. While the difference between approaches may appear subtle, in effect, 

the number of strata -- and thus the number of observations within strata -- may differ 

substantially. More specifically, in the PSCORE approach it is likely that the various strata will 

differ in their sample sizes, whereas in the PSTRATA approach, all strata will have equal sample 

This article is protected by copyright. All rights reserved.



sizes. However it has yet to be established if these two approaches differ in their effect on bias in 

the outcomes analysis, or if either (or both) carries any advantage over simply stratifying the data 

into 5 propensity score quantiles. Therefore, the purpose of this paper is to investigate, using 

both Monte Carlo simulation and empirical data, whether either of these two approaches is 

superior to 5 propensity score quantiles for improving covariate balance and reducing bias.  

 This paper is organized as follows: Section 2 details the construction and results of the 

Monte Carlo simulation. Section 3 describes the empirical study and reports the results, and 

Section 4 provides discussion and conclusions. 

2. MONTE CARLO SIMULATION STUDY 

In this simulation study, we examine if either of the two propensity score stratification 

approaches, PSCORE and PSTRATA, is superior to the standard application of 5 propensity 

score quantiles for reducing bias in the outcome model. The basic simulation design generally 

follows that described by Hong [13], in which the estimated propensity score is misspecified to 

varying degrees (four scenarios) and the effect on bias is assessed across four different outcome 

distributions (normal linear, normal nonlinear, Poisson, and Bernoulli) -- for a total of 16 

separate scenarios. In each scenario, 10,000 replications are drawn from the data-generating 

process described below, and repeated for sample sizes of 500 and 2000. For each replication, 

the treatment effect estimate and standard error (SE) for each model is recorded. Bias (the 

difference between the simulated effect and the true effect of 1.0), and the root mean squared 
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error (RMSE) - which is a measure that magnifies and severely penalizes large errors, are then 

calculated across all samples. Lower values for all measures indicate better bias reduction. 

2.1 Data generating process for the treatment model 

As in Hong [13] (Simulation II), the true propensity score assigns treatment according to a 

polynomial function of X:   

 Pr = α0 + α1X + α2X2,  

where X is drawn from a standard normal distribution with a mean of 0 and a standard deviation 

of 1 and α0, α1, and α2 are manipulated to induce varying degrees of non-linearity as follows: 

 Model 1: α0 = 1 α1 =.2, α2 = -.2 

 Model 2: α0 = 1 α1 =.6, α2 = -.2 

 Model 3: α0 = 1 α1 =.2, α2 = -.6 

 Model 4: α0 = 1 α1 =.6, α2 = -.6 

The treatment assignment indicator Z is a Bernoulli random variable with the parameter of its 

distribution equal to the inverse logit of the true propensity score. A misspecified propensity 

score, which excludes the quadratic term X2, is used in all simulation models. 

2.2 Data generating process for the outcome model 

As in Hong [13], four linear and nonlinear models for potential outcomes were generated for 

each set of simulations. The first model generated two normally distributed potential outcomes 

Y(1) and Y(0) corresponding to the experimental condition Z = 1 and the control condition Z = 0. 

Both Y(1) and Y(0) are linear functions of a standard normal covariate X:  
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 Y(1) = 6 + 0.7X + ϵ(1); 

 Y(0) = 5 + 0.7X + ϵ(0); 

 ϵ (1), ϵ (0) ~ N(0,0.25). 

In the second outcome model, Y(1) and Y(0) are polynomial functions of a standard normal 

covariate X: 

 Y(1) = 6 + 0.5X + 0.25X2 - 0.125X3 + ϵ(1); 

 Y(0) = 5 + 0.5X + 0.25X2 - 0.125X3 + ϵ(0); 

 ϵ(1), ϵ(0) ~ N(0,0.25). 

In the third outcome model, Y(1) and Y(0) follow Poisson distributions in which the parameters 

are each a nonlinear function of a standard normal covariate X: 

 Y(1) ~ Poisson(μ(1)); μ(1) = exp(3 + 0.7X); 

 Y(0) ~ Poisson(μ(0)); μ(0) = exp(2 + 0.7X). 

In the fourth outcome model, Y(1) and Y(0) are each a Bernoulli random variate. Their 

parameters are each nonlinear functions of a standard normal covariate X: 

  Y(1) ~ Bernoulli(μ(1));  μ(1) = [1 + exp(-0.5 - 0.7X)]-1; 

 Y(0) ~ Bernoulli(μ(0));  μ(0) = [1 + exp(0.5 - 0.7X)]-1. 

In all models, the true treatment effect = 1. 

2.3 Data pre-processing 

For each replication in the simulation study, the propensity score is stratified in three ways: (a) 

dividing the propensity score into 5 quantiles (that are equally sized), (b) using the PSCORE 
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algorithm in Stata to determine the optimal number of strata (that may or may not be equally 

sized) [11], and (c) using the PSTRATA algorithm in Stata to determine the optimal number of 

strata (that are equally sized) [12]. 

 Stratification is only an intermediate step in the overall process of estimating treatment 

effects. Typically, once strata are defined, treatment effects are calculated within each stratum, 

and are then pooled to obtain an overall weighted treatment effect estimate [14]. Here, we use an 

alternate approach called marginal mean weighting through stratification (MMWS) [13,15,16] to 

generate weights for each individual based on their corresponding stratum and treatment 

assignment. The marginal mean weights are computed based on the following formula by Hong 

[13]: 

𝑛𝑠 × Pr (𝑍 =𝑧 ) 
𝑛𝑧 = 𝑧,𝑠

    

where 𝑛𝑠 is the total number of individuals in a given stratum 𝑠, Pr (𝑍 = 𝑧 ) is the probability of 

assignment to treatment group 𝑧, and 𝑛𝑧 = 𝑧,𝑠 is the total number of individuals in stratum 𝑠 that 

were actually assigned to treatment 𝑧. The weights are then used as sampling weights in the 

outcome model. Thus, for each replication, three different MMWS weights are computed, 

corresponding to each of the stratification approaches.  

 As an additional comparator in the study, we compute inverse probability of treatment 

weights (IPTW) [17,18], where participants have a weight equal to the inverse of the estimated 

propensity score (1/propensity score), and non-participants have a weight equal to the inverse of 

1 minus the estimated propensity score (1/1-propensity score). IPTW is a popular propensity 
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score weighting technique often used in health research for point-treatment, longitudinal, and 

survival studies, [18,19,20,21,22], among others. Hong [13] found that MMWS (using 6 strata) 

outperformed IPTW under a variety of simulation scenarios. We replicate those simulations here 

to see how the three stratification approaches compare to this widely-used weighting approach. 

For the current analyses, all weights were generated with the user-written program for 

Stata called MMWS [16], specifying the common support option (i.e. to drop observations when 

there is no individual in the opposing study group with a similar propensity score to serve as the 

counterfactual), with weights computed to the represent the average treatment effect in the 

population (ATE). 

2.4 Model estimation 

Linear regression models are used for the first two outcome scenarios, Poisson is used for the 

third scenario, and logistic regression is used in the fourth scenario. For each model, the 

corresponding outcome (Y) is regressed on the treatment assignment variable (Z) and the 

respective MMWS or IPTW weights are specified as probability weights. A naïve treatment 

effect is estimated to illustrate the impact of not adjusting for selection bias. This model is 

estimated as described above but excludes an adjustment weight. Robust (sandwich) standard 

errors are used in all models. All simulations and analyses were conducted using Stata version 

14.2 (College Station, TX, USA). 

2.4 Monte Carlo simulation results 
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Tables 1 and 2 present the results of all simulations for sample sizes of 2000 and 500, 

respectively. PSCORE and PSTRATA approaches performed similarly across all scenarios, with 

all estimates close to the actual treatment effect of 1 and achieving similar RMSE. (Table 1) 

Both PSCORE and PSTRATA approaches outperformed the standard 5 quantile approach in the 

non-linear and Poisson models but performed similarly in the linear and logistic regression 

models. All three stratification approaches using MMWS had consistently closer estimates to the 

true treatment effect and lower RMSE than IPTW.  

 As shown in Table 2, with the smaller sample size, no consistent pattern emerges to 

suggest a superior stratification approach, with perhaps the exception of lower RMSE values 

using the PSTRATA approach. Interestingly, in the Bernoulli (logistic) outcome models, the 

standard 5 quantile approach over-estimated the treatment effect by roughly the same amount 

that PSTRATA under-estimated the treatment effect. However, PSTATA did reliably produce 

lower RMSE overall. As in the larger sample, all three stratification approaches using MMWS 

generally outperformed IPTW. 

3. EMPRICAL EXAMPLE 

3.1 Data 

The empirical example uses data from a prior evaluation of a primary care-based medical home 

pilot program that invited patients to enroll if they had a chronic illness or were predicted to have 

high costs in the following year. The goal of the program was to lower healthcare costs for 

program participants by providing intensified primary care (see [23] for a more comprehensive 
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description). The retrospectively collected data consist of observations for 374 program 

participants and 1,628 non-participants. Eleven pre-intervention characteristics were available; 

these included demographic variables (age and gender), health services utilization in year prior to 

enrollment (primary care visits, other outpatient visits, laboratory tests, radiology tests, 

prescriptions filled, hospitalizations, emergency department visits, and home-health visits) and 

total medical costs (the amount paid for all those health services utilized in the prior year). The 

outcome was total medical costs paid in the year in which individuals received the intervention. 

3.2 Analytic approach 

The first step in the analytic process to estimate treatment effects involves estimating the 

propensity score using logistic regression to predict program participation. Here, the treatment 

indicator is regressed on the eleven pre-intervention covariates described above, all entered as 

main effects.  

 In the second step, the propensity score is stratified using all three stratification 

approaches described earlier (5 quantiles, PSCORE, and PSTRATA).  

 In the third step, separate MMWS weights are computed for each individual -- for each of 

the three stratification approaches. The weights generated here represent the average treatment 

effect on the treated (ATT) and all observations with no common support are dropped from the 

analysis. In this analysis, we do not include a comparison using IPTW. 

 Fourth, covariate balance is assessed between study groups and stratification approaches 

using the absolute standardized difference in means as implemented in the user-written program 
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for Stata COVBAL [24]. In observational data, neither the true propensity score nor the true 

treatment effect is known. Therefore measures of bias, such as those used in a simulated 

experiment (where we do know these true values), cannot be used to assess how far the estimated 

treatment effect deviates from the true effect. Instead, investigators assess covariate balance of 

observed characteristics between study groups as an indicator of how well confounding is 

controlled for. In theory, better balance on covariates (indicated by smaller standardized 

differences) should result in less bias in the outcomes analysis (due to better control of 

confounding).  

 Finally, median (quantile) regression is used to estimate treatment effects, where the 

outcome (total program year costs) is regressed on the treatment variable, the respective MMWS 

weights are specified as probability weights, and standard errors for the treatment effect are 

computed using a bootstrap with 1,000 replications [25]. In addition to the three MMWS-

weighted estimates, a naïve effect is estimated (where no control for confounding is conducted) 

to illustrate a completely biased treatment effect. Quantile regression is used in this example to 

better handle the skewed distribution of costs in this sample [23]. 

3.2 Empirical example results 

Table 3 presents the baseline characteristics of the treatment group compared to controls derived 

via the three stratification approaches and unadjusted. The left panel presents the means of the 

various covariates using each of the stratification approaches, and the right panel presents the 

absolute standardized differences. The PSCORE approach stratified the sample into 8 strata, 

This article is protected by copyright. All rights reserved.



whereas the PSTRATA approach stratified the sample into 12 strata. As shown, the adjusted 

means are comparable between the treated group and controls, using all of the stratification 

approaches. Similarly, the standardized differences between treatment and control groups across 

all three stratification approaches are all under 0.10 (which is generally considered a threshold 

for covariate balance, even though values closest to zero are desirable) [26]. That said, the 

PSTRATA approach achieves the lowest average absolute standardized difference across all 

covariates (0.020), slightly outperforming the PSCORE approach (0.028) and substantially 

outperforming the 5 quantile approach (0.052). Taken as a whole, all three stratification 

approaches achieved covariate balance. 

 Table 4 presents the treatment effect estimates for the three stratification adjusted models 

and the naïve estimate. Given that the weights were adjusted to represent the ATT, all 

individuals in the treatment group receive a weight of 1 and thus, the median program year cost 

estimates for the treated group is identical for all models ($4,765). The median program year 

costs for the control group differs by stratification approach, but within a narrow range of $186 

between the lowest estimate, derived using the 5 quantile approach ($4,098), and the highest 

estimate, derived using the PSTRATA approach ($4,284). That said, the 5 quantile approach 

elicited a statistically significant difference in costs between the treatment and control group (P= 

0.021), whereas the other two stratification approaches produced estimates that were not 

statistically different. In summary, the three stratification approaches did a comparable job in 

adjusting the observed data for confounding, however the treatment effect estimates were 
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sufficiently sensitive to minor differences, that one of the three approaches produced a 

statistically significant result whereas the other two did not.  

4. DISCUSSION 

The results of the Monte Carlo simulation study indicate that the PSTRATA approach produces 

slightly lower bias than the PSCORE approach, which in turn produces lower bias than simply 

partitioning the data into 5 quantiles. Similarly, the results of empirical study indicate that the 

PSTRATA approach produces slightly better covariate balance than the PSCORE approach, 

which in turn, produces better covariate balance than the 5 quantile approach. Taken together, 

these findings suggest that PSTRATA is a marginally superior stratification approach than the 

PSCORE approach, but that either approach outperforms stratifying the data in 5 quantiles of the 

propensity score. The results of the empirical study also indicate that treatment effect estimates 

are sensitive to the number of strata produced by the three approaches, given that PSTRATA 

found 12 quantiles to be a better solution for ensuring balance on the propensity score than the 

standard 5, and PSCORE partitioned the data into 8 strata to achieve an optimal solution. As a 

consequence, while the estimated treatment effects were only marginally different between the 

three approaches, the 5 quantiles approach generated a statistically significant effect while the 

other two did not. This may suggest that, in these data, an increased number of strata results in 

less bias. This may further explain why PSTRATA slightly outperformed PSCORE (that is, 

PSTRATA consistently partitioned the data into more strata than PSCORE).  
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 Taken together, these results support searching for the optimal number of propensity 

score strata rather than simply partitioning the data into 5 quantiles. Furthermore, given that 

PSTRATA and PSCORE approach the stratification problem somewhat differently, investigators 

may be best served by testing both algorithms as a sensitivity analysis [27]. If both approaches 

achieve similar levels of covariate balance and derive comparable treatment effects, the 

investigator will have greater confidence that the study results are unbiased. Tangentially, in the 

simulation study when used within an MMWS framework, all three stratification techniques 

outperformed IPTW in reducing bias in the treatment effect estimates. This result concurs with 

that of Hong [13], who found that MMWS (with 6 strata) is less sensitive to misspecification of 

the propensity score than IPTW, consequently reducing bias in the treatment effect estimate. 

Thus investigators may want to consider MMWS as an alternative to IPTW in all studies which 

are designed to implement a propensity score weighting approach [19,20; 28,29,30]. 

 The primary limitation of the simulation study is that the performance of alternative 

propensity score stratification approaches on subsequent treatment effects was considered in the 

context of a specific data generating process. It is unclear how estimator performance may vary 

across different data generating processes, especially those utilizing additional variable types and 

distributions, and violations to assumptions in the causal model. 

In summary, investigators should routinely employ stratification approaches that obtain 

the optimal stratification solution, rather than simply partitioning the data into 5 quantiles of the 

propensity score. These methods improve covariate balance and reduce bias in treatment effect 

This article is protected by copyright. All rights reserved.



estimates when compared to the 5 quantile approach. Moreover, when used within the MMWS 

framework, stratification appears to outperform the more widely-used IPTW under a variety of 

conditions. Thus, investigators should consider using MMWS (in conjunction with an optimal 

stratification approach) as an alternative to IPTW in studies that utilize propensity score weights.  
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Table 1: Treatment effect estimates and root mean squared errors for 10,000 Monte Carlo simulations with N=2000. The true 
treatment effect is 1.0, the true propensity score is = α0 + α1X + α2X2, and the misspecified propensity score is = α0 + α1X.  
 
  Parameters Naive IPTW MMWS-5 MMWS-PSCORE MMWS-PSTRATA 

Outcomes α0  α1  α2  Mean (SE) Mean (SE) RMSE Mean (SE) RMSE Mean (SE) RMSE Mean (SE) RMSE 

Normal, linear 1 0.2 -0.2 1.15 (0.04) 0.98 (0.02) 0.03 1.01 (0.02) 0.02 1.02 (0.03) 0.04 1.00 (0.01) 0.01 

 
1 0.6 -0.2 1.41 (0.04) 0.93 (0.03) 0.08 1.03 (0.02) 0.03 1.02 (0.02) 0.02 1.00 (0.01) 0.02 

 
1 0.2 -0.6 1.11 (0.04) 0.98 (0.03) 0.04 1.00 (0.02) 0.02 1.00 (0.02) 0.02 1.00 (0.01) 0.01 

 
1 0.6 -0.6 1.32 (0.04) 0.92 (0.04) 0.09 1.01 (0.02) 0.02 1.00 (0.02) 0.02 1.00 (0.01) 0.01 

Normal, nonlinear 1 0.2 -0.2 0.92 (0.03) 0.91 (0.02) 0.09 0.96 (0.02) 0.05 0.98 (0.02) 0.03 0.99 (0.01) 0.02 

 
1 0.6 -0.2 0.98 (0.03) 0.92 (0.02) 0.08 0.96 (0.02) 0.04 1.00 (0.02) 0.02 0.99 (0.01) 0.02 

 
1 0.2 -0.6 0.80 (0.03) 0.84 (0.02) 0.16 0.94 (0.02) 0.06 0.99 (0.02) 0.02 0.99 (0.02) 0.02 

 
1 0.6 -0.6 0.89 (0.03) 0.85 (0.02) 0.15 0.95 (0.02) 0.05 0.99 (0.02) 0.02 1.00 (0.02) 0.02 

Poisson 1 0.2 -0.2 1.05 (0.04) 0.89 (0.03) 0.11 0.97 (0.02) 0.04 0.99 (0.03) 0.03 0.99 (0.02) 0.02 

 
1 0.6 -0.2 1.33 (0.04) 0.84 (0.05) 0.17 1.00 (0.03) 0.03 1.01 (0.03) 0.03 1.00 (0.02) 0.02 

 
1 0.2 -0.6 0.88 (0.04) 0.82 (0.04) 0.18 0.94 (0.02) 0.07 0.99 (0.02) 0.03 0.99 (0.02) 0.02 

 
1 0.6 -0.6 1.10 (0.04) 0.75 (0.05) 0.26 0.94 (0.02) 0.07 0.98 (0.02) 0.03 0.99 (0.02) 0.02 

Bernoulli 1 0.2 -0.2 1.17 (0.12) 1.00 (0.10) 0.10 1.02 (0.10) 0.10 1.03 (0.10) 0.11 1.01 (0.10) 0.10 

 
1 0.6 -0.2 1.48 (0.15) 0.96 (0.10) 0.11 1.03 (0.10) 0.11 1.02 (0.10) 0.11 1.01 (0.10) 0.10 

 
1 0.2 -0.6 1.16 (0.11) 1.02 (0.10) 0.10 1.02 (0.10) 0.10 1.01 (0.10) 0.10 1.01 (0.10) 0.10 

  1 0.6 -0.6 1.40 (0.13) 0.98 (0.10) 0.10 1.02 (0.10) 0.10 1.01 (0.10) 0.10 1.00 (0.09) 0.09 
 

This article is protected by copyright. All rights reserved.



Note: IPTW = inverse probability of treatment weights; MMWS-5 = marginal mean weighting with 5 strata; MMWS-PSCORE = marginal mean weights using 
the PSCORE approach for stratifying the sample; MMWS-PSTRATA = marginal mean weights using the PSTRATA approach for stratifying the sample; RMSE 
= root mean squared error. 
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Table 2: Treatment effect estimates and root mean squared errors for 10,000 Monte Carlo simulations with N=500. The true treatment 
effect is 1.0, the true propensity score is = α0 + α1X + α2X2, and the misspecified propensity score is = α0 + α1X. 
  
  Parameters Naive IPTW MMWS-5 MMWS-PSCORE MMWS-PSTRATA 

Outcomes α0  α1  α2  Mean (SE) Mean (SE) RMSE Mean (SE) RMSE Mean (SE) RMSE Mean (SE) RMSE 

Normal, linear 1 0.2 -0.2 1.15 (0.08) 0.97 (0.05) 0.05 1.00 (0.03) 0.03 1.07 (0.05) 0.08 1.00 (0.01) 0.01 

 
1 0.6 -0.2 1.41 (0.07) 0.92 (0.06) 0.10 1.02 (0.03) 0.04 1.05 (0.04) 0.06 1.01 (0.02) 0.02 

 
1 0.2 -0.6 1.11 (0.07) 0.98 (0.06) 0.07 1.00 (0.03) 0.03 0.99 (0.05) 0.05 1.00 (0.01) 0.01 

 
1 0.6 -0.6 1.32 (0.07) 0.93 (0.07) 0.10 1.00 (0.03) 0.03 0.99 (0.04) 0.04 0.99 (0.02) 0.02 

Normal, nonlinear 1 0.2 -0.2 0.92 (0.06) 0.93 (0.04) 0.08 0.97 (0.04) 0.05 0.99 (0.05) 0.05 0.97 (0.02) 0.02 

 
1 0.6 -0.2 0.98 (0.05) 0.93 (0.05) 0.10 0.98 (0.03) 0.04 1.01 (0.03) 0.03 0.99 (0.02) 0.02 

 
1 0.2 -0.6 0.80 (0.05) 0.87 (0.04) 0.07 0.96 (0.03) 0.05 0.96 (0.05) 0.06 0.99 (0.01) 0.02 

 
1 0.6 -0.6 0.89 (0.05) 0.87 (0.04) 0.10 0.97 (0.03) 0.04 0.98 (0.03) 0.04 1.00 (0.01) 0.01 

Poisson 1 0.2 -0.2 1.05 (0.09) 0.91 (0.07) 0.12 0.98 (0.05) 0.05 1.03 (0.06) 0.07 0.98 (0.01) 0.02 

 
1 0.6 -0.2 1.33 (0.09) 0.84 (0.10) 0.18 0.99 (0.05) 0.05 1.04 (0.05) 0.07 0.99 (0.02) 0.02 

 
1 0.2 -0.6 0.88 (0.08) 0.86 (0.07) 0.16 0.96 (0.04) 0.06 0.94 (0.06) 0.08 0.98 (0.01) 0.02 

 
1 0.6 -0.6 1.10 (0.09) 0.80 (0.09) 0.22 0.96 (0.04) 0.06 0.97 (0.05) 0.06 0.99 (0.02) 0.02 

Bernoulli 1 0.2 -0.2 1.19 (0.24) 1.01 (0.20) 0.20 1.03 (0.20) 0.21 1.09 (0.22) 0.24 0.94 (0.08) 0.10 

 
1 0.6 -0.2 1.50 (0.30) 0.96 (0.20) 0.21 1.04 (0.21) 0.22 1.06 (0.22) 0.23 0.98 (0.04) 0.05 

 
1 0.2 -0.6 1.17 (0.22) 1.03 (0.20) 0.20 1.03 (0.20) 0.20 1.02 (0.20) 0.20 1.01 (0.08) 0.08 

  1 0.6 -0.6 1.42 (0.27) 0.99 (0.20) 0.20 1.03 (0.21) 0.21 1.02 (0.21) 0.21 0.97 (0.08) 0.08 
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Note: IPTW = inverse probability of treatment weights; MMWS-5 = marginal mean weighting with 5 strata; MMWS-PSCORE = marginal mean weights using 
the PSCORE approach for stratifying the sample; MMWS-PSTRATA = marginal mean weights using the PSTRATA approach for stratifying the sample; RMSE 
= root mean squared error. 
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Table 3: Comparison of baseline characteristics of the treatment and control groups -- unadjusted and marginal mean weighted using 
various stratification approaches. Sample sizes are 367 and 949, for treatment and control groups, respectively.  
 
 Means Absolute Standardized differences 

  Treated Controls Controls Controls Controls     

 Variable  Unadjusted MMWS-5 PSCORE PSTRATA Unadjusted MMWS-5 PSCORE PSTRATA 

Propensity score 0.47 0.12 0.45 0.47 0.48 1.234 0.091 0.028 0.018 

Age 54.86 43.44 54.85 54.59 54.94 0.496 0.002 0.041 0.012 

Female 0.57 0.50 0.55 0.59 0.58 0.122 0.026 0.047 0.026 

Hospitalizations 0.23 0.07 0.18 0.22 0.22 0.333 0.094 0.019 0.015 

Hospital days 0.71 0.20 0.57 0.65 0.69 0.220 0.070 0.031 0.010 

ED visits 0.36 0.16 0.36 0.39 0.32 0.225 0.004 0.033 0.043 

Office visits 10.89 4.63 10.42 11.02 11.24 0.889 0.070 0.020 0.050 

Out-patient visits 17.55 7.25 16.67 16.85 17.59 0.591 0.054 0.042 0.002 

Laboratory 5.88 2.38 5.50 5.56 5.93 0.657 0.064 0.056 0.008 

Radiology 3.14 1.31 2.93 3.15 3.30 0.379 0.048 0.002 0.035 

Home health visits 0.09 0.02 0.07 0.11 0.11 0.090 0.022 0.016 0.021 

Prescriptions 39.10 11.95 37.80 39.04 39.73 0.917 0.045 0.002 0.021 

Total costs ($) 8059 3047 7249 7769 8044 0.477 0.085 0.030 0.002 

Average Std-diff      0.510 0.052 0.028 0.020 
 
Note: ED = emergency department; Std-diff = standardized difference; MMWS-5 = marginal mean weights with 5 strata; PSCORE = marginal mean weights 
using the PSCORE approach, stratifying the sample into 8 strata; PSTRATA = marginal mean weights using the PSTRATA approach, stratifying the sample into 
12 strata. 
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Table 4: Treatment effect estimates using quantile (median) regression 
 
Estimator Treated Control Difference P value 95% CI 

Naïve (unadjusted) 4765 2269 2496 <0.001 2116, 2876 

MMWS-5 4765 4098 667 0.021 101, 1233 

MMWS-PSCORE 4765 4244 521 0.080 -63, 1105 

MMWS-PSTRATA 4765 4284 481 0.124 -133, 1095 
 
Note: MMWS-5 = marginal mean weights with 5 strata; MMWS-PSCORE = marginal mean weights using the PSCORE approach for stratifying the sample; 
MMWS-PSTRATA = marginal mean weights using the PSTRATA approach for stratifying the sample. 
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