- 1 Severe Transplant-Associated Thrombotic microangiopathy in Patients with
- 2 Hemoglobinopathies

*Ghada A. Abusin¹, *Rolla Abu-Arja^{2,3}, Rajinder Bajwa^{2,3}, Edwin M. Horwitz^{2,3}, Jeffery J.
Auletta^{2,3,4}, Hemalatha G. Rangarajan^{2,3}

¹Department of Pediatric Bone Marrow Transplant and Communicable Diseases, University
of Michigan, Ann Arbor, Michigan 48109; ²Department of Pediatric Hematology, Oncology
and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio 43205;
³Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
43210; ⁴Department of Pediatric Infectious Diseases, Nationwide Children's Hospital,
Columbus, Ohio 43205

11 *Co-First Authors

12	<u>Corresponding Author</u>	Hemalatha G. Rangarajan, MD	
13		Division of Hematology, Oncology, and Bone Marrow	
14		Transplant	
15	5 Nationwide Children's Hospital		
16	611 Livingston Avenue, Suite 5A.1		
17		Columbus, Ohio 43205	
18		Phone: 614-722-3582	
19	Fax: 614-722-3369		
20	Email: <u>hemalatha.rangarajan@nationwidechildrens.org</u>		
21	Key words: Hemoglobin	nopathies, transplant-associated thrombotic microangiopathy,	
22	eculizumab		
23	Short running title: TA-TMA in patients with hemoglobinopathies		

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1002/pbc.26503.

- **Total word count: Abstract:** 95, **Main text:**1,200
- **Total number of** Tables: 1, Total number of figures: 1

26 Abbreviation list

TA-TMA	Transplant Associated Thrombotic
	Microangiopathy
AKI	Acute Kidney Injury
CKD	Chronic Kidney Disease
нст	Hematopoietic Cell transplant
SCD	Sickle Cell Disease
HUS	Hemolytic Uremic Syndrome
TTP	Thrombotic Thrombocytopenic purpura
HTN CO	Hypertension
MAC	Myeloablative conditioning
GvHD	Graft Versus Host Disease
PEF	Pericardial effusion
CRRT	Continuous renal replacement therapy
PRES	Posterior Reversible Encephalopathy
Č	Syndrome
Bu/Cy/rATG	Busulfan, cyclophosphamide and rabbit anti-
	thymocyte globulin
RSV	Respiratory Syncytial virus
CECs	Circulating endothelial cells
ICAM-1	Intracellular adhesion molecule 1
VCAM-1	Vascular cell adhesion molecule 1

28 Abstract

Incidence and severity of transplant-associated thrombotic microangiopathy (TA-29 TMA) in patients with hemoglobinopathies receiving hematopoietic cell transplant is 30 unknown. We report the outcomes for two patients with TA-TMA who received eculizumab. 31 A 2.5 year old male with sickle cell disease developed TA-TMA-associated pericardial 32 33 tamponade, severe hypertension and acute kidney injury two months post-transplant. A seven-year-old female with beta-thalassemia major developed TA-TMA-related AKI, severe 34 hypertension and seizures at six months post-transplant. Both patients progressed to chronic 35 kidney disease (CKD). In patients with hemoglobinopathies, preexisting endothelial 36 dysfunction may place them at greater risk for TA-TMA and subsequent CKD. 37

38

Auth

Introduction

40	Hematopoietic cell transplant (HCT) is a curative option for patients with
41	hemoglobinopathies like thalassemia and sickle cell disease (SCD). These patients have
42	endothelial dysfunction as a result of ongoing hemolysis [1-4]. It is unknown whether this
43	pre-existing pathology places these patients at higher risk of transplant associated thrombotic
44	microangiopathy (TA-TMA), a condition associated with widespread vascular injury.
45	Incidence and severity of TA-TMA in this population undergoing HCT is unknown.
46	TA-TMA belongs to the family of thrombotic microangiopathies including hemolytic
47	uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Endothelial
48	injury leads to thrombosis, fibrin deposition, platelet consumption, and microangiopathic
49	hemolytic anemia [5]. Clinical manifestations depend on the predominant organ
50	microcirculation affected. Patients may present with intractable hypertension (HTN), acute
51	kidney injury (AKI), pulmonary hypertension, polyserositis or multi-organ failure. TA-TMA
52	is associated with considerable morbidity and mortality; as affected patients are 4.3 times
53	more likely to develop chronic kidney disease (CKD) and have higher non-relapse mortality
54	rate (43.6% vs 7.8%) than unaffected patients [6]. We describe two children with
55	hemoglobinopathies who developed severe clinical manifestations of TA-TMA post HCT,
56	despite receiving eculizumab therapy
57	
58	
50	
60	
00	

63 **Case Reports**

64 **Case 1**

A 2.5 year old African male with severe SCD underwent single-unit, sibling cord 65 blood transplant following myeloablative conditioning (MAC) with busulfan, 66 cyclophosphamide and rabbit anti-thymocyte globulin (Bu/Cy/rATG). Tacrolimus and 67 mycophenolate mofetil were given for graft-versus-host disease (GvHD) prophylaxis. Sixty-68 eight days post-transplant he presented with acute respiratory distress secondary to 69 pericardial effusion (PEF) with tamponade. He was normotensive with normal blood counts 70 71 and therapeutic tacrolimus levels. He underwent pericardiocentesis, which did not identify an infectious cause and therefore treatment with high-dose methylprednisone was started. After 72 1 week of therapy he developed recurrent PEF necessitating a pericardial drain, progressive 73 pancytopenia, refractory hypertension (requiring eight anti-hypertensives) and AKI requiring 74 continuous renal replacement therapy (CRRT). Laboratory testing was consistent with TA-75 TMA (Table I). Despite discontinuing tacrolimus, his symptoms worsened. Therefore, one 76 week later eculizumab therapy was initiated. Dosing schedule was as follows: 1200 mg/week 77 (week 1), 900 mg/week (weeks 2-3), 600 mg/week (weeks 4-8), 300 mg/week (weeks 9-17) 78 and 300 mg/2 weeks (weeks 18-21). Hematological abnormalities normalized and effusion 79 resolved after 4 weeks of therapy. CRRT was discontinued after 2 weeks and nephrotic range 80 proteinuria resolved after 21 weeks. However, he progressed to CKD with HTN (requiring 81 two anti-HTN medications). Currently, he is 30 months post-transplant and has an estimated 82 GFR (eGFR) of 45 ml/min/1.73m² (pre-transplant eGFR 128ml/min/1.73m²). 83 84

- 85
- 86 Case 2

87	A seven-year-old Asian female with β -thalassemia major on chronic transfusion
88	therapy, underwent a 10/10 matched unrelated donor bone marrow transplant following MAC
89	with fludarabine, Bu/Cy/rATG and GvHD prophylaxis with cyclosporine and methotrexate.
90	Post-transplant course was complicated by grade II acute GvHD, posterior reversible
91	encephalopathy syndrome (PRES) with intracranial bleed, gastrointestinal hemorrhage, PEF
92	and AKI. Six months post-transplant she developed worsening hematuria, proteinuria with
93	intractable hypertension (requiring five anti-hypertensive medications). She was started on
94	hemodialysis. Investigations revealed TA-TMA (Table 1). There was minimal response to
95	discontinuation of cyclosporine, therapeutic plasma exchange and basiliximab. A renal
96	biopsy performed showed acute, severe thrombotic microangiopathy (Figure 1) with C4d
97	deposits in glomerular capillary loops and arterioles (not shown). A month later she
98	presented with seizures and brain MRI revealed diffuse white matter abnormality consistent
99	with severe TMA and therefore she was started on eculizumab therapy and received 900
100	mg/week (weeks 1-4) followed by 900 mg/2 weeks (weeks 5- 21). Hematological response
101	was seen after 4 weeks of therapy. She had persistent nephrotic range proteinuria with no
102	evidence of renal recovery. She progressed to CKD with HTN (requiring four anti-
103	hypertensives) and remained dialysis dependent with an eGFR of 35ml/min/1.73m ² (pre-
104	transplant eGFR 103ml/min/1.73m ²). She died 16 months post-transplant due to RSV-related
105	respiratory failure and TA-TMA related acute on CKD.
106	
107	
108	

Discussion

The vascular endothelium is a dynamic surface, which upon exposure to various
stimuli, undergoes changes in gene expression and participates in inflammatory reactions,
immunity and thrombosis [7]. Earlier studies in hemoglobinopathies have demonstrated an
increase in the number of circulating endothelial cells (CECs) that express surface markers of
endothelial activation and injury like soluble intracellular adhesion molecule 1 (ICAM-1) and
vascular cell adhesion molecule 1 (VCAM-1) [8,9].

Studies in hemoglobinopathies have shown that products of red cell breakdown: 116 plasma free hemoglobin, heme and arginase-1 disrupt endothelial function and drive 117 oxidative inflammatory stress known as erythrocyte damage associated molecular patterns 118 (eDAMPs) [3,4]. These eDAMPs are implicated in the pathogenesis of vascular related 119 complications associated with hemoglobinopathies. Interestingly, there are several reports of 120 SCD patients (HbSS, HbSC and HbS^{β0}) in non-transplant setting presenting with TTP 121 122 following SCD crisis [10-11]. These patients had normal ADAMTS13 levels and responded to therapeutic plasma exchange. It is unknown if pre-existing vascular dysfunction 123 124 influences onset and severity of TA-TMA in patients with hemoglobinopathies undergoing 125 HCT.

TA-TMA is a multisystem disease characterized by vascular injury, variable clinical
presentation and predominant renal involvement [12]. Diagnosis is based on clinical criteria
published by Blood and Marrow Clinical Trial Network [13]. These criteria may be absent in
early stages of TA-TMA as noted in our patients, leading to diagnostic confusion especially
in the presence of co-existing morbidities such as GvHD and infections [14].

131 HTN, elevated lactate dehydrogenase (LDH), and proteinuria are early markers for

132 TA-TMA [14]. PEF is seen in 30% patients with TA-TMA and may be the only

133 manifestation as seen in patient 1 [15]. During transplant conditioning regimens,

134	opportunistic infections, GvHD and immunosuppressive agents initiate and aggravate
135	endothelial damage, the pathological hallmark of TA-TMA [12]. Increased levels of markers
136	of endothelial damage like von Willebrand factor antigen, thrombomodulin, plasminogen
137	activator inhibitor 1, ICAM-1, and CECs have been reported in TA-TMA [12,16].
138	Recent studies have shown complement activation and dysregulation in the
139	pathogenesis of TA-TMA [17,18]. Eculizumab a monoclonal antibody against the
140	complement component C5, blocks formation of membrane attack complex and is an
141	effective treatment for TA-TMA Normalization of intravascular hemolysis indices and
142	proteinuria to non-nephrotic range as originally described by Jodele et al was used to guide
143	eculizumab therapy in both patients [19]. Additionally, in patient1, hemolytic complement
144	activity: CH50 (a surrogate marker of complement activation) levels were monitored twice
145	weekly during therapy. Levels were kept ≤ 4 complement activity enzyme (CAE) units
146	as this has been shown to correlate with the rapeutic eculizumab levels of $> 99 \mu g/ml$ [19].
147	Therapy was tolerated and there were no infusion related side effects or severe bacterial
148	infections in both patients. We recommend the recent dosing schedule suggested by Jodele et
149	al utilizing CH50 and sC5-9 b levels to monitor response and guide frequency and duration of
150	eculizumab therapy [20].

While both our patients had severe TA-TMA with a poor renal response, it is possible
that eculizumab therapy prior to overt clinical manifestations may have prevented CKD. As
evidenced in our first patient, long term monitoring of kidney functions with control of HTN
is essential, given the potential for some renal recovery.

155 **Conclusion**

We conclude that patients with hemoglobinopathies may be pre-disposed to TA TMA, given pre-existing endothelial dysfunction and subsequent vascular injury sustained
 This article is protected by copyright. All rights reserved.

- 158 during HCT. Future clinical trials utilizing HCT for hemoglobinopathies should evaluate the
- 159 utility of early markers of endothelial damage to diagnose TA-TMA. This will help to
- 160 determine the role of pre-emptive eculizumab therapy prior to the onset of overt clinical
- 161 manifestations and prevention of CKD.
- 162 Conflicts of Interest: None163

DSDL SUY

165 **<u>References:</u>**

- 166 1. Butthep P, Nuchprayoon I, Futrakul N. Endothelial injury and altered hemodynamics in
- thalassemia. Clin.Hemorheol.Microcirc. 2004;31:287-293.
- 168 2. Hahalis G, Kremastinos DT, Terzis G, et al. Global vasomotor dysfunction and accelerated

169 vascular aging in beta-thalassemia major. Atherosclerosis. 2008;198:448-457.

- 170 3. Kassim AA, DeBaun MR. Sickle cell disease, vasculopathy, and therapeutics.
- 171 Annu.Rev.Med. 2013;64:451-466.

4. Mendonca R, Silveira AA, Conran N. Red cell DAMPs and inflammation. Inflamm.Res.
2016;65:665-678.

- 5. Laskin BL, Goebel J, Davies SM, Jodele S. Small vessels, big trouble in the kidneys and
 beyond: hematopoietic stem cell transplantation-associated thrombotic microangiopathy.
 Blood. 2011;118:1452-1462.
- 177 6. Glezerman IG, Jhaveri KD, Watson TH, et al. Chronic kidney disease, thrombotic
- 178 microangiopathy, and hypertension following T cell-depleted hematopoietic stem cell

transplantation. Biol.Blood Marrow Transplant. 2010;16:976-984.

180 7. Mantovani A, Bussolino F, Dejana E. Cytokine regulation of endothelial cell function.

- 181 FASEB J. 1992;6:2591-2599.
- 182 8. Butthep P, Rummavas S, Wisedpanichkij R, Jindadamrongwech S, Fucharoen S,
- 183 Bunyaratvej A. Increased circulating activated endothelial cells, vascular endothelial growth
- 184 factor, and tumor necrosis factor in thalassemia. Am.J.Hematol. 2002;70:100-106.

- 185 9. Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated
- endothelial cells in sickle cell anemia. N.Engl.J.Med. 1997;337:1584-1590.
- 187 10. Shome DK, Ramadorai P, Al-Ajmi A, Ali F, Malik N. Thrombotic microangiopathy in
- sickle cell disease crisis. Ann.Hematol. 2013;92:509-515.
- 189 11. Shelat SG. Thrombotic thrombocytopenic purpura and sickle cell crisis.
- 190 Clin.Appl.Thromb.Hemost. 2010;16:224-227.
- 191 12. Batts ED, Lazarus HM. Diagnosis and treatment of transplantation-associated thrombotic
- 192 microangiopathy: real progress or are we still waiting?. Bone Marrow Transplant.

193 2007;40:709-719.

- 13. Ruutu T, Barosi G, Benjamin RJ, et al. Diagnostic criteria for hematopoietic stem cell
 transplant-associated microangiopathy: results of a consensus process by an International
 Working Group. Haematologica. 2007;92:95-100.
- 197 14. Jodele S, Davies SM, Lane A, et al. Diagnostic and risk criteria for HSCT-associated
- thrombotic microangiopathy: a study in children and young adults. Blood. 2014;124:645-653.
- 199 15. Lerner D, Dandoy C, Hirsch R, Laskin B, Davies SM, Jodele S. Pericardial effusion in
- 200 pediatric SCT recipients with thrombotic microangiopathy. Bone Marrow Transplant.
- 201 2014;49:862-863.
- 202 16. Erdbruegger U, Woywodt A, Kirsch T, Haller H, Haubitz M. Circulating endothelial cells
 203 as a prognostic marker in thrombotic microangiopathy. Am.J.Kidney Dis. 2006;48:564-570.

- 204 17. Jodele S, Licht C, Goebel J, et al. Abnormalities in the alternative pathway of
- 205 complement in children with hematopoietic stem cell transplant-associated thrombotic
- 206 microangiopathy. Blood. 2013;122:2003-2007.
- 207 18. Jodele S, Zhang K, Zou F, et al. The genetic fingerprint of susceptibility for transplant-
- associated thrombotic microangiopathy. Blood. 2016;127:989-996.
- 19. Jodele S, Fukuda T, Vinks A, et al. Eculizumab therapy in children with severe
- 210 hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Biol.Blood
- 211 Marrow Transplant. 2014;20:518-525.
- 212 20. Jodele S, Fukuda T, Mizuno K, et al. Variable Eculizumab Clearance Requires
- 213 Pharmacodynamic Monitoring to Optimize Therapy for Thrombotic Microangiopathy after
- Hematopoietic Stem Cell Transplantation. Biol.Blood Marrow Transplant. 2016;22:307-315.
- 215
- 216 **LEGEND List:**

Aut

- 217 **<u>Figure. 1</u>**. **Renal Biopsy:** Glomeruli showing evidence of acute TMA in glomerular
- capillary loops with marked vascular congestion, mesangiolysis and erythrocyte fragments.
- 219
- 220
- 220
- 221

TABLE 1: Laboratory Values at Diagnosis

Test	Patient 1	Patient 2
	2926 (350 - 850 U/L)	1121 (140 - 280 U/L)
Hemoglobin	8 (11.5 - 13.5 gm/dl)	7.4 (11.9 - 15 gm/dl)
Reticulocyte count	6 (0.4 - 1.8%)	4.6 (0.5 - 2%)
Platelet counts	114,000 cells/mm ³	42,000 cells/mm ³
Haptoglobin	30 (33 - 171 mg/dl)	<20 (30 - 200 mg/dl)
Peripheral shistocytes	Rare to absent	3+

Urine protein	324 (< 100 mg/dl)	300 (<100 mg/dl)
Urine protein	14.14 (0.19 mg of protein/mg of	20.7 (0.2 mg of protein/mg of
creatinine ratio	creatinine)	creatinine)
sC5-9b at diagnosis	139 (74 - 244 ng/ml)	Not tested
ADAMTS13 level	70 (>66%)	65 (>66%)
Factor B	21.1 (13.3 - 31.5 mg/dl)	25.8 (12.7-27.8 mg/dl)
Factor I	3.7 (2.4 - 4.9 mg/dl)	4.95 (2.9 - 5.8 mg/dl)
Factor H	65.6 (37- 68 mg/dl)	32.1 (16 - 41 mg/dl)
Factor H antibody	Negative	Negative
C3	178 (86 - 184 mg/dl)	112 (90 - 180 mg/dl)
C4	56 (16 - 59 mg/dl)	Not tested
СН50	221 (101- 300 CAE U/ml)	201 (60 – 144 CAEU/ml)
Renal biopsy	No	Yes, TMA changes

- 224 LDH, Lactate Dehydrogenase; CAE units, Complement Activity enzyme units; Normal
- values for age are in parenthesis.

Aut

226