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A Systematic Approach to Determining the Identifiability
of Multistage Carcinogenesis Models

Andrew F. Brouwer,∗ Rafael Meza, and Marisa C. Eisenberg∗

Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov
process models often used to relate cancer incidence to biological mechanism. Identifiabil-
ity analysis determines what model parameter combinations can, theoretically, be estimated
from given data. We use a systematic approach, based on differential algebra methods tra-
ditionally used for deterministic ordinary differential equation (ODE) models, to determine
identifiable combinations for a generalized subclass of MSCE models with any number of
preinitation stages and one clonal expansion. Additionally, we determine the identifiable
combinations of the generalized MSCE model with up to four clonal expansion stages, and
conjecture the results for any number of clonal expansion stages. The results improve upon
previous work in a number of ways and provide a framework to find the identifiable com-
binations for further variations on the MSCE models. Finally, our approach, which takes
advantage of the Kolmogorov backward equations for the probability generating functions
of the Markov process, demonstrates that identifiability methods used in engineering and
mathematics for systems of ODEs can be applied to continuous-time Markov processes.

KEY WORDS: Continuous-time Markov process; differential algebra; identifiability; multistage clonal
expansion model

1. INTRODUCTION

The two-stage clonal expansion (TSCE) model
is a continuous-time Markov process proposed by
Moolgavkar, Venzon, and Knudson(1,2) to capture
the initiation–promotion–progression hypothesis of
carcinogenesis, wherein normal cells undergo a
genetic transformation that causes clonal expan-
sion, followed by progression to malignancy. The
initiation–promotion–progression paradigm allows
one to consider carcinogenic factors as initiators or
promoters given their mechanism of action and their
differential effects at different stages of life. The
TSCE model formulation may be extended to three
or more stages or other more complex variations,

Department of Epidemiology, University of Michigan, Ann Ar-
bor, MI, USA.
∗Address correspondence to Andrew F. Brouwer and Marisa
C. Eisenberg, Department of Epidemiology, University
of Michigan, Ann Arbor, MI, USA; brouweaf@umich.edu,
marisae@umich.edu.

which are collectively called multistage clonal ex-
pansion (MSCE) models. Parameter estimation with
MSCE models has proven a valuable approach, and
MSCE models have been successfully used to analyze
and fit data from pancreatic, colorectal, esophageal,
and oral cancer, among others.(3–16)

Consideration of identifiability is the first step
in estimation of model parameters from data. A
model is said to be identifiable if all model parameters
may be uniquely determined from given observed
data.(17–19) Identifiability is a key step in ensuring suc-
cessful parameter estimation and is often considered
in two forms: structural identifiability, which consid-
ers the best-case scenario of noise-free, continuously
measured data in order to uncover identifiability is-
sues inherent in the model structure, and practical
identifiability, which addresses issues such as noise,
bias, and frequency of sampling.(20) While the best-
case scenario is unrealistic, structural identifiability
is necessary for practical identifiability and can often
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Table I. Variables and Parameters of the Generalized Multistage Clonal Expansion (MSCE) Model

Variables
X(t) Number of normal cells, treated deterministically or set to be constant X(t) = X
Yk(t) Number of cells in initiated stage k
Z(t) Number of malignant cells

Parameters

ν(t) Per cell mutation rate for normal cells (asymmetric division)
μ0(t) := ν(t)X(t), a notational convenience
μk(t) Mutation rate at the kth stage (asymmetric division)
αk(t) Clonal expansion rate at the kth stage (symmetric division)
βk(t) Cell death rate at the kth stage

lead to useful insights for model reparameterization
and data collection strategies.

For deterministic models, one often frames the
identifiability problem as testing the injectivity of
the map from the parameters to the output trajecto-
ries (implicitly defined by the corresponding ordinary
differential equations [ODEs] system).(21) There are
a wide range of approaches to answering questions
of identifiability for such systems, including Laplace
transformation, Taylor series, similarity transforma-
tion, and differential algebra.(19,21–28)

The identifiability of certain individual clonal
expansion models that are stochastic rather than
deterministic has been addressed primarily on a
case-by-case basis and in no systematic way. Hei-
denreich et al.(29) determined the identifiability
of the TSCE model with constant and piecewise-
constant parameters when fitted to incidence data
through derivation of closed-form solutions of
the corresponding hazard function. Luebeck and
Moolgavkar(5) similarly analyzed the identifiability
of MSCE models with multiple preinitiation stages
and constant parameters. Little et al.(30) developed
bounds for the number of identifiable combinations
for a class of stochastic cancer models with genomic
instability—which includes MSCE models—through
observing parameter combinations in the form
of the cancer hazard in the model and numerical
evaluations of the Fisher information matrix.

Here, we present a derivation of the identifi-
ability of a generalized subclass of MSCE models
with multiple preinitiation steps when fitting to
age-specific cancer incidence data, as is typical.
We use a differential algebra approach that was
developed for deterministic ODE models and that
has not previously been brought to bear on this
class of models.(21,26,27,31,32) We do this by lever-
aging the Kolmogorov backward equations for
continuous-time Markov processes, which can be

reduced to a system of differential equations. This
approach has many advantages: it is analytical and
systematic, returns explicit identifiable combinations
rather than bounds, and is a global result over the
parameter space. We additionally demonstrate the
identifiability of the fully general case with multiple
clonal expansions for models with up to four clonal
expansion stages and conjecture that our framework
could be extended to any number of stages. Our
work demonstrates that approaches for identifiabil-
ity in deterministic dynamical systems can be used
in Markov branching processes and, more generally,
continuous-time Markov processes.

2. METHODS

2.1. Derivation of the MSCE Model

Although the mathematics of MSCE models has
been detailed elsewhere,(1–3,11,29,33–39) we provide a
sketch of the derivation in order to provide a basis
for using the differential algebra method of identifia-
bility with other continuous-time Markov processes.
The n-stage clonal expansion model (Fig. 1(a)) is
characterized by a set of conditional probability gen-
erating functions, where Yk(t), 1 ≤ k ≤ n − 2, and
Z(t) are as in Table I, and τ is a fixed time such that
0 ≤ τ ≤ t . If we define

�(t) = yY1(t)
1 . . . yYn−1(t)

n−1 zZ(t) (1)

for some dummy variables y1, . . ., yn−1, and z, then
the conditional probability generation functions are
as follows:

� (y1, . . . , yn−1, z, τ, t) = E[�(t)|Y1(τ )

= 0, . . . ,Yn−1(τ ) = 0, Z(τ ) = 0],

�1 (y1, . . . , yn−1, z, τ, t) = E[�(t)|Y1(τ )
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Fig. 1. Generalized MSCE models. (a) The fully generalized model with clonal expansion at each premalignant step. (b) The standard
model with several preinitiation steps and one clonal expansion.

= 1,Y2(τ ) = 0, . . . ,Yn−1(τ ) = 0,

Z(τ ) = 0],

...

�i (y1, . . . , yn−1, z, τ, t) = E[�(t)|Y1(τ )

= 0, . . . ,Yi (τ ) = 1,Yi+1(τ )

= 0, . . .Yn−1(τ ) = 0, Z(τ ) = 0],

...

�n−1 (y1, . . . , yn−1, z, τ, t) = E[�(t)|Y1(τ )

= 0, . . . ,Yn−1(τ ) = 1, Z(τ ) = 0],

	(y1, . . . , yn−1, z, τ, t) = E[�(t)|Y1(τ )

= 0, . . . ,Yn−1(τ ) = 0,

Z(τ ) = 1]. (2)

These probability functions satisfy the Kol-
mogorov backward equations. Here, we assume
that the parameters, which are listed in Table I, are
constant in time (age). These equations are:

∂

∂τ
� = μ0�(1 −�1),

∂

∂τ
�1 = (α1 + β1 + μ1)�1 − β1 − α1�

2
1 − μ1�1�2,

...
∂

∂τ
�n−2 = (αn−2 + βn−2 + μn−2)�n−2 − βn−2

−αn−2�
2
n−2 − μn−2�n−2�n−1,
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∂

∂τ
�n−1 = (αn−1 + βn−1 + μn−1)�n−1 − βn−1

−αn−1�
2
n−1,

∂

∂τ
	 = 0 (3)

with initial conditions

�(y1, . . . , yn−1, z, t, t) = 1,

�1(y1, . . . , yn−1, z, t, t) = y1,

...

�n−1(y1, . . . , yn−1, z, t, t) = yn−1,

	(y1, . . . , yn−1, z, t, t) = z. (4)

The usual data in this context are age-specific
incidence curves (e.g., as are available in the Surveil-
lance, Epidemiology and End Results (SEER) can-
cer registries). The age-specific incidence curve cor-
responds to a model hazard. The hazard and survival
contain equivalent information (h(t) = − d

dt log S(t),
S(0) = 1, h(0) = 0), so, for simplicity of analysis, we
consider the survival to be known. For this model,
the survival can be related to� in the following way:

S(t) =
∑

(i1,...,in−1,0)

P[Y1(t) = i1, . . . ,Yn−1(t) = in−1,

Z(t) = 0|Y1(0) = 0, . . . ,Yn−1(0) = 0, Z(0) = 0],

=
∑

(i1,...,in−1, j)

P[Y1(t) = i1, . . . ,Yn−1(t) = in−1,

Z(t) = j |Y1(0) = 0, . . . ,Yn−1(0) = 0, Z(0)

= 0]1i1 · · · 1in−1 0 j ,

= �(y1 = 1, . . . , yn−1 = 1, z = 0, τ = 0, t = t). (5)

Let s = t − τ and define x(s) = �(1, . . . , 1,
1, t − s, t), x1(s) = �1(1, . . . , 1, 1, t − s, t), . . . , xn−1

(s) = �n−1(1, . . . , 1, 1, t − s, t). Then, x(t) = S(t).
Let ẋk denote derivative of xk with respect to s.
Then, the following set of differential equations,
1 ≤ k ≤ n − 2, governs the survival:

ẋ = −μ0x(1 − x1),

ẋk = − (αk + βk + μk)xk + βk + αkx2
k + μkxkxk+1,

ẋn−1 = − (αn−1 + βn−1 + μn−1)xn−1 + βn−1

+αn−1x2
n−1, (6)

with initial conditions x(0) = 1, xk(0) = 1, and
xn−1(0) = 1.

2.2. Differential Algebra Approach to Identifiability

As noted earlier, structural identifiability fo-
cuses on examining the inherent, structural estima-
tion properties of a given model and data, assuming
a best-case scenario in which the model output (i.e.,
the observed variable(s)) is perfectly observed and
the model is correctly specified. While this is unre-
alistic for real data, structural identifiability is a nec-
essary condition for practical estimation from real-
world data that many times go unchecked, and, in
fact, many mathematical models used in practice turn
out to be structurally unidentifiable. Structural iden-
tifiability allows us to resolve these issues and can
help in designing data collection or estimation strate-
gies.

Here, we give an overview of structural identi-
fiability definitions and the differential algebra ap-
proach for deterministic dynamical systems. For
more details, the reader is referred to Saccomani
et al.(21) and Audoly et al.(26) For simplicity, here,
we consider the case where we have only one mea-
sured variable v and one input function u, although
the same definitions and approach can be used for
multiple inputs and outputs as well. Consider a vec-
tor of states x(t) (unobserved), vector of parameters
to be estimated ρ, and observed (known) input u(t)
and output v(t) in the ODE model:

ẋ(t) = f (x(t),u(t), ρ),

v(t) = g(x(t), ρ). (7)

Structural identifiability analysis addresses the
following question: Given the model, states x, known
input u, and known output v, is it possible to uniquely
identify the model parameters ρ? This can be framed
as an injectivity question: Is the map (implicitly de-
fined by f and g) from parameter values (ρ) to out-
put trajectories (v) injective?(21) Structural identifi-
ability is a global property, but, because there may
be some degenerate parameters or initial conditions
for which an otherwise identifiable model may be
unidentifiable (e.g., if all initial conditions or param-
eters are zero), it is typically defined almost every-
where over parameter and initial-condition space.

Definition 1. Parameter ρi in the model given in
Equation (7) is uniquely structurally identifiable if,
for almost all values ρ∗

i and initial conditions, the
observation of an output trajectory (v(t) = v∗(t))
uniquely determines the parameter value ρi (ρi = ρ∗

i ),
i.e., if only one value of ρi could have resulted in the
observed output.
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Definition 2. The model given in Equation (7) is
structurally identifiable if each ρi is structurally identi-
fiable.

If a model is not structurally identifiable, it is said
to be unidentifiable, and there exists a set of identifi-
able combinations of parameters that represents the
parametric information available in the data (except
in degenerate cases where the model is reducible or
has insensitive parameters). Such a set is not unique;
any set of combinations that generate the same field
is an equivalent set of identifiable combinations, e.g.,
{ab, c/b} and {ab, ac} are equivalent sets of identifi-
able combinations.

We must emphasize that identifiability is an as-
sessment that is dependent on both what quantities
are observed (i.e., the data u(t) and v(t)) and on the
parameterization of the model. A model is uniden-
tifiable if even one parameter cannot be uniquely
determined from the available data. An unidentifi-
able model can sometimes be rendered identifiable
by reparameterization (i.e., in terms of identifiable
combinations) or by changing what data are mea-
sured.

Differential algebra offers one approach for
evaluating the structural identifiability of rational-
function differential-equation models. Technical
details of the differential algebra approach to
identifiability may be found elsewhere,(21,32) but
this method is built on the idea of treating the
differential equations as elements of a differential
polynomial ring, that is, a polynomial ring in the
variables and their derivatives, with an additional
derivative operation. Once framed in this algebraic
perspective, reduction techniques such as character-
istic sets or Gröbner bases can be used to reduce the
model to a form in which the identifiability prop-
erties can be determined, called the input–output
equation.(26,40)

The input–output equation is central to the
differential algebra technique.(41) It is a monic dif-
ferential polynomial only in terms of u and v, their
derivatives, and the parameters ρ. In the case of mul-
tiple outputs, there will be as many of these monic
differential polynomials—input–output equations—
as there are observed output variables. The solutions
of the input–output equation are precisely the possi-
ble input–output pairs for the system; in other words,
the input–output equation is an equivalent differen-
tial equation where the unobserved variables have
been eliminated, so that every solution trajectory
for the model (in terms of x,u, v) corresponds to a

solution for the input–output equation (in terms of
only u and v), though we note that multiple model
trajectories may correspond to the same input–
output solution. The coefficients of the input–output
equation are a complete, though typically not mini-
mal (redundancies are usual), set of identifiable com-
binations, and testing for structural identifiability can
thus be reduced to testing the injectivity of the map
from the parameters to the identifiable combinations.
We illustrate the differential algebra technique and
the input–output equation for a simple example in
Appendix A.

The input–output equation must be monic—the
choice of variable ranking is arbitrary, though u <
u̇ < ü < · · · < v < v̇ < v̈ < · · · is traditional(26)—or
the set of identifiable combinations may not be
uniquely determined. For example, the following are
equivalent differential polynomials,

0 = 1
a
v̇ + bv + cu,

0 = v̇ + abv + acu,

but the map from {a,b, c} to { 1
a ,b, c} is injective,

while that to {1, ab, ac} is not. The input–output
equation is required to be monic to identify the cor-
rect set of identifiable combinations.

Finally, we note that in the notation of this
section, the MSCE model (Equation (6)) has
states x = (x(t), x1(t), . . . , xn−1(t)), output (data)
v(t) = x(t), and has no input u(t).

3. RESULTS

3.1 Two-Stage Clonal Expansion (TSCE) Model

Although the identifiability of the TSCE model
is well known,(29) this model provides a tractable test
case for the differential algebra approach to identifi-
ability in this context.

Theorem 1. If cancer survival (or, equivalently, age-
specific incidence) is perfectly measured, the TSCE
model with constant parameters (ν, X, α, β, and μ1)
is unidentifiable but has three identifiable parame-
ter combinations, which may be represented as μ0μ1,
α1μ1, and α1 − β1 − μ1, where μ0 = νX.

Proof. From Equation (6), the following equations
contain all information of the TSCE model:

ẋ = −μ0x(1 − x1),

ẋ1 = − (α1 + β1 + μ1)x1 + β1 + α1x2
1 . (8)
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We assume that the survival function x is
perfectly measured. The goal here is to determine
the identifiable parameter combinations from the
input–output equation for the system, which will be
a monic polynomial of the observed output x and its
derivatives.

We solve for x1 in terms of x and its derivatives,

x1 =
x + ẋ

μ0

x
. (9)

Plug this into the ẋ1 equation,(
x + ẋ

μ0

x

)′
= − (α1 + β1 + μ1)

(
x + ẋ

μ0

x

)
+ β1

+α1

(
x + ẋ

μ0

x

)2

, (10)
simplifying to

0 = ẍx + (μ0μ1) x2 − (α1 − β1 − μ1) ẋx

−
(
α1μ1

μ0μ1
+ 1

)
ẋ2. (11)

This last equation is a monic polynomial of x
and its derivatives, is equivalent to the original differ-
ential equations, and is thus an input–output equa-
tion. We can read a set of identifiable parameter
combinations from the equation coefficients: μ0μ1,
α1 − β1 − μ1, and α1μ1.

Remark: The TSCE model is often
parameterized(5) as:

r = μ0/α,

p = 1
2

(
(−α + β + μ1) −

√
(α − β − μ1)2 + 4αμ1

)
,

q = 1
2

(
(−α + β + μ1) +

√
(α − β − μ1)2 + 4αμ1

)
. (12)

It is easy to see that {r, p,q} is an equivalent set
of identifiable parameter combinations.

Remark: Although the initial conditions can,
generally, provide additional identifiable combi-
nations, they do not in this case. At the initial
conditions, x(0) = 1 and x1(0) = 1,

ẋ(0) = −μ0x(0) (1 − x1(0)) = 0,

ẋ1(0) = − (α1 + β1 + μ1)x1(0) + β1 + α1x2
1 (0) = −μ1. (13)

As the data are x, we can identify ẋ(0), which, in
this case, is identically equal to 0 and thus does not
provide any additional parametric information. We
do not observe x1, so ẋ1(0) = −μ1 is not observed.

3.2. Generalized MSCE Model with Multiple
Preinitiation Steps

We extend the result and method for the two-
stage model to an n-stage model in which only the fi-
nal nonmalignant compartment has clonal expansion
(Fig. 1(b)). This model, unlike the fully generalized
MSCE model, is often used in the literature to model
cancer progression.(5,9,11) The differential equations
defining the survival x—and implicitly the hazard—
of this model may be found by setting each of α1, ...,
αn−2, β1, ..., βn−2 to zero in Equation (6):

ẋ = −μ0x(1 − x1),

ẋk = −μkxk(1 − xk+1),

ẋn−1 = − (αn−1 + βn−1 + μn−1)xn−1 + βn−1

+αn−1x2
n−1, (14)

for 1 ≤ k ≤ n − 2 and with initial conditions x(0) = 1,
xk(0) = 1, and xn−1(0) = 1.

Theorem 2. If cancer survival (or, equivalently, age-
specific incidence) is perfectly measured, the n-stage
(n ≥ 3) MSCE model with only one, final clonal ex-
pansion, and n + 3 constant parameters (ν, X, α, β,
μ1,. . ., μn−1) is unidentifiable but has n identifiable pa-
rameter combinations, which may be represented by
μ0, ..., μn−3, μn−1μn−2, αn−1μn−1, αn−1 − βn−1 − μn−1,
where μ0 = νX.

In order to highlight the result and its implica-
tions without the distraction of technical details, we
leave the proof to Appendix B. This is a global re-
sult over parameter space, and there are no degen-
erate parameter values of interest: when μk = 0, the
problem is no longer of biological interest, and, when
excluding those cases, αk = 0 and βk = 0 are not de-
generate values for the theorem.

3.3. Generalized MSCE Model with Multiple
Clonal Expansions

Here, we consider the full model (Equation (6),
Fig. 1(a)), allowing clonal expansion to occur at each
premalignant stage.

Proposition 1. If cancer survival (or, equivalently,
age-specific incidence) is perfectly measured, the n-
stage (n ≥ 3) MSCE model with 3n − 1 constant pa-
rameters (ν, X, α1, . . ., αn−1, β1, . . ., βn−1, μ1, ..., μn−1)
is unidentifiable.

As above, we leave the proof to Appendix B.
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Fig. 2. Hazards of MSCE models with four to eight stages under
two different parameter sets each (points vs. lines). See text for
parameter details.

Conjecture 1. If cancer survival (or, equivalently,
age-specific incidence) is perfectly measured, the n-
stage (n ≥ 3) MSCE model with 3n − 1 constant pa-
rameters has 3n − 3 identifiable parameter combina-
tions, which may be represented as α1, . . .,αn−2, β1, . . .,
βn−2, μ0, ..., μn−3, μn−1μn−2, αn−1μn−1, αn−1 − βn−1 −
μn−1, where μ0 = νX.

The conjecture is true for n ≤ 5; the proof, left to
Appendix B, is an extension of that of Proposition 1.
We believe that the method developed in the proof of
Theorem 1 could be used to prove this conjecture in
general, though additional combinatorial results will
likely be needed to deal with the added complexity.

In Fig. 2, we plot the hazards for the full model
with four to eight stages using two different sets
of parameters. For each model with n stages, the
plotted points are generated using parameter values
μk−1 = 10−2, αk = 3, and βk = 2.8 for k = 1, . . . ,n −
2 and μn−2 = 10−3, αn−1 = 3, βn−1 = 2.5 + 10−6, and
μn−1 = 10−6. The corresponding lines use the param-
eters μk−1 = 10−2, αk = 3, βk = 2.8 for k = 1, . . . ,n −
2 and μn−2 = 10−2, αn−1 = 30, βn−1 = 29.5 + 10−7,
and μn−1 = 10−7. The indistinguishability of the haz-
ards generated with each of the two parameters sets
is consistent with the conjecture.

4. DISCUSSION

Structural identifiability analysis is necessary for
accurate estimation of model parameters from data,

a fact that merits wider appreciation. Failure to
verify the identifiable combinations in one’s model
given one’s data may result in specious parame-
ter estimates. Conversely, knowing the identifiable
combinations can lead to insight and helpful model
reparameterizations.(42) This is true for the TSCE
model. Using the r , p, and q parameterization (Equa-
tion (12)), the survival and hazard can be expressed
succinctly, and, observing that r = μ0/α, p ≈ −(α −
β), and q ≈ μ1/(1 − β

α
),(43) one can identify mul-

tiplicative effects (e.g., temporal effects) on initia-
tion, promotion (net cell proliferation), and malig-
nant conversion, respectively, as in Brouwer et al.(16)

The identifiability of MSCE models has previ-
ously been considered by Heidenreich et al.(29) (two-
stage model), Luebeck and Moolgavkar(5) (MSCE
models with up to three preinitiation steps), and Lit-
tle et al.(30) (bounds on the maximum number of iden-
tifiable combinations in a generalized class of mod-
els that includes the MSCE model with any number
of clonal expansion steps). Some of these previous
results have relied on the form of the hazard func-
tion, which can only bound the identifiable combi-
nations, or numerical evaluations of the rank of the
Fisher information matrix, which, although strong
evidence of local identifiability, is not formal proof.
We offer an analytical proof of the exact identifiable
combinations for MSCE models with any number of
preinitiation steps and one clonal expansion. This is a
global result over the parameter space. Additionally,
we provide a framework and conjecture for consider-
ing the exact identifiable combinations for the model
with any number of clonal expansion stages, which
we prove for n ≤ 5. For practical purposes, parsimo-
nious carcinogenesis models are unlikely to need this
many clonal expansion stages, let alone more. More-
over, this framework extends easily to variations of
MSCE models that future work may consider, such
as those incorporating disease precursors, e.g., gas-
troesophageal reflux disease (GERD) for esophageal
cancer(15) or human papillomavirus (HPV) infection
for anogenital or oral cancer.(39)

Our methods and results are important in a
larger context as well. We expand the differential
algebra approach for structural identifiability, which
has been primarily used in the field of biological, de-
terministic ODE models (though is, of course, ap-
plicable to models in other fields), into the realm
of stochastic branching processes and, more gener-
ally, continuous-time Markov processes. Once one
is able to write a continuous-time Markov process
as a system of differential equations of probability
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generating functions, a variety of identifiability
techniques become available (e.g., Taylor series
expansion(24) or similarity transform(23)). Of course,
use of these techniques requires that one’s data relate
to the probability generating functions in some way,
so it is as of yet unclear exactly how widely applica-
ble this framework will be. However, our approach to
identifiability is applicable to at least one broad class
of continuous-time Markov chain models, those that
relate data to survival methods (i.e., time-to-event
processes), which is true of many carcinogenesis and
other health-outcome models.

This work sets the stage for several important
problems. We have considered constant parameters,
but time-varying and piecewise-constant parameters
are of great interest in the context of time-varying
exposures.(44–47) The results given here address the
piecewise-constant case in part, since the problem
can be expressed as multiple instances of the case
with constant parameters, although additional anal-
ysis of initial conditions will be needed. Further, as
data for each constant-parameter model will be lim-
ited (a full trajectory for each constant-parameter
model is not observed), practical identifiability con-
siderations arise. For more general time-varying pa-
rameters, additional analysis is needed, though if the
functional forms of the time-varying parameters are
known and if they are rational functions or approx-
imable as such, then a similar approach as used here
could be taken. Future work may also be able to
see the conjecture given in this work proved beyond
n = 5 using the differential algebra framework, but
strong combinatorial tools may be necessary to disen-
tangle the complexity of the coefficients of the input–
output equation of the full model. Additionally, as
mentioned above, future work that considers varia-
tions of the MSCE model will greatly benefit from
this adaptable framework.

Finally, another important consideration is that
of practical identifiability. In the context of real data,
this structural identifiability analysis provides up-
per bounds on the number of identifiable parame-
ter combinations, but there may be less paramet-
ric information available in real data. Such problems
have been identified for MSCE models,(11) but fur-
ther analysis will be needed to address these issues
more broadly.

APPENDIX A

To illustrate the differential algebra approach to
identifiability, we consider the classic example of a

linear two-compartment model, commonly used in
pharmacokinetics; the unidentifiability of this model
is well established through a range of methods.(17,26)

The model equations are given by:

ẋ1 = κ12x2 − (κ21 + κ01)x1 + u,

ẋ2 = κ21x1 − (κ12 + k02)x2,

v = x1/ψ, (A.1)

where x1(t) and x2(t) are the masses of a
drug/substance in the plasma and tissue, respec-
tively, u(t) is a known input function (e.g., an
intravenous injection or constant infusion at a
known dose), the κi j are unknown parameters to be
estimated, and the output equation v(t) is the plasma
concentration, where ψ is the plasma volume (an-
other unknown parameter to be estimated). Then,
our input–output equation should be a differential
equation in terms of the parameters, input u, output
v, and their derivatives. This can be generated as
follows—we substitute x1 = ψv into the ẋ1 equation
above, and solve for x2 to give:

x2 = ψv̇ + (κ21 + κ01)ψv − u
κ12

. (A.2)

Plugging this in to the ẋ2 equation yields the follow-
ing (taking a derivative of Equation (A.2) to substi-
tute for ẋ2),

ψv̈ + (κ21 + κ01)ψv̇ − u̇
κ12

= κ21ψv

− (κ12 + κ02)
(
ψv̇ + (κ21 + κ01)ψv − u

κ12

)
. (A.3)

Clearing denominators and combining terms yields

ψ v̈ + (κ21 + κ01 + κ12 + κ02)ψv̇ − u̇

− (κ12κ21 + (κ12 + κ02)(κ21 + κ01))ψv

− (κ12 + κ02)u = 0. (A.4)

This differential polynomial is monic and thus an
input–output equation for the system under a rank-
ing of the variables that places u as higher ranked
than v. However, the ranking u < u̇ < ü < · · · < v <

v̇ < v̈ < · · · is traditional,(26) so we take

v̈ + (κ21 + κ01 + κ12 + κ02)v̇ − 1
ψ

u̇

− (κ12κ21 + (κ12 + κ02)(κ21 + κ01))v

− 1
ψ

(κ12 + κ02)u = 0 (A.5)
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as our input–output equation. The coefficients of
Equation (A.5) are the set of identifiable combina-
tions for the model. The importance of making the
input–output equation monic (or otherwise clear-
ing the coefficient of one of the terms) can be seen
here—if we did not include such a restriction, we
could multiply Equation (A.5) by an arbitrary pa-
rameter combination, which would then be the co-
efficient of the v̈ term and appear to be identifiable.
From these coefficients, we can see immediately that
the model is unidentifiable—there are only four iden-
tifiable combinations, but there are five parameters.
Moreover, we can see from the coefficient of u̇ that
the parameter ψ is identifiable (since if 1/ψ is known,
then ψ is known).

More broadly, testing for identifiability is usu-
ally accomplished by testing injectivity of the map
from the parameters to the coefficients, i.e., evalu-
ating each coefficient at two (symbolic) points, set-
ting the two equal (e.g., κ21 + κ01 + κ12 + κ02 = κ∗

21 +
κ∗

01 + κ∗
12 + k∗

02), and then testing whether it is possi-
ble to solve the resulting equations for each param-
eter in the form κi j = κ∗

i j . In this case, it is apparent
that the parameters are not identifiable. However, we
can find simpler representations of the identifiable
combinations than the coefficients of Equation (A.5):
by noting that ψ is identifiable, we see that the coef-
ficient for u shows that (κ12 + κ02) is also identifiable
(since both ψ and (κ12 + κ02)/ψ are). Continuing in
this fashion yields a simplified set of identifiable com-
binations: ψ , (κ12 + κ02), κ21 + κ01, and κ12κ21. Fur-
ther examination shows that we can reparameterize
the model in terms of the identifiable combinations
by rescaling x̃2 = κ12x2, resolving the identifiability
problem for the model (discussed further in Ref. 26).

This example is simple enough to permit by-hand
computation of the input–output equations and iden-
tifiable combinations. However, many models (even
relatively simple nonlinear models) can result in ex-
tremely lengthy input–output equations (e.g., terms
numbering in the hundreds) or complicated combi-
nation structures that are not feasible to calculate by
hand.(27,31) Thus, it is common to use computational
algebra techniques such as characteristic sets or
Gröbner bases for many of the above steps,(26,27,48)

such as elimination of the unobserved variables x to
generate an input–output equation or calculation of
the identifiability results from the coefficients of the
input–output equation. These approaches typically
reduce a given set of polynomials/differential poly-
nomials using some sort of ranking of the variables,
typically ranking u < v < x.(26)

APPENDIX B

To prove Theorem 2, we begin with a series of
lemmas.

Lemma 1. For 1 ≤ k< n − 1, xk is a rational function
of x and its derivatives and may be written in the form
qk+uk

qk
, where qk and uk are polynomials of x and its

derivatives and qk is monic.

Proof. We proceed by induction. Observe that

x1 =
x + ẋ

μ0

x
. (B.1)

Next, assume that xk, for some 1 ≤ k< n − 2,
may be written in the form qk+uk

qk
, where qk and uk are

polynomials of x and its derivatives and qk is monic.
Then, from the ẋk equation, we find:

xk+1 =
xk + 1

μk
ẋk

xk

=

(
qk + uk

qk

)
+ 1
μk

d
dt

(
qk + uk

qk

)
(

n
qk + uk

qk

)

=
(qk + uk)qk + 1

μk
((q̇k + u̇k)qk − (qk + uk)q̇k)

(qk + uk)qk

= qk+1 + uk+1

qk+1
, (B.2)

where

uk+1 = 1
μk

(u̇kqk − ukq̇k), (B.3)

qk+1 = (qk + uk)qk. (B.4)

Because qk is monic, qk+1 = q2
k + qkuk is also

monic. Further, qk and uk are clearly polynomials in
x and its derivatives. Hence, the result.

Lemma 2. The highest power of x in the polynomial
qk is 2k−1, and the highest order derivative of x is k − 1.
In particular, qk contains the term x2k−1

, which is the
only term with this power of x. The only terms in qk of
the power 2k−1 − 1 of x are, for 0 ≤ m ≤ k − 1,

2k−m−1

μ0 · · ·μm−1
x2k−1−1x(m).
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Table B.II. Relevant Terms in qk and uk for k ≤ 4

k Relevant Terms in qk Relevant Term in uk

1 x
1
μ0

ẋ

2 x2,
1
μ0

xẋ
1

μ0μ1
xẍ

3 x4,
2
μ0

x3 ẋ,
1

μ0μ1
x3 ẍ

1
μ0μ1μ2

x3x(3)

4 x8,
4
μ0

x7 ẋ,
2

μ0μ1
x7 ẍ,

1
μ0μ1μ2

x7x(3) 1
μ0μ1μ2μ3

x7x(4)

The highest power of x in the polynomial uk is
2k−1 − 1 and the highest order derivative is k. In par-
ticular, uk contains the term

1
μ0 · · ·μk−1

x2k−1−1x(k),

which is the only term in uk with this power of x.

Proof. The relevant terms in qk and uk for the first
few k are written out in Table B.II for convenience.
We have q1 = x and u1 = 1

μ0 ẋ, so the base case is—
partly vacuously—true. Now, suppose that the hy-
potheses are true. Let qk+1 = (qk + uk)qk. Then, its
term with the highest power of x is (x2k−1

)2 = x2k
.

Since qk contains the terms 2k−m−1

μ0···μm−1
x2k−1−1x(m), 1 ≤

m ≤ k − 1, and x2k−1
, q2

k contains the terms, for 1 ≤
m ≤ k − 1,

2 · x2k−1 · 2k−m−1

μ0 · · ·μm−1
x2k−1−1x(m)

= 2k−m

μ0 · · ·μm−1
x2k−1x(m).

Since we have identified all of the terms with a
power on x of 2k−1 and 2k−1 − 1 in qk, we have iden-
tified all of terms of power 2k−1 − 1 in q2

k . Addition-
ally, there can be only one such term from qkuk: since
qk contains x2k−1

and uk contains 1
Xμ0···μk−1

x2k−1−1x(k),

qkuk contains 1
Xμ0···μk−1

x2k−1x(k). Hence, qk+1 contains
the terms, for 1 ≤ m ≤ k,

2k−m

μ0 · · ·μm−1
x2k−1x(m).

Further, since the highest order derivative of
x in uk is x(k), the term in uk+1 of order k + 1
must come from 1

μk
u̇kqk. In particular, u̇k contains

1
μ0···μk−1

x2k−1−1x(k+1). Then, 1
μk

u̇kqk, uk+1 contains the

term
1
μk

· 1
μ0 · · ·μk−1

x2k−1−1x(k+1) · x2k−1

= 1
μ0 · · ·μk

x2k−1x(k+1).

Hence, the result. �
Now, we prove Theorem 2.

Proof. For ease of notation, let q := qn−1 and u :=
un−1. Now, we replace xn−1 with q+u

q in the ẋn−1 equa-
tion to find an input–output equation:

ẋn−1 = − (αn−1 + βn−1 + μn−1)xn−1 + βn−1

+αn−1x2
n−1, (B.5)

(q̇+u̇)q−(q+u)q̇
q2

=− (αn−1+βn−1+μn−1)
q+u

q

+ βn−1+αn−1

(
q+u

q

)2

(B.6)

u̇q − uq̇ = − (αn−1 + βn−1 + μn−1)(q2 + qu) + βn−1q2

+αn−1(q2 + 2qu + u2), (B.7)

0 = u̇q − uq̇ + μn−1q2 − (αn−1 − βn−1 − μn−1)qu

−αn−1u2, (B.8)

0 = 1
μn−1

(u̇q − uq̇) + q2 −
(
αn−1 − βn−1 − μn−1

μn−1

)
qu

− αn−1

μn−1
u2. (B.9)

Viewed as a function of x, this last equation is an
input–output equation. Under an appropriate rank-
ing, it is monic because of the x2n−1

term in q2. As in
the proof of the previous lemma, q2 also contains the
terms, for 1 ≤ m ≤ n − 2,

2 · x2n−2 · 2n−m−2

μ0 · · ·μm−1
x2n−2−1x(m)

= 2n−m−1

μ0 · · ·μm−1
x2n−1−1x(m).

From the −
(
αn−1−βn−1−μn−1

μn−1

)
qu term, we get:

−
(
αn−1 − βn−1 − μn−1

μn−1

)
· x2n−2 ·
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1
Xμ0 · · ·μn−2

x2n−2−1x(n−1)

= −αn−1 − βn−1 − μn−1

Xμ0 · · ·μn−1
x2n−1−1x(n−1).

Next, from 1
μn−1

u̇q, as in the proof of the lemma,
we get:

1
μn−1

· 1
μ0 · · ·μn−2

x2n−2−1x(n) · x2n−2

= 1
μ0 · · ·μn−1

x2n−1−1x(n).

From − αn−1
μn−1

u2, we get:

− αn−1

μn−1

(
1

μ0 · · ·μn−2
x2n−2−1x(n−1)

)2

= − αn−1μn−1

(μ0 · · ·μn−1)2
x2n−2−2(x(n−1))2.

A term of the same kind arrives from − 1
μn−1 uq̇.

Noting that the derivative of 1
μ0···μn−3

x2n−2−1x(n−2) con-

tains 1
μ0···μn−3

x2n−2−1x(n−1),

− 1
μn−1

· 1
μ0 · · ·μn−2

x2n−2−1x(n−1) ·

1
μ0 · · ·μn−3

x2n−2−1x(n−1)

= − μn−2μn−1

(μ0 · · ·μn−1)2
x2n−2−2(x(n−1))2.

We have identified n + 1 coefficients in the
input–output equation. They are, for 1 ≤ m ≤ n − 2,

2n−m−1

μ0 · · ·μm−1
,

−αn−1 − βn−1 − μn−1

μ0 · · ·μn−1
,

1
μ0 · · ·μn−1

,

and

−αn−1μn−1 + μn−2μn−1

(μ0 · · ·μn−1)2
.

Thus, we can identify μ0, μ1, ..., μn−3 (n > 3),
μn−2μn−1, αn−1μn−1, αn−1 − βn−1 − μn−1.

However, there may be additional terms in the
input–output equations. Thus, a priori, it is possi-
ble that smaller combinations making up these terms
could be identifiable (or even that the model itself
might be). So, we must show that the overall model

is unidentifiable, and, moreover, that none of these
combinations can be broken down into smaller iden-
tifiable pieces. To this end, we find a model equiva-
lent to the original model (Equation (14)) that can be
parameterized using only the above identifiable com-
binations. To do so, solve the ẋn−2 for xn−1: xn−1 =
1 + 1

μn2

ẋn−2
xn−2

, and plug this into the ẋn−1 equation to
arrive at the following set of equations:

ẋ = −μ0x(1 − x1),

ẋk = −μkxk(1 − xk+1),

0 = ẍn−2xn−2 + (μn−2μn−1) x2
n−2

− (αn−1 − βn−1 − μn−1) ẋn−2xn−2

−
(
αn−1μn−1

μn−2μn−1
+ 1

)
ẋ2

n−2, (B.10)

for 1 ≤ k ≤ n − 3 and with initial conditions x(0) =
1, xk(0) = 1, xn−2(0) = 1, and ẋn−2(0) = 0. Because
the parameters μn−2, μn−1, αn−1, and βn−1 appear
only in the combinations μn−2μn−1, αn−1μn−1, and
αn−1 − βn−1 − μn−1 in the model equations, specify-
ing values for these parameter combinations fully de-
scribes the model. Because a product is the smallest
unit in a combination, it is clear that μn−2, μn−1, and
αn−1 are not individually identifiable. Because βn−1

appears only in a sum with αn−1 and μn−1, it too is
unidentifiable.

Hence, the result. �
Next, we prove Proposition 1.

Proof. That the full model is unidentifiable, gen-
erally, can be seen as follows. The model below is
equivalent to that in described by Equation (6).

ẋ = −μ0x(1 − x1),

ẋk = − (αk + βk + μk)xk + βk + αkx2
k + μkxkxk+1,

0 = ẍn−2xn−2 − α2
n−2 (αn−1μn−1)

μn−2μn−1
x4

n−2

+ 2αn−2

(
αn−1μn−1

μn−2μn−1
− 1

)
x2

n−2 ẋn−2

− ((αn−1 − βn−1 − μn−1)

+2(αn−2 + βn−2) (αn−1μn−1)
μn−2μn−1

)
xn−2 ẋn−2

+βn−2 ((αn−1 − βn−1 − μn−1)

+2(αn−2 + βn−2) (αn−1μn−1)
μn−2μn−1

)
xn−2

− ((αn−2 + βn−2)(αn−1 − βn−1 − μn−1) − μn−2μn−1
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+ (αn−1μn−1) (α2
n−2 + 4αn−2βn−2 + β2

n−2)

μn−2μn−1

)
x2

n−2

+αn−2 ((αn−1 − βn−1 − μn−1)

+2 (αn−1μn−1) (αn−2 + βn−2)
μn−2μn−1

)
x3

n−2

−
(
αn−1μn−1

μn−2μn−1
+ 1

)
ẋ2

n−2 + 2βn−2

(
αn−1μn−1

μn−2μn−1
+ 1

)

ẋn−2 − β2
n−2 (αn−1μn−1)

μn−2μn−1
, (B.11)

for 1 ≤ k ≤ n − 3 with initial conditions x(0) =
1, xk(0) = 1, and xn−3(0) = 1, xn−2(0) = 1, and
ẋn−2(0) = 0. As in the previous proof, parameters
μn−2, μn−1, αn−1, and βn−1 appear only in the combi-
nations μn−2μn−1, αn−1μn−1, and αn−1 − βn−1 − μn−1

in Equations (B.11). So, the full model is indeed
unidentifiable. �

Finally, we sketch the proof of Conjecture 1 for
n ≤ 5. Calculations were carried out in Mathematica
10.2.

Proof. Solve the ẋ equation for x1. Take a derivative
to find ẋ1. We now have x1 and ẋ1 as a function of x
and its derivatives. Plug these into the ẋ1 equation so
that it becomes an equation of x2, x, and derivatives
of x. Solve for x2 as a function of x and its deriva-
tives, and compute ẋ2. Continue in this manner until
we have xn as a function of x and its derivatives.
Substitute xn and ẋn into the final equation. We
now have a single equation of x and its derivatives
that contains all of the information of the system.
Divide the equation by

∏n−1
k=0 μ

2n−1−k

k , which makes the
equation monic under the appropriate ranking. This
is an input–output equation. The equation has the
following number of coefficients: 11 for n = 3, 48 for
n = 4, and 365 for n = 5. Determine the identifiable
combinations from the list of coefficients by setting
the coefficients equal to copies of themselves with
placeholder parameter values and finding a Gröbner
basis.
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17. Bellman R, Åström KJ. On structural identifiability. Mathe-
matical Biosciences, 1970; 7:329–339.

18. Rothenberg TJ. Identification in parametric models. Econo-
metrica, 1971; 39(3):577–591.

19. Cobelli C, DiStefano JJ. Parameter and structural identifiabil-
ity concepts and ambiguities: A critical review and analysis.
American Journal of Physiology, 1980; 239:R7–R24.

20. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M,
Klingmüller U, Timmer J. Structural and practical identifi-
ability analysis of partially observed dynamical models by



A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models 1387

exploiting the profile likelihood. Bioinformatics, 2009;
25(15):1923–1929.

21. Saccomani MP, Audoly S, Bellu G, D’Angio L. A new dif-
ferential algebra algorithm to test identifiability of nonlinear
systems with given initial conditions. Pp. 4:3108–4:3113 in Pro-
ceedings of the 40th IEEE Conference on Decision and Con-
trol, 2001.

22. Pohjanpalo H. System identifiability based on the power series
expansion of the solution. Mathematical Biosciences, 1978;
41(1–2):21–33.

23. Vajda S, Godfrey KR, Rabitz H. Similarity transforma-
tion approach to identifiability analysis of nonlinear com-
partmental models. Mathematical Biosciences, 1989; 93:217–
248.

24. Chappell MJ, Godfrey KR, Vajda S. Global identifiability of
the parameters of nonlinear systems with specified inputs:
A comparison of methods. Mathematical Biosciences, 1990;
102:41–73.

25. Evans ND, Chappell MJ. Extensions to a procedure for
generating locally identifiable reparameterisations of uniden-
tifiable systems. Mathematical Biosciences, 2000; 168:137–
159.

26. Audoly S, Bellu G, D’Angiò L, Saccomani MP, Cobelli C.
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