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ABSTRACT 

 

The high demand for electricity and the consequent increase in electricity price as lead to recent 

study in reducing the total operating cost of a residential building. This research work focus on 

energy management in a residential green house. Two innovative approach is proposed to solve 

excessive operating cost of a residential green house, the system inputs which consist of 

temperature, activity level, and energy consumption is based on five household occupant in 

Atlanta, Georgia, also a Chevy volt of 16kWh is used in the case studies. 

Moreover, for a single residential house, the overall goal is to reduce the total operating costs and 

the carbon emissions for a future residential house, while satisfying the end-users’ comfort levels. 

This paper models a wide variety of home appliances and formulates the economic operation 

problem using mixed integer linear programming. Case studies are performed to validate and 

demonstrate the effectiveness of the proposed solution algorithm. Simulation results also show the 

positive impact of dispatchable loads, distributed renewable generators, and distributed energy 

storage devices on a future residential house. 

For networked residential houses, we present an optimization of total operating cost of an 

interconnected nanogrid (ING) considering the effect of V2H and V2G, which helps to minimize 

the total operating cost. The major objective is to reduce carbon emission, total operating cost and 

the peak load demand while satisfying the customer preferences of each nanogrid. A mixed integer 

linear program (MILP) is formulated to solve the economic operation of the ING. Furthermore,
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 case studies are performed to demonstrate the positive impact INGs have on minimizing total 

operating cost. 

Key-words: distributed energy storage devices (DESD), renewable energy, demand response, 

vehicle-to- home (V2H), vehicle-to-grid (V2G). 
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CHAPTER 1: INTRODUCTION 

 

Commercial and residential buildings consumed almost 40% of the primary energy and 

approximately 70% of the electricity in the United States in 2012, and the trend continues to 

escalate. Intelligent home energy management is a viable solution to reduce energy costs, maintain 

customer comfort levels, accommodate the integration of distributed renewable energy resources, 

and facilitate demand-side management (DSM) and demand response (DR) programs [1]-[3].  

In [4], the authors propose a scheduling method for household appliances based on dynamic 

price signals. In [5] the authors present a multi objective mixed integer nonlinear programming 

model for optimal energy use in a smart home, by considering balance between the energy saving 

and comfortable lifestyle, also In [6] the authors present a novel home energy management systems 

for smart homes with different load profiles. The authors in [7] propose a comprehensive and 

general optimization based home energy management controller, incorporating several classes of 

domestic appliances, in [8] the authors propose several types of household appliance models, but 

did not explore the bi-directional power flow in which the consumer can sell electricity back to the 

power grids. The authors in [9] propose a bi-directional PHEV charging/discharging model, but did 

not analyze the effect of household appliances on the consumption of electricity.  

The above-mentioned literature survey claims an urgent need for an intelligent home energy 

management system integrated with dispatchable loads (e.g., clothes washers and dryers),
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 distributed renewable generators (e.g., roof-top solar panels), and DESDs (e.g., PHEVs). Fig. 1 

shows the envisioned architecture and major components of a residential house. 

 

                            Figure 1:Envisioned architecture of a future residential house 

 

The major contributions of this paper can be summarized as follows: 

1. Modeling of a wide variety of household appliances and their operating constraints; 

2. Formulation of an objective function to minimize the operation cost considering bi-

directional power flow and customer preferences; 

3. Analysis of the impact of dispatchable loads, distributed renewable generators, and 

distributed energy storage devices on a future residential house. 
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1.1. Why do we need distributed system? 

There are several reasons why distributed system is receiving more attention. Distributed system 

as the potential to eliminate the cost, complexity, interdependencies, and inefficiencies associated 

with transmission and distribution [10]. 

1.2. Distributed Renewable Generator 

Distributed generation is the term used when electricity is generated from sources, often renewable 

energy sources, near the point of use instead of centralized generation sources from power plants. 

Distributed renewable generator basically generate clean renewable electricity where that energy 

will be used. Examples of distributed renewable energy system are geothermal systems, micro-

hydroelectric systems, solar panels and wind turbines. 

1.3. Dispatchable Residential load 

There are several residential households loads that contribute to the high rate of energy consumed 

in a residential house, Load can be divided into two namely; 

I. Controllable e.g. washing machine, dryer 

II. Uncontrollable e.g. Air conditioner, fridge, HVAC 

Controllable loads are loads that their operation schedule can be shifted or manipulated without 

affecting the operation itself, while uncontrollable loads are loads that their mode of operation and 

power consumption does not depend only on the customer preferences but also on external factors, 

for example, an HVAC power consumption is dependent not only on the customer usage but also 

on external factors such as outside temperature and the activity level in the house [11].Careful 
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analysis of the operation constraints of these loads helps to reduce the rate of energy consumed by 

these devices. 

1.4. Distributed Energy Storage 

Due to uncertainties of several renewable energy sources, the need for distributed energy storage 

has been the solution to this issue. Furthermore, the use of the capacity of these DER as lead to 

several researches to increase the capacity of energy these DER can stored. 

1.5. Energy Market Pricing 

In recent times, there are have been an emergence of different types of electricity pricing for the 

consumers which includes; 

•  Dynamic pricing: is a pricing that allows customers to pay fluctuating market rate for their 

electricity. 

• Time of use (TOU): is a pricing that is determined on how much the customers uses the 

energy and when it been used. 

• Real time pricing: a pricing in which the consumers knows actual cost of electricity at any 

given time. 

• Critical peak pricing: a pricing that compensates customers to shift their loads during peak 

period in return of a financial incentives. 

These several types of electricity pricing as helped to reduce the energy consumption by residential 

houses.  
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1.6. Demand Response and Demand Side Management 

Demand response provides an opportunity for consumers to play a significant role in the operation 

of the electric grid by reducing or shifting their electricity usage during peak periods in response 

to time-based rates or other forms of financial incentives. Demand response programs are being 

used by some electric system planners and operators as resource options for balancing supply and 

demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to 

lower retail rates.  

Demand-side management (DSM) programs consist of the planning, implementing, and 

monitoring activities of electric utilities which are designed to encourage consumers to modify 

their level and pattern of electricity usage. Chapter 1 gives introduction to energy management, 

while Chapter 2 describes the energy management in single residential green house and chapter 3   

discuss about energy management in networked residential green house and Chapter 4 gives a 

summary of the paper and then generate a conclusion based on the analysis and results from the 

case study. 

 

 

 

 

 

 



 

6 
 

2. CHAPTER 2: ENERGY MANAGEMENT IN SINGLE RESIDENTIAL 

GREEN HOUSE 

2.1. System Input    

The simulation uses data from Atlanta, Georgia, over a period of five years, which contain five 

household occupants, 2015 summer data is used in order to demonstrate the amount of energy that 

can be captured by the solar panel during this season of high sunlight. 

2.1.1. Temperature  

The outside temperature data of an average summer over the period of five years from 2010-2015 

in Atlanta, Georgia in the United States is obtained from the national weather website [12]. Figure 

2 shows the distribution of the outside temperature, which ranges from 23-29 degrees Celsius. 

 

Figure 2:Outside temperature in Atlanta, Georgia
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2.1.2. Activity Level 

The activity level of the RGH is determined by calculating the hourly energy consumption of a 

typical resident in Atlanta, Georgia in terms of a percentage. Figure 3 shows the activity level of a 

residential house in Georgia, in which there is an increase of activity level at 2am and 11am, and a 

clear reduction during the night, as the occupant has less power demand [13]. 

 

 

Figure 3: Activity level of a residential house in Georgia 

 

2.1.3. Dynamic Electricity Price 

In order to test the variability of the effect of PHEVs, DESDs and PVs on energy cost, a dynamic 

price is implemented. Figure 4 shows the dynamic electric price [14]. 
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Figure 4: Dynamic electricity price 

 

2.1.4. Solar Power Generation 

A 1-kW solar panel data from Atlanta which span over an average of five years from 2010-2015 is 

used in this analysis.[15].The highest output was at 1pm, at 0.82 kW. Figure 5 shows the hourly 

solar power generation in Atlanta. 

 

Figure 5:Solar power generation in Atlanta (1-kW generator) 
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2.2. Problem Formulation 

 To analyze the energy consumption in the residential green house, the energy consumed by the 

residential green house is analyzed for a full day, where 𝑡1 starts from 1:00AM in the morning 

and ends at   𝑡24 , which correspond to 12PM in the evening. 

2.3. Objective Function 

The primary goal of this research is to minimize the total operating cost of a future residential house. 

The objective function is as follows: 

 
24 24 24

, , , ,

1 1 2 2
1 1 18

    ( ) ( )  (1a)b b s s CH DESD DIS DESD CH PHEV DIS PHEV

house t t t t t t t t
t t t

Cost P Pr P Pr P P P P   
  

               

24 24
, , , ,

&
1

2
18

1 1 2[(( ) ( ) (1b)CH DESD DIS DESD CH PHEV DIS PHEV

DESD PHEV t t t t
t

Cost P P P P   


      

(Equation (1a) shows the total operating cost of the residential green house, 𝑃𝑡
𝑏 (kW) denotes the 

power bought from the power grid at time interval t, while 𝑃𝑟𝑡
𝑏 denotes the dynamic electricity price 

($/kWh) offered by the utility grid, 𝑃𝑡
𝑠(kW) is the amount of power sold from the PV, DESD, and 

the PHEV at time interval t, and 𝑃𝑟𝑡
𝑠 (kWh) is a flat price agreed to by the consumer at which they 

will sell their power back to the grid. The bi-directional flow of PHEVs and DESDs makes it 

possible for a consumer to meet their household demand and still have excess energy at a time 

interval to sell back to the grid. Equation (1b) shows the degradation cost of the DESD and the 

PHEV (𝐶𝑜𝑠𝑡𝐷𝐸𝑆𝐷&𝑃𝐻𝐸𝑉),  which is part of the total cost of operating the house, 𝑃𝑡
𝐶𝐻,𝐷𝐸𝑆𝐷

and 

𝑃𝑡
D𝐼𝑆,𝐷𝐸𝑆𝐷

(kW) indicate the charging power and  discharging power of the DESD respectively, 

while 𝑃𝑡
𝐶𝐻,𝑃𝐻𝐸𝑉𝑎𝑛𝑑 𝑃t

𝐷𝐼𝑆,𝑃𝐻𝐸𝑉
(kW) indicate the charging and the discharging power of the PHEV 
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respectively,  𝜂1 ($/kwh) is the degradation cost associated with the charging and discharging 

process of the DESD, while 𝜂2  ($/kwh) is the degradation cost associated with the charging and 

discharging process of the PHEV. 

2.4. System Constraints 

2.4.1. Air conditioner and heater operating constraints (HVAC) 

The AC and heater work on the principle in which when the inside temperature is higher than a 

specific temperature [11], the AC tends to switch ON and if it is lower than a specified temperature 

the heater switches ON. If the inside temperature of the house,𝜃𝑖𝑛 is at an optimal level based on 

the customer preference, neither of the devices will run. 𝜃𝑖𝑛 has an effect on the power consumed 

by the AC and heater, which can be determined by:  

          1   u   1 , t   Tin in ac ac ac out inac t
t v A t s I t t            

                                         (2) 

        1 v u    1 ,   t  T ( )  in in ht ht ht ht out int A t s I t tt                                                             (3) 

    1,ac htS t S t t T                                                                                                           (4) 

In (2) and (3) 𝜃𝑖𝑛 at any time interval depends on the previous temperature and the cooling and 

warming effect of the OFF state of the AC  v𝑎𝑐 and the heater vℎ𝑡.  A(t) is the activity level of the 

house  for both equations which is essentially the energy consumption of a typical household. u𝑎𝑐 

and uℎ𝑡  is the cooling and warming effect of the ON state of the AC and heater respectively, 

𝐼𝑎𝑐,and𝐼ℎ𝑡, is the effect of outside and inside temperature difference on the AC and heater 

respectively which has a huge impact on the inside temperature per time interval. (4) indicates that 
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the AC and the heater are not to operate at the same time, where 𝑆𝑎𝑐 and 𝑆ℎ𝑡 represent the ON/OFF 

status of the AC and the heater respectively, which can only take binary values. 

2.4.2. Fridge operating constraint 

   1   , t   T ( )fr fr fr fr fr fr frt A t u sv t                                                   (5) 

In equation (5), 𝜃𝑓𝑟 indicates the inside temperature of the fridge at a time interval which is 

dependent on the previous temperature of the fridge 𝜃𝑓𝑟(𝑡 − 1), the effect of the activity level on 

the fridge temperature    frA t , in which as the activity of the house increases there will be more 

demand on cooling  of the fridge, while v𝑓𝑟, indicate the cooling and warming effect of the OFF  

state of the fridge , fru  indicate the cooling and warming effect of the OFF state of the fridge and 

𝑠𝑓𝑟(𝑡)  is the binary variable that controls the switching of the fridge, moreover  𝛼𝑓𝑟, indicates the 

warming effect of the OFF state of the fridge. If there is more activity level on the fridge, the inside 

temperature of the fridge might increase beyond the set range of temperature by the residential 

customer which will leads to more power demand to cool it down back to the set temperature 

range.  

2.4.3. Washer and dryer operation constraints 

As discussed earlier, the washer and dryer are categorized as a controllable load, where i represent 

either the washer or the dryer. The operating constraints of the washer and dryer are shown below: 

       1 , t  T,   i  Ii i i iu t v t s t s t                                                                                            (6) 
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    1, t  T,   i  I i iu t v t                                                                                                 (7) 

( ) , t  T
i

rt
ii

t

s k O
T

                                                                                                                       (8) 

( ) (1 ( )), t   T

mst

i
t

mst
i i i

k t

o
k M u ts O





                                                                                                        (9) 

1

( ) ( ), t  T
i

t

i i
k t

t s tu
U  

                                                                                                                              (10) 

1

( ) 1 ( ), t  T
i

t

i i
k t

t s tu
D  

                                                                                                                                           (11) 

   
1

, t  Tdryer washer
k

t s t ks




                                                                                                                            (12) 

    1, t  Tdryer washert s ts                                                                                                                                  (13)

                                                                                                                                             

Equations (6) and (7) model the shut down and start up constraints for the washer and dryer in order 

not to damage the device,  is t  represent the binary variable of the washer or dryer, which will be 

1 if the device is switched ON or 0 if the device is switched OFF, also  𝑢𝑖(𝑡) and 𝑣𝑖(𝑡) represent 

the binary variable denoting the startup of the device i at time t and the shutdown of the device i at 

time t respectively. Equation (8) constrains the device to operate at a particular operation time,  𝑂𝑖
𝑟𝑡. 

Equation (9) constrains the device to operate at a maximum successive time, 𝑂𝑖
𝑚𝑠𝑡 , where M 

represents a large positive number. Equations (10) and (11) constrain the device to operate at a 

minimum up time, 𝑈𝑖, and minimum down time, D𝑖, respectively. Moreover, (12) sets the dryer to 
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operate after the washer has finished its task, and  𝛺  represents the time gap as set by the customer 

preference. Equation (13) constrains the dryer and washer not to operate at the same time, in which 

only one operation is allowed per device. 

2.4.4. Power balance equations 

, , , , ,   ,   t  Tb used PV used PHEV used DESD RGH CH PHEV CH DESD s

t t t t t t t tP P P P P P P P                                                    (14) 

Equation (14) shows the power balance equation, where 𝑃𝑡
𝑏 and 𝑃𝑡

𝑠 represent the total power bought 

and sold from or to the grid at a time interval. 𝑃𝑡
𝑢𝑠𝑒𝑑,𝑃𝑣, 𝑃𝑡

𝑢𝑠𝑒𝑑,𝑃𝐻𝐸𝑉 𝑎𝑛𝑑 𝑃𝑡
𝑢𝑠𝑒𝑑,𝐷𝐸𝑆𝐷

represent the 

power supplied to meet the residential load demand at a time interval by the PV, PHEV and DESD 

respectively. 𝑃𝑡
𝑅𝐺𝐻 represents the total power consumed by the fridge, AC, washer and dryer at a 

time interval. It should be noted that 𝑃𝑡
𝐶𝐻,𝑃𝐻𝐸𝑉 and 𝑃𝑡

𝐶𝐻,𝐷𝐸𝑆𝐷
   are the charging power demands of 

the PHEV and DESD, respectively, in which these devices operate as an electrical generator when 

discharging and energy consuming load when charging. Figure 6 shows the residential power 

balance topology. 

 

Figure 6:Power and load balance
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2.4.5. DESD operation constraints 

The bi-directional flow constraints of the DESD are shown below. The DESD charges when the 

dynamic electricity price is low and discharges to meet the household load when the electricity price 

is high. 

, , , ,used DESD s DESD DIS DESD

t t t DD tP P P                                                                                                      (15a) 

, , tCH DESD DESD DESD

t t tP CR s                                                                                                                 (15b) 

 , 1 , t     DIS DESD DESD DESD

t t tP DR s                                                                                                      (15c) 

, ,

1   , t  DESD DESD CH DESD DIS DESD

t t t CD t DDSOE SOE P P                                                                                      (15d) 

,

1 ,DESD DESD INISOE SOE t                                                                                                                                              (15e) 

, ,DESD DESD MAX

tSOE SOE t                                                                                                                                            (15f) 

, ,DESD DESD MIN

t tSOE SOE t                                                                                                                                                       (15g) 

Equation (15a) indicates the DESD can be used to meet the household load demand where 𝑃𝑡
𝑠,𝐷𝐸𝑆𝐷

 

represents the power sold by the DESD at a time interval t, 𝑃𝑡
𝐷𝐼𝑆,𝐷𝐸𝑆𝐷  represents the discharging 

power, and 𝜂𝐷𝐷 represents the discharging efficiency of the DESD. (15b) helps to limit the charging 

power of the DESD, where 𝑃𝑡
𝐶𝐻,𝐷𝐸𝑆𝐷

 is the charging power, 𝐶𝑅𝑡
𝑑𝑒𝑠𝑑 is the charging rate, and 𝑠𝑡

𝐷𝐸𝑆𝐷  

is the ON/OFF status of the DESD. This constraint protects the life cycle of the DESD. (15c) 

controls the discharging rate of the DESD, where 𝑃𝑡
𝐷𝐼𝑆,𝐷𝐸𝑆𝐷

  represents the discharging power of 
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the DESD and 𝐷𝑅𝑡
𝐷𝐸𝑆𝐷 represents the discharging rate of the DESD at time interval t. (15d) 

represents the state of energy of the DESD, which is dependent on the previous SOE, the charging 

efficiency, 𝜂𝐶𝐷, and the charging power deducted from the discharged power at a time interval t. 

(15e) makes the SOE at the first interval equal to the initial state of energy, 𝑆𝑂𝐸𝐷𝐸𝑆𝐷,𝐼𝑁𝐼. Equations 

(15f) and (15g) constrain the SOE of the DESD to not exceed a maximum 𝑆𝑂𝐸𝐷𝐸𝑆𝐷,𝑀𝐴𝑋and not go 

below a minimum 𝑆𝑂𝐸𝐷𝐸𝑆𝐷,𝑀𝐼𝑁 respectively. 

2.4.6. PHEV operation constraints 

, , , , t    ,used PHEV s PHEV DIS PHEV a d

t t t DPP P P T T                                                                                                        (16a) 

, t  ,CH PHEV PHEV PHEV a d

t t tP CR s T T                                                                                                                                   (16b) 

 , 1 , t   ,DIS PHEV PHEV PHEV a d

t t tP DR s T T                                                                                                                     (16c) 

, ,

1 , t ,       PHEV PHEV CH PHEV DIS PHEV a d

t t t CP t DPSOE SOE P P T T                                                                                         (16d) 

,
a

PHEV PHEV INI

T
SOE SOE                                                                                                                                                    (16e) 

, , ,PHEV PHEV MAX
t

a d
t tSO E TSO TE                                                                                                                             (16f) 

, , ,PHEV PHEV MIN
t

a d
t tSO E TSO TE                                                                                                                              (16g) 

,

,
f c

PHEV PHEV MAX
tSOE SOE

T
                                                                                                                                                (16h) 

The mode of operation of the PHEV is constrained to operate at particular 𝑇𝑎 and 𝑇𝑑, which 

correspond to the arrival and departure time of the PHEV, respectively. Equation (16a) indicates 



 

16 
 

the PHEV can be used to meet the residential green house (RGH) load demand, where 𝑃𝑡
𝑠,𝑃𝐻𝐸𝑉

 

represents the power sold by the PHEV at a time interval t, 𝑃𝑡
𝐷𝐼𝑆,𝑃𝐻𝐸𝑉  represents the discharging 

power, and 𝜂𝐷𝑃represents the discharging efficiency of the PHEV. (16b) helps to limit the charging 

power of the PHEV, where 𝑃𝑡
𝐶𝐻,𝑃𝐻𝐸𝑉

 is the charging power, 𝐶𝑅𝑡
𝑃𝐻𝐸𝑉 is the charging rate, and 𝑠𝑡

𝑃𝐻𝐸𝑉  

is the ON/OFF status of the PHEV. This constraint protects the life cycle of the PHEV. (16c) 

controls the discharging rate of the PHEV, where 𝑃𝑡
𝐷𝐼𝑆,𝑃𝐻𝐸𝑉

 represents the discharging power of 

the PHEV and 𝐷𝑅𝑡
𝑃𝐻𝐸𝑉 represents the discharging rate of the PHEV at time interval t. (16d) 

represents the state of energy of the PHEV, which is dependent on the previous SOE, the charging 

efficiency, 𝜂𝐶𝑃, and the charging power deducted from the discharged power at a time interval t. 

(16e) makes the SOE at arrival time 𝑇𝑎 of the driver equal to the initial 𝑆𝑂𝐸𝑃𝐻𝐸𝑉,𝐼𝑁𝐼. (16f) and 

(16g) constrain the SOE of the EV not to exceed a maximum 𝑆𝑂𝐸𝑃𝐻𝐸𝑉,𝑀𝐴𝑋and not fall below a 

minimum𝑆𝑂𝐸𝑃𝐻𝐸𝑉,𝑀𝐼𝑁, respectively, within 𝑇𝑎 and 𝑇𝑑 of the driver while connected to the bi-

directional smart meter. (16h) indicates the period, 𝑇𝑓,𝑐, in which PHEV must be fully charged. It 

should also be noted that the PHEV constraints won’t be initiated until the arrival time and departure 

time of the driver. 

2.4.7. PV operation constraints 

,, , ,s PV g PVused V

t

P

t tP P P t                                                                                                                                   (17) 

Equation (17) shows that the PV can be used in meeting the RGH load demand, where 𝑃𝑡
𝑔,𝑃𝑉

 

represents the total generation power of the solar panel. 
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2.4.8. Total power injected into the grid 

, , , ,s s PV s DESD s PHEV

t t t tP P P P t                                                                                                          (18) 

Equation (18) shows the total power sold, 𝑃𝑡
𝑠, by the PV, DESD and PHEV respectively. 

2.4.9. Power transaction regulation 

In order to control the amount of power that can be sold and received from the grid, a set of 

constraints was modeled as shown below: 

,1b grid

t tP m s t                                                                                                                                 (19) 

2(1 ),rs g id

t tP m s t                                                                                                                             (20) 

 

Figure 7:Power transaction regulation 

Where 𝑚1 and 𝑚2 show the maximum amount of power that can be received from the grid and the 

maximum amount of power that can be sold to the grid, respectively. These constraints help to keep 

the bi-directional flow of power within the customer preference and at an agreed rate between the 

grid and the consumer. 𝑠𝑡
𝑔𝑟𝑖𝑑

 denotes the ON/OFF status of the grid, which will be 1 if the RGH is 

taking power from the grid, or 0 if the RGH is not taking power from the grid or is in an idle state. 

Figure 7 shows the bidirectional power flow between the house and the grid. 
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2.5. Case Study 

Table 1 shows the power rating of the household appliances. 

Table 1: Parameter values of housing appliances [16] 

 

Device Parameter 

AC Rated power is 1.9kw 

Fridge Rated power is 0.42kw 

Washer Rated power is 0.5kw 

Dryer Rated power is 3.5kw 
 

 

2.5.1. Scenario One 

In order to demonstrate the effect of PHEV and DESD bidirectional flow, which helps to reduce 

the total operating cost, a scenario in which no PV or DESD is initially used consisting only of a 

household  loads, which consists of the fridge, washer and dryer, heater and AC was considered.  A 

1kw solar panel and a 1kw energy storage device (DESD) is used. The driver is assumed to be back 

at 6pm and is willing to charge as soon as the dynamic electricity price is low. A Chevy Volt of 

16kwh [17] is used, which has both a charging and discharging rate of 3.3kwh.  

2.5.2. Scenario Two 

In this scenario, PV, DESD and PHEV bi-directional flow are considered to show the reduction in 

total operating cost for the day. The PV, DESD and PHEV can sell power to the grid, and the DESD 

and PHEV can receive power from the grid to charge their batteries. The same household load was 

considered in the scenario as well. In this scenario, the driver of the car is assumed to arrive at 6pm 

and discharge first, charging later when the electricity price is low. The next section discusses the 

results of the simulation of the two scenarios. 
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2.6. Simulation Result 

After running the simulation, the total operating cost of the RGH for the day was $4.98 for scenario 

I and $ 4.09 for the scenario II, which shows a difference of $0.89. Table 2 shows the unit 

commitment for the washer, dryer, air conditioner and fridge, also Figure 8 shows the power 

demand of the washer, dryer, AC and fridge, figure 9 shows the graphical chart showing  Pch_esd, 

Pused_esd and Psold_esd, figure 10 shows  charging power of the PHEV, power transferred by the 

PHEV to the house and power sold by the PHEV to the grid for the second scenario. Figure 11 

shows the state of energy of the PHEV for the two scenarios. It can be seen in Figure 11 that in 

scenario I, the PHEV kept charging despite the high dynamic electricity price, while in scenario II, 

the PHEV discharged some of its energy to meet the household load before later charging when the 

dynamic price was low. This factor contributed to the total operating cost of Scenario I. 

Furthermore, Figure 12 shows the total power bought by the RGH for the two scenarios. It can be 

seen from the figure that more power was bought from the grid in scenario I during the peak period 

than in Scenario II, in which the combination of the bidirectional flow of the DESD and PHEV with 

the PV helped to reduce the amount of power bought from the grid. Table 3 shows the total cost of 

operating the RGH for a 24-hr interval. It can be seen that it costs less to operate the RGH when 

taking advantage of the effect of bidirectional ESD and PHEV. 
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Table 2: Unit of residential loads 

Time(Hrs) wdS   wdS   frS  

1 0 0 0 
2 0 1 1 
3 0 1 0 
4 0 0 0 
5 0 1 0 
6 0 0 1 
7 0 0 0 
8 0 1 0 
9 0 0 1 
10 0 0 0 
11 0 1 0 
12 0 0 1 
13 0 1 0 
14 0 0 1 
15 0 1 0 
16 0 0 1 
17 0 1 0 
18 0 1 0 
19 0 1 1 
20 0 0 0 
21 0 1 1 
22 1 1 0 
23 1 0 0 
24 0 1 1 

 

 

Figure 8: Power demand of selected residential loads for the two scenarios 
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Figure 9: Graphical chart showing  Pch_esd, Pused_esd and Psold_esd 

 

 

Figure 10: Graphical chart showing the Pch_ev, Pused_ev and Psold_ev 
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Figure 11:State of energy of the PHEV in the two scenarios. 

 

 

Figure 12: Power bought from the grid in the two scenarios. 

 

       Table 3: Total cost of daily operation 

No PV, DESD PV, DESD and PHEV bidirectional flow 

$4.98 $ 4.09 
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3. CHAPTER 3: ENERGY MANAGEMENT IN A NETWORKED 

RESIDENTIAL GREEN HOUSE 

3.1. Introduction  

Nanogrids are miniature of microgrids, whose main purpose is to serve a single building or other 

single load [18]. The high operating cost of managing a nanogird has led to increasing interest in 

how the total operating cost can be minimized. In [19], the author presents the direct current (DC) 

bus signaling as a means of generator scheduling and power sharing in a nanogrid under steady 

state conditions. In [20], the author compares the performance and power sharing in a dual 

nanogrid 48V: 380V, which is interconnected by an interlink converter using average droop and a 

constant ratio. In [21] the authors propose a bidirectional dc-dc converter and a network controller 

for power exchange in an interconnected nanogrid but fail to analyze the impact of basic 

dispatchable residential loads. In [22], the authors present an intelligent home energy management 

system considering residential loads but do not take an interconnected nanogrid into account. In 

[23]the author developed an energy management system(EMS) that provide uninterrupted power 

supply to the DC load which achieve self-sufficiency by minimizing grid power consumption using 

a two-stage bidirectional converter interface, In [24] the design and implementation of an 

appliance for operation in a DC-based nanogrid is analyzed.
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3.2. Interconnected Nanogrid 

Interconnected nanogrids are a set of nanogrids that are connected to each other. They have the 

ability to transfer power amongst themselves, as well as with the grid to meet each other

 household’s power demand and to reduce their overall operating cost. Figure 10 shows the 

envisioned interconnected nanogrid framework.  

 

Figure 13:Envisioned architecture of a future interconnected nanogrid system 

 

3.2.1. Why Interconnected Nanogrid? 

Interconnected nanogrid is proposed because it gives more helps to further reduce carbon emission, 

reduce peak load demand while considering customer preferences. 

3.3. Problem formulation 

The objective function is to minimize the total operating cost of the interconnected nanogrid of a  
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future residential house. The objective function is as follows: 

IN

24

24

G
1

18

Cost     ( ) ( ) ) ( ( ) ( )( ) ) ( ( ) ( ) ) (1)

( ( ) ( ) )

grid,i grid,i

ch disb
i DESD,i DESD,i DESD,i DESD,i

ch dis

PHEV,i

N
b s s s

i i
it

t
PHEV,i PHEV,i PHEV,i

t t t t P PP Pr P Pr+ t t D + t DC

t tP+ DP D





     

     

i=1, 2…N 

i: index of nanogrid 

N: Number of interconnected nanogrids 

For the scope of this work, N=2, which means two nanogrids are connected together. 

Equation (1) shows the total operating cost for i nanogrids, in which some of the nanogrids have 

renewable energy sources (RES). Such nanogrids have the capability of using the energy from the 

RES such as a plug-in-electric vehicle (PHEV), distributed energy storage device (DESD) or 

photovoltaic (PV), to meet the load in its house. They can also sell this energy to either the utility 

or other nanogrids that need power to meet their household loads.CostING represents the total 

operating cost for i nanogrids. 𝑃𝑔𝑟𝑖𝑑,𝑖 
𝑏  is the power bought from the grid by ith nanogrid, while 

𝑃𝑟𝑔𝑟𝑖𝑑,𝑖
𝑠 ($/kWh) is the dynamic electricity price, which is often a day ahead price. 𝐶𝑖

𝑏 ($/kW) 

represents the total cost of the power bought from other nanogrids during a time interval, 𝑃𝑖
𝑠 (kW) 

is the total power sold by nanogrids i to the grid or other nanogrids  and,   𝑃𝑟𝑖
𝑠 ( $/kWh) is the 

selling price of ith  nanogrid to the grid or to other nanogrids. 𝑃𝐷𝐸𝑆𝐷,𝑖
𝑐ℎ  and  𝑃𝐷𝐸𝑆𝐷,𝑖

𝑑𝑖𝑠  represent the 

charging and discharging power respectively of the DESD, while    𝐷𝐷𝐸𝑆𝐷,𝑖($/kWh) represents the 

degradation cost that is associated with the discharging and charging of the DESD.  𝑃𝑃𝐻𝐸𝑉,𝑖
𝑐ℎ  and 

𝑃𝑃𝐻𝐸𝑉,𝑖
𝑑𝑖𝑠  represent the charging and discharging power, respectively of the PHEV and 𝐷𝑃𝐻𝐸𝑉,𝑖 
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represents the degradation cost that is associated with the discharging and charging of the PHEV. 

Figure 14 shows the energy transfer algorithm. 

                                  

 

Buy power from available cheaper 

nanogrid

Yes

Run intelligent system controller

Start

End

Obtain 
, ,, ,, ,

grid,i

CH PHEV CH DESD s sRGH
i i ii P PrP P Pr

grid,i

s s
iPr Pr No

Buy power from the grid

 

Figure 14: Energy transfer Algorithm 

3.4. Case Study 

Three basic scenarios were studied to illustrate the advantage of these proposed method, basic 

loads similar to the previous proposed method. 

3.4.1. Scenario I (Interconnected Nanogrids) 

In this scenario the two nanogrids are interconnected such that  nanogrid #1 does not have any RES 

that it can use to meet its household demand or have the ability to sell its excess energy to the grid 

or nanogrid #2, on other hand, nanogrid #2 does have RESs, which include as  PV, PHEV and 

DESD this gives nanogrid #2 the ability to sell its excess energy to the grid or to meet its household 

demand or to transfer it to nanogrid #1 if it needs it,  at a  flat rate of 13cents/Kwh Moreover, both 
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households have the same type of household appliances, as discussed earlier but with different 

power ratings. As mentioned previously, nanogrid #2 has a 1 kW PV and a 1kW DESD as well. 

The driver of nanogrid #2’s PHEV is assumed to be back at 6pm and is willing to charge as soon 

as the dynamic electricity price is low. A Chevy Volt of 16kwh is used, which has both a charging 

and discharging rate of 3.3kwh, Figure 15 shows the illustrative view of scenario I, while Figure 16 

and Figure 17  shows the power demand of the washer, dryer, AC and the fridge for a period of 24 

hrs respectively. Power bought from the grid by these two nanogrids is as shown in Figure 12. 

Which shows both nanogrids were able to buy less power from the grid during the peak period 

which is a major factor that constitute to high operating cost. 

 

Figure 15: Illustrative view of scenario I 
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Figure 16: Power demand of selected residential loads for nanogrid I 

 

 

Figure 17: Power demand of selected residential loads for nanogrid II 
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Figure 18: Power bought from the grid by Nanogrid 1& 2 (1st scenario) 

 

3.4.2. Scenario II (Disconnected Nanogrids) 

In this scenario, the nanogrids are not connected to each other, though nanogrid #2 still has a 

bidirectional flow ability, meaning it can utilize energy from its RES to meet its household load 

demand and it then sells excess energy to the grid. It should be noted however, that nanogrid #1 

does not have bidirectional flow ability it relies only on the grid for its power to meet its load 

demand. The same basic household setup is used in this scenario as well. In addition, in this case, 

the driver of the PHEV of nanogrid #1 is assumed to arrive at 6pm and charges when the dynamic 

price is low, the driver of the PHEV of nanogrid #2 is assumed to arrive at 6pm as well, but it 

discharges first and charges later when the electricity price is low, Figure 17 shows the illustrative 

view of scenario I.  Power bought from the grid by these two nanogrids is as shown in Figure 18, 
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which shows also that both nanogrids bought less power during the peak load, however nanogrid 1 

had to buy more power from the grid during this peak period. 

 

Figure 19:  Illustrative view of scenario II 

 

 

Figure 20: Power bought from the grid by Nanogrid 1&2 (2nd Scenario) 
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3.4.3. Scenario III (Disconnected Nanogrids-NO RES) 

    In this scenario, the two nanogrids have no RES and they can only draw power from the grid. 

These nanogrids bought more power from the grid during the peak and off peak which constitute 

to their high operating cost, Figure 19 shows the illustrative view of scenario III.  Figure 20 shows 

the power bought by the nanogrids. 

 

Figure 21: Illustrative view of scenario III 

 

 

Figure 22: Power bought from the grid by Nanogrid 1&2 (3nd Scenario) 
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3.5. Result Discussion 

The formulation of the objective function and the system constraints was implemented in MATLAB 

and solved using Gurobi optimization solver. All the simulations were run on a computer with an 

Intel core i7-4790 CPU@ 3.60GHz with a 16.00 GB memory. It took 0.03secs for Gurobi to solve 

the simulation. 

After running the simulation for the three scenarios, the total operating cost for the day of the 

nanogrids in scenario I is $7.4788, $7.5168 in scenario II, $8.8963 in scenario III. The simulation 

result of scenario I shows that interconnected nanogrids have the lowest cost, while scenario III 

suffers the highest operating cost as shown in Table 4.

Table 4: Total cost of daily operation 

Scenario I Scenario II Scenario III 

$7.48 $7.52 $8.89 
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4. CHAPTER 4: CONCLUSION AND FUTURE WORK 

4.1. Conclusion 

This research work introduces intelligent energy management system in a single residential building 

in which renewable energy sources, distributed renewable generation and distributed energy storage 

system are integrated to an intelligent controllers which help in switching the residential loads ON 

and OFF based on operating constraints of each devices in order to reduce the total operating cost.  

Moreover, Interconnected Residential Greenhouse is proposed to further reduce the peak demand, 

carbon emission and the total operating cost of connected houses. The ability of the nanogrid to 

receive power from neighboring nanogrid gives it opportunity not to depend on the grid for energy 

during the peak period. 

This work serves as a base which can be extended to several research areas, some of the future work 

is the modelling of other residential loads such as water heater, humidifier, stove, lightning and 

other base loads in a typical residential house while considering variable customer preferences 

which can result in efficient energy management in the residential house. Also the PHEV total 

operating cost can be further analyzed beyond the 18:00PM to 24:00PM by analyzing the total 

operating cost for the 24 hours by considering the total amount of gas used and total cost of charging 

in other charging station apart from the driver residential house.
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