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Abstract 
Background: Robotic-assisted surgery allows surgeons to perform many types of complex operations 
with greater precision than is possible with conventional surgery. Despite these advantages, in current 
systems, surgeon should communicate with the device directly and manually. To allow robot adjust 
parameters such as camera position, the system needs to know what task the surgeon is performing 
automatically. 

Methods: We developed a distance-based time series classification framework, which measures 
dynamic time warping distance between temporal trajectory data of robot arms and classifies surgical 
tasks and gestures using k-nearest neighbor algorithm.  

Results: Our result on real robotic surgery data shows that the proposed framework outperformed the 
state-of-the-art methods by up to 9% across 3 tasks and 8% across gestures.  

Conclusion: The proposed framework is robust and accurate. Therefore, it can be used to develop 
adaptive control systems that will be more responsive to surgeons’ needs by identifying next 
movements of the surgeon. 

 

Keywords: Task and gesture recognition, Robotic surgery, Automatic camera control, Time series 
classification, Dynamic time warping, k-nearest neighbor, Distance-based classification 
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1 Introduction 
Surgery is continuously subject to technological innovations including the introduction of robotic 
surgical devices (1). Advances in robotic minimally invasive surgery (RMIS) have the potential to improve 
patient outcomes by shorter hospital stays, quicker recovery time and less chance of infection (2). The 
ultimate goal of RMIS is to program the surgical robot to perform certain difficult or complex surgery in 
an autonomous manner. However, there is no technical roadmap to a fully autonomous surgical system 
at the present time (3,4). Current RMIS systems operate in a master-slave mode, relying  exclusively on 
direct surgeon input (5). For example, camera controlling in current RMIS platforms is an additional task 
under direct control of the surgeon. In the current FDA-approved system, da Vinci surgical platform 
(Intuitive Surgical, Sunnyvale, CA, USA) (6), many interface parameters are set once and remain at the 
same level throughout the operation while different surgical tasks and motions may require different 
camera behaviors (4). For instance, (4) has shown that the wide view is desirable for the looping phase 
while the view should be tight when grabbing the free end of the suture in the knot tying task. Hence, 
the surgeon must stop the procedure to move the camera or change the zooming level. This can distract 
the surgeon from the smooth flow of the operation, and certainly adds time to the procedure. 
Therefore, to reduce the workload and improve the surgeon’s field of view, an automatic camera 
control system is desired. 

It is, however, quite clear that to develop any automatic control system, a more detailed comprehension 
of the surgical procedures is needed (7). In one hand, the feasibility of current robotic surgery systems 
to record quantitative motion and video data motivates the development of descriptive mathematical 
models to recognize and analyze surgical tasks. On the other hand, recent advances in machine learning 
research for uncovering concealed patterns in huge data sets, like kinematic and video data, offer a 
possibility to better understand surgical procedures from a system point of view. Surgical tasks and at a 
more granular level, surgical gestures need to be quantified to make them amenable for further study in 
autonomous surgical system (8).  

To answer this query, we develop a distance-based time series classification method by integrating 
Dynamic Time Warping (DTW) (9) distance measure with k-Nearest Neighbor (kNN) classification 
method (10) to recognize and classify surgical tasks and gestures. Figure 1 summarized the proposed 
classification framework. We evaluate the performance of our proposed method on real robotic surgery 
data where we focus on three important RMIS tasks: knot tying, needle passing and suturing, which are 
all part of a fundamentals of laparoscopic surgery (FLS) skills training program (11). Results show that 
DTW-kNN framework is fast, accurate and robust, all of which makes it applicable for any adaptive 
control system in robotic surgery. 

The rest of the paper is organized as follows. In section 2, we offer background knowledge and related 
works in two domains: surgical task and gesture recognition techniques and time series classification 
methods. In section 3, we explain the experimental data and introduce our DTW-kNN framework. The 
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results are provided and discussed in section 4 and 5. Finally, we conclude the paper and discuss future 
work in section 6. 

2 Background 
In recent years, understanding  and recognizing surgical procedures at different levels of granularity has 
been a focus of research (12–14). Surgical procedures can be generally broken down to four main levels, 
from higher to lower: phases, steps, tasks and gestures (motions) (7). At the higher level, statistical 
models have been proposed using recorded force and motion data (15), surgical tools usage  (16) and 
video data (17) to classify surgical phases. At a more granular level, effort has been applied to identify 
and classify surgical gestures based on kinematic and video data using techniques such as Linear 
Discriminant Analysis (LDA) (18,19), Linear Dynamic Systems (LDS) (20,21), hidden Markov models 
(HMM) (22–25) and extensions of HMM (26,27). These techniques are categorized as feature-based 
time series classification methods (28) where the important features need to be extracted from 
temporal sequence of surgical tasks using techniques such as Fourier transformation (22,25). Therefore, 
performance of feature-based methods highly depends on the quality of extracted features. Despite the 
fact that these methods have the ability to find the underlying structure of RMIS tasks, they suffer from 
common drawbacks. They are time consuming, require significant human interaction and preprocessing, 
and lack robustness due to the requirements of parameter estimation and tuning for high dimensional 
data (27). These make them impractical for automatic control system in robotic surgery where a robust, 
fast and accurate classifying method is needed. 

In this paper, we address these challenges by developing distance-based (also known as shape-based) 
time series classification framework (29). The proposed method does not need any hand-crafted 
features, instead it works directly on raw kinematic data captured from tool tip position during robotic 
surgery. The well-known distance-based classifier is k-Nearest Neighbors (kNN) algorithm (10) which has 
been empirically proven to be very accurate, efficient and difficult to beat in time series classification 
domain (28,30). For this purpose, distance between two temporal sequences needs to be carefully 
defined to reflect the similarity of data. Among many distance measurement techniques (30), Dynamic 
Time Warping (DTW) (9) is the most popular for time series data. It has been shown to be the best 
similarity measurement in many domains (30–33). Contrary to Euclidean method, where the point to 
point distance between two sequences is calculated (34), DTW can align time series with different 
length and distortion to measure distance accurately. Thus, the combination of kNN and DTW could 
result in a robust classification framework with high accuracy and minimum data preprocessing, all of 
which make the applicable of proposed framework feasible for any adaptive control system, such as 
camera, in robotic surgery.  
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3 Materials and Methods 
We apply our proposed method on real robotic surgical data presented in (35). The data comprise of 
eight surgeons who performed around five trials of different surgical tasks (Figure 2). For each trails, we 
analyze temporal kinematic data captured using the API of the da Vinci at 30 Hz. Data consist of 19 
features for each left and right patient side robotic arms (38 features in total): 3 Cartesian positions, a 
rotation matrix consist of 9 variables, 3 linear velocities, 3 angular velocities and a gripper angle. For task 
classification, we only use Cartesian position data (x, y, z) of both hands (6 variables) while for surgical 
gestures recognition, which is more challenging compared to task recognition, all 38 variables are used. 
The start and end time for each gesture is also provided in the dataset. Table 1 lists gestures and their 
descriptions for all the three tasks (35). It is worth mentioning that although from Table 1, gesture labels 
are same across suturing and needle passing, but actual gesture content at the atomic sub-task level 
varies by task context. As an example, “pushing needle through tissue” in suturing means passing needle 
through a hole in a suture box from up to down while this gesture in needle passing means passing 
needle through a metal hole from left  to right (see Figure 2). 

Focus of this paper is to classify robotic surgery task and gesture based on pre-labeled kinematic data. 
The proposed classification framework consists of two key components: 1) measuring similarity between 
different surgical tasks and gesture and 2) classification based on the k-nearest neighbor algorithm (see 
Figure 1). In the following sections, each component will be discussed in detail.  

3.1 Surgical Task Similarity Measure 
The choice of method for measuring (dis)similarity is a critical step in achieving valid classification results 
and in the context of time series data, different similarity measure have been developed (30). Our 
framework is based on similarity of the overall shape of two temporal sequences by directly comparing 
their individual point values (36). To have a meaningful comparison, each temporal sequence of surgical 
task needs to be normalized to have a mean of zero and a standard deviation of one.  

One of the simplest ways to measure similarity between two sequences is the Euclidean distance (34). 
However, despite the simplicity and efficiency of this method, which makes it the most popular distance 
measure, it requires both input sequences to have the same length. In addition, Euclidean distance is 
sensitive to distortions, e.g. shifting, noise, and outliers. If, for instance, two time series are similar, 
however slightly out of phase with one another, then the Euclidean distance will give an extremely poor 
similarity measure (see Figure 3). In order to handle this problem, warping distances such as Dynamic 
Time Warping (DTW) have been proposed to search for the best alignment between two time series (9). 
Figure 3 shows an intuitive representation of DTW versus Euclidean distance. From the figure, point 𝑖 
from time series A is aligned to the same point in time series B in Euclidean distance measurement. 
While for DTW, a nonlinear alignment of these two time series produce a more intuitive similarity 
measure, where point 𝑖 is aligned to point 𝑖 + 1.  
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Consider two time series 𝑨 = 〈𝒂𝟏×𝒎, … ,𝒂𝒊×𝒎, … ,𝒂𝒑×𝒎〉 and 𝑩 = 〈𝒃𝟏×𝒎, … ,𝒃𝒊×𝒎, … ,𝒃𝒒×𝒎〉  with 
𝑝 ×𝑚 and 𝑞 × 𝑚 dimension respectively where 𝑝 and 𝑞 refer to length of sequences and 𝑚 represent 
the number of features. Two sequences can be arranged as 𝑝 × 𝑞 matrix of the sides of a grid in which 
the distance between every possible combination of time instances 𝒂𝒊 and 𝒃𝒋 is stored (Figure 4). To find 
the best match between two sequences, a path through the grid that minimizes the overall distance is 
needed. This path can be efficiently found using dynamic programming (9) as follows 

𝑑�𝒂𝒊,𝒃𝒋� = 𝑑𝐸𝑈𝐶(𝒂𝒊,𝒃𝒋) +𝑚𝑖𝑛 �
𝑑�𝒂𝒊−𝟏,𝒃𝒋�    
𝑑�𝒂𝒊,𝒃𝒋−𝟏�    
𝑑�𝒂𝒊−𝟏,𝒃𝒋−𝟏�

             (1) 

where 𝑑𝐸𝑈𝐶(𝒂𝒊,𝒃𝒋) is the Euclidean distance between 𝑖𝑡ℎ point of sequence 𝐴 and 𝑗𝑡ℎ point of sequence 
𝐵 which can be calculated as 

𝑑𝐸𝑈𝐶(𝒂𝒊,𝒃𝒋) = ���𝑎𝑖,𝑙 − 𝑏𝑗,𝑙�
2

𝑚

𝑙=1

                                     (2) 

Therefore overall Dynamic Time Warping distance between two sequences is  

𝐷𝑇𝑊(𝑨,𝑩) = 𝑑�𝒂𝒑,𝒃𝒒�                                                        (3) 

DTW has been shown to be an appropriate choice for time series classification problem with high 
dimensions (32), hence, it can be used for real-time surgical task and gesture recognition.  

3.2 Surgical Tasks Classification 
After measuring distance between each pair of sequence in dataset, the subsequent step is classification 
based on their distance. We use one of the most common distance-based classification method called k-
nearest neighbors in our framework. kNN is a non-parametric method, which means it does not make 
any assumptions on the underlying data distribution.  Additionally, kNN does not have explicit training 
phase or in other words, it has low training burden (lazy learner). During the classification phase, the 
majority vote of the k closest distance neighbors for each point is computed. Then, the label for the 
query point is assigned based on the most representatives within the nearest neighbors of the point. 
Figure 5 illustrates the kNN algorithm for k=5.  

For kNN, the only parameter that needs to be provided is k. In general, a small value of k means that any 
noise present with the data will have an influence on the result; however, a large value for k lets the 
samples of the other classes get included in the neighborhood of test data, resulting in poor 
classification and high computational expenses. In order to find the best value for k, we try different 
values in range of 1 to 10 and the best classification accuracy report in result section. The balance of 
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simplicity on one hand and accuracy on the other hand make the kNN to be the best candidate for our 
time series RMIS task and gesture classification framework.  

3.3 Performance Evaluation 
The accuracy of the proposed DTW-kNN framework compared to different state-of-the-art methods. To 
classify surgical task followed by (25), we applied HMM on features extracted from a short time Fourier 
transform of the Cartesian position variable of both hands in the kinematic data. For surgical gesture 
recognition we compared the performance of the proposed DTW-kNN framework with sparse hidden 
Markov Model (27) and Linear Dynamic System (21). The result of our proposed classification framework 
is directly comparable with these state-of-the-art methods since we both applied same dataset as 
explained in (35). 

We used two model validation schema suggested by (35). The first is leave-one-super-trial-out (LOSO), 
where one trial for each of the surgeons is left out for testing. The second is leave-one-user-out (LOUO), 
where we leave all the trials from one surgeon out for testing. While the first evaluates the robustness 
of a method across repeating tasks by leaving out one trial for all surgeons, the second schema 
evaluates the robustness of a method when a surgeon was not previously seen in the training data. The 
performance of the different task recognition methods was determined by mean over all iteration 
classification accuracy, which expressed in terms of percentage of subjects in the test set that are 
classified correctly.  

4 Results  
The performance evaluation of the proposed framework will be presented in this section.  

4.1 Surgical Task Recognition 
For the three RMIS tasks, suturing, needle passing and knot tying, the DTW measures the pairwise 
distance between three Cartesian position of tool tips of patient side arm of robot for both right and left 
hands. Then, kNN classification method was applied to recognize different tasks based on the DTW 
distance measurement. We test different value for k and our preliminary results shows that the accuracy 
of proposed model is robust to the values of k in the range between 3 to 7 and we report the result 
achieved for k=5. The performance of the DTW-kNN framework for each task is compared to HMM in 
Table 2. The results show that the proposed method outperformed HMM by 6% in average across the 
three tasks. It also shows that for LOSO, 100% of suturing, 89.3% of needle passing and 97.2% of knot 
tying are correctly classified. For LOUO validation schema, the correctly classified suturing is 87.6%, 
needle passing is 85.7% and knot tying is 95.8%.  

4.2 Real-time Task Classification 
To check whether the proposed method has the potential to be used for real-time task recognition, we 
ran an experiment where the complete temporal sequence of the task was not used. Instead, we 
applied our model on the first 𝑥% of the total time series signals for each task and evaluated the 
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performance of the method. Figure 6 shows the result for the two different validation methods. In 
LOSO, having 5% of complete temporal sequence, the model was able to recognize knot tying by 96.2%, 
needle passing by 82.4% and suturing by 86.1% accuracy. In addition, for LOUO we need longer 
temporal sequence to be able to recognize these tasks with same accuracy as we get at 5% in LOSO.  

4.3 Surgical Gesture Recognition 
We also applied DTW-kNN method on more granular level to recognize surgical gestures for each task 
separately. Different value for k are tested and the best accuracy achieved for k=5 while the result is 
robust to the value for k in range of 3 to 9. In Table 3, we compared the results of sparse Hidden Markov 
Model (SHMM), Linear Dynamic System (LDS) as presented in (21) and proposed DTW-kNN for each task 
using LOSO and LOUO model validation. We should note that the standard deviation is only provided for 
the proposed DTW-kNN since no value is reported for the other two methods in (21). From Table 3 our 
proposed method the results show that DTW-kNN method outperformed other state-of-the-art models. 
It can recognize gestures in suturing with 86.9%, needle passing with 79.9% and knot tying with 88.3% 
accuracy for LOSO. On the other hand, for LOUO the accuracy degraded to 80.4%, 70.1% and 85.1% for 
suturing, needle passing and knot tying respectively. Figure 7 summarizes the detail performance of 
DTW-kNN framework for each gesture. For example in LOSO, gesture G2 (positioning needle) is 
recognized with 90.1% accuracy for suturing and 79.2% accuracy for needle passing.    

5 Discussion 
From the results, we observe that classification accuracy decrease when switching from LOSO validation 
schema to LOUO. The LOUO results provide an insight into the generalizability of the algorithms to 
recognize task performed by surgeon that were unseen during the training phase. Table 2 shows that 
knot tying has less degradation (around 3%) when switching from LOSO to LOUO compared to needle 
passing and suturing which drop around 10%. The simplest explanation is that knot tying is very 
different compared to two other tasks and therefore, it can be easily recognized, regardless of the 
amount of variability that exists between surgeons. However, such a difference among tasks can also 
suggest that surgeons possibly perform knot tying in a more similar way while suturing and needle 
passing are performed differently. The higher performance of LOSO compared to LOUO also indicates 
that a short calibration procedure could be conducted when the surgeon starts using the system for the 
first time, and this might improve the ability of the algorithm to detect the correct task. It is worth 
mentioning that from Table 3, DTW-kNN outperformed the state-of-the-art methods by 2% in average 
across 12 gestures for LOSO and 7% for LOUO, which shows that our proposed method is more robust 
compared to them. 

Another interesting thing to remark upon is the potential of the proposed model to be used for real-
time task recognition. For example, for knot tying, having only 5% of complete temporal sequence, the 
model was able to recognize the task by 96.2% accuracy. In the dataset, the average time for knot tying, 
needle passing and suturing are 57, 110 and 120 seconds respectively, which means that almost all of 
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the task can be recognize with high accuracy within first 8 seconds. Additionally, from Figure 6, for  
LOUO validation schema more data is needed to have highly accurate task recognition but this issue can 
be resolve by increasing training data to include more users with different skill levels and variability. 
Results also imply that to classify task accurately we do not need to have the complete time series 
trajectory data. This suggests the potential of incorporating the proposed method in real-time camera 
control. For example, when the surgeon starts suturing, algorithm can recognize it in the first 8 seconds 
with 96% accuracy. Then, the camera can automatically switch to the predefined mode for this task 
which has been defined based on the best possible schema such as position of the camera or zooming 
level (4). 

We also implement our proposed method at more granular level to classify surgical gestures. From 
Figure 7, it can be observed that some gestures such as G3 (pushing needle through tissue), G4 
(transferring needle from left to right) or G6 (pulling suture with left hand) can be recognized with high 
accuracy while G8 (orienting needle) has the lowest. One possibility is that in general, G8 is a redundant 
gesture and it is not part of a whole suturing or needle passing. For example, when surgeon is not able 
to finish a gesture such as pushing needle in to the tissue, (s)he may need to orient needle and starts the 
gesture again. Therefore, it is difficult for the model to recognize it correctly because it is like an 
anomaly gesture.  

It is worth noting that the proposed DTW-kNN framework is fast compared to HMM and LDS approaches 
because it builds a classifier directly using raw kinematic trajectory data with minimal preprocessing. 
The time required to calculate the DTW distance is few minutes and the classification phase takes only 
few milliseconds. This stands in bold contrast with the current state-of-the-art surgical task and gesture 
recognition algorithms, which need few hours processing video and kinematic data to build a model as 
accurate as our proposed framework (21). 

6 Conclusion and Future Work 
In this paper, we proposed a task and gesture recognition framework, namely DTW-kNN, which is based 
on dynamic time warping distance measure of motion trajectory data obtained from the API of the da 
Vinci and k-nearest neighbor classification method. The proposed framework outperformed other state-
of-the-art methods by 4% to 9% across the 3 surgical tasks and 2% to 8% across the 12 gestures. We also 
showed that the combination of these two algorithms turns out to be robust, accurate and fast. These 
characteristics are a key advantage of our proposed approach compared to the state-of-the-art methods 
in the area of surgical gesture recognition. One of the potential applications of such a framework is for 
autonomous control system. For example, to have an automatic camera control we need to know what 
the surgeon is doing in order to predict the next movement and adjust the camera mode based on that. 
This cannot be achieved unless we have a good understanding of surgical procedures at a different level 
of granularity. The task recognition framework presented in this paper, can lay the groundwork towards 
development of autonomous surgical robot behaviors. However, more analysis need to be done to 
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evaluate the performance of the proposed method in real robotic surgery. Therefore, our next step is to 
implement the DTW-kNN algorithm on da Vinci to recognize task and adjust the camera automatically.  

Future work will focus on generalizability aspect of the task and gesture recognition model by 
implementing the proposed framework on larger dataset consisting of different surgical tasks and more 
users with different skill level. Additionally, other time series distance measure such as longest common 
subsequence (LCSS) (37) and classification methods such as linear dynamic systems (LDS) can be applied 
to potentially improve the accuracy of gesture recognition results. It is worth mentioning that in this 
paper we used kinematic data to classify surgical gestures based on manually annotated data. 
Therefore, the proposed method relies on predefined gestures that are given by expert surgeons. One 
interesting research direction of this work is recognition of surgical gestures when no predefined labels 
are provided (38). Though motivated by application in automatous RMIS control system, the proposed 
algorithm is also applicable to various other domains such as robotic surgical skill assessment and 
training where real-time feedback to surgeons about their performance always has a high importance.  
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Figure 1: Proposed framework consists of two steps: similarity measurement between temporal 
sequence of surgical task and classification using k-nearest neighbor method. 
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Figure 2: Snapshot for the three fundamental RMIS tasks (35). 
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Figure 3: Comparison between Euclidean distance and DTW of X-axis da Vinci tool tip position for two 
time series sample data. 
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Figure 4: Illustrative example for temporal sequence alignment using DTW. 
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Figure 5: Illustrative example for 5-NN classification. Consider a training set consists of two classes (A red 
dots and B blue dots) with four instances apiece. Suppose we want to classify an unlabeled observation, 
indicated by the green star. The class for new data can be assigned by a majority vote of the k nearest 
neighbors based on their distance to the green star. For the case k=5 (dashed circle line), three neighbor 
is of Class A and two are of Class B, so we classify the unlabeled observation as a member of A. 
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Figure 6: Accuracy of task recognition based on different percentage of total temporal sequence of task 
for LOSO and LOUO model validation. 
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Figure 7: Classification accuracy for each surgical gesture using DTW-kNN using LOSO and LOUO model 
validation. 
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Table 1: Gesture description for suturing, needle passing and knot tying. 

Index Gesture Description Suturing Needle Passing Knot Tying 
G1 Reaching for needle with right hand    
G2 Positioning needle   

 
G3 Pushing needle through tissue   

 
G4 Transferring needle from left to right   

 
G5 Moving to center with needle in grip   

 
G6 Pulling suture with left hand   

 
G8 Orienting needle   

 
G11 Dropping suture at end and moving to end points    
G12 Reaching for needle with left hand 

  
 

G13 Making C loop around right hand 
  

 
G14 Reaching for suture with right hand 

  
 

G15 Pulling suture with both hands 
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Table 2:  Comparison between classification accuracy for each task using HMM and proposed DTW-kNN 
for LOSO and LOUO model validation (with the standard deviation). The best classification performance 
is highlighted in bold.  

  LOSO  LOUO 

  HMM DTW-kNN HMM DTW-kNN 

Suturing 96.4% ± 4% 100% ± 0% 80.7% ± 14% 87.6% ± 11% 
Needle passing 83.5% ± 8% 89.3% ± 7% 80.8% ± 12% 85.7% ± 9% 
Knot tying 97.3% ± 3% 97.2% ± 3% 90.9% ± 9% 95.8% ± 8% 
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Table 3:  Comparison between accuracy of surgical gesture classification results of SHMM, LDS and 
proposed DTW-kNN (with the standard deviation) for each task using LOSO and LOUO model validation. 
The best classification performance is highlighted in bold. 

  LOSO LOUO 
  SHMM LDS DTW-kNN SHMM LDS DTW-kNN 

Suturing 79.40% 87.30% 86.9% ± 3% 60.80% 74.60% 80.4% ± 6% 
Needle passing 76.40% 78.80% 79.9% ± 4% 45.30% 67.30% 70.1% ± 8% 
Knot tying 86.80% 85.10% 88.3% ± 2% 72.00% 78.90% 85.1% ± 3% 
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