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Abstract 

 Plasmodium falciparum lipoate protein ligase 1 (PfLipL1) is an ATP-dependent ligase 

that belongs to the biotin/lipoate A/B protein ligase family (PFAM PF03099). PfLipL1 is the 

only known canonical lipoate ligase in Pf and functions as a redox switch between two 

lipoylation routes in the parasite mitochondrion. Here, we report the crystal structure of a 

deletion construct of PfLipL1 (PfLipL1∆243-279) bound to lipoate, and validate the lipoylation 

activity of this construct in both an in vitro lipoylation assay and a cell based lipoylation assay. 
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This characterization represents the first step in understanding the redox dependence of the 

lipoylation mechanism in malaria parasites. 

 

Introduction 

 In humans, malaria is caused by five species of Apicomplexan parasites of which P. 

falciparum is the deadliest. 1-3 The parasite lifecycle includes a sexual reproductive stage in the 

mosquito vector and two asexual reproductive cycles in the human host, namely the liver stage 

(asymptomatic) and the blood stage (symptomatic). The majority of available drugs target the 

blood stage;4 although, recent findings suggest an increase of drug resistance in certain 

populations of parasites.3,5-7 

 The rise in drug resistance has created a necessity for new viable drug targets for malaria 

treatment. Lipoate metabolism is one such pathway. Lipoate is an organosulfur cofactor for a 

small number of enzymes that are essential for malaria parasite survival.8,9 P. falciparum has two 

distinct organelles that contain independent pathways for lipoate metabolism.8,10 The apicoplast, 

a non-photosynthetic plastid organelle, contains a biosynthetic pathway that is dispensable in the 

blood stage but is essential for progression from the liver to the blood stage.10-12 In contrast to the 

apicoplast, the mitochondrion relies exclusively on lipoate scavenged from the host red blood 

cell and this pathway is essential for both the liver and blood stages.8,12,13 Treatment with lipoate 

analogs, 8-bromooctanoate or 6,8-dichlorooctanoate, results in parasite growth inhibition likely 

due to reduced substrate lipoylation.8,14 

 There are three lipoylated enzymes in the parasite mitochondrion: the E2 component of 

the branched chain a-ketoacid dehydrogenase complex (BCDH, PF3D7_0303700), the E2 

component of the α-ketoglutarate dehydrogenase complex (KDH, PF3D7_1320800), and the H-
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protein of the glycine cleavage system (PF3D7_1132900).9,14,15 The lipoylation of these three 

proteins occurs via a complex mechanism that involves two enzymes, PfLipL1 

(PF3D7_1314600) and PfLipL2 (PF3D7_0923600). PfLipL1 has been shown to be the only 

canonical lipoate ligase and is solely responsible for lipoylation of the H-protein – a reaction that 

only occurs when lipoate is in the oxidized ring form.14 The lipoylation of BDCH and KDH 

requires both PfLipL1 and PfLipL2 as well as fully reduced lipoate (dihydrolipoate).14 Although 

the mechanistic implications of redox dependence in the parasite remain unclear, PfLipL1 is the 

switch that senses the oxidation state of lipoate and determines which downstream enzymes will 

be lipoylated.16 As a first step in understanding of the molecular determinants of lipoylation 

activity and redox sensing in PfLipL1 we determined the structure of lipoate-bound PfLipL1 ∆243-

279. 

Materials and Methods 

Plasmid construction 

 Plasmid pMALcHT-PfLipL114 was mutated to generate pMALcHT-PfLipL1∆259-269, 

pMALcHT-PfLipL1∆254-274, and pMALcHT-PfLipL1∆249-279 using the primers listed in Table S1. 

Mutating the pMALcHT-PfLipL1∆249-279 plasmid using the primers listed in Table S1 then 

generated the plasmid pMALcHT-PfLipL1∆243-279. The pMALcHT plasmid encodes a maltose 

binding protein (MBP) followed by a linker region composed of a tobacco etch virus (TEV) 

protease cut site and a six histidine affinity tag.17
  

Protein expression and purification 

 All constructs were transformed into BL21-Star (DE3) cells (Invitrogen) containing the 

pRIL plasmid isolated from BL21-CodonPlus-RIL cells (Agilent) and plasmid pRK586 encoding 

the Tobacco Etch Virus (TEV) protease as described.17 These cells produce a protein product 
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fused to an amino-terminal hexahistidine tag. 2L of TB media containing ampicillin, kanamycin, 

and chloramphenicol were inoculated with an overnight culture for an initial OD600 of 

approximately 0.1. The cells were grown to mid log phase at 37ºC and then the temperature was 

reduced to 20ºC. Protein expression was induced with 0.4 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG) and the cells were harvested after 10h. Purification was performed 

as described previously for full-length PfLipL1.14 Briefly, PfLipL1 variants were purified by 

immobilized metal ion chromatography followed by cation exchange chromatography and gel 

filtration chromatography. The first two steps of purification were performed on the same day to 

avoid proteolytic cleavage. Purified PfLipL1 mutants were concentrated to approximately 5 

mg·mL-1 and stored at -80ºC. 

Protein crystallization and data collection 

 Lipoyl-PfLipL1∆243-279 complex was prepared by adding 1.2 mol equiv of lipoate and 

excess ATP to 5 mg·mL-1 apo-LipL1∆243-279. Original crystals were obtained from a screen set up 

with 200 nL of protein and 200 nL reservoir containing 100 mM HEPES, pH 7.0 and 1.5 M 

(NH4)2SO4 using a Mosquito crystallization robot (TTP Labtech) and equilibrated at 20 ºC in a 

96-well sitting drop Intelli-Plate® (Art Robbins Instruments). The crystallization condition was 

further optimized to obtain larger crystals with 1 µL protein and 1 µL reservoir containing 100 

mM HEPES, pH 7.0, 1.5 M (NH4)2SO4, and 20% ethylene glycol and equilibrated at 20ºC on a 

24-4 sitting drop Intelli-Plate® (Art Robbins Instruments). Crystals were mounted on a 0.2 mm 

cryoloop (Hampton Research) and flash frozen in liquid nitrogen for data collection. Data sets 

were collected at SSRL beam line 7-1 at 100K and λ 1.127085 Å.  

Structure determination 
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 The crystals belonged to the P3221 space group with cell dimensions of a = b = 120.24 Å, 

c = 134.92 Å, α = β = 90°, and γ = 120°. Data reduction and scaling were performed with 

XDS/XSCALE.18-20 The molecular replacement solution was obtained using alanine-substituted 

E. coli LplA (EcLplA; PDB: 3A7A, chain A) N-terminal domain and C-terminal domain search 

models with the Phaser-MR module in PHENIX.21,22 Model building was performed in Coot 23 

and refinement in PHENIX. Lipoate-bound PfLipL1∆243-279 was refined to a crystallographic 

Rwork of 27.3% and an Rfree of 30.2%. the final structure was analyzed with validation tools in 

MOLPROBITY.24,25 Protein sequence similarity and Z-scores were calculated using the Dali 

server.26 Sequence alignments were performed using the Clustal algorithm in Jalview.27-29 

Structural visualization was performed via PyMol.30 

In vitro lipoylation assay  

 Lipoylation assays were performed as previously described.14 Briefly, purified PfLipL1 

variants (1 µM) were incubated in reaction buffer (100 mM Na/K phosphate at pH 7.5 and 150 

mM NaCl) containing 2 mM ATP, 2 mM MgCl2, 200 µM R-lipoic acid, and 10 µM H-protein. 

After a 1-hour incubation at 37ºC reactions were quenched with the addition of gel loading 

buffer and analyzed by Western blot. The SDS-PAGE gel was transferred to a nitrocellulose 

membrane, blocked with 5% milk in PBS for 30 min, and probed with 1:5000 rabbit polyclonal 

α-LA (Calbiochem) for 2 h in 1% milk/PBS at room temperature. The membrane was washed 

with PBS three times and then probed with 1:5000 donkey α-Rabbit IgG horseradish peroxidase 

(HRP) secondary antibody (GE Healthcare) in 1% milk/PBS overnight at 4°C. The membranes 

were visualized with ECL western substrate (Pierce) and exposed to film. 

Cell-based lipoylation assay  

 Cell based lipoylation was performed as previously described.14 Briefly, lipoylation 
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deficient E. coli strain JEG3 containing the pRIL plasmid was transformed with a plasmid 

containing the candidate lipoate ligase (pMALcHT-PfLipL1, pMALcHT-PfLipL1∆259-269, 

pMALcHT-PfLipL1∆254-274, pMALcHT-PfLipL1∆249-279, or pMALcHT-PfLipL1∆243-279). Cells 

were subsequently grown in LB medium with 1% glucose, 5 mM sodium succinate, 5 mM 

sodium acetate, 35 µg ·mL-1 chloramphenicol, 100 µg ·mL-1 ampicillin, and 200 µM R-lipoic 

acid. 20 mL cultures were grown to mid-log phase at 37ºC and induced with 0.4 mM IPTG for 

10 h at 20ºC. Cells were harvested by centrifugation and re-suspended with 0.5 mL of buffer 

containing 20 mM HEPES, 100 mM NaCl at pH 7.5 and lysed by sonication. Cell lysates were 

clarified by centrifugation at 16 000 g and the supernatants were collected and resolved by SDS-

PAGE (Invitrogen). Lipoylated proteins were visualized by Western blot as described above.  

Accession code 

The atomic coordinates and structure factors have been deposited in the Protein Data  

Bank as entry 5T8U 

Results & Discussion 

Overall Structure 

 To further our understanding into the lipoylation mechanism in malaria parasite 

mitochondria, we crystallized PfLipL1∆243-279 in the presence of lipoate and excess ATP. The 

resulting crystals only contained lipoate bound in the active site presumably due to degradation 

of the lipoyl-AMP conjugate during the process of crystallization or trapping of the lipoyl-bound 

form in the crystal lattice. Lipoate-bound PfLipL1∆243-279 crystallized in the trigonal P3221 space 

group and has cell dimensions of a = b = 120.24 Å, c = 134.92 Å, α = β = 90°, and γ = 120° with 

two monomers per asymmetric unit. The structure was solved using an alanine-substituted model 

of EcLplA (PDB code 3A7A, chain A). The N-terminal domain (residues 1-243) and C-terminal 
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domain (residues 250-337) were used as independent search models. Lipoyl-PfLipL1∆243-279 was 

refined to 2.3 Å resolution with an Rwork of 27.28% and an Rfree of 30.16%. The crystallographic 

data and refinement statistics are summarized in Table 1. The Rfree value is high given the 

resolution but after multiple rounds of refinement taking into account various factors, such as 

restraints and B-factors, it was not possible to obtain a lower Rfree value. Analysis of the data 

with PHENIX Xtriage and POINTLESS do not suggest contributions from twinning or 

translational non-crystallographic symmetry. Furthermore, analysis with ZANUDA in CCP4 is 

consistent with the P3221 space group used in this study. 31 Thus, we hypothesize that the high 

Rfree value may be due a small but significant amount of degradation that is observed during the 

purification process. 

 The lipoate-bound PfLipL1∆243-279 structure (Fig 1A) consists of a large N-terminal 

domain (NTD, residues 21-276), a linker region lacking defined secondary structure (residues 

277-289), and a small C-terminal domain (CTD, residues 290-370). The NTD contains two β-

sheets, a large mixed β -sheet made up of seven β -strands (β1, β2, β6, β7, β8, β9, and β10) and 

a small mixed-sheet made up of three strands (β3, β4, and β5). There are six α-helical elements 

surrounding the β-sheets (α1-6). The CTD consists of one anti-parallel β-sheet made up of three 

strands (β11, β12, and β13) and three α-helices (α7, α8, and α9). The two monomers in the 

asymmetric unit are in similar conformations and superimpose with a root-mean-square 

deviation (r.m.s.d.) of 0.4 Å for the corresponding 269 Cα atoms (Fig 1B). The most notable 

differences between the two monomers are a lack of density in Chain B residues 242-247 (a 

flexible loop at the site of the deletion) and an extension of the Chain B adenylate-binding loop 

at residues 194-200. The latter extension forms a β-strand with a symmetry related monomer. 
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 Figure 1C shows a LIDIA diagram of the lipoate binding site in Chain A of the 

PfLipL1∆243-279 structure.32 Here, residues that are involved in hydrophobic interactions are 

shown in lime green and residues involved in H-bond interactions are shown as blue and green 

dashed lines for main chain and side chain interactions, respectively. It is important to note one 

additional difference between Chain A and Chain B in reference to the lipoate binding site. In 

Chain B it is the side chain of residue N152 as opposed to the amide hydrogen of residue G107 

that forms the second hydrogen bond with the lipoate carboxylate.  

 Figures 1D and 1E show a close-up view of the lipoate binding pocket of PfLipL1∆243-279 

where residues that show significant interactions with the lipoate moiety are highlighted in stick 

representation and colored red (hydrophobic interactions) or blue (H-bond interactions). The 

pocket is defined by interactions with residues from β2, β5, β9, β10, and the loop region between 

β4 and β5, known as the lipoate-binding loop (residues 101-106). The lipoate binding loop is a 

hallmark of all lipoate protein ligases and lipoate transferases. It is of special interest to highlight 

the hydrogen bonding interaction between the lipoate carbonyl and residue K160. Lipoate ligase 

enzymes are characterized by having an active site lysine that forms hydrogen bonds with both 

lipoate and ATP orienting the carboxylate of lipoate for a nucleophilic attack on the α-

phosphorus atom of ATP.33 Indeed, an alanine substitution of K160 renders full-length PfLipL1 

unable to form lipoyl-AMP and abrogates lipoylation activity in vitro.14 

 Structure comparison 

 We searched for proteins with structural similarity to PfLipL1∆243-279 using the Dali 

server.26 Generally, the Dali server measures similarity by a sum-of-pairs method that results in a 

Dali-Z score. Structures with a Dali-Z- score above 2 are considered to have significant 

similarity and will usually be characterized as having similar folds. The top scoring result from 
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the Dali server for PfLipL1∆243-279 is a computationally designed resorfurin ligase that was 

designed based on the EcLplA scaffold (PDB: 4TVY, Z-score: 32.4).34 Additionally, apo-, 

lipoate-bound, and lipoyl-AMP-bound EcLplA structures also have a high Z-score in the Dali 

server results (PDBs: 1X2G, 1X2H, 3A7R; Z-scores: 31.1, 31.1, 30.5, respectively). A sequence 

alignment of PfLipL1∆243-279 and EcLplA shows all secondary structure elements to be conserved 

and a percentage identity of 29.8% (Fig. 2A).  

 The structure of lipoate-bound PfLipL1∆243-279 is in the same “bent” conformation as the 

EcLplA structure in the “unliganded” form (Fig 2B).33,35 In this conformation the CTD is bent 

such that it obscures the putative H-protein binding site in a similar mechanism as that observed 

for EcLplA.33 This conformation is characterized by a hydrogen bond between the amide of 

G106 of the lipoate-binding loop and the carbonyl of C321 in the CTD. Additionally, there is a 

conserved salt-bridge between residues K79 in the NTD and D328 in the CTD. Similar 

interactions can also be observed in the EcLplA structures in the “bent” conformation. 

Comparison of the lipoate-bound- PfLipL1∆243-279 to lipoyl-AMP-bound EcLplA (Fig 2C) shows 

that a large structural rearrangement must occur in PfLipL1∆243-279 to accommodate H-protein for 

lipoylation. 

PfLipL1 deletion mutants are characterized by wild-type like lipoylation activity in vitro 

 Although full-length PfLipL1 can be easily expressed and purified from E. coli with high 

yield, this construct is prone to spontaneous proteolytic cleavage. Amino acid sequencing 

revealed that cleavage initially occurs between K264 and E265 (data not shown); however, 

alanine substitution at position 264 does not prevent degradation even in the presence of protease 

inhibitors (data not shown). PfLipL1 contains a low complexity region that is not conserved in 

other characterized lipoate ligases and despite the presence of this region in other Plasmodium 
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species there is no conservation of sequence or size. Full-length PfLipL1 crystals can still be 

generated but only diffract to low resolution. We therefore decided to make a series of mutations 

that removed the low complexity sequence from our construct and tested the mutant PfLipL1 

constructs both in a cell-based lipoylation assay and an in vitro lipoylation assay. We made three 

different deletion mutants removing 5, 10 or 15 residues on both sides of K264 (deleting a total 

of 11, 21 or 31 amino acids, respectively). These constructs still suffered from degradation, 

prompting us to make a fourth deletion (PfLipL1∆243-279) removing more residues from the low 

complexity loop. The latter construct, PfLipL1∆243-279, shows minor degradation but is far more 

stable than the full-length construct. All loop deletion constructs appear to be enzymatically 

active. Indeed, E. coli substrate proteins are lipoylated when all PfLipL1 variants are expressed 

in a lipoylation deficient cell line (Fig S1A). Furthermore, in vitro lipoylation of the PfH-protein, 

a canonical substrate enzyme, remains unchanged in the PfLipL1∆243-279 deletion mutant (Fig 

S1B). Since the lipoylation activity of all PfLipL1 variants remains unchanged with deletion of 

the low complexity region the PfLipL1∆243-279 construct is likely a good structural surrogate to 

understand the mechanism of lipoylation in P. falciparum. 
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Figure Captions 

 

Fig 1. Overall structure and binding pocket of lipoate-bound PfLipL1∆243-279. (A) Cartoon 

representation of chain A of lipoate-bound PfLipL1∆243-279. Secondary structure elements are 

labeled and the lipoate moiety is shown in stick representation. Important residues for the 

binding pocket are shaded in red and blue for residues contributing hydrophobic and H-bond 

interactions, respectively. (B) Superposition of chain A (cyan) and chain B (red) of lipoate-

bound PfLipL1∆243-279. The major differences in the two monomers are the lack of density for the 

loop defined by residues 242-247 and the extension of the adenylate-binding loop. (C) LIDIA 

representation of the binding site of Chain A. Residues involved in hydrophobic interactions are 

represented as lime green circles and residues involved in H-bond interactions are represented as 

blue or green dashed lines for main chain or side chain interactions, respectively. (D) and (E) 

surface representation of the lipoate binding pocket. Important residues are shown in stick 

representation and colored blue or red for or H-bonds or hydrophobic interactions, respectively. 

H-bonds are represented as blue dashed lines. 

 

Fig 2 Comparison of PfLipL1and EcLplA. (A) Clustal sequence alignment of full-length 

PfLipL1 and EcLplA. Residues are colored using the ClustalX color scheme. Secondary 

structure elements are labeled as follows: arrows represent β-strands and rectangles represent α-

helices. The lipoate-binding loop is highlighted with a grey-dashed line between β4 and β5 and 

the adenylate-binding loop is highlighted with a grey dashed line between and β10 and α5. The 

site of proteolytic cleavage in full length PfLipL1 is marked with a red asterisk (B) Overlay of 

lipoate-bound PfLipL1∆243-279, colored cyan, and lipoate bound EcLplA (PDB 1X2H), colored 
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slate generated by the RAPIDO server.36,37 Both structures are considered to be in the “bent” 

conformation which is incompatible with binding substrate proteins. (C) Overlay of lipoate-

bound PfLipL1∆243-279, colored cyan, and lipoyl-AMP bound EcLplA (PDB 3A7R), colored 

salmon. The CTD of EcLplA has translated approximately 90º and rotated approximately 180º to 

accommodate substrate enzyme binding. It is of interest to note the formation of a small β-strand 

in the CTD from residues that belong to the long adenylate-binding loop. 
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chain A of lipoate-bound PfLipL1∆243-279. Secondary structure elements are labeled and the lipoate moiety 
is shown in stick representation. Important residues for the binding pocket are shaded in red and blue for 

residues contributing hydrophobic and H-bond interactions, respectively. (B) Superposition of chain A (cyan) 
and chain B (red) of lipoate-bound PfLipL1∆243-279. The major differences in the two monomers are the 
lack of density for the loop defined by residues 242-247 and the extension of the adenylate-binding loop. 
(C) LIDIA representation of the binding site of Chain A. Residues involved in hydrophobic interactions are 
represented as lime green circles and residues involved in H-bond interactions are represented as blue or 

green dashed lines for main chain or side chain interactions, respectively. (D) and (E) surface representation 
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Fig 2 Comparison of PfLipL1and EcLplA. (A) Clustal sequence alignment of full-length PfLipL1 and EcLplA. 
Residues are colored using the ClustalX color scheme. Secondary structure elements are labeled as follows: 
arrows represent β-strands and rectangles represent α-helices. The lipoate-binding loop is highlighted with a 

grey-dashed line between β4 and β5 and the adenylate-binding loop is highlighted with a grey dashed line 
between and β10 and α5. The site of proteolytic cleavage in full length PfLipL1 is marked with a red asterisk 
(B) Overlay of lipoate-bound PfLipL1∆243-279, colored cyan, and lipoate bound EcLplA (PDB 1X2H), colored 
slate generated by the RAPIDO server.35,36 Both structures are considered to be in the “bent” conformation 

which is incompatible with binding substrate proteins. (C) Overlay of lipoate-bound PfLipL1∆243-279, 
colored cyan, and lipoyl-AMP bound EcLplA (PDB 3A7R), colored salmon. The CTD of EcLplA has translated 

approximately 90º and rotated approximately 180º to accommodate substrate enzyme binding. It is of 
interest to note the formation of a small β-strand in the CTD from residues that belong to the long 

adenylate-binding loop.  
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Table 1.  Data collection and refinement statistics for lipoate-bound PfLipL1∆243-279  

Data Collection  

Resolution range (Å) 44.97 - 2.32 (2.41 - 2.32) 
Total reflections 289251 (28279) 
Unique reflections 48819 (4399) 
Multiplicity 5.9 (5.8) 
Completeness (%) 96.5 (90.4) 
Mean I/sigma(I) 9.9 (0.6) 
R-merge 0.139 (2.672) 
CC1/2 0.998 (0.491) 
CC* 0.999 (0.812) 
Wilson B-factor (Å2) 53.07 
Space group P 32 2 1 
Unit cell  
    a, b, c (Å) 120.2, 120.2, 134.9 
    α, β, γ (º) 90, 90, 120 
  
Refinement  

Reflections used in refinement 47298 
Reflections used for R-free 2309 
R-work (%) 27.28 
R-free (%) 30.16 
Molecules in asymmetric unit 2 
Number of non-hydrogen atoms 5594 
    macromolecules 5486 
    ligands 24 
    solvent 84 
Protein residues 671 
Ramachandran favored / outliers 
total 

 
624 / 1 

(%) 95 / 0.15 
Rotamer outliers (%) 0.33 
Average B-factor (Å2) 79.65 
    macromolecules (Å2) 80.06 
    ligands (Å2) 88.07 
    solvent (Å2) 50.41 
RMS bonds (Å) / angles (º) 0.002 / 0.47 
RMSZ bonds / angles 0.24 / 0.42 

Statistics for the highest-resolution shell are shown in parentheses. 
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