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KEY POINTS 

• Three benthic foraminifera species show expected I/Ca ratios in Northeast Pacific 

core record relative to their depth habitat. 

• Foraminiferal I/Ca-based O2 reconstructions are supported by multiple proxies in 

the same sediment samples 
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• Oxidant demand was greatest during the Bølling; pore and bottom waters were 

most oxygenated during the Younger Dryas and last glacial.  

 

 

ABSTRACT 

Paleo-redox proxies are crucial for reconstructing past bottom water oxygen 

concentration changes brought about by ocean circulation and marine productivity shifts 

in response to climate forcing. Carbonate I/Ca ratios of multiple benthic foraminifera 

species from ODP Hole 1017E – a core drilled within the Californian oxygen minimum 

zone (OMZ), on the continental slope  – are employed to re-examine the transition from 

the well oxygenated last glacial into poorly oxygenated modern conditions. The  redox 

and export productivity history of this site is constrained by numerous proxies, used to 

assess sensitivity of I/Ca ratios of benthic foraminifera to changes in bottom- and pore 

water O2 concentrations. Reconstructed iodate (IO3
-) availability from the I/Ca ratio of 

epifaunal (Cibicidoides sp.), shallow infaunal (Uvigerina peregrina), and deep infaunal 

(Bolivina spissa) foraminifera. The reconstructed IO3
- availability profile is used to 

determine the contribution of bottom water O2 relative to oxidant demand on pore water 

O2 concentrations. These results suggest that high export productivity on the California 

Margin drove pore low water O2 concentrations during the Bølling. In contrast low 

bottom water O2 concentrations at 950 m water depth only contributed to reduced 
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sediments during the Allerød. Increased contribution of modified North Pacific 

Intermediate Water to the California Current System ventilated the California OMZ 

during the late glacial and the Younger Dryas such that water overlying the site was 

oxygenated. These results highlight the promising potential of this new proxy for 

understanding the relative influence of bottom water O2 concentration and pore water 

oxidant demand on OMZs. 

 

1. INTRODUCTION  

Recent monitoring of dissolved oxygen (O2) concentrations has highlighted the 

increasing volume of O2-depleted intermediate waters in the oceans over the last few 

decades (Whitney et al., 2007; Diaz and Rosenberg, 2008; Keeling et al., 2010). The 

oxygen minimum zone (OMZ) in Eastern Tropical Pacific (ETP) has expanded vertically 

by 85% from 1960-2006 and model projections predict further O2 loss (Stramma et al., 

2008). An intensified OMZ within the California Current System in the northeast Pacific 

Ocean has been associated with warmer waters and abrupt climate shifts over millennial 

time scales (Cannariato and Kennett, 1999; Hendy et al., 2004; Ohkushi et al., 2013; 

Moffit et al., 2014, Tetard et al., 2017). Given OMZ sensitivity to climate change, and the 

decrease in the diversity and density of benthic fauna below ~20 umol kg-1 of O2 (Levin, 

2003), predicting how global warming-triggered O2 loss would affect marine ecosystems 

is critical. 
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Iodine has become a promising indicator of O2 depleted conditions because the 

iodide/iodate redox potential is close to that of O2/H2O (Rue et al., 1997). In oxygenated 

water, dissolved I is present as iodate I(+V)O3
–, the dominant and thermodynamically 

stable form of iodine. As O2 concentrations in water decrease, IO3
– is reduced to iodide I–

( ˗I) such that I- is the dominant and thermodynamically stable species in anoxic seawater 

(Rue et al., 1997; Chapman and Truesdale, 2011). Iodine displays a nutrient-like vertical 

distribution in seawater (Elderfield and Truesday, 1980) as iodine accumulates in marine 

plankton and sinking organic particles. Diagenesis of iodine occurs when early 

sedimentary degradation of labile high molecular weight organic matter releases iodine to 

porewaters in the reduced form (I-), which in the presence of O2, is slowly oxidized to 

IO3
-  (Kennedy and Elderfield, 1987).  

In calcite, IO3
– substitutes for carbonate anions proportionately to the IO3

– 

concentration of the surrounding water. Synthesized carbonate minerals take up IO3
– 

linearly with concentration indicating that biogenic carbonate I/Ca ratios would be 

suitable as a quantitative proxy for detecting IO3
– availability as bottom water O2 changes 

assuming analogous behavior between inorganic and biogenic precipitates. Measuring 

I/Ca ratios in carbonate forming organisms such as foraminifera has been proposed to 

estimate potential O2 depleted conditions in ancient oceans (Lu et al., 2010). A similar 

approach, consisting of determining bulk carbonate or planktonic and benthic 

foraminiferal I/Ca ratios, has been applied to ocean oxygenation events such as the 
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Precambrian Great Oxidation Event and Mesozoic Oceanic Anoxic Events (Hardisty et 

al., 2014, 2017; Zhou et al., 2014, 2015, 2016). 

Currently, there are limited calibrations of modern benthic foraminiferal calcite 

available, limiting the potential of I/Ca ratios in foraminifera as a quantitative proxy for 

past O2 depleted conditions. Positive linear correlations were identified within the 

Peruvian Margin OMZ between benthic species-specific foraminiferal I/Ca and a narrow 

range of bottom water O2 concentrations (2-35 µM kg-1) (Glock et al., 2014; Glock et al., 

2016). However, benthic species of the same genus and similar depth habitats may have 

differing sensitivities to the I/Ca-[O2] relationship as vital effects also influence IO3
– 

uptake (Glock et al., 2014). Although there remains a need for species-specific 

calibration, the developing I/Ca redox proxy has the ability to provide information about 

dynamic O2 concentrations in ancient marine systems. 

 The mechanisms driving changes in North Pacific OMZs during the last deglacial 

are not well understood. The hypothesized environmental regulators of bottom and pore 

water O2 concentrations are not mutually exclusive and include changes in primary 

productivity (both regional and far-field), and ocean circulation that affects intermediate 

water ventilation. Iodine/Ca ratios of benthic foraminifera from ODP Hole 1017E on the 

California Margin were measured to explore the sensitivity of I/Ca ratios of different 

species to O2 depletion in their environment. We compare our results with previous OMZ 

reconstructions within the same core that identified redox driven metal enrichments 
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(Hendy and Pederson, 2005) O2 sensitive and benthic foraminiferal assemblages 

(Cannariato and Kennett, 1999) already exist to confirm the veracity of the new proxy. 

Our study demonstrates the potential application of I/Ca in benthic foraminifera and is a 

first step in establishing this paleo-redox proxy as an efficient “tool” capable of 

determining past O2 depleted conditions in sediment and pore water environments.  

 

2. BACKGROUND  

Site description 

ODP Hole 1017E (34°32 N; 121°60 W; 955 m water depth) is located near the 

base of the modern California margin OMZ (Fig. 1A). The strength of the California 

OMZ is tightly coupled to upwelling and water masses advected into the region. A 

persistent coastal upwelling cell is located above the site, as the geometry and high-relief 

of the coastline accelerates airflow, from northerly winds associated with the 

strengthening and poleward moving North Pacific high pressure cell in early spring 

(Lynn and Simpson, 1987). The site is bathed by modified North Pacific Intermediate 

Water (NPIW) transformed during gyral circulation, where mixing with multiple 

subsurface water masses occurs. NPIW is oxygenated by two subarctic sources - the 

Okhotsk Sea and the Gulf of Alaska (You, 2003). These intermediate waters are mixed 

via cabbeling – a process that mixes distinctly different water masses to produce a higher 

density water mass – during transit across the North Pacific before entering the 
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subtropical gyre. The loss of defined NPIW characteristics (i.e. salinity minimum 

between 33.9 – 34.4 ‰ or density of σθ = 26.8; Auad et al., 2003) prevents direct 

association with NPIW and therefore we refer to the water bathing the California Margin 

at intermediate water depths as modified NPIW. Modified NPIW is mixed with the 

California Current System (CCS) on the margin by eddy activity such that it is integral to 

the current system. Additionally, poleward flow mostly at ~200-300 m water depth 

transports poorly oxygenated warm, salty water from the Eastern Tropical North Pacific 

(ETNP) inshore of the CCS via the California Undercurrent (CU) (Noble and Ramp, 

2000, Nam et al., 2015). The core of CU contains water formed from deep winter mixed 

layers between 25–30°N, and 130–140°W (Hautala and Roemmich, 1998). Upwelling 

then brings this water from 200 – 300 m depth into the photic zone.  

Low O2 concentrations in OMZs result from the decomposition of organic matter 

by microbial activity that consumes dissolved O2. A NE Pacific transect of dissolved O2 

concentrations in the water column demonstrates that the core site is presently bathed by 

water with O2 concentration of ~25µmol kg-1 (Fig. 1B). In water depths ranging from 

~580 – 4,000 m, dissolved O2 in pore waters off of central California became anoxic at 

>0.4-3 cm below the sediment water interface (SWI) (Reimers et al., 1992). At the 

measuring stations within the OMZ, dissolved O2 is undetectable (<15 µmol kg-1) 

between 4-7 mm below the SWI (Reimers et al., 1987; 1992). Pore water O2 

concentrations increase outside the OMZ: O2 is < 60 µmol kg-1 at 6-16 mm below the 
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SWI on the lower slope and > 100 µmol kg-1 at 10-30 mm on the continental rise 

(Reimers et al., 1987; 1992).   

Iodate availability should follow the O2 water column profile of dissolved O2 

concentration. Measurements of dissolved O2 in water column profiles from the ETP 

reveal sharp IO3
- and I- gradients where reduction of IO3

- to I- occurs between 140-600 m, 

defining an OMZ (O2 < 5µmol kg-1) that is maintained to a depth of ~900 m (Rue et al., 

1997). 

 

3. METHODS  

3.1 Radiocarbon age model and core chronology  

The age model for ODP Hole 1017E is based upon 11 14C dates from the upper 

4.70 m of the core (Hendy et al., 2004) calibrated to calendar years. The original 

chronology for the core has been modified using the MARINE13 calibration (Reimer et 

al., 2013) generating a new calendar year based chronology through the deglacial interval 

(Fig. S1 and Table S1). A constant regional reservoir correction (∆R) of 402.7 ±50 years 

was assumed (Robinson and Thompson, 1981).  

3.2 Analysis of I and Ca contents in foraminiferal species  

Samples were picked at continuous intervals from 2.52 to 4.20 m (corrected) 

below core top in ODP Hole 1017E where sufficient specimens were available. Benthic 

species investigated for I/Ca were selected using several criteria. Sufficient populations 
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of each species down core were necessary for a meaningful interspecies comparison. 

Additionally, species were chosen that are relatively ubiquitous, live across a range of 

depth habitats and are commonly used in paleoclimate reconstructions. The suspension 

feeding Cibicidoides sp. are epifaunal, living on objects above the SWI (Altenbach and 

Sarnthein, 1989), while Uvigerina and Bolivina are both infaunal, cylindrical species 

associated with high food supply and/or low O2. Approximately 3 individual infaunal 

Uvigerina peregrina (shallow infaunal, low O2 indicator), 25 Bolivina spissa (deep 

infaunal, low O2 indicator), and 3 epifaunal Cibicidoides sp. (an oxic indicator) 

respectively were used to achieve a sample weight of ~300 μg for each analysis 

(Cannariato and Kennett, 1999). U. peregrina dominates assemblages in the upper and 

lower bounds of the OMZ (Cannariato and Kennett, 1999). Gaps in the record occur 

when insufficient specimens were available for analysis. Recent high-resolution 

secondary ion mass-spectrometry analyses of individual foraminiferal tests from the 

Peruvian margin suggest intra-test variability of I/Ca ratios (Glock et al., 2016). 

Therefore in future work it may be advisable to conduct bulk ICP-MS analyses of larger 

pools of individuals.  

All chemical analyses were carried out under ultra-clean conditions for iodine and 

Ca using a Thermo iCAPq quadrupole ICP-MS at the STARLAB (Central Michigan 

University) (Table 2) (Lu et al., 2010; Glock et al., 2014). Visual inspection prior to 

analysis confirmed that foraminifera were well preserved. Samples were weighed and 
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crushed prior to undergoing cleaning of contaminant phases via a multi-step protocol 

involving clay removal, and oxidative cleaning steps. (Martin and Lea, 2002). Samples 

were dissolved into 0.075 M HNO3 and spiked with yttrium (internal standard). 

Tetramethyl ammonium hydroxide (TMAH, 25% in H2O, Trace-SELECT, impurities: ≤ 

10 µgkg-1 total iodine, Sigma AldrichTM) was added to every sample to reduce loss of 

iodine due to volatilization (no headspace). A micro-nebulizer was used to inject the 

small volumes of solution prepared (300 – 500 µL). For the preparation of standards, 25 

mg solid KIO3 (suprapure, Sigma AldrichTM) were dissolved with 15 mL ultrapure water, 

25% TMAH, HNO3, and spiked with Ca, and Y. These solutions were diluted to prepare 

working standards via pre-dilution (Table 1), and were prepared fresh daily. Standards 

were run between every 10 – 15 samples. All I/Ca ratios are reported in µmol, mol-1 

henceforth. Samples were analyzed (three scans) directly after acidification to prevent 

loss of volatile iodine because although TMAH traps iodine, significant volatilization 

occurs within 24 hours (Glock et al., 2014). For a small number of samples (12, marked 

with a * symbol in Table 2), we discarded the last and third measurement that was 

significantly different from the first two measurements. These divergences could be 

attributed to the very small volume of solution available for analysis. For these 12 

samples, we suspect all the solution was consumed before the end of the third run. The 

average relative standard deviation was equal to 5.7±4.2 %; a reasonable range of values 

considering a micro-nebulizer was used. The detection limit for iodine was 5 ppt. 
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Detailed information the quality of our measurements (e.g. blank CPS, standards CPS, 

calibration curves, internal standard recovery, quality controls) are provided (Table S2 

and S3; Figure S2). The analytical precision for I/Ca splits (7 pairs, 2 Cibicidoides sp. 2 B. 

spissa, 3 U. peregrina), reflecting both analytical and sample-processing uncertainty is 

0.20 µmol/mol (1σ). 

 

Previous studies focusing on the development of the I/Ca proxy in foraminifera 

used a reference material (JCp-1, coral standard) (Lu et al., 2010; Glock et al., 2014; 

Hardisty et al. 2014, 2017; Zhou et al., 2014, 2015, 2016). When designing our analytical 

plan, we did not include this reference material within our study because it is not certified 

for iodine. We realize our choice may be questionable. Although this omission does not 

challenge our data quality (see supporting information), we acknowledge we should have 

included JCp-1 to allow an easier comparison with these previous studies. For this work, 

it was too late to incorporate JCp-1 but we strongly recommend that any future I/Ca study 

do so. 

 

4. RESULTS  

All three species of benthic foraminifera broadly exhibit the same I/Ca trends 

throughout the core record (Fig. 2). I/Ca ratios were high during the Last Glacial 

Maximum (LGM), relative to the Bølling/Allerød (B/A) warming. Data from all species 
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are sparse during the Younger Dryas (YD) with the exception of Cibicidoides sp. that 

records similar values as the LGM (Fig. 2A). The highest I/Ca ratios (ave = 7.53 in the 

YD and 7.19 during the LGM or 0.8-3.5 µmol mol-1) were measured in the epifaunal 

Cibicidoides sp., reflecting the highest bottom water O2 concentrations. Ratios dropped 

(ave = 5.75) during the Bølling and decreased further to an average of 3.02 during the 

Allerød. These values are similar to although wider in range than I/Ca measured in 

epifaunal P. limbata (1.03-2.2 µmol mol-1), which exhibited the greater I/Ca range in a 

modern study of an O2 concentration gradient (~5-25 µmol L-1) through the Peruvian 

OMZ (Glock et al., 2014). Measured I/Ca ratios of B. spissa, were lower and less variable 

(0.05-1.5 µmol mol-1), reflecting the O2 depleted pore waters of the deeper infaunal 

habitat of this species (Fig. 2C). One B. spissa datum was significantly higher than the 

rest of the data set (>3sd) and was discarded as an outlier, but is reported in Table 2 

(denoted by **). B. spissa recorded average I/Ca values of 1.95 during the LGM and 2.05 

during the YD. In contrast to Cibicidoides, B. spissa recorded the lowest I/Ca values (ave 

= 0.59) during the Bølling with slightly higher values during the Allerød (ave = 1.09).  

The I/Ca values of shallow infaunal species U. peregrina generally fell between the 

epifaunal and deep infaunal species (average I/Ca ratio of 0.57-3.96 or 0.08-3.1 µmol 

mol-1) (Fig. 2B). These values are also similar yet wider ranging than the I/Ca measured 

in the shallow infaunal U. striata (0.31-0.91 µmol mol-1) on the Peru Margin (Glock et al., 

2014). Uvigerina recorded high average I/Ca values (ave = 3.96) during the LGM. 
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Similar to the deep infaunal species, the lowest values (ave = 0.57) were recorded during 

the Bølling, before increasing to an average of 1.44 during the Allerød. That the 

foraminiferal I/Ca values at ODP Hole 1017E during the LGM display a such a large 

range should be anticipated as the site is known to transition from well oxygenated to O2 

depleted conditions during deglaciation. The modern study, on the other hand, was 

restricted in time to the modern Peru Margin OMZ. However, the I/Ca ratios from the 

modern study can be used to infer upper bounds on suboxic I/Ca ratios for these species 

based on the range of O2 concentrations measured. 

 

5. DISCUSSION 

5.1 Reconstructing past iodate (IO3
–) availability in bottom and pore waters 

Benthic species selected for this study are widely used in paleoclimate 

reconstructions. They appear to be responsive to past changes in water column and pore 

water oxygenation, suggesting that they are good candidates for further modern 

calibration studies. Despite potentially confounding species-specific factors, all benthic 

foraminiferal species capture similarly robust trends in I/Ca in the downcore record 

indicating IO3
– availability in bottom and pore water has changed through time at ODP 

Hole 1017E (Fig. 2). 

Epifaunal and infaunal benthic foraminiferal I/Ca ratios enable reconstruction of 

IO3
– availability from the different sediment depths inhabited by the foraminifera (Fig. 3) 
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as only IO3
– is incorporated into the foraminiferal carbonate. The O2 level present at the 

SWI influences the type of diagenetic reactions occurring within the first centimeters, 

based on the redox sequence (Middleburg and Levin, 2009). These processes control 

iodine pore water chemistry in the ~10 cm below the SWI as reduced iodine is released to 

pore waters by decomposition of labile organic matter and oxidizes to IO3
– only if O2 is 

present. (Kennedy and Elderfield, 1987). Foraminiferal species living within this 

sediment interval are exposed to changing IO3
–/I– ratios. I/Ca ratios from epifaunal, and 

shallow-to-deep infaunal benthic foraminifera therefore reproduce an IO3
– availability 

gradient that tracks O2 concentration from the SWI to pore waters.  

In fully oxygenated overlying water, iodine present as IO3
– (Middleburg and 

Levin, 2009) allows epifaunal benthic foraminifera to record high I/Ca ratios such as 

occurred during the LGM (Fig 3B) and Bølling (Fig 3C). Near the SWI, I- released by 

degradation of labile organic matter through microbial activity, is oxidized in pore waters 

and released to bottom waters (Francois, 1987; Kennedy and Elderfield, 1987; Price and 

Calvert, 1973). Increased oxidant demand decreases pore water O2 concentrations and I– 

oxidation becomes unfavorable causing decreased IO3
- concentration in pore waters. 

Thus, deep infaunal species have lower I/Ca ratios than shallow species (Fig 2 and Figs 

3B and 3C). As the IO3
–/I– gradient declines rapidly in Corg-rich sediments, the I/Ca ratio 

of deep infaunal species will be significantly lower than epifaunal species such as 

occurred during the Bølling (Fig. 3C). Under low bottom water O2 conditions, I- released 
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by organic matter degradation at the SWI is not oxidized and the decreased IO3
–/I– ratio 

in bottom water results in a low epifaunal I/Ca such as occurred during the Allerød (Fig. 

3D). Following the TRophic conditions and OXygen (TROX) model (Jorissen et al., 

1995) infaunal species may migrate to the SWI following food availability in an 

oligotrophic environment such as shown in the oxic water scenario (Fig 3A). However, in 

the eutrophic coastal upwelling environment of ODP Hole 1017E O2 concentration 

preferences determine the penetration depth of infaunal species. 

The IO3
– availability change through time at ODP Hole 1017E can also be 

observed in bulk sediment I/Br ratios (Hendy and Pedersen, 2005). Sedimentary I/Br 

ratios are diagenetically altered by loss of iodine from organic labile organic matter 

relative to Br (Price and Calvert, 1973; Price and Calvert, 1977; Francois, 1987). Under 

suboxic and anoxic conditions, iodine in sediments is typically depleted relative to Br as 

the reduced I- ion is lost from labile high molecular weight organic matter, while the Br- 

ion remains regardless of redox conditions (Price and Calvert, 1977). Low sedimentary 

IO3
– availability dominates the ODP Hole 1017E record as indicated by the persistently 

low bulk sediment I/Br ratios. Exceptions occurred between 17.5 -15 ka (Heinrich 1) and 

12-10.5 ka (YD) (Fig. 4B) indicating higher IO3
– availability in sediments and therefore 

higher pore water O2 concentrations. These results demonstrate the potential of I/Ca as a 

paleo-redox proxy. 

5.2 Multiple proxy comparison at core site OPD-1017E 
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Previously published benthic foraminiferal assemblages and redox sensitive metal 

enrichments measured in the same ODP-Hole 1017E sediment samples (Cannariato and 

Kennett, 1999; Hendy et al., 2004; Hendy and Pedersen, 2005) support I/Ca-based IO3
– 

availability profiles presented here. We compare these proxy records with previously 

published ODP-1017E δ15N values and Corg concentrations, which are related to export 

production at the site, driven both by physical (i.e. wind driven coastal upwelling) and 

biogeochemical processes (i.e. nutrient availability in upwelled water) (Cannariato and 

Kennett, 1999; Hendy et al., 2004; Hendy and Pedersen, 2005) (Fig. 4 and 5). Bulk 

sediment δ15N at this site is interpreted to be a regional signature where nitrate is 

enriched in 15N through denitrification in the ETNP, and transported northward via the 

CU (Hendy et al., 2004; Hendy et al., 2006; Pichevin et al., 2010, Kienast et al., 2002). 

Thus high values indicate upwelled water was sourced from a region of denitrification 

(ETNP), while low values indicate either upwelling ceased, and/or that shallow 

subsurface waters were oxygenated (Hendy et al, 2004; Kienast et al., 2002). 

Multiple proxies suggest that during the LGM bottom waters at 950 m water 

depth were oxic, pore waters were suboxic, and export production was relatively low at 

ODP-1017E. High epifaunal (Cibicidoides sp.) I/Ca values indicate relatively oxic 

conditions in bottom waters, as does the relative abundance of oxic (O2 = >67 µmol kg-1) 

benthic foraminiferal species that varies between 10-30% (Cannariato and Kennett, 1999) 

(Fig. 4F). Both the epifaunal and shallow infaunal (U. peregrina) I/Ca values are more 
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variable during this interval, apparently affected by sedimentary events. Thin sand layers 

deposited by downslope processes during sea level minima (Tada et al., 2000) coincide 

with the highest I/Ca values below the SWI prior to ~17.5 ka. 

During the LGM deep infaunal (B. spissa) I/Ca values remain lower in pore 

waters than epifaunal Cibicidoides values and benthic assemblages are dominated 

(~50%) by suboxic (defined as O2 = ~13.5-67 µmol kg-1) infaunal species (Fig. 2; 

Cannariato and Kennett, 1999). At ~18 ka, Re enrichments of 5 to 18 ppb (Hendy and 

Pedersen, 2005) support sedimentary suboxia, indicating O2 depletion in pore waters 

(Crusius et al., 1996) (Fig. 4C). Sedimentary Re enrichments have been proposed as an 

indicator of suboxic conditions  (Crusius et al., 1996), although burial might be controlled 

by precipitation of Re-sulfur phases at the SWI (Chappaz et al., 2008, Helz and Dolor, 

2012). 

Oxidant demand in sedimentary pore waters was not large during the LGM as 

export productivity was relatively low. Delivered to sediments by organic matter, Cd and 

Ag precipitate in anoxic sediments as insoluble CdS (Rosenthal et al., 1995) and Ag2S 

(Dyrssen and Kremling, 1990) when trace amounts of pore water sulfide are present 

(Wagner et al., 2013; Wagner et al, 2015). During the LGM low concentrations of redox 

sensitive Cd (1000 ppb) and Ag (200 ppb) have been interpreted to reflect reduced 

delivery of biogenic sediments (Fig 5D-E; Hendy et al., 2004). Organic carbon content 

was relatively low (~1.5% during this interval with lower values also associated with the 
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thin sand layers (Tada et al., 2000) (Fig. 5C). These results support the relatively high 

infaunal I/Ca ratios indicating oxygenated pore waters due to a relatively low oxidant 

demand. 

Low bulk sediment δ15N during the LGM is interpreted to represent better-

ventilated water in the CU at ~300 m water depth (Fig. 5B, Hendy et al., 2004). Although 

in the ETNP δ15N and redox-sensitive metal concentrations increase at ~17 ka (prior to 

the Bølling) suggesting OMZ expansion (Hendy and Petersen, 2006), values of these 

proxies remain low on the California Margin (Hendy and Pedersen, 2005). This has been 

taken to indicate minimal poleward transport of low O2, denitrified ETNP water by the 

CU and increased O2 within modified NPIW on the North American Margin (Hendy and 

Pedersen, 2005; Chang et al., 2008; 2014). These observations support high epifaunal 

I/Ca ratios indicating oxygenated bottom waters. 

During the Bølling warming at 14.7 ka the ratio of warm water (>12°C) dextral to 

cool water (<10°C) sinistral N. pachyderma increased to >80% (Fig. 5A). Epifaunal I/Ca 

ratios remained high implying that oxygenated bottom waters (~950 m water depth) 

persisted at ODP Hole 1017E, however, shallow-to-deep infaunal I/Ca decreased abruptly 

indicating the pore water O2 concentrations dropped. An increase in relative abundance 

(30-50%) of dysoxic (O2 = ~4.5-13.5 µmol kg-1) benthic foraminiferal species supports 

the low pore water oxygenation suggested by infaunal I/Ca ratios. The remaining 5-30% 
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relative abundance of oxic benthic foraminifera supports the high epifaunal I/Ca ratios 

that indicate oxic bottom waters (Fig. 4; Cannariato and Kennett, 1999).  

Trace metal enrichments suggest pore waters were sulfidic during the Bølling (Fig. 

3). Molybdenum enrichment is a proxy for sulfidic conditions (Chappaz et al., 2014, in 

press) in sediments. Molybdenum concentrations increased, (Hendy and Peterson, 2005) 

but did not exceed 10 ppm, indicating free dissolved sulfide and thiomolybdates were 

present but restricted to pore waters (Scott and Lyons, 2012) (Fig. 4D). A decrease in the 

Re/Mo ratio mirrors this increase in pore water sulfide, as Re remains low under high 

sulfide concentrations (Hendy and Pedersen, 2005) (Fig. 4C & 4E). The I/Br ratio of bulk 

sediments dropped from 1.5 to 0.5 indicating a loss of IO3
- from organic matter in 

sediments as pore water O2 concentrations dropped (Hendy and Pedersen, 2005) 

consistent with the low I/Ca ratios of infaunal benthic foraminifera (Fig. 4B). 

Coastal upwelling strengthened during the Bølling, an interpretation supported by 

multiple proxies. Traditional export productivity proxies, Corg (> 2 weight %), and 

biogenic opal, both increased. Silver transported to sediments by diatoms (Wagner et al., 

2013) increased to ~320 ppb (Hendy and Pedersen, 2005) (Fig. 5D). High δ15N 

(increasing from ~6 to 8‰) indicates that alongside stronger upwelling there was also 

increased CU transport of denitrified ETNP water into the shallow (~300 m) California 

OMZ (Fig. 5B; Hendy et al., 2004). Combined redox and productivity proxies indicate a 

high oxidant demand from increased export productivity, perhaps stimulated by nutrient-
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rich shallow subsurface waters. High export productivity drove low pore water 

oxygenation during the Bølling consistent with low infaunal I/Ca ratios. However, export 

productivity subsequently declined during the Allerød (dextral-sinistral N. pachyderma 

ratio increased to ~90%), as Corg dropped to glacial values (~1.5%), and Ag 

concentrations decreased by ~100 ppb (Hendy and Pedersen, 2005) (Figs. 4 and 5). 

Simultaneously, δ15N decreased by ~1‰, indicating a reduction in CU transport of 

denitrified ETP water relative to the Bølling and/or decreased upwelling (Hendy et al., 

2004; Hendy and Pedersen, 2005) (Fig. 5B). Taken together, these results imply that 

sedimentary oxidant demand was relieved during the Allerød due to decline in export 

production. This diminished oxidant demand is supported by the slight increase in 

infaunal I/Ca ratios, however these ratios did not return to LGM values (Fig. 5F). 

Both infaunal and epifaunal I/Ca ratios were low for ~1000 years through the 

Allerød indicating that bottom water oxygenation at 950 m water depth declined even as 

pore water oxidant demand diminished. Relief from sulfidic pore waters is also supported 

by sedimentary Re enrichments (~10 ppb) (Hendy and Pedersen, 2005) as demonstrated 

by an increasing Re/Mo ratio (Fig. 4C). Dominance of suboxic benthic foraminifera (35-

80%) increased, while the relative abundance of dysoxic and oxic species decreased (Fig. 

4F) (Cannariato and Kennett, 1999). Thus the low infaunal and epifaunal I/Ca ratios and 

high suboxic benthic assemblage abundance must have resulted from decreasing bottom 

water O2 concentrations. 
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 The onset of the Younger Dryas is indicated by an abrupt decrease in the dextral-

sinistral N. pachyderma ratio to <55%. Epifaunal and infaunal I/Ca ratios increase to 

values similar to the LGM demonstrating both bottom and pore waters once again 

became oxygenated (Fig. 4F). This observation is supported by a decrease in all redox 

sensitive metals to minimal values, similar to those between 16-15 ka (Figs. 4 & 5). The 

I/Br ratio of bulk sediments increased to values >1 indicating loss of IO3
- from organic 

matter diminished as pore water O2 concentrations increased (Hendy and Pedersen, 2005) 

(Fig. 4B).  

5.3 Implications for the evolution of oxygen content of the California Margin 

 Benthic foraminiferal I/Ca results allow us to determine the relative oxygenation 

of bottom versus pore water habitats at ODP Hole 1017E, resulting in new insights into 

the deglacial paleoceanography of the California Margin. We suggest that infaunal I/Ca 

ratios could be a proxy for export productivity-driven oxidant demand if they are 

primarily influenced by pore water IO3
- availability driven by pore water O2 

concentrations. Epifaunal I/Ca ratios on the other hand are a proxy for IO3
- availability at 

the SWI, reflecting bottom water O2 concentrations and thus are a proxy for bottom water 

mass oxygenation. These interpretations are complicated by our limited understanding of 

sedimentary iodine digenesis, in addition to the dynamic adaption of benthic foraminifera 

to food availability and O2 availability. However, in the eutrophic coastal upwelling 

environment it is likely to be O2 that determine the penetration depth of infaunal species 
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following the TROX-model of Jorissen et al., (1995). Deconvolving bottom water O2 

concentration from pore water oxidant demand is necessary because in the North Pacific 

the O2 concentration of subsurface waters changed alongside coastal upwelling intensity 

and intermediate water production rates in response to ocean-atmospheric reorganization 

following the last glacial.  

Paleoceanographic studies indicate that regional upwelling intensified along the 

North American margin during warm intervals of the last glacial and deglaciation (Hendy, 

2010; Hendy et al., 2004; Ortiz et al., 2004; Schmittner et al., 2007; Pospelova et al., 

2015). Primary productivity was greatest at the site during the Bølling and declined 

through Allerød and Younger Dryas (Hendy et al., 2004; Pospelova et al., 2015) (Fig. 6). 

High δ15N values beginning abruptly at the Bølling at multiple sites along the North 

American Margin imply that the source of upwelled shallow subsurface water (< 300 m) 

upwelled changed to a low O2, nutrient-rich denitrified water mass (Hendy et al., 2004; 

Chang et al, 2008).  Simultaneously during the Bølling a shoaling of the OMZ to <350 m 

is indicated by the dominantly dysoxic benthic foraminiferal response in Santa Barbara 

Basin (SBB) cores (Ohkushi et al., 2013; Moffit et al., 2015). High export productivity 

during the Bølling would have increased pore water oxidant demand at ODP Hole 1017E 

causing infaunal I/Ca ratios to decrease relative to epifaunal ratios. Within the same 

samples very low infaunal I/Ca ratios are observed while dysoxic benthic foraminifera 

are present alongside oxic species indicating low pore water O2 (Figure 4). 
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While these shallower waters in the CCS indicate a low O2, nutrient-rich 

denitrified source, concurrently at 950 m water depth the presence of oxic benthic 

foraminifera species and epifaunal I/Ca ratios only decrease slightly lower than LGM 

indicate little change in O2 concentrations at deep intermediate water depths. Thus the 

shallower portion of the California OMZ appears poorly oxygenated, while there is only 

minor decrease in O2 concentration at the base of the OMZ. This observation can be best 

explained by a water mass change within the shallow CCS (<300 m) from a northerly 

sourced well-ventilated glacial mode water similar to winter diffusion of Alaska Gyre 

water into the North Pacific Current (You et al., 2000) to a poleward flowing denitrified 

Equatorial subsurface water in the CU (Tetard et al., 2017) (Figure 6D). 

 Bottom water O2 concentrations did not decrease at 950 m water depth on the 

California Margin continental slope until the Allerød, as indicated by very low epifaunal 

and infaunal I/Ca ratios.  At this time primary productivity declined (Pospelova et al., 

2015) and δ15N decreased suggesting weaker upwelling that would have led to 

diminished sedimentary oxidant demand (Figure 6C; Hendy et al, 2004). However, SBB 

remained dominantly dysoxic through the Allerød (Ohkushi et al., 2013; Moffitt et al., 

2015). The decrease in epifaunal I/Ca ratios at ODP Hole 1017E suggests lower O2 

concentrations at deep intermediate water depths in the CCS. This may have resulted 

from poorer ventilation of modified NPIW on the California Margin via one or more of 

the contributing subsurface water masses in the North Pacific  
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During the Bølling/Allerød, physical changes have been both observed and 

modeled in NPIW source regions. NPIW production is related to the formation of sea ice 

in the Okhotsk (Talley, 1991) and Bering seas that diminished as temperatures warmed 

through deglaciation. During periods of reinvigorated Atlantic Overturning Circulation, 

decreases in North Pacific salinity resulted in decreased NPIW intrusion into tropical 

Pacific intermediate layers (Okazaki et al., 2010). However, many studies ascribe 

reduced O2 concentrations throughout the OMZ of the North Pacific to productivity 

changes in the NPIW source regions (Crusius et al., 2004; Lembke-Jene et al., 2017; 

Praetorius et al., 2015). Specifically, during the Bølling/Allerød high productivity in the 

Bering Sea is indicated by higher biogenic silica deposition and the presence of the large 

upwelling diatom species Chaetoceros resting and vegetative valves associated with the 

onset of laminated sediments in the region (Schlung et al., 2013) as well as carbonate 

maxima (Max et al., 2014). Increased productivity in the Bering Sea has been ascribed to 

a stronger Bering Slope Current as sea level rose (Kim et al., 2011) in addition to a 

greater supply of nutrients delivered by glacial meltwater in the Gulf of Alaska (Addison 

et al., 2012). During the Allerød, Siberian runoff into the Okhotsk Sea fueled productivity 

diminishing Okhotsk Sea Intermediate Water ventilation (Lembke-Jene et al., 2017). 

Thus increased oxidant demand at the source of NPIW via enhanced productivity in the 

western subarctic Pacific could explain lower O2 concentrations in the water mass 

without invoking reduced ventilation (Crusius et a., 2004). 
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 Iodate availability at the SWI indicates that bottom water and pore water O2 

concentrations returned to the well ventilated conditions of the last glacial during the YD, 

in line with other paleoceanographic evidence from the western North American margin 

(Ohkushi et al., 2013; Chang et al., 2014; Moffit et al., 2015) (Fig. 6B). Pulsed 

ventilation during the Younger Dryas in the Bering and Okhotsk Seas may have 

increased the O2 concentration in NPIW (Max et al., 2014), however primary 

productivity on the California Margin also decreased during the YD (Pospelova et al., 

2015) reducing oxidant demand. 

5.4 Future research 

Epifaunal and infaunal benthic foraminiferal I/Ca ratios may be used to 

distinguish relative IO3
– availability at different sediment depths —from the SWI to 5-10 

cm as a qualitative proxy for oxygenation. Further foraminiferal I/Ca has the potential to 

quantitatively determine past O2 concentrations if species-specific calibrations are 

developed. Initial modern calibration studies show a highly significant correlation 

between bulk I/Ca ratios and bottom water O2 concentrations despite strong intra-test 

variability (Glock et al., 2016). Finally, species-specific infaunal I/Ca rations are likely 

also influenced by changes in microhabitat depth, driven by a combination of sediment 

O2 concentrations or food availability (Corg), the understanding of which requires more 

work in modern studies. In combination with the growing suite of stable isotope ratios 

and multiple element/Ca ratios that can be measured from the same foraminiferal samples 

such as the Mg/Ca (proxy for ocean temperature), δ18O (seawater salinity), δ13C (proxy 
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for nutrient sources), Mn/Ca (O2 content), the addition of the I/Ca proxy could improve 

interpretations of past biogeochemical conditions.  

Additionally, iodine pore water chemistry is strongly controlled by particulate 

organic matter flux and diagenetic recycling of iodine from labile organic matter in 

addition to the redox state of bottom waters (Kennedy and Elderfield, 1987). 

Unfortunately, these processes have been little studied since the first pioneering work 

was undertaken on iodine pore water chemistry (Price and Calvert, 1973; Price and 

Calvert, 1977; Francois, 1987; Kennedy and Elderfield, 1987). As SWI O2 concentrations 

influence diagenetic reactions within sediments based on the redox sequence, future 

research should focus on understanding the factors that control iodine distribution and 

speciation at the SWI.  

6. CONCLUSION 

The foraminiferal species presented in this study make excellent candidates for 

further calibration studies and demonstrate a history of oxygenation consistent with other 

well-established proxies. I/Ca ratios from epifaunal, and shallow-to-deep infaunal benthic 

foraminifera reproduce the IO3
– availability gradient that tracks O2 concentration from 

the sediment-water interface to pore waters.  

Thus multi-species benthic I/Ca can be employed to reconstruct the relative 

contribution of bottom water O2 and oxidant demand on pore water through time. The 

I/Ca proxy might enable quantitative reconstruction of O2 concentrations in both bottom 
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and pore waters, which could advance understanding of OMZ response to past climate 

change. By measuring I/Ca ratios from multiple benthic foraminifera species at ODP 

Hole 1017E we can now demonstrate low O2 conditions in pore waters during the Bølling 

(14.7 ka) resulted from high sedimentary oxidant demand driven by increased primary 

productivity. In contrast, decreased bottom water oxygenation during Allerød was 

associated with a poorly oxygenated intermediate waters at the base of the OMZ. Well -

oxygenated intermediate waters circulated over the site during the LGM and returned 

during the YD supporting the production of well-ventilated NPIW during cool climate 

intervals.  
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FIGURE CAPTIONS 

Figure 1. A) Map of North Pacific Ocean showing location of ODP Hole 1017E on the 

Santa Lucia slope, California (34˚32’N: 121°60’W, 955 m water depth). B) Water 

column profile of dissolved O2 concentration for a northeastern Pacific transect (Schlitzer, 

2015, Ocean Data View). The modern bottom water O2 concentration for ODP Hole 

1017E indicated by an x, while dashed lines separate oxic and suboxic water.  

 

Figure 2. Benthic foraminiferal I/Ca ratios of A) epifanual Cibicidoides sp. (diamonds 

and dashed line), B) shallow infaunal Uvigerina peregrina (red squares and solid red 

line) and C) deep infaunal Bolivina spissa (circles and solid black line). Thick lines 

represent the average of all analyses binned into 4 time intervals: the LGM, the Bølling, 

the Allerød, and the YD. Major warm interstadials through the last deglaciation are 

shaded and the defined oxygen concentrations from oxic to dysoxic conditions are 

labeled. 

 

Figure 3. Schematic representation of depth habitats expected for multiple benthic 

species and diagenetic processes controlling IO3
– and I– distributions in pore water under 

different redox conditions (adapted from Kennedy and Elderfield, 1987). A) 
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Representation of a benthic environment with low sedimentary Corg under well 

oxygenated bottom water. B) The Last Glacial Maximum; bottom water is oxygenated, 

sedimentary Corg is low. C) The Bølling; bottom water is oxygenated, sedimentary Corg 

production is high and D) the Allerød; bottom water is oxygenated-depleted. Three 

benthic foraminifera are shown: Epifaunal (Cibicidoides sp.), shallow infaunal 

(Uvigerina sp), and deep infaunal (Bolivina sp.). Pore water IO3
- (solid line) and I- 

(dashed line) ion concentrations are displayed over relative pore water oxygenation and 

Corg concentration. 1. I- production at the sediment water interface (SWI), 2. I-

 oxygenation in oxic pore waters, 3. IO3
- reduction in suboxic pore waters and 4. I-

 production from IO3
– associated Corg. 

 

 

Figure 4. Comparison of different redox proxy records associated with bottom and pore 

water oxygenation from ODP Hole 1017E versus calendar age BP (ka). A) I/Ca ratio for 

Cibicidoides sp. (diamonds and dashed line), U. peregrina (red squares and solid red line), 

deep infaunal Bolivina spissa (circles and solid black line), where thick lines represent 

the average of all analyses binned by sample depths falling within the following intervals: 

the LGM, the Bølling, the Allerød, and the YD;.B) bulk sediment I/Br ratio (Hendy and 

Pedersen, 2005); C) bulk sediment Re concentration (ppb; dashed line) (Hendy and 

Pedersen, 2005); D) bulk sediment Mo concentration (ppm) (Hendy and Pedersen, 2005); 
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E) Re/Mo ratio (dashed line); F) benthic foraminiferal assemblage, percentages grouped 

into dysoxic (dark gray shading), suboxic 1 (gray shading), suboxic 2 (light gray shading), 

and oxic indicators (black shading) (Cannariato and Kennett, 1999). Major warm 

interstadials through the last deglaciation are shaded and the defined O2 concentrations 

from oxic to dysoxic conditions are labeled. 

 

Figure 5. Comparison of productivity proxy records with bottom and pore water 

oxygenation from ODP Hole 1017E versus calendar age BP (ka). A) The ratio of dextral 

to sinistral N. pachyderma indicating timing of climate events (Hendy, 2010); B) δ15N of 

organic matter (Hendy et al., 2004); C) total organic carbon (weight %) (Irino and 

Pedersen, 2000); D) bulk sediment silver concentration (ppb) (Hendy and Pedersen, 

2005); E) bulk sediment cadmium concentration (ppm) (Hendy and Pedersen, 2005); and 

F) I/Ca ratios standardized to the mean value of all samples for Cibicidoides sp. (dashed 

line), U. peregrina (solid red line), and B. spissa (solid black line). Major warm 

interstadials through the last deglaciation are shaded. 

 

Figure 6. Schematic of shallow subsurface water characteristics on the California Margin 

during the late glacial. The depth and locations of ODP Hole 1017E (San Lucia Slope), 

ODP Site 893 (Santa Barbara Basin), and MV0811-15JC (Santa Barbara Basin slope) 

relative to water masses are indicated for the following time intervals A. present day; B. 
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Younger Dryas; C. Allerød; D. Bølling; and E. the Late Glacial. Decreasing O2 

concentrations in water masses indicated by depth of orange shading, while relative 

primary productivity indicated by number and thickness of green lines. The following 

water mass abbreviations are used; California Undercurrent (CU), Eastern Subtropical 

Subsurface Water (ESsW), North Pacific Intermediate Water (NPIW) and Pacific Deep 

Water (PDW). 

This article is protected by copyright. All rights reserved.



0

1500

1000

500

2000

D
ep

th
 (m

 b
el

ow
 s

ur
fa

ce
)

Surface water
225-275 µmol kg-1 

0 50 100 150
Dissolved Oxygen (µmol kg-1)

Modern

ODP Site
1017E

ODP Site
1017E
Modern

OxicSuboxic

ODP Site
1017E

ETNP

NPIW

A.A.

B.

North
America

North 
Paci c
Ocean

This article is protected by copyright. All rights reserved.



Yo
un

ge
r 

D
ry

as

A
lle

rø
d

Bø
lli

ng

LGM

2120191817161514131211

2120191817161514131211

Age (Ka)

Age (Ka)

3

2

1

Ave.

0

A.

Ci
bi

ci
do

id
es

 sp
. 

I/C
a 

µm
ol

 m
ol

-1

3

2

1

0

U
vi

ge
rin

a 
pe

re
gi

na
 

I/C
a 

µm
ol

 m
ol

-1
 

B.

1

0

2

Bo
liv

in
a 

sp
is

sa
 

I/C
a 

µm
ol

 m
ol

-1

C.

This article is protected by copyright. All rights reserved.



Increasing concentration
I-

Oxic Water Suboxic WaterOxic Water

IO3
-

IO3
-

IO3
-

IO3
-

IO3
-

IO3
-

IO3
-

I-

I-IO3
-

IO3
-

Oxic Water

Low Corg + 
associated IO3

-

High Corg + 
associated IO3

-

Corg and I-

Oxic 
porewater
Suboxic 
porewater
Anoxic 
porewater

I-I- IO3
-IO3
-IO3

-IO3
- IO3

-IO3
- I-I-

IO3
- Iodate 
ion

I- Iodide 
ion

Epifaunal I/Ca
Shallow
infaunal I/Ca

Deep 
infaunal I/Ca

1 1 1

2

2 3

3

3

4

4

4

B. LGM C. Bølling D. Allerød

I-I-I-I- IO3
-IO3
-

1
2

0

2

4

6

8

10

cm
 b

el
ow

 s
ed

im
en

t-
w

at
er

 in
te

rf
ac

e 
(S

W
I)

Very low Corg + 
associated IO3

-

A. 

This article is protected by copyright. All rights reserved.



25242322212019181716151413121110

Yo
un

ge
r D

ry
as

A
lle

rø
d

Bø
lli

ng

100

50

0

Suboxic 2

Suboxic 1

Be
nt

hi
c 

fo
ra

m
in

ife
ra

l 
as

se
m

bl
ag

e 
(%

)

Age (Ka)

Oxic

15

10

5

Re
/M

o

5

4

3

2

1

M
o 

(p
pm

)

20

10

Re
 (p

pb
)

1.0

0.5

I/B
r 

B.

C.

D.

E.

F.

DysoxicDysoxic

25242322212019181716151413121110
Age (Ka)

3

2

1

0Be
nt

hi
c 

fo
ra

m
in

ife
ra

l I
/C

a

Cibicidoides sp
Uvigerina peregina
Bolivina spissa

30

1.5

A.

This article is protected by copyright. All rights reserved.



Yo
un

ge
r D

ry
as

A
lle

rø
d

Bø
lli

ng

F.

2322212019181716151413121110
Age (Ka)

Deep infaunal

Shallow infaunal

D
ec

re
as

in
g 

IO
3- 

av
ai

la
bi

lit
y

2

1

0

-1

Mean

IO
3- a

va
ila

bi
lit

y 
gr

ad
ie

nt

Epifaunal 

St
an

da
rd

iz
ed

 I/
Ca

 ra
tio

s

Age (Ka)

1400

1000

600

300

200

100

2

1

A.

B.

C.

D.

E.

100

50

0

2322212019181716151413121110

8

7

6

5

Ca
dm

iu
m

 (p
pb

) Si
lv

er
 (p

pb
)O
rg

an
ic

 c
ar

bo
n 

(w
ei

gh
t %

)
D

ex
tr

al
 to

 s
in

is
tr

al
 

N
. p

ac
hy

de
rm

a 
ra

tio

δ15
N

 (‰
)

This article is protected by copyright. All rights reserved.



450 m
sill depth

400 m
sill depth

350 m
sill depth

350 m
sill depth

330 m
sill depth

ODP 1017

ODP 893

Santa Barbara BasinSan Lucia Slope

CU - ESsW

Modi�ed SW NPIW
Contributions from Okhotsk Sea, Gulf of
Alaska, Kuroshio and Oyashio Fronts 

Paci�c Deep 
Water

ODP 1017

ODP 893
CU - some ESsW contribution

Paci�c Deep 
Water

ODP 1017

Bølling

ODP 893

California Current

Paci�c Deep 
Water

ODP 1017

Last Glacial 
Maximum

ODP 893

California Current

Paci�c Deep 
Water

Younger Dryas

MV0811-15JC

MV0811-15JC

MV0811-15JC

ODP 1017

ODP 893
CU -  small ESsW contribution

Modi�ed SW NPIW
Ventilated Okhotsk/Bering Sea
contribution

Paci�c Deep 
Water

MV0811-15JC

Allerød

Surface ProductivitySurface Productivity

Surface ProductivitySurface Productivity

Surface ProductivitySurface Productivity

Surface ProductivitySurface Productivity

Surface ProductivitySurface Productivity

MV0811-15JC

Modern A.

E.

D.

C.

B.

CU - signi�cant ESsW contribution

Modi�ed SW NPIW
Kuroshio and Oyashio Fronts/
PDW contribution?

Modi�ed SW NPIW
Poorly ventilated Okhotsk/Bering 
Sea contribution

CU? - No ESsW contribution

Modi�ed SW NPIW
Ventilated Okhotsk/Bering Sea
contribution

This article is protected by copyright. All rights reserved.



Hendy Ingrid (Orcid ID: 0000-0001-8305-6752) 
 
 

 

This article is protected by copyright. All rights reserved.



Hendy Ingrid (Orcid ID: 0000-0001-8305-6752) 
 
 

  

This article is protected by copyright. All rights reserved.



Hendy Ingrid (Orcid ID: 0000-0001-8305-6752) 
 
 

 

This article is protected by copyright. All rights reserved.



Hendy Ingrid (Orcid ID: 0000-0001-8305-6752) 
 
 

 

This article is protected by copyright. All rights reserved.


