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Abstract 

Aims: Left ventricular (LV) mechanical dyssynchrony has been described in heart failure with 

preserved ejection fraction (HFpEF), but its prognostic significance is not known.  

Method and Results: Of 3445 patients with HFpEF enrolled in the Treatment of Preserved 

Cardiac Function Heart Failure With an Aldosterone Antagonist TOPCAT trial, dyssynchrony 

analysis was performed on 424 patients (12%) by multiple speckle-tracking echocardiography 

strain-based criteria.  The primary dyssynchrony analysis was the standard deviation of the time 

to peak longitudinal strain (SD T2P LS). Cox proportional hazards models assessed the 

association of dyssynchrony with the composite outcome of cardiovascular death or HF 

hospitalization.  

Mean age was 70±10 years, LV ejection fraction (LVEF) was 60±8%, and QRS duration was 

101±27 ms.  Worse dyssynchrony, reflected in SD T2P LS,  was associated with wider QRS, 

prior MI, larger LV volume and mass, worse systolic (lower LVEF and GLS) and diastolic 

(lower e’, higher E/e’) function. During a median follow-up of 2.6 [IQR 1.5–3.8] years, 107 

patients experienced the composite outcome. Worse dyssynchrony was associated with the 

composite outcome in unadjusted analysis (HR 1.04 (1.01-1.07); p=0.021, per 10 ms increase), 

but not after adjusting for clinical characteristics, or after further adjustment for LVEF, atrial 

fibrillation, NYHA class, stroke, heart rate, creatinine, hematocrit and QRS duration (HR 1.03 

(0.99-1.06); p=0.16, per 10 ms increase).   

Conclusion: Worse LV mechanical dyssynchrony, assessed by speckle-tracking 

echocardiography, is not an independent predictor of adverse outcomes in HFpEF, suggesting 

that mechanical dyssynchrony is unlikely to be an important mechanism underlying this 
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syndrome. These findings warrant validation in an independent study specifically designed to 

assess the prognostic utility of mechanical dyssynchrony in HFpEF. 

 

Keywords: clinical trial; heart failure; heart ventricles; preserved left ventricular function; 

spironolactone; dyssynchrony. 

Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: 
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Introduction 

 Left ventricular (LV) electrical dyssynchrony is a strong prognostic marker of adverse 

outcomes in heart failure with reduced ejection fraction (HFrEF)1, and resynchronization therapy 

targeting electric dyssynchrony reduces HF morbidity and mortality2. LV mechanical 

dyssynchrony, detected by non-invasive imaging such as echocardiography, is similarly 

associated with worse outcomes in HFrEF – even when occurring in the absence of concomitant 

electrical dyssynchrony3.  HF with preserved LVEF (HFpEF) accounts for approximately half of 

HF cases in the community and causes substantial morbidity and mortality4,5.  While LV 

diastolic dysfunction is accepted as the primary cardiac perturbation underlying this 

heterogeneous syndrome, several other cardiovascular and non-cardiovascular abnormalities also 

appear to contribute.  As in HFrEF, LV electrical dyssynchrony – reflected in prolonged QRS 

duration – is an independent predictor of HF hospitalization and cardiovascular death in HFpEF6. 

Additionally, detailed echocardiographic characterization has demonstrated greater degrees of 

LV mechanical dyssynchrony in HFpEF compared to asymptomatic controls, even in the 

absence of QRS prolongation7,8. However, whether the presence of LV mechanical 

dyssynchrony is simply a marker of worse cardiac function or a central pathophysiologic 

mechanism independently associated with worse prognosis in HFpEF is unknown.  

 The aim of this study was to determine the prognostic relevance of LV mechanical 

dyssynchrony for incident cardiovascular morbidity (HF hospitalization) and mortality in 

HFpEF. We studied HFpEF patients enrolled in the Treatment of Preserved Cardiac Function 

Heart Failure with an Aldosterone Antagonist (TOPCAT) trial who were included in the 

echocardiography study and had adequate images for quantitative assessment of indices of LV 
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mechanical dyssynchrony prior to randomization.
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Methods 

Patient Population 

As previously described in detail9, the TOPCAT trial was a multicenter, international, 

randomized, double-blind, placebo-controlled trial testing the aldosterone antagonist 

spironolactone to reduce cardiovascular (CV) morbidity and mortality. In total, 3445 adults at 

least 50 years old with signs and symptoms of HF and an LVEF e  45 % per local site reading 

were included. Randomization was stratified by the presence of one of the following inclusion 

criteria: At least 1 hospitalization in the previous 12 months for which HF was a major 

component of the hospitalization or, if no qualifying hospitalization, a B-type natriuretic peptide 

(BNP) in the previous 60 days e100 pg/mL or N-terminal pro-BNP (NT-proBNP) e360 pg/mL. 

Detailed baseline and clinical characteristics of the trial population10 and the primary trial 

results11 have previously been published. Randomization to spironolactone did not reduce the 

composite endpoint of death or heart failure hospitalization but was associated with a lower 

incidence of HF hospitalization11. 

The design and baseline findings of the TOPCAT echocardiographic substudy, including 

reproducibility metrics for conventional echocardiographic measures, have previously been 

described in detail12. Dyssynchrony was assessed by strain analysis, which was performed on 

digitally acquired images in DICOM (digital imaging and communications in medicine) format 

with acceptable quality. Of 935 patients in the TOPCAT echocardiography study, 663 (71%) 

were in DICOM format. Of those in DICOM format, 424 (64%) had adequate image quality for 

strain analysis in the apical 4-chamber view by B-mode speckle tracking echocardiography 

(STE) as previously described13. Unacceptable image quality was defined as missing view, lack 
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of a full cardiac cycle, >2-segment dropout, or significant foreshortening of the LV. Mechanical 

dyssynchrony was assessed at baseline in 12% of the TOPCAT study population overall. Of the 

935 patients, 305 were enrolled in the dedicated sub-study, 244 of whom underwent follow-up 

echocardiography at 12 months to 18 months as previously described12. Of patients with feasible 

strain-based dyssynchrony analysis at baseline, 160 had follow-up studies13. All patients 

provided written informed consent, and the study was approved by the local Institutional Review 

Board. 

 

Echocardiographic Methods 

Quantitative measures on all study echocardiograms were performed according to the 

American Society of Echocardiography recommendations by dedicated analysts at the core 

laboratory who were blinded to clinical information and randomized treatment assignment, as 

previously described12,13.  Digitally acquired echocardiography images in DICOM format with 

acceptable image quality were uploaded to TomTec software (Munich, Germany) for 

deformational analyses (2D Cardiac Performance Analysis) as previously described14. For 

deformation analysis, in the apical views and parasternal views, endocardial borders were traced 

at the end-diastolic and end-systolic frame respectively as previously described14.  The software 

tracks speckles along the endocardial border throughout the cardiac cycle. Peak strain was 

computed automatically, generating regional data from 6 segments and an average value for each 

view. For patients in sinus rhythm, analyses were performed on a single cardiac cycle, whereas 

for patients in atrial fibrillation, strain values were calculated as the average of 3 selected cardiac 

cycles. Mechanical dyssynchrony was assessed primarily by the standard deviation of the time to 

peak (SD T2P) longitudinal strain (LS) in the apical 4-chamber view.  Additional 
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echocardiographic measures of LV dyssynchrony assessed included: SD T2P LS of 12 segments 

from the apical 4- and 2-chamber views, SD T2P transverse strain (TS) obtained from the apical 

4-chamber view (6 segments), SD T2P circumferential strain (CS) and radial strain (RS) from 

the parasternal short axis view at the mid-ventricular level. Peak LS was measured in the apical 

4-chamber and apical 2-chamber views (in 6 segments from each view) and averaged to calculate 

GLS13. All strain measures were performed by a single reader at the echocardiography core 

laboratory blinded to patient characteristics or treatment assignment.  Reproducibility of SD T2P 

LS obtained from the 4-chamber view was obtained in 20 patients with sinus rhythm and in 20 

patients with atrial fibrillation, and expressed as the mean bias and standard deviation using the 

Bland-Altmann method15. For intraobserver reproducibility, mean bias was 25±38 ms for 

patients with sinus rhythm, and 9±70 ms for patients with atrial fibrillation. For interobserver 

reproducibility, mean bias was 23±78 ms for patients with sinus rhythm, and 4±52 ms for 

patients with atrial fibrillation. 

 

Outcomes 

Clinical outcomes included CV death and HF hospitalization during the follow-up period. 

All events were reported by the primary site investigator and independently adjudicated by the 

Clinical Endpoints Center. Definitions of these end points have been previously published 9. 

 

Statistical Analysis 

Continuous variables are expressed as mean ± standard deviation for normally distributed 

variables, and median and interquartile range for non-normally distributed variables. Categorical 

variables are expressed as number of subjects and proportion.  Clinical characteristics and 
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conventional echocardiographic measures are presented by quartiles of SD T2P LS, with p-

values for trend across quartiles calculated using linear regression for continuous normally 

distributed variables and on an extension of the Wilcoxon rank-sum test16 for continuous non-

normally distributed variables.  The association between SD T2P LS and GLS, E/e’ and QRS 

duration was assessed using cubic spline regression models. 

The prognostic relevance of measures of LV mechanical dyssynchrony for the composite 

of HF hospitalization or CV death was assessed by time-to-event analysis using univariable and 

2 additive multivariable Cox proportional hazards models whose derivation has been previously 

described in detail12. Model 1 was adjusted for age, sex, race, randomized treatment assignment 

(spironolactone versus placebo), randomization strata (qualifying hospitalization or elevated 

natriuretic peptide level) and enrollment region (the Americas versus Russia/Georgia). Model 2 

additionally adjusted for history of atrial fibrillation, core laboratory LVEF, heart rate, New York 

Heart Association class, history of stroke, creatinine, hematocrit and QRS duration.  The 

relationship between baseline dyssynchrony and changes in LV volumes, mass, LVEF, and LA 

size from baseline to 12 or 18 months was assessed in the 160 patients in whom follow-up 

echocardiograms were available using linear regression adjusting for the baseline measure and 

randomized treatment assignment.  

As prominent differences in participant characteristics and event rates were noted 

between patients enrolled in the Americas compared with Russia and Georgia11, we also 

performed a sensitivity analysis restricted to patients enrolled in the Americas (n=319). A two 

sided p-value <0.05 was considered significant. Statistical analysis was performed using Stata 

software Version 12.1 (Stata Corp LP, College Station, TX, USA). 
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Results 

Mechanical dyssynchrony was assessed in 424 patients in TOPCAT (45% of the 

TOPCAT echocardiographic study; 12% of the overall study population).  Strain analysis was 

not feasible in 55% of the TOPCAT echocardiographic studies because of non-DICOM imaging 

format, missing views, and poor image quality.  Furthermore, due to variable missing data, a 

sizeable proportion of the study sample did not have deformation data from both apical 4- and 2-

chamber view strain, or strain data from the parasternal short axis view. Table 1 compares 

baseline characteristics between patients enrolled in the overall TOPCAT trial included in this 

analysis (SD T2P LS measured) compared to those not included. TOPCAT participants including 

in this analysis tended to be older, more frequently non-white, more frequently enrolled in the 

Americas, had a higher prevalence of co-morbidities including CAD, previous strokes, atrial 

fibrillation, and diabetes, and had higher NYHA functional class. 

The median SD T2P LS obtained from the 4-chamber view was 59.0 ms (IQR 39.5 to 

88.5 ms). Greater SD T2P LS – indicating greater mechanical dyssynchrony – was associated 

with older age, previous myocardial infarction, greater QRS duration, randomization through the 

prior HF hospitalization stratum, and higher natriuretic peptide levels among those with available 

measures (Table 2 and Figure 1). Greater SD T2P LS was also associated with greater LV size, 

wall thickness, and mass, worse systolic function as determined by lower LVEF and GLS, and 

worse diastolic function reflected in lower e’ and higher E/e’ ratio (Table 3 and Figure 1). 

During a median follow-up of 2.6 (IQR 1.5–3.8) years, 107 patients (25%) experienced 

the composite outcome of HF hospitalization or CV death. HF hospitalization occurred in 73 

(17%) patients, and CV death occurred in 51 (12%). In unadjusted analysis, greater SD T2P LS 
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was associated with a higher risk of the composite outcome (Figure 2, Table 4).  Patients in the 

highest quartile of SD T2P LS had approximately 2 times higher risk compared to patients in the 

lowest quartile (4th quartile vs. 1th quartile: HR 2.03, 95% CI  1.17 to 3.50, p=0.011).  After 

multivariable adjustment for clinical characteristics (age, sex, race, randomization strata, region 

of enrollment, treatment assignment), SD T2P LS was no longer an independent predictor of the 

composite outcome (Table 4). The same result was found after further adjustment for LVEF, 

atrial fibrillation, NYHA class, stroke, heart rate, creatinine, hematocrit and QRS duration (4th 

quartile vs. 1th quartile: HR 1.56, 95% CI  0.85 to 2.86, p=0.15)(Table 4).  In addition, in models 

adjusting only for either GLS or E/e’, SD T2P LS did not retain statistical significance (HR 1.02, 

95% CI 0.98-1.06, p=0.21, adjusting only for LS; HR 1.03, 95% CI 1.00-1.07, p=0.060, 

adjusting only for E/e’).  The SD T2P LS derived from the 4- and 2-chamber views (12 

segments) demonstrated similar results to SD T2P LS from the 4-chamber view (Table 4).  Of 

the other strain-based measures of LV mechanical dyssynchrony assessed, none were 

significantly associated with the composite outcome even in unadjusted analysis (Table 4). 

Among the 160 patients with serial echocardiographic data, greater baseline dyssynchrony was 

not associated with changes in LV volumes, LV mass, LVEF, or LA volume at 12-18 months 

follow-up (Table 5).  

Neither QRS duration (120 msec < versus e  120 msec; p for interaction = 0.79), LVEF 

(60% < versus e  60%; p for interaction = 0.27), nor abnormal GLS (-15% < versus e  -15%; p for 

interaction = 0.27) modified the association between mechanical dyssynchrony and the 

composite outcome.  In analyses restricted to patients enrolled in the Americas, no 

echocardiographic measures of dyssynchrony significantly predicted the composite outcome 

(Supplemental Tables 1). LV mechanical dyssynchrony, as assessed by SD T2P LS obtained 

This article is protected by copyright. All rights reserved.



12 
 

from the 4-chamber view, did not modify the relationship between randomization to 

spironolactone and the composite outcome (p for interaction 0.71). The prognostic relevance of 

dyssynchrony was similar among patients in sinus rhythm (n=247) and those in atrial fibrillation 

(n=176), and rhythm did not modify the relationship between dyssynchrony and the composite 

outcome (p for interaction = 0.94; Table 6). 
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Discussion 

While LV mechanical dyssynchrony has previously been described in HFpEF, its 

prognostic relevance in this syndrome is unknown.  We report that greater mechanical 

dyssynchrony as assessed by the SD T2P LS is significantly associated with the composite of HF 

hospitalization or CV death in unadjusted analysis, but not after adjusting for clinical 

characteristics.  Other strain-based measures of mechanical dyssynchrony are not associated with 

the composite outcome even in unadjusted analyses.  Together, these data suggest that the 

presence of mechanical dyssynchrony as assessed by STE does not provide independent 

prognostic information in HFpEF.  

 LV electrical dyssynchrony, reflected in prolonged QRS duration, is prognostic in both 

HFrEF1 and HFpEF6, and is a validated treatment target in HFrEF2.  LV mechanical 

dyssynchrony, detected by direct imaging of the LV contraction pattern, is also prognostic of 

adverse outcomes in HFrEF17 even in the absence of electrical dyssynchrony3. Improving 

mechanical dyssynchrony by CRT in HFrEF patients with concomitant electrical dyssynchrony 

(prolonged QRS duration) has been associated with improved outcome17. Importantly, however, 

isolated mechanical dyssynchrony does not appear to be an effective treatment target as 

evidenced by the neutral results of the recent Echocardiography-Guided Cardiac 

Resynchronization Therapy (EchoCRT) trial3,18 which tested the efficacy of resynchronization 

therapy in HFrEF patients with echocardiographic evidence of mechanical dyssynchrony and a 

narrow QRS.  Several studies have demonstrated greater mechanical dyssynchrony in HFpEF 

compared to asymptomatic controls14,19, although this has not been a universal finding8.  The 

mechanisms responsible for mechanical dyssynchrony in HFpEF are unclear.  Elevated LV 
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afterload, as seen in hypertension, is associated with lower average LV LS due to lower regional 

strain in certain segments of the LV,20,21 with a concomitant increase in mechanical 

dyssynchrony21. Indeed, a prior study demonstrated a similar magnitude of dyssynchrony in 

asymptomatic persons with hypertension and HFpEF8. 

The magnitude of mechanical dyssynchrony in this TOPCAT sample was similar to that 

in the Prospective comparison of ARNI with ARB on Management Of heart failure with 

preserved ejection fraction (PARAMOUNT) HFpEF trial7,22  but considerably less than in 

HFrEF patients with prolonged QRS enrolled  in the Multicenter Automatic Defibrillator 

Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT) trial23,24 and in post-

MI patients25.  Despite a similar magnitude of mechanical dyssynchrony as other HFpEF studies, 

mechanical dyssynchrony did not provide independent prognostic information in HFpEF patients 

beyond basic clinical characteristics.  The absence of independent prognostic value of 

mechanical dyssynchrony in HFpEF is important, as the prospect of treating HFpEF patients 

with mechanical dyssynchrony using CRT has been discussed26. The reason for the lack of 

independent prognostic value is unclear.  Given the smaller magnitude of dyssynchrony in 

HFpEF compared to HFrEF, mechanical dyssynchrony in HFpEF may not be of sufficient 

magnitude to cause substantive LV inefficiency.  Alternatively, greater mechanical dyssynchrony 

was significantly associated with worse systolic and diastolic function (GLS and E/e’) and worse 

electrical dyssynchrony (QRS duration), each of which is a strong independent predictor of 

outcome in HFpEF6,12,13,27.  The observed univariable association of mechanical dyssynchrony 

with outcomes in HFpEF may therefore simply be secondary to the association of mechanical 

dyssynchrony with worse systolic and diastolic function6,12,13. This is supported by our 
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observation that the association of SD T2P LS with CV death or HF hospitalization was no 

longer significant after adjusting for GLS or for E/e’.  

 Dyssynchrony decreases ventricular contractile efficiency, and progressive LV 

remodeling – and reverse remodeling with resynchronization therapy – is one recognized 

mechanism mediating prognosis28. Previous studies in patients with a normal LVEF have 

suggested that electrical dyssynchrony due to chronic RV pacing is associated with progressive 

LV enlargement, worsening LV systolic function, and LA enlargement29,30. The randomized 

controlled Pacing to Avoid Cardiac Enlargement (PACE) trial, which randomized 177 patients 

with bradycardiac and LVEF >45%  to biventricular or right ventricular pacing, demonstrated 

significant increase in LVEDV and decrease in LVEF at 12 months among patients randomized 

to RV pacing.  Biventricular pacing ameliorated these dyssynchrony-associated changes30. 

However, the association of mechanical dyssynchrony in the context of a preserved LVEF with 

adverse LV remodeling has not been defined. Among the 160 TOPCAT participants with 

baseline dyssynchrony data and follow-up echocardiography at 12-18 months, baseline 

dyssynchrony was not associated with progressive worsening of LV structure or function, which 

is concordant with the lack of independent association of dyssynchrony with incident HF or CV 

death.  Additionally, baseline dyssynchrony was not associated with progressive LA 

enlargement, an important prognostic measure in HFpEF31,32. 

While several echocardiographic measures of LV mechanical dyssynchrony have been 

developed, including M-mode, Doppler, tissue Doppler imaging (TDI) and STE, we primarily 

evaluated STE-based measures evaluating the temporal dispersion in time to peak regional 

deformation.  It is therefore possible that another imaging-based measure of dyssynchrony not 

assessed in this study would be independently predictive of adverse outcomes.  However, we 
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assessed mechanical dyssynchrony by STE using several different methods including those 

employed in recent CRT trials in HFrEF, MADIT-CRT2,23 and EchoCRT3,18. While SD T2P LS 

was the metric most strongly associated with outcomes, there was uniformly no independent 

association of any of the dyssynchrony measures assessed with outcomes after multivariable 

adjustment.  Metrics of the temporal dispersion in the time to peak segmental deformation 

assessed by TDI and STE have been the most rigorously studied measures of mechanical 

dyssynchrony to date3,18,23,33.  However, both TDI and STE curves provide a substantial amount 

of information regarding regional patterns of deformation beyond just the timing of peak 

deformation.  Novel approaches have evaluated differences in the patterns of the complete 

velocity34 or deformation curves21, based on the concept that these curves can display similar 

patterns of contraction despite different time to peak values, and may be superior to the time to 

peak methods to identify responders to CRT34,35. 

 Previous studies have described SD T2P LS as a strong predictor of ventricular 

arrhythmias36,37, although recent reports suggest limited utility of this measure to predict 

arrhythmic events in HFrEF24,38–40. No study has previously assessed whether this measure is 

associated with ventricular arrhythmias in HFpEF. Data regarding incident ventricular 

arrhythmias, short of aborted sudden death, are not available in TOPCAT. We were therefore 

unable to assess the relationship between SD T2P LS and ventricular arrhythmias in this 

analysis, and the association of this measure with ventricular arrhythmias in HFpEF remains 

unknown. 

Strain analysis was feasible in 45% of patients in the TOPCAT echocardiography study 

and 12% of the overall TOPCAT study population, limiting statistical power and generalizability 

for these analyses. In addition, HFpEF is known to be a heterogeneous syndrome41 and we 
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cannot exclude the possibility that in a subset of HFpEF patients, LV mechanical dyssynchrony 

is particularly relevant to disease pathophysiology and prognosis.  Not all previously proposed 

measures of the LV mechanical dyssynchrony – particularly those based on M-mode imaging or 

TDI – could be assessed in this study.  In the TOPCAT trial, strain was not assessed in the apical 

long axis view, but only in the apical 4- and 2-chamber views. Dyssynchrony was therefore only 

calculated from 6-segments (4-chamber view) and 12-segments (4- and 2-chamber views), and 

was not assessed from 16-segments (4-, 2-, and 3-chamber views)13. Finally, prior studies have 

suggested that, as opposed to greater resting dyssynchrony, HFpEF is characterized by a failure 

of exercise associated decrease in LV dyssynchrony19.  However, only resting-state imaging was 

available in this study, so the prognostic relevance of exercise-induced changes in LV synchrony 

could not be assessed.  

 

Conclusion 

Worse LV mechanical dyssynchrony, as assessed by STE, is not an independent predictor of 

adverse outcomes in HFpEF. These findings suggest that mechanical dyssynchrony is a marker 

of worse cardiac structure and function in HFpEF, but is unlikely to be an important mechanism 

underlying this syndrome. These findings warrant validation in an independent study specifically 

designed to assess the prognostic utility of mechanical dyssynchrony in HFpEF.
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Figure legends 

Figure 1: Association between the myocardial dyssynchrony and LS, E/e’ and QRS 

duration. 

Cubic splines regression models with 95% confidence intervals for the association between 

mechanical dyssynchrony as assessed by SD T2P LS and LS (A), E/e’ (B) and QRS duration (C), 

respectively. 

LS – Global Longitudinal Strain; SD T2P LS – Standard Deviation Time To Peak LS. 

 

Figure 2: Association of LV mechanical dyssynchrony  and incident HF hospitalization or 

CV death. 

Unadjusted incidence  with 95% confidence intervals of composite endpoint per 100 patient 

years  based on LV mechanical dyssynchrony as assessed by SD T2P. A Poisson model was used 

to estimate the incidence rate. P for overall relationship = 0.021; p for non-linearity = 0.082.  

Histograms shows the population distribution of LV mechanical dyssynchrony.  

SD T2P LS – Standard Deviation Time To Peak LS. 
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Table 1. Baseline characteristics of patients enrolled in the TOPCAT trial included versus 

not included in this analysis. 

 Nonecho Echo including T2P LS P-value 

 n=3021 n=424  

Demographics    
Age (years) 68.3 ± 9.5 70.2 ± 9.8 <0.001 
Women, n (%) 1542 (51.1%) 231 (54.5%) 0.19 
White, n (%)   2721 (90.2%) 339 (80.0%) <0.001 
Enrollment in Russia/Georgia, n (%)  1573 (52.1%) 105 (24.8%) <0.001 

Clinical    
Enrollment strata: previous 
hospitalization, n (%)  2192 (72.6%) 271 (63.9%) <0.001 
Myocardial Infarction, n (%)   782 (25.9%) 111 (26.2%) 0.89 
Coronary revascularization, n (%)   687 (22.8%) 126 (29.8%) 0.001 
Stroke, n (%)   222 (7.4%) 43 (10.2%) 0.043 
Atrial fibrillation, n (%)   1037 (34.4%) 176 (41.6%) 0.004 
Diabetes mellitus, n (%)   957 (31.7%) 161 (38.1%) 0.009 
Hypertension, n (%)   2756 (91.4%) 389 (92.0%) 0.69 
NYHA functional class (3 & 4), n (%)   974 (32.3%) 161 (38.2%) 0.017 
QRS Duration (ms)  99.4 ± 28.4 100.9 ± 27.1 0.32 
QRS duration > 120 ms  552 (18.3%) 84 (19.8%) 0.44 
BMI (kg/m2)  32.1 ± 7.3 32.5 ± 6.9 0.30 
Heart Rate (beats per minute) 69.1 ± 10.3 68.7 ± 10.8 0.41 
Systolic blood pressure (mmHg) 129.6 ± 13.7 126.5 ± 15.2 <0.001 
Diastolic blood pressure (mmHg) 76.2 ± 10.5 72.6 ± 10.8 <0.001 

Lab work    
Creatinine (mg/dL)  1.1 ± 0.3 1.1 ± 0.3 0.002 
Z score BNP  0.0 ± 1.0 -0.1 ± 1.0 0.30 
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Table 2. Clinical parameters by quartiles of Mechanical Dyssynchrony 

 All Dyssynchrony as assessed by SD T2P LS in the 4CH view 
T2P quartiles 

  
n=424 

Quartile 1 
n=106 

Quartile 2 
n=109 

Quartile 3 
n=103 

Quartile 4 
n=106 

P for trend 

T2P (ms)  59.0 [39.5, 88.5] <39.5 39.5-59.0 59.1-88.5 >88.5  

Demographics       
Age (years) 70.2 ± 9.8 69.8 ± 9.5 69.0 ± 10.4 69.7 ± 9.2 72.4 ± 9.7 0.044 
Women, n (%) 231 (54.5%) 55 (51.9%) 71 (65.1%) 55 (53.4%) 50 (47.2%) 0.23 
White, n (%)   339 (80.0%) 88 (83.0%) 87 (79.8%) 77 (74.8%) 87 (82.1%) 0.66 
Enrollment in Russia/Georgia, n (%)  105 (24.8%) 32 (30.2%) 29 (26.6%) 18 (17.5%) 26 (24.5%) 0.17 

Clinical       
Enrollment strata: previous 
hospitalization, n (%)  

271 (63.9%) 76 (71.7%) 69 (63.3%) 65 (63.1%) 61 (57.5%) 0.041 

Myocardial Infarction, n (%)   111 (26.2%) 22 (21.0%) 24 (22.0%) 28 (27.2%) 37 (34.9%) 0.014 
Coronary revascularization, n (%)   126 (29.8%) 27 (25.7%) 35 (32.1%) 22 (21.4%) 42 (39.6%) 0.12 
Stroke, n (%)   43 (10.2%) 8 (7.6%) 15 (13.8%) 9 (8.7%) 11 (10.4%) 0.81 
Atrial fibrillation, n (%)   176 (41.6%) 46 (43.8%) 47 (43.1%) 39 (37.9%) 44 (41.5%) 0.57 
Diabetes mellitus, n (%)   161 (38.1%) 39 (37.1%) 41 (37.6%) 37 (35.9%) 44 (41.5%) 0.59 
Hypertension, n (%)   389 (92.0%) 96 (91.4%) 100 (91.7%) 94 (91.3%) 99 (93.4%) 0.65 
NYHA functional class (3 & 4), n (%)   161 (38.2%) 43 (41.0%) 45 (41.7%) 34 (33.0%) 39 (36.8%) 0.32 
QRS Duration (ms)  100.9 ± 27.1 90.8 ± 17.3 98.5 ± 22.9 102.6 ± 28.3 111.4 ± 33.2 <0.001 
QRS duration > 120 ms  84 (19.8%) 8 (7.5%) 18 (16.5%) 21 (20.4%) 37 (34.9%) <0.001 
BMI (kg/m2)  32.5 ± 6.9 32.1 ± 6.3 33.6 ± 7.7 33.1 ± 6.8 31.1 ± 6.6 0.26 
Heart Rate (beats per minute) 68.7 ± 10.8 68.7 ± 10.3 69.7 ± 11.6 67.3 ± 10.6 69.0 ± 10.6 0.75 
Systolic blood pressure (mmHg) 126.5 ± 15.2 124.3 ± 13.3 127.1 ± 14.3 128.4 ± 17.5 126.3 ± 15.3 0.27 
Diastolic blood pressure (mmHg) 72.6 ± 10.8 72.7 ± 11.2 73.5 ± 9.8 71.0 ± 11.0 73.1 ± 11.0 0.79 

Lab work       
Creatinine (mg/dL)  1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.4 1.2 ± 0.4 1.1 ± 0.3 0.47 
Z score BNP  -0.1 ± 1.0 -0.1 ± 1.2 -0.2 ± 0.9 0.1 ± 0.9 0.2 ± 0.9 0.041 
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Table 3. Echocardiographic parameters by quartiles of Mechanical Dyssynchrony 

 All Dyssynchrony as assessed by SD T2P LS in the 4CH view 
T2P quartiles 

  
n=424 

Quartile 1 
n=106 

Quartile 2 
n=109 

Quartile 3 
n=103 

Quartile 4 
n=106 

P for trend 

T2P (ms)  59.0 [39.5, 88.5] <39.5 39.5-59.0 59.1-88.5 >88.5  

LVEDV (mL) 98.5 ± 35.1 93.0 ± 28.8 95.5 ± 35.5 101.6 ± 35.1 104.1 ± 39.5 0.009 
LVEDD (cm) 4.8 ± 0.6 4.7 ± 0.6 4.7 ± 0.6 4.8 ± 0.5 4.9 ± 0.7 0.011 
Mean wall thickness (cm)  1.2 ± 0.2 1.1 ± 0.2 1.1 ± 0.2 1.2 ± 0.2 1.2 ± 0.3 <0.001 
LV mass (g) 215.4 ± 68.2 194.4 ± 56.9 202.6 ± 64.0 223.5 ± 65.7 241.9 ± 75.5 <0.001 
TDI E ʹ (septal) (cm/s) 5.9 ± 2.0 6.6 ± 2.0 6.3 ± 2.1 5.6 ± 2.1 5.1 ± 1.7 <0.001 
TDI E ʹ (lateral) (cm/s) 8.1 ± 3.1 8.7 ± 2.8 8.5 ± 3.6 7.5 ± 2.8 7.6 ± 3.0 0.005 
LAV (mL) 60.7 ± 27.4 58.0 ± 20.4 61.9 ± 35.2 59.9 ± 20.5 63.0 ± 29.9 0.28 
E/E ʹ (septal)  15.9 ± 6.9 13.6 ± 5.8 15.5 ± 6.3 16.8 ± 7.1 17.9 ± 7.6 <0.001 
E/E ʹ (lateral)  11.8 ± 5.9 10.1 ± 4.8 12.2 ± 6.0 12.5 ± 6.3 12.3 ± 6.4 0.023 
LVEF (%) 59.9 ± 8.1 62.3 ± 5.7 60.6 ± 7.0 59.7 ± 8.0 57.0 ± 10.1 <0.001 
GLS (%) -15.6 ± 3.5 -17.1 ± 2.8 -15.5 ± 3.4 -15.6 ± 3.5 -14.1 ± 3.6 <0.001 
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Table 4. Measures of Mechanical Dyssynchrony and the association with outcome  

 N Events Hazard Ratio (95% CI) P-value 

Obtained from the 4CH view 
    

SD T2P LS per 10 ms increase     
Unadjusted  424 107 1.04 (1.01-1.07) 0.021 
Model 1  424 107 1.03 (1.00-1.06) 0.055 
Model 2 410 105 1.03 (0.99-1.06) 0.157 
     
SD T2P TS per 10 ms increase     
Unadjusted  424 107 1.00 (0.98-1.03) 0.785 
Model 1  424 107 1.00 (0.98-1.03) 0.838 
Model 2 410 105 1.00 (0.98-1.03) 0.840 
     
Obtained from the 4CH and 2CH view     
Average of SD T2P LS per 10 ms increase     
Unadjusted  212 50 1.07 (1.00-1.15) 0.046 
Model 1  212 50 1.06 (0.99-1.14) 0.083 
Model 2 202 49 1.07 (0.99-1.16) 0.083 
     
Obtained from the psax view     
SD T2P CS per 10 ms increase     
Unadjusted  243 69 1.05 (0.99-1.11) 0.094 
Model 1  243 69 1.05 (0.99-1.11) 0.093 
Model 2 232 68 1.05 (0.99-1.11) 0.133 
     
SD T2P RS per 10 ms increase     
Unadjusted  243 69 0.99 (0.95-1.02) 0.467 
Model 1  243 69 1.00 (0.96-1.04) 0.937 
Model 2 232 68 1.00 (0.96-1.04) 0.925 
     
T2P anteroseptal to posterior difference per 10 ms increase      
Unadjusted  243 69 0.99 (0.97-1.01) 0.495 
Model 1  243 69 1.00 (0.97-1.02) 0.784 
Model 2 232 68 0.99 (0.97-1.02) 0.499 
     
T2P anteroseptal to posterior difference > 130 ms      
Unadjusted  243 69 1.05 (0.56-1.95) 0.889 
Model 1  243 69 1.12 (0.60-2.11) 0.719 
Model 2 232 68 1.01 (0.52-1.97) 0.970 
Model 1 is adjusted for age, sex, race, randomization strata (previous HF hospitalization or 
biomarker criteria), region of enrollment (Americas versus Russia/Georgia), randomized 
treatment. Model 2 includes the same variables as Model 1 + core laboratory left ventricular 
LVEF, history of atrial fibrillation, heart rate, New York Heart Association class, history of 
stroke, creatinine, hematocrit and QRS duration. 
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Table 5. Mechanical Dyssynchrony at baseline and LV remodeling at 12-18 months (n=160) 

 Dyssynchrony as assessed by SD T2P LS in the 4CH view 
T2P quartiles 

 Quartile 1 
n=41 

Quartile 2 
n=41 

Quartile 3 
n=38 

Quartile 4 
n=40 

P for trend 

T2P (ms)  <36 36-58 58-86 >86  

LVEDV Baseline (mL) 88.1 ± 24.9 99.4 ± 37.2 103.9 ± 37.7 101.7 ± 36.8 0.06 
LVEDV Change (mL) 2.9 ± 14.0 -1.8 ± 12.1 2.0 ± 16.4 4.9 ± 14.0 0.32* 
 

    
 

LVESV Baseline (mL) 32.7 ± 10.0 41.1 ± 23.8 45.5 ± 25.7 46.1 ± 24.3 0.004 
LVESV Change (mL) 1.8 ± 9.5 -0.8 ± 6.2 1.3 ± 9.9 4.0 ± 8.7 0.22* 
 

    
 

LV mass Baseline (g) 181.4 ± 50.3 197.7 ± 58.4 209.4 ± 65.4 234.4 ± 73.3 <0.001 
LV mass Change (g) -1.1 ± 11.8 1.0 ± 23.9 -3.4 ± 30.1 -2.6 ± 17.8 0.84* 
 

    
 

LAV Baseline (mL) 62.8 ± 22.0 59.5 ± 21.9 60.6 ± 23.5 61.7 ± 21.8 0.91 
LAV Change (mL) 0.1 ± 9.4 -0.8 ± 13.1 3.3 ± 15.4 4.3 ± 17.9 0.10* 
 

    
 

LVEF Baseline (%) 62.7 ± 4.8 60.3 ± 7.5 58.2 ± 9.4 56.7 ± 10.2 <0.001 
LVEF Change (%) -0.7 ± 6.1 0.6 ± 5.9 -0.7 ± 5.2 -0.4 ± 6.4 0.41* 
*adjusted for the baseline measure and randomized treatment assignment.
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Table 6. Mechanical Dyssynchrony as assessed by SD T2P LS and the association with 

outcome in patients with and without atrial fibrillation   

 N Events Hazard Ratio (95% CI) P-value 

In patients with sinus rhythm 
    

SD T2P LS obtained from the 4CH view per 10 ms increase     
Unadjusted  247 60 1.04 (0.99-1.08) 0.096 
Model 1  247 60 1.02 (0.98-1.07) 0.273 
Model 2 239 58 1.03 (0.98-1.08) 0.275 
     
In patients with atrial fibrillation      
SD T2P LS obtained from the 4CH view per 10 ms increase     
Unadjusted  176 47 1.04 (0.99-1.08) 0.098 
Model 1  176 47 1.03 (1.00-1.08) 0.129 
Model 2 171 47 1.02 (0.96-1.07) 0.526 
     
Interaction between SD T2P LS and atrial fibrillation     
Unadjusted     0.940 
In fully adjusted model (Model 2)    0.154 
Model 1 is adjusted for age, sex, race, randomization strata (previous HF hospitalization or 
biomarker criteria), randomized treatment. Model 2 includes the same variables as Model 1 + 
core laboratory left ventricular LVEF, heart rate, New York Heart Association class, history of 
stroke, creatinine, hematocrit and QRS duration. 
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Figure 1 
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Figure 2 
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