
Cost-Effective Support for Low Latency Cloud
Storage

by

Zhe Wu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2017

Doctoral Committee:

Assistant Professor Harsha V. Madhyastha, Chair
Associate Professor Vijay G. Subramanian
Professor Jason N. Flinn
Assistant Professor Manos Kapritsos

Zhe Wu

wuzhe@umich.edu

ORCID iD: 0000-0001-9828-5267

c© Zhe Wu 2017

To my family.

ii

ACKNOWLEDGEMENTS

There are many people that I want to thank during this long journey of Ph.D.

study. I would have not been able to complete this dissertation without the help from

them.

First and foremost, I’d like to thank my advisor Professor Harsha Madhyastha,

who I am extremely fortunate to have had the opportunity to work with during the

past six years. Harsha opened my eyes in this wonderful area of distributed systems,

patiently guided me on my research, provided me with many valuable life and career

suggestions, and has always been available when I needed help from him. Moreover,

his passion for great research and commitment in pursuing cutting-edge ideas never

cease to impress and educate me. I cannot ask for a better advisor.

I appreciate the collaboration opportunity with Professor Ethan Katz-Bassett

from USC, who has also been very helpful in referring me to internship and career

opportunities. I’m very grateful for his help throughout my Ph.D study.

I’m thankful to Professor Vijay Subramanian, Jason Flinn, and Manos Kaprit-

sos for serving on my thesis committee. Their valuable feedbacks and thoughtful

comments have greatly helped improve this dissertation.

I want to thank my colleagues and friends at UC Riverside, whom I spent my

first three years of Ph.D life with. My groupmates Curtis Yu, Michael Butkiewicz,

Masoud Akhoondi, and Dorian Perkines offered tremendous help in my early Ph.D

years. They brought great insights into my projects and sometimes assisted me in

conducting complicated experiments. We have been great friends since then. Amy

iii

Ricks and Victor Hill were amazing CS department administrative staff who made

our graduate student life much easier.

I also want to thank my friends here at University of Michigan who brought

me an incredible and enjoyable life in Ann Arbor. There has never been a lack of

fun and interesting discussion in our research group with Vaspol Ruamviboonsuk

and Muhammed Uluyol. Yuru Shao inspired me for running my first ever marathon.

Shichang Xu, Ashkan Nikravesh and I shared many late night office adventures during

my early years at Michigan. I also had great fun with Juncheng Gu and his family

during after work time. Many thanks to Stephen Reger, who took care of our cloud

bills month after month during the past three years.

Finally and most importantly, I owe the greatest thanks to my family. My parents

have always given me their trust, encouragement, and unconditional support. My dog

Charlie brought countless joy and happiness to my life. My son Leo, who hasn’t been

around very long, has already encouraged me to be more responsible and gave me a

better perspective on life. Last but not least, my wife Melody Sun, the pillar of our

small home and the love of my life who has always taken great care of our family, has

been an amazing companion and inspiration throughout my years in graduate school.

This dissertation is dedicated to them.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Entering cloud era of web service deployments 3
1.2 Challenges . 5

1.2.1 High latency variance 5
1.2.2 Poor abstractions 5
1.2.3 Performance versus cost tradeoff 6

1.3 Thesis and Contributions . 7
1.4 Organization . 11

II. Related Work . 12

2.1 Web service deployments in the cloud 12
2.2 Improving performance of distributed storage 14
2.3 Low-latency geo-replicated storage 16

III. Lower Latency Variance on Cloud Storage Services 19

3.1 Characterizing Latency Variance 22
3.2 Overview of CosTLO . 25
3.3 Characterizing Configuration Space 30

3.3.1 Internet latencies 31

v

3.3.2 Data center network latencies 32
3.3.3 Storage service latencies 33
3.3.4 Takeaways . 35

3.4 Cost-effective Support for SLOs 36
3.4.1 System architecture 36
3.4.2 Selecting cost-effective configuration 38
3.4.3 Estimating latency distribution 41
3.4.4 Ensuring data consistency 45

3.5 Evaluation . 46
3.5.1 Ability to satisfy SLOs 47
3.5.2 Accuracy of estimating latency distributions 49
3.5.3 Cost-effectiveness 51
3.5.4 Utility of CosTLO’s components 52
3.5.5 Efficiency . 53

3.6 Discussion . 54
3.7 Summary . 56

IV. Cost-effective Data Placement in the Cloud 58

4.1 Problem formulation . 61
4.1.1 Setting and utility 61
4.1.2 Goals . 62
4.1.3 Challenges . 63

4.2 Why multi-cloud? . 64
4.3 Overview of SPANStore . 67
4.4 Determining replication policies 68

4.4.1 Inputs and output 69
4.4.2 Eventual consistency 73
4.4.3 Strong consistency 77

4.5 SPANStore dynamics . 80
4.5.1 Metadata . 80
4.5.2 Serving PUTs and GETs 82
4.5.3 Fault tolerance . 84
4.5.4 Handling workload changes 86

4.6 Implementation . 88
4.7 Evaluation . 89

4.7.1 Cost savings . 90
4.7.2 Impact of aggregation of objects 93
4.7.3 Cost for fault tolerance 95
4.7.4 Scalability of PlacementManager 95

4.8 Case studies . 96
4.9 Summary . 98

V. Efficient Geo-Replication of Data in the Cloud 99

vi

5.1 Motivation . 102
5.1.1 Setting and Goals 102
5.1.2 Overheads of preserving consistency 104
5.1.3 Impact of latency variance 108

5.2 Global consistency atop limited interface 110
5.2.1 Low latency writes 110
5.2.2 Low latency reads 114
5.2.3 Minimizing cost . 116
5.2.4 Improving throughput under conflicts 118

5.3 Tackling latency variance . 119
5.4 Evaluation . 124

5.4.1 Prototype Evaluation 125
5.4.2 Cost . 130
5.4.3 Tackling latency variance 131
5.4.4 Application case study 134

5.5 Discussion . 135
5.6 Summary . 136

VI. Conclusions . 137

6.1 Thesis Contributions . 137
6.2 Future Work . 139
6.3 Summary . 140

BIBLIOGRAPHY . 142

vii

LIST OF TABLES

Table

3.1 Overview of techniques developed to build CosTLO. 29
4.1 Summary of insights to reduce cost in SPANStore. 69
5.1 Latency comparison of CPaxos to prior protocols. We assume no

request conflict. 108
5.2 Data transfer cost comparison of CPaxos to prior protocols. m is the

number of clients. For pPaxos, we assume older versions are garbage
collected as soon as a new version is globally accepted. 108

5.3 Data storage cost comparison of CPaxos to prior protocols. m is the
number of clients. For pPaxos, we assume older versions are garbage
collected as soon as a new version is globally accepted. 109

5.4 Techniques used by CRIC to minimize the cost and communication
necessary for strongly consistent reads and writes. 110

viii

LIST OF FIGURES

Figure

1.1 Generic architecture of a geo-distributed web service. 2
3.1 (a) Absolute and (b) relative inflation in 99th percentile latency with

respect to median. Logscale x-axis in (b). 23
3.2 (a) Absolute and (b) relative inflation in median user-level request

latency with respect to ideal latency. Note logscale on x-axis in both
graphs. 24

3.3 Breakdown of components of tail latencies. 25
3.4 Illustration of various ways in which CosTLO can concurrently issue

requests. 27
3.5 Impact on Internet tail latencies of different ways to send two con-

current requests. Logscale on x-axis. 28
3.6 Comparison of second closest data center within a cloud service and

across cloud services. 29
3.7 Different ways of exploiting path diversity in the data center network.

Note logscale on x-axis. 30
3.8 Impact on storage service tail latency inflation when issuing concur-

rent requests to (a) the same object, and (b) to different objects.
Note logscale on y-axis. 34

3.9 CosTLO architecture; VMs that run measurement agents are not
shown. 35

3.10 Illustration of a configuration. 36
3.11 Distribution of service latency difference between concurrent GET

requests offers evidence for GETs to an object. 40
3.12 Scatter plot of first vs. second request GET latency when issuing two

concurrent requests to a storage service. 41
3.13 Illustration of CosTLO’s execution of PUTs. 44
3.14 Verification of CosTLO’s ability to satisfy SLOs. 47
3.15 CosTLO’s ability to satisfy application-specific SLOs for (a) webpage

and (b) social network applications. 48
3.16 Accuracy of estimating GET latency distribution for 8 concurrent

GET requests from VM to local storage service. 49
3.17 Comparison across all S3 regions of 99th percentile latencies. 50

ix

3.18 CosTLO’s cost-effectiveness in satisfying SLOs. 51
3.19 (a) Utility of CosTLO’s components in reducing cost and meeting

SLO = 30ms. (b) Cost inflation when not using timeout and proba-
bility parameters. 52

3.20 (a) CosTLO’s utility in reducing latency variance when offering strong
consistency; 1 PUT request per copy. (b) latency breakdown for ob-
jects of different sizes. 55

4.1 For applications deployed on a single cloud service (EC2 or Azure),
a storage service that spans multiple cloud services offers a larger
number of data centers (a and b) and more cheaper data centers (c
and d) within a latency bound. 65

4.2 Overview of SPANStore’s architecture. 67
4.3 Overview of PMan’s inputs and output. 69
4.4 Comparison at different granularities of the stationarity in the num-

ber of posted tweets. 72
4.5 When eventual consistency suffices, illustration of different replica-

tion policies for an access set. 74
4.6 Example use of asymmetric quorum sets. 78
4.7 At any data center A, SPANStore stores an (a) in-memory version

mapping for objects stored at A. If the application is deployed at A,
SPANStore also stores (b) the access set mapping for objects whose
access set includes A, and (c) replication policy versions for different
epochs. 81

4.8 Illustration of SPANStore’s two-phase locking protocol. 83
4.9 Illustration of SPANStore’s fault tolerance. 85
4.10 Cost with SPANStore compared to that possible using the data cen-

ters of a single cloud service. 87
4.11 Variation in the dominant component of SPANStore’s cost as a func-

tion of the application’s workload. 88
4.12 Cost savings enabled by SPANStore compared to Everywhere and

Single replication policies. 90
4.13 Cost inflation when predicting workload using individual objects com-

pared with aggregate workload prediction. 91
4.14 Cost inflation when tolerating f failures compared to the cost with

f = 0. 94
4.15 CDF of operation latencies in (a) Retwis and (b) ShareJS applications. 97
5.1 Illustration of CRIC’s use in a geo-distributed web service deployed

in the cloud. 103
5.2 Illustration of how Fast Paxos can be used to consistently replicate

data across cloud data centers. 104
5.3 GET throughput as a function of # of clients; throughput for “Di-

rect” continues to increase with more clients. 105
5.4 When reads/writes are relayed through VMs, fraction of cost ac-

counted for by these VMs relative to total cost to execute reads and
writes. 106

x

5.5 Median and tail latency when reading from either f +1 or all replicas
and waiting for responses from a quorum; f = 1. 107

5.6 Comparison of (a) classic Paxos and (b) CPaxos. 112
5.7 CRIC’s format for storing objects in cloud storage. 116
5.8 Illustration of (a) false propose failure, and (b) the use of Propose

Assistant VMs. 118
5.9 Latency overhead a client incurs to communicate with a farther replica

compared to the quorum closest to it. 120
5.10 Illustration of hierarchical quorum. 121
5.11 (a) Read and (b) write latencies under low conflicts. 127
5.12 Degradation in write throughput under different conflict rates. . . . 128
5.13 Client perceived read latency distribution when conflict rate is high. 129
5.14 Comparison of cost necessary to execute reads and writes on geo-

replicated data; R/W is the read-to-write ratio. 130
5.15 Utility of hierarchical quorums in reducing tail latency. N is the

number of replicas and DC is the number of data centers. 132
5.16 Utility of hierarchical quorums in enabling better cost vs. tail latency

trade-offs. 133
5.17 In a Twitter clone, CRIC improves performance compared to Fast

Paxos for users with at least 100 followers. 134

xi

ABSTRACT

By offering data centers in several locations across the globe, cloud services enable

web services to serve users from nearby data centers, thereby reducing user-perceived

latencies. However, web services face many challenges in doing so due to the poor

abstractions and lack of performance guarantees offered by cloud services. First,

almost every cloud storage service offers an isolated pool of storage in each of its data

centers, leaving replication across data centers to applications. Second, the limited

low level interface offered by cloud storage makes it challenging for applications to

implement any replication protocols. Third, popular public cloud storage services

today experience high latency variance which can greatly degrade median application

performance.

To address these problems, my thesis enables web services to combine the use of

multiple cloud services leveraging the greater diversity in data center locations, differ-

ent storage performance characteristics, and discrepancies in pricing. Spreading a web

services deployment across the data centers of multiple cloud providers however puts

the onus of improving performance, reducing cost, and managing data replication on

web services. Therefore, I have designed and implemented three systems that tackle

these challenges. First, CosTLO judiciously combines several instantiations of the ap-

proach of issuing redundant requests and reduces the high latency variance of cloud

storage without relying on cloud providers to make any changes. Second, SPANStore

greatly simplifies the task of geo-replicating data in a manner that cost-effectively

xii

satisfies any application’s high-level latency, consistency, and fault-tolerance require-

ments. Lastly, CRIC enables strongly consistent access to geo-replicated data with

latency and cost comparable to those achievable only if cloud storage offered a richer

interface and had lower latency variance.

xiii

CHAPTER I

Introduction

With the ubiquitous availability of fast Internet connectivity, modern computer

software has shifted from local computer applications to remote Internet-based ser-

vices. Instead of having to install a bulky software binary which runs all or most of an

application’s logic locally on a user’s device, this new type of software only requires

users to have a web browser or install a thin client to access high performance soft-

ware services with rich functionality. Figure 1.1 illustrates a common architecture of

a geo-distributed web service. To use a web service, users first connect to the service’s

front-end servers. Users interact with the service by communicating their activities,

service requests, and user data with the service front-ends. The web service’s back-

end servers deployed in one or several centralized data centers then process these data

and requests in a timely manner, and send back request responses and application

data back to the users.

There are many benefits for this shift to service-based applications, including:

• Offloading heavyweight application functionalities to the server side, so that an

application’s performance is no longer constrained by users’ hardware.

• Enabling seamless user experience across user devices since application logic

and data are on the server side.

1

Cloud
Storage
Service

Back-end VM

Data Center 1

Data Center 2

Data Center 3

Client

Front-end VM

Figure 1.1: Generic architecture of a geo-distributed web service.

• Simplifying collaboration and information sharing among users by deploying

web service logic and storing data in few centralized data centers.

• Providing users an on-demand software experience without any up-front com-

mitment.

• Faster rollout of new service functionalities.

Because of these benefits, Internet-based web services have become a popular

model for many IT companies to provide their software applications, such as mes-

saging, document managing, social application, database, development software, ac-

counting, etc.. Moreover, it also attracts many traditional businesses such as banking

and shopping to provide web services to enrich their customers’ experience. Web

services have been incorporated into nearly all leading technology, business, and en-

terprise companies. Popular examples of such applications include Facebook [23],

an online social network service that people can conveniently connect to and share

information with their friends, Dropbox [22], a file and data storage service that en-

ables users to access their data anywhere anytime, and Google Docs [27], which offers

2

collaborative document editing services.

However, in order for web services to attract users and make profit, one im-

portant criteria is that they must have good performance. Therefore, minimizing

user-perceived latency is critical for web services. In fact, several studies have shown

that even 100 milliseconds of additional delay can significantly reduce a web service’s

revenue [29, 1, 60]. Latency incurred by serving user requests usually contains two

parts: communication latency caused by sending and receiving messages to and from

web services’ front-ends, and service latency incurred by processing user requests at

web services’ back-ends.

In contrast to applications that run as local software binaries, interactions with

remote web services can incur significantly higher latency since web servers can be

hundreds of milliseconds away from users. As a result, to improve user-perceived

latency, web services have to be deployed across many geographically distributed

data centers, so that users can be serviced from servers that are nearby. However,

as not all web service providers can afford to build their own data centers in many

locations across the world, this task can be simplified by leveraging public cloud

infrastructure services [3, 13, 24].

1.1 Entering cloud era of web service deployments

Deploying applications in the cloud is an attractive proposition due to the oppor-

tunities available for eliminating the needs of building IT infrastructure and reducing

cost: usage-based cloud pricing, the ability to scale up and down computation and

storage resources on demand, economies of scale, and multiplexing of resource usage.

In addition, the use of the cloud is also desirable because cloud providers offer many

services that greatly simplify application development. For examples, to setup web

servers and provide computation at scale, the cloud offers various types of virtual

machines with a configurable number of CPUs, memory size, disk size, and operating

3

systems for applications to choose from, as well as supporting services such as virtual

machine auto-scaling, user request load balancing, and user redirection services. This

can greatly reduce the complexity of application providers’ job of developing high

performance web services.

The task of distributing data in different locations for deploying a low latency

web service has also been simplified by the emergence of numerous cloud infrastruc-

ture services provided in many locations across the world. Cloud services such as

Amazon Web Service [3], Windows Azure [13], and Google Cloud Platform [24] have

tens of data centers across the globe offering storage-as-a-service, and every appli-

cation provider can simply rent resources on-demand. To store data at scale, the

cloud offers various types of storage services such as blob storage service for large

data, table storage service for relational data, and virtual hard disks for virtual ma-

chines. For example, to store blob data, web services can store and retrieve data

via PUTs and GETs without dealing with the complexities associated with setting

up and managing the underlying storage infrastructure. Cloud storage services are

also well designed and developed to provide properties such as scalability, availability

and durability, which web service providers can take advantage of to simplify their

application development.

The convenience and flexibility of cloud computing have attracted companies,

including popular web services like Netflix, Dropbox and Yelp, to abandon self-built

infrastructures and use the cloud to service their users. Studies also show that 57% of

web services are running on Amazon Web Services (the biggest public cloud service)

today, and the cloud computing industry is predicted to grow to a 110 billion dollar

market and account for 90 percent of mobile data traffic by 2019 [33].

4

1.2 Challenges

Despite the convenience of using cloud storage services to build web services, the

inability to modify the interface to cloud infrastructure and having to share this

infrastructure with other applications make it challenging for application providers

to develop and deploy low latency web services. More specifically, three significant

issues associated with cloud services complicate their use.

1.2.1 High latency variance

Cloud storage services offer no performance guarantees. Although the median

latency of serving user requests is low [128], sharing of resources across cloud ten-

ants leads to very high latency variance: a burst in one web service’s workload may

increase latencies for other web services accessing the same storage servers or using

the same network paths. For example, my measurements of Azure’s and Amazon’s

storage services from hundreds of nodes across the world show an absolute inflation

greater than 200ms in the 99th percentile write latency as compared to the median

latency; the relative inflation is greater than 2x in both write and read operations.

Such high latency in the tail of the latency distribution greatly impacts the average

web service performance. My measurements also show that downloading an average

webpage containing 100 objects from the closest Amazon data center incurs a 3x la-

tency inflation comparing to the case where there is no latency variance, as the page

load time is constrained by the object that is fetched last.

1.2.2 Poor abstractions

Today’s cloud services only provide storage services within each of their data

centers. Moreover, applications may even choose to use multiple cloud providers to

improve their service quality, and no cloud provider has the incentive to offer data

synchronization with other providers. Therefore, web services that desire globally

5

distributed deployments need to implement data replication across data centers by

themselves. Managing data replication is complex since there are numerous ways

to assign locations to data replicas, and a web service’s choice directly impacts the

performance that it can offer to its users and the cost that it incurs.

Moreover, ensuring consistency of data across replicas further complicates the

task of replication. Web services deployed in the cloud must themselves keep data

consistent across data centers. However, cloud storage services only provide simple

PUT/GET interface. Therefore, for web services to manage data replication them-

selves, they must deploy additional virtual machines (VMs) in every data center to

handle conflicting concurrent operations to underlying storage. Although cloud stor-

age already provides high performance services, this additional layer of replication

can incur high additional cost, become the bottleneck of the entire web service data

tier, and cause poor performance on web services.

1.2.3 Performance versus cost tradeoff

Cloud services adopt usage based pricing policy [8, 14]. In addition to the cost

for storing data, all reads, writes, and data transfers also add to an application’s

costs, even when storage or the network is under-utilized. Implicitly, the more cloud

resources that a web service buys from the cloud, the better performance its appli-

cation can have. For example, to ensure low data access latency, web services can

replicate all data in all data centers and incur high cost of storing and accessing data

comparing to storing data in a single data center. Also, to ensure that replication

layer VMs do not cause performance bottleneck, most web services will have to incur

high cost in deploying a sufficiently large number of VMs.

Some applications may value lower cost over the best achievable performance,

different applications may demand different requirements such as the degrees of data

consistency, some objects may only be popular in some regions, and some clients may

6

be near to multiple data centers, any of which can serve them quickly. All these

parameters mean that no single deployment provides the best fit for all applications

and all objects. Since cloud providers do not provide a centralized view of storage

with rich semantics, every application needs to reason on its own about where and

how to store data to satisfy its latency goals and consistency requirements at low

cost.

1.3 Thesis and Contributions

In this dissertation, my goal is to address these challenges for web services deployed

in the cloud. More specifically, I support the following thesis: it is practical to

cost-effectively offer better abstractions and support for latency SLOs on

legacy cloud storage services.

My thesis research focuses on developing solutions for web services to better utilize

cloud storage services to build their applications. Especially, I focus on devising

solutions for web services that do not require cloud providers to make any changes

to their infrastructure or their services. To improve user-perceived latency, I develop

solutions that enable web services to combine the use of multiple cloud services to

increase the diversity of cloud data centers. The price discrepancies of different clouds

further reduces the operational cost of using cloud storage services. To offer a better

abstraction of cloud storage resources, I design systems that automate the process of

geo-replicating data and managing data accesses in order to satisfy a web service’s

high-level performance requirements with highly efficient cloud resource utilization.

Moreover, I place strong emphasis on storage tail latency performance, a critical

latency metric in today’s cloud applications.

The work presented in this dissertation makes four contributions.

Multi-cloud key-value storage. A key design decision in my thesis research

is to design key-value storage systems spanning the data centers of multiple cloud

7

service providers. There are multiple benefits of doing this.

First, using multiple cloud providers can enable storage services to offer lower

GET/PUT latencies. This is because for nearly all data centers, I find that there are

nearby data centers from other cloud providers available within 50ms. We can use

this greater choice of nearby storage options to meet tighter latency requirements,

or to meet a fixed latency requirement using fewer storage replicas (by picking loca-

tions nearby to multiple frontends). Intuitively, this benefit occurs because different

providers have data centers in different locations, resulting in a variation in latencies

to other data centers and to clients.

Second, building systems across multiple cloud providers also enables it to meet

application requirements at potentially lower cost due to the discrepancies in pricing

across providers. For example, nearby Azure data centers have similar pricing, and

so, no cheaper options than local storage exist within 150ms for Azure-based services.

However, for the majority of Azure-based frontends, deploying across all Amazon Web

Service, Azure, and Google Cloud yields more than 5 storage options that are cheaper

for at least some operations. Thus, by judiciously combining resources from multiple

providers, we can build systems that use these cheaper options to reduce costs.

Moreover, storing data across multiple cloud services does not impose high de-

velopment overhead to application developers despite the difference across cloud

providers due to two reasons: (1) only data needs to be spread across multiple cloud

providers and (2) key-value cloud storage services across different cloud providers

have a largely identical interface.

Low latency variance on legacy cloud storage. I developed the CosTLO

system [128], which uses the well-known approach of issuing redundant requests so

that the earliest response can be considered to reduce the latency variability of cloud

storage services. This approach is motivated by my measurement study that high

latency variance is caused predominantly by isolated latency spikes.

8

The primary challenge in CosTLO is to minimize the cost overhead imposed by

redundant requests. If only few redundant requests are issued, it may not be effective

to reduce latency variability. On the other hand, the cost overhead is high if CosTLO

issues too many redundant requests. I have developed algorithms that combine the

use of different forms of redundancy (e.g., to download an object, an end-host can

issue redundant read requests either to the same object or to different copies of

the object) to identify the most cost-effective configuration that can meet a web

service’s goals for latency variability. Leveraging observations from my measurements,

CosTLO captures a cloud service’s replication and load balancing policies in order

to estimate the latency variance associated with any configuration. Using a trace of

Wikipedia’s workload, my results show that CosTLO can reduce the spread between

99th percentile and median read latencies by 50% with only a 25% increase in cost.

Cost-effective replica placement for geo-replicated data. My second sys-

tem, SPANStore [126], recognizes the opportunity to lower cost and to lower user-

perceived latencies by combining the use of multiple cloud providers. SPANStore

offers a unified view of geographically distributed storage services and judiciously

replicates data objects across data centers, which is transparent to any web service

that uses it. It automates the process of trading off cost and latency, while satisfying

consistency and fault-tolerance requirements.

There are two main challenges in replicating data in a manner that minimizes

cost. The first challenge is to identify the granularity of replication. One replication

policy per data object will not be cost-optimal due to high volatility in the workloads

of individual objects, whereas a single replication policy for all objects will require

over-replication in order to satisfy latency constraints. In SPANStore, I leverage

application-level hints to group objects based on their access patterns; the aggregate

workload across a large set of objects is more stable than the workload of individual

objects, and different replication policies for objects with different access patterns

9

result in a lower cost overhead than a single replication policy for all objects.

The second challenge is to choose from a wide gamut of replication policies, while

accounting for the inter-dependencies between web service requirements, workload,

and cost. I formulate the problem of determining the cost-optimal replication policy

as a mixed integer program to address the trade-off between storage, networking and

request costs. Results from my prototype of SPANStore show that, in comparison to

alternative designs for geo-replicated storage, SPANStore can lower costs by over 10x

with the same or better latency performance.

Strongly consistent access of geo-replicated data. My third system, CRIC,

is an efficient strongly consistent data replication solution for web services deployed

in the cloud. Though several systems have recently been developed to explore latency

versus consistency trade-offs in geo-replicated storage [66, 86, 96, 97, 93, 117], little

attention has been paid to the fact whether web services are deployed across data

centers they own or on third-party cloud infrastructure.

I identify two challenges that complicate the task of providing low latency data

replication across cloud storage services. First, replicating data across cloud data cen-

ters and enabling low latency data access are made challenging by the fact that almost

every cloud provider offers an isolated pool of storage in each of its data centers, leav-

ing replication and managing data consistency across data centers to individual web

services. Moreover, cloud storage services only expose a limited interface to storage,

which applications have no ability to modify. Therefore, for web services to manage

data replication themselves, they must deploy additional virtual machines (VMs) to

run replication protocol such as Paxos [89] in every data center to guarantee the

ordering of data updates and handle conflicting concurrent operations to underlying

storage. This is clearly inefficient. The second challenge is that the high latency vari-

ance that is typical within each data center of popular cloud storage services [128] is

further compounded when data is geo-replicated. Due to the long distance between

10

data centers, even issuing requests to all replicas and waiting for a subset to finish

(the traditional wisdom from quorum systems to reduce latency variance) has only

limited ability to reduce tail latency.

The design goal in CRIC is to reduce the overhead of deploying a web service

managed replication layer, as well as tackle the cloud storage latency variance on

shared data. I design CRIC as a library that interposes on any geographically dis-

tributed web service’s interactions with cloud storage and enables strongly consistent

low latency access to geo-replicated data. The core in CRIC is a novel Paxos variant,

CPaxos, which does not require web services to setup any additional virtual machines

for replica coordination. To reduce user perceived latency variance, instead of using

the standard majority quorum as in Paxos, CRIC leverages a two layer structured

quorum, hierarchical quorum [87], which increases data and request redundancy inside

each replica data center to further reduce client perceived latency variance.

1.4 Organization

The remaining chapters of this thesis are organized as follows. In Chapter II, I

provide an overview of the usage of the cloud to deploy web services, and present

prior work in the area of geo-distributed storage, storage performance, and cloud

system design. Chapter III presents CosTLO, which reduces the latency variance of

accessing data in the cloud storage services. Chapter IV focuses on SPANStore, which

tackles the challenges of replicating data cost effectively in the cloud. Chapter V

describes CRIC, which enables efficient strongly consistent data replication in the

cloud. Chapter VI concludes this dissertation by summarizing the contributions and

discussing future work.

11

CHAPTER II

Related Work

In this chapter, I present the prior work in three main areas that this dissertation

builds upon: performance oriented web service cloud deployments, distributed storage

system performance, and geo-distributed storage system design.

2.1 Web service deployments in the cloud

Evaluating benefits of cloud deployments. With the explosive growth of

cloud computing, there has been some work recently to answer the question—when to

use cloud services? Answers to this question have largely been restricted to examining

how and when to migrate applications from the application provider’s data center to

a cloud service [75, 116, 125]. While these efforts consider issues such as cost and

wide-area latency like we do, none of them seek to provide a storage service with a

unified view to geo-replicated storage. Some others compare the performance offered

by various cloud services [92, 39]. However, these efforts do not consider issues such

as cost and consistency. In this dissertation, I examine the benefits that application

providers can obtain by taking the use of cloud services to the next level—spreading

web services across multiple cloud infrastructure services.

Choosing among cloud services. Recently, there have been some efforts at

measuring and characterizing the performance offered by various cloud services [92,

12

39]. The focus in these efforts has been either to enable application providers to

choose between cloud services (with the application being deployed on one of them)

or to monitor an application deployed on a cloud service. The focus of my study

instead is to understand the latency and benefits of deploying web services across

multiple cloud services.

Using multiple cloud services. Several previously developed systems have also

considered the use of multiple cloud service providers for storing data. RACS [44]

proposes replicating data across multiple cloud providers to obtain similar benefits as

RAID disk arrays. SafeStore [85] tries to improve data durability leveraging multi-

cloud deployment. DEPSKY [57] uses multi-cloud to increase reliability and security

of critical data. MetaStorage [56] addresses cloud vendor lock-in issue leveraging

multi-cloud deployment. However, all of these systems focus on issues pertaining to

availability, durability, vendor lock-in, performance, and consistency. None of these

systems seek to minimize cost by exploiting pricing discrepancies across providers,

which is one of the main contribution of this dissertation.

Other complementary efforts have focused on utilizing compute resources from

multiple cloud providers. AppScale [64] enables portability of applications across

cloud services, but without any attempt to minimize cost. Conductor [121] orches-

trates the execution of MapReduce jobs across multiple cloud providers in a manner

that minimizes cost. In contrast to these systems, I focus on unifying the use of stor-

age resources across multiple providers. Moreover, I envision application deployments

spanning multiple cloud services and explore the latency benefits from multi-cloud

deployments.

Trading off cost and performance. Zhang et al. [133] showed how a service

provider can trade off cost versus performance by jointly optimizing network routing

and client redirection. In contrast, web services deployed on cloud services have little

control over Internet routing. Moreover, since costs of running a web service are cru-

13

cially dependent on its workload and implementation architecture, the computation

of costs are best left to web service administrators. Our goal instead is to evaluate the

potential latency gains of multi-cloud deployments, narrow down on the regions in

which users would benefit the most, and highlight the challenges in harnessing these

latency benefits.

Minerva [47], Hippodrome [50], scc [101] and Rome [122] automate the provi-

sioning of cost-effective storage configurations while accounting for workload char-

acterizations. Though these systems share a similar goal of minimizing service cost

as ours, their setting is restricted to storage clusters deployed within a data center.

This dissertation focuses on geo-replicated storage, and so its deployment strategies

must account for inter-data center latencies and multiple administrative domains.

Farsite [45] provides scalable storage in an untrusted environment and shares some

techniques with our SPANStore system (Chapter IV), e.g., lazily propagating updates.

However, Farsite does not consider any optimizations in reducing cost.

2.2 Improving performance of distributed storage

Cloud performance studies. Prior studies have compared the performance of-

fered by different cloud providers [92], reverse-engineered cloud service internals [110],

and studied application deployments on the cloud [79]. Our measurement study of

Azure and S3 (Chapter III) is the first to quantify the latency variance on these storage

services and to characterize the impact of different forms of redundancy. Moreover,

unlike Bodik et al. [58], who focused on characterizing and modeling spikes in ap-

plication workloads, our measurements show that an application using cloud storage

can suffer latency spikes even when there is no spike in that application’s workload.

Reducing storage tail latencies. Reducing storage tail latencies has been a

major focus in storage system design, as high tail latency of single storage requests can

greatly impact median application performance. One of the most popular techniques

14

used to reduce tail latencies is to increase request redundancy, so that the earliest

response can be considered. The approach of issuing redundant requests to reduce tail

latencies has been considered previously [67, 120], but the focus has primarily been on

understanding the implications of redundancy on system load. Before this, redundant

task execution was also used to reduce runtimes of analytics jobs by eliminating

stragglers [129, 48]. In contrast, our CosTLO system (Chapter III) demonstrates

how the approach of using redundant requests should be applied in the context of

cloud storage services, in order to meet latency SLOs while minimizing cost overhead.

Also, in Chapter V, we show how to apply this technique in a new setting—geo-

replicated storage with shared data on third-party infrastructure—to satisfy a new

goal: reducing latency variance while providing strong consistency.

Some application providers such as Facebook use in-memory caching of data to

reduce tail latencies [107]. However, caching cannot reduce tail latencies associated

with PUT requests. Moreover, caching at a single data center cannot tackle latency

spikes on Internet paths, and not all application providers will be able to afford caches

at multiple data centers that can accommodate enough data to reduce 99th percentile

GET latencies.

Combining cloud providers to improve performance. Others have com-

bined the use of multiple cloud providers to improve availability [44, 85], to offer

more secure storage [57], and to reduce cost [121]. This dissertation takes advantage

of multi-cloud web service deployment to improve web service performance as well.

It uses cloud storage services offered by multiple providers because 1) the combina-

tion offers more data center pairs that are close to each other (Chapter IV), and 2)

latency spikes on the Internet paths to data centers in different cloud services are

uncorrelated (Chapter III).

Redesigning cloud services. Several recent proposals redesign storage systems

and data centers to improve storage latency performance [115], to offer bandwidth

15

guarantees to tenants [54, 108, 55, 118], or to ensure predictable completion times for

TCP flows [130, 81, 124]. However, all of these proposals require modifications to a

cloud service’s infrastructure. It is unclear when, and if, cloud services will revamp

their infrastructure to these more complex architectures. Therefore, this dissertation

instead considers the scenarios that web services cannot change underlying cloud

systems and develop solutions that can satisfy latency requirements for applications

deployed on the cloud without having to wait for any modifications to cloud services.

Moreover, our CRIC system (Chapter V) enables functionality—synchronization of

replicas across the data centers of multiple cloud providers—that no cloud provider

has the incentive to offer.

2.3 Low-latency geo-replicated storage

Replication protocols. Paxos [90] is considered to be the standard solution

for achieving strongly consistent data replication. It makes minimum assumptions

about system hardware and its correctness is well studied and proved. However, it

is known to incur high latency when being used in the wide-area setting, since every

storage request requires two round of wide area communication, which is intolerable

for many applications. Therefore, there are many Paxos variants proposed recently to

improve its latency with some workload assumptions. For example, Fast Paxos [91]

can commit writes in one round when request conflicts are rare. Multi-Paxos [62]

can commit writes in one round with a stable leader. And EPaxos [105] can commit

writes in one round with a pre-defined request conflict resolution mechanism. All

of these replication protocols are well studied for transactional storage. However,

none of these protocols have paid attention to the fact that whether web services are

deployed across data centers they own or on third-party cloud infrastructure, which

is the main problem we try to address in the CRIC system (Chapter V).

Other than Paxos protocol, there are other replication protocols that can achieve

16

data replication. For example, Lynx [132] and Azure RTable [17] use chain replication

to achieve serializable transactions. In contrast to chain replication, which sacrifices

write latency for read latency, Paxos replication permits both read and write opera-

tions to complete while waiting for responses from only the nearest quorum of nodes.

Therefore, in this dissertation, we mainly focus on leveraging the Paxos protocol to

achieve strongly consistent data replication.

Many advancements in reducing commit latency also stem from the development

of new protocols that reduce network communication in the common case [91, 86,

105, 109, 66, 131, 106, 94, 70]. Building upon these protocols, my contribution lies in

improving data replication efficiency and optimizing read and write latency without

introducing intermediate virtual machines to enrich the interface to cloud storage.

Latency vs. consistency trade-off. Numerous systems strive to provide fast

performance and stronger-than-eventual consistency across the wide area. Recent

examples include Walter [114], Spanner [66], Gemini [93], COPS [96], and Eiger [97].

Given that wide-area storage systems cannot simultaneously guarantee both the

strongest forms of consistency and low latency [102], these systems strive to push

the envelope along one or both of those dimensions. However, none of these systems

focus on minimizing cost while meeting performance goals, which is our primary goal.

In fact, most of these systems replicate all data to all data centers, and all data cen-

ters are assumed to be under one administrative domain. We believe that the work

presented in this dissertation can be adapted to achieve the consistency models and

performance that these systems offer at lower cost.

Many storage systems allow (or require) applications to choose weak consistency

guarantees in exchange for higher availability and lower latency [96, 97, 93, 117, 88,

68]. Incremental consistency [74] allows an application to speculatively process data

based on what it currently knows about the consistency of the data, requiring the

application to implement rollback behavior as appropriate. The SNOW theorem [98]

17

explores this tradeoff space in detail, showing that no transaction protocol can provide

non-blocking consistent reads in the presence of conflicting writes. Taking these guar-

antees one step further, Olive takes advantage of conditional writes in cloud storage to

provide exactly-once semantics for application logic in the presence of failures [111].

In contrast, my CRIC system (Chapter V) guarantees strong consistency to provide

the simplest storage semantics and, like Olive, uses conditional writes to achieve this.

18

CHAPTER III

Lower Latency Variance on Cloud Storage Services

Minimizing user-perceived latencies is critical for many applications as even hun-

dreds of milliseconds of additional delay can significantly lower revenue [60, 43, 113].

Large-scale cloud services aid application providers in this regard by enabling them

to serve every user from the closest among several geographically distributed data

centers. For example, our measurements from over 120 PlanetLab nodes across the

globe show that, when every node downloads 1 KB-sized objects from the closest Mi-

crosoft Azure data center, the median download latency is less than 100ms for over

90% of the nodes.

However, on today’s cloud services, both fetching and storing content are associ-

ated with high latency variance. For example, for over 70% of the same 120 nodes

considered above, the 99th percentile and median download latencies from the closest

Azure data center differ by 100ms or more. These high tail latencies are problematic

both for popular applications where even 1% of traffic corresponds to a significant

volume of requests [68], and for applications where a single request issued by an

end-host requires the application to fetch several objects (e.g., web page loads) and

user-perceived latency is constrained by the object fetched last. For example, our

measurements show that latency variance in S3 more than doubles the median page

load time for 50% of PlanetLab nodes when fetching a webpage containing 50 objects.

19

To enable application providers to avail of the cost benefits enabled by cloud ser-

vices, without having latency variance degrade user experience, we develop CosTLO

(Cost-effective Tail Latency Optimizer). Since we observe that the high latency vari-

ance is caused predominantly by isolated latency spikes, CosTLO uses the well-known

approach [120, 67] for reducing variance by augmenting every GET/PUT request with

a set of redundant requests, so that the earliest response can be considered. We tackle

three key challenges in using this redundancy-based approach in CosTLO.

First, the end-to-end latency when any end-host uploads to or downloads from

a cloud storage service has several components: latency over the Internet, latency

over the cloud service’s data center network, and latency within the storage service.

To tackle the variance in all of these components, CosTLO exploits the fact that

redundant requests to cloud storage services can be issued in a variety of ways, each

of which impacts a different component of end-to-end latency. For example, while

issuing redundant requests to the same object may elicit an earlier response due to

differences in load across servers hosting replicas of the object, one can further reduce

the impact of server load by issuing redundant requests to a set of objects which are

all copies of the object being accessed. Alternatively, to reduce the impact of spikes in

data center network latency, redundant requests can be issued to different front-ends

of the storage service or relayed to the same front-end via different virtual machines

(VMs). Furthermore, when a client is accessing an object stored in a particular data

center, redundant requests can be issued to copies of the object in other data centers

in order to tackle the variance in Internet latencies.

However, not all forms of redundancy have utility in practice due to the complex

architectures of cloud services. Therefore, we also empirically evaluate the ways in

which redundant requests should be issued for CosTLO’s approach to be viable on

Amazon S3 and Microsoft Azure, the two largest cloud storage services today. For

example, when issuing concurrent requests to multiple data centers, we find that it

20

is essential to leverage storage services offered by multiple cloud providers; utilizing

a single cloud provider’s data centers is insufficient to tame the variance in Internet

latencies. Our study also shows that, due to load balancing within the data center

networks of cloud services, concurrent requests to the same front-end of a storage ser-

vice are sufficient to tackle spikes in data center network latencies, and more complex

approaches are unnecessary. To the best of our knowledge, this is the first work that

identifies the key causes for latency variance in cloud storage services and studies the

impact of different forms of redundancy.

Third, the number of configurations in which CosTLO can implement redundancy

is unbounded—not only can CosTLO combine the use of various forms of redundancy,

but it can also vary the number of redundant requests, the probability with which it

issues redundant requests, etc.—and the impact on cost and latencies varies signifi-

cantly across configurations. Therefore, for CosTLO to add redundancy in a manner

that satisfies an application’s goals for latency variance cost-effectively, it becomes

essential that CosTLO be able to 1) estimate, rather than measure, the cost and la-

tencies associated with any particular configuration, and 2) search for a cost-effective

configuration, instead of enumerating through all possible configurations. To address

these challenges, 1) we model the load balancing and replication within cloud storage

services in order to accurately capture the dependencies between concurrent requests,

and 2) we develop an efficient algorithm to identify a cost-effective CosTLO configu-

ration that can keep latency variance below a target. Note that no prior work that

uses redundant requests seeks to minimize cost.

We have implemented and deployed CosTLO across all data centers in S3 and

Azure. To evaluate CosTLO, we use PlanetLab nodes at 120 sites as clients and

replay a trace of Wikipedia’s workload. Our results show that CosTLO can reduce

the spread between 99th percentile and median GET latencies by 50% for the median

PlanetLab node, with only a 25% increase in cost.

21

3.1 Characterizing Latency Variance

We begin with a measurement study of Amazon S3 and Microsoft Azure. We

1) quantify the latency variance when using these services, 2) analyze the impact of

latency variance on applications, and 3) identify the dominant causes of this variance.

Overview of measurements. To analyze client-perceived latencies when down-

loading from and uploading to cloud storage services, we gather two types of mea-

surements for a week. First, we use 120 PlanetLab nodes across the world as repre-

sentative end-hosts. Once every 3 seconds, every node uploaded a new object to and

downloaded a previously stored object from the S3 and Azure data centers to which

the node has the lowest median RTT. Second, from “small instance” VMs in every

S3 and every Azure data center, we issued one GET and one PUT per second to the

local storage service. In all cases, every GET from a data center was for a 1 KB

object selected at random from 1M objects of that size stored at that data center,

and every PUT was for a new 1 KB object. To minimize the impact of client-side

overheads, we measure GET and PUT latencies on PlanetLab nodes as well as on

VMs using timings from tcpdump.

In addition, we leverage logs exported by S3 [34] and Azure [42] to break down

end-to-end latency minus DNS resolution time into its two components: 1) latency

within the storage service (i.e., duration between when a request was received at one

of the storage service’s front-ends and when the response left the storage service),

and 2) latency over the network (i.e., for the request to travel from the end-host/VM

to a front-end of the storage service and for the response to travel back). We extract

storage service latency directly from the storage service logs, and we can infer network

latency by subtracting storage service latency from end-to-end request latency.

Quantifying latency variance. Figure 3.1 shows the distribution across nodes

of the spread in latencies; for every node, we plot the absolute and relative difference

between the 99th percentile and median latencies. In both Azure and S3, the median

22

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

C
D

F
of

 P
L

si
te

s

99th percentile - median latency (ms)

PL Pings
S3 GETs
S3 PUTs

Azure GETs
Azure PUTs

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 4 8 16

C
D

F
of

 P
L

si
te

s

99th percentile / median latency

S3 GETs
S3 PUTs

Azure GETs
Azure PUTs

(a) (b)

Figure 3.1: (a) Absolute and (b) relative inflation in 99th percentile latency with
respect to median. Logscale x-axis in (b).

PlanetLab node sees an absolute inflation greater than 200ms (70ms) in the 99th per-

centile PUT (GET) latency as compared to the median latency; the median relative

inflation is greater than 2x in both PUTs and GETs. To show that this high latency

variance is not due to high load or slow access links of PlanetLab nodes, Figure 3.1

also plots for every node the difference between 99th percentile and median latency

to the node closest to it among all PlanetLab nodes.

Impact on applications. To show that high latency variance can significantly

degrade application performance, we conduct measurement studies in two application

scenarios. The first one is a web service that serves static webpages containing 50

objects. The second one is a social network application, where an update from a user

triggers a synchronization mechanism to make all of the user’s followers fetch that

update. In both applications, one user-level request requires the application to issue

several requests to cloud storage, and user-perceived latency is constrained by the

request that finishes last. We consider a setting in which (1) users only fetch objects

from their closest data centers, (2) every user in the social network application has

200 followers [2], and (3) users and their followers have the same closest data centers.

23

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000

C
D

F
of

 P
L

si
te

s

Measured - expected (ms)

Web page
Social network

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 4 8 16 32

C
D

F
of

 P
L

si
te

s

Measured / expected

Web page
Social network

(a) (b)

Figure 3.2: (a) Absolute and (b) relative inflation in median user-level request latency
with respect to ideal latency. Note logscale on x-axis in both graphs.

We setup clients on PlanetLab nodes and applications on S3, emulate interactions

between users and applications using real world traces [30, 95], and measure the page

load time/sync completion time.

Ideally, with no latency variance, in the webpage application, page load time

should be the same as the latency of fetching a single object if clients fetch all objects

on the page in parallel, and in the social network application, the sync completion time

should be the same as the latency incurred by the farthest follower to fetch a single

object. However, Figure 3.2 shows that, for over 80% of PlanetLab nodes, latency

variance causes at least 50ms latency inflation in the median page load time and at

least 100ms latency inflation in the median sync completion time. This corresponds

to a 2x relative inflation for more than 50% of users.

Causes for tail latencies. We observe two characteristics that dictate which

solutions can potentially reduce the tail of these latency distributions.

First, we find that neither are the top 1% of latency samples clustered together in

time nor are they correlated with time of day. Thus, the tail of the latency distribu-

tion is dominated by isolated spikes, rather than sustained periods of high latencies.

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

of
 to

p
1%

 la
te

nc
ie

s

Fraction of end-to-end latency

Storage service
DNS

Network

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

of
 to

p
1%

 la
te

nc
ie

s

Fraction of end-to-end latency

Network
Storage service

(a) End-host perspective (b) VM perspective

Figure 3.3: Breakdown of components of tail latencies.

Therefore, a solution that monitors load and reacts to latency spikes will be ineffective.

Second, Figure 3.3(a) shows that all three components of end-to-end latency sig-

nificantly influence tail latency values. DNS latency, network latency, and latency

within the storage service account for over half the end-to-end latency on more than

40%, 25%, and 20% of tail latency samples. Since network latencies as measured from

PlanetLab nodes conflate latencies over the Internet and within the cloud service’s

data center network, we also study the composition of tail latencies as seen in our

measurements from VMs to the local storage service. In this case too, Figure 3.3(b)

shows that both components of end-to-end latency—latency within the storage ser-

vice, and latency over the data center network—contribute significantly to a large

fraction of tail latency samples. Thus, any solution that reduces latency variance will

have to address all of these sources of latency spikes.

3.2 Overview of CosTLO

Goal. We design CosTLO to meet any application’s service-level objectives (SLOs)

for the extent to which it seeks to reduce latency variance for its users. To ensure

25

that CosTLO is broadly applicable across several classes of applications, we consider

the most fundamental SLO that applications can build upon—SLOs that bound the

variance of the latencies of individual PUT/GET operations; we discuss CosTLO’s

ability to handle more complex application-specific SLOs in Section 3.5.

Though there are several ways in which such SLOs can be specified, we do not

consider SLOs that bound the absolute value of, say, 99th percentile GET/PUT la-

tency; due to the non-uniform geographic distribution of data centers, a single bound

on tail latencies for all end-hosts will not help reduce latency variance for end-hosts

with proximate data centers. Instead, we focus on SLOs that limit the tail latencies

for any end-host relative to the latency distribution experienced by that end-host.

Specifically, we consider SLOs which bound the difference, for any end-host, between

99th percentile latency and its baseline median latency (i.e., the median latency that

it experiences without CosTLO). Every application specifies such a bound separately

for GETs and PUTs.

Approach. Since tail latency samples are dominated by isolated spikes, our high-

level approach is to augment any GET/PUT request with a set of redundant requests,

so that the first response can be considered. Though this is a well-known approach

for reducing tail latencies [120, 67, 49], CosTLO is unique in exploiting several ways

of issuing redundant requests in combination.

For example, consider downloads from the closest S3 data center at the PlanetLab

node in University of Kansas. When this client fetches objects by issuing single GET

requests, the difference between the 99th percentile and median latencies is 214ms.

The simplest way to reduce variance is to have the client issue two concurrent GET

requests to download an object (Figure 3.4(a)). This decreases the gap between

99th percentile and baseline median latency to 110ms, but doubles the cost for GET

operations and network bandwidth. Alternatively, the client can issue a single GET

request to a VM in the cloud, which can in turn issue two concurrent requests for the

26

Client

Storage Service

Obj

Client

Storage Service

Obj

VM

(a) (b)

Client

Storage
Service

Obj

Storage
Service

Obj

Client

VMs
VM

Obj'

Storage Service
Obj

(c) (d)

Figure 3.4: Illustration of various ways in which CosTLO can concurrently issue
requests: (a) to a single object in a storage service, (b) to a single object via a relay
VM, (c) to storage services in multiple data centers, or (d) via multiple relay VMs.

requested object to the local storage service (Figure 3.4(b)). While this adds VM costs

and the 99th percentile latency is now 135ms higher than the baseline median latency,

relaying redundant requests via VMs reduces bandwidth costs (since a single copy of

the object leaves the data center). A third option is to have the client concurrently

fetch copies of the object from multiple data centers (Figure 3.4(c)), e.g., the two

closest S3 data centers. This strategy—the best of the three options in terms of

reducing variance (inflation in 99th percentile compared to baseline median drops to

34ms)—eliminates the overhead of VM costs but increases storage costs.

Challenges. This example illustrates how various forms of redundancy differ in

the tradeoff between reducing variance and increasing cost. Choosing from these

various options, so as to satisfy an application’s SLO cost-effectively, is challenging

for several reasons.

27

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 4 8

C
D

F
of

 P
L

si
te

s

99th percentile / baseline median

1x S3[1]
2x S3[1]

1x S3[1] + 1x S3[2]
1x S3[1] + 1x S3/Azure[2]

Figure 3.5: Impact on Internet tail latencies of different ways to send two concurrent
requests. Logscale on x-axis.

• Large configuration space. There exist an unbounded number of configurations

in which CosTLO can issue redundant requests. This is not only because the degree

of parallelism is unbounded, but also because different types of redundancy can be

combined with each other. For example, Figure 3.4(d) shows a configuration that

both 1) uses multiple relay VMs to route around latency spikes in the data center

network, and 2) issues requests to different objects that are copies of each other.

This unbounded configuration space makes it impossible to simply measure the

latency distribution offered by every candidate configuration of CosTLO.

• Complex service architectures. However, predicting the impact on latencies

of any particular approach for issuing redundant requests is complicated by the

fact that we have little visibility into the architecture of any cloud storage service.

As we describe later, due to correlations between concurrent requests, we cannot

estimate the latencies obtained with k concurrent requests simply by considering

the minimum of k independent samples of a single request’s latency distribution.

• Multi-dimensional pricing policies. Finally, minimizing CosTLO’s cost over-

head is made complex by the fact that cloud services charge customers based on a

28

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-40 -20 0 20 40 60 80 100

C
D

F
of

 P
L

si
te

s

Difference in RTT compared to closest S3 data center

S3/Azure[2]
S3[2]

Figure 3.6: Comparison of second closest data center within a cloud service and
across cloud services.

Goal Technique Section

Characterizing
configuration

space

Measurement study highlighting viable options for
CosTLO to reduce latency variance via redundancy

§ 3.3

Selecting
cost-effective
configuration

Design a representation of configurations and a
cost-effective configuration selection algorithm

§ 3.4.2

Estimating cloud
storage latency

distribution

Explicitly modeling the sources of concurrent requests’
correlations in Internet latency, data center network

latency, and cloud storage latency
§ 3.4.3

Table 3.1: Overview of techniques developed to build CosTLO.

combination of storage, request, VM, and bandwidth costs. Each of the potential

ways in which redundant requests can be issued impacts a subset of these pric-

ing dimensions, and the extent to which it does so depends on the application’s

workload.

Table 3.1 summarizes the various techniques used in CosTLO to address these

challenges.

29

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100C
D

F
of

 to
p

1%
 la

te
nc

ie
s

Data center network latencies (ms)

8x(no relay)
2x(no relay)

8x(VM relay)
2x(VM relay)
1x(no relay)

Figure 3.7: Different ways of exploiting path diversity in the data center network.
Note logscale on x-axis.

3.3 Characterizing Configuration Space

CosTLO’s approach of issuing redundant requests to reduce tail latencies can

broadly be applied in two ways. One way is to concurrently issue the same request

multiple times in order to implicitly exploit load balancing in the Internet or in-

side cloud services. For example, issuing multiple GET requests concurrently to the

same object may lower latencies either because different requests take different paths

through the Internet to the same data center, or because different requests may be

served by different storage servers that host replicas of the same object. An alternate

way is to explicitly enforce diversity by concurrently issuing a set of requests that

differ from each other, yet have the same effect, e.g., by storing multiple copies of an

object and issuing concurrent requests to different copies, or by issuing concurrent

requests to different front-ends of a storage service.

Here, we empirically evaluate on both S3 and Azure the efficacy of several ap-

proaches for reducing tail latencies in three components of end-to-end latency: In-

ternet latency, data center network latency, and latency in the storage service. We

ignore DNS latency since applications often do not control how clients perform DNS

30

lookups and concurrently querying multiple nameservers to reduce DNS latencies has

no impact on cost.

3.3.1 Internet latencies

To examine the utility of different approaches on reducing Internet tail latencies,

we issue pairs of concurrent GET requests from each PlanetLab node in three differ-

ent ways and then compare the measured tail latencies with those seen with single

requests. We use the notation “nx C[m]” to denote a setting in which every Planet-

Lab node issues n concurrent requests to its mth closest data center in cloud C, where

C is either S3, Azure, or the union of data centers in the two (“S3/Azure”).

Multiple requests to same data center. To account for spikes in Internet

latency, we first consider every end-host concurrently issuing multiple requests to the

storage service in the data center closest to it. Load balancing in the Internet [52] may

result in concurrent requests taking different paths to the same data center.1 However,

as shown by the “2x S3[1]” line in Figure 3.5, though issuing two concurrent requests

to the same data center does reduce the inflation in tail latencies, relative inflation

seen at the median PlanetLab node remains close to 2x; the “1x S3[1]” line represents

the baseline where end-hosts issue single GET requests to their closest data center.

Requests to multiple data centers. Since path diversity to the same data cen-

ter is insufficient to tame Internet latency spikes, we next consider issuing concurrent

requests to multiple data centers; in addition to a GET request to its closest S3 data

center, we have every node issue a GET request in parallel to its second closest S3

data center. The “1x S3[1] + 1x S3[2]” line in Figure 3.5 shows that this strategy

offers little benefit in reducing latency variance. This is because, for most PlanetLab

nodes, the second closest data center is too far to help tame latency spikes to the

node’s closest data center.

1Multiple requests may also help in surviving packet losses. However, loss rates in our measure-
ments are below 0.1%, thus making them an insignificant factor in causing latency spikes.

31

The root cause for this is that any particular cloud service provider provisions its

data centers in a manner that maximizes geographical coverage. Hence, any pair of

data centers in the same cloud service are distant from each other. For example, the

“S3[2]” line in Figure 3.6 shows that RTT to the second closest data center in S3 is

40ms greater than the RTT to the closest S3 data center for over 80% of PlanetLab

nodes.

Leveraging multiple cloud providers. Though a single cloud provider’s data

centers are distant from each other, we observe that different cloud providers often

have nearby data centers. For example, Figure 3.6 shows that, for over 80% of

PlanetLab nodes, RTT to the second closest data center across S3 and Azure is

within 25ms of the RTT to the closest S3 data center.

Therefore, leveraging the fact that storage services offered by all cloud providers

largely offer the same PUT/GET interface, every client of an application can down-

load copies of an object in parallel from 1) the closest data center among the ones

on which the application is deployed, and 2) the second closest data center across

all storage services that offer a PUT/GET interface. Figure 3.5 shows that doing so

reduces the inflation in 99th percentile GET latency to be less than 1.5x the baseline

median at 70% of PlanetLab nodes. Note that the application itself can be deployed

across a single cloud provider’s data centers. As we describe later (Section 3.4.1),

CosTLO can maintain copies of objects without the application’s knowledge.

3.3.2 Data center network latencies

Next, we consider strategies for tackling latency spikes within a cloud service’s

data center network.

In this case, we first attempt to implicitly exploit path diversity by issuing the

same PUT/GET request multiple times in parallel from a VM to the local storage

service. Load balancing within the data center network [73] may cause concurrent

32

requests to take different routes to the same front-end of the storage service, thus

enabling us to avoid latency spikes that occur on any one path.

Alternatively, we can explicitly exploit path diversity in two ways. When a VM

issues a GET/PUT to the local storage service, we can either relay each request

through a different VM (Figure 3.4(d)), or issue each request to a different front-end

of the storage service. While the latter approach is applicable in S3, all requests issued

by the same tenant are submitted to the same front-end [61] in Azure. Therefore, we

only consider here the former way of explicitly exploiting path diversity.

In one of Azure’s data centers, Figure 3.7 compares the distribution of tail latencies

over the network in three scenarios for how a VM downloads objects from the local

storage service: 1) a single request is issued, 2) concurrent requests are issued directly

to the same front-end, and 3) concurrent requests are relayed via different VMs. In the

latter two cases, we experiment with different levels of parallelism. We see that both

implicit and explicit exploitation of path diversity significantly reduce tail latencies,

with higher levels of parallelism offering greater reduction. However, using VMs as

relays adds some overhead, likely due to requests traversing longer routes.

3.3.3 Storage service latencies

Finally, we evaluate two approaches for reducing latency spikes within the storage

service, i.e., latency between when a request is received at a front-end and when it

sends back the response. When issuing n concurrent requests to a storage service, we

either issue all n requests for the same object or to n different objects. The former

attempts to implicitly leverage the replication of objects within the storage service,

whereas the latter explicitly creates and utilizes copies of objects. In either case, if

concurrent requests are served by different storage servers, latency spikes at any one

server can be overridden by other servers that are lightly loaded.

At one data center each in Azure and S3, Figure 3.8 shows that both approaches

33

 1

 10

 40

S3 GETs

S3 PUTs

Azure GETs

Azure PUTs

99
th

 p
er

ce
nt

ile
 /

ba
se

lin
e

m
ed

ia
n

1x
2x
4x
8x

 1

 10

 40

S3 GETs

S3 PUTs

Azure GETs

Azure PUTs

99
th

 p
er

ce
nt

ile
 /

ba
se

lin
e

m
ed

ia
n

1x
2x
4x
8x

(a) (b)

Figure 3.8: Impact on storage service tail latency inflation when issuing concurrent
requests to (a) the same object, and (b) to different objects. Note logscale on y-axis.

for issuing concurrent requests significantly reduce tail GET and PUT latencies. How-

ever, the takeaways differ between Azure and S3. On S3, irrespective of whether we

issue multiple requests to the same object or to different objects, the reduction in 99th

percentile latency tails off with increasing parallelism. As seen later in Section 3.4,

this is because, in S3, concurrent requests from a VM incur the same latency over the

network, which becomes the bottleneck in the tail. In contrast, on Azure, 99th per-

centile GET latencies do not reduce further when more than two concurrent requests

are issued to the same object, but tail GET latencies continue to drop significantly

with increasing parallelism when concurrent requests are issued to different objects.

In the case of PUTs, the benefits of redundancy tail off at parallelism levels greater

than two due to Azure’s serialization of PUTs issued by the same tenant [61].

Besides using multiple copies of objects, erasure coding [69] is another approach

to explicitly create data redundancy. It is more cost effective than creating full copies

of objects since the additional storage for redundancy is only a fraction of the full

data. However, we do not consider this approach in CosTLO for two reasons. First,

34

Application

VM Library

Storage
Service Storage

Service

Application VM

Data Center 1

Data Center 2

Client

PUT requests

Workload

Cost-effective
configuration

Storage
Service Relay

VMs

Client Application

Client Library

GET requests

ConfSelector

Version requests
and updates

Version
Metadata

VMs

Asynchronous
replication

Figure 3.9: CosTLO architecture; VMs that run measurement agents are not shown.

erasure coding cannot reduce the latency variance in writes since all splits of data

need to be updated. Second, because our target objects are small, reading a split of

an object from disk will take similar latency as reading a full copy of the object.

3.3.4 Takeaways

In summary, our measurement study highlights the following viable options for

CosTLO to reduce latency variance via redundancy. First, CosTLO can tackle spikes

in Internet latencies by issuing multiple requests to a client’s closest data center. If

greater reduction in Internet tail latencies is desired, CosTLO must concurrently issue

requests to the two closest data centers to the client from the union of data centers

in multiple cloud services. Second, for latency spikes in a data center’s network, it

suffices to issue multiple requests to the storage service in that data center. While

explicitly relaying requests via VMs may help reduce bandwidth costs (as seen in

our example earlier in Section 3.2), they do not offer additional benefits in reducing

latencies. Finally, for latency spikes within the storage service, CosTLO can issue

multiple requests either to the same object or to different objects that are all copies

of the object being accessed.

35

Client

D2D1

Obj
Obj

Obj

Obj

Obj.3

Obj.2

Figure 3.10: Illustration of a configuration in which the tuples for data centers D1
and D2 are (Copies=1, ReqPerCopy=2, VM=False) and (Copies=3, ReqPerCopy=1,
VM=True). All edges are annotated with the name of the object for which GET
requests are issued when the client requests object Obj.

3.4 Cost-effective Support for SLOs

Next, we describe how CosTLO combines the use of the above-mentioned viable

redundancy options in order to satisfy an application’s SLO cost-effectively.

3.4.1 System architecture

Application interface. As shown in Figure 3.9, application code on end-hosts

links to CosTLO’s client library and uses the GET operation2 in this library to fetch

data from cloud storage. The client library issues a set of GET requests to download

an object and returns the object’s data to the application as soon as any one GET

completes. Unlike downloads, we let client-side application code upload data to its

own VMs, because the application may need to update application-specific metadata

2When ambiguous, we refer to applications invoking CosTLO’s GET/PUT operations, and
CosTLO issuing GET/PUT requests to storage services.

36

before writing user-uploaded data to cloud storage. The application code in these

VMs links to CosTLO’s VM library and invokes the PUT operation in this library

to write data to the local storage service. The VM library in turn issues a set of

PUT requests to the local storage service, and informs the application that the PUT

operation is complete once any one of the PUT requests finishes. CosTLO offers the

same consistency semantics as S3 [7]: read-after-write consistency for PUTs of new

objects and eventual consistency for overwrite PUTs; we discuss how CosTLO can

support strong consistency later in Section 3.6.

Configuration selection. CosTLO’s central ConfSelector selects the configura-

tion in which its client library and VM library should serve PUTs and GETs. Con-

fSelector divides time into epochs, and at the start of every epoch, it selects a new

configuration separately for every IP prefix, since Internet latencies to any particular

data center are similar from all end-hosts in a prefix [100]. To exploit weekly stability

in workloads [46], we set epoch durations to one week; we do not consider exploiting

diurnal workload patterns because we observe good cost-efficiency even when only

leveraging weekly workloads stability. At the start of every epoch, the CosTLO li-

brary on every end-host and instances of CosTLO’s VM library in every data center

fetch the configurations that are relevant to them. Since all objects accessed by a

client are replicated as per the configuration associated with the client’s prefix, no

per-object metadata is necessary. If a client loses its state, it simply re-fetches the

configuration in the current epoch for its prefix from ConfSelector.

In the rest of this section, we address three questions: 1) how does ConfSelector

identify a cost-effective configuration of CosTLO that can satisfy the application’s

SLO?, 2) while searching for this cost-effective configuration, how does ConfSelector

estimate the tail latencies for any configuration, given that is impractical to measure

the latencies offered by every configuration?, and 3) how does CosTLO preserve data

consistency?

37

3.4.2 Selecting cost-effective configuration

Characterization of workload and cloud services. To estimate the cost over-

head and latency variance associated with any CosTLO configuration, ConfSelector

1) takes as input the pricing policies at every data center, 2) uses logs exported by

cloud providers to characterize the workload imposed by clients in every prefix, and

3) employs a measurement agent at every data center. Every agent gathers three

types of measurements: 1) pings to a representative end-host in every prefix, 2) pairs

of concurrent GETs and pairs of concurrent PUTs to the local storage service, and 3)

the rates at which VMs can relay PUTs and GETs between end-hosts and the local

storage service without any queueing. We ignore the impact of VM failures on tail

latency since cloud providers guarantee over 99.95% of uptime for VMs [5, 41].

Representation of configurations. To search through the configuration space,

ConfSelector represents every candidate configuration for a prefix as follows. First, a

configuration’s representation includes two three-tuples, which specify the manner in

which end-hosts in the prefix should execute GETs. One three-tuple is for the data

center from which the application serves the prefix and another for the data center

closest to the prefix among all other data centers on which CosTLO is deployed.

Either tuple specifies 1) the number of copies of the object stored in that data center,

2) the number of requests issued to each copy, and 3) whether all of these requests

are relayed via a VM.3 Figure 3.10 depicts an example.

Second, the configuration includes one two-tuple for the manner in which CosTLO’s

VM library should serve PUTs from the prefix. We use only one tuple in this case,

since PUTs from an end-host are served solely at the data center closest to it, and

we use a two-tuple, since the VM library does not relay PUTs through other VMs.

Third, due to the inability to cancel redundant requests after getting a response,

3If necessary, these three-tuples can be extended to include other dimensions, e.g., whether each
request is issued to a different front-end. The dimensions we use here are based on the techniques
that we found to be viable in reducing tail latencies on Azure and S3 (Section 3.3).

38

to reduce the cost overhead associated with redundant requests, the client/VM li-

brary initially issues a single request when serving a GET/PUT. If no response is

received for a certain period, the client/VM library times out and probabilistically

issues redundant requests concurrently as specified by the tuples described above.

The timeout period ensures that CosTLO’s redundancy is focused on requests that

incur a high latency, whereas probabilistically issuing redundant requests offers finer-

grained control over latency variance. For both PUTs and GETs, the configuration

representation specifies the values of the timeout period and probability parameters.

Considering the same example from Figure 3.10 but with 70% probability and 50ms

timeout period to issue redundant requests, the configuration would be [(1, 2, False),

(3, 1, True), 50ms, 70%] (the PUT tuple is ignored here).

Configuration search. Given this representation of the configuration space,

ConfSelector identifies a cost-effective configuration of CosTLO for any particular

prefix as follows. It initializes the configuration for a prefix to reflect the manner in

which an application serves its clients when not using CosTLO—by always issuing

only a single request to the data center closest to a client. CosTLO imposes no cost

overhead in this configuration.

Thereafter, our structured representation of the configuration space enables Con-

fSelector to step through configurations in the increasing order of cost. For this,

ConfSelector maintains a pool of candidate configurations, from which it considers

the minimum cost configuration in every step. ConfSelector computes the cost asso-

ciated with a configuration as the sum of expected costs for storage, VMs, requests,

and bandwidth based on the workload for the prefix and the manner in which the

configuration mandates that GET/PUT operations be served. If the lowest cost con-

figuration in the current pool does not satisfy the SLO, ConfSelector discards this

configuration and inserts all neighbors of this configuration into the pool of candi-

dates. Two configurations are neighbors if they differ in the value of exactly one

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F
of

 re
qu

es
t p

ai
rs

Service latency difference (ms)

Measured
Estimated, 1 replica

Estimated, 2 replicas
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F
of

 re
qu

es
t p

ai
rs

Service latency difference (ms)

Measured
Estimated, 1 replica

Estimated, 2 replicas
Estimated, 3 replicas

(a) (b)

 0.01

 0.1

 0.5
 1

 0.1 1 10 100

C
C

D
F

of
 s

am
pl

es

Data center network latencies (ms)

1 request
2 requests, measured

2 requests, sampled

 0.01

 0.1

 0.5
 1

 1 10 100

C
C

D
F

of
 s

am
pl

es

Data center network latencies (ms)

1 request
2 requests, measured

2 requests, sampled

(c) (d)

Figure 3.11: Distribution of service latency difference between concurrent GET re-
quests offers evidence for GETs to an object (a) being served by one replica in Azure,
and (b) being spread across two replicas in S3. Data center network latencies for
concurrent requests are (c) uncorrelated on Azure, and (d) correlated on S3. Note
logscale on both axes of (c) and (d).

parameter in the configuration representation. For example, configurations [(1, 2,

False), 50ms, 70%] and [(2, 2, False), 50ms, 70%] are neighbors (we only show one

GET tuple here for simplicity). This process terminates once ConfSelector finds a

configuration that satisfies the SLO.

40

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

S
ec

on
d

re
qu

es
t l

at
en

cy
 (

m
s)

First request latency (ms)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
ec

on
d

re
qu

es
t l

at
en

cy
 (

m
s)

First request latency (ms)

(a) Azure GETs (b) S3 GETs

Figure 3.12: Scatter plot of first vs. second request GET latency when issuing two
concurrent requests to a storage service.

3.4.3 Estimating latency distribution

To identify when it has found a configuration that will satisfy the application’s

SLO, for any particular configuration for a prefix, ConfSelector must be able to esti-

mate the latency distribution that clients in that prefix will experience when served in

that configuration. For brevity, we present here ConfSelector’s estimation of latencies

only for GETs, which it computes in four steps. First, for either data center used

in the configuration, we estimate the latency distribution when a VM in that data

center concurrently issues requests to the local storage service, where the number of

requests is specified by the data center’s tuple in the configuration representation.

Second, we estimate the latency distribution for either data center’s tuple by adding

the distribution computed above with the latency distribution measured to the prefix

from a VM in that data center. Simply adding these distributions works when objects

are smaller than 1 KB, and in Section 3.6, we discuss how to extrapolate this distri-

bution for larger objects. Third, we estimate the client-perceived latency distribution

by independently sampling the latency distributions associated with either tuple in

41

the configuration and considering the minimum. Finally, we adjust this distribution

to account for the timeout and probability parameters.

The primary challenge here is the first step: estimating the latency distribution

when a VM issues concurrent requests to the local storage service. This turns out

to be hard due to the dependencies between concurrent requests. While Figure 3.12

shows the correlation in latencies between two concurrent GET requests to an object

at one of Azure’s and one of S3’s data centers, we also see similar correlations for

PUTs and even when the concurrent requests are for different objects. Attempting to

model these correlations between concurrent requests by treating the cloud service as a

black box did not work well. Therefore, we explicitly model the sources of correlations:

concurrent requests may incur the same latency within the storage service if they are

served by the same storage server, or incur the same data center network latency if

they traverse the same network path.

Modeling replication in storage service. First, at every data center, we use

CosTLO’s measurements to infer the number of replicas across which the storage

service spreads requests to an object. For every pair of concurrent requests issued

during CosTLO’s measurements, we compute the difference in service latency (i.e.,

latency within the storage service) between the two requests. We then consider the

distribution of this difference across all pairs of concurrent requests to infer the num-

ber of replicas in use per object. For example, if the storage service load balances

GET requests to an object across 2 replicas, there should be a 50% chance that two

concurrent GETs fetch from the same replica, therefore the service latency differ-

ence is expected to be 0 half the time. We compare this measured distribution with

the expected distribution when the storage service spreads requests across n replicas,

where we vary the value of n. We infer the number of replicas used by the service

as the value of n for which the estimated and measured distributions most closely

match. For example, though both Azure [20] and S3 [10] are known to store 3 replicas

42

of every object, Figures 3.11(a) and 3.11(b) show that the measured service latency

difference distributions closely match GETs being served from 1 replica on Azure and

from 2 replicas on S3.

On the other hand, for concurrent GETs or PUTs issued to different objects, on

both Azure and S3, we see that the latency within the storage service is uncorrelated

across requests. This is likely because cloud storage services store every object on a

randomly chosen server (e.g., by hashing the object’s name for load balancing [68]),

and hence, requests to different objects are likely to be served by different storage

servers.

Modeling load balancing in network. Next, we identify whether concurrent

requests issued to the storage service incur the same latency over the data center

network, or are their network latencies independent of each other. At any data

center, we compute the distribution obtained from the minimum of two independent

samples of the measured data center network latency distribution for a single request.

We then compare this distribution to the measured value of the minimum data center

network latency seen across two concurrent requests.

Figure 3.11(c) shows that, on Azure, the distribution obtained by independent

sampling closely matches the measured distribution, thus showing that network la-

tencies for concurrent requests are uncorrelated. Whereas, on S3, Figure 3.11(d)

shows that the measured distribution for the minimum across two requests is almost

identical to the data center network latency component of any single request; this

shows that concurrent requests on S3 incur the same network latency.

Estimating VM-to-service latency. Given these models for replication and

load balancing, we estimate the end-to-end latency distribution as follows when a

VM issues k concurrent requests to the local storage service. If concurrent requests

are known to have the same latency over the service’s data center network, we sample

the measured data center network latency distribution once and use this value for all

43

Storage
Service

Storage
Service

data center 1

data center 2

Version
Metadata

VMs

1. User PUT
request

2. Acquire L lock & metadatao
S3. Update log,

PUT data to
local storage

5. ACK

4. Update metadata & free L locko
S

8. Update metadata & free L lockoA

Application
VM

Client

7. PUT to remote
data centers

6. Acquire L lock & metadataoA

Requests on
critical path

Requests not
on critical path

Figure 3.13: Illustration of CosTLO’s execution of PUTs.

requests; if not, we independently sample once for each request. If all k requests are

to the same object, then we randomly assign every request to one of the replicas of the

object, where the number of replicas is identified as described above. If the k requests

are for k different objects, then we assume that no two requests are served from the

same storage server. In either case, for each storage server, we independently choose

a sample from the service latency distribution for a single request and assign that to

be the service latency for all requests assigned to that server. Finally, for each of the

k requests, we sum up their assigned data center network latency and service latency

values, and estimate the end-to-end latency at the VM as the minimum of this sum

across the k requests.

Note that our latency estimation models may potentially break down at high

storage service load. But, we have not seen any evidence of this so far, since we see

the same latency distribution irrespective of whether we issue requests once every

three seconds or once every 200ms.

44

3.4.4 Ensuring data consistency

CosTLO can afford to inform the application that a PUT operation is complete as

soon as any of the PUT requests that it issues to serve the operation finish, because

the underlying cloud services guarantee that the data written by a completed PUT

request will be durable [20, 10]. However, this design decision makes it challenging

for CosTLO to ensure that, eventually, all GETs for an object will consistently re-

turn the same data. First, if the application issues back-to-back or concurrent PUT

operations on the same object, redundant PUT requests that are still pending from a

completed PUT operation may potentially overwrite updates written by subsequent

PUT operations. Second, if an application VM restarts after only a subset of the

PUT requests issued to serve a PUT operation complete, the VM library will not

realize if some of the remaining PUT requests fail, thus causing some of the copies of

the object to potentially not reflect the latest update to the object.

Figure 3.13 illustrates the execution of PUTs in CosTLO accounting for these

concerns. In every data center, CosTLO maintains a set of VMs that store in memory

(with a persistent backup) the latest version number and the status of two locks LS
o

and LA
o for every object o stored in that data center. We use LS

o for synchronous PUTs

to local storage service and LA
o for asynchronous PUTs to remote storage services.

When serving a PUT operation on object o, the VM library first queries the local

cluster of CosTLO’s VMs to obtain lock LS
o and learn o’s current version. Once it

acquires the lock, the library appends to a persistent log (maintained locally on the

VM) the update that needs to be written to o and all the PUT requests that the library

needs to issue as per the configuration for the client issuing this PUT operation. By

appending the status of every response to the log, the library ensures that it knows

which PUTs to re-issue, even across VM restarts. Once all PUT requests complete,

the library releases lock LS
o , updating o’s version in the process. At some point later,

the library attempts to acquire lock LA
o , and if o’s version has not changed by then,

45

it updates the remaining copies of o and subsequently releases the lock. If o’s version

has changed, the library just needs to release the lock, since there exists a newer

PUT operation on this key and that PUT’s asynchronous propagation will suffice to

update the remaining copies of o.

Note that, since the application is unaware of the replication of objects across

data centers, all PUT operations on an object will be issued by the application’s

VMs in the same data center. Hence, the VM library needs to acquire locks only from

CosTLO’s VMs within the local data center, thus ensuring that locking operations

add negligible latency. Also note that, when an application issues back-to-back PUT

operations, execution of the latter PUT has to wait for the lock LS
o (for the object o

being updated) to be released. This can potentially increase4 tail latencies if multiple

PUT requests need to complete before LS
o is released. Therefore, in the rare case when

an application often issues back-to-back or concurrent PUTs for the same object,

the application should choose an SLO that offers no improvement in PUT latency

variance; this will ensure that CosTLO executes any PUT operation by issuing a

single PUT request.

3.5 Evaluation

We evaluate CosTLO from three perspectives: 1) its ability to satisfy latency

SLOs, 2) its cost-effectiveness in doing so, and 3) its efficiency in various respects.

We perform our evaluation from the perspective of an application deployed across all

of Amazon’s data centers. We deploy CosTLO across Azure’s and S3’s data centers,

and use PlanetLab nodes at 120 sites as clients.

4Note that we can reduce the extent of this increase in inflation by having CosTLO maintain a
lock LS

o,c for every copy c of object o, but we do not present such a design here to keep the discussion
simple.

46

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80

C
D

F
of

 P
L

si
te

s

99th percentile - baseline median (ms)

SLO = 30ms
SLO = 40ms
SLO = 50ms
SLO = 60ms

Figure 3.14: Verification of CosTLO’s ability to satisfy SLOs.

3.5.1 Ability to satisfy SLOs

SLOs on individual operations. To verify CosTLO’s ability to satisfy latency

SLOs, we mimic a deployment of Wikipedia using server-side logs of objects requested

from the English version of Wikipedia [30]. We randomly select a 1% sample from

the datasets for two consecutive weeks. We provide the workload from the first

week to ConfSelector as input, and have it select cost-effective configurations for 120

PlanetLab nodes. We then run CosTLO with every node configured in the manner

selected by ConfSelector. We replay the workload from the second week, with every

GET request assigned to a random PlanetLab node. We repeat this experiment

for four SLO values—30ms, 40ms, 50ms, and 60ms. In all cases, since we issue

GETs/PUTs to S3 and Azure, our measurements are affected by Internet congestion

and by contention with S3’s and Azure’s customers.

Figure 3.14 shows the distribution of the measured difference between the 99th

percentile and baseline median latencies at every PlanetLab node. For all SLOs, the

latency variance delivered by CosTLO is within the input SLO on most nodes; without

CosTLO, the difference between 99th percentile and baseline median GET latencies is

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

C
D

F
of

 P
L

si
te

s

Difference in page load time
w/ and wo/ variance (ms)

SLO = 20ms
SLO = 30ms

SLO = 40ms
SLO = 50ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

C
D

F
of

 P
L

si
te

s

Difference in sync latency
w/ and wo/ variance (ms)

SLO = 20ms
SLO = 30ms

SLO = 40ms
SLO = 50ms

(a) (b)

Figure 3.15: CosTLO’s ability to satisfy application-specific SLOs for (a) webpage
and (b) social network applications.

greater than 60ms for 75% of PlanetLab nodes (Figure 3.1(a)). Latency variance with

CosTLO is, in fact, well below the SLO in many cases; due to discontinuous drops

in the latency distribution across neighboring configurations, as ConfSelector steps

through the configuration space, it often directly transitions from a configuration that

violates the SLO to one that exceeds it.

Note that, though we only demonstrate CosTLO’s ability to satisfy GET latency

SLOs here (because the trace from Wikipedia only contains GETs), CosTLO can also

reduce the latency variance for PUTs as described earlier. In contrast, in-memory

caching of data can only reduce tail latencies for GETs, but not for PUTs.

Application-specific SLOs. CosTLO’s design is easily extensible to handle

application-specific SLOs, rather than the SLOs for the latencies of individual PUT/GET

operations. Here, we show the results of using CosTLO to reduce user-perceived laten-

cies in the two applications from Section 3.1. In the webpage application, we modify

ConfSelector so that it uses the models in Section 3.4.3 to estimate the distribution

for the latency incurred when the client library fetches 50 objects in parallel and

48

 0.01

 0.1

 0.5

 1

 0 10 20 30 40 50 60 70 80

C
C

D
F

of
 s

am
pl

es

Latencies (ms)

Sampled
CosTLO

Measured

 0.01

 0.1

 0.5

 1

 0 10 20 30 40 50 60

C
C

D
F

of
 s

am
pl

es

Latencies (ms)

Sampled
CosTLO

Measured

(a) Requests to same object (b) Requests to different objects

Figure 3.16: Accuracy of estimating GET latency distribution for 8 concurrent GET
requests from VM to local storage service. (a and b) Comparison of latency distribu-
tions in one S3 region.

waits for at least one GET to each of these objects to complete. In the social network

application, since we need to estimate latencies from multiple users, we extend the

configuration representation in ConfSelector such that it contains the configuration

tuples of all of a user’s followers. The sync completion time is determined when all

followers have at least one GET completed. We use this modified version of Con-

fSelector to select configurations for all PlanetLab nodes and run CosTLO’s client

library on every node as per these configurations. Figure 3.15 shows that CosTLO is

able to satisfy application-specific SLOs in both applications.

3.5.2 Accuracy of estimating latency distributions

CosTLO is able to meet latency SLOs due to its accurate estimation of the end-to-

end latency distributions in any configuration. Our simple approaches of considering

the minimum of the latency distributions across data centers and of adding VM-to-

prefix and VM-to-service latency distributions work reasonably well; in either case,

CosTLO’s estimates show less than 15% error for 90% of PlanetLab nodes. Therefore,

49

 1

 10

 100

S3 Tokyo

S3 Singapore

S3 Sydney

S3 Ireland

S3 Sao Paulo

S3 Virginia

S3 Oregon

S3 California

La
te

nc
ie

s
(m

s)

Measured, same object
CosTLO, same object

Measured, diff objects
CosTLO, diff objects

Figure 3.17: Comparison across all S3 regions of 99th percentile latencies.

here we focus on demonstrating the accuracy of our estimation of the latency distri-

bution when a VM concurrently issues a set of requests to the local storage service.

Recall that CosTLO only gathers measurements when issuing pairs of concurrent re-

quests. We evaluate its ability to estimate the latency distribution for higher levels

of parallelism.

Figures 3.16(a) and 3.16(b) compare the measured and estimated latency distri-

butions when issuing eight concurrent GETs from a VM to the local storage service;

all concurrent requests are for the same object in the former and to different ob-

jects in the latter. In both cases, our estimated latency distribution closely matches

the measured distribution, even in the tail. In contrast, if we estimate the latency

distribution for eight concurrent GETs by independently sampling the latency distri-

bution for a single request eight times and considering the minimum, we significantly

under-estimate the tail of the distribution. Additionally, Figure 3.17(c) shows that

the relative error between the measured and estimated values of the 99th percentile

GET latency is less than 5% in the median S3 region; latencies are higher for S3’s

Virginia data center because it is the most widely used data center in S3.

50

 0
 5

 10
 15
 20
 25
 30
 35
 40

30 35 40 45 50 55 60 65 70

R
el

at
iv

e
in

cr
ea

se
 in

 c
os

t (
%

)

SLO (ms)

Bandwidth
Request
Storage

VM

Figure 3.18: CosTLO’s cost-effectiveness in satisfying SLOs.

3.5.3 Cost-effectiveness

An application that uses CosTLO incurs additional costs for storing copies of

objects, for operations and bandwidth due to redundant requests, and for VMs used

either as relays or to manage locks and version numbers. We again use Wikipedia’s

workload to quantify this overhead on an application provider’s costs.

Figure 3.18 shows the relative cost overhead as a function of the latency SLO,

with the cost split into its four components. At the higher end of the examined range

of SLO values, CosTLO caps tail latency inflation at 70ms—which is less than the

inflation observed at the median node when not using CosTLO—with less than 8%

increase in cost. As the SLO decreases, i.e., as lower variance is desired, cost in-

creases initially due to an increase in the number of redundant requests. Thereafter,

as the SLO further decreases, CosTLO begins to use more relay VMs so that only

one copy of any requested object leaves the data center, thus decreasing bandwidth

costs at the expense of VM costs. As the SLO decreases further, CosTLO begins

concurrently issuing requests to multiple data centers, thus again increasing band-

51

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250Fr
ac

tio
n

of
 P

L
si

te
s

th
at

 m
ee

t S
LO

Cost inflation comparing with CosTLO (%)

S1 (1 DC, 1 obj)
S2 (S1 + VM)

S2 + Multi-obj
S2 + Multi-DC

CosTLO

 0

 10

 20

 30

 40

 50

 60

 30 35 40 45 50 55 60 65 70

C
os

t i
nf

la
tio

n
co

m
pa

rin
g

w
ith

 C
os

TL
O

 (%
)

SLO (ms)
(a) (b)

Figure 3.19: (a) Utility of CosTLO’s components in reducing cost and meeting SLO
= 30ms. (b) Cost inflation when not using timeout and probability parameters.

width costs. Storage costs and cost for VMs that manage locks and version numbers

remain low for all SLO values, because 1) on both Amazon’s and Microsoft’s cloud

services, storage is significantly cheaper than GET/PUT requests, VMs, and network

transfers, and 2) lock status and version numbers for all 70M objects in the English

version of Wikipedia fit into the memory of a small instance VM, which costs less

than $20 per month on EC2.

3.5.4 Utility of CosTLO’s components

CosTLO’s ability to satisfy SLOs cost-effectively crucially depends on its combined

use of various forms of issuing redundancy. We illustrate this in Figure 3.19(a) by

comparing CosTLO with several strategies that each use a subset of the dimensions

in CosTLO’s configuration space. For each strategy, we compute the fraction of

PlanetLab nodes for which it is able to satisfy an SLO of 30ms, and across the nodes

on which the strategy does meet the SLO, we compare its cost with CosTLO’s.

First, the simplest strategy S1, which only issues redundant requests to a single

copy of any object in the data center closest to any client, can meet the SLO on only

52

a little over 10% of nodes. Adding the use of relay VMs (S2) reduces cost inflation

compared to CosTLO from over 200% to less than 150%, but the ability to meet the

SLO remains unchanged. We can improve the ability to satisfy the SLO by adding

the option of issuing redundant requests either to multiple copies of every object in

the closest data center or to multiple data centers. However, the fraction of nodes

on which the SLO can be met remains below 60% if we use one of these two options.

Only by combining the use of relay VMs, multiple copies of objects, and multiple

data centers is CosTLO able to meet the SLO at all nodes, at significantly lower cost.

In addition, we illustrate the utility of CosTLO waiting for a timeout period before

issuing redundant requests and issuing redundant requests probabilistically. For every

SLO in the range 30ms to 70ms, Figure 3.19(b) compares CosTLO’s cost overhead

when it uses the timeout and probability parameters versus when it does not. The

cost overhead of not using the timeout and probability parameters is low when the

SLO is extremely low or extremely high. In the former case, most PlanetLab nodes

need to issue redundant requests at all times without any timeout in order to meet the

SLO, whereas in the latter case, the SLO is satisfied for most PlanetLab nodes even

without redundant requests. However, for many intermediate SLO values—that are

neither too loose nor too stringent—not using the timeout and probability parameters

increases cost significantly, by as much as 48%.

3.5.5 Efficiency

Measurement cost. The cost associated with CosTLO’s measurements depends

on the number of latency samples necessary to accurately sample latency distribu-

tions. To quantify the stationarity in latencies, we consider a dataset of 200K latency

measurements gathered over a week from VMs in every S3 and Azure data center.

We then consider subsets of these datasets, varying the number of samples consid-

ered. In all datasets, we find that 10K samples are sufficient to obtain a reasonably

53

accurate value of the 99th percentile latency. In the ping, GET, and PUT latency

measurements, the 99th percentile from a subset of 10K samples was off from the 99th

percentile in the entire dataset by only 2.9%, 3.8%, and 2.2% on average.

Thus, at every data center, CosTLO’s weekly measurement costs include: 1) 20K

GETs and PUTs (since CosTLO gathers data with pairs of concurrent requests), 2)

10K pings to every end-host prefix, and 3) one “small instance” VM (which is sufficient

to support this scale of measurements). Accounting for the roughly 120K IP prefixes

at the Internet’s edge [84], eight S3 data centers, and 13 Azure data centers, these

measurements translate to a total cost of $392 per week. These minimal measurement

costs are shared across all applications that use CosTLO.

Configuration selection runtime. We run ConfSelector to select the configu-

rations for 120 PlanetLab nodes, and we compute the average runtime per node. We

repeat this for SLO values ranging from 20ms to 100ms. Extrapolating the average

runtime per node, we estimate that, for all SLO values, ConfSelector needs less than

a day to select the configuration for all 120K edge prefixes on a server with 16 cores.

Hence, ConfSelector can identify the configurations for a particular week during the

last day of the previous week. Moreover, since ConfSelector independently selects

configurations for different prefixes, this runtime is easily reduced by parallelizing

ConfSelector’s execution across a cluster of servers.

3.6 Discussion

Strong consistency. Many applications (e.g., Google Docs) require their under-

lying storage to offer strong consistency. For such applications, CosTLO uses only

strongly consistent storage services, e.g., it can use Azure but not S3. In addition,

two modifications are necessary in the execution of a PUT operation on any object

o. First, to ensure linearizability of PUTs, the VM library synchronously updates

all copies of o before releasing lock LS
o . Second, instead of the library informing the

54

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

C
D

F
of

 P
L

si
te

s

99th percentile - baseline median (ms)

1x [1], 2x [2]
1x [1]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

La
te

nc
y

(m
s)

Object size (KB)

SYS, median
NET, median

SYS, 99%ile
NET, 99%ile

(a) (b)

Figure 3.20: (a) CosTLO’s utility in reducing latency variance when offering strong
consistency; 1 PUT request per copy. (b) latency breakdown for objects of different
sizes.

application when any one PUT request completes, the application registers for two

callbacks—1) quorumPUTsDone, for when at least one PUT request each completes

on a quorum of o’s copies, and 2) allPUTsDone, when all PUTs finish. The quo-

rumPUTsDone callback indicates to the application that subsequent GET operations

on o will fetch the latest version, if the client library waits for responses from a quorum

of copies when serving GETs.

After these changes, Figure 3.20(a) shows the PUT latency variance offered by

CosTLO when every object accessed by a PlanetLab node has one copy and two

copies, respectively, in the closest Azure data center and the second closest data

center across S3 and Azure; for this analysis, we ignore that S3 does not offer strong

consistency. Despite having to wait for PUT requests on a quorum of copies to

complete, and though a quorum of every object’s copies are stored in a different data

center than the application VMs that issue PUT operations on the object, CosTLO

more than halves the PUT latency inflation for the median node. This again highlights

the utility of redundant copies and requests, and of CosTLO’s use of multiple cloud

55

services.

Latency estimation for larger objects. One can potentially extend CosTLO’s

approach for estimating latency variance to larger objects as follows. We conduct

measurements on objects from 1 KB to 256 KB when issuing one GET request at a

time to each object from a local VM, and Figure 3.20(b) shows the results from one

data center. We see that network latency is proportional to object size, and storage

service latency is a step function of object size. Although different data centers may

have different step functions (we observe that some data centers have the same storage

service latency distribution for all sizes in the 256 KB range), the smallest range that

has a fixed storage service latency distribution is until 64 KB, which is a typical block

size in distributed storage systems [63]. Therefore, to estimate latencies for objects of

different sizes, we can leverage the fact that objects with the same number of blocks

have the same storage service latency distribution.

Scale of adoption. CosTLO’s approach of issuing redundant requests makes it

unviable if all applications adopt it. However, we believe that increasing adoption of

CosTLO will emphasize the demand for latency SLOs and spur cloud providers to

suitably modify their services. In the interim, CosTLO minimizes the cost overhead

incurred by application providers who seek to improve predictability in user-perceived

latencies without having to wait for any changes to cloud services. Moreover, cloud

service providers have little control over reducing variance in the latency on the

Internet path between end-hosts and their data centers.

3.7 Summary

Our measurements of the Azure and S3 storage highlight the high variance in

latencies offered by these services. To enable applications to improve predictability,

without having to wait for these services to modify their infrastructure, we have

designed and implemented CosTLO, a framework that requires minimal changes to

56

applications. Based on several insights about the causes for latency variance on cloud

storage that we glean from our measurements, our design of CosTLO judiciously

combines several instantiations of the approach of issuing redundant requests. Our

results show that, despite the unbounded configuration space and opaque cloud service

architectures, CosTLO cost-effectively enables applications to meet latency SLOs.

57

CHAPTER IV

Cost-effective Data Placement in the Cloud

Today, several cloud providers offer storage as a service. Amazon S3 [6], Google

Cloud Storage (GCS) [25], and Microsoft Azure [13] are notable examples. All of

these services provide storage in several data centers distributed around the world.

Customers can store and retrieve data via PUTs and GETs without dealing with

the complexities associated with setting up and managing the underlying storage

infrastructure.

Ideally, web applications should be able to provide low-latency service to their

clients by leveraging the distributed locations for storage offered by these services.

For example, a photo sharing web service deployed across Amazon’s data centers may

serve every user from the data center closest to the user.

However, a number of realities complicate this goal. First, almost every storage

service offers an isolated pool of storage in each of its data centers, leaving replication

across data centers to applications. For example, even though Amazon’s cloud plat-

form has eight data centers, customers of its S3 storage service need to read/write

data at each data center separately. If a user in Seattle uploads a photo to a photo

sharing web service deployed on all of Amazon’s data centers, the application will

have to replicate this photo to each data center to ensure low latency access to the

photo for users in other locations.

58

Second, while replicating all objects to all data centers can ensure low latency

access [96], that approach is costly and may be inefficient. Some applications may

value lower costs over the most stringent latency bounds, different applications may

demand different degrees of data consistency, some objects may only be popular in

some regions, and some clients may be near to multiple data centers, any of which

can serve them quickly. All these factors mean that no single deployment provides

the best fit for all applications and all objects. Since cloud providers do not provide

a centralized view of storage with rich semantics, every application needs to reason

on its own about where and how to replicate data to satisfy its latency goals and

consistency requirements at low cost.

To address this problem, we design and implement SPANStore (“Storage Provider

Aggregating Networked Store”), a key-value store that presents a unified view of stor-

age services present in several geographically distributed data centers. Unlike exist-

ing geo-replicated storage systems [96, 97, 114, 66], our primary focus in developing

SPANStore is to minimize the cost incurred by latency-sensitive application providers.

Three key principles guide our design of SPANStore to minimize cost.

First, SPANStore spans data centers across multiple cloud providers due to the

associated performance and cost benefits. On one hand, SPANStore can offer lower

latencies because the union of data centers across multiple cloud providers results in

a geographically denser set of data centers than any single provider’s data centers.

On the other hand, the cost of storage and networking resources can significantly

differ across cloud providers. For example, when an application hosted in the US

serves a user in China, storing the user’s data in S3’s California data center is more

expensive ($0.026 per GB) than doing so in GCS ($0.023 per GB), whereas the price

for serving data to the user has the opposite trend ($0.09 per GB in S3 vs. $0.12 per

GB in GCS). SPANStore exploits these pricing discrepancies to drive down the cost

incurred in satisfying application providers’ latency, consistency, and fault tolerance

59

goals.

Second, to minimize cost, SPANStore judiciously determines where to replicate

every object and how to perform this replication. Replicating objects to a larger

diversity of locations reduces GET latencies by moving copies closer to clients, but

this additional replication increases both storage costs and the expenses necessary

to pay for the bandwidth required to propagate updates. For every object that

it stores, SPANStore addresses this trade-off by taking into consideration several

factors: the anticipated workload for the object (i.e., how often different clients access

it), the latency guarantees specified by the application that stored the object in

SPANStore, the number of failures that the application wishes to tolerate, the level

of data consistency desired by the application (e.g., strong versus eventual), and the

pricing models of storage services that SPANStore builds upon.

Lastly, SPANStore further reduces cost by minimizing the compute resources nec-

essary to offer a global view of storage. These compute resources are used to im-

plement tasks such as two-phase locking while offering strong consistency and prop-

agation of updates when offering eventual consistency. To keep costs low, we en-

sure that all data is largely exchanged directly between application virtual machines

(VMs) and the storage services that SPANStore builds upon; VMs provisioned by

SPANStore itself—rather than by application provider—are predominantly involved

only in metadata operations.

We have developed and deployed a prototype of SPANStore that spans all data

centers in the S3, Azure, and GCS storage services. In comparison to alternative

designs for geo-replicated storage (such as using the data centers in a single cloud

service or replicating every object in every data center from which it is accessed),

we see that SPANStore can lower costs by over 10x in a range of scenarios. We

have also ported two applications with disparate consistency requirements (a social

networking web service and a collaborative document editing application), and we

60

find that SPANStore is able to meet latency goals for both applications.

4.1 Problem formulation

Our overarching goal in developing SPANStore is to enable applications to interact

with a single storage service, which underneath the covers uses several geographically

distributed storage services. Here, we outline our vision for how SPANStore simplifies

application development and the challenges associated with minimizing cost.

4.1.1 Setting and utility

We assume an application employing SPANStore for data storage uses only the

data centers of a single cloud service to host its computing instances, even though

(via SPANStore) it will use multiple cloud providers for data storage. This is be-

cause different cloud computing platforms significantly vary in the abstractions that

applications can build upon; an application’s implementation will require significant

customization in order for it be deployable across multiple cloud computing plat-

forms. For example, applications deployed on Amazon EC2 can utilize a range of

services such as Simple Queueing Service, Elastic Beanstalk, and Elastic Load Bal-

ancing. Other cloud computing platforms such as Azure and GCE do not offer direct

equivalents of these services.

To appreciate the utility of developing SPANStore, consider a collaborative docu-

ment editing web service (similar to Google Docs) deployed across all of EC2’s data

centers. Say this application hosts a document that is shared among three users who

are in Seattle, China, and Germany. The application has a range of choices as to

where this document could be stored. One option is to store copies of the document

at EC2’s Oregon, Tokyo, and Ireland data centers. While this ensures that GET op-

erations have low latencies, PUTs will incur latencies as high as 560ms since updates

need to be applied to all copies of the document in order to preserve the document’s

61

consistency. Another option is to maintain only one copy of the document at EC2’s

Oregon data center. This makes it easier to preserve consistency and also reduces

PUT latencies to 170ms, but increases GET latencies to the same value. A third

alternative is to store a single copy of the document at Azure’s data center on the US

west coast. This deployment reduces PUT and GET latencies to below 140ms and

may significantly reduce cost, since GET and PUT operations on EC2 cost 4x and

50x, respectively, what they do on Azure.

Thus, every application has a range of replication strategies to choose from, each

of which presents a different trade-off between latency and cost. Today, the onus of

choosing from these various options on a object-by-object basis is left to individual

application developers. By developing SPANStore, we seek to simplify the develop-

ment of distributed applications by presenting a single view to geo-replicated storage

and automating the process of navigating this space of replication strategies.

4.1.2 Goals

Four objectives guide our synthesis of geographically distributed storage services

into a single key-value store.

• Minimize cost. Our primary goal is to minimize costs for applications that use

SPANStore. For this, we need to minimize the total cost across SPANStore’s use

of 1) the storage services that it unifies, and 2) the compute resources offered by

the corresponding providers.

• Respect latency SLOs. We design SPANStore to serve latency-sensitive appli-

cations that have geographically distributed deployments, and therefore stand to

benefit from the geo-replicated storage offered by SPANStore. However, the ser-

vice level objectives (SLOs)1 for GET/PUT latencies may vary across applications.

While minimizing cost for any particular application, SPANStore must strive to

1We use the term SLO instead of SLA because violations of the latency bounds are not fatal, but
need to be minimized.

62

meet applications’ latency goals.

• Flexible consistency. Different applications can also vary in their requirements

for the consistency of the data they store. For example, a collaborative document

editing service requires strong consistency whereas eventual consistency may suffice

for a social networking service. SPANStore should respect requirements for strong

consistency and exploit cases where eventual consistency suffices to offer lower

latencies.

• Tolerate failures. Applications seek to tolerate failures of data centers and In-

ternet paths. However, applications may differ in the cost that they are willing to

bear for increased fault tolerance. SPANStore should account for an application’s

fault tolerance requirements while storing objects written by the application.

4.1.3 Challenges

Satisfying these goals is challenging for several reasons.

Inter-dependencies between goals. To minimize cost, it is critical that SPANStore

jointly considers an application’s latency, consistency, and fault tolerance require-

ments. For example, if an application desires strongly consistent data, the most

cost-effective strategy is for SPANStore to store all of the application’s data in the

cheapest storage service. However, serving all PUTs and GETs from a single replica

may violate the application’s latency requirements, since this replica may be dis-

tant from some of the data centers on which the application is deployed. On the

other hand, replicating the application’s data at all data centers in order to reduce

PUT/GET latencies will increase the cost for SPANStore to ensure strong consistency

of the data.

Dependence on workload. Even if two applications have the same latency,

fault tolerance, and consistency requirements, the most cost-effective solution for

storing their data may differ. The lowest cost configuration for replicating any object

63

depends on several properties of an application’s workload for that object:

• The set of data centers from which the application accesses the object, e.g., an

object accessed only by users within the US can be stored only on data centers in

the US, whereas another object accessed by users worldwide needs wider replication.

• The number of PUTs and GETs issued for that object at each of these data centers,

e.g., to reduce network transfer costs, it is more cost-effective to replicate the object

more (less) if the workload is dominated by GETs (PUTs).

• The temporal variation of the workload for the object, e.g., the object may initially

receive a high fraction of PUTs and later be dominated by GETs, thus requiring a

change in the replication strategy for the object.

Multi-dimensional pricing. Cost minimization is further complicated by the

fact that any storage service prices its use based on several metrics: the amount of data

stored, the number of PUTs and GETs issued, and the amount of data transferred

out of the data center in which the service is hosted. No single storage service is

the cheapest along all dimensions. For example, one storage service may offer cheap

storage but charge high prices for network transfers, whereas another may offer cheap

network bandwidth but be expensive per PUT and GET to the service. Moreover,

some storage services (e.g., GCS) charge for network bandwidth based on the location

of the client issuing PUTs and GETs.

4.2 Why multi-cloud?

A key design decision in SPANStore is to have it span the data centers of multiple

cloud service providers. In the previous chapter, we show that how to use multi-

cloud to reduce latency variance of accessing single objects stored in cloud storage.

In this section, we motivate our design decision of leveraging multi-cloud deployments

by presenting measurements which demonstrate that deploying across multiple cloud

64

 0

 5

 10

 15

 20

 25

50 100 150 200 250 300#
of

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
S3-only

 0

 5

 10

 15

 20

 25

50 100 150 200 250 300#
of

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
Azure-only

(a) EC2 (b) Azure

 0

 5

 10

 15

 20

50 100 150 200 250 300

of

 c
he

ap
er

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
S3-only

 0

 5

 10

 15

 20

50 100 150 200 250 300

of

 c
he

ap
er

 d
at

a
ce

nt
er

s
w

ith
in

 b
ou

nd

Latency bound (ms)

S3+GCS+Azure
Azure-only

(c) EC2 (d) Azure

Figure 4.1: For applications deployed on a single cloud service (EC2 or Azure), a
storage service that spans multiple cloud services offers a larger number of data centers
(a and b) and more cheaper data centers (c and d) within a latency bound.

providers can potentially lead to reduced wide area latencies for clients and reduced

cost for applications.

4.2.0.1 Lower latencies

We first show that using multiple cloud providers can enable SPANStore to offer

lower GET/PUT latencies. For this, we instantiate VMs in each of the data centers

in EC2, Azure, and GCE. From the VM in every data center, we measure GET

latencies to the storage service in every other data center once every 5 minutes for a

week. We consider the latency between a pair of data centers as the median of the

65

measurements for that pair.

Figure 4.1 shows how many other data centers are within a given latency bound

of each EC2 [4.1(a)] and Azure [4.1(b)] data center. These graphs compare the

number of nearby data centers if we only consider the single provider to the number

if we consider all three providers—Amazon, Google, and Microsoft. For a number of

latency bounds, either graph depicts the minimum, median, and maximum (across

data centers) of the number of options within the latency bound.

For nearly all latency bounds and data centers, we find that deploying across

multiple cloud providers increases the number of nearby options. SPANStore can

use this greater choice of nearby storage options to meet tighter latency SLOs, or to

meet a fixed latency SLO using fewer storage replicas (by picking locations nearby to

multiple frontends). Intuitively, this benefit occurs because different providers have

data centers in different locations, resulting in a variation in latencies to other data

centers and to clients.

4.2.0.2 Lower cost

Deploying SPANStore across multiple cloud providers also enables it to meet

latency SLOs at potentially lower cost due to the discrepancies in pricing across

providers. Figures 4.1(c) and 4.1(d) show, for each EC2 and Azure data center, the

number of other data centers within a given latency bound that are cheaper than

the local data center along some dimension (storage, PUT/GET requests, or network

bandwidth). For example, nearby Azure data centers have similar pricing, and so, no

cheaper options than local storage exist within 150ms for Azure-based services. How-

ever, for the majority of Azure-based frontends, deploying across all three providers

yields multiple storage options that are cheaper for at least some operations. Thus,

by judiciously combining resources from multiple providers, SPANStore can use these

cheaper options to reduce costs.

66

Data center 1

Application
VMs Storage

Service

Placement
Manager

Data
center 3

Storage
Service

PUT/GET requests

Data center 2

Storage
Service

SPANStore
VMs

Metadata lookups/inserts

Replication policies

Aggregate workload
and latencies

Application

SPANStore
Library

Application VM

Storage
Service

Figure 4.2: Overview of SPANStore’s architecture.

Note that leveraging these price discrepancies across clouds to reduce web service

cost is unlikely to result in all load being concentrated at the cheapest data center,

which could cause pricing to equalize [78] across cloud providers. This is because

workload and performance requirements vary across web services, which can result in

completely distinct replication policies and storage request execution configurations.

Therefore, different web services are likely to exploit pricing discrepancies in differing

ways. Moreover, certain distinctions in factors such as cloud system implementations

and cloud-ISP relationships will also cause the price discrepancies to remain in the

near future.

4.3 Overview of SPANStore

We design SPANStore such that every application uses a separate deployment

of SPANStore. Figure 4.2 summarizes SPANStore’s deployment for any particular

67

application. At every data center in which the application is deployed, the application

issues PUT and GET requests for objects to a SPANStore library that the application

links to. The SPANStore library serves these requests by 1) looking up in-memory

metadata stored in the SPANStore-instantiated VMs in the local data center, and

thereafter 2) issuing PUTs and GETs to underlying storage services. To issue PUTs

to remote storage services, the SPANStore library may choose to relay PUT operations

via SPANStore VMs in other data centers.

The manner in which SPANStore VMs should serve PUT/GET requests for any

particular object is dictated by a central PlacementManager (PMan). We divide time

into fixed-duration epochs; an epoch lasts one hour in our current implementation.

At the start of every epoch, all SPANStore VMs transmit to PMan a summary of the

application’s workload and latencies to remote data centers measured in the previous

epoch. PMan then computes the optimal replication policies to be used for the appli-

cation’s objects based on its estimate of the application’s workload in the next epoch

and the application’s latency, consistency, and fault tolerance requirements. In our

current implementation, PMan estimates the application’s workload in a particular

epoch to be the same as that observed during the same period in the previous week.

PMan then communicates the new replication policies to SPANStore VMs at all data

centers. These replication policies dictate how SPANStore should serve the applica-

tion’s PUTs (where to write copies of an object and how to propagate updates) and

GETs (where to fetch an object from) in the next epoch.

Table 4.1 summarizes the various insights that SPANStore leverages to reduce

cost of using cloud storage services.

4.4 Determining replication policies

In this section, we discuss PMan’s determination of the replication policies used

in SPANStore’s operation. We first describe the inputs required by PMan and the

68

Insight Overview Section

Multi-cloud
deployment

Lowering cost due to the discrepancies in pricing across
providers

§ 4.2

Using aggregate
workload per

access set

Leveraging application-level hints to group objects based
on their access patterns for better workload predictability

§ 4.4.1

Relay
propagation

Reducing cost by relaying propagation at data centers with
cheaper data transfer cost

§ 4.5

Cost-optimal
configuration
formulation

Formulating the problem of determining the cost-optimal
replication policy as a mixed integer program to address

the trade-off between storage, networking and request costs

§ 4.4.2
&

§ 4.4.3

Table 4.1: Summary of insights to reduce cost in SPANStore.

Placement
ManagerSPANStore characterization

Application-specific inputs

1. Inter-DC latencies
2. Pricing policies of
storage services

3. Latency SLOs
4. Consistency requirement
5. Fault tolerance requirements
6. Aggregate workload per
 access set

Replication policy for
each access set

Figure 4.3: Overview of PMan’s inputs and output.

format in which it outputs replication policies. We then present the algorithms used

by PMan in two different data consistency scenarios.

4.4.1 Inputs and output

As shown in Figure 4.3, PMan requires three types of inputs: 1) a characteri-

zation of SPANStore’s deployment, 2) the application’s latency, fault tolerance, and

consistency requirements, and 3) a specification of the application’s workload.

Characterization of SPANStore deployment. PMan requires two pieces of

information about SPANStore’s deployment. First, it takes as input the distribution

of latencies between every pair of data centers on which SPANStore is deployed.

69

These latencies include measurements of PUTs, GETs, and pings issued from a VM

in one data center to the storage service or a VM in another data center. Second,

PMan needs the pricing policy for the resources used by SPANStore. For each data

center, we specify the price per byte of storage, per PUT request, per GET request,

and per hour of usage for the type of virtual machine used by SPANStore in that data

center. We also specify, for each pair of data centers, the price per byte of network

transfer from one to the other, which is determined by the upload bandwidth pricing

at the source data center.

Application requirements. PMan also needs as input the application’s latency,

data consistency, and fault tolerance requirements. For the latency goals, we let

the application separately specify SLOs for latencies incurred by PUT and GET

operations. Either SLO is specified by a latency bound and the fraction of requests

that should incur a latency less than the specified bound.

To capture consistency needs, we ask the application developer to choose between

strong and eventual consistency. In the strong consistency case, we provide lineariz-

ability [80], i.e., all PUTs for a particular object are ordered and any GET returns

the data written by the last committed PUT for the object. In contrast, if an appli-

cation can make do with eventual consistency, SPANStore can satisfy lower latency

SLOs. Our algorithms for the eventual consistency scenario are extensible to other

consistency models such as causal consistency [96] by augmenting data transfers with

additional metadata.

In both the eventual consistency and strong consistency scenarios, the application

developer can specify the number of failures—either of data centers or of Internet

paths between data centers—that SPANStore should tolerate. As long as the number

of failures is less than the specified number, SPANStore should ensure the availability

of all GET and PUT operations while also satisfying the application’s consistency

and latency requirements. When the number of failures exceeds the specified number,

70

SPANStore may make certain operations unavailable or violate latency goals in order

to ensure that consistency requirements are preserved.

Workload characterization. Lastly, PMan accounts for the application’s work-

load in two ways. First, for every object stored by an application, we ask the ap-

plication to specify the set of data centers from which it will issue PUTs and GETs

for the object. We refer to this as the access set for the object. An application can

determine the access set for an object based on the sharing pattern of that object

across users. For example, a collaborative online document editing web service knows

the set of users with whom a particular document has been shared. The access set

for the document is then the set of data centers from which the web service serves

these users. In cases where the application itself is unsure which users will access a

particular object (e.g., in a file hosting service like RapidShare), it can specify the

access set of an object as comprising all data centers on which the application is

deployed; this uncertainty will translate to higher costs. In this work, we consider

every object as having a fixed access set over its lifetime. SPANStore could account

for changes in an object’s access set over time, but at the expense of a larger number

of latency SLO violations; we defer the consideration of this scenario to future work.

Second, SPANStore’s VMs track the GET and PUT requests received from an

application to characterize its workload. Since the GET/PUT rates for individual

objects can exhibit bursty patterns (e.g., due to flash crowds), it is hard to predict

the workload of a particular object in the next epoch based on the GETs and PUTs

issued for that object in previous epochs. Therefore, SPANStore instead leverages

the stationarity that typically exists in an application’s aggregate workload, e.g.,

many applications exhibit diurnal and weekly patterns in their workload [46, 58].

Specifically, at every data center, SPANStore VMs group an application’s objects

based on their access sets. In every epoch, for every access set, the VMs at a data

center report to PMan 1) the number of objects associated with that access set and

71

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F
 o

f a
na

ly
ze

d
ho

ur
s

Relative difference in posted tweets

All users
User 1
User 2
User 3
User 4
User 5

Figure 4.4: Comparison at different granularities of the stationarity in the number of
posted tweets.

the sum of the sizes of these objects, and 2) the aggregate number of PUTs and GETs

issued by the application at that data center for all objects with that access set.

To demonstrate the utility of considering aggregate workloads in this manner,

we analyze a Twitter dataset that lists the times at which 120K users in the US

posted on Twitter over a month [95]. We consider a scenario in which every user is

served from the EC2 data center closest to the user, and consider every user’s Twitter

timeline to represent an object. When a user posts a tweet, this translates to one

PUT operation on the user’s timeline and one PUT each on the timelines of each of

the user’s followers. Thus, the access set for a particular user’s timeline includes the

data centers from which the user’s followers are served.

Here, we consider those users whose timelines have their access set as all EC2 data

centers in the US. Figure 4.4 presents the stationarity in the number of PUTs when

considering the timelines of all of these users in aggregate and when considering five

popular individual users. In either case, we compare across two weeks the number of

PUTs issued in the same hour on the same day of the week, i.e., for every hour, we

compute the difference between the number of tweets in that hour and the number of

72

tweets in the same hour the previous week, normalized by the latter value. Aggregate

across all users, the count for every hour is within 50% of the count for that hour the

previous week, whereas individual users often exhibit 2x and greater variability. The

greater stationarity in the aggregate workload thus enables more accurate prediction

based on historical workload measurements.

Replication policy. Given these inputs, at the beginning of every epoch, PMan

determines the replication policy to be used in the next epoch. Since we capture

workload in aggregate across all objects with the same access set, PMan determines

the replication policy separately for every access set, and SPANStore employs the

same replication strategy for all objects with the same access set. For any particular

access set, the replication policy output by PMan specifies 1) the set of data centers

that maintain copies of all objects with that access set, and 2) at each data center in

the access set, which of these copies SPANStore should read from and write to when

an application VM at that data center issues a GET or PUT on an object with that

access set.

Thus, the crux of SPANStore’s design boils down to: 1) in each epoch, how does

PMan determine the replication policy for each access set, and 2) how does SPANStore

enforce PMan-mandated replication policies during its operation, accounting for fail-

ures and changes in replication policies across epochs? We next describe separately

how SPANStore addresses the first question in the eventual consistency and strong

consistency cases, and then tackle the second question in the next section.

4.4.2 Eventual consistency

When the application can make do with eventual consistency, SPANStore can

trade-off costs for storage, PUT/GET requests, and network transfers. To see why

this is the case, let us first consider the simple replication policy where SPANStore

maintains a copy of every object at each data center in that object’s access set (as

73

B

A

C

D

F

E B

A

C

D

F

E

Q

R

S

(a) Full replication (b) Partial replication

minimizes latency reduces costs

B

A

C

D

F

E

Q

R

S

P

B

A

C

D

F

E

Q

R

S

P

(c) Relayed update propagation (d) Two-hop relaying may

reduces bandwidth costs reduce costs further

Figure 4.5: When eventual consistency suffices, illustration of different replication
policies for access set {A, B, C, D, E, F}. In all cases, we show how PUTs from
data center A are propagated. Shaded circles are data centers that host replicas, and
dotted circles represent data centers that propagate updates. Solid arrows correspond
to transfers that impact PUT latencies, and dotted arrows represent asynchronous
propagation.

shown in Figure 4.5(a)). In this case, a GET for any object can be served from the

local storage service. Similarly, PUTs can be committed to the local storage service

and updates to an object can be propagated to other data centers in the background;

SPANStore considers a PUT as complete after writing the object to the local storage

service because of the durability guarantees offered by storage services. By serving

PUTs and GETs from the storage service in the same data center, this replication

policy minimizes GET/PUT latencies, the primary benefit of settling for eventual

consistency. In addition, serving GETs from local storage ensures that GETs do not

74

incur any network transfer costs.

However, as the size of the access set increases, replicating every object at every

data center in the access set can result in high storage costs. Furthermore, as the

fraction of PUTs in the workload increase, the costs associated with PUT requests

and network transfers increase as more copies need to be kept up-to-date.

To reduce storage costs and PUT request costs, SPANStore can store replicas of

an object at fewer data centers, such that every data center in the object’s access

set has a nearby replica that can serve GETs/PUTs from this data center within the

application-specified latency SLOs. For example, as shown in Figure 4.5(b), instead

of storing a local copy, data center A can issue PUTs and GETs to the nearby replica

at Q.

However, SPANStore may incur unnecessary networking costs if it propagates a

PUT at data center A by having A directly issue a PUT to every replica. Instead, we

can capitalize on the discrepancies in pricing across different cloud services and relay

updates to the replicas via another data center that has cheaper pricing for upload

bandwidth. For example, in Figure 4.5(c), SPANStore reduces networking costs by

having A send each of its updates to P , which in turn issues a PUT for this update

to all the replicas that A has not written to directly. In some cases, it may be even

more cost-effective to have the replica to which A commits its PUTs relay updates

to a data center that has cheap network pricing, which in turn PUTs the update to

all other replicas, e.g., as shown in Figure 4.5(d).

PMan addresses this trade-off between storage, networking, and PUT/GET re-

quest costs by formulating the problem of determining the replication policy for a

given access set AS as a mixed integer program (shown in Algorithm 1; for simplic-

ity, we present the formulation without including VM costs). For every data center

i ∈ AS, PMan chooses f + 1 data centers (out of all those on which SPANStore is

deployed) which will serve as the replicas to which i issues PUTs and GETs (line 27).

75

Algorithm 1 Replication policy selection for eventual consistency.
1: Inputs:
2: T = Duration of epoch
3: AS = Set of data centers that issue PUTs and GETs
4: f = Number of failures that SPANStore should tolerate
5: SLO, p = SLO on pth percentile of PUT/GET latencies
6: LC

ij = pth percentile latency between VMs in data centers i and j

7: LS
ij = pth percentile latency between a VM in data center i and the storage service in data center j

8: PUTsi,GETsi = Total no. of PUTs and GETs issued at data center i across all objects with access set AS
9: Sizeavg , Sizetotal = Avg. and total size of objects with access set AS

10: PriceGET
i , P ricePUT

i , P riceStorage
i = Prices at data center i per GET, per PUT, and per byte per hour of

storage
11: PriceNet

ij = Price per byte of network transfer from data center i to j

12: Variables:
13: ∀i ∈ AS, j s.t. LS

ij ≤ SLO : Rij // whether j is a replica to which i issues PUTs and GETs; only permitted if a

VM at i can complete a GET/PUT on the storage service at j within the SLO
14: ∀i ∈ AS, j, k s.t. pth percentile of LC

ij + LS
jk ≤ SLO : PS

ijk // whether i synchronously forwards its PUTs to k

via j; only permitted if a VM at i can forward data to the storage service at j via a VM at k within the SLO
15: ∀i ∈ AS, j, k,m : PA

ijkm // whether i’s PUTs are asynchronously forwarded to m via j and k

16: ∀i ∈ AS, j, k s.t. j 6= k : Fijk // whether PUTs from i are relayed to k via j
17: ∀j : Cj //whether j is a replica

18: Objective: Minimize (Cost for GETs + Cost for PUTs + Storage cost)
19: // GETs issued at i fetch data only from i’s replicas

20: Cost for GETs =
∑
i

GETsi · (
∑
j

(Rij · (PriceGET
j + PriceNet

ji · Sizeavg)))

21: // Every PUT is propagated to all replicas

22: Cost for PUTs =
∑
i

PUTsi · (
∑
j

(Cj · PricePUT
j) +

∑
j,k

(Fijk · PriceNet
jk · SizeAvg))

23: // every replica stores one copy of every object

24: Storage cost =
∑
j

(Cj · PriceStorage
j · SizeTotal · T)

25: Constraints:
26: // Every data center in the access set has f + 1 GET/PUT replicas

27: ∀i ∈ AS :
∑
j

Rij = f + 1

28: // j is a replica if it is a GET/PUT replica for any i in the access set

29: ∀j : (Cj = 1) iff (
∑
i∈AS

Rij > 0) 2

30: // i’s PUTs must be synchronously forwarded to k iff k is one of i’s replicas

31: ∀i ∈ AS, k : (Rik = 1) iff (
∑
j

PS
ijk > 0)

32: // For every data center in access set, its PUTs must reach every replica

33: ∀i ∈ AS,m : Cm =
∑
j

(PS
ijm +

∑
k

PA
ijkm)

34: // PUTs from i can be forwarded over the path from j to k as part of either synchronous or asynchronous
forwarding

35: ∀i, j, k s.t. i 6= j : (Fijk = 1) iff (PS
ijk +

∑
m

(PA
ijkm + PA

imjk) > 0)

36: ∀i, k : (Fiik = 1) iff (PS
iik +

∑
m

PS
ikm +

∑
m,n

PA
ikmn > 0)

SPANStore then stores copies of all objects with access set AS at all data centers in

the union of PUT/GET replica sets (line 29).

The integer program used by PMan imposes several constraints on the selection

76

of replicas and how updates made by PUT operations propagate. First, whenever an

application VM in data center i issues a PUT, SPANStore synchronously propagates

the update to all the data centers in the replica set for i (line 31) and asynchronously

propagates the PUT to all other replicas of the object (line 33). Second, to minimize

networking costs, the integer program used by PMan allows for both synchronous

and asynchronous propagation of updates to be relayed via other data centers. Syn-

chronous relaying of updates must satisfy the latency SLOs (lines 13 and 14), whereas

in the case of asynchronous propagation of updates, relaying can optionally be over

two hops (line 15), as in the example in Figure 4.5(d). Finally, for every data center

i in the access set, PMan identifies the paths from data centers j to k along which

PUTs from i are transmitted during either synchronous or asynchronous propagation

(lines 35 and 36).

PMan solves this integer program with the objective of minimizing total cost,

which is the sum of storage cost and the cost incurred for serving GETs and PUTs.

The storage cost is simply the cost of storing one copy of every object with access

set AS at each of the replicas chosen for that access set (line 24). For every GET

operation at data center i, SPANStore incurs the price of one GET request at each

of i’s replicas and the cost of transferring the object over the network from those

replicas (line 20). In contrast, every PUT operation at any data center i incurs the

price of one PUT request each at all the replicas chosen for access set AS, and network

transfer costs are incurred on every path along which i’s PUTs are propagated (line

22).

4.4.3 Strong consistency

When the application using SPANStore for geo-replicated storage requires strong

consistency of data, we rely on quorum consistency [72]. Quorum consistency imposes

two requirements to ensure linearizability. For every data center i in an access set,

77

B

A

C

Q

R

S

T

Figure 4.6: Example use of asymmetric quorum sets. Solid unshaded circles represent
data centers in the access set, and shaded circles are data centers that host replicas.
Directed edges represent transfers to PUT replica sets, and dashed ovals represent
GET replica sets.

1) the subset of data centers to which i commits each of its PUTs—the PUT replica

set for i—should intersect with the PUT replica set for every other data center in the

access set, and 2) the GET replica set for i should intersect with the PUT replica set

for every data center in the access set. The cardinality of these intersections should be

greater than the number of failures that the application wants SPANStore to tolerate.

In our design, we use asymmetric quorum sets [104] to instantiate quorum con-

sistency as above. With asymmetric quorum sets, the PUT and GET replica sets

for any particular data center can differ. We choose to use asymmetric quorum sets

due to the non-uniform geographic distribution of data centers. For example, as seen

in Figure 4.1(a), EC2 data centers have between 2 and 16 other data centers within

200ms of them. Figure 4.6 shows an example where, due to this non-uniform geo-

graphic distribution of data centers, asymmetric quorum sets reduce cost and help

meet lower latency SLOs.

The integer program that PMan uses for choosing replication policies in the strong

consistency setting (shown in Algorithm 2) mirrors the program for the eventual

consistency case in several ways: 1) PUTs can be relayed via other data centers to

78

Algorithm 2 Replication policy selection for strong consistency.
1: Inputs:
2: Same as the inputs in the eventual consistency scenario, except
3: SLOGET , SLOPUT = SLOs on GET and PUT latencies

4: Variables:
5: ∀i ∈ AS, j : PRij // whether j is in i’s PUT replica set
6: ∀i ∈ AS, j s.t. LS

ij ≤ SLOGET : GRij // whether j is in i’s GET replica set; only permitted if a VM at i can
complete a GET on the storage service j within the SLO

7: ∀j : Cj // whether j is a replica
8: ∀i, j ∈ AS, k : UP

ijk // whether k is in the union of i’s and j’s PUT replica sets

9: ∀i, j ∈ AS, k : UG
ijk // whether k is in the union of i’s GET replica set and j’s PUT replica set

10: ∀i ∈ AS, j, k s.t. pth percentile of LC
ij + LC

ik + LS
kj ≤ SLOPUT : Fikj // whether i forwards its PUTs to j via k;

only permitted if a VM at i can acquire the lock on a VM at j and then forward data to the storage service at j
via a VM at k within the SLO

11: ∀i ∈ AS, k : Rik // whether k serves as a relay from i to any of i’s PUT replicas

12: Objective: Minimize (Cost for GETs + Cost for PUTs + Storage cost)
13: // at each of i’s GET replicas, every GET from i incurs one GET request’s cost and the network cost of

transferring the object from the replica to i

14: Cost for GETs =
∑
i

GETsi · (
∑
j

(GRij · (PriceGET
j + PriceNet

ji · Sizeavg)))

15: // every PUT from i incurs one PUT request’s cost at each of i’s PUT replicas and the network cost of trans-
ferring the object to these replicas

16: Cost for PUTs =
∑
i

PUTsi ·
∑
k

(Rik · PriceNet
ik · Sizeavg +

∑
j

(Fikj · (PricePUT
j + PriceNet

kj · Size
avg)))

17: // every replica stores one copy of every object

18: Storage cost =
∑
j

(Cj · PriceStorage
j · Sizetotal · T)

19: Constraints:
20: // k is in the union of i’s and j’s PUT replica sets if it is in either set
21: ∀i, j ∈ AS, k : (UP

ijk = 1) iff (PRik + PRjk > 0)

22: // for the PUT replica sets of any pair of data centers in access set, the sum of their cardinalities should exceed
the cardinality of their union by 2f

23: ∀i, j ∈ AS :
∑
k

(PRik + PRjk) >
∑
k

UP
ijk + 2f

24: // for any pair of data centers in access set, GET replica set of one must have intersection larger than 2f with
PUT replica set of the other

25: ∀i, j ∈ AS, k : (UG
ijk = 1) iff (GRik + PRjk > 0)

26: ∀i, j ∈ AS :
∑
k

(GRik + PRjk) >
∑
k

UG
ijk + 2f

27: // a PUT from i is relayed to k iff k is used to propagate i’s PUT to any of i’s PUT replicas

28: ∀i ∈ AS, k : (Rik = 1) iff (
∑
j

Fikj > 0)

29: // some k must forward i’s PUTs to j iff j is in i’s PUT replica set

30: ∀i ∈ AS, j : PRij =
∑
k

Fikj

31: // a data center is a replica if it is either a PUT replica or a GET replica for any data center in access set

32: ∀j : (Cj = 1) iff (
∑
i∈AS

(GRij + PRij) > 0)

reduce networking costs (lines 10 and 11, and 27–30), 2) storage costs are incurred

for maintaining a copy of every object at every data center that is in the union of the

GET and PUT replica sets of all data centers in the access set (lines 7, 18, and 32),

and 3) for every GET operation at data center i, one GET request’s price and the

79

price for transferring a copy of the object over the network is incurred at every data

center in i’s GET replica set (line 14).

However, the integer program for the strong consistency setting does differ from

the program used in the eventual consistency case in three significant ways. First,

for every data center in the access set, the PUT and GET replica sets for that data

center may differ (lines 5 and 6). Second, PMan constrains these replica sets so that

every data center’s PUT and GET replica sets have an intersection of at least 2f + 1

data centers with the PUT replica set of every other data center in the access set

(lines 20–26). Finally, PUT operations at any data center i are propagated only to

the data centers in i’s PUT replica set, and these updates are propagated via at most

one hop (line 16).

4.5 SPANStore dynamics

Next, we describe SPANStore’s operation in terms of the mechanisms it uses to

execute PUTs and GETs, to tolerate failures, and to handle changes in the applica-

tion’s workload across epochs. First, we discuss the metadata stored by SPANStore

to implement these mechanisms.

4.5.1 Metadata

At every data center, SPANStore stores in-memory metadata across all the VMs

that it deploys in that data center. At the beginning of an epoch, PMan computes

the new replication policy to use in that epoch, and it transmits to every data center

the replication policy information needed at that data center. A data center A needs,

for every access set AS that contains A, the PUT and GET replica sets to be used by

A for objects with access set AS. Whenever the application issues a PUT for a new

object at data center A, it needs to specify the access set for that object. SPANStore

then inserts an (object name→ access set) mapping into the in-memory metadata at

80

...
m {A, B}

...

{A, B}

...
b

...

Replication Version

{A, C, D}

Object Access Set
a

{C,D}

{A, B}
{E}{A, C, D}

... ...

{A, D}
Replicas

{C,D}

Put Set
{A, D} {A}

Access Set Get Set

{B, E}
{A, B, E}

{B, E}

......
{D}

{B, D}

{A, B}
{A}{A, C, D}

... ...

{C, D}
Replicas

{B,D}

Put Set
{C, D} {D}

Access Set Get Set

{A, F}
{A, B, E}

{A}

......
{D}

...
y
x 1

Object
a 1

Object Version

...

...
3

2
...

b

(b)

(a)

(c)

Version 1

Version 2

Figure 4.7: At any data center A, SPANStore stores an (a) in-memory version map-
ping for objects stored at A. If the application is deployed at A, SPANStore also
stores (b) the access set mapping for objects whose access set includes A, and (c)
replication policy versions for different epochs.

every data center in the access set.

As we describe later in Section 4.5.4, when serving the first operation for an

object in a particular epoch, SPANStore needs to account for both the replication

policy currently in use for that object and the new replication policy computed by

PMan for the current epoch. Therefore, we store both current and historical versions

of the (access set → replica sets) mapping. As shown in Figure 4.7, the access set

mapping for an object includes the replication policy version that currently applies

for that object. SPANStore eventually destroys an old replication policy when no

object is using it.

In addition, at any data center, SPANStore also stores an in-memory version

mapping for all objects stored in the storage service at that data center. Note that,

at any data center A, the set of objects stored at A can differ from the set of objects

whose access set includes A.

81

4.5.2 Serving PUTs and GETs

Any application uses SPANStore by linking to a library that implements SPANStore’s

protocol for performing PUTs and GETs. If the application configures SPANStore to

provide eventual consistency, the library looks up the local metadata for the current

PUT/GET replica set for the queried object. Upon learning which replicas to use, the

SPANStore library issues PUT/GET requests to the storage services at those repli-

cas and returns an ACK/the object’s data to the application as soon as it receives a

response from any one of those replicas.

When using strong consistency, SPANStore uses two phase locking (2PL) to exe-

cute PUT operations. First, the SPANStore library looks up the object’s metadata to

discover the set of replicas that this data center must replicate the object’s PUTs to.

The library then acquires locks for the object at all data centers in this replica set.

If it fails to acquire any of the locks, it releases the locks that it did acquire, backs

off for a random period of time, and then retries. Once the library acquires locks at

all data centers in the PUT replica set, it writes the new version of the object to the

storage services at those data centers and releases the locks.

The straightforward implementation of this protocol for executing PUTs can be

expensive. Consider a VM at data center A performing a PUT operation on a replica

set that includes data center B. The VM at A can first send a request to a VM at B

to acquire the lock and to obtain the version of the object stored at data center B.

The VM at A can then send the data for the object being updated to the VM at B

(possibly via another data center C that relays the data). The VM at B can write

the data to the local data center, release the lock, and update the in-memory version

mapping for the object. However, this requires SPANStore’s VMs to receive object

data from remote data centers. To meet the bandwidth demands of doing so, we will

need to provision a large number of VMs, thus inflating cost.

Instead, we employ a modified 2PL protocol as shown in Figure 4.8. As before,

82

1. Acquire lock
Storage Service

3. Return version

4. Relay data

6. ACK

5. Write data

7. Release
lock

2. Insert locks
and lookup version

8. Delete locks

A B

C

Figure 4.8: Illustration of SPANStore’s two-phase locking protocol. Solid lines impact
PUT latency, whereas operations along dashed lines are performed asynchronously.

the VM at A communicates with a VM at B to acquire the lock and obtain the

version number of B’s copy of the object. To acquire the lock for object o, the VM at

B inserts two objects into the local in-memory metadata cluster—LT
o that times out

after 5 seconds, and LU
o that does not have any timeout. Once it acquires the lock,

the VM at A directly issues a PUT to the storage service at data center B, rather

than asking the VM at B to perform this PUT. While writing the object, we prepend

the version number to the object’s data. Once the PUT to the storage service is

complete, SPANStore lazily requests a VM at B to release the lock by deleting both

LT
o and LU

o , and to also update the version number stored in memory for the updated

object.

In the case where the Internet path from A to B fails after the new version of

the object has been written to B or if the VM at A that is performing the PUT fails

before it releases the locks, the VM at A cannot explicitly delete LT
o and LU

o at B, yet

LT
o will timeout. When a VM at B receives a request to lock object o in the future

and finds that LT
o is absent but LU

o is present, it issues a GET for the object to the

83

local storage service and updates the in-memory version mapping for o to the version

prepended to the object’s data.

This modified 2PL protocol eliminates the need for SPANStore’s VMs to send

or receive object data, other than when PUTs are relayed via another data center.

As a result, our 2PL protocol is significantly more cost-effective than the strawman

version, e.g., a small VM on EC2 can handle 105 locking operations per second, but

can only receive and write to the local storage service 30 100KB objects per second.

In the strong consistency setting, serving GETs is simpler than serving PUTs.

When an application VM at a particular data center issues a GET, the SPANStore

library on that VM looks up the GET replica set for that object in the local in-memory

metadata, and it then fetches the copy of the requested object from every data center

in that set. From the retrieved copies of the object, the library then returns the

latest version of the object to the application. We could reduce networking costs

by first querying the in-memory metadata at every replica for the current version of

the object at that data center, and then fetching a copy of the object only from the

nearest data center which has the latest version. However, for small objects whose

data can fit into one IP packet, querying the version first and then fetching the object

will double the wide-area RTT overhead.

4.5.3 Fault tolerance

SPANStore needs to respect the application’s fault-tolerance needs, which PMan

accounts for when it determines replication policies. In the eventual consistency case,

every data center in the access set is associated with f + 1 replicas, and SPANStore

considers a GET/PUT as complete once the operation successfully completes on any

one of the replicas chosen by PMan. It suffices for SPANStore to consider a PUT as

complete even after writing the update to a single replica because of the durability

guarantees offered by the storage services that SPANStore builds upon. Every storage

84

A B

R1

R2

R3

Data center A's PUT set Data center B's PUT set

Intersection contains 2f+1 replicas
Figure 4.9: Illustration of SPANStore’s fault tolerance. The intersection of any two
data centers’ PUT sets contains 2f + 1 replicas, and PUT operations require getting
responses from at least f + 1 replicas from all intersections. This guarantees that
any two data centers have at least one common replica to write to, and therefore
guarantees strong consistency.

service replicates objects across servers within a data center to ensure that it is very

unlikely to lose an update committed by a PUT.

When configured for strong consistency, SPANStore relies on the fault tolerance

offered by our use of quorum sets. As shown in Figure 4.9, an intersection of at least

2f + 1 data centers between the PUT replica set of every data center and the PUT

and GET replica sets of every other data center in the access set enables SPANStore

to be resilient to up to f failures [103]. This is because, even if every data center is

unable to reach a different set of f replicas, the intersection larger than 2f+1 between

PUT-PUT replica set pairs and GET-PUT replica set pairs ensures that every pair

85

of data centers in the access set has at least one common replica that they can both

reach.

Thus, in the strong consistency setting, the SPANStore library can tolerate failures

as follows when executing PUT and GET operations. At any data center A, the

library initiates a PUT operation by attempting to acquire the lock for the specified

object at all the data centers in A’s PUT replica set for this object. If the library

fails to acquire the lock at some of these data centers, for every other data center B

in the object’s access set, the library checks whether it failed to acquire the lock at

at most f replicas in B’s PUT and GET replica sets for this object. If this condition

is true, the library considers the object to be successfully locked and writes the new

data for the object. If not, the PUT operation cannot be performed and the library

releases all acquired locks.

The SPANStore library executes GETs in the strong consistency setting similarly.

To serve a GET issued at data center A, the library attempts to fetch a copy of the

object from every data center in A’s GET replica set for the specified object. If the

library is unsuccessful in fetching copies of the object from a subset S of A’s replica

set, it checks to see whether S has an intersection of size greater than f with the

PUT replica set of any other data center in the object’s access set. If yes, the library

determines that the GET operation cannot be performed and returns an error to the

application.

4.5.4 Handling workload changes

The replication policy for an access set can change when there is a significant

change in the aggregate workload estimated for objects with that access set. When

PMan mandates a new replication policy for a particular access set at the start of a

new epoch, SPANStore switches the configuration for an object with that access set

at the time of serving the first GET or PUT request for that object in the new epoch.

86

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10

C
D

F
 o

f a
cc

es
s

se
ts

(cost w/ single cloud)/(cost w/ SPANStore)

30,100,10
30,100,0.1

1,100,10
1,100,0.1

30,1,10
30,1,0.1

1,1,10
1,1,0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
 o

f a
cc

es
s

se
ts

(cost w/ single cloud)/(cost w/ SPANStore)

30,100,10
30,100,0.1

1,100,10
1,100,0.1

30,1,10
30,1,0.1

1,1,10
1,1,0.1

(a) Strong, 90%ile G-SLO=250ms (b) Strong, 90%ile G-SLO=100ms

Figure 4.10: Cost with SPANStore compared to that possible using the data centers
of a single cloud service. Legend indicates GET:PUT ratio, average object size (in
KB), and overall data size (in TB).

SPANStore can identify the first operation on an object in the new epoch based on a

version mismatch between the replication policy associated with the object and the

latest replication policy.

In a new epoch, irrespective of whether the first operation on an object is a GET

or a PUT, the SPANStore library on the VM issuing the request attempts to acquire

locks for the object at all data centers in the object’s access set. In the case of a PUT,

SPANStore commits the PUT to the new PUT replica set associated with the object.

In the case of a GET, SPANStore reads copies of the object from the current GET

set and writes the latest version among these copies to the new PUT set. SPANStore

then switches the replication policy for the object to the current version at all data

centers in its access set. Thereafter, all the PUTs and GETs issued for the object

can be served based on the new replication policy.

This procedure for switching between replication policies leads to latency SLO

violations and cost overhead (due to the additional PUTs incurred when the first

request for an object in the new epoch is a GET). However, we expect the SLO

87

A
ve

ra
ge

 s
iz

e
(K

B
)

Overall size

Request Networking Storage

 0.1

 1

 10

 100

 1000

 10000

1GB 32GB 1TB 32TB 1PB

Figure 4.11: Variation in the dominant component of SPANStore’s cost as a function
of the application’s workload.

violations to be rare and the cost overhead to be low since only the first operation on

an object in a new epoch is affected.

4.6 Implementation

We have implemented and deployed a prototype of SPANStore that spans all

the data centers in Amazon S3, Microsoft Azure, and Google Cloud Storage. Our

implementation has three components—1) PMan, 2) a client library that applications

can link to, and 3) an XMLRPC server that is run in every VM run by SPANStore.

In addition, in every data center, we run a memcached cluster across all SPANStore

instances in that data center to store SPANStore’s in-memory metadata.

PMan initially bootstraps its state by reading in a configuration file that speci-

fies the application’s latency, consistency, and fault tolerance requirements as well as

the parameters (latency distribution between data centers, and prices for resources at

these data centers) that characterize SPANStore’s deployment. To determine optimal

replication policies, it then periodically invokes the CPLEX solver to solve the for-

mulation (Algorithm 1 or Algorithm 2) appropriate for the application’s consistency

88

needs. PMan also exports an XMLRPC interface to receive workload and latency

information from every data center at the end of every epoch.

The client library exports two methods: GET(key) and PUT(key, value, [ac-

cess set]). The library implements these methods as per the protocols described in

Section 4.5. To lookup the metadata necessary to serve GET and PUT requests, the

library uses DNS to discover the local memcached cluster.

The XMLRPC server exports three interfaces. First, it exports a LOCK(key)

RPC for the client library to acquire object-specific locks. Second, its RELAY(key,

data, dst) enables the library or a SPANStore VM to indirectly relay a PUT in order

to reduce network bandwidth costs. Lastly, the XMLRPC server receives replication

policy updates from PMan.

In addition, the XMLRPC server 1) gathers statistics about the application’s

workload and reports this information to PMan at the end of every epoch, and 2)

exchanges heartbeats and failure information with SPANStore’s VMs in other data

centers. Both the client library and the XMLRPC server leverage open-source libraries

for issuing PUT and GET requests to the S3, Azure, and GCS storage services.

4.7 Evaluation

We evaluate SPANStore from four perspectives: the cost savings that it enables,

the cost-optimality of its replication policies, the cost necessary for increased fault

tolerance, and the scalability of PMan. Here, we show results for the case where the

application is deployed across EC2’s data centers, and SPANStore is deployed across

the storage services offered by S3, Azure, and GCS. Our results are qualitatively

similar when we consider application deployments on Azure or GCE.

89

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
 o

f a
cc

es
s

se
t

(cost w/ everywhere)/(cost w/ SPANStore)

30,100,0.1
30,100,10

1,100,0.1
1,100,10

30,1,10
30,1,0.1

1,1,10
1,1,0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10

C
D

F
 o

f a
cc

es
s

se
ts

(cost w/ single)/(cost w/ SPANStore)

30,1,10
1,100,10

1,100,0.1
30,100,10

1,1,10
30,1,0.1

1,1,0.1
30,100,0.1

Figure 4.12: Cost savings enabled by SPANStore compared to Everywhere (left) and
Single (right) replication policies. Legend indicates GET:PUT ratio, average object
size (in KB), and overall data size (in TB).

4.7.1 Cost savings

Workload and SLOs. To evaluate the cost savings enabled by SPANStore, we

consider all 18 combinations of a) GET:PUT ratios of 1, 10, and 30, b) average object

sizes of 1 KB and 100 KB, and c) aggregate data size of 0.1 TB, 1 TB and 10 TB. Our

choice of these workload parameters is informed by the GET:PUT ratio of 30:1 and

objects typically smaller than 1 KB seen in Facebook’s workload [51]. For brevity,

we omit here the results for the intermediate cases where GET:PUT ratio is 10 and

overall data size is 1 TB. In all workload settings, we fix the number of GETs at

100M and compute cost over a 30 day period.

When analyzing the eventual consistency setting, we consider two SLOs for the

90th percentile values of GET and PUT latencies—100 ms and 250 ms; 250 ms is the

minimum SLO possible with a single replica for every object and 100 ms is less than

half of that. In the strong consistency case, we consider two SLO combinations for

the 90th percentile GET and PUT latencies—1) 100ms and 830ms, and 2) 250 ms

and 830 ms; 830 ms is the minimum PUT SLO if every object was replicated at all

90

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
D

F
 o

f a
na

ly
ze

d
ho

ur
s

Relative cost inflation

Figure 4.13: Cost inflation when predicting workload using individual objects com-
pared with aggregate workload prediction.

data centers in its access set. Since the cost savings enabled by SPANStore follow

similar trends in the eventual consistency and strong consistency settings, we show

results only for the latter scenario for brevity.

Comparison with single-cloud deployment. First, we compare the cost with

SPANStore with the minimum cost required if we used only Amazon S3’s data cen-

ters for storage. Figure 4.10 shows that SPANStore’s use of multiple cloud services

consistently offers significant cost savings when the workload includes 1 KB objects.

The small object size makes networking cost negligible in comparison to PUT/GET

requests costs, and hence, SPANStore’s multi-cloud deployment helps because PUT

and GET requests are priced 50x and 4x cheaper on Azure as compared to on S3.

When the average object size is 100KB, SPANStore still offers cost benefits for a

sizeable fraction of access sets when the PUT/GET ratio is 1 and overall size size

is small. In this case, since half of the workload (i.e., all PUT operations) require

propagation of updates to all replicas, SPANStore enables cost savings by exploiting

discrepancies in network bandwidth pricing across cloud services. Furthermore, when

the total data size is 10 TB, SPANStore reduces storage costs by storing fewer copies

91

of every object.

Comparison with fixed replication policies. We also compare the cost in-

curred when using SPANStore with that imposed by two fixed replication policies:

Everywhere and Single. With the Everywhere policy, every object is replicated at

every data center in the object’s access set. With the Single replication policy, any

object is stored at one data center that minimizes cost among all single replica alterna-

tives that satisfy the PUT and GET latency SLOs. We consider the same workloads

as before, but ignore the cases that set the SLO for the 90th percentile GET latency

to 100ms since that SLO cannot be satisfied when using a single replica.

In Figure 4.12(left), we see that SPANStore significantly outdoes Everywhere in

all cases except when GET:PUT ratio is 30 and average object size is 100KB. On

the other hand, in Figure 4.12(right), we observe a bi-modal distribution in the cost

savings as compared to Single when the object size is small. We find that this is

because, for all access sets that do not include EC2’s Sydney data center, using a

single replica (at some data center on Azure) proves to be cost-optimal; this is again

because the lower PUT/GET costs on Azure compensate for the increased network

bandwidth costs. When the GET:PUT ratio is 1 and the average object size is 100KB,

SPANStore saves cost compared to Single by judiciously combining the use of multiple

replicas.

Dominant cost analysis. Finally, we analyze how the dominant component of

SPANStore’s cost varies based on the input workload. For one particular access set,

Figure 4.11 shows which among network, storage, and request cost dominates the

total cost when varying average object size from 0.1 KB to 1 MB and total data size

from 1 GB to 1 PB. Here, we use a GET:PUT ratio of 30 and set GET and PUT

SLOs as 250ms and 830ms with the need for strong consistency, but the takeaways

are similar in other scenarios.

When both the average object size and the total data size are small, costs for

92

PUT and GET requests initially dominate, but network transfer costs increase as the

average object size increases. However, as the average object size increases further,

SPANStore transitions to storing data locally at every data center in the access set.

This eliminates the need to use the network when serving GETs, thus making request

costs the dominant component of cost again. However, network transfers cannot be

completely eliminated due to the need to propagate updates to all replicas. Therefore,

network transfer costs again begin to dominate for large object sizes.

When the total data size is large, SPANStore stores a single copy of all data when

the average object size is small and storage cost is dominant. As the average object

size increases, network transfer costs initially exceed the storage cost. However, as

network costs continue to increase, SPANStore begins to store multiple replicas of

every object so that many GETs can be served from the local data center. This

reduces network transfer costs and makes storage cost dominant again. Eventually,

as the average object size increases further, even if SPANStore stores a replica of

every object at every data center in its access set, the need to synchronize replicas

results in networking costs exceeding storage costs.

4.7.2 Impact of aggregation of objects

SPANStore’s cost-effectiveness critically depends on its ability to estimate the

application’s workload. As discussed previously in Section 4.4, we choose to charac-

terize workload in aggregate across all objects with the same access set due to the

significantly greater stationarity that exists in aggregate workloads as compared to

the workloads of individual objects. Here, we quantify the cost benefits enabled by

this design decision.

From the Twitter dataset previously described in Section 4.4, we randomly choose

10K users. Since the dataset only specifies the times at which these users post tweets,

we generate the times at which they check their Twitter timelines based on Twitter’s

93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 3 4

C
D

F
 o

f a
cc

es
s

se
ts

Relative cost inflation

f=1,G/P=1
f=1,G/P=10
f=2,G/P=1

f=2,G/P=10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
D

F
 o

f a
cc

es
s

se
ts

Relative cost inflation

f=1,G/P=10
f=1,G/P=1

f=2,G/P=10
f=2,G/P=1

(a) Eventual,P-SLO=250ms (b) Strong,P-SLO=830ms

Figure 4.14: Cost inflation when tolerating f failures compared to the cost with f = 0.
SLOs are on 90th percentile latencies and G-SLO=250ms.

usage statistics [28]. Considering hour-long epochs, we estimate the workload in a

particular hour as being the same as that in the same hour in the previous week. We

consider workload estimation at two granularities: 1) per-object, and 2) in aggregate

across all objects with the same access set.

Figure 4.13 shows the cost inflation arising from estimating workloads on a per-

object granularity as compared to the cost when estimating aggregate workloads.

The high inflation is due to the significant variation seen in any individual user’s

usage of Twitter. Since most users rarely post or access Twitter, the use of the per-

object workload estimator causes SPANStore to typically choose EC2’s data centers

as replicas since they have lower storage cost. However, this often turns out to be

a mis-prediction of the workload, and when a user does post or access her timeline,

SPANStore has to incur greater request costs that necessary by serving these requests

from EC2’s data centers. The greater accuracy of estimating workloads in aggregate

enables SPANStore to replicate data in a more cost-effective manner.

94

4.7.3 Cost for fault tolerance

To tolerate failures, SPANStore provisions more data centers to serve as replicas.

As expected, this results in higher cost. In Figure 4.14, we show the cost inflation for

various levels of fault-tolerance as compared to the cost when SPANStore is provi-

sioned to not tolerate any failures. For most access sets, the cost inflation is roughly

proportional to f + 1 in the eventual consistency scenario and proportional to 2f + 1

in the strong consistency case. However, the need for fault tolerance increases cost

by a factor greater than f + 1/2f + 1 for many other access sets. This is because, as

f increases, the need to pick a greater number of replicas within the latency SLO for

every data center in the access set requires SPANStore to use as replicas data centers

that have greater prices for GET/PUT requests.

In addition, in both the eventual consistency and strong consistency scenarios,

the need to tolerate failures results in higher cost inflation when the GET:PUT ratio

is low as compared to when the GET:PUT ratio is high. This is because, when the

GET:PUT ratio is low, SPANStore can more aggressively reduce costs when f = 0 by

indirectly propagating updates to exploit discrepancies in network bandwidth pricing.

4.7.4 Scalability of PlacementManager

Finally, we evaluate the scalability of PMan, the one central component in SPANStore.

At the start of every epoch, PMan needs to compute the replication policy for all ac-

cess sets; there are 2N access sets for an application deployed across N data centers.

Though the maximum number of data centers in any one cloud service is currently

8 (in EC2), we test the scalability of PMan in the extreme case where we consider

all the data centers in EC2, Azure, and GCE as being in the same cloud service on

which the application is deployed. On a cluster of 16 servers, each with two quad-core

hyperthreaded CPUs, we find that we can compute the replication policy within an

hour for roughly 33K access sets. Therefore, as long as the application can estimate

95

its workload for the next epoch an hour before the start of the epoch (which is the

case with our current way of estimation based on the workload in the same hour in

the previous week), our PMan implementation can tackle cases where the application

is deployed on 15 or fewer data centers. For more geographically distributed applica-

tion deployments, further analysis is necessary to determine when the new aggregate

workload for a access set will not cause a significant change in the optimal replication

policy for that set. This will enable PMan to only recompute the replication policy

for a subset of access sets.

4.8 Case studies

We have used our SPANStore prototype as the back-end storage for two appli-

cations that can benefit from geo-replicated storage: 1) Retwis [32] is a clone of

the Twitter social networking service, which can make do with eventual consistency,

and 2) ShareJS [36] is a collaborative document editing web service, which requires

strongly consistent data. To support both applications, we add a few operations that

are wrappers over PUTs and GETs, such as “append to a set”, “get ith element from

a set”, and “increment a global counter”. We deploy both applications across all of

EC2’s data centers.3

Retwis. At each EC2 data center, we run emulated Retwis clients which repeat-

edly make two types of operations: Post operations represent a user posting a tweet,

and GetRange operations fetch the last 100 tweets in a user’s timeline (the set of

tweets posted by those that the user follows). We set the ratio of number of Post op-

erations to number of GetRange operations as 0.1, i.e., on average, every user makes

a post every 10 times that she checks her timeline. A GetRange operation issues 1)

a GET to fetch the user’s timeline object, and then 2) GETs for the post IDs in the

3Though ShareJS is not amenable to distributed deployment, we modify it suitably so as to
enable every user to be served from her closest EC2 data center.

96

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

C
D

F
 o

f o
pe

ra
tio

ns

Latencies (ms)

GET
PUT

Insert
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.25 0.5 0.75 1

Latencies (s)

C
D

F
 o

f o
pe

ra
tio

ns

GetSnapshot
ApplyEdit

2.5 2.75 3

(a) (b)

Figure 4.15: CDF of operation latencies in (a) Retwis and (b) ShareJS applications.

specified range in the timeline. A Post operation executes the following sequence:

1) a PUT to store the post, 2) a GET to fetch the list of the user’s followers, and

3) an Insert operation to append the post’s ID to the timeline object of each of the

user’s followers. The Insert operation on an object fetches the object by issuing GET,

modifies it locally, and then writes back the updated object with a PUT.

We run Retwis with a randomly generated social network graph comprising 10K

users, where every user follows a randomly chosen subset of 200 users [2]. For every

user, we assign the data center from which the user is served at random. We run this

workload on SPANStore configured with the latency SLOs specifying that the 90th

percentile PUT and GET latencies should be less than 100ms. Figure 4.15(a) shows

that SPANStore satisfies these latency goals as over 90% of all operations are within

the specified SLOs.

ShareJS. We run the ShareJS application with a similar setup; we consider 1K

documents, each of which is associated with a randomly chosen access set. At each

EC2 data center, we then run a ShareJS client which iteratively issues GetSnapshot

and ApplyEdit operations on randomly chosen documents whose access set includes

97

the local data center. These operations correspond to the client fetching a document

and applying an edit to a document, respectively. Since we need strong consistency

in this case, we use SLOs on the 90th percentile PUT and GET latencies as 830ms

and 250ms. Note that the GetSnapshot operation directly maps to a GET, but the

ApplyEdit operation requires the application to issue a GET for the latest version of

the document and then issue a PUT to incorporate the edit.

Figure 4.15(b) shows the distribution of latencies incurred for the GetSnapshot and

ApplyEdit operations. We can see that more than 95% of GetSnapshot operations

satisfy the latency SLO, and a vast majority of ApplyEdit operations are within

the SLO, given that an ApplyEdit includes a GET followed by a PUT. The small

minority of operations that exceed the latency bounds are due to contention between

concurrent updates to the same document; when a writer fails on the two-phase

locking operation, it retries after 2 seconds.

4.9 Summary

Though the number of cloud storage services available across the world continues

to increase, the onus is on application developers to replicate data across these ser-

vices. We develop SPANStore to export a unified view of geographically distributed

storage services to applications and to automate the process of trading off cost and

latency, while satisfying consistency and fault-tolerance requirements. Our design of

SPANStore achieves this goal by spanning data centers of multiple cloud providers,

by judiciously determining replication policies based on workload properties, and by

minimizing the use of compute resources. We have deployed SPANStore across Ama-

zon’s, Microsoft’s, and Google’s cloud services and find that it can offer significant

cost benefits compared to simple replication policies.

98

CHAPTER V

Efficient Geo-Replication of Data in the Cloud

Minimizing user-perceived latency is a critical goal for web services, because even

a few 100 milliseconds of additional delay can significantly reduce revenue [29]. Key

to achieving this goal is to deploy web servers in multiple locations so that every

user can be served from a nearby server. Therefore, cloud services such as Azure and

Amazon Web Services are an attractive option for web service deployments as these

platforms offer data centers in tens of locations spread across the globe [12, 16].

However, the potential for cloud services to democratize low latency web services

remains largely unfulfilled today, as web services in the cloud seldom opt for a geo-

graphically distributed deployment [9, 79]. We posit that a key reason is that, while

cloud providers make it easy to setup servers in multiple locations, they lack support

for managing data replicated across data centers. Geo-replication of data is crucial

to achieve low latency since web services increasingly enable users to share content

with each other (e.g., collaborative document editing, online gaming, online social

networks). In the absence of geo-replication of data, web servers would have to use a

centrally located copy of shared data to serve users’ requests, nullifying the latency

benefits of deploying web servers in multiple locations.

In this chapter, we seek to fill this gap between what web services need (a globally

consistent view to data replicated across data centers) and what cloud providers offer

99

(strongly consistent storage services within each data center). Even if cloud providers

fill this gap in the future, the onus for consistently geo-replicating data will remain

on web service providers who choose to spread their data across the data centers

of multiple cloud providers for the associated cost, performance, and fault-tolerance

benefits [126, 123, 83, 82].

Unlike prior systems [66, 86, 53, 96] designed to replicate data across a web service

provider’s own data centers, the primary difference in our setting is that we build upon

a multi-tenant storage service in each data center and not upon storage servers under

the provider’s control. This difference leads to two unique constraints, which make it

challenging to minimize latency and cost.

• Limited interface: There is a mismatch between the interface offered by cloud

storage (e.g., PUT/GET) and the interface necessary to reuse existing low la-

tency replication protocols (e.g., Accept/Learn to use Fast Paxos [91]). Applica-

tion providers could augment the storage interface by deploying virtual machines

(VMs) at every data center to proxy requests to the local storage service. However,

coping with the operational complexities of managing these proxy VMs would nul-

lify a primary benefit of using cloud storage: not having to worry about issues such

as scalability and fault-tolerance. Moreover, for the proxy VMs to not become a

bottleneck, these VMs can significantly increase a web service provider’s costs.

Alternatively, web services could use replication protocols [71, 76] that can make

do with the limited interface offered by cloud storage. Doing so would however

significantly degrade latencies.

• High latency variance: Sharing of cloud storage by multiple tenants leads to high

tail latencies [128]. The oft-used solution to address latency variance—redundantly

access all replicas and wait for responses from a quorum—is insufficient when data

is geo-replicated. This is because, for a client to access more replicas than the

quorum of replicas closest to it, the client must access replicas that are farther and

100

hence are less effective at mitigating latency spikes at nearby replicas.

To address these challenges, we present CRIC (Consistent Replication in the

Cloud). CRIC enables a geo-distributed web service’s VMs to directly read from

and write to cloud storage, yet offers read/write latencies that would be achievable

with existing replication techniques only if cloud storage offered a richer interface

and had lower latency variance. We achieve these properties by making contributions

primarily on two fronts.

First, we present CPaxos, a variant of Paxos optimized for use in the cloud. To

cope with the limited interface to cloud storage, CPaxos stores the state maintained

by Paxos acceptors in cloud storage but moves the logic executed by Paxos acceptors

into the client. Despite doing so, CPaxos can execute both reads and writes with one

round-trip of communication in the common case when conflicts are rare. CPaxos

achieves this property by leveraging the ability offered by cloud storage services to

conditionally update data only if it has not been updated since it was last read.

Second, to reduce latency variance in the context of geo-replicated data, we modify

Paxos’s use of redundancy. In a traditional implementation of Paxos, a proposal is

committed once it is accepted by a majority of acceptors. In contrast, CRIC leverages

the notion of hierarchical quorums [87], explicitly accounting for the data centers

in which replicas are stored and storing multiple replicas within each data center.

A client’s attempt to update any object is successful once it updates a quorum of

replicas in each of a quorum of data centers. This design enables CRIC to mitigate

the impact of latency variance associated with cloud storage by requiring redundant

requests to be issued only to the quorum of data centers closest to the client.

We have implemented and deployed a prototype of CRIC across AWS and Azure.

It offers performance comparable to approaches requiring additional VMs to support

replication, but at 20–50% lower cost. Whereas, compared to existing replication

protocols compatible with a limited storage interface, CPaxos can halve write latency

101

and also lower cost by 10–60%. Lastly, we simulate CRIC’s use in a strongly consistent

equivalent of Twitter and show that hierarchical quorum significantly reduce median

user-perceived latencies.

5.1 Motivation

We begin by describing our target setting and goals, and discuss the challenges

associated with enabling strongly consistent access to data replicated across cloud

data centers.

5.1.1 Setting and Goals

In a geo-distributed web service deployment in the cloud, user-facing web servers

are deployed in multiple data centers, so that any user’s request can be served from a

nearby data center. The latency incurred by any user includes the back-end latency for

web servers to read or write data as necessary to serve the user’s request; we focus on

web services that rely on key-value storage to store objects that are typically smaller

than 1KB [59, 51, 107]. To minimize back-end latency and maximize availability, web

services can geo-replicate data—potentially across the data centers of multiple cloud

providers1—and have web servers read or write to any object by accessing a subset

of nearby replicas, rather than a centrally located copy of the object.

While cloud providers currently offer a separate storage service within each data

center, our goal is to enable web service developers to outsource to CRIC the task

of managing the consistency of data replicated across data centers (as shown in Fig-

ure 5.1). CRIC offers the same PUT-GET interface as strongly consistent key-value

stores available within a cloud data center, but executes operations on geo-replicated

1Note that a web service can deploy all of its servers across the data centers of a single cloud
provider, but spread its data across multiple cloud providers, leveraging the common interface offered
by key-value stores.

102

Web service VM

Web service logic

CRIC library

Data Center 1

Cloud
Storage

Data Center 2

Cloud
Storage

Data Center 3

Web service VM

Web service VM

Figure 5.1: Illustration of CRIC’s use in a geo-distributed web service deployed in
the cloud.

data. In developing CRIC to offer this functionality, we are guided by four objec-

tives:

• Strong consistency: All writes must be linearizable and any read should return

the latest version of any object. Strongly consistent replicated storage simplifies

application development, enables seamless porting of web services written to use

centralized storage, and is essential in many web services, including collaborative

document editing (e.g., Google Docs), online auctions (e.g., eBay, stock trading),

and multi-player online gaming.

• Fault-tolerance: CRIC must ensure that any object continues to be readable/writable

as long as at most f of the object’s replicas are unavailable.

• Low latency: When reading from or writing to an object, CRIC should 1) access

nearby copies of the object, 2) minimize the number of round-trips of wide-area

communication, and 3) account for the latency variance in cloud storage services

in order to minimize tail latencies.

• Cost-effectiveness: CRIC should minimize the cost overhead that it imposes on

web services. We account for the cost of data transfers, GET/PUT requests, and

any VMs necessary to support geo-replication.

103

Data Center 1

Application VM
(Proposer)

Replica VM
(Acceptor & Learner)

Cloud Storage

Data Center 2 Data Center 3

Prepare/Accept

PUT/GET

Figure 5.2: Illustration of how Fast Paxos can be used to consistently replicate data
across cloud data centers.

5.1.2 Overheads of preserving consistency

Augmenting storage interface imposes operational and cost overheads.

The problem of enabling low latency geo-replication has been studied extensively

in recent years. Replication protocols such as Fast Paxos [91] and EPaxos [105] as

well as new systems such as MDCC [86] and TAPIR [131] can achieve consensus

among replicas within one round of communication when conflicts are rare. All of

these methods require replicas to participate in a specific replication protocol in order

to determine whether to accept or reject updates, to detect conflicts, or to report to

a coordinator the order in which they receive requests.

In the cloud, the challenge in using one of these prior solutions is that cloud

storage services provide no APIs to support these protocols. Web services that want

to use these approaches would have to rent additional replica VMs in each data center

to augment the interface to the local storage service, so as to implement the desired

replication protocol. For example, if an application wants to use Fast Paxos [91]

(MDCC [86] and Tapir [131] complete writes in one RTT in a similar manner), it

has to rent VMs to serve as “Acceptors” and “Learners”, which in turn will have to

use cloud storage’s PUT/GET interface to store and read both protocol state and

104

1k

10k

100k

 10 100 1000

T
hr

ou
gh

pu
t (

op
s/

s)

of clients

Direct
Through VM

Figure 5.3: GET throughput as a function of # of clients; throughput for “Direct”
continues to increase with more clients.

application data; see Figure 5.2.

Relaying all interactions with storage through a layer of VMs is undesirable on

multiple fronts. On the one hand, web service providers would have to manage the

replica VMs to ensure scalability, fault-tolerance, and load balancing, nullifying the

benefits of using cloud storage services which already handle these concerns. On the

other hand, having all reads and writes go through replica VMs can significantly

increase a web service provider’s costs.

To empirically quantify the expected cost overhead due to replica VMs, in one of

Azure’s data centers, we continually issued GETs, relayed via an A2 instance [15] to

the local storage service, for objects of size 1 KB from an increasing number of client

threads (running on separate VMs). Figure 5.3 shows that throughput caps out at

roughly 3000 ops/s,2 compared to a linear increase when clients directly issue GETs

to storage. We believe that a more efficient implementation of replica VMs is unlikely

to offer greater throughput per VM. Our observation is that the key bottleneck in

2With other VM types, throughput shows either a linear or sub-linear growth with the price of
the VM, thus making A2 instances the most cost-effective option in terms of throughput per $.

105

 0

 0.2

 0.4

 0.6

 0.8

 1

64B 128B 256B 512B 1KB 2KB 4KBV
M

 c
os

t /
 r

ep
lic

at
io

n
co

st

Object size

Figure 5.4: When reads/writes are relayed through VMs, fraction of cost accounted
for by these VMs relative to total cost to execute reads and writes.

the throughput per replica VM is that every request to the storage service is required

to include an authentication signature which is a function of the request’s metadata

and the private encryption key assigned to the tenants account. For small objects,

our implementation of replica VMs, which uses libraries provided by cloud providers

to issue requests, saturates the CPU in computing these signatures.

This limit on achievable throughput per replica VM implies that many web services

deployed in the cloud will incur a significant increase in cost in order to serve the

thousands of requests per second they receive on average from users [11], where each

user request potentially translates to several requests to storage. Figure 5.4 shows that

the VMs that a web service will need to deploy to interpose on its interactions with

cloud storage will account for 45% or more of the cost (i.e., $ for GET/PUT requests,

network transfers, and VMs) of accessing geo-replicated data when the average object

is smaller than 1 KB.

Existing client-based approaches inflate latency and cost. These undesirable

effects of using replica VMs are largely avoidable because write conflicts are rare in

typical web service workloads [99, 66]; in the absence of conflicts, the replica VMs

106

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 200 300 400 500 600

C
D

F
 o

f (
ac

ce
ss

 s
et

, c
lie

nt
)

Latency (ms)

GET all, median
GET f+1, median

GET all, 99%ile
GET f+1, 99%ile

Figure 5.5: Median and tail latency when reading from either f + 1 or all replicas
and waiting for responses from a quorum; f = 1.

used to implement existing replication protocols will simply have to relay data be-

tween application VMs and cloud storage. Therefore, it would be desirable to enable

application VMs to directly communicate with cloud storage without sacrificing con-

sistency. Indeed, replication protocols such as Disk Paxos [71] and pPaxos [76] are

well-suited for this purpose, as they are designed assuming a limited interface at each

replica, which is the case in cloud storage. For example, Disk Paxos can make do with

replicas offering only a PUT/GET interface, whereas pPaxos requires an APPEND

operation in addition.

However, while replication protocols such as Disk Paxos and pPaxos eliminate

the cost overhead associated with replica VMs, they double the number of rounds

of communication necessary to commit a write to storage, even in the absence of

conflicts. Moreover, when conflicts arise, both protocols increase the amount of data

transferred over the network, thereby inflating cost. As we show later in Section 5.4,

Disk Paxos and pPaxos can even prove to be more expensive than the approach of

using replica VMs.

107

Write latency
(RTTs) in

common case
Read latency (RTTs)

Fast path Slow path

Disk Paxos [71] 2 4 1

pPaxos [76] 2 4 1

Classic Paxos [90] 1 2 1

CPaxos 1 2 1

Table 5.1: Latency comparison of CPaxos to prior protocols. We assume no request
conflict.

When executing writes, # of copies
of object’s data transferred per

write attempt
No conflict n concurrent proposers

Disk Paxos [71] O(m) O(m)

pPaxos [76] 3 O(n)

Classic Paxos [90] 1 1

CPaxos 1 O(1)

Table 5.2: Data transfer cost comparison of CPaxos to prior protocols. m is the
number of clients. For pPaxos, we assume older versions are garbage collected as
soon as a new version is globally accepted.

5.1.3 Impact of latency variance

In addition to the limited interface they offer, cloud storage services also make

low latency geo-replication challenging due to the high latency variance when read-

ing/writing data from them [128]. In fact, latency variance gets exacerbated in the

context of geo-replicated storage for two reasons.

• On the one hand, accessing replicated data without sacrificing consistency typically

requires reading from or writing to multiple replicas. For example, to execute reads

and writes using Paxos on an object with 2f + 1 replicas, one must access at least

f+1 replicas. This will lead to higher tail latencies than seen at any individual data

center since read/write latency, which is constrained by the last of f + 1 responses,

108

Average # of copies of object’s data per replica

Disk Paxos [71] m

pPaxos [76] ≈1

Classic Paxos [90] 1

CPaxos 1

Table 5.3: Data storage cost comparison of CPaxos to prior protocols. m is the
number of clients. For pPaxos, we assume older versions are garbage collected as
soon as a new version is globally accepted.

will be high if any one response is slow.

• On the other hand, redundantly accessing more replicas than the minimum neces-

sary to preserve consistency does not completely eliminate latency variance. For

example, with Paxos, one can read from or write to all 2f + 1 replicas and wait

for the first f + 1 responses. However, when data is geo-replicated, the redundant

requests are directed to replicas that are farther away and hence are limited in their

ability to mitigate the impact of latency spikes at any of the closer replicas.

We empirically quantify the latencies when accessing geo-replicated data in the

cloud as follows. We consider a web service that has web servers at all AWS data

centers and replicates data across all Azure and AWS data centers. For any object, we

refer to the subset of data centers from which the object is accessed as its access set.

Using a 6 month long dataset of measurements, for every possible access set, we place

replicas of the object being accessed at 3 data centers chosen at random but within

the proximity of data centers in the access set (dataset and methodology for replica

placement described later in Section 5.4). Figure 5.5 shows that, when we access

only the closest f + 1 replicas for reading objects, compared to the median latency,

the 99th percentile latency increases by 250ms in the median case.3 Moreover, even

if we read from all 2f + 1 replicas, there remains a 100ms gap between the tail and

median latencies. This gap is significant as the inflation in tail latencies for individual

3Since the availability of both cloud services [40] and the Internet paths between their data centers
is over 99.9% [77], failures have no impact on 99th percentile read and write latency.

109

Metric to
optimize

Technique Section

Write latency
Treat cloud storage as a passive acceptor and use

conditional-PUTs to update Paxos state
§ 5.2.1

Read latency
Clients act as learners, asynchronously updating Paxos

state to mark a version as globally accepted
§ 5.2.2

Network transfer
costs

Garbage collect old versions in Accept phase § 5.2.3
Store Paxos state as object’s metadata so that clients need

not transfer object data in Prepare phase

Throughput
under conflicts

Stateless Propose Assistant VMs to eliminate false propose
failures

§ 5.2.4

Table 5.4: Techniques used by CRIC to minimize the cost and communication nec-
essary for strongly consistent reads and writes.

reads and writes can degrade median user-perceived latency when a web service must

execute many reads and writes to serve a user’s request.

5.2 Global consistency atop limited interface

In this section, we describe how CRIC enables clients to directly read from and

write to cloud storage, yet closely matches the cost and performance possible if cloud

storage offered a richer interface. Specifically, despite having only a PUT-GET in-

terface to storage, CRIC enables the use of Paxos to execute reads and writers in a

manner that mimics the corresponding execution if cloud services were to expose the

interface of Paxos “acceptors” and “learners” [89]. Table 5.4 summarizes the various

techniques used in CRIC.

5.2.1 Low latency writes

To write to an object, CRIC relies on CPaxos (Cloud Paxos), a new variant of

Paxos which we design to work with passive Paxos acceptors (i.e., acceptors that

only store state but cannot run any computation). In CRIC, every object transitions

through a sequence of monotonically increasing versions, where each version corre-

110

sponds to one CPaxos instance. If a client writes to a specific version of an object

(e.g., a version that is one greater than the version it previously read), the CRIC

library uses CPaxos to try to get a majority of acceptors to accept the specified data

for the specified version and returns an error if a value has already been globally

accepted for this version. If the client chooses last-writer-wins semantics, the CRIC

library repeatedly retries the write with higher version numbers until it succeeds.

Like prior variants of Paxos [71, 76] designed for passive acceptors, CPaxos moves

the acceptor and learner logic into the proposer. However prior Paxos variants for

passive acceptors inflate latency and cost (see Table 5.1, 5.2, 5.3) because they require

two rounds of communication for a proposer to complete each phase of Paxos: one

round to perform conflict-free writes at a quorum of acceptors (e.g., write a new

object [71] or perform an atomic append [76]) and another round to read the state of

the acceptors to check for success.

Leveraging conditional updates. In contrast, CPaxos can complete each phase

of Paxos in one round of communication in the common case, when there are no

conflicts [99, 66]. To achieve this property, CPaxos leverages the conditional-PUT

operation supported by all popular cloud storage services [19, 4, 26] that offer strong

consistency. A conditional-PUT is a PUT augmented with a boolean condition, where

the storage service executes the PUT only if the specified condition is true. For

example, in Azure, a GET operation on an object returns the object’s data and the

time at which the object was last updated; a subsequent conditional-PUT can specify

that the object should not have been updated since that time.

Leveraging the ability to perform conditional updates, proposers in CPaxos work

as shown in Figure 5.6. A proposer first gathers the state from a majority of acceptors,

a step which can often be omitted because 1) if an object is being created, it will have

no state at any acceptor, whereas 2) when a client is updating an object, it has likely

read that object in the past, enabling the CRIC library to cache acceptors’ states.

111

Proposer
Learner Acceptor

Proposer/
Learner

Passive
acceptor
(storage)

Prepare
phase

Accept
phase

Read Paxos state

Conditional update
Paxos state

Conditional update
Paxos state

Skip if
cached

(a) (b)

Prepare

Accept

Paxos prepare logic Paxos accept logic

Figure 5.6: Comparison of (a) classic Paxos and (b) CPaxos.

For each acceptor, the proposer then runs the same logic that the acceptor would

have executed upon receiving the proposer’s Prepare message. If the proposer finds

that a majority of acceptors would have promised to accept its proposal, it then

attempts to update the state of these acceptors accordingly. Here, the proposer uses

conditional-PUTs to ensure that it updates any acceptor’s state only if the state has

not already been updated since when the proposer read it. The Prepare phase of

Paxos is complete once a majority of passive acceptors have been updated.

If some of the conditional updates fail and a majority of acceptors are not suc-

cessfully updated, the proposer re-collects acceptor states, re-runs the logic for the

Prepare phase (possibly with a higher proposal number), and tries to update the ac-

ceptors’ states again. The proposer repeatedly does so until it either gets a majority

of acceptors to promise to accept its proposal, or discovers that a conflicting value

has already been globally accepted.

The Accept phase is similar to the Prepare phase: the proposer computes the new

112

acceptor states based on the Accept messages it wants to send to the acceptors and

uses conditional-PUTs to update acceptors’ states. The primary difference is that

the proposer does not need to collect the acceptors’ states at the start of the Accept

phase, since it already knows the state of at least a majority of acceptors after its

conditional updates succeed in the Prepare phase.

Enabling one round write. Taking inspiration from Fast Paxos [91], we can

further reduce write latency to one round of communication. Fast Paxos has two

types of execution flows: fast round and slow round. Different proposal numbers

indicate different types of rounds. Whether a proposal number is for a fast round

or a slow round is a predetermined information that all proposers know. In CRIC,

we designate a special proposal #0 as a fast round so that any write to an object

can start with an attempt to fast accept the update by skipping the Prepare phase

and running the Accept phase for proposal #0. The value is considered as committed

once a super quorum d3/4N + 1e of the object’s N replicas accept the value. The

fast round will succeed in the common case because conflicts are rare in typical web

service workloads [99, 66].

The reason for requiring a super quorum in fast round is the same as in Fast

Paxos [91]. Since any writer can propose a value in the fast round, when a reader

collects the Paxos logs from a majority of replicas, there can be more than one value

accepted by different acceptors in the fast round. To distinguish the globally accepted

value among all the values, fast round requires acceptance from a super quorum

of replicas so that the intersection between a super quorum and a regular quorum

contains a majority of the regular quorum. This resolves the ambiguity as to which

value is the globally accepted value since there can be only one value appearing at a

majority of replicas in any regular quorum. d3/4N + 1e of replicas is the minimum

size of a super quorum that satisfies this requirement. During the Prepare phase,

if a proposer observes multiple values accepted in proposal #0 and none of them is

113

globally accepted (none of them appear at a majority of responses), like in Fast Paxos,

it will pick the value with the highest frequency and try to get it globally accepted.

Failure of the fast round indicates that there may be conflicting writes, so in

CPaxos, we only use proposal #0 as the fast round. When the fast round fails, the

proposer must fall back to the regular two-round (slow round) CPaxos protocol using

a higher proposal number. This increases the likelihood and reduces the latency that

one of the conflicting writers will be successful. To prevent starvation, writers should

also use random backoff in slow rounds.

However, when objects are geo-replicated, using a fast round may not always

lower write latency even when conflicts are rare. For example, consider an object

with replicas in Azure’s US-East, US-West, and Southeast Asia data centers. A

client in Azure’s Central-US data center has a latency of 40ms, 50ms, and 230ms,

respectively to these 3 replicas. Using the fast round requires the client to contact all

replicas, which takes 230ms. In contrast, a write using regular CPaxos will complete

in 100ms, despite taking two rounds, because the client need only wait for responses

from the closest majority of replicas.

Our current implementation of CRIC requires the application to specify whether

to begin writes with a fast round. But, given the placement of an object’s replicas,

it is possible to identify whether a particular client would benefit from using a fast

round to update the object.

5.2.2 Low latency reads

Since typical web service workloads are dominated by reads [51, 66], it is particu-

larly vital to minimize read latency. Hence, in the common case, CRIC enables any

client to read the latest version of an object in one round of communication with the

closest majority of the object’s replicas. We achieve this property by having clients

act as learners.

114

We augment the CPaxos state for any version of an object with a commit bit to

indicate whether this version has been globally accepted. After a client has its update

to an object’s data accepted by a quorum of acceptors, the client asynchronously

issues conditional-PUTs to update the commit bit for this new version in the object’s

replicas. The utility of this commit bit is that, when a client wants to read the latest

version of an object, it can issue GET requests to fetch the CPaxos logs for this object

from all of the object’s replicas but need not wait to hear from all replicas in order to

identify the highest globally accepted version. Instead, once a reader is done fetching

CPaxos logs from any majority of acceptors (typically the quorum of acceptors closest

to it), if it finds the commit bit for the highest version enabled at any replica, the

reader can safely use the corresponding data.

A client may find that the commit bit for the highest version it sees is not set at

any of the majority of replicas that it first hears from, e.g., because this read occurs

after a new version has been globally accepted but before the writer updates the

commit bit for that version. In this case, the client needs to simply wait to receive

CPaxos logs for the object from all replicas to recognize the committed version.

When storage services in some cloud data centers are unavailable, a reader may

be unable to confirm that a particular version has been globally accepted even if it

reads the CPaxos logs from a majority of replicas that are available; that version may

have been accepted by a different majority of acceptors, some of whom are currently

unavailable. In this case, a client identifies the highest version accepted at any of

the acceptors from which it has read the CPaxos log. The client then re-proposes

the data corresponding to the highest accepted proposal number for this version in

order to either get this value globally accepted or discover a different value that is

already globally accepted. The purpose of a reader performing such a write back is to

ensure that, in case an object is an inconsistent state (e.g., because a client failed in

the midst of performing a write), the object is left in a consistent state which reflects

115

Object data
Data value for the

last accepted version

Object metadata

V7 ...Paxos Log
Per version Paxos state

1. Promised proposal number
2. Accepted proposal number
3. Commit bit
4. Data value digest

V8

Figure 5.7: CRIC’s format for storing objects in cloud storage.

the data returned to the application. Since failures in the cloud are rare [40, 37, 21],

readers will seldom have to incur the latency overhead of performing write backs.

5.2.3 Minimizing cost

In comparison with a traditional usage of Paxos, CRIC’s use of CPaxos to account

for cloud storage’s limited PUT-GET interface inflates the cost associated with net-

work transfers in two ways: 1) from every acceptor, a reader has to fetch the entire

CPaxos log; it cannot fetch only the last accepted version, and 2) since a client up-

dates an acceptor’s state by performing a conditional-PUT to the CPaxos log stored

at that acceptor, the client has to redundantly transfer all data previously stored in

the log. Next, we address both these sources of cost overhead.

Garbage collection of CPaxos logs. For executing reads as described earlier in

Section 5.2.2, we observe that readers need to know only the highest version accepted

by each acceptor. Therefore, we can afford to garbage collect CPaxos state for older

versions during the Accept phase of a write. As a result, any replica of an object will

contain data only for the last version of the object accepted at that replica.

A consequence of CRIC’s garbage collection strategy is that the state for older

versions at an acceptor is discarded without confirming whether any proposal for the

new version has been globally accepted. Doing so does not violate safety because,

116

even if a reader finds that the highest version seen across a majority of acceptors is

not globally accepted, as described earlier in Section 5.2.2, the reader will perform a

write back to get some value accepted for this version. In settings where conflicts are

known to be not so rare, one can minimize the chances of readers having to perform

write backs by configuring CRIC so that writers garbage collect some, but not all,

older versions in the Accept phase.

The key point to note here is that CRIC can safely afford to always store a single

copy of an object’s data at any replica. In contrast, to not violate safety, prior

variants of Paxos designed for passive acceptors [71, 76] require every writer to create

an additional copy of the object’s data at a quorum of replicas. This in turn leads to

overheads in network transfers as subsequent readers must necessarily fetch multiple

copies of the object’s data from each replica.

Separation of object data and Paxos state. During the Prepare phase of

a write to an object, only the CPaxos state for that object needs to be updated

but not the object’s data. Therefore, to preempt writers in the Prepare phase from

having to redundantly write back object data that they haven’t modified, we leverage

the fact that cloud storage services permit storing for any key a limited amount of

metadata which can be modified independently of the key’s value [18]. As shown

in Figure 5.7, CRIC stores the CPaxos log at any of an object’s replicas within that

replica’s metadata. Moreover, we also store within the metadata a data digest: a hash

of the data last accepted at that replica. In low conflict workloads where replicas are

typically in sync with each other, CRIC reduces cost by having a client read an

object’s data only from the closest replica and read only the metadata from the other

replicas to confirm that they have the same data for the object. Note that the limits

on object metadata (e.g., 8 KB on Azure [35]) suffice for storing the data digest

and CPaxos state for the last accepted version as well as the CPaxos state for any

subsequent versions not yet accepted.

117

Cloud storage
(passive acceptor)

Proposer 1

Proposer 2

proposal = 1

proposal = 2
Fail

Read states
proposal = 1

proposal = 2
ok

Conditional-PUT GET

ok

My proposal is still the highest

Cloud storage
(passive acceptor)

PVM

Proposer 2

proposal = 2

(a)

(b)

Proposer 1

proposal = 1

...

Figure 5.8: Illustration of (a) false propose failure, and (b) the use of Propose Assis-
tant VMs.

5.2.4 Improving throughput under conflicts

Despite CRIC making do with passive Paxos acceptors, it is able to serve reads

and writes with one round of communication when conflicts are rare. However, in

comparison with classic Paxos, write throughput with CPaxos degrades more rapidly

if conflicts become common.

To appreciate the cause for the throughput degradation, consider two clients trying

to execute the Prepare phase on the same Paxos instance, as shown in Figure 5.8.

Client 1 proposes proposal #1 and successfully updates the Paxos state at a majority

of replicas. Before Client 1 executes the Accept phase, Client 2 proposes proposal

#2. In classic Paxos, all acceptors will promise to accept Client 2’s proposal since

it has a higher proposal number. However, in CPaxos, Client 2’s conditional-PUT

118

will fail since the acceptors’ states after Client 1’s update are unknown to Client 2.

Client 2 needs to read the Paxos state again from storage, re-run the Paxos logic,

and try again to obtain promises for its proposal. As we can see in Figure 5.8, this

at least triples the write latency and the number of requests issued to cloud storage.

Moreover, these extra rounds increase the window for contention between requests.

To reduce such false propose failures, we move the execution of the Prepare logic

close to the storage by augmenting CPaxos with Propose Assistant VMs (PVMs)

at every data center. A PVM only receives Prepare messages from proposers, reads

and updates the metadata of the relevant object to run the Prepare phase’s logic

for the local acceptor, and returns the Prepare phase’s result as well as metadata

necessary for the proposer to issue subsequent conditional-PUTs (Figure 5.8(b)). For

the Accept phase, proposers directly interact with cloud storage; a conditional-PUT

that fails in this phase would fail even if relayed through PVMs because there must be

another proposer who has updated the highest proposal number in the Paxos state.

Note that PVMs are stateless, and unlike replica VMs that proxy all client inter-

actions with cloud storage (Section 5.1.2), PVMs never deal with any object’s data.

As a result, each PVM can sustain a much higher throughput than replica VMs.

Furthermore, when conflicts are rare and writes can be successfully committed using

the fast round, the execution of writes sidesteps PVMs.

5.3 Tackling latency variance

Our description of CRIC in the previous section outlined how CRIC is able to

execute reads and writes in one round of wide-area communication in the common

case. Now, we turn our attention to minimizing the tail of the read/write latency

distribution.

Inadequacy of quorum-based replication. Paxos, the basis for CPaxos, im-

plicitly accounts for stragglers as, in either phase of the protocol, a client needs to

119

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200C
D

F
 o

f (
ac

ce
ss

 s
et

, c
lie

nt
)

RTT overhead to i’th replica over closest quorum

N=9, i=6
N=9, i=7
N=3, i=3

Figure 5.9: Latency overhead a client incurs to communicate with a farther replica
compared to the quorum closest to it.

wait for responses from only a majority of acceptors. However, when replicas are

in multiple locations, this approach has limited ability to reduce client-perceived la-

tency variance. As we showed in Section 5.1.3, even when clients issue requests to

all replicas and only wait for responses from a quorum, there remains a significant

gap between the tail and median latencies. Using the same data used earlier in Fig-

ure 5.4, Figure 5.9 highlights the cause for this gap: since the 3rd closest replica is

90ms farther from the client than the 2nd closest replica in the median case, the 3rd

closest replica’s response has to necessarily incur this additional delay before reaching

the client.

To help mitigate this problem, one may consider storing replicas at more data

centers than necessary to ensure fault-tolerance, e.g., storing replicas at 9 data centers

despite needing to tolerate only f = 1 failure. By having replicas in more data centers,

the RTT overhead of a client communicating with a replica farther than the closest

quorum is significantly diminished; from Figure 5.9, with replicas at 9 data centers,

the 6th closest replica is less than 15ms farther than the 5th closest replica in the

120

CRIC Client

Replica group I

Replica group II

Replica group III

Read complete

Figure 5.10: Illustration of hierarchical quorum.

median case.

However, as we show later in Section 5.4, inflation in tail latencies remains signif-

icant even with replicas at more data centers. This is because more replicas implies a

larger quorum, and having to wait for a greater number of responses ends up inflating

tail latencies such that more redundant responses become necessary to overcome the

latency variance, nullifying the benefits of having more replicas. For example, when

replicas are stored in 9 data centers, we find that clients need to wait for responses

from at least 7 replicas to reduce tail latency, with additional redundant requests to

farther replicas offering little benefit. As we see in Figure 5.9, when storing replicas

in 9 data centers, RTT from a client to its 7th nearest replica is higher than the RTT

to the 5th closest replica by an amount commensurate with the difference between

the client’s RTTs to the 2nd and 3rd closest replicas when using 3 replicas.

More replicas per data center. In order for tail latency to match median latency,

our primary insight is that a client must rely on redundant responses only from the

nearest quorum of data centers which host an object’s replicas, since these are the

data centers from which the client receives the first quorum of responses in the median

case.

121

Based on this insight, our approach is to create additional replicas of an object at

each one of 2f + 1 data centers, rather than creating replicas at more data centers.

The number of replicas of an object to store at any data center can be chosen based

on the extent of latency variance at that data center.

Given these additional replicas, a natural way to execute reads and writes would

be to have every client wait for responses from a quorum of replicas. To see why this

approach can prove to be problematic, consider an object whose replicas are stored

at three data centers D1, D2, and D3, with 1 replica each at D1 and D2 and 3 replicas

at D3. A client that is proximate to D1 and D2 will have to wait for responses from

all 3 data centers for every read/write in order to receive responses from a quorum of

replicas. Thus, while the redundancy at D3 helps tame the latency variance at that

data center, doing so can end up inflating the median latency for many clients.

Hierarchical quorums. To prevent such undesirable outcomes, we leverage a two-

tiered quorum-based approach, hierarchical quorum [87], which groups replicas stored

in the same data center as a replica group. In both the Prepare and Accept phases of

a CPaxos write and when executing a read, a client must receive positive responses

from a quorum of replica groups, where the response from a group is complete once

the client receives positive responses from a quorum of replicas within that group. It

is easy to see that a quorum of quorum intersects with any other quorum of quorum.

Here, we give a formal definition of a hierarchical quorum system and a proof of the

intersection property of using hierarchical quorums.

Definition V.1. Given a set S = {s1, s2, ..., sn}(n > 1), a hierarchical quorum system

HQ is a quorum system [119] over a set of quorum systems Q = {q1, q2, ..., qm}(m > 1)

that ∀qi : qi is a quorum system over a non-empty subset of S.

Theorem V.2. Two hierarchical quorums have non-empty intersection over S.

Proof. ∵ ∀nq1, nq2 ⊂ HQ, nq1 and nq2 have non-empty intersection over Q, and

∀nq ⊂ nq1 ∩ nq2 and ∀q1, q2 ⊂ nq, q1 and q2 have non-empty intersection over S.

122

∴ nq1 and nq2 have non-empty intersection over S.

Figure 5.10 shows an example of three replica groups and three replicas in each

group. To execute reads and writes, a client must receive positive responses from at

least four replicas, two replicas each from two replica groups. Thus, in comparison

with the approach of treating all replicas as equal, hierarchical quorum not only has

no impact on median latency but also reduces the number of replicas that a client

must wait for responses from, resulting in lower tail latencies.

When using hierarchical quorum in CPaxos’s fast round for writes, at each of a

super quorum d3/4n + 1e of data centers, a client’s conditional-PUTs must succeed at

a super quorum d3/4m + 1e of replicas. Here, n is the number of replica groups, and

m is the number of replicas in a replica group. Here, we provide a proof of correctness

of using super hierarchical quorum in CPaxos’s fast round.

Lemma V.3. In Fast Paxos, any two super quorums and any regular quorum have

non-empty intersection of replicas.

Proof (see [91]).

Theorem V.4. Using super hierarchical quorum in CPaxos fast round guarantees

safety (only one value can be committed for a given version of an object and only

committed values can be read).

Proof. Based on [91], the requirement for Fast Paxos to guarantee safety is that any

two fast round quorums and any regular round quorum have non-empty intersection.

Therefore, to prove that using hierarchical quorums can guarantee safety, we only

need to prove that any two super hierarchical quorums and any regular hierarchical

quorum have non-empty intersection of replicas.

Based on Lemma V.3, any two super hierarchical quorums and any regular hierar-

chical quorum have non-empty intersection of replica groups. Similarly, within each

123

replica group, any two super quorums and any regular quorum have non-empty in-

tersection of replicas. Therefore, any two super hierarchical quorums and any regular

hierarchical quorum have non-empty intersection of replicas.

Like any approach that uses redundancy to reduce latency variance, the use of

hierarchical quorum increases cost (to store more replicas, to issue requests to storage,

and to transfer more data). CRIC reduces this cost overhead by leveraging the data

digests that CPaxos stores in an object’s metadata. For example, when reading the 3

copies of an object in a replica group, a client need read the data from only 2 of them

and read only the metadata from the third, thus reducing network transfer costs by

a third.

5.4 Evaluation

We evaluate CRIC in three parts. First, in a prototype deployment of CRIC, we

evaluate the latency and throughput performance under different conflict rates, in

comparison with alternative designs not optimized for the cloud. Second, to demon-

strate CRIC’s cost-effectiveness and its ability to reduce tail latency in a broader

setting, we conduct a simulation-based evaluation on a large-scale dataset of mea-

surements from 39 cloud data centers. Finally, we showcase the utility of CRIC on

a real-world web service’s workload. The primary take-aways from our evaluation

are:

• CRIC’s performance is comparable to approaches that require replica VMs, but at

20–50% lower cost.

• Compared to existing replication protocols compatible with passive Paxos accep-

tors, CPaxos can halve write latency and also lower cost by 10–60%.

• Hierarchical quorums can reduce tail read latency by 50ms in the median case, a

more than 50% reduction over what traditional quorums can achieve.

124

5.4.1 Prototype Evaluation

Implementation. Our prototype implementation of CRIC is roughly 5400 lines

of Java code. We use Thrift [112] for RPCs between VMs, and interact with every

cloud storage service using the official client libraries. Our prototype is compatible

with Microsoft Azure and Amazon AWS.

To compare the performance of CRIC with existing solutions, we also implemented

two comparison systems:

• Fast Paxos: We implement Fast Paxos to represent a range of existing solutions,

such as MDCC [86] and TAPIR [131], that would require replica VMs to replicate

data in the cloud. Although these systems provide richer functionality such as

transactions, using them to offer a globally consistent view of key-value storage

would offer performance similar to the Fast Paxos protocol. Our implementation

of Fast Paxos contains two components: a client library that implements a Fast

Paxos proposer, and code that runs on VMs which proxy requests to cloud storage

and mimic Fast Paxos acceptors and learners.

• pPaxos*: Among prior Paxos-based replication protocols that work with passive

acceptors, pPaxos [76] is strictly better than Disk Paxos [71] in terms of perfor-

mance and cost. Therefore, we compare CRIC only with pPaxos. Our implementa-

tion, pPaxos*, improves pPaxos’s efficiency by using fast round writes and optimal

garbage collection.

Not all cloud storage services support Append operations as needed by pPaxos.

Even storage services that do support Append may impose restrictions, e.g., though

Azure Storage supports Append Blobs, updating and deleting existing blocks in a

Blob is not supported, thus preempting garbage collection. We therefore implement

Appends via replica VMs that interpose on requests to storage but ignore the cost

of these VMs in our comparisons.

125

Deployment setting. We deploy clients in A2 instances at 5 Azure data centers:

East US, West US, Japan, West Europe, and Southeast Asia. In the blob storage

service at each of these data centers, we store a copy of one million objects. When

replica VMs are necessary, we deploy a sufficient number of them for these VMs to

not be a bottleneck.

Clients issue reads and writes using YCSB [65], a key value store benchmark which

emulates cloud workloads. We vary the read-to-write ratio, average object size, and

Zipfian distribution that reflects how popularity varies across objects. We vary the

Zipfian coefficient in the range [0.5, 1). The higher the value, the higher the rate of

conflicts.

Performance under low conflict rates. First, when conflicts are rare, we show

that CRIC 1) offers performance comparable to approaches that would require replica

VMs for deployment in the cloud, and 2) outperforms prior replication protocols

compatible with passive acceptors. In this experiment, we use 1KB objects, set the

read-to-write ratio to 30, and set the Zipfian coefficient to 0.5.

Figure 5.11 shows the distribution of read and write latencies observed by clients

in the Azure East US region. In terms of read latency, Fast Paxos, pPaxos*, and

CRIC all offer similar latencies since all of them require one round trip to a majority

of replicas to execute reads in the common case. Whereas, for writes, latencies with

pPaxos* are double that with CRIC and Fast Paxos. This is because, after appending

to acceptors’ logs, a pPaxos* proposer has to read back those logs to check whether its

request was accepted. For both reads and writes, CRIC’s use of hierarchical quorum

enables it to reduce the 99th percentile latency by over 100ms.

Note that, since we deploy a sufficient number of replica VMs when they are

necessary, when conflicts are rare, throughput is constrained only by cloud storage.

Performance under high conflict rate. Next, we showcase CRIC’s ability to

minimize performance degradation even if conflicts are common. Here, we set the

126

 0.01

 0.1

 1

 50 100 150 200 250 300 350

C
C

D
F

 o
f r

eq
ue

st
s

Read latency (ms)

CRIC
Fast Paxos

CRIC w/o NQ
pPaxos*

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 200 300 400 500 600

C
D

F
 o

f r
eq

ue
st

s

Write latency (ms)

CRIC
Fast Paxos

CRIC w/o NQ
pPaxos*

(b)

Figure 5.11: (a) Read and (b) write latencies under low conflicts.

read-to-write ratio to 1 and use 1KB objects.

Under high conflict rates, a client may require multiple rounds of communication

to complete a read or write, worsening both latency and throughput. Write-write

conflicts cause the fast round to fail, and multiple proposers compete in one CPaxos

instance. For read-write conflicts, readers may see an inconsistent state due to on-

going writes and perform write backs, which may then interfere with ongoing writes.

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1R
el

at
iv

e
th

ro
ug

hp
ut

 to
 m

ax

Zipfian coefficient

Fast Paxos
pPaxos*

CRIC
CRIC w/o PVM

Figure 5.12: Degradation in write throughput under different conflict rates.

Performance degradation can be further amplified due to false propose failures (Sec-

tion 5.2.4).

Write-write conflicts. Figure 5.12 shows how write throughput degrades with

different replication approaches under different conflict rates; we normalize values

compared to the throughput achieved when conflicts are rare. As conflicts increase,

CRIC’s throughput without PVMs degrades at a significantly faster rate than when

using PVMs. For example, when the Zipfian coefficient is 0.8, throughput when using

CRIC without PVMs is less than half that achieved in the absence of conflicts. With

PVMs, CRIC comes close to the throughput achieved with Fast Paxos, achieving a

normalized throughput of 0.8.

As conflicts increase (Zipfian coefficient of 0.9 and higher), CRIC starts to degrade

faster than Fast Paxos due to the failure of conditional-PUTs in the Accept phase.

In this case, CRIC requires an extra round to read passive acceptors’ states whereas

Fast Paxos’s replica VMs can include an acceptor’s state when rejecting a client’s

Accept message. However, under such high conflict rates, it would be more prudent

to use pessimistic concurrency control.

128

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000

C
D

F
 o

f r
eq

ue
st

s

Read latency (ms)

CRIC
CRIC w/o commit bit

Figure 5.13: Client perceived read latency distribution when conflict rate is high.

Note that false propose failures do not happen in pPaxos* since a proposer knows

the exact status of its request after reading the passive acceptors’ logs. However,

we still see that throughput with pPaxos* degrades relative to Fast Paxos at a rate

similar to CRIC. This is because a long log of requests accumulate in acceptors’ logs

under high contention, increasing processing time at proposers.

Read-write conflicts. In CRIC, when a write to an object is globally accepted,

but has not yet been applied to all replicas, clients who read that object may have

to perform a write back. CRIC uses the commit bit to reduce the incidence of such

write backs.

In our experimental setup, Figure 5.13 shows the read latency distribution ob-

served at Azure’s Japan data center when the Zipfian coefficient is set to 0.8. We see

that having writers asynchronously mark their completed write as committed greatly

improves read latencies; as long as the commit bit is set at any replica with highest

version, a reader need not perform write backs.

129

Figure 5.14: Comparison of cost necessary to execute reads and writes on geo-
replicated data; R/W is the read-to-write ratio.

5.4.2 Cost

While we have shown thus far that latencies and throughput with CRIC are com-

parable to those with Fast Paxos when conflicts are rare, using Fast Paxos incurs

significant cost overhead due to the need for replica VMs to augment the storage

interface. Figure 5.14 compares CRIC against Fast Paxos and pPaxos* in terms of

the cost necessary to sustain any specific throughput; we consider three read-to-write

ratios (30, 10, and 1), three object sizes (256 bytes, 1KB, and 100KB), and a Zip-

fian coefficient of 0.5. These parameter choices are informed by prior studies of web

service workloads [51, 66, 59].

We see that CRIC reduces cost by 20–50% compared to Fast Paxos and pPaxos* in

our target setting: conflicts are rare and objects are small [59, 51]. In such workloads,

CRIC’s cost savings over Fast Paxos stem from more efficient use of VMs, and the

savings compared to pPaxos* are due to efficient use of storage and network resources.

Only if both objects are large and the read-to-write ratio is low, do CRIC’s cost

benefits reduce. Note that, even though, like CRIC, pPaxos* too does not require

130

replica VMs, its use may result in higher cost than Fast Paxos when objects are large.

This is because a pPaxos* proposer has to always append a new copy of an object’s

data to any acceptor’s log and has to therefore transfer multiple versions when reading

the log to check the status of its proposal.

5.4.3 Tackling latency variance

Simulation setting. To assess CRIC’s tail latency performance and associated cost

overhead in a broader range of settings, we use a dataset containing measurements

from 39 cloud data centers: 14 in Amazon AWS and 25 in Microsoft Azure. We collect

this dataset by continually measuring latencies between all pairs of the 39 data centers,

as well as response times for 1KB GETs and PUTs at the storage service in each of

those data centers. Our dataset contains more than 100K measurement samples per

pair of data centers and 100K measurement samples per GETs and PUTs at every

data center. By simulating CRIC’s operation using this data, we are able to conduct

a more comprehensive evaluation of CRIC than possible with our prototype.

Like in Section 5.1.3, we consider a web service that has web servers in each Azure

data center and replicates data across all Azure and AWS data centers; we refer to the

subset of data centers from which an object is accessed as its access set and consider

2000 randomly chosen access sets. For every access set, we choose the set of data

centers in which to store replicas using a strategy that combines random selection

(for fault-tolerance) with affinity for data centers in the access set (for performance).

We group data centers by continents, and evenly distributes replicas across continents

in which there is a data center from the access set, randomly choosing data centers

within any continent. For each access set, we choose 10 random replica placements

based on this strategy and report the median performance.

We compare the tail latency improvements enabled by CRIC’s use of hierarchical

quorum when storing replicas at 3 data centers against those enabled when storing

131

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200C
D

F
 o

f (
ac

ce
ss

 s
et

, c
lie

nt
)

99th percentile - median latency (ms)

N=9, DC=3, HQ
N=9, DC=3, Q
N=9, DC=9, Q
N=7, DC=7, Q
N=3, DC=3, Q

Figure 5.15: Utility of hierarchical quorums in reducing tail latency. N is the number
of replicas and DC is the number of data centers.

replicas at additional data centers and treating all replicas as equal.

Ability to reduce tail latency. For every client in each of the access sets con-

sidered, Figure 5.15 shows the absolute latency difference between the 99th percentile

and median latencies for the two approaches. We use hierarchical quorums to store

3 replicas each in 3 data centers, and compare it with replication configurations that

(1) place 3 replicas each in 3 data centers but use the traditional quorums to execute

requests, (2) place 9 replicas in 9 different data centers, and (3) place 7 replicas in 7

different data centers (to match the minimum number of replica failures hierarchical

quorums cannot tolerate). Although when using the traditional majority quorum,

issuing requests to all replicas and waiting for the first majority responses can reduce

tail latency by 42ms in the median case, there remains a 45ms gap between the tail

and median latencies. This is because, when replicas are spread out, redundancy to

farther away replicas has little utility in reducing latency variance. However, since

hierarchical quorum creates redundancy within the closest quorum of data centers

and the size of responses it requires is smaller than the traditional quorum, it can

further reduce the gap between tail and median latencies. From Figure 5.15, we can

132

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60

C
os

t r
at

io
 to

 b
as

el
in

e

99th percentile latency reduction (ms)
at the median client

Traditional quorums
Hierarchical quorums

Figure 5.16: Utility of hierarchical quorums in enabling better cost vs. tail latency
trade-offs.

see that hierarchical quorum can reduce the gap between tail and median latencies

to less than 30ms in the median case.

Tail latency vs. cost tradeoff. Hierarchical quorums not only enable low latency

variance, but also incur low cost overhead in achieving those latency benefits. To

evaluate the tradeoff enabled by different quorum approaches, we consider different

replication configurations by varying the number of replicas, and then determine the

tail latency and cost in each case. For hierarchical quorum, we consider replicas at

3 data centers, but vary the number of replicas per data center from 1 to 5. With

traditional quorums, we consider 1 replica per data center and vary the total number

of replicas from 1 to 15.

For both hierarchical quorum and traditional quorums, Figure 5.16 shows one

point for each replication configuration. For each configuration, we show the tail

latency reduction seen at the median client against the cost overhead over the baseline

configuration with 1 replica each at 3 data centers. Compared to traditional quorums,

133

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140 160

C
D

F
 o

f u
se

rs

Reduction in median latency (ms)

Post
GetRange

Figure 5.17: In a Twitter clone, CRIC improves performance compared to Fast Paxos
for users with at least 100 followers.

hierarchical quorums can provide the same tail latency performance at much lower

cost, or better tail latencies at the same cost. Hierarchical quorums thus provide

web service developers with a better tail latency versus cost tradeoff than when using

traditional quorums.

5.4.4 Application case study

In the final part of our evaluation, we estimate CRIC’s benefits by considering the

characteristics of a real-world web service’s workload. We use data from Twitter as

an example of a latency-sensitive geo-distributed web service, even though Twitter

only offers eventual/causal consistency.

We simulate a strongly consistent deployment of Retwis [32], an open source Twit-

ter clone; once a user’s post is accepted by the service, the user’s followers are guar-

anteed to see the post. Our simulation considers 1 million users, uses location in-

formation in their profiles [95] to map each user to be served by a web server in the

closest AWS data center, and picks the number of followers and followees for every

user based on publicly available information [38]. We compare CRIC’s performance

134

to Fast Paxos.

We focus on the latency for two types of operations: GetRange operations fetch

the last 100 tweets in a user’s timeline (the set of tweets posted by those that the

user follows), and Post operations represent a user posting a tweet. With GetRange

operations, Retwis first reads the user’s timeline object to get the IDs for all posts on

her timeline, and then reads 100 posts (in parallel). For Post operations, there are

three steps: 1) write the post, 2) read the list of the user’s followers (done in parallel

with writing the post), and 3) insert the post ID into their timelines. All posts and

timeline objects are replicated as per the replica placement strategy described in

§ 5.4.3, whereas a user’s list of followers/followees is stored only at the data center

which serves that user.

For the 40% of users who have over 100 followers, Figure 5.17 shows the reduction

in median latency for GetRange and Post operations.

5.5 Discussion

Improving read performance. Read latency with CRIC could be lowered by

using read leases, like in Megastore [53]. Whether a read lease has been granted on

a particular replica of the object can be stored in the metadata of that copy of the

object. Once a client completes a read, it can perform a conditional-PUT to update

the metadata at the replica closest to it, thereby enabling clients close to this replica

to complete reads by reading only from this replica. This improvement in read latency

will come at the expense of higher write latency as writers will now have to invalidate

read leases at all replicas.

Alternatively, if an application can make do with reads returning stale data, CRIC

is also extensible to reduce read latency without compromising on the linearizability

of writes. In this case, to read an object, a client need fetch only the closest replica

of the object. The application can then use the highest version that has the commit

135

bit set in the CPaxos log at this replica. Only if this client attempts to update this

object in the future will it have to read from a quorum of the object’s replicas.

Support for transactions. CRIC can be used to execute multi-key transactions on

geo-replicated data if the cloud storage service within each data center offers support

for transactions. For example, on Azure, CRIC can leverage the Table service’s

support for batched updates [31] to execute a transaction as a batch of conditional

updates; on any particular replica, the batch is applied only if all the conditional

updates within the batch succeed. In the absence of transaction support from cloud

storage, CRIC can still be used to execute transactions with an additional round

of latency to acquire locks (stored in the metadata of each replica) at a quorum of

replicas.

5.6 Summary

Our work was motivated by the observation that a key challenge today in deploying

a web service that spans data centers in the cloud is for the web service to itself

manage the consistency of data replicated across data centers. With CRIC, we have

demonstrated that it is indeed feasible to address this shortcoming efficiently at the

application layer without requiring cloud providers to modify cloud storage either to

augment its interface or to reduce its latency variance. We hope our work will spur

more web service providers to opt for geo-distributed deployments, thereby realizing

the untapped potential for cloud providers to democratize low latency web services.

136

CHAPTER VI

Conclusions

6.1 Thesis Contributions

This dissertation presents my effort to support my thesis: it is practical to

cost-effectively offer better abstractions and support for latency SLOs

on legacy cloud storage services.

My thesis research can greatly ease the burden on the developers of geo-distributed

cloud web services. It focuses on addressing the problems faced by web services in

the cloud due to the poor abstractions and high latency variance offered by cloud

storage services. More specifically, the work presented in this dissertation makes the

following contributions:

Measurement study quantifying cloud storage latency performance and

reducing latency variance of using cloud storage. My measurements of the

Azure and S3 storage services highlight the high variance in latencies and point out

the main source of the latency variance offered by these services. To address this issue,

I designed CosTLO to improve predictability of using cloud storage services without

having to wait for these services to modify their infrastructure. It is a framework that

requires minimal changes to applications and judiciously combines several redundancy

forms to execute storage requests to reduce latency variance in a cost effective manner.

Automating the process of placing geographically distributed replicas

137

in the cloud. I developed the SPANStore system which provides a unified view

of geographically distributed storage services across multiple clouds to web services

deployed in the cloud. It can automate the process of trading off cost and latency,

while satisfying various application requirements such as data consistency and fault-

tolerance.

Efficient strongly consistent geo-replication in the cloud. I designed and

implemented CRIC, which enables strongly consistent data replication across cloud

storage services with limited interface, and tackles latency variance on shared data

replicated in multiple cloud storage services. I demonstrate that it is indeed feasible to

address this shortcoming efficiently at the application layer without requiring cloud

providers to modify cloud storage either to augment its interface or to reduce its

latency variance.

Though this dissertation focuses on developing client side solutions to improve

the utility of cloud storage services, many techniques can also be adopted by cloud

providers to improve their storage services internally. For example, CosTLO’s tech-

nique of using multiple forms of redundancy can be used by cloud storage services

to provide latency SLOs for their users. With detailed information on storage imple-

mentation, cloud providers can devise a more accurate latency model in CosTLO’s

latency estimation.

Although cloud storage services may evolve in the future and provide function-

alities proposed in this dissertation, the fact that no cloud providers would like to

provide data synchronization services with other cloud providers shows the funda-

mental value of this dissertation. For web service providers who choose to adopt

a multi-cloud deployment for the associated cost, performance, and fault-tolerance

benefits, they still require solutions such as SPANStore to replicate data across mul-

tiple clouds and CRIC to keep data consistent. Therefore, this dissertation provides

long-term benefits for web services deployed in the cloud.

138

6.2 Future Work

My thesis research demonstrates that there is a big gap between what cloud ap-

plications need from cloud services and what cloud services currently provide. The

desire of solving this issue leads me to my future work.

Cloud system design to meet different application requirements. Emerg-

ing cloud applications such as self-driving cars, wearable devices, and Internet of

Things may have very different performance, data consistency, fault tolerance and

resource requirements compared to traditional applications. For example, the data

consistency requirement for self-driving cars is likely to be distance based: for cars

that are nearby, the data shared among those cars has to be strongly consistent to

prevent accidents, but for cars that are hundreds of miles away, it is likely that the

data shared between these cars does not need to be strongly consistent. Identifying

those additional requirements and designing cloud systems that are tunable to meet

different applications’ needs are challenging. Moreover, I’d like to build solutions that

follow the same underlying principle as SPANStore: automating the cloud system re-

configuration process to suit different application requirements. One path I’d like to

explore is to leverage machine learning techniques to enable system reconfiguration

automation.

Redesigning distributed system interface. As I have demonstrated in CRIC,

there is currently a mismatch between the functionalities that a cloud service provides,

and the functionalities that an application desires. This issue is especially enlarged

by the trend that more and more emerging web services and applications are relying

on some third party services that they do not have control over. Therefore, I argue

that system interface design should be an important aspect of future cloud system

design. For example, instead of providing a simple GET/PUT interface for key-value

storage, incorporating some forms of request dependency will make the storage more

usable. It will also make web service developers’ life easier in reasoning about storage

139

behavior, even though they do not have visibility inside the storage system. This

line of research is going to require a deeper analysis and study of different types of

distributed systems and applications, as well as revisiting the theoretical aspect of

distributed systems in order to generalize rules or common patterns for designing

interfaces of the future.

Make cloud infrastructure more configurable. Moreover, I’m interested

in exploring new possibilities in designing cloud infrastructures in a way that cloud

resources can be highly configurable by cloud applications and third party service

providers to enrich the functionalities of the cloud. Existing cloud model suffer from

a key limitation: they only enable third-parties to offer new functionality that is

independent from any service offered by the cloud provider. As I have pointed out

the gap between cloud providers’ offerings and cloud applications’ needs, one way to

bridge this gap is to redesigning cloud service marketplaces such that third parties

can also augment existing cloud services. As illustrated in my vision paper [127],

leveraging emerging hardware technologies such as programmable switches, we can

redesign cloud service marketplaces to enable efficient deployment and use of third

party add-ons. An add-on’s VMs can interpose on an application’s interactions with a

cloud service, but need to do so only for a portion of the application’s traffic. The net

effect of my proposed redesign of cloud service marketplaces is a win-win for all parties

involved: cloud providers benefit from a greater rate of innovation, applications can

avail richer functionality without sacrificing performance, and third-party developers

incur low cost.

6.3 Summary

In this dissertation, I present CosTLO, SPANStore, and CRIC, systems that offer

better abstractions of cloud storage, low complexity of using cloud storage in geo-

distributed deployments, and help tackle the latency variability intrinsic to cloud

140

storage. These systems are designed as middlewares and libraries that sit in between

applications and cloud services, and enable web service providers to make better per-

formance, cost, consistency, and availability trade-offs without requiring any changes

to cloud services. Note that cloud providers can also easily incorporate these systems

into their future offerings. I hope my work will spur more web services to opt for

geo-distributed deployments in the cloud, thereby realizing the untapped potential

for cloud providers to democratize low latency web services. I hope the outcome of

this research can lead to a greater innovation in cloud environments.

141

BIBLIOGRAPHY

142

BIBLIOGRAPHY

[1] 100% uptime anybody? http://www.riskythinking.com/articles/

article8.php.

[2] 250+ Amazing Twitter Statistics. http://expandedramblings.com/index.

php/march-2013-by-the-numbers-a-few-amazing-twitter-stats/.

[3] Amazon AWS. http://aws.amazon.com.

[4] Amazon DynamoDB PutItem. http://docs.aws.amazon.com/

amazondynamodb/latest/APIReference/API_PutItem.html.

[5] Amazon EC2 Service Level Agreement. http://aws.amazon.com/ec2/sla/.

[6] Amazon S3. http://aws.amazon.com/s3.

[7] Amazon S3 FAQs. http://aws.amazon.com/s3/faqs/.

[8] Amazon S3 Pricing. http://aws.amazon.com/s3/pricing/.

[9] Amazon Web Services Outage Reveals Critical Lack of Redun-
dancy Across the Internet. http://www.geekwire.com/2017/

amazon-web-services-outage-reveals-critical-lack-of-redundancy-across-the-internet/.

[10] Announcing Amazon S3 Reduced Redundancy Storage.
http://aws.amazon.com/about-aws/whats-new/2010/05/19/

announcing-amazon-s3-reduced-redundancy-storage/.

[11] AWS Case Studies. http://aws.amazon.com/solutions/case-studies/

all/.

[12] AWS Global Infrastructure. https://aws.amazon.com/about-aws/

global-infrastructure/.

[13] Azure. http://azure.microsoft.com/.

[14] Azure Blob Storage Pricing. http://azure.microsoft.com/en-us/pricing/

details/storage/blobs/.

[15] Azure Documentation: Virtual Machines. http://azure.microsoft.com/

en-us/documentation/articles/virtual-machines-size-specs/.

143

http://www.riskythinking.com/articles/article8.php
http://www.riskythinking.com/articles/article8.php
http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats/
http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats/
http://aws.amazon.com
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
http://aws.amazon.com/ec2/sla/
http://aws.amazon.com/s3/faqs/
http://www.geekwire.com/2017/amazon-web-services-outage-reveals-critical-lack-of-redundancy-across-the-internet/
http://www.geekwire.com/2017/amazon-web-services-outage-reveals-critical-lack-of-redundancy-across-the-internet/
http://aws.amazon.com/about-aws/whats-new/2010/05/19/announcing-amazon-s3-reduced-redundancy-storage/
http://aws.amazon.com/about-aws/whats-new/2010/05/19/announcing-amazon-s3-reduced-redundancy-storage/
http://aws.amazon.com/solutions/case-studies/all/
http://aws.amazon.com/solutions/case-studies/all/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
http://azure.microsoft.com/
http://azure.microsoft.com/en-us/pricing/details/storage/blobs/
http://azure.microsoft.com/en-us/pricing/details/storage/blobs/
http://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/
http://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/

[16] Azure Regions. https://azure.microsoft.com/en-us/regions/.

[17] Azure Replicated Table Library. http://github.com/Azure/rtable.

[18] Azure Set Blob Metadata. http://docs.microsoft.com/en-us/rest/api/

storageservices/fileservices/set-blob-metadata.

[19] Azure Storage Documentation: Specifying Conditional Headers for Blob Service
Operations. http://msdn.microsoft.com/en-us/library/dd179371.aspx.

[20] Azure Storage Pricing. http://azure.microsoft.com/en-us/pricing/

details/storage/.

[21] CloudSquare Service Status. https://cloudharmony.com/

status-1year-group-by-regions-and-provider.

[22] Dropbox. http://www.dropbox.com.

[23] Facebook. http://www.facebook.com.

[24] Google Cloud Platform. http://cloud.google.com/.

[25] Google Cloud Storage. http://cloud.google.com/ storage.

[26] Google Cloud Storage: Update object. http://cloud.google.com/storage/

docs/json_api/v1/objects/update.

[27] Google Docs. http://docs.google.com.

[28] Infographic: Who is using Twitter, how often, and why?
http://www.theatlantic.com/ technology/archive/2011/07/infographic-who-is-
using-twitter-how-often-and-why/241407/.

[29] Latency Is Everywhere And It Costs You Sales -
How To Crush It. http://highscalability.com/

latency-everywhere-and-it-costs-you-sales-how-crush-it.

[30] Page View Statistics for Wikimedia Projects. http://dumps.wikimedia.org/
other/pagecounts-raw/.

[31] Performing Entity Group Transactions. https://docs.

microsoft.com/en-us/rest/api/storageservices/fileservices/

performing-entity-group-transactions.

[32] Retwis. http://retwis.antirez.com.

[33] Roundup Of Cloud Computing Forecasts And Market Estimates Q3 Up-
date, 2015. http://www.forbes.com/sites/louiscolumbus/2015/09/27/

roundup-of-cloud-computing-forecasts-and-market-estimates-q3-update-2015/.

144

https://azure.microsoft.com/en-us/regions/
http://github.com/Azure/rtable
http://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/set-blob-metadata
http://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/set-blob-metadata
http://msdn.microsoft.com/en-us/library/dd179371.aspx
http://azure.microsoft.com/en-us/pricing/details/storage/
http://azure.microsoft.com/en-us/pricing/details/storage/
https://cloudharmony.com/status-1year-group-by-regions-and-provider
https://cloudharmony.com/status-1year-group-by-regions-and-provider
http://www.dropbox.com
http://www.facebook.com
http://cloud.google.com/
http://cloud.google.com/storage/docs/json_api/v1/objects/update
http://cloud.google.com/storage/docs/json_api/v1/objects/update
http://docs.google.com
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://dumps.wikimedia.org/other/pagecounts-raw/
http://dumps.wikimedia.org/other/pagecounts-raw/
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/performing-entity-group-transactions
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/performing-entity-group-transactions
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/performing-entity-group-transactions
http://www.forbes.com/sites/louiscolumbus/2015/09/27/roundup-of-cloud-computing-forecasts-and-market-estimates-q3-update-2015/
http://www.forbes.com/sites/louiscolumbus/2015/09/27/roundup-of-cloud-computing-forecasts-and-market-estimates-q3-update-2015/

[34] Server Access Log Format - Amazon Simple Storage Service. http://docs.

aws.amazon.com/AmazonS3/latest/dev/LogFormat.html.

[35] Setting and Retrieving Properties and Metadata for Blob Resources. http:

//docs.microsoft.com/en-us/rest/api/storageservices/fileservices/

Setting-and-Retrieving-Properties-and-Metadata-for-Blob-Resources?

redirectedfrom=MSDN.

[36] ShareJS. https://github.com/josephg/ShareJS/.

[37] The Cloud Provider with the Best Uptime in 2015. http:

//www.networkworld.com/article/3020235/cloud-computing/

and-the-cloud-provider-with-the-best-uptime-in-2015-is.html.

[38] Tweets Loud and Quiet. https://www.oreilly.com/ideas/

tweets-loud-and-quiet.

[39] VMware vFabric Hyperic. http://www.vmware. com/products/datacenter-
virtualization/vfabric-hyperic/.

[40] Which Cloud Providers Had the Best Uptime Last Year? http:

//www.networkworld.com/article/2866950/cloud-computing/

which-cloud-providers-had-the-best-uptime-last-year.html.

[41] Windows Azure Service Level Agreements. http://azure.microsoft.com/

en-us/support/legal/sla/.

[42] Windows Azure Storage Logging: Using Logs to Track Storage Requests.
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/

windows-azure-storage-logging-using-logs-to-track-storage-requests.

aspx.

[43] Amazon Found Every 100ms of Latency Cost
Them 1% in Sales. http://blog.gigaspaces.com/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/, 2008.

[44] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A case for
cloud storage diversity. In Proceedings of the 1st Annual Symposium on Cloud
Computing, 2010.

[45] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,
J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: Fed-
erated, available, and reliable storage for an incompletely trusted environment.
In Proceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation, 2002.

[46] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, and A. Wolman. Volley: Automated
data placement for geo-distributed cloud services. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation, 2010.

145

http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html
http://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/Setting-and-Retrieving-Properties-and-Metadata-for-Blob-Resources?redirectedfrom=MSDN
http://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/Setting-and-Retrieving-Properties-and-Metadata-for-Blob-Resources?redirectedfrom=MSDN
http://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/Setting-and-Retrieving-Properties-and-Metadata-for-Blob-Resources?redirectedfrom=MSDN
http://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/Setting-and-Retrieving-Properties-and-Metadata-for-Blob-Resources?redirectedfrom=MSDN
http://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-2015-is.html
http://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-2015-is.html
http://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-2015-is.html
https://www.oreilly.com/ideas/tweets-loud-and-quiet
https://www.oreilly.com/ideas/tweets-loud-and-quiet
http://www.networkworld.com/article/2866950/cloud-computing/which-cloud-providers-had-the-best-uptime-last-year.html
http://www.networkworld.com/article/2866950/cloud-computing/which-cloud-providers-had-the-best-uptime-last-year.html
http://www.networkworld.com/article/2866950/cloud-computing/which-cloud-providers-had-the-best-uptime-last-year.html
http://azure.microsoft.com/en-us/support/legal/sla/
http://azure.microsoft.com/en-us/support/legal/sla/
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-logging-using-logs-to-track-storage-requests.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-logging-using-logs-to-track-storage-requests.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-logging-using-logs-to-track-storage-requests.aspx
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

[47] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. A. Becker-Szendy, R. A.
Golding, A. Merchant, M. Spasojevic, A. C. Veitch, and J. Wilkes. Minerva:
An automated resource provisioning tool for large-scale storage systems. ACM
Transactions on Computer Systems, 2001.

[48] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris. Reining in the outliers in Map-Reduce clusters using Mantri.
In Proceedings of the 9th Symposium on Operating Systems Design and Imple-
mentation, 2010.

[49] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Rao. Improving
web availability for clients with MONET. In Proceedings of the 2nd USENIX
Conference on Networked Systems Design and Implementation, 2005.

[50] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. C. Veitch.
Hippodrome: Running circles around storage administration. In Proceedings of
the 1st USENIX Conference on File and Storage Technologies, 2002.

[51] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload
analysis of a large-scale key-value store. In Proceedings of the 12th ACM SIG-
METRICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, 2012.

[52] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,
C. Magnien, and R. Teixeira. Avoiding traceroute anomalies with Paris tracer-
oute. In Proceedings of the 6th ACM SIGCOMM Conference on Internet Mea-
surement, 2006.

[53] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon,
Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly
available storage for interactive services. In Proceedings of the 5th Conference
on Innovative Data Systems Research, volume 11, pages 223–234, 2011.

[54] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable
datacenter networks. In Proceedings of the ACM SIGCOMM Conference, 2011.

[55] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and G. O’Shea.
Chatty tenants and the cloud network sharing problem. In Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation,
2013.

[56] D. Bermbach, M. Klems, S. Tai, and M. Menzel. MetaStorage: A federated
cloud storage system to manage consistency-latency tradeoffs. In IEEE Inter-
national Conference on Cloud Computing, 2011.

[57] A. Bessani, M. Correia, B. Quaresma, F. Andre, and P. Sousa. DEPSKY:
Dependable and secure storage in a cloud-of-clouds. In Proceedings of the 6th
ACM European Conference on Computer Systems, 2011.

146

[58] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson. Char-
acterizing, modeling, and generating workload spikes for stateful services. In
Proceedings of the 1st Annual Symposium on Cloud Computing, 2010.

[59] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,
A. Giardullo, S. Kulkarni, H. C. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J.
Song, and V. Venkataramani. TAO: Facebook’s distributed data store for the
social graph. In Proceedings of the USENIX Annual Technical Conference, 2013.

[60] J. Brutlag. Speed matters for Google web search. http://services.google.

com/fh/files/blogs/google_delayexp.pdf, 2009.

[61] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,
S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards,
V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq,
D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas. Windows Azure storage: A highly available cloud storage
service with strong consistency. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, 2011.

[62] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An engineering
perspective. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, 2007.

[63] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system
for structured data. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, 2006.

[64] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wol-
ski. AppScale: Scalable and open AppEngine application development and
deployment. In CloudComp, 2009.

[65] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-
marking cloud serving systems with YCSB. In Proceedings of the 1st Annual
Symposium on Cloud Computing, 2010.

[66] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. In Proceedings of the 10th Symposium
on Operating Systems Design and Implementation, 2012.

[67] J. Dean and L. A. Barroso. The tail at scale. Communications of the ACM,
2013.

147

http://services.google.com/fh/files/blogs/google_delayexp.pdf
http://services.google.com/fh/files/blogs/google_delayexp.pdf

[68] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles, 2007.

[69] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure
codes for distributed networked storage. IEEE/ACM Transactions on Network-
ing (TON), 14(SI):2809–2816, 2006.

[70] R. Escriva and R. van Renesse. Consus: Taming the paxi. Computing Research
Repository, 2016.

[71] E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1–20, 2003.

[72] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th
Symposium on Operating Systems Principles, 1979.

[73] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. VL2: A scalable and flexible data center
network. In Proceedings of the ACM SIGCOMM Conference, 2009.

[74] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi. Incremental consistency
guarantees for replicated objects. In Proceedings of the 13th Symposium on
Operating Systems Design and Implementation, 2016.

[75] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and
M. Tawarmalani. Cloudward bound: Planning for beneficial migration of en-
terprise applications to the cloud. In Proceedings of the ACM SIGCOMM Con-
ference, 2010.

[76] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. E. Anderson, and D. Wetherall.
Metasync: File synchronization across multiple untrusted storage services. In
Proceedings of the USENIX Annual Technical Conference, pages 83–95, 2015.

[77] O. Haq, M. Raja, and F. R. Dogar. Measuring and improving the reliability
of wide-area cloud paths. In Proceedings of the World Wide Web Conference,
2017.

[78] A. Haurie and P. Marcotte. On the relationship between Nash-Cournot and
Wardrop equilibria. Networks, 15(3):295–308, 1985.

[79] K. He, L. Wang, A. Fisher, A. Gember, A. Akella, and T. Ristenpart. Next
stop, the cloud: Understanding modern web service deployment in EC2 and
Azure. In Proceedings of the 13th ACM SIGCOMM Conference on Internet
Measurement, 2013.

[80] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

148

[81] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with pre-
emptive scheduling. In Proceedings of the ACM SIGCOMM Conference, 2012.

[82] Z. Hu, L. Zhu, C. Ardi, E. Katz-Bassett, H. V. Madhyastha, J. Heidemann, and
M. Yu. The need for end-to-end evaluation of cloud availability. In Proceedings
of the 15th International Conference on Passive and Active Measurement, 2014.

[83] Q. Jia, Z. Shen, W. Song, R. van Renesse, and H. Weatherspoon. Super-
cloud: Opportunities and challenges. ACM SIGOPS Operating Systems Review,
49(1):137–141, 2015.

[84] E. Katz-Bassett, H. Madhyastha, J. John, A. Krishnamurthy, D. Wetherall, and
T. Anderson. Studying black holes in the Internet with Hubble. In Proceedings
of the 5th USENIX Conference on Networked Systems Design and Implemen-
tation, 2008.

[85] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A durable and practical storage
system. In Proceedings of the USENIX Annual Technical Conference, 2007.

[86] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC: Multi-
data center consistency. In Proceedings of the 8th ACM European Conference
on Computer Systems, 2013.

[87] A. Kumar. Hierarchical quorum consensus: A new algorithm for managing
replicated data. IEEE transactions on Computers, 40(9):996–1004, 1991.

[88] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[89] L. Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems, 1998.

[90] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[91] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[92] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: Comparing public
cloud providers. In Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, 2010.

[93] C. Li, D. Porto, A. Clement, J. Gehrke, N. M. Preguiça, and R. Rodrigues.
Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th Symposium on Operating Systems Design and Imple-
mentation, 2012.

[94] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. Ports. Just say NO to
Paxos overhead: Replacing consensus with network ordering. In Proceedings of
the 13th Symposium on Operating Systems Design and Implementation, 2016.

149

[95] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang. Towards social
user profiling: Unified and discriminative influence model for inferring home
locations. In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2012.

[96] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle
for eventual: Scalable causal consistency for wide-area storage with COPS. In
Proceedings of the 23th Symposium on Operating Systems Principles, 2011.

[97] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger seman-
tics for low-latency geo-replicated storage. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Implementation, pages 313–328,
2013.

[98] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The snow theorem and
latency-optimal read-only transactions. In Proceedings of the 13th Symposium
on Operating Systems Design and Implementation, 2016.

[99] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus, S. Ku-
mar, and W. Lloyd. Existential consistency: Measuring and understanding
consistency at Facebook. In Proceedings of the 25th Symposium on Operating
Systems Principles, 2015.

[100] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishna-
murthy, and A. Venkataramani. iPlane: An information plane for distributed
services. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, 2006.

[101] H. V. Madhyastha, J. C. McCullough, G. Porter, R. Kapoor, S. Savage, A. C.
Snoeren, and A. Vahdat. scc: Cluster storage provisioning informed by applica-
tion characteristics and SLAs. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies, 2012.

[102] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, convergence.
Technical report, Univ. of Texas, 2011.

[103] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings of the
ACM Symposium on the Theory of Computing, 1997.

[104] J.-P. Martin, L. Alvisi, and M. Dahlin. Small byzantine quorum systems. In
Proceedings of the IEEE/IFIP International Conference on Dependable Systems
and Networks, 2002.

[105] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more consensus in
egalitarian parliaments. In Proceedings of the 24th Symposium on Operating
Systems Principles, 2013.

150

[106] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi. Minimizing commit latency
of transactions in geo-replicated data stores. In Proceedings of the AM SIGMOD
Conference, 2015.

[107] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at Facebook. In Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, 2013.

[108] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and
I. Stoica. FairCloud: Sharing the network in cloud computing. In Proceedings
of the ACM SIGCOMM Conference, 2012.

[109] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy. Designing
distributed systems using approximate synchrony in data center networks. In
Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation, 2015.

[110] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of
my cloud: Exploring information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer and Communications
Security, 2009.

[111] S. Setty, C. Su, J. R. Lorch, L. Zhou, H. Chen, P. Patel, and J. Ren. Realizing
the fault-tolerance promise of cloud storage using locks with intent. In Proceed-
ings of the 13th Symposium on Operating Systems Design and Implementation,
2016.

[112] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-language
services implementation. Facebook White Paper, 5(8), 2007.

[113] S. Souders. Velocity and the bottom line. http://radar.oreilly.com/2009/
07/velocity-making-your-site-fast.html, 2009.

[114] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-
replicated systems. In Proceedings of the 23th Symposium on Operating Systems
Principles, 2011.

[115] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail latency
in cloud data stores via adaptive replica selection. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation, 2015.

[116] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam. To move or not to move:
The economics of cloud computing. In Proceedings of the ACM Workshop on
Hot Topics in Cloud Computing, 2011.

[117] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and
H. Abu-Libdeh. Consistency-based service level agreements for cloud storage.
In Proceedings of the 24th Symposium on Operating Systems Principles, 2013.

151

http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html

[118] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron, T. Talpey,
R. Black, and T. Zhu. IOFlow: A software-defined storage architecture. In Pro-
ceedings of the 24th ACM Symposium on Operating Systems Principles, 2013.

[119] M. Vukolić. Quorum systems: With applications to storage and consensus.
Synthesis Lectures on Distributed Computing Theory, 3(1):1–146, 2012.

[120] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Low latency via redundancy. In Proceedings of the 9th ACM Conference on
Emerging Networking Experiments and Technologies, 2013.

[121] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Orchestrating the deploy-
ment of computations in the cloud with Conductor. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation, 2012.

[122] J. Wilkes. Traveling to Rome: QoS specifications for automated storage system
management. In Proceedings of the IEEE/ACM International Symposium on
Quality of Service, 2001.

[123] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-Blanket: Virtualize
once, run everywhere. In Proceedings of the 7th ACM European Conference on
Computer Systems, 2012.

[124] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better never than
late: Meeting deadlines in datacenter networks. In Proceedings of the ACM
SIGCOMM Conference, 2011.

[125] T. Wood, E. Cecchet, K. Ramakrishnan, P. Shenoy, J. van der Merwe, and
A. Venkataramani. Disaster recovery as a cloud service: Economic benefits &
deployment challenges. In Proceedings of the ACM Workshop on Hot Topics in
Cloud Computing, 2010.

[126] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha.
SPANStore: Cost-effective geo-replicated storage spanning multiple cloud ser-
vices. In Proceedings of the 24th Symposium on Operating Systems Principles,
2013.

[127] Z. Wu and H. V. Madhyastha. Rethinking cloud service marketplaces. In
Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pages 134–
140. ACM, 2016.

[128] Z. Wu, C. Yu, and H. V. Madhyastha. CosTLO: Cost-effective redundancy
for lower latency variance on cloud storage services. In Proceedings of the 12th
USENIX Symposium on Networked Systems Design and Implementation, 2015.

[129] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving
MapReduce performance in heterogeneous environments. In Proceedings of the
8th Symposium on Operating Systems Design and Implementation, 2008.

152

[130] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: Reducing the
flow completion time tail in datacenter networks. In Proceedings of the ACM
SIGCOMM Conference, 2012.

[131] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K. Ports.
Building consistent transactions with inconsistent replication. In Proceedings of
the 25th Symposium on Operating Systems Principles, 2015.

[132] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li. Transaction
chains: Achieving serializability with low latency in geo-distributed storage sys-
tems. In Proceedings of the 24th Symposium on Operating Systems Principles,
2013.

[133] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and B. Chris-
tian. Optimizing cost and performance in online service provider networks. In
Proceedings of the 7th USENIX Symposium on Networked Systems Design and
Implementation, 2010.

153

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Entering cloud era of web service deployments
	Challenges
	High latency variance
	Poor abstractions
	Performance versus cost tradeoff

	Thesis and Contributions
	Organization

	Related Work
	Web service deployments in the cloud
	Improving performance of distributed storage
	Low-latency geo-replicated storage

	Lower Latency Variance on Cloud Storage Services
	Characterizing Latency Variance
	Overview of CosTLO
	Characterizing Configuration Space
	Internet latencies
	Data center network latencies
	Storage service latencies
	Takeaways

	Cost-effective Support for SLOs
	System architecture
	Selecting cost-effective configuration
	Estimating latency distribution
	Ensuring data consistency

	Evaluation
	Ability to satisfy SLOs
	Accuracy of estimating latency distributions
	Cost-effectiveness
	Utility of CosTLO's components
	Efficiency

	Discussion
	Summary

	Cost-effective Data Placement in the Cloud
	Problem formulation
	Setting and utility
	Goals
	Challenges

	Why multi-cloud?
	Lower latencies
	Lower cost

	Overview of SPANStore
	Determining replication policies
	Inputs and output
	Eventual consistency
	Strong consistency

	SPANStore dynamics
	Metadata
	Serving PUTs and GETs
	Fault tolerance
	Handling workload changes

	Implementation
	Evaluation
	Cost savings
	Impact of aggregation of objects
	Cost for fault tolerance
	Scalability of PlacementManager

	Case studies
	Summary

	Efficient Geo-Replication of Data in the Cloud
	Motivation
	Setting and Goals
	Overheads of preserving consistency
	Impact of latency variance

	Global consistency atop limited interface
	Low latency writes
	Low latency reads
	Minimizing cost
	Improving throughput under conflicts

	Tackling latency variance
	Evaluation
	Prototype Evaluation
	Cost
	Tackling latency variance
	Application case study

	Discussion
	Summary

	Conclusions
	Thesis Contributions
	Future Work
	Summary

	BIBLIOGRAPHY

