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ABSTRACT 

Genomic structural variants (SVs) are major sources of genome diversity and 

closely related to human health, as indicated by numerous studies. In spite of the recent 

advances in sequencing technology and discovery methodology, there are still considerable 

amounts of variants in the genome that are partially or completely misinterpreted. This 

thesis has mainly focused on comprehensively interpreting the structural variants in human 

genomes by accurately defining the locations and formats of variants with the application 

of different sequencing platforms. To accomplish this goal, I developed a randomized 

iterative approach to define all types of SVs, which has shown superior performance in 

accurately defining complex variants. Next, I built a recurrence based validation pipeline 

to systematically validate SVs with long read sequences. I conclude with a systematic 

integration of SVs in multiple individuals discovered by various short read based detecting 

algorithms, with supportive evidence from orthogonal technologies, which presents to date 

the most comprehensive SV map in the human genome and the best current technologies 

allow us to do.
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CHAPTER I 

Introduction and Background 

 

1.1  INTRODUCTION 

No two humans are identical; neither are their genomes. The differences between 

individual genomes are called genomic variants, which is not only the major drive of evolution but 

also main reason for various severe human diseases. Genomic variants are summarized by size 

into three major categorizes:  the single nucleotide polymorphisms (SNPs) (Sachidanandam et al. 

2001; International HapMap Consortium 2003), small insertions and deletions, i.e. indels, ranging 

from 1 - 50 bp (Weber et al. 2002; Bhangale et al. 2005; Mills et al. 2006; Mullaney et al. 2010), 

and large genomic structural variants (SVs) (Iafrate et al. 2004; Tuzun et al. 2005). An individual 

genome is estimated to carry ~3 million SNPs, 500,000 indels and tens of thousands SVs (Shen et 

al. 2013). Though there are relatively fewer SVs in the human genome, compared against the 

smaller indels and SNPs, genomes vary more as a consequence of large SVs because of the large 

genomic regions involved in such events (Iafrate et al. 2004; Alkan et al. 2011; Kidd et al. 2008; 

Conrad et al. 2010). At the same time, it has also been pointed out by numerous studies that SVs 

are closely related with cellular viability as SVs could alter the gene expression by truncating the 

DNA coding or regulatory regions, or cause fusion of different genes by transporting DNA 

material (Mertens et al. 2015). Moreover, SVs have been found to play important roles in various 
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diseases raging from neurological and developmental disorders (Pinto et al. 2010; Sebat et al. 

2007; Stefansson et al. 2008; McCarthy et al. 2009; Wellcome Trust Case Control Consortium et 

al. 2010) to large spectrum of cancers (Liu et al. 2015; Quinlan & Hall 2012; Weischenfeldt et al. 

2013).  

SVs are defined as the removal or rearrangement of genomic regions over 50bp in length, 

which are canonically categorized into four types: deletion, duplication, inversion and insertion. 

However, recent studies have revealed the existence of  SVs in more complex formats, which have 

three or more breakpoints involved yet cannot be summarized by any of these canonical forms 

(Quinlan & Hall 2012), and the most extreme representative of complex SV that involved massive 

chromosomal shattering and rearrangements, termed ‘chromothripsis’, has been first described in 

cancer genomes (Stephens et al. 2011)  and later characterized in germline genome (Chiang et al. 

2012). 

Advances in high throughput next generation sequencing (NGS) technology has made it 

possible for investigators to quickly sequence individual genomes at high depth, and the 

emergence of various variant detecting algorithms has further accelerated the discovery and 

analysis of genomic variants. Most current detection algorithms use pair-end short sequences and 

detect SVs by interpreting aberrant alignment signals such as abnormally long / short insert sizes 

against the overall library, aberrant read pair orientations, or split reads that are partially aligned 

or read depth that deviate from the overall distribution (Zhang et al. 2011). Despite the superior 

performance of current algorithms in detecting canonical SVs, limitations remain for:   

1. SVs in complex formats which produce ambiguous alignment patterns that are beyond 

the scope of which current methods can detect; 
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2. SVs in highly repetitive genomic regions, as short reads from such regions usually have 

multiple alignment spots across the genome so that alignment bias arise. 

Long read sequencing technology delivers DNA sequences that are several kilo bases (eg. 

Single Molecule Real Time sequencing from Pacific Biosciences) or even at the length of whole 

chromosome (eg.Oxford Nanopore sequencing) (Roberts et al. 2013; Loman et al. 2015). These 

reads are usually long enough to fully transverse the repetitive regions, thus suffering from little 

alignment bias and allow for direct comparison against the reference.  In theory, all different forms 

of large genomic SVs could be defined by comparing the long sequences against the reference 

genome, in spite of the repetitiveness of local reference, as long as the long reads or their assembled 

contigs are of a low enough error rates. Several studies have been conducted to define variants 

genome wide with long reads (Pendleton et al. 2015; Chaisson et al. 2014; Shi et al. 2016), and 

showed significant superiority. However, as a relatively new technology, long read sequencing 

technology is held back from being widely adopted mainly due to the high cost of current platforms, 

and the limited number of methods available for the application at low computing cost. 

 

1.2  THESIS OUTLINE 

This thesis mainly focuses on understanding the complexity of genomic structural variants 

by interpreting sequencing data from various platforms including paired end short reads and long 

read sequences. To accomplish this goal, a short read sequence based SV detecting algorithm was 

developed to systematically discover SVs in all formats in human genome, and then a long read 

based SV validation algorithm was implemented to add assessment of the SVs through orthogonal 
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technology. The scope of this thesis was later extended to include an integration of SVs discovered 

in multiple individuals by 15 different algorithms to reach an inclusive non-redundant SV set in 

human genome, and a systematic comparison between SVs discovered by different technologies 

to estimate their relative strength and weakness, which provides guidance for future sequencing 

projects. 

In chapter II, we developed an algorithm that’s capable of comprehensively describing 

genomic structural variants in both simple and complex formats (Zhao et al. 2016). Instead of the 

traditional strategies that search for aberrant alignment signals to infer structural changes, this 

approach works by virtually rearranging segments of the genomes in a randomized fashion and 

attempting to minimize such aberrations relative to the observed characteristics of the sequence 

data. In this manner, the rearrangements detected by this approach are expanded to include all the 

complex types such as multi-deletion and duplication-inversion-deletion events, instead of only 

focusing on the canonical forms of which rich experience has been accumulated. Moreover, the 

homologous loci in diploid genome are assessed independently in this approach thus allowing for 

accurately description of overlap SVs on both alleles. 

In chapter III, a recurrence based validation approach was developed to assess the quality 

of SVs through long read sequences, which directly compares long reads against the reference 

genome and its alterations guided by the predicted SV through recurrence matrix (preprint at : 

http://biorxiv.org/content/biorxiv/early/2017/02/24/105817.full.pdf, under review). This method 

differs from other long read based SV algorithms in the fact that assembly is not required, thus 

achieving high computing efficiency as well as avoiding the requirement of high sequence depth 

which is directly correlated with the sequencing cost. 
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In chapter IV, an integrated set of SVs was produced by combining genomic variants 

detected in multiple human samples by different sequencing platforms including paired end short 

read sequencing, long read sequencing and single strand sequencing technologies, the set of which 

represents the limit of current technology and methodology in defining SVs, and provides insight 

into the relative power of different technologies. With this work, a systematic integration pipeline 

was proposed to systematically integrate SVs detected from paired end short libraries by different 

algorithms, the output of which showed significant performance increase. 

 

1.3  BACKGROUND 

1.3.1 Sequencing technology revolution in recent decade 

It has been four decades since the ‘chain-termination’ DNA sequencing technology was 

first developed by Frederick Sanger and his colleges, where radiolabelled dideoxynucleotides 

(ddNTPs) are mixed with deoxyribonucleotides (dNTPs) at certain fraction into a DNA replication 

reaction to cause randomized stops of DNA extension thus produce DNA strands of different 

length, which can be easily differentiated on a polyacrylamide gel. In this way, DNA sequence can 

be inferred by running four experiments with ddATP, ddTTP, ddCTP and ddGTP respectively in 

parallel (Heather & Chain 2016) (Figure 1.1) and inferring the bases by observing their relative 

position on the gel. Despite the improvements that have been made to this technology, Sanger 

sequencing remained the most widely used sequencing technology for almost four decades until 

the emergence of next generation sequencing (NGS). 
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Like Sanger sequencing, NGS is also a ‘sequence-by-synthesis’ (SBS) technology, while 

differentiating itself by the high throughput feature that’s accomplished in varied ways according 

to different platforms. Taking Illumina sequencing, the most commonly adopted platform, for 

example, DNA is randomly fragmented and ligated with adaptors on both ends and is then loaded 

onto a lawn of surface-bounded oligomers complementary to the adaptors to be amplified into a 

clonal cluster. dNTPs, labeled with unique fluorescent for each type, are added to be incorporated 

into the growing DNA chain through the replication process, which also serve as reversible 

terminators that  prevent new dNTPs from being added until the fluorescents are imaged and then 

endemically cleaved for further DNA extension (Buermans & den Dunnen 2014). Compared to 

Sanger sequencing, NGS shows significantly higher efficiency and robustness, with an over 

50,000-fold decrease in cost (Goodwin et al. 2016) (Figure 1.2), while keeping the error rate within 

1% (Nakamura et al. 2011; Manley et al. 2016) and making it affordable to deep sequence 

individual genomes for detailed genomic variants discovery or to sequence at population level to 

explore the evolutionary principles. 

Despite these advantages of NGS, it exhibits limitations in extremely complex genomic 

regions, mainly due to the relatively short sequence length which can easily arise ambiguity when 

aligned against the reference genome.  Third generation sequencing, or long read sequencing, 

delivers reads in several kilo bases or even longer, that can fully cover the genomic regions where 

NGS usually show weakness at. Two main systems of long read sequencing are currently adopted: 

single molecule real-time (SMRT) from Pacific Biosciences (PacBio) and linked read sequencing 

(eg. 10X Linked Read Sequencing). During SMRT sequencing, the DNA sequences are recorded 

while dNTPs are incorporated into the templates stabilized in a picoliter well, named zero-mode 

waveguides (ZMW) (Levene et al. 2003). The current platform produces DNA sequences as long 
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as ~100Kb, long enough to cover most of the complex genomic regions. Though the raw sequences 

have a high error rate around 15% (Rhoads & Au 2015), the introduction of circular consensus 

sequencing (Travers et al. 2010), whereby a SMRTbell template consisting of a double-stranded 

region flanked on both end by single-stranded loops was constructed to allow the DNA polymerase 

to read through the sequences for multiple times circularly (Figure 1.5). In this way, multiple 

subreads of the same genomic region could be considered together for consensus with significantly 

decreased error rates. The other long read technology, i.e. 10X, first clonally amplify and barcode 

long DNA molecules (~10Kb) and then sequence them through the short read sequencing platform. 

This way, the sequencing error rate and cost are at the same level to NGS, while the potential bias 

introduced by GC content and or tandem repeats are inevitable. 

The breakthroughs in sequencing technologies have greatly accelerated the development 

of human genome studies, allowing the variances in human genome to be defined at much finer 

scales compared to previous array based technologies (Anon n.d.). With these, it has been revealed 

that human genomes harbor large number of variants in various forms, with size ranging from 

single base to couple mega-bases. The landscape of genomic variants largely exceeded people’s 

expectation, with millions of single nucleotide variants (SNVs) and small variants (indels, 2-50 

bp) , as well as tens of thousands large structural variants discovered in human population (The 

1000 Genomes Project Consortium 2010) 

1.3.2 Genomic structural variation in simple and complex forms 

Genomic structural variants (SVs) are rearrangement of large genomic regions (<50bp), 

which are commonly observed in the forms of deletion, duplication, insertion, inversion and 

translocation (Figure1.3). Deletion is defined as depletion of a genomic region in subject genome 
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compared to reference genome, and insertion is the existence of extra copy of DNA material. 

Duplication is duplicated copy of genomic region gets inserted either right next to the original 

copy (tandem) or other regions in the genome(dispersed). Inversion and translocation refer to the 

change of orientation and physical position of DNA pieces respectively.   

Aside from the canonical forms, SVs in more complex patterns are also observed in 

considerable frequencies with varied degrees of complexity. Complex genomic structural variant 

(CSVs) are events that consist of three or more breakpoints, and cannot be explained by a single 

end-joining or DNA exchange event (Quinlan & Hall 2012). For example, a piece of DNA could 

be duplicated and inserted at a different locus, in either the original or the opposite orientation, 

with the insertion point harboring micro-deletion/ insertion, or sometimes large deletions. This 

represents a complex SV that’s coupled by duplications and inversion, sometimes with deletions 

involved as well, which is a relatively straight forward type of CSV. The complexity of CSVs 

could be surprising, represented by the event termed ‘chromothripsis’, where a large genomic 

region could be sheared into tens to hundreds of small genomic pieces followed by massive 

translocations of those pieces. This phenomenon was first described in cancer genomes (Stephens 

et al. 2011)  and then also characterized in the germline (Chiang et al. 2012). 

Except for serving as an important source of genomic variety, SVs can affect the 

activity of individual cell by altering gene expression at different level or cause fusion between 

different genes (Sjödin & Jakobsson 2012; Tang & Amon 2013), further causing undesired 

biological or physiological conditions such as cancers (Campbell et al. 2008), autism-related 

disorders (Henrichsen et al. 2009; Zhang et al. 2013; Teshima & Innan 2012; Zhang et al. 2009; 

Brand et al. 2015; Hedges et al. 2012; Kusenda & Sebat 2008; Marshall et al. 2008; Sebat et al. 
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2007; Henrichsen et al. 2009; Zhang et al. 2013; Teshima & Innan 2012; Zhang et al. 2009) 

or  psychiatric disorders (eg. Schizophrenia (Sekar et al. 2016; Shi et al. 2008; Sebat et al. 2009).     

1.3.3 Detection of SVs and CSVs with paired end short library sequences 

A good diversity of algorithms have been developed to detect SVs from short read paired 

end sequences, the underlying approaches can be summarized into four categories: read-pair (RP), 

read-depth (RD) split-read (SR) and sequence assembly(AS). Some of the currently available SV 

detecting tools adopt one of these approaches, while most others take multiple of them in proper 

combination to achieve their specific expectations. Each of the four approaches is briefly described 

here: 

RP approaches compare the insert size and orientation of read pairs in targeted genomic 

regions against their expected overall distribution estimated from all read pairs aligned to the 

reference genome. The sizes of DNA fragments produced by paired-end sequencing are usually 

approximated by Gaussian or bimodal distribution, so that deletions and insertions can be detected 

with read pairs of aberrantly large or small insert sizes (Pang et al. 2010; Tuzun et al. 2005; Kidd 

et al. 2008) against the null distribution. Orientation of a pair of reads is expected to be forward-

reverse in absence of inversions, so that clusters of forward-forward or reverse-reverse pairs are 

indicative of existence of inverted structures. Sensitivity of RP methods in detecting SVs is largely 

decided by the distribution of fragment sizes, and higher sensitivity is achieved with tighter 

distributions. Most RP based SV detecting algorithms only detect deletions and insertions over 

500bp, owing to the difficulty in separating small perturbations in read-pair distance from the 

normal background variability (Medvedev et al. 2009). Furthermore, RP methods are not 
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applicable for detection of CNVs in low-complexity regions with segmental duplication (Zhao et 

al. 2013).  

RD methods detect copy number variants (CNVs) by searching for changes in the read 

depth, under the assumption that read depth of a genomic region is positively correlated to the 

copy number of the region. GC content is usually considered as a major confounding factor that 

introduces bias to read depth assessment (Benjamini & Speed 2012), so that read depth are usually 

corrected for GC content before introduced to the assessment. Most RD algorithms would set an 

appropriate size for a sliding window according to the mean number of reads in each window, and 

implement a negative-binomial distribution to approximate an over dispersed Poisson distribution 

of the data. Size of the sliding window is negatively correlated with the breakpoint resolution and 

the computing cost. With larger window, it is faster for RD approaches to make CNV calls at the 

sacrifice of breakpoint resolution (Yoon et al. 2009). One of the recent approaches, named Genome 

STRiP (Handsaker et al. 2011) , achieves high accuracy in estimating the copy number of a 

genomic region by fitting mixed Gaussian models at population level.  

Split Read(SP) methods analyze reads that are only partially aligned to the genome (Zhang 

et al. 2011). The end of the aligned portion could serve as potential breakpoint candidates, thus 

providing single base resolution for SV detection. Split-read based methods, such as  Pindel (Ye 

et al. 2009), Gustaf (Trappe et al. 2014), SVseq2 (Zhang et al. 2012), and Prism (Jiang et al. 2012), 

have the advantage of identifying breakpoints at high resolution, but are usually limited to find 

relatively small SVs. 

The sequence assembly(SA) methods first assemble the original sequences and then infer 

deletions or insertions by directly comparing assemblies against the reference (Simpson et al. 



 11 

2009; Hajirasouliha, Hormozdiari & Alkan 2010; Li, Fan & Tian 2010  (Nijkamp et al., 2012; Teo 

et al., 2012). SA method, in theory, is capable of detecting all types of genomic variants at high 

resolution. However, various limitations such as the alignment bias of short reads and the 

overwhelming demand on computing sources severely prevent this approach from being 

commonly adopted.  

Each of the approaches described above has its own strengths and weaknesses. Though 

RP and SP methods can define breakpoints at high resolution, their performance is highly 

influenced by the alignment quality so that they show severely decreased performance at 

repetitive genomic regions (Medvedev et al. 2009). RD method is well suited for accurately 

detecting deletions and tandem duplications, the breakpoint resolution is much lower compared 

to others. AS-based tools take advantage of not requiring a reference genome, but they usually 

require extremely large memories and long computing time. In this situation, methods that 

properly combine multiple approaches are expected to take advantage of the unique features of 

each approach, while avoid the limitations by complementing each method with another. Most of 

the current algorithms, such as Delly (Rausch et al. 2012), Lumpy (Layer et al. 2014), Wham 

(Kronenberg et al. 2015), SVelter (Zhao et al. 2016) and novoBreak (Chong et al. 2016), analyze 

different types of aberrant alignment signals and combine them in their unique framework to 

achieve superior performance.  

1.3.4 Limitations of current short read based SV detecting algorithms 

The SV detecting methods described above has been widely adopted in various studies and 

proven to work well on simple SVs. However, CSVs are usually misinterpreted as of the 

ambiguous alignment signatures they produce. For example, inverted duplications are usually 
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misinterpreted as inversion, because of the aberrant oriented read clusters is in similar pattern with 

the signature of simple inversions (Figure 1.4A). Similarly, when a deletion locates adjacent to an 

inversion, ambiguous inversion is usually predicted with the deletion being omitted (Figure 1.4B). 

CSVs, differentiated from simple SVs mainly by the fact that they have more than two 

breakpoints involved, could only be fully resolved with the precondition that all breakpoints are 

properly defined and clustered. The typical methods described above usually show poor 

performance on CSVs, mainly due to the fact that: 

1. These methods only try to define a pair of breakpoint each time and then define SVs 

accordingly, in which situation only simple event can be reported. 

2. The underlying SVs are inferred by examining the pre-defined discordant alignment 

patterns of read pairs, while the alignment patterns of CNVs are usually unpredictable, thus 

impossible to be comprehensively resolved with the traditional methods. 

To overcome the limitations of current SV discovery approaches, the first focus of this 

thesis was set to develop a method that could comprehensively detect and resolve genomic SVs in 

both simple and complex format, which should address the limitations discussed above. This 

method is unique in the fact that, 1. Groups of two or more breakpoints, instead of breakpoint pairs, 

were defined simultaneous based on the alignment signatures; 2. Instead of predicting SVs by 

fitting pre-designed models on the alignment abnormity, a Markov chain Monte Carlo process was 

implemented instead to allow for data-driven exploration of the optimized underlying structure; 3. 

The two alleles at the same locus were considered jointly for the assessment, allowing overlap SVs 

to be predicted together. More details of this method are described in Chapter 2. 
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1.3.5 Application of long read sequencing technology 

Though NGS technology has various advantages including the high throughput, low cost 

and low error rate, limitations have been shown in accurately characterizing simple repeats and 

segmental duplications in human genome (Alkan et al. 2010), due to the relatively short sequences 

delivered. Moreover, short reads are also significantly biased by the GC content in the sequence, 

which might cause misinterpretation of genomic variants. The long read sequencing technologies, 

such as the single-molecule real-time (SMRT) (Eid et al. 2009) from Pacific Biosciences (PacBio), 

or the linked read sequencing from 10X genomics, address these issues by delivering reads that 

are of several kilo bases to hundreds of kilo bases, which could fully transverse the complex 

genomic regions so that the biases caused by GC content or the alignment are minimized.  Instead 

of predicting SVs based on the aberrant alignment signature, long reads allow for direct 

comparison against reference sequences thus providing the possibility to fully resolve all the 

genomic variants at once, including those in the extreme complex formats such as chromothripsis. 

At the same time, single base resolution could be achieved. Currently, SMRT sequencing is the 

mostly commonly adopted long read technology which have been applied on various studies 

(Pendleton et al. 2015; Chaisson et al. 2014; Shi et al. 2016) and have shown significant advantages 

in calling genomic variants compared to NGS. 

The current application of long read sequences in deciphering genomic structural variants 

mainly focus on individual or small amount of genomes, represented by studies by Chaisson et al. 

2014, Pendleton et al. 2015 and Shi et al. 2016, while the discovery methods usually require long 

read assembly across the whole genome. Though long reads assembly is of high quality compared 

to short reads (Carvalho et al. 2016), as they are free of the alignment ambiguousness in complex 



 14 

or repetitive genomic regions, the high computing cost of genome wide assembly still make it 

affordable to only limited number of researchers. 

To explore the potential applications of long read sequences in an efficient way, I 

first attempted to apply them as an orthogonal validation approach for genomic SVs predicted by 

other technologies, built an autonomous pipeline that systematically while efficiently assess the 

quality of SVs, and wrapped it in an light weighted user-friendly tool named VaPoR 

(http://biorxiv.org/content/early/2017/02/24/105817). Rather than global or local assembly, this 

method summarizes statistical characteristics of the recurrence matrix produced by direct 

comparison of individual long sequences versus reference, thus achieving the high efficiency as 

well as leaving the possibility to be developed to a long read based SV detector. Details of this 

method will be discussed in Chapter 3. 

1.3.6 Integration and comparison of SVs detected by different platforms 

The 1000 Genomes Project (1KGP)  is an international research consortium founded in 

2008, aiming at systematically sequencing thousands of individuals from various populations 

across the world to build a resource to help to understand the genetic contribution to phenotypes 

(1000 Genomes Project Consortium et al. 2012; The 1000 Genomes Project Consortium 2010). 

Different versions of genomic variation maps have been published by the consortium since its 

foundation (Mills et al. 2011a; 1000 Genomes Project Consortium et al. 2015; Sudmant et al. 

2015a), becoming more and more comprehensive in their detailed description of all forms of 

variants in human genome that were discovered from a collection of samples from different 

populations. These maps have provided valuable resources to the community and served as an 
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important reference for annotation of disease causal variants, as well as encouraged the 

development of various genomic variants detecting, genotyping and haplotyping algorithms.  

Most of the previous publications from the 1KGP describe SVs discovered by short read 

sequencing technologies, while more recently the consortium have included other technologies 

such as SMRT (Rhoads and Au 2015), 10X (Mostovoy et al. 2016), BioNano, Strand-Seq 

(Falconer & Lansdorp 2013; Falconer et al. 2012) and Hi-C (Belton et al. 2012). These 

technologies, together with the paired-end NGS were applied to three father-mother-child trios 

from Han Chinese, Puerto Rican and Yoruba respectively with high depth. Similar with the other 

studies conducted by 1KGP, an integrated SV map is expected from these sequences, while this 

analysis is unique in the fact that it also explores the optimized combination of different 

platforms and the represent the extent to which people can do best in defining genomic variants. 

Details of these analyses are listed in chapter IV. 
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1.4 FIGURES  

 

 

Figure 1.1  First-generation DNA sequencing technologies. 

Example DNA to be sequenced (A) is illustrated undergoing Sanger sequencing. (B) Sanger's 

‘chain-termination’ sequencing. Radio- or fluorescently-labelled ddNTP nucleotides of a given 

type, which once incorporated, prevent further extension, are included in DNA polymerization 

reactions at low concentrations (primed off a 5′ sequence, not shown). Therefore, in each of the 

four reactions, sequence fragments are generated with 3′ truncations as a ddNTP is randomly 

incorporated at a particular instance of that base (underlined 3′ terminal characters). (C) Fragments 

generated from either methodology can then be visualized via electrophoresis on a high-resolution 
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polyacrylamide gel: sequences are then inferred by reading ‘up’ the gel, as the shorter DNA 

fragments migrate fastest. In Sanger sequencing (left) the sequence is inferred by finding the lane 

in which the band is present for a given site, as the 3′ terminating labelled ddNTP corresponds to 

the base at that position. Maxam–Gilbert sequencing requires a small additional logical step: Ts 

and As can be directly inferred from a band in the pyrimidine or purine lanes respectively, while 

G and C are indicated by the presence of dual bands in the G and A + G lanes, or C and C + T 

lanes respectively. 
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Hayden, Erika Check. "The $1,000 genome." Nature 507.7492 (2014): 294. 

Figure 1.2   Change of sequencing cost and throughput during the recent decades. 

Since the introduction of next generation sequencing technology, the sequencing cost has 

decreased by over 50 times, which makes it feasible for deep sequence multiple genomes for a 

detailed maps of human genomic variants.  



 19 

 

Figure 1.3   Canonical formats of structural variants. 

The canonical defined formats of genomic structural variants include deletion, duplication, 

inversion, insertion and translocation. Deletion is the removal of a piece of DNA, while duplication 

is the existence of an extra copy of genomic materials. The second copy could either present 

adjacent to or far from the original copy.  
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Figure 1.4   Examples of complex structural variants.  

(a) shows a complex structural variation where a piece of DNA was duplicated and inserted 1kb 

upstream in the inverted orientation, while the ~300bp around the insertion point also harbors a 

homozygous deletion.  (b) shows a deletion followed by an inversion. 
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Travers, Kevin J., et al. "A flexible and efficient template format for circular consensus 

sequencing and SNP detection." Nucleic acids research (2010): gkq543. 

 

Figure 1.5   Schematic of a SMRTbell™ template. 

(a) A SMRTbell template consists of a double-stranded region (the insert) flanked by two hairpin 

loops. The hairpin loops present a single-stranded region to which a sequencing primer can bind 

(orange). (b) As a strand-displacing polymerase (gray) extends a primer from one of the hairpin 

loops, it uses one strand as the template strand and displaces the other. When the polymerase 

returns to the 5′-end of the primer, it begins strand displacement of the primer and continues to 

synthesize DNA (moving in the direction of the blue arrow). Therefore, the length of sequence 

obtained from these templates is not limited by the insert length. Furthermore, the resulting 

sequence is derived from both sense- and anti-sense strands. 
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CHAPTER II 

Detect and Resolve Complex Genomic Structural Variants 

(Zhao, Xuefang, et al. Genome biology , 2016.) 
 
 
 
 

2.1 ABSTRACT 

Complex chromosomal rearrangements consist of structural genomic alterations involving 

multiple instances of deletions, duplications, inversions, or translocations that co-occur either on 

the same chromosome or represent different overlapping events on homologous chromosomes. 

We present SVelter, an algorithm that first identifies regions of the genome suspected to harbor a 

complex event and then iteratively rearranges the local genome structure, in a randomized fashion, 

with each structure scored against characteristics of the observed sequencing data. We show that 

SVelter is able to accurately reconstruct complex chromosomal rearrangements when compared 

to well-characterized genomes that have been deep sequenced with both short and long read 

technologies 

. 2.2 KEYWORDS 

 structural variation 

complex structural rearrangements 
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2.3 BACKGROUND 

Structural variation (SV), defined as chromosomal rearrangements resulting from the 

removal, insertion, or rearrangement of genomic regions, are natural sources of genetic variation 

(Zarrei et al. 2015; Mills et al. 2011b; 1000 Genomes Project Consortium et al. 2012)  that have 

also been implicated in numerous human diseases (Brand et al. 2014; Chiang et al. 2012; 

Stankiewicz & Lupski 2010). There have been extensive studies to discover these genomic 

aberrations from the whole genomes of humans and other species and numerous algorithms have 

been developed to accurately identify their prevalence (Chen et al. 2009; Ye et al. 2009; Layer et 

al. 2014; Handsaker et al. 2011; Rausch et al. 2012; Zhu et al. 2012)). These approaches have 

primarily focused on simple copy number variants (CNVs; deletions, duplications) or copy neutral 

(inversions) rearrangements defined by at most two chromosomal breakpoints (BPs) and work by 

identifying and clustering various signals of discordant alignments from paired-end next 

generation sequencing data (Alkan et al. 2011). Recent algorithms have begun to integrate signals 

across multiple features to increase sensitivity (Rausch et al. 2012; Layer et al. 2014; Sindi et al. 

2012) and these have been successful in precisely identifying various types of SVs. Knowledge of 

the underlying structure of the rearrangement is still required, however, in order to properly model 
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these aberrant signals to the correct type of structural variant. For example, clusters of read pairs 

(RPs) with insert sizes (ISs) larger than expected are typically representative of deleted sequence 

since this observation is consistent with how the reads would map in the presence of such an event. 

While these simple rearrangements are common in the genome, there are additional 

rearrangements that, while rarer, are far more convoluted. These complex SVs (CSVs) are 

typically represented by three or more BPs and can arise from a variety of mechanisms including 

fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced 

replication (MMBIR) (Fig. 1, reviewed in (Usher & McCarroll 2015). Although fairly common in 

cancers, their prevalence in germline genomes is gradually becoming more apparent as is their 

potential role in the pathogenesis of other disease (Handsaker et al. 2015; Brand et al. 2014; Chiang 

et al. 2012). The complex nature of these events have made them challenging to accurately detect 

and catalog and many CSVs have been either neglected or misinterpreted by current techniques 

due to the complexity of the signals shown by the sequencing data. This is primarily due to the 

limitations of presupposing the types of SVs being considered, as oftentimes the signals from one 

event are clustered independently from those of another and can lead to contradictory or sometimes 

even opposing predictions to what is actually present. Under such circumstances, traditional 

prediction models lose their ability to discriminate between signals and therefore new 

computational strategies are required to overcome these challenges. Previous endeavors have been 

made to reconstruct somatic variants in cancer genomes both spatially (Steinberg et al. 2014; 

Chaisson et al. 2014) and temporally (Pendleton et al. 2015), but require an unaltered “matched” 

germline genome as an anchor for comparison. Studies into CSVs in the germline itself to date 

have thus been more limited, though there has been some early work that has profiled the existence 
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of some of the more common types of CSVs including inverted-duplications and deletion-

inversions (Parikh et al. 2016). 

Here, we present a novel approach, SVelter, to accurately resolve complex structural 

genomic rearrangements in whole genomes. Unlike previous “bottom up” strategies that search 

for deviant signals to infer structural changes, our “top down” approach works by virtually 

rearranging segments of the genomes in a randomized fashion and attempting to minimize such 

aberrations relative to the observed characteristics of the sequence data. In this manner, SVelter is 

able to interrogate many different types of rearrangements, including multi-deletion and 

duplication-inversion-deletion events as well as distinct overlapping variants on homologous 

chromosomes. The framework is provided as a publicly available software package that is 

available online (https://github.com/millslab/svelter). 

 

2.4 METHODS 

2.4.1 SVelter Algorithm 

SVelter takes aligned Illumina paired-end sequence data in sorted BAM format as input as 

well as the reference genome against which the sequences were aligned and reports all predicted 

SVs in both a custom format as well as VCFv4.1. Default parameters are chosen to best balance 

sensitivity and efficiency, though are adjustable for users to best fit their own data. The SVelter 

framework consists of three major modules: null model determination, breakpoint detection, 

random iterative rearrangement, and structure scoring. (Figure 2.1) 
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Null Model Determination 

SVelter first filters the reference genome to exclude regions of low mappability from 

downstream analysis to increase efficiency by avoiding regions where alignments are unreliable. 

Such regions include gaps and unknown regions in the reference genome (Ns) and these are 

integrated with previously reported genomic regions identified by ENCODE (ENCODE Project 

Consortium 2012) (wgEncodeDacMapabilityConsensusExcludable and 

DukeMapabilityRegionsExcludable obtained from UCSC Genome Browser) that are of low 

mappability to form a final version of excluded regions. Next, the IS distribution (𝑓	#$)  is 

determined by calculating the mean (𝜇#$  ) and standard deviation (𝜎#$') of all RPs aligned to 

genomic regions that are either randomly sampled or collected from a set of copy neutral (CN2) 

genomic regions defined as places in the genome where no polymorphic CNVs, segmental 

duplications, or repetitive elements have been annotated and thus providing a good estimate of 

the baseline alignment characteristics (Handsaker et al. 2015). Normal distribution is constructed 

(𝑓	#$	~	𝑁(𝜇#$, 𝜎#$')). A normal distribution of RD (𝑓	-.	~	𝑁(𝜇-., 𝜎-.'))) and physical coverage 

(𝑓	/0	~	𝑁(𝜇/0, 𝜎/0')). are characterized by sliding a fixed-size window (default: 100 bp) across 

the same genomic region and constructing the sample mean and standard deviation. 

Alternatively, in situations where the RD is not high enough be approximated as normal 

(empirically, <10X), SVelter provides options for more complex but less efficient models, i.e. 

bimodal (fitted by mixtools) for IS, 

𝑓	#$	~	𝑝		×		𝑁 𝜇#$3, 𝜎#$3' + 1 − 𝑝 		×		𝑁 𝜇#$', 𝜎#$'' 	 

and negative binomial for read depth and physical coverage: 

𝑓	-.	~	𝑁𝐵 𝑟-.	, 𝑃-. , 𝑤ℎ𝑒𝑟𝑒	𝑟-. = 	
𝜇-.'

𝜎-.' − 𝜇-.
	,			𝑃-. = 1 −	

𝜇-.
𝜎-.'
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𝑓	/0	~	𝑁𝐵 𝑟/0	, 𝑃/0 , 𝑤ℎ𝑒𝑟𝑒	𝑟/0 = 	
𝜇/0'

𝜎/0' − 𝜇/0
	,			𝑃/0 = 1 −	

𝜇/0
𝜎/0'

 

 

Detection and Clustering of Putative Breakpoints 

SVelter next scans the input alignment file to define putative breakpoints (BPs) where the 

sample genome differs from the reference. These are defined through the identification of aberrant 

read alignments. Clusters of read pairs (RP) showing abnormal insert length or aberrant mapping 

orientation may indicate breakpoints nearby, while reads with truncated (clipped) split read (SR) 

alignments are indicative of precise breakpoint positions. SVelter specifically defines aberrant 

reads as follows: 

1. RPs outside expected IS ( 𝜇#$ 	± 𝑠	×	𝜎#$, where 𝑠 is the number of standard deviation 

from the mean, default as 3); 

2. RPs that do not have forward reverse pair orientation; 

3. SRs with high average base quality (i.e. 20) clipped portion with minimum size 

fraction of overall read length (i.e. 10 %). 

It should be noted that the specific parameters listed were set as default empirically and 

can be adjusted by the user. Discordant RPs of the within a window of 𝑚𝑒𝑎𝑛	𝐼𝑆 + 2×𝑠𝑡𝑑	distance 

and of the same orientation are clustered together. Next, split reads within this window and 

downstream of the read direction are collated and the clipped position is considered as a putative 

breakpoint. If no such reads exist, the rightmost site of forward read clusters or leftmost site of 

reverse read clusters is assigned instead. For each cluster of aberrant RPs, a BP is assigned if the 
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total number of split reads exceeds 20% of the read depth or the total number of all aberrant reads 

exceeds 30%. For samples of poorer quality, higher cutoffs might be preferred. Each putative BP 

will be paired with other BPs that’s defined by mates of its supporting reads. BP pairs that intersect 

or are physically close (<1kb) to each other will be further grouped and reported as a BP cluster 

for the next step. 

Random Iterative Rearrangement 

For each BP cluster containing n putative BPs, a randomized iterative procedure is then 

applied on the n-1 genomic blocks between adjacent BPs. SVelter has three different modules 

implemented for this step: diploid module (default) that detects structural variants on both alleles 

simultaneous, heterozygous module that only report high quality heterozygous SVs and 

homozygous module for high quality homozygous SVs only. For the diploid module, a simple 

rearrangement (deletion, inversion or insertion) is randomly proposed and applied to each block 

on one allele while the other allele is kept unchanged and the newly formed structure is scored 

against the null models of expectation for each feature through the scoring scheme described 

below. A new structure is then selected probabilistically from the distribution of scores such that 

higher scores are more likely but not assured. The same approach is then applied to the other allelic 

structure representing a single iteration overall. For heterozygous and homozygous modules, only 

one allele is iteratively rearranged while the other allele remains either unchanged or is mirrored, 

respectively. 

The iterative process will terminate and report a final rearranged structure if one of the 

following situations is met: 
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        1. No changes to a structure after 100 continuous iterations 

        2. The maximum number of iterations is reached (100,000 as default) 

After the initial termination, the structure is reset and the process is repeated for another 

100 iterations while avoiding the fixed structure, at which point the highest scoring structure 

overall is chosen. 

Structure Scoring 

Assume Sj as the score of rearranged structure j. To estimate Sj, four different 

characteristics of RP i : IS (ISij ), Pair Orientation (POij), RD (RDij), and Physical Coverage 

Through a BP (PCij) would be calculated and integrated. As the distribution of IS, RD, and 

Physical Coverage has been defined, the density function would be calculated and transformed to 

log scale: 

𝑆𝑐𝑜𝑟𝑒_𝐼𝑆KL = 𝑙𝑜𝑔	(𝑓#$		(𝐼𝑆KL)) 

𝑆𝑐𝑜𝑟𝑒_𝑅𝐷KL = 𝑙𝑜𝑔 𝑓-.		 𝐼𝑆-.  

𝑆𝑐𝑜𝑟𝑒_𝑃𝐶KL = 𝑙𝑜𝑔	(𝑓/0		(𝐼𝑆/0)) 

Score of Pair Orientation is specified by the indicator function: 

𝑆𝑐𝑜𝑟𝑒_𝑃𝐵KL = 	
1, 𝑖𝑓	𝑃𝑂 = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑅𝑒𝑣𝑒𝑟𝑠𝑒
0, 𝑖𝑓	𝑜𝑡ℎ𝑒𝑟	𝑤𝑖𝑠𝑒																														 

Assuming total number of n pairs of reads are aligned in the targeted genomic region, for 

each structure j, individual scores of each RP would be integrated to form the structure score: 
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𝑆K = 	 𝑆𝑐𝑜𝑟𝑒_𝐼𝑆KL	× 1 +	
𝑆𝑐𝑜𝑟𝑒_𝑃𝑂KLW

KX3

𝑛 + 𝜏 𝑆𝑐𝑜𝑟𝑒_𝑅𝐷KL×	 1 −	 𝑆𝑐𝑜𝑟𝑒_𝑃𝐶KL

W

KX3

	
W

KX3

W

KX3

	 

where 𝜏 = 	 Z[\(]^_	(`^_))
Z[\(]ab	(`ab))

  serves as the factor to regulate two parts into same scale. 

2.4.2 Performance Assessment 

Both simulated and real data were used to evaluate performance of SVelter. To produce 

simulation datasets, we altered the human GRCh37 reference genome to include both homozygous 

and heterozygous simple SVs and complex SVs independently while adding micro-insertions and 

short tandem repeats around the junctions in frequencies consistent with previously reported 

breakpoint characteristics (Kidd et al. 2010). Details about specific types of SVs simulated are 

summarized in Table 2.1 - 2.2. Paired-end reads of 101bp with an insert size of 500bp mean and 

50bp standard deviation were simulated using wgsim (https://github.com/lh3/wgsim) across 

different read depths (10X, 20X, 30X, 40X, 50X). 

For comparisons using real sequence data, we adopted two previously published samples: 

a haploid hydatidiform mole (CHM1) (Chaisson et al. 2014; Steinberg et al. 2014) and a well-

characterized HapMap/1000 Genomes Project sample (NA12878)  (Pendleton et al. 2015; Parikh 

et al. 2016). CHM1 has been deep sequenced by Illumina whole-genome sequence to 40X and 

by Single Molecule, Real-Time (SMRT) sequencing to 54X, and SVs of the sample have been 

detected and published by the same group as well 

(http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation/). NA12878, together 

with the other 16 members from CEPH pedigree 1463, has been deep sequenced to 50X by 

Illumina HiSeq2000 system (http://www.illumina.com/platinumgenomes/). Additionally, the 
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Genome in a Bottle (GIAB) Consortium has published the PacBio sequencing data (20X) of 

NA12878 and also provided a set of high-confident SV calls (Chaisson et al. 2014; Parikh et al. 

2016).  

We assessed SVelter against four other algorithms with diverse approaches: Pindel, 

Delly, Lumpy, and ERDs. We applied these algorithms to both simulated and real data with 

default settings, except that SVelter’s homozygous module was used for CHM1. All algorithms 

were compared using the same set of excludable regions and were run on the same computing 

cluster. 
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Table 2.1  Brief description of simulated simple SVs 

Ref Structure Alt Structure Description Number 

a/a / Homo.DEL 3134 

ab/ab aba/aba Homo.DUP 2962 

a/a aaaaaaa/aaaaaaa Homo.DUP.Tandem 2970 

a/a a^/a^ Homo.INV 2936 

ab/ab ba/ba Homo.TRA 2735 

a/a a/ Het.DEL 3128 

ab/ab ab/aba Het.DUP 2918 

a/a aaaaaaa/a Het.DUP.Tandem 2979 

a/a a/a^ Het.INV 2927 

ab/ab ba/ab Het.TRA 2773 
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Table 2.2  Brief description of simulated complex SVs 

Het     Homo    

Ref 
Structure, 

Alt 
Structure Description Num  

Ref 
Structure 

Alt 
Structure Description Num 

ab/ab aab/ab^ab FROM.NA12879 265  ab/ab aab/ab^ab FROM.NA12879 202 

ab/ab ab/aba INS+DUP 283  ab/ab aba/aba INS+DUP 386 

ab/ab ab/aba^ INS+DUP 275  ab/ab aba^/aba^ INS+DUP 390 

ab/ab ab/b^a^b INS+DUP 304  ab/ab 
b^a^b/b^a
^b INS+DUP 187 

ab/ab ab/b^ab INS+DUP 294  ab/ab b^ab/b^ab INS+DUP 194 

abc/abc 
aa^b^c^c/ab
c dup+INV+DUP 14  abc/abc a^c/a^c dup+INV+DUP 243 

abc/abc abc/a^c INV+DEL 260  abc/abc a^c^/a^c^ INV+DEL 236 

abc/abc abc/a^c^ INV+DEL 308  abc/abc 
aa^b^c^c/a
a^b^c^c INV+DEL 12 

abc/abc abc/aba INS+DUP+DEL 260  abc/abc aba/aba INS+DUP+DEL 479 

abc/abc abc/aba^ INS+DUP+DEL 309  abc/abc aba^/aba^ INS+DUP+DEL 454 

abc/abc abc/ac^ INV+DEL 255  abc/abc ac^/ac^ INV+DEL 228 

abc/abc abc/aca^ FROM.NA12881 271  abc/abc 
ac^b^a^c/a
c^b^a^c FROM.NA12881 15 

abc/abc abc/b Multi_DEL+INV 319  abc/abc aca^/aca^ Multi_DEL+INV 218 

abc/abc abc/b^ Multi_DEL+INV 246  abc/abc b/b Multi_DEL+INV 238 
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abc/abc abc/ba^c FROM.NA12882 285  abc/abc b^/b^ FROM.NA12882 259 

abc/abc abc/c^a^ INV+DEL 294  abc/abc ba^c/ba^c INV+DEL 245 

abc/abc abc/c^bc INS+DUP+DEL 263  abc/abc c^a^/c^a^ INS+DUP+DEL 229 

abc/abc abc/cbc INS+DUP+DEL 297  abc/abc c^bc/c^bc INS+DUP+DEL 228 

abc/abc 
ac^b^a^c/ab
c dup+INV+DUP 12  abc/abc cbc/cbc dup+INV+DUP 243 

abcd/abc
d abc/ab^a^d FROM.NA12880 290  

abcd/abc
d 

abc/ab^a^
d FROM.NA12880 263 

abcd/abc
d ad/b^a^d FROM.NA12883 257  

abcd/abc
d ad/b^a^d FROM.NA12883 277 

abcde/ab
cde a/abd^e FROM.NA12878 236  

abcde/abc
de a/abd^e FROM.NA12878 315 

abcde/ab
cde 

abcde/aba^e
^de 

INS+DEL+MultiD
UP 257  

abcde/abc
de 

aba^e^de/
aba^e^de 

INS+DEL+Multi
DUP 255 

abcde/ab
cde 

abcde/aba^e
de 

INS+DEL+MultiD
UP 267  

abcde/abc
de 

aba^ede/a
ba^ede 

INS+DEL+Multi
DUP 273 

abcde/ab
cde 

abcde/abae^
de 

INS+DEL+MultiD
UP 266  

abcde/abc
de 

abae^de/a
bae^de 

INS+DEL+Multi
DUP 283 

abcde/ab
cde 

abcde/abaed
e 

INS+DEL+MultiD
UP 261  

abcde/abc
de 

abaede/ab
aede 

INS+DEL+Multi
DUP 260 

abcde/ab
cde 

abcde/abe^a
^de 

INS+DEL+MultiD
UP 270  

abcde/abc
de 

abe^a^de/
abe^a^de 

INS+DEL+Multi
DUP 282 

abcde/ab
cde 

abcde/abe^a
de 

INS+DEL+MultiD
UP 268  

abcde/abc
de 

abe^ade/a
be^ade 

INS+DEL+Multi
DUP 295 

abcde/ab
cde 

abcde/abea^
de 

INS+DEL+MultiD
UP 269  

abcde/abc
de 

abea^de/a
bea^de 

INS+DEL+Multi
DUP 291 

abcde/ab
cde 

abcde/abead
e 

INS+DEL+MultiD
UP 265  

abcde/abc
de 

abeade/ab
eade 

INS+DEL+Multi
DUP 241 
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Assessment of Simulated Simple SVs 

For simulated datasets, we compared the performance of each algorithm by calculating 

their sensitivity and positive predictive values (PPV) on each type of simple SV (deletion, disperse 

duplication, tandem duplication, inversion). As Lumpy reports breakpoints in terms of range, we 

calculated the median coordinate of each reported interval and consider it as the breakpoint for 

downstream comparison. A reported SV would be considered as a true positive (TP) if the genomic 

region it spanned overlapped with a simulated SV of the same type by over 50% reciprocally. As 

Delly and Lumpy didn’t differentiate tandem and dispersed duplication in their SV report, we 

compare their reported duplications to both simulated tandem and dispersed duplications 

independently to calculate sensitivity, but use the entire set of simulated duplications together for 

the calculation of specificity. In this manner, the result will be biased towards higher TP and TN 

rates for these approaches. Dispersed duplications reported by Pindel were very rare and as such 

were processed in the same way as Delly and Lumpy.  

Assessment of Real SVs 

We initially made use of reported simple and complex SVs in CHM1 and NA12878 as gold 

standard sets, however the FP rate of each algorithm were high compared to previously published 

performance. To augment this set, we therefore have developed our own approach to validate 

simple and complex SVs using PacBio long reads. For each reported SV, we collect all PacBio 

reads that go through the targeted region and hard clip each read prior to the start of the region. 

We then compare each read to the local reference and an altered reference reflecting the structure 

of the reported SV by sliding a 10bp window through the PacBio read and aligning it against the 

reference sequence. Coordinates of each window are plotted against its aligned position in the form 
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of a dotplot. Theoretically speaking, if a read was sampled from the reference genome, a diagonal 

line should be observed. However, if a read was sampled from an altered genomic region, a 

continuous diagonal line would only show when plotted against a correctly resolved sequence. In 

this manner, shorter SVs (<5kb) can be validated by accessing the deviation of all dots from 

diagonal. For each PacBio Read, the score: 

𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝐷𝑖𝑠 =
𝐷KL|LX3,',…,We 𝑖 = 0, 𝑃𝑎𝑐𝐵𝑖𝑜	𝑟𝑒𝑎𝑑	𝑣𝑠. 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
𝐷KL|LX3,',…,We 𝑖 = 1, 𝑃𝑎𝑐𝐵𝑖𝑜	𝑟𝑒𝑎𝑑	𝑣𝑠. 𝑎𝑙𝑡𝑒𝑟𝑒𝑑	𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 − 1 

is assigned, so that a positive Ratio of Dis indicates the priority of altered genome over reference 

genome, and vise versa. The validation score of an SV is integrated from all PacBio reads spanning 

through it using an indicator function: 

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒	𝑆𝑐𝑜𝑟𝑒 =
𝐼(𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝐷𝑖𝑠 > 0)

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑃𝑎𝑐𝑏𝑖𝑜	𝑅𝑒𝑎𝑑𝑠 

SVs with validation score >0.5 for haploid genome, or >0.3 for diploid genome would be 

considered validated. 

For longer (>5kb) SVs, PacBio reads spanning through the whole targeted region are rarely 

observed. In this situation, we scored each breakpoint by adding 500bp flanks and assessing each 

individually.  The final validation score is then determined through the collation of matches from 

all breakpoints. 

We reassessed our initial true positive (TP) and false positive (FP) simple calls from each 

algorithm by combining our PacBio validated SVs from each algorithm together with the reported 

calls. For simple SVs, we utilized a 50% reciprocal overlap criterion. However, for CSVs we 
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utilized a more complex comparison strategy to take into account that some algorithms will often 

detect individual parts of a complex rearrangement as distinct events. With each CSV predicted 

by SVelter, we extracted SVs with over 50% reciprocal overlap from other algorithms and 

calculated the validation score for each of them using our PacBio validation approach described 

above. When multiple SVs were extracted from an algorithm, averaged scores were adopted. 

Validation scores of a CSV from all algorithms were ranked and normalized from 0 to 1 for 

comparison. 

 

2.5 RESULTS 

2.5.1 Overview of SVelter 

Our approach predicts the underlying structure of a genomic region through a two-step 

process. SVelter first identifies and clusters breakpoints (BP) defined by aberrant groups of reads 

that are linked across potentially related structural events. It then searches through candidate 

rearrangements using a randomized iterative process by which rearranged structures are randomly 

proposed and scored by statistical models of expected sequence characteristics (Figure 2.2; 

Materials and Methods). 

SVelter begins by fitting statistical models for insert size (IS) and read depth (RD) based 

on paired-end sequences sampled from copy neutral genomic regions (Handsaker et al. 2015). 

Both are modeled as normal distributions for efficiency purposes which is recommended for 

relatively clean data sequenced at higher depth; however, more accurate but slower models (i.e. 

binomial for IL and negative binomial for RD) are also available as options for data of lower 
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quality.  SVelter then searches for and integrates potential SV signals from read pairs with aberrant 

insert size, orientation, and/or alignment (soft-clipping). Pairs of BPs are assigned simultaneously, 

and BP pairs that intersect with each other are further connected to form BP clusters. For each 

cluster containing n BPs, the n-1 genomic segments defined by adjacent BPs are then rearranged 

in a randomized iterative process whereby a simple SV (deletion, insertion, inversion) is randomly 

proposed and applied to all possible segments to assess the viability of each putative change. The 

initial structure and each subsequent rearranged structure are then scored by examining the impact 

of each change on various features of the sequence reads in the region, including insert size 

distribution, sequence coverage, physical coverage, and the relative orientation of the reads. A new 

structure is then chosen for the next iteration using a probability distribution generated from the 

structure scores. This continues until the algorithm converges on a final, stable set of 

rearrangements or a maximum number of iterations is reached. 

An important feature of SVelter is that it simultaneously constructs and iterates over two 

structures, consistent with the zygosity of the human genome. This allows for the proper linking 

of breakpoint segments on the correct haplotypes, which is crucial for the proper resolution of 

overlapping structural changes that can often confuse or mislead other approaches. Individual 

breaks in the genome can then be properly linked and segregated, aiding in downstream genotyping 

across multiple individual sequences. 

The randomized aspect of this approach leads to additional computation cost relative to 

other SV detection algorithms. We have addressed this by implementing a number of optimizations 

to increase the overall efficiency of SVelter. First, we limit the number of clustered BPs during the 

initial breakpoint-linking step in order to manage the number of random combinations at the next 
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step. For regions with potentially higher numbers of linked breakpoints, we form subgroups based 

on physical distance between adjacent BPs that are later combined. Second, we set an upper and 

lower bound on the potential copy number (CN) of each segment between BPs using local read 

depth information and only allow structures containing CN-1 to CN+1 blocks for downstream 

analysis. Lastly, we have restricted the total number of iterations such that after converging on a 

stable rearrangement for 100 continuous iterations, we set this structure aside and restart the 

random iterations for another 100 iterations, at which point the highest scoring structure overall is 

chosen. This results in a total processing time for SVelter on a re-sequenced human genome with 

50X coverage of under 20 hours when run in parallel on a high-performance computing cluster. 

2.5.2 Performance Evaluation 

We compared SVelter to three popular SV detection algorithms: Delly (Rausch et al. 2012), 

Lumpy (Layer et al. 2014), Pindel (Ye et al. 2009) and ERDS (Zhu et al. 2012). Both Delly and 

Lumpy have integrated insert size and split read information into their SV detection strategy, while 

Pindel implements a pattern grown approach to utilize split read alignments. While there are 

numerous other algorithms that have been developed for detecting SVs, we focused on these as 

they have previous published comparisons that can be transitively applied to our results. 

Multiple experiments were conducted in order to evaluate our approach. We first simulated 

genomes of various sequence coverage containing both simple and complex SVs as homozygous 

and heterozygous events. We next applied these algorithms to the genome of a haploid 

hydatidiform mole (CHM1) (Chaisson et al. 2014; Steinberg et al. 2014) and also a well-

characterized diploid genome (NA12878) (Pendleton et al. 2015; Parikh et al. 2016), both of which 

had reported high-confident calls as well as long-read Pacific Biosciences (PacBio) sequences 
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available for orthogonal assessment. All algorithms were run either with the recommended settings 

as provided by the authors (where available) or default settings. Detailed commands for running 

each algorithm can be found in supplemental materials. 

Simulated data 

We simulated heterozygous and homozygous non-overlapping simple SVs (deletions, 

inversions, tandem duplications, dispersed duplications and translocations) of varied sizes into 

synthetic genomes sequenced at different depths of coverage (10-50X). We then calculated the 

sensitivity and positive predictive value (PPV) of each algorithm (Figure 2.3A,B, Figure 2.4, 

Figure 2.5).  Overall, SVelter achieves a higher sensitivity and PPV for simple deletions compared 

to all other algorithms. Comparisons with duplications were more difficult; while all compared 

approaches can report tandem duplications, for dispersed duplications only SVelter reports both 

the duplicated sequence and its distal insertion point. We therefore took a conservative approach 

such that for calculating sensitivity we compared the full set of duplications predicted from each 

approach to the simulated set of tandem and dispersed events, but limited the false positive analysis 

to only tandem duplications for the other algorithms. It should be noted that this method of 

comparison would bias against SVelter to some extent, however under these circumstances SVelter 

still showed very good sensitivity and positive predictive value in calling dispersed duplications, 

with slightly worse performance for tandem duplications.  For inversions, SVelter showed a 

comparable accuracy to other the algorithms. 

We also simulated specific types of complex rearrangements based on structures recently 

reported (Sudmant et al. 2015b) as well as our own observations (Table 2.2). Performance 

comparisons with complex structures are less straightforward than with simple SVs as most 
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algorithms are only designed to identify simple events, and therefore may predict portions of CSVs 

as independent events. We address this issue by considering the identification and predicted copy 

number of individual junctions as reported in the entire prediction set of each algorithm (deletions, 

duplications, inversions) and compared against each simulated complex event collectively, treating 

predicted non-simulated junctions in the region as false positives (Methods and Materials). SVelter 

performs consistently better in terms of sensitivity and PPV across almost all types of complex 

events, including inverted duplications and inversion deletion events (Figure 2.3 C,D). 

To evaluate the performance of SVelter on somatic variation in cancer genomes, we made 

use of both previously generated as well as locally simulated germline and somatic variants from 

a recent study that describes an approach for detecting complex somatic variants by directly 

comparing tumor and matched normal sequence reads(Moncunill et al. 2014). We included the 

four SV detection algorithms described above as well as SMuFin for this comparison and focused 

on variants located on chr21 and chr22. These predefined sets only contained a small number of 

large SVs >100bp (18 germline and 14 somatic), and as such the sensitivity and PPV of each 

algorithm exhibited a loss of granularity. Nevertheless, for germline events SVelter achieved 

comparable sensitivity with consistently higher PPV when compared against Delly, Lumpy and 

Pindel, in agreement with the results above; SMuFin does not report germline calls and as such 

was not included in this comparison. For somatic events, sensitivity of SVelter, Delly and Lumpy 

are similar and consistently higher than SMuFin, which showed the highest PPV along with 

SVelter (Figure 2.6). 
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Real data 

To estimate how SVelter performs on real data, we have applied each algorithm to two 

publicly available datasets: a haploid hydatidiform mole (CHM1) (Chaisson et al. 2014) and a 

well-characterized diploid genome analyzed by the Genome in a Bottle Consortium 

(NA12878)(Pendleton et al. 2015; Parikh et al. 2016). Both have been deep sequenced by Illumina 

short-insert and PacBio long-read sequencing, and provide an excellent foundation for comparing 

baseline accuracies among approaches. We initially compared deletion calls of each algorithm to 

the reported set of variants to determine their relative accuracy, however the false discovery rate 

of each algorithm was abnormally high with respect to previously reported values (Table 2.3), 

suggesting that the reported deletion set may be overly conservative. We therefore examined the 

PacBio data directly for each predicted variant using a custom validation approach that utilizes a 

recurrence strategy to compare each read to both the reference allele as well as a rearranged 

reference consistent with the predicted structure (Figure 2.7A,B, Methods and Materials). We 

evaluated this approach using sets of reported deletions in these samples as well as matched 

random sets located within copy neutral regions and found it to have very high true positive and 

true negative rates (Figure 2.7C). We also conducted PCR experiments on the predicted 

breakpoints of three predicted complex rearrangements that were validated with this approach to 

show convincing evidence for two, with inconclusive results for the third due to high degrees of 

repetitiveness in the region (Supplemental Figures 2.8-2.11). We then reassessed the earlier 

deletion predictions made by each algorithm in CHM1 and NA12878 by combining the previously 

reported deletions in each sample with those having PacBio validation support from our analysis. 

As expected, we observed a marked increase in accuracy for each algorithm (Figure 2.7D).  
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We next compared the performance of each algorithm on identifying and resolving 

CSVs.  Given that there are very few reference sets available of known complex rearrangements, 

we first created a set of non-overlapping candidate CSVs as identified by SVelter in CHM1 and 

NA12878.  We then collected all predictions from each algorithm that overlap that region and 

scored them using the validation approach above. As many complex rearrangements may be 

described as a combination of simple SVs, we utilized a ranking approach to compare the 

individual predictions by assigning 0 to the lowest scores and 0.75 to the highest scores (see 

Methods and Materials).  We observed a significant enrichment of SVelter predictions with high 

validation scores, indicative of its efficacy in correctly resolving CSVs (Figure 2.12A). An 

example is shown in Figure 2.12B, which depicts a summary of sequence read alignments for a 

region on chromosome 1 in CHM1 containing multiple deletions as well as a local translocation. 

Using standard read clustering algorithms, the signals present might suggest the presence of a 

tandem duplication overlapping with large deletions. However, this is not consistent with the 

haploid nature of CHM1, and comparisons with long PacBio sequence reads that overlap the region 

show the true structure (Figure 2.12C), which when aligned to a rearranged reference using SVelter 

predictions shows a full length alignment (Figure 2.12D). A comparison with other algorithms 

indicates that their predictions are indeed consistent with analyzing each aberrant read cluster 

independently of each other and result in a combination of tandem duplications, deletions, and 

inversions (Figure 2.12E). 
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Table 2.3 True positive and false positive deletion calls made by each algorithm on 

NA12878 and CHM1, based on previous reported calls as well as our custom PacBio validation 

approach. 

  Method SV TP Ref. 
Calls 

Total 
Calls FP TPR PPV 

NA12878 

Simple Deletions 
called by each 
algorithm 

SVelter DEL 1753 2316 2988 1235 0.7569 0.5867 

Delly DEL 1029 2316 1499 470 0.4443 0.6865 

Lumpy DEL 1755 2316 2740 985 0.7578 0.6405 

Pindel DEL 1833 2316 2349 516 0.7915 0.7803 

Simple Deletions 
compared to NIST 
set + Pacbio 
Validation Set 

SVelter DEL 2625 3970 2988 363 0.6612 0.8785 

Delly DEL 1400 3970 1499 99 0.3526 0.9340 

Lumpy DEL 2370 3970 2740 370 0.5970 0.8650 

Pindel DEL 2236 3970 2349 113 0.5632 0.9519 

CHM1 

Simple Deletions 
compared to 
Chaisson et.al Set 

SVelter DEL 1149 3588 1890 741 0.3202 0.6079 

Delly DEL 224 3588 773 549 0.0624 0.2898 

Lumpy DEL 845 3588 1670 825 0.2355 0.5060 

Pindel DEL 1131 3588 1672 541 0.3152 0.6764 

Simple Deletions 
compared to 
Chaisson et.al + 
Pacbio Validation 
Set 

SVelter DEL 1636 4425 1890 254 0.3697 0.8656 

Delly DEL 609 4425 773 164 0.1376 0.7878 

Lumpy DEL 1354 4425 1670 316 0.3060 0.8108 

Pindel DEL 1521 4425 1672 151 0.3437 0.9097 
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Computational Runtime 

We compared the overall executable runtime of the different software packages using a 

single chromosome from NA12878. For each algorithm, we initialized the analysis using a 

previously aligned sequence in BAM format and used the respective procedures necessary for each 

approach to result in a variant call file (see Methods and Materials). Delly was observed to 

complete the fastest, followed by Lumpy. Pindel and SVelter were both considerably slower and 

were comparable in their runtime (Table 2.4). It should be noted that some algorithms (e.g. Lumpy) 

can perform faster with optimized alignment strategies (Chiang et al. 2014), however this was not 

included in our assessment. 

 

Table 2.4 Run time of different algorithms on isolated post-processed alignment file of 

chromosome 21 from NA12878 

 Algorithm mem /core(GB) time / core (seconds) 

chr21 of 

NA12878 

SVelter 20 8647.94 

Delly 20 810.86 

Lumpy 20 1105.10 

Pindel 20 7220.31 
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2.5.3 Examination of Identified SVs in CHM1 and NA12878 

We examined the full set of identified simple and complex SVs in both CHM1 and 

NA12878. As expected, we rediscovered many previously reported deletions, duplications and 

inversions (Table 2.5). In some cases, we were also able to identify dispersed duplications that 

were incorrectly identified as overlapping tandem duplication and deletion events in prior reports 

(Figure 2.13a, Supplemental Figure 2.14). Furthermore, we found a recurrence of particular types 

of CSVs, including inverted-duplication and deletion-inversion events (Figure 2.13b,c,d, 

Supplemental Figures 2.15-2.17) suggesting that they are likely more common than previously 

thought. However, there were numerous other CSVs that could not be coalesced into a single 

classification and may provide future insight into new mechanisms for SV formation. 

 

 

 

 

 

 

 

 



 47 

Table 2.5 Predicted SV Types in CHM1 and NA12878 by SVelter. 

SV Type CHM1 NA12878 

Simple DEL 1890 (0.86) 2988 (0.84) 

Simple DUP 1872 (0.28) 1232 (0.41) 

Tandem 1725(0.27) 1184 (0.41) 

Dispersed 147 (0.37) 48 (0.40) 

Simple INV 14 (0.50) 106 (0.76) 

Simple TRA 6 (0.67) 3 (0.67) 

DEL+DUP 6 (0.50) 39 (0.49) 

DEL+INV 5 (0.40) 16 (0.44) 

DEL+TRA 3 (0.67) 3 (0.67) 

DUP+INV 188 (0.64) 141 (0.44) 

DEL+DUP+INV 8 (0.50) 34 (0.32) 

Other 27 (0.37) 369 (0.70) 

Numbers in parenthesis indicate percentage of calls with PacBio validation support. The 

remaining calls either were not able to be assayed with our approach or were invalidated.  
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2.6 DISCUSSION 

We have described an integrative approach, SVelter, that can identify both simple and 

complex structural variants through an iterative randomization process. We show that it has an 

improved or comparable accuracy to other algorithms when detecting deletions, duplications and 

inversions but has the additional capability of correctly interpreting and resolving more complex 

genomic rearrangements with three or more breakpoints. Furthermore, SVelter can resolve 

structural changes on parental haplotypes individually, allowing for the correct stratification of 

multiple overlapping SVs. SVelter achieves this by forgoing the assumption of specific patterns of 

read alignment aberrations as associated with individual rearrangements and instead allowing the 

underlying sequence itself to dictate the most probable structure. 

The ability to accurately identify CSVs in whole genome sequence data is a significant 

advancement, as currently many such regions are either missed or identified as individual errant 

events. For example, in our investigation of NA12878 we identified many disperse duplications 

that were previously reported as overlapping deletion and tandem duplication events as well as 

other simple deletions and inversions that were in fact part of a larger complex rearrangement 

(Figure 2.12). Such regions could be, in part, responsible for the observed discrepancies when 

comparing different SV algorithms with each other as well as other platforms such as array-CGH 

(Pinto et al. 2011). Our observations are also consistent with recent findings by the 1000 Genomes 

Project (Sudmant et al. 2015b), however their analysis required the use of multiple long-read 

sequencing technologies including PacBio and Moleculo to interpret the regions while SVelter is 

able to correctly resolve the regions from short-insert Illumina sequences alone. Although long-

read technologies are very well suited for such an application, their use is currently limited to 



 49 

small-scale projects and there have been estimates that over 300,000 genomes will be sequenced 

using Illumina short-insert reads in 2015 alone. Thus, approaches like SVelter that perform 

accurately on such data sets are likely to have a larger impact on correctly reporting complex 

structural genomic aberrations. 

One limitation of SVelter is that even with our efficiency enhancements it still exhibits a 

longer processing time with respect to the other SV algorithms compared here. This is in part due 

to the randomization strategy but is also owing to the inclusion of a read coverage component, 

which is not modeled in the other approaches we compared against but contributes to the overall 

increased accuracy of SVelter. Recent advances have made it possible to analyze a high coverage 

human genome from sequence to variant calling and annotation in half a day (Chiang et al. 2014), 

and such applications are very useful for diagnostic applications where speed is a critical 

component. Nevertheless, the enhanced ability of SVelter to correctly resolve overlapping and 

complex rearrangements relative to other approaches makes it very useful for projects where the 

accurate detection of such regions is important. Another limitation of SVelter is that in its current 

form it has a reduced ability to delineate heterogeneous data, such as commonly found when 

sequencing cancer genomes. This is due to its expectation of a specific ploidy when iterating 

between multiple haplotypes. Future work in this area will focus on creating a dynamic structure 

that can allow different levels of heterogeneity or mosaicism. 

2.7 CONCLUSIONS 

We have developed and applied a new approach to accurately detect and correctly interpret 

both simple and complex structural genomic rearrangements. Our comparisons to existing 
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algorithms and data sets show that SVelter is very well suited to identifying all forms of balanced 

and unbalanced structural variation in whole genome sequencing data sets. 

 

2.8 SOFTWARE AND DATA AVAILABILTY 

The software package SVelter is available for download at https://github.com/mills-

lab/svelter, and additional documentation regarding specific software usage and parameters, 

supporting files, algorithm comparisons and simulated data sets are provided at this site. 

Sequence data used in this analysis were obtained from the following resources: 

CHM1 – Resolving the complexity of the human genome using single-molecule 

sequencing (http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation/) 

(Chaisson et al. 2014) 

NA12878 – Genome in a Bottle Consortium (https://sites.stanford.edu/abms/giab) 

(Pendleton et al. 2015), Illumina Platinum Genomes 

(http://www.illumina.com/platinumgenomes/) 
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2.10 FIGURES 

 

Figure 2.1  Illustration of simple and complex rearrangements, as compared to an unaltered 

reference genome. 

Simple rearrangements are typically defined by two breakpoints, although dispersed duplications 

include an additional breakpoint at the insertion site. Examples of commonly observed complex 

structural variants with three or more breakpoints are provided but are not inclusive.  
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Figure 2.2  Overview of computational strategy for identifying structural variation in whole 

genome sequences. 

(A) SVelter first scans the genome and identifies clusters of aberrant read characteristics. These 

are used to create a putative set of breakpoint positions. (B) The segments between breakpoints 

are then iteratively rearranged and scored against null models of sequence expectations. (C) T he 

final converged structure is reported as the predicted structural rearrangement for the region.  
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Figure 2.3     Assessment of complex structural variation accuracy using simulated data sets. 

Sensitivity and false discovery rates for SVelter (red), Delly (blue), Lumpy (Green), Pindel 

(purple), and ERDS (yellow) on simulated (A) inverted duplications, (B) deletion inversions, (C) 

deletion duplications and (D) deletion-inversion-duplication events.  
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Figure 2.4 Assessment of accuracy on simulated homozygous events. 

 (A) Sensitivity and (B) positive predictive values for SVelter (red), Delly (blue), Lumpy (Green), 

and Pindel  (purple) across different simple SV types and sequence coverage on combined 

simulated homozygous and heterozygous events. For dispersed duplications, only SVelter was 

considered for positive predictive values and all predictions by other algorithms that did not 

overlap simulated results were considered only for the tandem duplication category. 
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Figure 2.5 Assessment of accuracy on simulated heterozygous events. 

(A) Sensitivity and (B) positive predictive values for SVelter (red), Delly (blue), Lumpy (green), 

and Pindel (purple) across different simple SV types and sequence coverage on combined 

simulated homozygous and heterozygous events. For dispersed duplications, only SVelter was 

considered for positive predictive values and all predictions by other algorithms that did not 

overlap simulated results were considered only for the tandem duplication category. 
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Figure 2.6 Assessment of accuracy on simulated tumor and matched normal genomes. 

 (A) Sensitivity and specificity of SMuFin as applied locally on chr22 (left panel) or estimated 

from the authors original publication from the entire genome (Supplemental Figure 2 in Moncunill 

et al. 2014) for comparison of predicted SVs ranging from 5 to 500bp at RD30 (right panel, *). 

This shows consistency with both our application of this algorithm and between single 

chromosome and whole genome results. (B) Sensitivity and specificity of multiple algorithms on 

chr22 at RD30 for SVs over 100bp. (C). Sensitivity and specificity of multiple algorithms on chr21 

and chr22 at different coverage using simulated matched germline and somatic data generated 

locally using the Moncunill et al set of variant calls and simulation strategy. SMuFin is absent in 

germline data as it only reports somatic events. 
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Figure 2.7  Overview and application of PacBio validation approach to human data. 

(A) D ot plot of example region containing a simple deletion u sing a single PacBio read against 

the reference genome. Red dots indicate matches between sequences and dashed black lines 

delineate 10% deviance from the diagonal. (B) Dot plot of same region using an altered reference 

incorporating the deletion event. (C) Fraction of true positive calls using validation approach on 

published deletions in NA12878 (black) and CHM1 (grey) and CN2 regions as negative controls. 

Dashed black lines indicate regions that could not be assessed due to lack of PacBio reads to 

interrogate. (D) Assessment of specific predicted complex structures by SVelter using PacBio 

reads in NA12878 (black) and CHM1 (grey).  
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Figure 2.8  Validation of inverted duplication 

(chr17_14659237_14662064_14662349_14662516_C) on at locus chr17:14659000-14663500. 

(A) Predicted structure of CSV. (B) PCR primer strategy and resulting observed structured. Primer 

sequences S91: GTGCACAGGATTGCTTCTGA, S92: TGTGTGGCTTTGACCACAAT. (C) 

Graphical representation of predicted structure and observed PCR product. 
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Figure 2.9  Validation of inverted duplication 

(chr16_69761804_69762136_69762896_69766900_C)  on at locus chr16:69760500-69765500. 

(A) Predicted structure of CSV. (B) PCR primer strategy and resulting observed structured. Primer 

sequences S81: CCCATCCCAAGTCATCTCAT, S82: 

AAATGTCTGTCTTTACCACTGTGTAG. (C) Graphical representation of predicted structure 

and observed PCR product. 
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Figure 2.10  Attempted validation of inverted duplication 

(chr11_95366462_95366593_95367193_C) at locus chr11:95365500-95375000 

 This region contained numerous repetitive elements making direct PCR validation difficult such 

that no distinct bands were produced resulting in an inconclusive validation status. (A) PCR primer 

strategy and predicted structured. Primer sequences S41: GCCAGGCAGTCAGAATTAGC, S42: 

TCCCTGAGGACAGGAACAAC. (B) Graphical representation of predicted structures. 
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Figure2.11  Electrophoresis GEL image of PCR products for each primer pair in two different 

samples (NA12878, NA19240), as outlined in Supplemental Figures 1-3. 
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Figure 2.12  Evaluation of complex structural variation predictions. 

 (A) Validation scores of complex structural variation predicted in NA12878 from all algorithms 

ranked and normalized from 0 to 1 for comparison. For approaches with multiple predicted SVs 

in a region, average scores from each prediction were averaged. (B) I GV screenshot of example 
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complex region in CHM1 (chr1:14435000-1444000) containing multiple deletions (blue shaded 

arrows) and a translocated region (green arrow), with surrounding anchor regions in black. Light 

green lines in IGV indicate read pairs with reverse-forward orientation, while red lines indicate 

read pairs with aberrant insert size length. (C) D ot plot of region between an individual PacBio 

read (SRR1304376.123525) against the reference sequence. Colored arrows correspond to 

segments indicated in (B). (D) D ot plot of altered reference sequence implementing predicted 

rearrangements by SVelter. ( E) S chematic of predictions by each SV algorithm with respect to 

segments indicated in (B). For approaches with multiple predictions overlapping the region, each 

predicted SV is show independently.  
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Figure 2.13  Examples of various types of complex structural variation in NA12878 identified by 

SVelter. 

 (A) I GV screenshot of disperse duplication event predicted by SVelter. Line colors as described 

in Figure 4. Such regions are typically identified as an overlapping tandem duplication and 

deletion. (B) Example of inverted duplication event. Blue lines in IGV indicated reverse-reverse 

read pair orientation while dark green lines indicate forward-forward read pair orientation. (C) R 

egion with heterozygous inversion and deletion rearrangement. (D) Region with homozygous 

inversion and deletion rearrangement. All regions shown had PacBio sequences consistent with 

predicted SVelter structures and were misclassified by other approaches (Supplemental Figures 

8-11)  
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Figure 2.14  Dot plot of a PacBio read (fa716c69_55756_0) from NA12878 against both 

unaltered reference sequence (chr5:143512409-143515054) and modified reference sequence 

containing the predicted rearrangement. 

Colored arrows on the right side indicate reference and alternative structures as diploid 

arrangements, as well as predictions from each individual algorithm. Ploidy for individual 

approaches is based on reported genotypes where available.  
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Figure 2.15   Dot plot of a PacBio read (5308fbec_46356_10341) from NA12878 against both 

unaltered reference sequence (chr12:71532786-71533753) and modified reference sequence 

containing the predicted rearrangement. 

Colored arrows on the right side indicate reference and alternative structures as diploid 

arrangements, as well as predictions from each individual algorithm. Ploidy for individual 

approaches is based on reported genotypes where available. 
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Figure 2.16  Dot plot of a PacBio read (325320e3_146839_203) from NA12878 against both 

unaltered reference sequence (chr10:132635679-132638686) and modified reference sequence 

containing the predicted rearrangement. 

Colored arrows on the right side indicate reference and alternative structures as diploid 

arrangements, as well as predictions from each individual algorithm. Ploidy for individual 

approaches is based on reported genotypes where available. 
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Figure 2.17  Dot plot of a PacBio read (fffb5d0d_36049_18160) from NA12878 against both 

unaltered reference sequence (chr16:48905294-48906232) and modified reference sequence 

containing the predicted rearrangement. 

Colored arrows on the right side indicate reference and alternative structures as diploid 

arrangements, as well as predictions from each individual algorithm. Ploidy for individual 

approaches is based on reported genotypes where available. 
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CHAPTER III 

Validate Structural Variants Through Long Read Sequencing Technology 

(Zhao, Xuefang et al. Under review at GigaScience) 
 
 

3.1 ABSTRACT 

 

3.1.1 Background 

Although numerous algorithms have been developed to identify structural variation (SVs) 

in genomic sequences, there is a dearth of approaches that can be used to evaluate their results. 

This is significant, as the accurate identification of structural variation is still an outstanding yet 

unsolved problem in genomics. The emergence of new sequencing technologies that generate 

longer sequence reads can, in theory, provide direct evidence for all types of SVs regardless of the 

length of region through which it spans. However, current efforts to use these data in this manner 

require the use of large computational resources to assemble these sequences as well as visual 

inspection of each region. 

3.1.2 Results 

Here we present VaPoR, a highly efficient algorithm that autonomously validates large SV  

sets using long read sequencing data. We assessed the performance of VaPoR on SVs in both 
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simulated and real genomes and reported a high-fidelity rate for overall accuracy across different 

levels of sequence depths. We show that VaPoR can interrogate a much larger range of SVs while 

still matching existing methods in terms of false positive validations and providing additional 

features considering breakpoint precision and predicted genotype. We further show that VaPoR 

can run quickly and efficiency without requiring a large processing or assembly pipeline. 

3.1.3 Conclusions 

VaPoR serves as a high efficient long read based validation approach for genomic SVs that 

requires relatively low read depth and computing resources and thus will provide utility with 

targeted or low-pass sequencing coverage for accurate SV assessment. 

 

3.2 KEYWORDS 

structural variation 

copy number variation 

sequence analysis 

 

3.3 INTRODUCTION 

Structural variants (SVs) are one of the major forms of genetic variation in humans and 

have been revealed to play important roles in numerous diseases including cancers and 
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neurological disorders (Brand et al. 2014; Chiang et al. 2012). Various approaches have been 

developed and applied to paired-end sequencing to detect SVs in whole genomes (Rausch et al. 

2012; Layer et al. 2014; Zhao et al. 2016; Chong et al. 2016) , however individual algorithms often 

exhibit complementary strengths that sometimes lead to disagreements as to the precise structure 

of the underlying variant. The emergence of long read sequencing technology, such as Single 

Molecule Real-Time (SMRT) sequencing from Pacific Biosciences (PacBio) (Rhoads and Au 

2015; Travers et al. 2010), can deliver reads ranging from several to hundreds of kilobases and 

provide direct evidence for the presence of an SV. Current strategies make use of de novo assembly 

to create long contigs with minimized error rate (Chaisson et al. 2014; Pendleton et al. 2015; Shi 

et al. 2016), and then predict SVs, usually with single base resolution, through direct comparison 

of the assembly against the reference. Though such approaches are powerful, they require both a 

very high sequencing depth and significant computing power and are currently impracticable for 

many ongoing research studies. 

The additional information obtained from using long reads can still be leveraged to improve 

variant calling, however. Indeed, such approaches have already been implemented to combine high 

depth Illumina sequencing with lower depth PacBio reads to improve error correction and variant 

calling in the context of de novo genome assembly (Koren et al. 2012). With structural variation, 

the current state of the art is to use long reads to manually assess potential SVs using subsequent 

recurrence (dot) plots (Huddleston et al. 2016), where the sequences are compared against the 

reference through a fixed size sliding window (k-mer) and the matches are plotted for visual 

inspection. The k-mer method is of higher robustness compared against the direct sequences 

comparison (Carvalho et al. 2016), which is why these types of dot plots have been used for 

decades to examine the specific features of sequence alignments (Gibbs and McIntyre 1970). 
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However, they require manual curation and, coupled with the computational costs of sequence 

assembly, are time-consuming and inefficient at scale for the high throughput validation of large 

sets of SVs. 

Here, we present a high-speed long read based assessment tool, VaPoR, that scores each 

SV prediction by autonomously analyzing the recurrence of windows within a local read against 

the reference genome in both their original and rearranged format per the prediction. A positive 

score of each read on the altered reference, normalized against the score of the read on the original 

reference, supports the predicted structure. A baseline model is constructed as well by interrogating 

the reference sequence against itself at the query location. We show that our approach can quickly 

and accurately distinguish true from false positive predictions of both simple and complex SVs as 

well as their underlying genotypes and is also able to assess the breakpoint accuracy of individual 

algorithms. 

 

3.4 DATA DESCRIPTION 

3.4.1 Simulated Data: 

Non-overlapping simple deletions, inversions, insertions and duplications as well as 

complex structural variants as previously categorized (Zhao et al. 2016) were independently 

incorporated into GRCh38 in both heterozygous and homozygous states, excluding regions of 

known difficulties of the genome as described from the ENCODE project (ENCODE Project 

Consortium 2012). Detailed descriptions of each simulated SV types simulated are summarized in 

Tables 3.1- 3.2. We applied PBSIM (Ono et al. 2013) to simulate the modified reference sequences 
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to different read depth ranging from 2X to 70X with a parameters difference-ratio of 5:75:20, 

length-mean 12000, accuracy-mean 0.85 and model_qc model_qc_clr. Simulated data can be 

obtained from https://umich.box.com/v/vapor. 

3.4.2 Real Data 

We applied VaPoR to a set of diverse samples (HG00513 from CHS, HG00731 and 

HG00732 from PUR, NA19238 and NA19239 from YRI) that were initially sequenced by the 

1000 Genomes Project and for which a high-quality set of SVs were reported in the final phase of 

the project (Sudmant et al. 2015). These samples were recently re-sequenced using PacBio and 

therefore provides a platform for assessing VaPoR on known data.  The 1000 Genomes Project 

(1KGP) Phase 3 data were obtained from ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/ and lifted over to GRCh38. 

PacBio sequence data were obtained from 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/. 

We have also compared VaPoR against the long read validation approach developed by 

Layer et al. (Layer et al. 2014), which requires both PacBio and Moleculo long sequences for full 

evaluation of SVs. These comparisons made use of NA12878, one of few samples that have been 

sequenced with various technologies including Illumina NGS, PacBio and Moleculo with a truth 

SV set included in the 1KGP Phase 3 report. The PacBio and the Moleculo sequences of this 

individual were obtained from : 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/si/ and 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/NA12878/mole

culo/alignment/ respectively. 
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Table 3.1 Number of homozygous SVs simulated for each type on different chromosomes 

sv_type del ins inv tan_dup dis_dup del_dup del_inv dup_inv
_ins 

del_dup
_inv 

chr1 352 29 83 132 17 156 25 152 169 

chr2 345 44 72 143 13 144 24 197 181 

chr3 253 34 61 110 17 152 19 147 129 

chr4 267 16 54 95 9 132 13 150 153 

chr5 273 21 74 84 13 154 19 142 119 

chr6 252 28 57 87 20 123 23 128 128 

chr7 211 31 60 76 8 101 20 119 114 

chr8 165 23 50 79 12 97 14 91 101 

chr9 175 24 47 75 7 76 17 95 101 

chr10 196 15 46 57 12 94 20 79 87 

chr11 192 26 54 64 12 105 10 98 83 

chr12 159 30 49 48 7 98 6 95 87 

chr13 145 18 34 43 9 87 11 77 78 

chr14 167 13 34 52 7 76 10 83 67 

chr15 121 8 37 44 6 69 15 72 71 

chr16 133 13 31 46 7 55 8 69 58 

chr17 108 11 20 28 6 60 9 66 56 

chr18 102 11 20 42 7 73 11 60 58 

chr19 82 13 22 21 2 46 5 46 32 

chr20 85 10 22 28 2 44 9 42 36 

chr21 89 3 16 15 0 32 6 31 29 

chr22 63 4 17 26 3 37 7 30 36 

chrX 225 21 55 80 9 109 16 109 96 

chrY 88 5 22 37 5 42 5 34 44 
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Table 3.2 Number of heterozygous SVs simulated for each type on different chromosomes 

sv_type del ins inv tan_dup dis_dup del_dup del_inv dup_inv
_ins 

del_dup
_inv 

chr1 348 45 91 103 20 166 27 184 149 

chr2 306 27 77 105 22 184 25 158 185 

chr3 274 27 59 90 12 133 17 127 124 

chr5 265 24 69 81 14 148 18 132 116 

chr6 231 21 59 76 12 126 24 135 136 

chr7 230 19 54 76 7 126 29 110 100 

chr8 171 17 44 77 12 104 14 99 90 

chr9 174 26 54 62 4 103 13 100 94 

chr10 170 17 47 57 13 75 13 105 78 

chr11 180 23 44 63 13 94 21 100 100 

chr12 201 23 39 60 12 83 12 101 98 

chr13 147 24 38 63 10 80 14 77 68 

chr14 127 20 31 52 11 78 9 73 77 

chr15 156 17 30 41 7 80 12 65 83 

chr16 123 8 30 43 7 61 7 52 63 

chr17 108 9 26 39 2 61 7 54 48 

chr18 109 10 24 44 4 54 11 58 54 

chr19 81 10 22 21 5 43 6 49 38 

chr20 96 11 25 31 4 52 6 44 50 

chr21 43 5 15 26 6 29 3 21 31 

chr22 77 7 17 22 8 42 2 29 28 

chrX 227 18 49 60 16 116 19 123 112 
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3.5 RESULTS 

We assessed the performance of VaPoR on both simulated sequences and real genomes 

from the 1000 Genomes Project to assess the following characteristics: sensitivity and false 

discovery rate on validating structural variants in simple and complex structures; sensitivity of 

VaPoR on validating different levels of predicted breakpoint efficacy; stratification of VaPoR 

scores by genotype; and time and computational cost of VaPoR. 

3.5.1 VaPoR on Simulated Data 

We applied VaPoR to simulated simple deletions, inversions, insertions and duplications 

as well as complex structural variants and first assessed the proportion of SVs that VaPoR is 

capable of interrogating (i.e. passed VaPoR QC). We found that VaPoR can successfully evaluate 

>80% of insertions, >85% deletion-duplications and >90% SVs in all other categories when the 

read depth is 10X or higher. We then assessed the sensitivity and false discovery rate (FDR) at 

different VaPoR score cutoffs and found that when considering different types of SVs across 

various read depths from 2X to 70X, most of the SV types can achieve a sensitivity >90% with 

false discovery rate <10% at a VaPoR score cutoff of 0.15 (Figures 3.3-3.4). We further observed 

that there were no significant changes of sensitivity or false discovery rate once the read depth was 

at or above 20X and is consistent across different SV types (Figure 3.2, Figures 3.5-3.6, Table 

3.3). 
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Table 3.3 Sensitivity and false discovery rate of VaPoR on simulated SVs. 

Sensitivity of heterozygous simulations 

 DEL INS INV TANDUP DISDUP 
DEL_DU
P DEL_INV DUP_INV 

DEL_DU
P_INV 

RD_2 0.45(0.70) 0.55(0.59) 0.56(0.74) 0.36(0.78) 0.47(0.75) 0.11(0.41) 0.71(0.70) 0.62(0.62) 0.32(0.69) 
RD_5 0.62(0.90) 0.79(0.77) 0.74(0.92) 0.59(0.93) 0.62(0.91) 0.26(0.68) 0.88(0.88) 0.74(0.84) 0.52(0.89) 
RD_10 0.78(0.94) 0.91(0.79) 0.91(0.94) 0.76(0.94) 0.90(0.94) 0.57(0.86) 0.97(0.90) 0.87(0.91) 0.75(0.93) 
RD_20 0.86(0.94) 0.93(0.82) 0.97(0.94) 0.90(0.93) 0.96(0.95) 0.80(0.94) 1.00(0.90) 0.93(0.93) 0.92(0.93) 
RD_30 0.89(0.94) 0.89(0.89) 0.98(0.94) 0.96(0.93) 0.97(0.96) 0.82(0.94) 0.98(0.90) 0.95(0.94) 0.92(0.93) 
RD_50 0.91(0.95) 0.83(0.95) 0.97(0.94) 0.98(0.93) 0.98(0.96) 0.83(0.94) 1.00(0.90) 0.96(0.94) 0.93(0.94) 
RD_70 0.90(0.95) 0.83(0.96) 0.99(0.94) 0.99(0.93) 0.98(0.96) 0.82(0.94) 1.00(0.90) 0.96(0.94) 0.94(0.94) 
          
False discovery rate(FDR)  of heterozygous simulations 

 DEL INS INV TANDUP DISDUP 
DEL_DU
P DEL_INV DUP_INV 

DEL_DU
P_INV 

RD_2 0(0.72) 0.01(0.57) 0.01(0.73) 0.01(0.75) 0.05(0.76) 0.03(0.44) 0.34(0.69) 0.07(0.57) 0.24(0.71) 
RD_5 0(0.93) 0.02(0.78) 0.02(0.93) 0.02(0.93) 0.06(0.94) 0.09(0.73) 0.36(0.88) 0.1(0.85) 0.41(0.92) 
RD_10 0(0.94) 0.02(0.81) 0.02(0.94) 0.02(0.94) 0.07(0.95) 0.2(0.89) 0.37(0.91) 0.11(0.91) 0.41(0.94) 
RD_20 0(0.94) 0.02(0.85) 0.01(0.94) 0.03(0.93) 0.08(0.95) 0.23(0.94) 0.38(0.91) 0.11(0.93) 0.29(0.94) 
RD_30 0(0.94) 0.03(0.92) 0.01(0.94) 0.04(0.93) 0.06(0.95) 0.24(0.94) 0.37(0.91) 0.1(0.94) 0.28(0.94) 
RD_50 0(0.94) 0.02(0.96) 0.01(0.94) 0.06(0.93) 0.07(0.95) 0.24(0.94) 0.38(0.91) 0.09(0.94) 0.27(0.94) 
RD_70 0(0.94) 0.03(0.96) 0.01(0.94) 0.07(0.92) 0.09(0.95) 0.23(0.95) 0.39(0.91) 0.09(0.94) 0.29(0.94) 
          
Sensitivity of homozygous simulations 

 DEL INS INV TANDUP DISDUP 
DEL_DU
P DEL_INV DUP_INV 

DEL_DU
P_INV 

RD_2 0.76(0.62) 0.92(0.55) 0.85(0.72) 0.62(0.77) 0.71(0.75) 0.11(0.41) 0.96(0.69) 0.91(0.60) 0.36(0.60) 
RD_5 0.86(0.86) 0.96(0.74) 0.94(0.92) 0.83(0.92) 0.91(0.92) 0.25(0.68) 0.99(0.85) 0.95(0.82) 0.54(0.81) 
RD_10 0.92(0.93) 0.98(0.76) 0.97(0.94) 0.94(0.94) 0.95(0.93) 0.61(0.87) 0.99(0.89) 0.97(0.89) 0.79(0.91) 
RD_20 0.95(0.94) 0.98(0.79) 0.99(0.94) 0.99(0.93) 0.97(0.93) 0.84(0.92) 1.00(0.90) 0.97(0.92) 0.94(0.93) 
RD_30 0.95(0.94) 0.97(0.80) 0.99(0.94) 0.99(0.93) 0.96(0.95) 0.86(0.93) 1.00(0.90) 0.98(0.92) 0.95(0.93) 
RD_50 0.96(0.94) 0.96(0.81) 0.99(0.94) 1.00(0.93) 0.96(0.95) 0.86(0.93) 1.00(0.90) 0.98(0.93) 0.96(0.93) 
RD_70 0.95(0.94) 0.95(0.83) 0.99(0.94) 0.99(0.93) 0.97(0.95) 0.86(0.93) 1.00(0.90) 0.97(0.93) 0.96(0.93) 
          
False discovery rate(FDR)  of homozygous simulations 

 DEL INS INV TANDUP DISDUP 
DEL_DU
P DEL_INV DUP_INV 

DEL_DU
P_INV 

RD_2 0(0.64) 0(0.55) 0.01(0.67) 0.01(0.66) 0.04(0.75) 0.02(0.42) 0.32(0.64) 0.08(0.54) 0.27(0.66) 
RD_5 0(0.91) 0.02(0.75) 0.01(0.92) 0.01(0.92) 0.08(0.94) 0.08(0.7) 0.35(0.89) 0.09(0.83) 0.42(0.92) 
RD_10 0(0.93) 0.01(0.79) 0.01(0.94) 0.02(0.93) 0.12(0.92) 0.19(0.88) 0.38(0.9) 0.12(0.9) 0.37(0.93) 
RD_20 0(0.93) 0.03(0.85) 0.01(0.94) 0.04(0.93) 0.08(0.94) 0.25(0.93) 0.38(0.9) 0.1(0.92) 0.29(0.93) 
RD_30 0(0.93) 0.02(0.9) 0.01(0.94) 0.06(0.92) 0.09(0.95) 0.24(0.93) 0.37(0.9) 0.09(0.92) 0.26(0.93) 
RD_50 0(0.93) 0.03(0.95) 0.01(0.94) 0.07(0.93) 0.09(0.95) 0.23(0.93) 0.38(0.9) 0.09(0.93) 0.25(0.93) 
RD_70 0(0.93) 0.02(0.95) 0.01(0.94) 0.07(0.92) 0.09(0.96) 0.24(0.93) 0.38(0.9) 0.09(0.93) 0.26(0.93) 
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3.5.2 VaPoR on 1000 Genomes Project Samples 

We next examined SVs reported on chr1 of 5 individuals from the 1000 Genomes Project 

(1000 Genomes Project Consortium et al...) to assess the sensitivity of VaPoR on real genomes 

(Table 3.4). We first observed that >95% of deletions and insertions could be successfully 

evaluated by VaPoR. For inversions, there were a limited number of events reported but at 

maximum only 1 event failed the VaPoR quality control per individual. A sensitivity of >90% was 

achieved for deletions (Figure 3.7a) and >80% for insertions (Figure 3.7b) at the VaPoR score 

cutoff of 0.15. To examine the false validation rate of VaPoR, we modified reported events on 

chr2 to appear at the same coordinates on chr1 and assessed them as though they were real events 

using the same sequence data set. VaPoR validated very few deletions or inversion and <10% of 

insertions. We further assessed the performance of VaPoR to validate SVs with varying degrees 

of breakpoint accuracy. Real coordinates were artificially shifted each direction by -1000 to 1000 

base pairs and re-assessed with VaPoR for both simulated and real samples. In both cases, VaPoR 

exhibited a robust validation score up to approximately 200bp overall, with some slight differences 

observed between different SV types (Figure 3.7c,d, Figures 3.8-3.9). 

We also compared VaPoR against a long-read validation approach developed in 

conjunction with Lumpy (Layer et al. 2014) using SVs on chr1 of NA12878 reported by the 

1000 Genomes Project Phase 3. VaPoR achieved a sensitivity of 72% for deletions and 86% for 

insertions, while the Lumpy-associated approach was only able to assess 11% and 0% 

respectively. Both approaches exhibited a very low false validation rate when synthetically 

assigning the variants to chr2, with 0 for all SV types by the Layer et al approach and varying 

between 0 and 2.5% for VaPoR (Table 3.5). 
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Table 3.4 Sensitivity and false discovery rate of different SV types 

 deletion insertion inversion 

Sample Sens/FDR Sens/FDR Sens/FDR 

HG00513 0.96/0.00 (0.941) 0.80/0.05 (0.93) 0.50/0.00 (0.71) 

HG00731 0.94/0.00 (0.96) 0.85/0.07 (0.97) 0.60/0.00 (1.00) 

HG00732 0.92/0.00 (0.98) 0.92/0.08 (0.96) 0.33/0.00 (0.86) 

NA19238 0.90/0.00 (0.93) 0.88/0.10 (0.96) 1.00/0.00 (1.00) 

NA19239 0.87/0.02 (0.95) 0.73/0.09 (0.96) 0.33/0.00 (1.00) 
1Proportion of SVs passed VaPoR QC, as listed in brackets, are counted for events 
on chr1 and chr2 together. 

 

 

 

 
Table 3.5  Sensitivity and false discovery rate of SVs on chr1 in NA12878, compared 
against two validation approaches: VaPoR and the long read validation approach by Layer et al. 

  Sens FDR 

NA12878 Layer et al. VaPoR Layer et al. VaPoR 

deletion 10.66% 71.90% 0.00% 1.46% 

inversion 66.67% 50.00% 0.00% 0.00% 

insertion 0.00% 86.25% 0.00% 2.50% 
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3.5.3 Discrimination of SV types and genotypes 

We identified a small number of SVs in the high quality 1000 Genomes set that did not 

validate with VaPoR. Previous studies have shown that complex rearrangements are often 

misclassified as simple structural changes (Rausch et al. 2012, Huddleston et al. 2016), and indeed 

upon manual inspection these appeared to consist of multiple connected rearrangements. For 

example, we observed a reported inversion in HG00513 and NA19239 on chromosome 1 

(chr1:239952707-239953529) that was invalidated by VaPoR; an investigation into the long-reads 

aligned in the region showed the signature of an inverted duplication (Figure 3.10a) which, when 

incorporated into a modified reference that location, matched almost exactly with the read 

sequence (Figure 3.10b). 

We further explored the distribution of VaPoR scores for this region and others across the 

sample set and observed clear delineations between allelic copy number when fit with a Gaussian 

mixture model allowing for the generation of genotype likelihoods for each site (Figure 3.10c). 

These tracked with our expected genotypes for the inverted duplication on chr1 across the 5 

individuals queried while showing no support for the originally predicted inversion (Figure 3.10d). 

This shows that VaPoR is not only able to accurately genotype variants but can also distinguish 

between similar but distinct SV predictions in the same region. 

3.5.4 Runtime and efficiency 

The computation runtime of VaPoR was assessed using 2 Intel Xeon Intel Xeon E7-4860 

processors with 4GB RAM each on both simulated and real genomes. The runtime of simulated 
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event was observed to increase linearly with read depth (Table 3.6). For events sequenced up to 

20X, VaPoR takes ~3 seconds to assess a simple SV and ~5s for a complex event. The assessment 

of real samples sequenced at 20X required ~1.4 seconds to assess a simple deletion or insertion 

and ~6 seconds for an inversion (Figure 3.11). 

 

 

 

Table 3.6 Averaged computing time required for VaPoR to validate an SV estimated in seconds. 

Read Depth Average (s) 

RD_2 1.73 

RD_5 1.93 

RD_10 2.55 

RD_20 3.67 

RD_30 4.73 

RD_50 5.48 

RD_70 6.16 
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3.6 DISCUSSION 

Here we present an automated assessment approach, named VaPoR, for exploring various 

features of predicted genomic structural variants using long read sequencing data. VaPoR directly 

compares the input reads with the reference sequences with relatively straightforward 

computational metrics, thus achieving high efficiency in both run time and computing cost. VaPoR 

exhibits high sensitivity and specificity in both simulated and real genomes, with the capability of 

discriminating partially resolved SVs either consisting of similar but incorrect SV types at the 

same location or correct SVs with offset breakpoints. Furthermore, we show that VaPoR performs 

well at low read depths (5-10X), thus providing the option of systematically assessing large-scale 

SVs with a lower sequencing cost. 

 

3.7 METHODS 

3.7.1 VaPoR Workflow 

VaPoR takes in aligned sequence reads in BAM format and predicted SVs (>50bp) in 

various formats including VCF and BED. Evaluation of an SV is performed by comparing long 

reads that go through the event against reference sequences in two formats: (a) the original human 

reference to which the sample is aligned and (b) a modified reference sequence altered to match 

the predicted structural rearrangement. A recurrence matrix is then derived by sliding a fixed-size 

window with 1bp step through each read to mark positions where the read sequence and reference 

are identical. The matching patterns are then assessed as to the validity of the SV as described 

below and a validation score is reported. Given the large variance of SVs lengths, each SV is 
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stratified into one of two groups: smaller SVs that can be completely encompassed within multiple 

(>10 by default) long sequences and larger events that are rarely covered by individual long reads, 

with different statistical model applied. The VaPoR workflow is briefly summarized in Figure 3.1. 

Small Variants Assessment: 

For an SV k in sample s that is covered by n reads, the recurrence matrix between each read 

and the reference sequences in original (Ro) and altered (Ra) format is calculated. The vertical 

distance between each record (xi,k,s,Rx, yi,k,s,Rx) in matrix x and the diagonal (xi,k,s,Rx, xi,k,s,Rx) line is 

calculated as di,k,s,Rx = abs(xi,k,s,Rx - yi,k,s,Rx), and the average distance of all records would be exported 

as the score of each matrix: 

𝑆𝑐𝑜𝑟𝑒j,k,-l = 𝑑K,j,k,-l	/	𝑚,
n

KX3

 

where m is the total number of records in the matrix. Sequences that share higher identity with the 

read shall have a lower Scorek,s,Rx, such that the score of each read is normalized as: 

𝑆𝑐𝑜𝑟𝑒j,k,- = 𝑆𝑐𝑜𝑟𝑒j,k,-o	/	𝑆𝑐𝑜𝑟𝑒j,k,-p − 1, 

where a positive Scorek,s,R represents the superiority of the predicted structure versus the original 

and vise versa for negative Scorek,s,R, with one exceptional case where there exists a duplicated 

structure in the predicted SV such that the predicted structure would show higher Scorek,s,R due to 

the multi-alignment of duplicated segments. To correct for duplications, VaPoR adopts the 

directed distance di,k,s,Rx = xi,k,s,Rx - yi,k,s,Rx instead such that the distance contributed by 

centrosymmetric duplicated segments would offset each other. 
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Large Variants Assessment: 

For larger SVs where there are few, if any, long reads that can transverse the predicted SV, 

VaPoR assesses the quality of each predicted junction instead using: 

𝑆𝑐𝑜𝑟𝑒j,k,-l =
𝐼 = 	 1, 𝑖𝑓	𝑎𝑏𝑠 𝑥K,j,k,-l − 𝑦K,j,k,-l < 0.15 ∗ 𝑥K,j,k,-l

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
n
KX3

𝑚 	, 

where a larger Scorek,s,Rx represents higher similarity between the read and the reference sequence. 

The normalized scores of each read is then defined as: 

𝑆𝑐𝑜𝑟𝑒j,k,- = 𝑆𝑐𝑜𝑟𝑒j,k,-p	/	𝑆𝑐𝑜𝑟𝑒j,k,-o − 1, 

VaPoR Score Calculation: 

With a score assigned to each read spanning through the predicted structural variants, the 

VaPoR score is summarized as: 

Score{,| =
I =~

�X3
1, if		Score{,|,� > 0
0, otherwise
n  

to represent the proportion of long reads supporting predicted structure. 

The highest supportive score (max(Score{,|,�))  is also reported as a reference for users to 

meet the specific requirement of their study design, for which we recommend 0.1 as the cutoff.   
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Flexible window size: 

By default, VaPoR uses a window size of 10bp and requires an exact match between 

sequences, though these can be changed to user-defined parameters. However, many regions of 

the genome contain repetitive sequences resulting in an abundance of spurious matches in the 

recurrence matrix, thus introducing bias to the assessment. To address this, VaPoR adopts a quality 

control step by iteratively assessing the reference sequence against itself and tabulating the 

proportion of matches along the diagonal. The window size initially starts at 10bp and iteratively 

increases by 10bp until either (a) the proportion of matches on the diagonal exceeds 40% and the 

current window size is kept or (b) the window size exceeds 40bp whereby the event will be labeled 

as ‘non-assessable and excluded from the evaluation. 

 

3.8 AVAILABILITY AND REQUIREMENTS 

Project name: VaPoR 

Project home page: https://github.com/millslab/vapor 

Operating systems: Linux, OS X 

Programming languages: Python, R 

Other requirements: Python v2.7.8+, rpy2, HTSeq, samtools v0.19+, pyfasta v0.5.2+, and 

pysam 0.9.1.4+. 
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3.10 FIGURES 

 

Figure 3.1  Flowchart describing the VaPoR algorithm. 

As input, the algorithm requires a set of structural variants in either VCF or BED format, a series 

of long reads and/or sequence contigs in BAM format, and the corresponding reference sequence. 

VaPoR then interrogates each variant individually at its corresponding reference location, assesses 

the quality of the region and assigns a score. 
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Figure 3.2  Accuracy of VaPoR on simulated heterozygous and homozygous SVs at varying 

degrees of sequence coverage and VaPoR score cut-offs. 

Receiver operator curves (ROC) are shown for simple deletions, duplications and inversions (a,b) 

as well as complex rearrangements including inverted duplications and deletion-inversion 

rearrangements (c,d). 
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Figure 3.3  Sensitivity and false discovery rate (FDR) of validating heterozygously simulated 

structural variants calculated at different VaPoR score cutoff. 

Sensitivity and FDR both decreases with the cutoff increasing, with >90% sensitivity and <10% 

FDR achieved at cutoff=0.1  
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Figure 3.4   Sensitivity and false discovery rate (FDR) of validating homozygously simulated 

structural variants calculated at different VaPoR score cutoff. 

Sensitivity and FDR both decreases with the cutoff increasing, with >90% sensitivity and <10% 

FDR achieved at cutoff=0.1 – 0.25 
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Figure 3.5  Sensitivity and false discovery rate (FDR) of VaPoR on validating heterozygous 

structural variants plotted across different read depth (RD). 

Similar pattern was observed from RD = 20 to 70. 
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Figure 3.6  Sensitivity and false discovery rate (FDR) of VaPoR on validating homozygous 

structural variants plotted across different read depth (RD).Similar pattern were observed from 

RD = 20 to 70. 
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Figure 3.7  Validation rate and breakpoint accuracy of VaPoR on the 1000 Genomes Projects phase 

3 calls. 

VaPoR was applied on 5 individuals with reported SVs as a truth set: HG00513, HG00731, 

HG00732, NA19238, NA19239. The validation rate of deletions (a) and insertions (b) are shown 

here across different cutoff scores for VaPoR. Robustness to breakpoint accuracy was assessed 

using fake breakpoints deviated from the real ones by different base pair distances for deletions 

(c) and insertions (d). 
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Figure 3.8.  Figure 0.8  Plot of validation rate when validating the simulated SVs with fake 

breakpoints deviated from the real ones by different bases. 

Validation rates are averaged from simulated deletion, insertion, inversion and tandem duplication 

at 30X coverage. 
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Figure 3.9  Plot of validation rate when validating the simulated SVs with fake breakpoints 

deviated from the real ones by different bases. 

Validation rates are shown for simulated deletion, insertion, inversion and tandem duplication at 

30X coverage. 
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Figure 3.10  Validation and genotyping of assessed regions using VaPoR. 

(a) Recurrence plot of reference genome (GRCh38) to an aligned long read in NA19239 

(m150208_160301_42225_c100732022550000001823141405141504_s1_p0/3831/0_12148) for 

a reported inversion at position chr1:239952707-239953529. The signature is consistent with an 

inverted duplication structure. (b) Recurrence plot of a different read 

(m150216_212941_42225_c100729442550000001823151505141565_s1_p0/106403/0_13205) 

against the same location, consistent with a non-variant (reference) structure.  (c) Distribution of 

VaPoR scores on all reported SVs on chr1 in samples HG00513, HG00731, HG00732, NA19238, 

NA19239, stratified by color (solid) and modeled with a Gaussian mixture model (dashed). (d) 

VaPoR scores of SV above now stratified by color as indicated in (c) for both reported inversion 

(red) and predicted inverted duplication (blue). 
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Figure 3.11  Run time summarization of VaPoR. 

Averaged run time (seconds) of each simulated SV summarized and plotted at different read depth. 

Simple and complex SVs are estimated separately, shown in red and blue lines respectively.  

 

 



 
 

102 

CHAPTER IV 

Integration of SVs Predicted by Different Platforms 

 

4.1 ABSTRACT 

In addition to serving as an important portion of genome diversity, genomic structural 

variants are also indicated to closely relate to large spectrum of human diseases ranging from 

developmental disorders to various cancers. In spite of the advances in sequencing technology and 

discovering methodology in recent decade, limitations remain for accurately yet comprehensively 

discovering SVs at whole genome scale through next generation sequencing data (NGS). This is 

an overall result of the relatively short reads from NGS, the complexity of human genome and the 

inevitable false discovery rate of individual discovering method. However, the discovery rate can 

be significantly improved by either properly integrating SVs called by multiple algorithms, or 

adding additional information from orthogonal sequencing technologies such as long read 

sequences.  

Here, we presented an integration of genomic variants summarized from multiple 

genomic variants discovering algorithms, which showed significant improvement in true 

discovery rate while still keeping the low false discovery rate. Moreover, increased accuracy was 

achieved in defining breakpoints with confident intervals assessed and reported.  We have also 
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conducted a systematic comparison between genomic variants discovered from multiple 

sequencing platforms including short read and long read sequencing, where we showed that long 

reads are with outstanding superiority in discovering small variants while paired-end short 

sequences are more capable of describing complex forms of variants that have long distance 

translocations of DNA materials involved.  

 

4.2 KEYWORDS  

structural variants integration 

short read sequencing 

long read sequencing 

 breakpoint accuracy 

complex genomic structural variants  

 

4.3 INTRODUCTION 

The appearance of high throughput next generation sequencing (NGS) has dramatically 

brought down the cost of human genome sequencing (Goodwin, McPherson, and Richard 

McCombie 2016), thus greatly accelerating the overall study of human genomic variants. Short 

read pair end sequencing technology, represented by Illumina HiSeq, are widely used to detect 

genomic structural variants (SVs), with a large amount of data produced and various methods 
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developed. However, it’s not yet feasible to accurately describe all SVs in any individual genome 

according to alignment biases resulting from the relatively short reads produced, as well as the 

inevitable false positive / negative rate of existing algorithms introduced by the randomness while 

selecting sequences from the pool of DNA segments. 

Long read sequencing, eg. the single cell real time sequencing (SMRT) from the Pacific 

Biosciences (PacBio), that deliver reads that are several kilobases or longer, could fully cover the 

ambiguous genomic regions such as segmental duplications or long simple repeats, thus providing 

direct insight into those regions, with multiple published work demonstrating the superiority of 

long reads in detecting SVs compared to NGS (Pendleton et al. 2015; Chaisson, Wilson, and 

Eichler 2015; Shi et al. 2016). Except for the being able to accurately define SVs in genomic 

regions that are of high complexity or repetitiveness, directly comparing long sequences against 

the reference genome, in theory, allows for SVs in all forms to be defined with breakpoints at 

single base resolution. However, the current cost of long read sequencing, as well as the limited 

options of detecting algorithms, prevents it to be widely applied onto most of the research projects. 

Instead, NGS still remains the most commonly adopted platform with much larger amount of data 

already produced and served as references for future studies. 

The 1000 Genomes Project have been dedicated in developing comprehensive SV sets 

across multiple populations, with large amount of investment in deep sequencing human samples 

with diverse genomic background. Recently, three father-mother-child trios from Han Chinese 

(CHS), Puerto Ricans (PUR) and Yoruba (YRI) were deep sequenced with various sequencing 

technologies such as Illumina pair end short libraries, PacBio long reads (Rhoads and Au 2015), 

10X linked read sequencing  (“[PDF]One System, One Workflow, Powerful New Sequencing 
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Applications,” n.d.), BioNano (Lu, Giordano, and Ning 2016) and Strand-Seq (Falconer and 

Lansdorp 2013) . The availability of data sequenced with multiple platforms makes it possible to 

systematically assess the performance of current algorithms, with support from orthogonal 

technique as the external adjudication. 

In this work, we first developed an integration pipeline that summarized SVs detected by 

numerous short read based SV detecting methods, the resulting set of which showed significantly 

increased discovering power with reduced false discovery rate, as well as breakpoints defined at 

higher resolution. At the same time, we have also integrated SV set discovered from long 

sequences, i.e. PacBio sequences. We conducted a systematic comparison between the sets 

proposed by different platforms, and showed that: 

1. long sequences have more power in defining small deletions and insertions, which were 

usually reported at high / single base breakpoint resolution.  

2. short sequences, as with more mature methodology, showed higher capability in 

defining complex SVs that have multi-step rearrangements involved, and tracing the 

origin of long-distance translocations.  

The integrated SVs proposed in this work represents the best set that current technology 

and methodology can achieve, which not only refresh out vision of the frequencies and formats of 

SVs in individual human genome, but also sheds lights on the strength and weakness of current 

available technologies, which serve as valuable instructions for the community while deciding on 

sequencing platforms to adopt. 
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In the following text, the algorithms that detect SVs from Illumina paired end short library 

sequences are referred to as ‘Illumina caller’ for short and the corresponding SV sets are named 

‘Illumina SVs’ or ‘Illumina set’, while the methods and sets related to PacBio long seqeunces are 

named as ‘PacBio caller’ and ‘PacBio SVs’ in abbreviation. 

 

4.4 RESULTS 

4.4.1 Data overview 

9 individuals from three father-mother-child trios were deep sequenced to ~170X by 

Illumina paired end short insert sequencing. Children (HG00514, HG00733, NA19240) were 

sequenced up to ~40X by long read PacBio sequencing, while the parents’ genome were sequenced 

to ~20X. Details of the sequencing platforms were summarized in table 4.1. 

15 different algorithms (Rausch et al. 2012; Layer et al. 2014; Kronenberg et al. 2015; 

Zhao et al. 2016; Chen et al. 2016; Michaelson and Sebat 2012; Chong et al. 2016; Handsaker et 

al. 2015; Ye et al. 2009; Hormozdiari et al. 2010; Collins et al. 2017) were applied to predict SVs 

with the Illumina paired end sequences, including two read depth based CNV callers (digital 

CGH, GenomeStrip) and two mobile element insertion(MEI) detecting algorithms (MELT, 

Tardis). Most algorithms predict SVs over 100 bp, with the exception that Pindel and Manta also 

report small indels through their split read module. Number of calls in each type predicted by 

different algorithms were integrated in Table 4.2 
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4.4.2 Individual caller assessment 

We first assessed the performance of each short read SV detecting algorithms against the 

PacBio integration set through 50% reciprocal overlap, where we found that at maximum 17% 

PacBio proposed variants were successfully recapitulated by individual algorithm (Table 4.3), 

while the relative specificity ranges from 25-90%. We have also compared the breakpoints called 

through different platforms, by calculating the distance between breakpoints of Illumina SVs and 

the PacBio SV that shared >50% reciprocal overlap with it (Figure 4.2).  Most of the algorithms 

predict SVs with breakpoints within 20bp from a PacBio SV, with few exceptions like dCGH and 

HOLMES that only focuses on large events or make predictions from long insert libraries. 
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Table 4.1  Summarization of sequencing technology applied to the three trios 

 Avg. 
cov, 

Avg. 
frag. 

len.(bp) 

Avg. 
cov. 

Avg. 
frag. 

len.(bp) 

Avg. 
cov. 

Avg. 
frag. 

len.(bp) 
 

Han Chinese HG00512 HG00513 HG00514 

PacBio 22.04 9,060 17.39 9,855 41.8 10,120 

Illumina short insert 167 679 170 680 178 720 

Illumina  liWGS 154.26 3,417 162.53 3,329 138.11 3,339 

10X Chromium 40 88 K 41 73 K 71 72 K 

BioNanoGenomics 88 281 K 125 268 K 147 304 K 

Tru-Seq 5.22 4,195 3.31 5,198 1.44 4,825 

       

Puerto Rican HG00731 HG00732 HG00733 

PacBio 23.005 9,545 23.08 9,410 39.43 10,119 

Illumina short insert 177 702 162 673 169 703 

Illumina liWGS 156.21 3,452 142.68 3,537 188.59 3,751 

10X Chromium 39 108 K 44 82 K 79 88 K 

BioNanoGenomics 82 260 K 112 258 K 142 285 K 

Tru-Seq 4.81 4,137 2.97 5,002 2.6 5,077 

       

Yoruban NA19238 NA19239 NA19240 

PacBio 18.21 5,702 16.5 5,420 37.67 5,619 

Illumina short insert 174 712 174 707 165 668 

Illumina liWGS 154.28 3,506 153.73 3,433 178.81 3,509 

10X Chromium 43 100 K 43 91 K 85 108 K 

BioNanoGenomics 90 286 K 151 300 K 113 285 K 

Tru-Seq 4.02 5,116 2.69 5,418 4.17 5,129 
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Table 4.2 Summarization of SVs detected by each algorithm, categorized by individual SV 
types. 

Algorithm Technology SV_Type Total  
SVs DEL DUP INS INV Other 

dCGH Illumina DEL,DUP, 
CPX 1820 1094 726 0 0 0 

GenomeStrip Illumina DEL, DUP 2846 2379 467 0 0 0 

Delly Illumina DEL,DUP, 
INV, CPX 5307 4873 258 159 17 0 

NovoBreak Illumina DEL,DUP,IN
V 6375 5974 89 0 312 0 

Pindel Illumina DEL,DUP,IN
V 14348 11740 0 2608 0 0 

retroCNV Illumina DUP 19 0 0 19 0 0 

SVelter Illumina DEL,DUP,IN
V,CPX 23145 12375 7868 0 344 2558 

VH Illumina DEL 4787 4787 0 0 0 0 

Wham Illumina DEL,DUP,IN
V,INS 6117 5018 731 0 368 0 

Lumpy Illumina DEL,DUP,IN
V 12067 8760 3006 0 301 0 

ForestSV Illumina DEL,DUP 1117 1103 14 0 0 0 

Manta Illumina DEL,DUP,IN
V,INS 21000 14711 1739 3294 1256 0 

MELT Illumina MEI, DEL 5867 1770 0 4097 0 0 

Tardis_MEI Illumina MEI 4125 0 0 4125 0 0 

HOLMES Illumina, 
jumping lib 

DEL,DUP,IN
V,INS,CPX 1046 784 151 0 111 0 
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Table 4.3  Pseudo sensitivity and specificity of individual short read SV detecting 
algorithms, compared against PacBio SVs. 

 Discovery rate  Extra calls  

 HG00514 HG00733 NA19240  HG00514 HG00733 NA19240 

Manta 0.17 0.16 0.17  0.65 0.68 0.65 

Pindel 0.15 0.14 0.15  0.54 0.56 0.57 

lumpy 0.1 0.09 0.11  0.56 0.56 0.61 

SVelter 0.08 0.07 0.08  0.39 0.37 0.39 

wham 0.08 0.07 0.08  0.83 0.84 0.82 

MELT 0.07 0.07 0.08  0.89 0.92 0.84 

VH 0.07 0.06 0.07  0.86 0.88 0.85 

novoBreak 0.05 0.05 0.06  0.75 0.74 0.74 

Delly 0.05 0.04 0.05  0.87 0.88 0.85 

GenomeStrip 0.02 0.02 0.02  0.54 0.52 0.54 

liWGS 0.01 0.01 0.01  0.69 0.72 0.63 

ForestSV 0.01 0.01 0.01  0.28 0.3 0.28 

dCGH 0.01 0.01 0.01  0.24 0.24 0.26 

retroCNV 0 0 0  0 0 0 

Tardis 0 0 0  0 0 0 
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4.4.3 Overview of Illumina integrated SV set 

The integration of Illumina SVs consists of 44505 unique SVs that are 50bp or larger, 

defined across all 9 samples (Table 4.4), with each individual genome carrying ~20,000 SVs. Most 

of the merged SVs were assigned with unified SV types such as simple deletions, duplications, 

inversions and insertions. However, there are ~5% events that have ambiguous SV types where 

different algorithms predict different types of variants, which indicate the possibility of complex 

SVs.  A detailed tabulation of SVs for each individual is summarized in table 4.4.  

 

4.4.4 Primary quality controls on the integrated set 

The quality of the integrated Illumina SVs was assessed in terms of their locations and 

sizes, as well as the redundancies where the same SV were represented by multiple records in the 

set. In brief, there are 421 SVs in the integrated set that fell within either telomere or centromere 

regions, and 594 over 1Mb in size, both of which were labeled as LowQual to avoid the potential 

confusion they would introduce for downstream analysis. 

The redundancy rate was defined as the percentage of SVs that overlap with another in the 

set, which was estimated as 32% (n=14373. However, the vast majority of the redundancies were 

singletons, those contributed by a single algorithm (n=13845, 96%), which could be considered as 

either false discoveries or outliers that failed to be merged because of the offset breakpoints. On 

this other side, a singleton could be well represented by a cluster that’s merged from SVs called 

by multiple callers, if they share overlaps. With these, singletons that overlap with a cluster were 

also labeled as LowQual.  
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After the primary quality controls, 70% deletions(n=18678), 46% duplications(n=2347) 

and 34% inversions(n=387) were kept as ‘PASS’, while almost all insertions, and ~70% or higher 

portions of the ambiguous types were also kept (Table 4.5). In summary, we have 32266 SVs, 

spanning 29896 non-overlapping genomic regions, kept after the primary quality control 

step, while still have a redundancy rate of 7% which requires more careful inspection with the aid 

of external validation approaches.  

The frequencies and formats of SVs discovered by short sequences in each individual 

genome were listed in table 4.6, where we showed that ~8,000 deletions (including ~1,000 ALU 

and ~70 LINE1 deletions) and ~3,500 insertions (including ~1,200 ALU, ~180 LINE1, ~100 SVA 

and 0-3 HERVK) that are 50bp or larger were defined per genome. At the same time, the short 

sequences also discovered 300-400 duplications, ~1,200 multi-allelic copy number variants, ~130 

inversions and 80-100 complex SVs.  
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Table 4.4  Summary of SV set integrated from short read based SV detecting algorithms 

 DEL DUP INV INS DEL+
DUP 

DEL
+INV 

DUP
+INV 

DEL+
DUP+
INV 

Total 

HG00512 10796 2048 422 3902 891 84 35 40 18218 

HG00513 10704 2055 416 3961 908 93 38 46 18221 

HG00514 10892 2021 436 3956 875 91 40 44 18355 

HG00731 10936 2041 392 3939 908 86 43 46 18391 

HG00732 10689 1976 456 3923 904 94 38 46 18126 

HG00733 10698 2056 411 3974 871 91 40 45 18186 

NA19238 12153 2137 452 4609 981 102 37 41 20512 

NA19239 12093 2117 473 4552 928 93 36 45 20337 

NA19240 12218 2154 468 4660 946 99 36 46 20627 

all 26849 5099 1146 9309 1794 178 66 64 44505 
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Table 4.5 Number of SVs in each type that passed the primary quality control. 

 DEL DUP INV INS DEL;D
UP 

DEL;I
NV 

DUP;I
NV 

DEL;DUP
;INV 

ALL 26848 5099 1146 9309 1795 178 66 64 

PASS 18678 2347 387 9293 1325 136 46 54 

PASS/ALL 69.57% 46.03% 33.77% 99.83% 73.82% 76.40% 69.70% 84.38% 
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Table 4.6 Number of SVs in each type in each individual geome 

 
 
 DEL DEL DEL INS INS INS INS INS DUP CNV INV CPX 

SAMPLE  ALU LINE1  ALU LINE1 SVA HERVK     

HG00512 7,410 988 61 3,198 1,115 173 93 2 309 1,265 128 80 

HG00513 7,471 993 63 3,314 1,141 184 97 1 330 1,265 124 88 

HG00514 7,546 990 64 3,321 1,134 179 96 2 310 1,265 122 90 

HG00731 7,573 993 68 3,234 1,132 182 91 0 303 1,265 124 86 

HG00732 7,450 979 62 3,270 1,162 180 92 2 292 1,263 145 80 

HG00733 7,475 1,003 68 3,284 1,180 169 91 1 316 1,264 134 92 

NA19238 8,567 1,148 75 3,825 1,472 192 109 3 352 1,265 131 95 

NA19239 8,539 1,177 76 3,765 1,448 195 101 2 347 1,264 145 89 

NA19240 8,629 1,179 78 3,983 1,536 188 113 2 373 1,264 134 102 
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4.4.5 Systematic comparison of SVs discovered by different platforms 

The deletions and insertions detected by the Illumina sequences in each individual were 

first compared against those predicted by PacBio long sequences, where deletions that share over 

50% reciprocal overlap and insertions that have an insert point within 20bp and predicted insert 

length deviates within 20% were considered as the same event. The results of this comparison are 

displayed in Figure 4.3, where we found ~4000 deletions and ~2000 insertions shared by both 

platforms. There are 4000 – 5000 deletions and 15000 - 16000 insertions uniquely discovered by 

PacBio technology. We further compared the distributions of SV length between both platforms. 

As shown in Figure 4.4, the two platforms discover about the same number of deletions that are 

larger than 300bp, while PacBio sequences have significantly more small deletions (<300bp), and 

insertions of the full length spectrum than Illumina.  

We also checked the overall distribution of overlap portions between Illumina and PacBio 

SVs, where an Illumina SV was paired up with the PacBio SV that shared the largest reciprocal 

overlap, if present. The distribution of number of SVs versus the reciprocal overlap range are 

shown in Figure4.5A, where we observe that 39% PacBio SVs were covered by SVs in the 

integration set by >50 RO, which comprises 52% of the Illumina integration set. Comparing to 

results from individual Illumina callers, we observed a 20% increase in sensitivity. The singletons 

and clusters in the integration set were differentiated in this comparison, where we observed that 

proportion of clusters increases with the reciprocal overlap, indicating a relatively higher quality 

of the clusters.  

We next examined the genotype concordance between Illumina and PacBio SVs as an 

external assessment matrix. For each pair of SVs that share over certain reciprocal overlap, the 
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agreement in number of alternative alleles is counted as their genotype concordance. Thus, 2 is 

assigned if the pair of SVs have the same genotype, 1 if homozygous and heterozygous SV 

predictions were made respectively, and 0 if homozygous reference is predicted in one SV while 

homozygous alternative is in the other. As shown in Figure 4.3B, genotype concordance increases 

with reciprocal overlap, indicating a high fidelity of the genotypes of integrated SVs. 

To evaluate the PacBio SV set, we have included external algorithms for the assessment, 

which include SV calls from two hybrid algorithms, i.e. HySA(Fan et al. 2017) and cloudSV, that 

combine both short and long sequences for the discovery of genomic variants, as well as two SV 

validation approaches i.e. VaPoR and Graphite, that assess the quality of SVs by seeking for 

evidence from long reads and short reads respectively. Each of the four algorithms were treated 

equally for the assessment, and we showed that the external support also increases with the 

reciprocal overlap between the Illumina and PacBio SVs.  

As deletions and insertions are the major components of SVs in both the Illumina and the 

PacBio set, these two types were compared between the platforms for an overall estimation of their 

similarity and difference. Deletions sharing over 50% reciprocal overlap and insertions with insert 

point within 20bp and insert length differ less than 20% are considered as overlaps. As shown in 

Fugure 4.3D, that there are 7,000 to 8,000 deletions per individual that are uniquely discovered by 

PacBio, while 3,000 to 3,500 unique to Illumina. These two platforms share 4,000-5,000 deletions 

in their discovery set. For insertions, there are ~ 16,000 PacBio unique events while only ~2,200 

Illumina unique ones, indicating the possible limitation of Illumina sequencing technology of SV 

detecting algorithms in deciding the insertions. However, it should be noted that insertions are 
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sometimes labeled as duplications instead by Illumina algorithms, which might explain the 

significantly smaller number of insertions in the Illumina set.  

 

4.5 METHOD 

With the high depth Illumina sequences, a total of 15 differen Illumina algorithms 

(Handsaker et al. 2011; Kronenberg et al. 2015; Rausch et al. 2012; Layer et al. 2014; Zhao et al. 

2016; Chong et al. 2016; Michaelson and Sebat 2012; Chen et al. 2016; Ye et al. 2009)  have been 

applied with the parameters either specified by the algorithm developer or default. SVs callers 

were applied in parallel on 9 individuals with results integrated in vcf formats. At the same time, , 

Dr. Chaisson and Dr. Bashir in the consortium have also produced an integrated set of SVs detected 

by PacBio sequences. These are the two main sets that were compared and then combined to reach 

a final discovery set, with additional validations provided by two hybrid (short read and long read) 

SV discovery algorithms, i.e. HySA(Fan et al. 2017) and cloudSV (not yet published) and two SV 

validation approaches (Graphite, and VaPoR 

[http://biorxiv.org/content/early/2017/02/24/105817]). 

4.5.1 Integration of SVs detected by different short library based algorithms 

To achieve an integrated Illumina SV set with optimized breakpoint resolution, a two-layer 

breakpoint focused integration pipeline was developed (Figure4.1), where the breakpoint precision 

was first assessed against SVs predicted by long PacBio reads (PacBio SVs) and then clustered 

based on the estimated varying ranges. 
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To assess the breakpoint precision of a Illumina caller, the SV predictions contributed by 

this algorithm were first compared against the integrated PacBio SVs by 50% reciprocal overlap, 

then the distance between the matched Illumina and PacBio SVs were collected to approximate 

the distribution of the breakpoint precision, with 10% and 90% quantile assigned as the confident 

interval (CI). 

The next step was to cluster breakpoints by overlapping their breakpoint variation, where 

breakpoints from all Illumina callers, as long as their CIs overlap, were clustered to from initial 

breakpoint groups. For each group, the minimized common region shared by all CIs, is there’s 

any, is assigned as the consensus CIs for the merged breakpoint, with the most frequently proposed 

breakpoint assigned as the consensus. In the situation where not a common consensus CI can be 

derived, a pseudo-kernel density model was adopted instead to assign the consensus breakpoints 

(figure2). Where the number of intervals that span through each breakpoint was counted as its 

‘density’, and the consensus breakpoints are assigned at the peaks. Intervals in the group will then 

be assigned to their closest consensus breakpoint.  

With consensus breakpoints decided, the next step is to pair them up for complete 

description of SVs such as deletions, duplications and inversions where two breakpoints are 

required to characterize an event. The pair up were conducted by linking breakpoints where their 

supportive breakpoints come from the same event.  

Insertions are different from deletions, duplications and inversions in the aspect that only 

one insertion point is required for complete characterization, with the insertion length left as 

optional, depending on the characteristics of each algorithm. In this situation, the confident interval 

of insertion point accuracy cannot be defined by 50% RO comparison. A different approach is 
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adopted to estimate the breakpoint accuracy, where each short-read predicted insertion point will 

be compared to its closest PacBio predicted breakpoint, with the distances (if < 1KB) collected 

and confident interval assigned accordingly. Insertion points were clustered in the same way 

described above and no BP pairing step is necessary here. 

4.5.2 Integration of SVs with and without single base resolution 

Unlike other SV detecting algorithms that mainly depend on the read pair and read depth 

approach, GATK(McKenna et al. 2010) has a special design implemented for the discovery of 

smaller event that are under 100 bases, i.e. indels, while with the capability to decide accurate 

breakpoints. Similarly, Pindel and Delly have also included split read modules to accurately define 

indels with single base resolution reported. A quick integration was conducted to directly merge 

indels predicted by these three algorithms by combining the events at exactly the same locus and 

assigning the most frequently proposed genotypes as the consensus for each individual, the set of 

which were later added to the Illumina integration set described above based on these rules: 

1. Any small indels with <50bp DNA bases deleted or inserted were included 

2. Any indels >50bp were first compared against the SV integration set, with both SV 

position and length considered together. Deletions in both sets, if overlap by >80% reciprocal 

overlap and breakpoints within 20bp, were merged together. For insertions, differences in insertion 

sites and insert length were both reqiured to be within 10bp to be merged. 

3. Any event in the indels and SVs that do not overlap, are kept together for 

downstream quality controls. 
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4.5.3 Integrate SVs detected by different sequencing platforms 

Comparison between the Illumina and PacBio SV sets were conducted by checking: the 

reciprocal overlap of SVs in both sets, genotype concordance, and number of external supports. 

See results for more details. 

To integrate the two main sets, support vector machine(SVM) models were iteratively 

trained on each of them, which was started by manually picking up the ‘best’ and ‘worst’ group of 

each set. For PacBio SVs, ‘best’ sets are defined as: SVs that share >90% reciprocal overlap with 

a Illumina merged non-singleton SV and have external support from at least two of the validation 

approaches, while ‘worse’ set were those that do not overlap with any Illumina merged SVs neither 

were supported by any external tools. Similarly for Illumina SVs, the subgroups with extreme 

qualities have been selected based on the reciprocal overlap with PacBio SVs as well as number 

of external supportive. 

The initial SVM model was trained with the extreme subgroups with the ‘best’ set labeled 

as 1 and the ‘worst’ as -1, with these features kept as variables: number of supportive ILL callers 

for each ILL integrated SV, reciprocal overlap of an SV with the closest HySA prediction and 

cloudSV prediction respectively, VaPoR and Graphite validation scores respectively. The model 

was then applied to all SVs. In the following interations, SVM model were trained on subsets of 

SVs randomly selected from those with positive prediction scores (labeled 1) and negative scores 

(labeled -1), and applied to the whole SV set.  The SVMs were conducted by the algorithm 

implemented in R package e1071 (Dimitriadou et al. 2004), and the difference of models between 

adjacent iterations were estimated by calculating the Pearson correlation coefficient(Benesty et al. 

2009) of their weight vectors, used to examine whether the model have reached the convergence. 
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With SVM model trained on both set independently, SVs with positive prediction values 

were kept and merged as the first tier integration.  

 

4.6  DISCUSSION  

In this work, we first proposed an efficient pipeline to integrate SVs discovered by different 

methods, with the capability to estimate the accuracy of the final consensus breakpoints. The 

integrated set of SVs, compared to those proposed by single algorithms, showed significant 

increased predicting power as well as breakpoint precision. With this method, we provided a 

comprehensive set of SVs (over 50 bp) that were integrated from 15 different short read based SV 

detecting algorithms, which includes 18,630 deletions and 8,630 insertions, 2,069 duplications, 

348 inversions as well as 1,503 complex SVs that have mutli-step accumulative rearrangement 

involved. 

Moreover, we have also systematically compared the SVs discovered from different 

sequencing platforms, i.e. Illumina short read paired end sequencing and PacBio long sequences. 

As illustrated in Figure 4.3, nearly half of the Illumina deletions and insertions were shared by the 

PacBio discoveries, which consist ~30% of the overall PacBio deletions and only ~10% of the 

PacBio insertions. With a closer insight into the length distribution as shown in Figure 4.4, we 

showed that PacBio long sequences show significantly higher power in discovering small deletions 

(<300bp) and insertions at full length spectrum. However, it should be noticed that most of the 

short read based algorithms report duplications instead of insertions, which partially explain the 

fact that number of the insertions discovered by short sequencers are depleted except for the ALUs 
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(~300bp peak) and LINE1s(~6Kb peak). Rather than considered as reduced discovering power of 

short sequences, the strength lies in the fact that the duplications clearly stated the origin of the 

inserted sequences, which could greatly aid the downstream analysis such as functional annotation 

of duplicated genomic factors. 

In spite of the large number of SVs that were uniquely proposed by PacBio sequences, we 

have also found ~100 SVs per individual that were, instead, missed by them. One of the possible 

explanation here is the relatively low read depth of long sequences because of their current cost, 

so that the assembly might fail in certain regions due to the lack of enough reads. The other aspect 

to consider, is the fact that long sequences is relatively new compared to short sequences, for which 

the methodology is less mature so that the complex SVs that have multi-step rearrangements 

(especially long-distance translocations) involved are usually partially resolved as simple deletions 

or insertions without the origins of insertion sequences clearly stated.  

In conclusion, we showed in this study that the long read sequences have significant 

superiority, compared to the short reads, in defining small deletions and insertion in terms of the 

number of events as well as the accuracy of defining breakpoints. However, as with the limitation 

of current long read based methodology, the short reads show stronger capability in defining 

complex genomic structural variants that have multiple breakpoints and rearrangements involved. 

At the same time, the fact that most of the currently available long read based SV discovery 

pipelines require global or local assembly presents as a barrier for most researchers to 

independently conduct SV discoveries from long sequences.  
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4.7 FIGURES 

 

Figure 4.1 Integration pipeline of combining SVs predicted by multiple algorithms. 
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Figure 4.2  Breakpoint precision of different Illumina SV discovery algorithms. 

The distributions describe the distance between Illumina and PacBio breakpoints, with left (blue) 

and right(red) breakpoints calculated separately. The algorithms were ranked by their breakpoint 

precision from top left to bottom right, with the confident interval ranging from less than 10 bp to 

over 1Kb. 
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Figure 4.3 Number of deletions and insertions that were uniquely discovered by PacBio and 

Illumina technologies respectively, and those shared by both technologies. 
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Figure 4.4 Distributions of lengths of deletions and insertions discovered in each child from the 

three trios, by Illumina and PacBio technology. 
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Figure 4.5 Comparison between Illumina and PacBio SVs. 

 (A) Reciprocal overlap distribution of SVs from both platforms. Most of the SVs from both sets 

either overlap with >90% reciprocal, or do not interference at all (reciprocal overlap=0). 39% of 

the PacBio SVs, and 52% of the Illumina SVs share over 50% reciprocal overlap SV from the 

other set. (B) Genotype concordance comparison. Top panel shows the relative proportion of 

PacBio SVs that have 2 (PB_2, black), 1(PB_1, dark green) and 0 (PB_0, green) alleles in 

concordance with Illumina SVs, segmented by the range of reciprocal overlap between PacBio 

and Illumina SVs.  Bottom panel represent the same feather in Illumina SVs, with singletons and 

clusters described separately. (C) Proportion of SVs supported by at least 1 external validating 

approach is plotted in the top panel, with the relative proportion of PacBio and Illumina SVs that 

are supported by 0-4 external validators described in the following three panels. (D) Unique and 

shared deletions and insertions detected from Illumina and PacBio respectively. There are 

constantly more SVs discovered by PacBio across the three trios compared to Illumina set. 
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CHAPTER V 

Conclusion and Future Direction 

 

5.1 CONCLUSION    

I have shown in this dissertation that the successful discovery and interpretation of genomic 

structural variants (SVs) is an important yet not fully established area, though SVs consist as a 

significant component of genomic diversity, and contribute as important causal factors for 

numerous human diseases. Owing to the relatively low error rate and cost of next generation 

sequencing, it remains the most popularly adopted platform with large cohorts of datasets produced 

or being processed, as well as various algorithms developed to fit the genomic variant discovering 

purposes. However, the following challenges remain for comprehensively discovering SVs across 

the whole genome with pair-end short insert libraries, which this thesis has focused on developing 

methodologies to address. 

1.         Accurately describe SVs in complex formats where multiple rearrangements 

happen simultaneously or accumulatively at the same genomic locus. 

2.         Define SVs at the diploid level where the rearrangements on each allele could be 

accurately described. 
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3.         Detect variants in complex genomic regions that are of high repetitiveness, where 

the short reads are usually aligned with decreased quality due to the decreased sequencing quality 

and the increased ambiguity arising from such regions, although still harboring a significant 

number of variants. 

To provide proper solutions to these challenges, this thesis has dived deep into the 

development of new methods to describe SVs in all formats across whole genome, while also 

exploring the proper independent and combined application of different sequencing platforms.  

In Chapter II, an integrative randomization approach was developed to accurately describe 

the genomic structural variants in both simple and complex formats, with comparable performance 

achieved in detecting canonical simple SVs against published format while significant superiority 

in describing CSVs. Instead of predicting SVs by statically recognizing aberrant alignment 

patterns, this method searches for the optimized structure through an iterative stochastic process 

where in each iteration a randomly proposed rearrangement is applied to the current structure and 

the alignment patterns are compared to decide the superior one. In each iteration, homologous 

alleles were considered independently to allow read pairs be realigned to the optimized location, 

so that the overlap events where different variants happen simultaneously on the same genomic 

location can be accurately detected. With this approach, we found that a large amount of complex 

SVs were misinterpreted from previous study. For the future direction, application of this method 

to pathological genomes allows systematically examination of the SV complexity in diseased 

versus healthy genomes and could potentially reveal new disease causal mechanism. 

In Chapter III, a long read based SV validation algorithm was developed and implemented 

in a user-friendly software named VaPoR. This tool evaluates the quality of predicted SV by 
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assessing the recurrence matrix of long read against reference genome, and is capable of 

discriminating the partially resolved SVs such as variants with inaccurate breakpoints or wrong 

formats from the fully resolved high quality predictions. This method avoids assembly of long 

reads, which is a popularly adopted approach for SV discovery using long reads, to achieve high 

efficiency while also kept the accuracy by implementing carefully designed statistical models. For 

the future extension, this method could potentially evolve to a stand along SV caller, with delicate 

matrix transforming algorithms included. 

In Chapter IV, an integration pipeline was established to combine SVs predicted by 

multiple algorithms with quality control steps carefully designed. We presented the set of SVs 

integrated from 15 different short read SV callers, which has shown significantly increased 

sensitivity with decreased false discovery rate. In total, we discovered seven to eight thousand 

deletions and three to four thousand insertions per individual genome from short sequences. At 

the same time, ~1,350 SVs in complex / ambiguous formats were discovered per individual, 

consisting ~10% of all the SVs, implying that CSVs consist as an important portion of the 

genomic variants. 

 Moreover, we have also conducted systematic comparison between SVs proposed by 

different sequencing platforms, i.e. short sequences represented by Illumina paired end 

sequencing and long sequences established by PacBio, where we verified the idea that long 

sequences have significantly increased power in describing small SVs with higher, most times 

single base resolutions, as was stated in previous publications (Pendleton et al. 2015; Chaisson et 

al. 2014; Shi et al. 2016). However, we have also shown that SVs in complex formats are usually 

mis- or partially interpreted by long sequences due to the pre-mature methodology nowadays. 
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With each sequencing platform exhibiting relative advantages and disadvantages, the proper 

combination of different platforms would potentially present SVs both comprehensively and 

accurately. 

 

5.2 FUTURE DIRECTION 

Most of the effort that has been put onto this thesis work was towards the goal of accurately 

describing structural variation in human genomes. Instead of pursuing a minimized false discovery 

rate, as is the focus of most other research projects, the objective of this thesis has put emphases 

on the sensitivity side and trying to build the most comprehensive set and testing the limit to which 

extent the most SVs can be correctly described. 

As was shown in Chapter IV of this thesis, most of the current genomic structural variants 

discovery studies focus on understanding SVs in canonical forms, i.e. deletions, insertions and 

inversions, among which approximately 10% are actually complex events that have multiple 

genomic pieces involved. Comprehensively defining and interpreting complex SVs helps us piece 

together different genomic factors as well as get us a finer view of the potential impact of SVs on 

gene function, thus being especially meaningful for locating disease causal variants in pathogenic 

genomes. However, more carefully designed methods and analysis pipelines are required to 

accurately describe such events, where multiple factors outside of the genomic sequences such as 

evolutionary pressure and the penetration rate should also be comprehensively considered. I have 

been fortunate to obtain vast experience in sequence analysis and method development, but have 
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been exposed relatively less to these analysis at the population scale, where I would want to gain 

more experience during my future training. 

The other major challenge of locating pathogenic variants remains with cancer genomes, 

which are usually of high heterogeneity level so that SV discovery models build on the germline 

diploid genomes are of impacted power in such cases. For these questions, ambitious yet realistic 

models are required, where the heterogeneity should be well address while the issue of over fitting 

issues should also be properly avoided. Though challenging, the first chapter of this thesis has 

provided a foundation, based on how an unbalanced model with weighted frequencies of each 

allele could be modified from the original.   

With vast experiences accumulated in genomic variants discovery, I view the main focus 

of my future research shifting to interpreting genomic variants in pathological genomes. As has 

been discussed in the beginning of this thesis, SVs have been revealed by numerous studies to be 

closely related to neurological disorders such as autism and schizophrenia, as well as large 

spectrum of cancers. Systematically discovery of the SVs that are unique to, or significantly 

enriched in diseased genomes, compared against healthy controls, helps locating the potential 

causal variants thus aiding revealing the pathogenic mechanisms.                                                                                                                                                                                                                                                                                                 

Future advances in both sequencing technology and computational innovations will pave the way 

for new understanding in these areas. 
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