
 
Development of In vitro Multi-Species Biofilms to Explore Strategies to Prevent 

Biofilm-Associated Oral Diseases 
 

by 
 
 

Jae Min Shin 
 
 
 
 
 
 

 
 

A dissertation submitted in partial fulfillment  
of the requirements of the  degree of  

Doctor of Philosophy 
(Oral Health Sciences)  

In the University of Michigan 
2017 

 
 
 
 
 
 
 
Doctoral committee: 
 
 
Assistant Professor Alexander H. Rickard, Co-chair 
Associate Professor J. Christopher Fenno, Co-chair 
Professor Yvonne L. Kapila, Co-chair, University of California San Francisco  
Associate Professor Carlos Gonzalez-Cabezas  
Professor Duxin Sun  
 
 
 
 



 
 
 
 
 
 
 

Jae Min Shin 
 

jaemshin@umich.edu 
 

ORCID iD: orcid.org/0000-0003-0491-315X 
 

© Jae Min Shin 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 ii	

 
 

DEDICATION 
 
 

 
I dedicate this work to my grandparents in Korea and  

to my wife Danah  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 iii	

 
 

ACKNOWLEDGEMENTS 
 
 

To my dissertation committee co-chairs Dr. Alexander H. Rickard, Dr. J. 

Christopher Fenno and Dr. Yvonne L. Kapila. Thank you for your full support, 

encouragements, and the tremendous mentorship that you have provided throughout 

my training. My training would not have been the same without having each and one of 

you on my team.  

The Oral Health Science (OHS) Program – Dr. Charlotte Mistretta and Dr. Jan 

C.C. Hu, current and past OHS staff members Patricia Schultz, Manette London, 

Kimberly Smith, Sarah Ellerholz, and fellow OHS students and graduates. Thank you for 

your friendship, encouragements and all your support for the past 6 years.  

Rotation mentors – Dr. Renny Franceschi and Dr. Peter X. Ma for giving me an 

opportunity to rotate in your labs to explore new research and gain valuable knowledge 

through the experience. 

Dean Laurie McCauley for the strong commitment and support for our dual 

degree students. 



	 iv	

Lab members – Dr. Pachiyappan Kamarajan, Dr. Islam Ateia from Kapila lab. 

Valentina Godovikova from the Fenno lab. Ting Luo, Derek Samarian, Gregory Kruse, 

Betsy Salzman from the Rickard lab. And to everyone from the Rickard-Foxman lab 

group!  

Funding sources – I am extremely grateful for the funding sources that made this 

work possible, including the National Institute of Health funding through the Tissue 

Engineering at Michigan training grant, Glaxo Smith Kline IADR Innovation award, 

Colgate Palmolive grant (Special thanks to Dr. Carlo Amorin Daep), Rackham Graduate 

school grants and funding including the pre-candidate and candidate research grants, 

summer research grant, travel grant, childcare subsidy support, funding from 

AADR/IADR research and travel grants, Society for Microbiology President’s grant and 

Gordon Conference on Biology of Spirochetes travel award.  

Thank you to the members of the University of Michigan DDS faculty, especially 

to Dr. Donald Heys, the clinic director of 2 Blue VICS clinic, who was instrumental for 

my clinical training. 

Thank you to the Ann Arbor Community Dental Center, especially to Dr. Bonita 

Neighbors, Dr. Anne Bibik and Dr. Diana Ellis for allowing me to provide dental care to 

our community and mentoring me throughout the process.  

Collaborators – Dr. Nick Jakubovics and the lab mates of Jakubovics lab for 

giving me an opportunity to visit Newcastle University and his wonderful lab. 

 

 

 

 



	 v	

To my father and mother, Mr. Sangho Shin and Mrs. Chunghee Kim. Thank you 

for your sacrifices and unconditional love.   

 

To my wife Dr. Danah Kim, I am extremely lucky and thankful to have you in my 

life and by my side. Thank you for your unconditional support. Much love to you and our 

two boys, Jaden and Eli! 

 

Last but not least, thank you Lord, our Christ Jesus, our savior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 vi	

Table of Contents 

 

DEDICATION          ii 

ACKNOWLEDGEMENTS         iii 

LIST OF TABLES          x 

LIST OF FIGURES          xi 

LIST OF APPENDICES         xiii 

ABSTRACT           xv 

 

CHAPTER I: Introduction 

Oral Biofilms and Disease        1 

Microbial Community of Oral Biofilm     2 

Biofilm-Associated Oral Diseases      3 

Strategies of Targeting Biofilms       4 

Biofilm Inactivating Agents       5 

Inhibiting Bacterial Adhesion: Cell and Surface    6 

 Targeting the Biofilm Glue – EPS      8 

Limitations of Current Strategies        10 

Overall Aims          11 

 



	 vii	

Chapter II. In vitro Models to Study Oral Biofilms 

In vitro Models to Study Oral Biofilms      13 

 Static Microtiter Plate-based Biofilm Models    13 

Glass Bottomed Static Biofilm Model     14  

 Open Flow Microfluidic Biofilm Models     15 

 Swinnex Biofilm Model          16 

 BioFlux Microfluidic Biofilm Model      17 

Tools for Biofilm Analysis         

 Quantification of Biofilm Structure      19 

  MTP-based Staining Method     20  

  Confocal Microscopy Method     21 

  FlowCam® – For Biofilm Dispersion    22 

Biofilm Community Composition       23 

Selection of Model System        25  

  
 
Chapter III: Antimicrobial Nisin Acts Against Saliva Derived Multi-species Biofilms 

Without Cytotoxicity to Human Oral Cells 

Abstract          29 

Introduction          31 

Materials and Methods        34 

Results         44 

Discussion          48 

 



	 viii	

Chapter IV: Biomedical Applications of Nisin 

Abstract           61 

Nisin: A Bacterially-Derived Antimicrobial     62 

Natural and Bioengineered Variants of Nisin Results    64  

Nisin and Treatment of Infectious Diseases       67 

Nisin and Oral Health           71 

Bacteriocins and Cancer: Nisin as a Cancer Therapeutic    74 

Immunomodulatory Role of Nisin       76 

Resistance to Nisin         78 

Concluding Remarks: Outlook       80 

 

Chapter V: Effect of L-Arginine on Destabilization of Oral Biofilms Developed in a 

Swinnex Model System 

Abstract          88 

Introduction          90 

Materials and Methods        92 

Results          98 

Discussion          102 

 

 

 

 

 



	 ix	

Chapter VI: Conclusion and Future Directions 

Conclusions          113 

Future Directions         115 

 

Appendices            118 

References           182



	 x	

 

 

 

LIST OF TABLES 

 

Tables 

 
III.1 MICs and MBCs of Planktonic Oral Pathogens     60 
 
IV.1 Natural and Bioengineered Variants of Nisin     84 
 
IV. 2 Overview of Biomedical Applications of Nisin     85 
 
B.1 Summary of Metabolomic-Based Studies on Head and Neck    

Cancers          151 
          
C.1 Human Subject Information       179  
 
C.2 The p-value matrix indicates the differential abundance of each  

phylum between tissue samples by status     180  
 
C.3 Random forest analysis (RFA) was conducted to predict the  

tissue status by OTUs        181 
 

 

 

 

 

 

 

 

 



	 xi	

 

 

 

LIST OF FIGURES 

 

Figures 

I.1 Multi-Species Oral Biofilm        12  
 
II.1 Microtiter Plate-Based Biofilm Model      26 
 
II. 2 Glass Bottomed Static Biofilm Model      26 
 
II. 3 Open Flow Microfluidic Biofilm Models      27 
 
II.4 BioFlux Microfluidic Biofilm Model       28 
 
III.1 Nisin Inhibits the Growth of Cariogenic and Periodontal Pathogens  54 
 
III.2 Nisin Inhibits the Formation of Multi-Species Biofilms in a Static  

Model System         55 
 

III.3 Nisin Inhibits the Formation of Multi-Species Biofilms in a BioFlux  
Controlled Flow Microfluidic Model System     56  
 

III.4 Nisin Disrupts the Maintenance of Three-Dimensional Architecture  
of Pre-Formed Biofilms        57 

 
III.5 Nisin has Minimal Cytotoxicity to Human Cells Relevant to the  

Oral Cavity          58 
 
III.6 Nisin Does Not Effect Cell Proliferation of Human Cells   59 
 
IV.1 Timeline of Nisin Development        82 
 
IV.2 Peptide Structure of Nisin        82 
 
IV.3 Nisin Inhibits the Formation of Multi-Species Biofilms     83 
 



	 xii	

IV.4 Nisin Z Inhibits Orasphere Formation in HNSCC Cells    83 
 
V.1 A Schematic Diagram of the Swinnex Biofilm Model System   106 
 
V.2 Validation of the Swinnex Model System      107 
 
V.3 The Effects of L-Arginine on Oral Biofilms     108 
 
V.4 The Dispersion Effect of L-Arginine on Oral Biofilms    109 
 
V.5 Community Composition of the Biofilms and the Dispersed  

Biofilm Cells          110 
 
V.6 The Diversity of the Communities Found in the Biofilms and  

the Dispersed Biofilm Cells        111 
 
V.7 A Proposed Model for the Short and Long-term Effects of  

High Concentrations L-Arginine on Biofilm Destabilization   112  
 
A.1 Antimicrobial effects of nisin on E. faecalis     132 
 
A.2 Anti-biofilm effects of nisin on E. faecalis biofilms    133 
 
A.3 Anti-biofilm effects of low concentrations of NaOCl with nisin  

on E. faecalis biofilms        134 
 
A.4 Viability of E. faecalis biofilms after being treated with  

nisin-alone or in combination with low concentrations of NaOCl  135 
 
B.1 Head and neck cancer metabolism      150  
 
C.1 Alpha and Beta diversity of Normal, Primary and Metastatic  

Tissue Samples         175 
 
C.2 Phylum and Genus Distribution of the Normal, Primary  

and Metastatic HNSCC Tissue Samples      176 
 
C.3 Relative Abundance of Fusobacterium and Streptococcus  

Population by Sample Types       177 
 
C.4 Distinguishing Normal and HNSCC Samples     178 
 
 
 
 
 



	 xiii	

 
 
 
 

 
  

LIST OF APPENDICES 
 
 
 
APPENDICES           
 
 
A. High Purity Nisin Alone or in Combination with NaOCl is Effective 
  Against Planktonic and Biofilm Populations of Enterococcus faecalis  
 
 Abstract          119 
 
 Introduction          121 
 
 Materials and Methods        123 
 
 Results          127 
 
 Discussions           129 
 
  
 
B. Metabolomics of Head and Neck Cancer:  A Mini-Review 
 
 Abstract          136  
 

Introduction          138 
  
 Biological samples used for head and neck cancer metabolomics  139 
 
 Saliva metabolomics        140 
 
 Blood and urine metabolomics       142 
 
 Cell and tissue metabolomics       145 
  
 Influence of microbial metabolomics        146 
 
 Concluding Remarks        148 
 



	 xiv	

C. Microbial Communities Associated with Primary and Metastatic  
Head and Neck Squamous Cell Carcinoma –  
A High Fusobacterial and Low Streptococcal Signature 

 
Abstract          154 

 
 Introduction          156 
 
 Materials and Methods        158 
 
 Results          162 
 
 Discussions          169 
 
  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 xv	

 

 

Abstract 

 

More than 80% of infectious diseases are caused by microbial biofilms. In the 

oral cavity, biofilms are composed of hundreds of distinct bacteria. The accumulation of 

oral biofilms can lead to caries and periodontal disease. From a public health 

standpoint, the cost of treatment for oral diseases remain high, at over $100 billion 

dollars per year in US alone. The primary aim of this project was to evaluate new anti-

biofilm agents using novel in vitro biofilm model systems. In addition, the biology of oral 

biofilms and their relationship to oral diseases are discussed in the context of their 

development in laboratory biofilm model systems.   

Nisin is a unique bacteriocin generated by a group of Lactococcus and 

Streptococcus species. The objective of the first part of the work was to determine if 

nisin exhibited broad-spectrum antimicrobial effects against oral bacteria. In addition, 

the presented work showed that nisin inhibited the growth and maintenance of saliva 

derived biofilms developed in static and controlled-flow biofilm model systems. Even at 

higher concentrations, nisin did not exhibit cytotoxic effects on human oral cells.  

L-arginine is an amino acid that is present in low levels in the oral cavity. At lower 

concentrations, L-arginine is a nutrient source for arginolytic bacteria. The objective of 

the second part of the work was to explore the short-term effects of high concentrations 

of L-arginine on oral biofilms. A modified Swinnex model system was used to develop 

the multi-species oral biofilms and the FlowCam® was used to monitor the biofilm 



	 xvi	

dispersion. In a dose-dependent manner, L-arginine treatment resulted in biofilm 

destabilization through enhanced biofilm dispersion. Based on community analyses of 

the biofilms and the dispersed cells, L-arginine did not result a significant shift in the 

community compared to the water-treated controls. 

In summary, the work presented in this thesis demonstrated that complex 

biofilms, that contain species present in the human oral cavity, can be developed using 

three different in vitro biofilm model systems. In addition, we showed that nisin and L-

arginine has high potential to disrupt the in vitro developed multi-species biofilms and 

these compounds have potential as novel anti-biofilm agents. 
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Chapter I 

 
 

Introduction  
 

 
 

Oral Biofilm and Disease 

 

The oral cavity is a nutrient rich habitat for complex community of 

microorganisms. Indeed, the mouth offers numerous sites for bacteria to adhere and 

prosper as oral biofilms, which is also known as the dental plaque (Marsh 2004). A 

biofilm is defined as a matrix enclosed bacterial population(s) existing together on a 

living and non-living surfaces (Donlan and Costerton, 2002; Flemming and Wingender, 

2010). As a sessile structure, the microbial cells of the biofilm are irreversibly attached 

to each other and to the bound substratum. In addition, the biofilm structures self-

produce exopolymeric substances (EPS), which have numerous functions to protect 

and maintain the biofilm architecture (Flemming and Wingender, 2010). Bacterial 

populations embedded in the matrix function and live together, and communicate with 

one another through a process known as quorum sensing (QS) (Zhang and Dong, 

2004).  
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The Microbial Community of Oral Biofilm 

 

 Oral biofilms represent the second most diverse microbiome found in the human 

body next to the gut (Kilian et al., 2016). The oral biofilm community consists of more 

than 700 different bacterial species, where distinct groups of bacterial communities are 

present in different locations (ie. supragingival, subgingival, tongue; Fig.I.1) (Palmer 

2014). The major phyla groups that represent the oral microbiome include: Firmicutes, 

Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, Spirochaetes, SR1, 

Synergistes, Tenericutes and TM7 (Bik et al., 2010; Dewhirst et al., 2010). The major 

genera include: Streptococcus, Corynebacterium, Neisseria, Haemophilus, 

Actinomyces, Fusobacterium, Rothia, Veillonella, Granulicatella, Prevotella, 

Porphyromonas, Capnocytophaga, Leptotrichia, Selenomonas, Treponema and 

Gemella (Keijser et al., 2008; Zaura et al., 2009). However, depending on the oral 

habitat, sequencing platforms (e.g., Illumina, PGM, 454) and the type of analysis 

performed (ie. 16S rRNA, whole genome sequencing), the presence and abundance of 

these bacterial groups can vary and are not limited to the phyla and genera mentioned 

above (Palmer 2014). Furthermore, based on findings from current sequencing 

technologies, there are still numerous unidentified bacterial taxa (Palmer 2014). 

However, based on the current knowledge of the oral biofilm ecology, it is clear that the 

biofilm communities associated with health and disease are significantly different from 

each other. For example, subgingival biofilms collected from subjects diagnosed with 

periodontal disease have higher biomass and diversity (Abusleme et al., 2013). In 

addition, periodontal diseased-associated biofilms are known to have higher proportions 
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of bacterial species such as Porphyromonas gingivalis and Treponema denticola, which 

are known periodontal pathogens (Dewhirst et al., 2010; Wade 2013).   

 

Biofilm-Associated Oral Diseases 

 

Two of the most well described oral biofilm-associated diseases are caries and 

periodontal disease (Marsh 2006). Dental caries is characterized by the local 

destruction of enamel and dentin surfaces by acidic products produced by bacterial 

fermentation of dietary carbohydrates (Matsui and Cvitkovitch, 2010). Periodontal 

disease is a complex inflammatory disorder of the periodontal tissue, where chronic 

persistence can lead to soft and hard tissue destruction (Philstrom et al., 2005). In both 

diseases, biofilms play a major role in initiation and progression of the disease 

processes. In the US alone, over $100 billion dollars are spent each year on dental 

services, where majority of these treatments are likely due to caries and periodontal 

disease (Chronic Disease Prevention and Health Promotion, 2017). Furthermore, oral 

diseases are a global health burden, where it has a major impact on people’s daily lives 

and well-being (Petersen et al., 2005). Thus, to lower the substantial public health 

burden generated by oral biofilms, the development of novel strategies to prevent and 

better treat biofilm-associated oral diseases are in need of further research. In addition, 

because of the anatomic closeness of the oral biofilms to the blood stream, an oral 

infection can cause biofilm-associated systemic diseases (Li et al., 2000). The spread of 

pathogenic oral bacteria and their components can trigger the body’s immune system 
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and have been linked to systemic diseases such as diabetes, pneumonia and 

cardiovascular diseases (Li et al., 2000).  

 

Strategies of Targeting Biofilms 

 

Infectious diseases impose a major health burden to our society. Millions of 

people are affected by bacterial-related infectious disease, where more than 80% of 

human infections are caused by biofilms (Costerton et al., 1999). In order to prevent and 

treat biofilm-associated oral diseases, several strategies can be implemented. From a 

clinician’s perspective, diet (ie. reduction of frequent sugar and fermentable 

carbohydrate intake) and proper oral hygiene (ie. brushing and flossing) are critical for 

controlling oral biofilms. Adequate biofilm control through brushing and flossing is 

essential to avoid over-accumulation of biofilms, which can promote inflammation and 

calculus development. The public health burden of oral biofilms continues, as most 

individuals fail to practice proper oral hygiene techniques (Morris et al., 2001). The 

usual mechanical biofilm control procedures primarily focuses on the enamel surfaces. 

However, the enamel surfaces represent only about 25% of all of the biological surfaces 

present in the oral cavity for biofilm adhesion (Kerr et al., 1991). The most difficult areas 

in the oral cavity to keep biofilm-free are the interproximal areas between teeth and at 

the junction of the soft and hard tissues, and below the gums. Hence, effective chemical 

biofilm control strategies may help better control the biofilm accumulation on both hard 

and soft tissues to improve oral health. 
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 In the following sub-sections of Chapter 1, the focus of discussion will be on 

novel strategies to eradicate oral biofilms. Specifically, the focus will be on the natural 

and synthetic antimicrobial/biofilm agents that have been reported to have therapeutic 

potential against oral biofilms.  

 

Biofilm Inactivating Agents 

 

In commercial oral health care products, such as mouthwash and toothpastes, a 

variety of biofilm inactivating agents can be present. For example, in mouthwashes, 

antimicrobial agents such as cetylpyridinium chloride (CPC) and chlorhexidine 

gluconate (CHX) are commonly found (Mandel 1994; Asadoorian and Williams, 2005). 

When considering these two agents, dental professionals prescribe CHX solution for 

control of pathogenic biofilm infection (Mandel 1994). CHX has potent antimicrobial 

activity and has good substantivity, where about 30% of the solution is retained in the 

oral cavity following usage (Cummins 1992). CPC is a quaternary ammonium 

compound, and is also widely formulated into anti-biofilm mouthrinses (Marsh 2010). 

CPC exhibits strong antimicrobial activity at low concentrations, since 0.075%-CPC 

containing mouthrinses were shown to be effective against multi-species oral biofilms 

(Rao et al., 2011). However, unlike CHX, CPC loses its activity when adsorbed to a 

surface and is less susbstantive compared to other molecules (Scheie and Petersen, 

2003). Like many of the other antimicrobial agents and detergents, CPC and CHX are 

both cationic molecules, which have a membrane inactivating function by interacting 

with the negatively charged bacterial membrane (Smith et al., 1991; Rao et al., 2011).  
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Inhibiting Bacterial Adhesion: Cell to Cell and Cell to Surface 

 

Bacterial adhesion to surfaces and/or to other microorganisms (autoaggregation 

and coaggregation) can be targeted to inhibit the formation of biofilms. Autoaggregation 

is when a single species aggregates on their own, whereas, coaggregation is defined as 

the highly specific aggregation of two or more distinct bacterial species (Katharios-

Lanwermeyer et al., 2014). From early studies of oral biofilm development, it was 

demonstrated that the primary bacterial adhesion to a pellicle-coated enamel surface is 

a highly specific process (Liljemark and Bloomquist, 1996). Gram-positive oral 

streptococci such as Streptococcus gordonii initiate primary colonization through 

specific interactions mediated by bacterial adhesins (Jakubovics et al., 2014). The 

successional colonization of oral bacteria require partner specific coaggregation 

interactions, which has been validated and recognized as a critical process for the 

development and maturation of oral biofilms (Kolenbrander and London, 1993; 

Kolenbrander et al., 2006).  

Molecules extracted from the natural environment have gained considerable 

attention in dentistry as anti-biofilm agents. For example, a group of plant extracts were 

tested in vitro, ex vivo and in situ to demonstrate their effectiveness against oral biofilms 

(Karygianni et al., 2016). A high molecular weight material (NDM) from cranberry juice 

has been shown to inhibit intergeneric coaggregation of oral bacteria (Weiss et al., 

2002). Furthermore, NDM was shown to reduce the adherence of oral streptococci 

strains to saliva-coated hydroxyapatite beads (Yamanaka et al., 2004).  Lactose and 

related sugars were demonstrated to inhibit coaggregation between Fusobacterium 
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nucleatum and P. gingivalis (Kolenbrander et al., 1989). Dealcoholized red wine 

components were shown to have anti-adhesion and anti-biofilm properties against 

Streptococcus mutans (Daglia et al., 2010). Investigators have hypothesized that the 

anti-adhesive properties of natural molecules could be partly due to the action of 

organic acids (van Loveren et al., 2012). CPC and CHX can also directly inhibit cell-to-

cell coaggregation in addition to the biofilm inactivating mechanisms (Smith et al., 

1991). However, it is important to note that not all of the anti-biofilm agents can inhibit 

coaggregation, since coaggregation is a highly specific, and strong adhesin-receptor 

interaction (Rickard et al., 2003). Furthermore, the coaggregation interactions among 

oral bacteria are extremely broad and diverse, which may account for the success and 

failures of different types of anti-biofilm compounds (Rickard et al., 2003).     

 Surface anti-adhesion agents for the prevention of biofilm formation have 

numerous applications not limited to dentistry. Bacterial biofilms present major problems 

for implant-related medical devices, such as the hip/knee implants and dental implants 

(Donlan, 2001; Costerton et al., 2005). During the initial attachment and the primary 

colonization phase of biofilm formation, planktonic are generally more sensitive to 

antimicrobials and to immune cell responses than those present in biofilms (Salwiczek 

et al., 2013). Hence, antimicrobial coatings have shown promising results in reducing 

biofilm formation (Hasan et al., 2013; Salwiczek et al., 2013). Such anti-biofilm surface 

coating materials include natural and synthetic antimicrobial peptides (AMPs), polymers 

and polysaccharides, metal ions and other anti-adhesive molecules (Salwiczek et al., 

2013). For example, coating the surface with a naturally occurring polysaccharide 

chitosan was shown to be effective in inhibiting the biofilm formation of bacteria and 
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fungi (Carlson et al., 2008). Nisin has been used to create a low-fouling antimicrobial 

coating to prevent biofilm adhesion and formation (Vreuls et al., 2010). For dental 

implants, others have shown that altering the surface roughness and coating the 

surface with antimicrobial agents promoted better osteointegration while limiting the 

biofilm formation (Abdulkareem et al., 2015).  Thus, the modification of the biofilm-

attaching surface is another strategy to prevent biofilm formation.  

 

Targeting the Biofilm Glue – EPS 

 

As previously mentioned, the biofilm matrix, which is a complex mixture of  

extracellular polymeric substances (EPS), plays critical roles for the maintenance of 

biofilm structure (Flemming and Wingender, 2010). The EPS function as a structural 

scaffold for the biofilm and is responsible for surface adhesion and for cohesion within 

the biofilm structure (Flemming and Wingender, 2010). Hence, an anti-biofilm strategy 

where the EPS is targeted can promote biofilm dispersion and eradication (Kaplan 

2010). Some examples of the matrix degrading enzymes that promote biofilm dispersal 

include glycosidases, proteases, deoxyribonucleases and DNases (Kaplan 2010; 

Jakubovics et al., 2013). Particularly, dispersin B is a well-known matrix-degrading 

enzyme produced by a periodontal pathogen, Aggregatibacter actinomycetemcomitans 

(Kaplan et al., 2003). A. actinomycetemcomitans is not a motile species, but it can 

release itself from the intact biofilm through using dispersin B (Manuel et al., 2007). 

Other notable enzymes associated with biofilm matrix disruption include mutanase, 

glucanase and amylogucosidase-glucose oxidase (Marsh 2010). In a complex microbial 
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community like the oral biofilm, it is likely that species interactions such as competition, 

mutualism, predation or parasitism resulted in the evolution of certain species to 

possess innate dispersal mechanisms (Kaplan 2010).  

Most, if not all, of the matrix-degrading enzymes mentioned above mediate 

biofilm dispersion. For biofilm dispersion, there are at least distinct mechanisms that 

have been reported, which are erosion, sloughing and seeding (Kaplan 2014). “Erosion” 

describes a process where slow continuous release of single cells or small clusters of 

cells from a biofilm occur during the early biofilm development period. “Sloughing” is the 

sudden detachment of large portions of the biofilm structure, which occur in the later 

stages of biofilm formation (Lappin-Scott and Bass, 2001; Stoodley et al., 2001). Both 

erosion and sloughing processes can occur in an active or passive manner, where the 

active dispersion is initiated by the bacteria themselves, and the passive dispersion is 

through the external forces (ie. shear force, chemical agents, human intervention) 

(Kaplan 2010).  Lastly, “dispersion” through seeding refers to the central hollowing of 

the biofilm structure through the release of single cells or small clusters of cells (Ma et 

al., 2009). The seeding mechanism occurs only as an active dispersion process. For 

example, in this dissertation project, we hypothesized that L-arginine causes biofilm 

destabilization through the action of biofilm dispersion. The work presented here 

indicates that high concentrations of L-arginine promotes sloughing of the in vitro oral 

biofilms. In Chapter V, the potential role of high concentrations of L-arginine in 

enhancing biofilm destabilization will be discussed in detail. 
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Limitations of Current Strategies 

 

Despite the tremendous advancements achieved in the development of anti-

biofilm agents, limitations still exist within the current strategies. For example, in some 

of the most well-known antimicrobial agents for oral biofilm control, unwanted side 

effects have been reported. Prolonged usage of CHX causes browning of teeth and oral 

mucosa, promotes calculus formation, alter taste sensation and cause soft tissue 

ulcerations (Berchier et al., 2010). Mouthrinses containing strong antimicrobial agents 

such as CHX, CPC and alcohol can cause host cell damage in addition to their anti-

biofilm effects (Carlin et al., 2012).  Although in vitro studies have demonstrated great 

therapeutic potential for anti-adhesion coating materials and matrix degrading enzymes, 

the in vivo efficacy still remain elusive considering the complex interactions between the 

drug with the bacteria and the host cell-derived proteins (Chen et al., 2013). 

Furthermore, the translation of in vitro results to the in vivo conditions, and to clinical 

trials are lacking with anti-biofilm agents. This drawback is not limited to the field of 

biofilm research, but is also relevant to other scientific fields such as cancer biology 

(Mak et al., 2014). For example, a novel antimicrobial/biofilm agent may effectively 

inhibit biofilm formation and cause biofilm dispersion in vitro, but could generate a non-

specific inflammatory and allergic response in vivo to limit their therapeutic potential. 

Thus, considering that there are still many limitations in the current biofilm control 

strategies, further research is needed to identify new anti-biofilm agents and model 

systems to exploit better approaches for biofilm control.   
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Overall Aims  
 
 

The main objective of this dissertation work was to develop and apply novel in 

vitro biofilm model systems to study the oral biofilm physiology and strategies to inhibit 

biofilm formation and maintenance. Within this main objective, we utilized three different 

biofilm model systems, i) static biofilm model, ii) BioFlux microfluidic system, and iii) the 

modified Swinnex biofilm model system. Furthermore, we investigated the therapeutic 

potential of two novel anti-biofilm agents, nisin and L-arginine. Chapter I outlines the 

background information of oral biofilm and disease. In Chapter II, old and new in vitro 

biofilm model systems for oral biofilm studies are discussed. Current tools and 

technologies for biofilm analyses and limitations of model systems are further 

discussed. In Chapter III, the results obtained for the anti-biofilm activity of nisin on 

saliva derived oral biofilms are discussed. In Chapter IV, a comprehensive review of 

biomedical applications of nisin is discussed. In Chapter V, the effect of L-arginine on 

multi-species oral biofilms is discussed. Lastly, conclusions and future directions are 

discussed in the final chapter. 
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Figure I.1. Multi-Species Oral Biofilm. Dental plaque and biofilms that form on the 
tongue are examples of oral biofilms. Depending upon the age, an oral biofilm can be 
composed of hundreds of different bacterial species and forms on both soft and hard 
tissues around the oral cavity. In addition to biofilm age, biofilm community composition 
varies depending on the residing habitat. Three distinct locations for oral biofilm 
residence are shown in the figure as an example, i) the enamel surface (yellow), ii) the 
subgingival region (red), and iii) the tongue surface (green). Image adopted and 
modified from https://www.sciencenews.org/article/gum-disease-opens-body-host-
infections.     
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Chapter II 

 

In vitro Models to Study Oral Biofilms 

 

 The development and application of novel systems are critical for understanding 

biofilm biology (Hamilton et al., 2003; Coenye and Nelis 2010). The evolution of in vitro 

biofilm model systems has resulted in significant advancements in capabilities over the 

past few decades.  For example, biofilms can be reconstructed in 3D using the images 

captured from the high-resolution microscopes with sophisticated imaging softwares. In 

Chapter II, the focus of discussions will be on in vitro biofilm model systems. The 

discussions will focus on the micro-scale models (systems that use small volume of 

media) that have been used to develop and evaluate multi-species biofilms. In addition, 

the application of both closed (ie. static) and open (ie. flowing, microfluidic) model 

systems will be discussed. Furthermore, the in vitro model biofilm systems used for the 

dissertation project will be discussed.  

 

Static Microtiter Plate-based Biofilm Models 

  

 Arguably the most commonly used biofilm model system are is the Microtiter 

plate (MTP) -based system (Coenye and Nelis 2010; Azeredo et al., 2017). A MTP 
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biofilm model usually contains 6, 12, 24 or up to 96-wells per plate. The biofilms 

typically grow on the bottom of the plate well, or alternatively, a coupon (ie. 

hydroxyapatite discs) can be inserted into the well as the biofilm substratum. Usually, 

the biofilm substratum is plastic (ie. polystyrene) or glass (high quality optical glass) . 

However, the substratum can be modified as needed with different coating materials 

(Macia et al., 2014). The MTP biofilm model is a closed batch reactor-like system, 

meaning there is no exchange of media flowing in or out during the biofilm development 

period (Heersink and Goeres, 2003). Hence, the growth media must be frequently 

changed to avoid biofilm starvation and unwanted cell death.   

 Microtiter plates are available from numerous commercial vendors and have 

been widely accepted as a robust in vitro biofilm model system. The advantages include 

1) simple and easy setup for experiments, 2) inexpensive cost relative to the 

experimental output, and 3) high throughput results for screening of anti-biofilm agents 

(Niu and Gilbert, 2004). An example of a classic MTP-based system is the Calgary 

biofilm device, which utilizes a 96-well plate design with pegs attached to the lid for 

biofilm formation (Fig. II.1) (Azeredo et al., 2017).  

 

Glass Bottomed Static Biofilm Model 

  

 Both glass and plastic based microtiter plates are widely used for biofilm 

experiments (Merritt et al., 2005). Unlike the most assays using the continuous flow 

systems, the static MTP-based biofilm models do not require complex setups or 

specialized equipment. Single, dual, mixed and more complex multi-species oral biofilm 
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types have been studied using both glass and plastic based MTP-based models 

(Darrene and Cecile, 2016). The main advantage of using the glass based microtiter 

plates over the plastic is the ability to capture the high-resolution microscopy images 

directly from the biofilm substratum without altering the biofilm architecture. For the 

dissertation work outlined in Chapter III, twenty-four well glass bottomed sensoplates 

were used for screening and assessing short and long-term effects of nisin on oral 

biofilms (Greiner Bio-One, NC, USA; Fig. II.2).  

 

Open Flow Microfluidic Biofilm Models 

 

 In contrast to a static, ‘closed’ biofilm model system, an ‘open’ system has 

continuous flowing of media during biofilm formation (Coenye and Nelis, 2010). A major 

advantage of an open system compared to a static system is the ability to precisely 

control the environmental parameters such as shear force (Lebeaux et al., 2013).  Two 

well-known first generation of open flow biofilm model systems are the Modified 

Robbins device (MRD) and the Centers for Disease Control (CDC) biofilm reactor 

(Azeredo et al., 2016). Despite their proven reliability, these older models tend to be 

bulky, expensive and require a high volume of media per run. These features make 

them less suitable for conducting experiments with numerous strains and under different 

environmental conditions (Coenye and Nelis, 2010; Azeredo et al., 2016). In addition, 

the risk of contamination and introduction of artifacts are a major concern, since the 

inserted coupons must be removed for examination of developed biofilms (Azeredo et 

al., 2016). The MRD and the CDC biofilm reactors are still used today, but can be 
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considered outdated and cumbersome compared to the newer, more refined 

microfluidic devices (Nickel et al., 1985; Donlan et al., 2004) (Fig. II.3 A and B).  

 

Swinnex Biofilm Model  

 

The Swinnex biofilm model is a unique ‘open’ biofilm model system adapted from 

an earlier biofilm model called the ‘baby machine’ (Helmstetter and Cummings, 1963). 

The baby machine was developed to study the growth rate of single species, thin 

homogeneous biofilms and it is called the baby machine because it can be used to 

study the daughter cells released from the biofilms (Helmstetter and Cummings, 1963). 

However, due to the common technical difficulties associated with frequent leakage 

during the model run, contamination, and burst of filter membranes, a more practical the 

Swinnex biofilm model was developed (Gander and Gilbert, 1997). The Swinnex filter 

holder is commonly used for filtration of liquids for bacteria and liquid particles. Gander 

and Gilbert utilized a cellulose nitrate membrane as the biofilm substratum in the 

Swinnex filter holder to grow Escherichia coli biofilms and study their susceptibility to 

antibiotics (Gander and Gilbert, 1997). For the current project, the original Swinnex 

model was modified to study the biofilm biology of multi-species oral biofilms (Chapter 

V).  

The Swinnex model is an ideal in vitro system if the biofilm dispersion is of 

interest (McBain, 2009). Similar to the baby machine model, the biofilm on the 

membrane can be assessed and in addition to the released daughter cells.  The 

advantages of this model includes 1) the ability to monitor the different mechanisms of 
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biofilm dispersion processes (ie. sloughing) 2) all parts are reusable through 

sterilization, resulting in low cost for the setup, 3) the model has a micro-scale design, 

requiring small volume of media per sample, and 4) is versatile, since the biofilm and 

the detached daughter cells can be analyzed using microscopy and FlowCam® 

techniques. Some limitations are 1) short-term growth may not generate an adequate 

biomass for physical and molecular analyses and 2) a standardized protocol is absent 

since it is not a widely used model system.  

 

BioFlux Microfluidic Biofilm Model  

 

 Microfluidic devices are modern ‘open’ systems that require only a small volume 

of media to conduct biofilm experiments. The material used to build a biofilm substratum 

for a microfluidic device includes glass, plastic and organic polymers (ie. poly-

dimethylsiloxane) (McDonald et al., 2000; Becker and Gartner, 2008; Iliescu et al., 

2012). An example of a microfluidic device applicable for studying multi-species oral 

biofilm is the BioFlux device (Benoit et al., 2010). The BioFlux system is a unique multi-

channeled microfluidic device distributed by a company called Fluxion Biosciences (San 

Francisco, CA, USA) (Fig. II.4). Currently, Fluxion offers three different BioFlux systems 

(Bioflux 200, BioFlux 1000, BioFlux EZ) in combination with 6-, 24- and 48-well plate 

designs compatible with their machineries (https://bioflux.fluxionbio.com/).  The cost of 

the entire setup can be high, however, if the plates are re-used and the system is 

frequently used; the cost in relation to the outcomes are considered reasonable.  
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For this dissertation project, the BioFlux 200 system with the 48-well BioFlux 

plate was used to evaluate the anti-biofilm properties of nisin on saliva-derived multi-

species oral biofilms (Shin et al., 2015; Fig. II.4). The advantages of the BioFlux system 

includes 1) the high throughput capability, up to 24 samples per run using the 48-well 

plate design, 2) requiring less than 1 ml of media per sample for overnight biofilm 

development, 3) precise control of temperature and shear force in a confined 

microfluidic environment, and 4) the ability to directly evaluate spatial geometry of 

biofilms, down to a single cell level through high resolution microscopy (Benoit et al., 

2010; Nance et al., 2013; Samarian et al,. 2014). Limitations of the BioFlux system 

includes 1) high initial cost for the system and tools, 2) the system itself is still new and 

needs further validation through cross-study comparisons, and 3) the achievement of a 

conventional anaerobic environment using mixed gases and nitrogen have not been 

validated to study oral anaerobic pathogens and subgingival biofilm communities. 
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Tools for Biofilm Analysis 

 

Quantification of Biofilm Structure 

 

 The quantification of biofilm properties allows a deeper understanding of the 

spatial organization of the biofilm architecture, their heterogeneities and patterns of 

biofilm disruption as a result of an anti-biofilm or biofilm-modifying agent. There are 

number of different ways to quantify a biofilm structure for in depth analyses. Methods 

to assess the biofilm’s physical properties include the traditional microbiological 

methods (ie. counting colony formation units), molecular methods (ie. quantitative 

polymerase chain reaction), physical methods (ie. by measuring the dry and wet 

weight), chemical methods (ie. dye staining; crystal violet) and microscopy methods (ie. 

confocal microscopy + fluorescent staining, electron and atomic force microscopy). In 

this sub-section of Chapter II, two of the most commonly used methods to quantify the 

biofilm structures will be discussed: 1) MTP-based methods (ie. Crystal violet staining 

method), and 2) Confocal microscopy method (ie. Fluorescent staining and 3D 

analysis). In addition, the newly developed FlowCam® approach will be discussed as a 

novel biofilm quantification method.  
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MTP-based Staining Method 

 

 For the biofilm staining methods, chemical dyes, fluorescent antibodies and 

nucleic acid stains are commonly used to quantify the biofilm structures (Azeredo et al., 

2017). Crystal violet (CV) staining method is the most frequently used method to 

quantify the biofilms in the MTP-based systems (Azeredo et al., 2017). The CV stains 

both live and dead cells as well as the matrix components, which makes it suitable for 

quantifying the entire biofilm structure (Pitts et al., 2003). The advantages of this 

method include 1) versatility, as this method is applicable for most bacterial strains, 2) 

biofilms are stained directly in the well without removal from the substratum, and 3) the 

assay is quick, so multiple test conditions can be assessed simultaneously. Limitations 

of the CV staining method includes 1) the assessment of the biofilm biomass is a crude 

estimate and can be highly subjective, 2) the quantity of live and damaged/dead cells 

cannot be distinguished, 3) the measured biomass may contain settled planktonic 

bacteria, and 4) a standardized protocol is still lacking and reproducibility is a major 

concern (Stepanovic et al,. 2007; Peeters et al., 2008).   

 A plate reader can be utilized with CV and other staining methods mentioned 

above to quantify the biofilms formed over time in a high throughput manner (O’Toole 

2011). For this dissertation project, a green fluorescent nucleic acid stain, Syto-9 

(Invitrogen, Carlsbad, CA, USA) was used to stain the oral biofilms and quantified using 

a plate reader (Shin et al., 2015; Chapter III).  
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Confocal Microscopy Method 

 

Microscopy methods in conjunction with computer imaging software such as 

IMARIS (Bitplane AG), COMSTAT and ImageJ have become popular for biofilm 

analyses (Heydorn et al., 2000; Abramoff et al., 2004). Microscopy methods are useful, 

since qualitative and quantitative types of analysis can be performed. As a base-line 

technique, light microscopy can be used to detect the presence of a biofilm structure. In 

addition, when combined with classic staining techniques such as the Gram staining, it 

can be used to distinguish between the Gram-positive from Gram-negative species. 

Light microscopy methods are very practical, inexpensive and reliable methods to 

obtain some general information of the biofilm architecture. However, due to the limited 

magnification and resolution, detailed quantification analyses are much better with a 

high resolution microscopes such as the confocal laser scanning microscope (CLSM). 

For this dissertation project, Leica CLSM was used to quantify the biofilms (SPE, Leica, 

USA).  

The CLSM together with fluorescent staining (ie. syto-9 and propidium iodide) 

allows the detailed assessment of biofilm properties such as biofilm biovolume, 

biomass, thickness, roughness and viability (Shin et al., 2015). The CLSM serves as a 

powerful tool for evaluation of the biofilm spatial architecture, distribution and 

organization of the contained species (ie. with fluorescent in situ hybridization 

techniques) and the effects of antimicrobials on morphology and cell viability of biofilm-

contained cells (Valm et al., 2011). Other advantages include high resolution imaging 

without tampering the biofilm sample, which is a common problem with the ultrafine 
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electron microscopy methods. Crucially, the biofilm can be visualized as a three-

dimensional Z-stack structure for 3D analyses (Schlafer and Meyer, 2016).  

The CLSM analysis of biofilms involves several critical factors. Fluorescence 

staining or hybridization with fluorophores are required. For accurate assessment of the 

biofilm structure, a well-defined protocol is needed, since inadequate staining can lead 

to false-positive results due to the background noise and auto-fluorescence. 

Furthermore, with thicker and dense biofilms, staining protocol must be optimized to 

allow the stain to penetrate throughout the entire biofilm thickness.  

 

FlowCam® Method – For Coaggregation and Biofilm Dispersion 

 

This sub-section on the novel method to assess bacterial coaggregation and 

biofilm dispersion is adapted from a published manuscript and a manuscript in 

preparation (Levin-Sparenberg et al., 2016; Shin et al., 2017b; Chapter V).   

 Recently, a new method to evaluate the partner-specific bacterial coaggregation 

was developed using a real-time particle-analyzing device called the FlowCam®. The 

FlowCam® device allows the determination of the rates of coaggregation and the size of 

aggregates formed (Levin-Sparenberg et al., 2016). In comparison to the original semi-

quantitative visual coaggregation assay method, the FlowCam® approach further 

validates and quantifies the extent of aggregation and coaggregation interactions (Cisar 

et al., 1979). In the manuscript ‘High‐throughput quantitative method for assessing 

coaggregation among oral bacterial species’, the authors demonstrated that the 
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combinatory application of the FlowCam® and confocal microscopy techniques are 

synergistic in studying coaggregation.  

 Another novel application of the FlowCam® approach is to evaluate biofilm 

dispersion. When used alone, the microscopy techniques mentioned above, including 

CLSM are limited to an end-point assessment of the biofilm. To evaluate the real-time 

effects of anti-biofilm agents on biofilm dispersion, and to quantify the dispersed biofilm 

cells, the FlowCam® approach is suitable. For the dissertation work outlined in Chapter 

V, the Swinnex model was combined with the FlowCam® approach to evaluate the 

biofilm dispersion effects of L-aginine and different ant-biofilm agents. In Chapter V, a 

detailed protocol of using the FlowCam® device in combination with the Swinnex biofilm 

model system is discussed.   

 

Biofilm Community Composition 

 

 One of the primary objectives of this dissertation was to develop oral biofilms 

from our model systems that is compositionally representative (with regard to bacterial 

composition) of in vivo plaque-like communities. Most of prior studies have been using 

regular bacterial media or artificial media to grow and study oral biofilms (Bjorklund et 

al., 2011; Tian et al., 2010; Wong and Sissons, 2001). The community composition of 

an in vitro biofilm can vary based on several factors, which include 1) the inoculum and 

the growth media, 2) static versus flowing system, 3) duration of biofilm growth period, 

and 4) environmental conditions. Hence, for the current project, pooled human saliva 

was used as the biofilm inoculum and the growth supporting media.  
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Following growth, the biofilms can be harvested for the community composition 

analysis. For identifying who is present in the multi-species biofilm, several methods are 

available. The most popular method is using the bacterial 16S rRNA, which is a 

ribosomal RNA component of the 30S small subunit of the prokaryotic ribosome (Janda 

and Abbott, 2007). The use of the 16S rRNA genome sequences to study bacterial 

phylogeny and taxonomy is the current gold standard for identifying bacterial species 

composition in a multi-species community. The 16S gene is present in all prokaryotes  

and the function of the 16S rRNA is highly conserved (Janda and Abbott, 2007). 

Furthermore, the gene is large enough to be analyzed through bioinformatics. For the 

microbiome sequencing conducted in Chapter V, 16S rRNA next generation sequencing 

was conducted using the Personal Genome Machine (PGM) Ion-Torrent platform. There 

are several other sequencing platforms available, however the sequencing platforms 

such as the PGM Ion-Torrent and Illumina Miseq both provide reasonably high quality 

resolution (Liu et al., 2012).  The specific method used for sequencing analyses is 

further discussed in Chapter V.  
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Selection of Model system 

 

Ideally, an in vitro biofilm model system should mimic the in vivo biofilm 

environment as closely as possible. In addition, for evaluation of therapeutic strategies, 

a model system should help predict the performance of anti-biofilm agents in vivo. 

However, because of the several limitations for a given model system, no single system 

is known as the gold standard model for all biofilm studies. For better understanding of 

different properties of the biofilm, the application of different types of models and the 

combination of more than one model system can facilitate answering specific research 

questions. New model systems are constantly emerging with technical and biological 

improvements. In Chapter II, few of the most well known in vitro biofilm model systems 

were introduced and discussed. Each of the model systems described in this Chapter 

offers different advantages, but with limitations. Hence, as a biofilm research scientist, 

the development and application of appropriate in vitro model systems are critical for 

pushing the biofilm research forward. 
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Figure II.1. Microtiter Plate (MTP) Biofilm Model System. A classic example of a 
novel MTP based biofilm model system is the Calgary Biofilm Device (Azeredo et al., 
2017). Image © Claus Sternberg. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure II.2. Glass Bottomed 24-well Sensoplates. Image acquired from Greiner Bio-
One.   
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A. 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.3. Open Flow Biofilm Model Systems.  A. Modified Robbins Device (Azeredo et 
al., 2017; Image © Claus Sternberg), and B. Centers for Disease Biofilm Reactor. 
Image acquired from Donlan et al., 2004. 
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Fig. II.4. BioFlux Microfluidic Biofilm System. A. A photograph of the BioFlux 200 
system along with the pneumatic pump connected directly to the specialized BioFlux 
plate shown on the microscope stage. B. Plate design of a 48-well BioFlux plate is 
shown. There are 24 inlet and 24 outlet wells, along with 24 individual channels as the 
biofilm substratum and the viewing port. C. The schematic shows the different 
components of the BioFlux plate design. Each channel requires an inlet and an outlet  to 
provide open flow. D. A close up image of two microfluidic channels. Each inlet portion 
of the channels have a serpentine design to provide sufficient back pressure for more 
precise control of the shear force. Image acquired from Benoit et al., 2010.  
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Chapter III 

 

Antimicrobial Nisin Acts Against Saliva Derived Multi-Species Biofilms without 

Cytotoxicity to Human Oral Cells 

 

Chapter III is adapted from a previously published manuscript (Shin et al., 2015).  

 
 
 
 

Abstract 

 

Objectives: Nisin is a lantibiotic widely used for the preservation of food and 

beverages. Recently, investigators have reported that nisin may have clinical 

applications for treating bacterial infections. The aim of this study was to investigate the 

effects of ultra pure food grade Nisin ZP (> 95% purity) on taxonomically diverse 

bacteria common to the human oral cavity and saliva derived multi-species oral biofilms, 

and to discern the toxicity of nisin against human cells relevant to the oral cavity.  

Methods: The MICs and MBCs of taxonomically distinct oral bacteria were determined 

using agar and broth dilution methods. To assess the effects of nisin on biofilms, two 

model systems were utilized: a static and a controlled flow microfluidic system. Biofilms 

were inoculated with pooled human saliva and fed filter-sterilized saliva for 20-22 h at 
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37°C. Nisin effects on cellular apoptosis and proliferation were evaluated using acridine 

orange/ethidium bromide fluorescent nuclear staining and lactate dehydrogenase 

activity assays.  

Results: Nisin inhibited planktonic growth of oral bacteria at low concentrations (2.5 – 

50 µg/ml). Nisin also retarded development of multi-species biofilms at concentrations ≥ 

1 µg/ml. Specifically, under biofilm model conditions, nisin interfered with biofilm 

development and reduced biofilm biomass and thickness in a dose-dependent manner. 

The treatment of pre-formed biofilms with nisin resulted in dose- and time-dependent 

disruption of the biofilm architecture along with decreased bacterial viability. Human 

cells relevant to the oral cavity were unaffected by the treatment of nisin at anti-biofilm 

concentrations and showed no signs of apoptotic changes unless treated with much 

higher concentrations (> 200 µg/ml).  

Conclusions: This work highlights the potential therapeutic value of high purity food 

grade nisin to inhibit the growth of oral bacteria and the development of biofilms relevant 

to oral diseases. 
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Introduction 

 

Dental plaque is an architecturally complex bacterial multi-species biofilm 

community (Zinge et al., 2010; Marsh 2010). Hundreds of species can coexist in these 

communities and together they can be up to 1000-times more resistant to antimicrobials 

than their planktonic counterparts (Gilbert et al., 2002; Aas et al., 2005). Enhanced 

antimicrobial resistance accounts, in part, for the accumulation of pathogens that are 

associated with dental caries, periodontal disease, and pulpal infections (Marsh 2003). 

Strategies to control biofilms and their contained species have met with difficulties, as is 

evidenced by the public health burden associated with poor oral health. The Centers for 

Disease Control and Prevention (CDC) estimated that in the United States (US) alone, 

$108 billion was spent on dental services in 2010 and is therefore constantly on the 

search for alternative cost-effective preventative strategies (CDC, 2010). Given the 

public health burden associated with dental plaque, new candidate anti-biofilm 

technologies are currently being investigated. These include modifications to traditional 

approaches, such as the development of improved antimicrobial compounds and 

formulations (zinc, cetylpyridinium chloride, stannous compounds, natural agents) 

(Allaker et al., 2009; Marsh 2010) to more innovative technologies, such as those that 

display antimicrobial but also anti-biofilm effects (Kaplan 2010). For example, there has 

been considerable interest in approaches to inhibit cell-cell signaling between bacteria 

to control oral biofilm formation (Rickard et al., 2006; Barrios et al., 2006; Raffa et al., 

2011; Bordi and de Bentzmann 2011; Cuadra-Saenz et al., 2012) and to augment cell-

cell signaling for enhancing antimicrobial activity (Eckert et al., 2006; Ahmed et al., 
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2009). In addition, there has been substantial interest in approaches to structurally 

weaken biofilms by targeting bacterially-produced extracellular polymeric substances 

(EPS) using enzymes such as dispersin B (Izano et al., 2007). One technology that has 

recently garnered attention is the use of bacteriocins, such as nisin, which is produced 

by Lactococcus lactis (Pepperney et al., 2011; Arthur et al., 2014).  

Lactococcus lactis is a non-pathogenic, Gram-positive, lactic acid bacterium used 

in food fermentation and found commonly in dairy products (Vuyst et al., 1994; 

Cleveland et al., 2001). In addition, L. lactis has been proposed as a probiotic agent 

(Vinderola et al., 2003). Studies have implied that lactic acid bacteria can prevent the 

co-localization of pathogenic bacteria in certain microflora (intestinal, vaginal) by 

stabilizing the complex biofilm community (Todorov et al., 2007; Kindrachuck et al., 

2013). These processes may be mediated by bacteriocins like nisin. Nisin is a 

bacterially secreted polypeptide composed of 34-amino acids that exists as two natural 

variant forms; nisin A and Z. The two variants differ only by a single amino acid at 

position 27; histidine in nisin A and asparagine in nisin Z (Mulders et al., 1991). Nisin 

has amphipathic and cationic properties, and is classified as a Type A (I) lantibiotic 

(Gross and Morell 1971; Asaduzzaman and Sonomoto 2009). Lantibiotics like nisin are 

known for their broad-spectrum Gram-positive antimicrobial activities, high potency, low 

association with cytotoxicity and lack of stable and transmissible antimicrobial 

resistance (Willey et al., 2007; Smith and Hillman 2008). As a food preservative, nisin 

has been granted GRAS (Generally Regarded as Safe) status by the US Food and 

Drug Administration (FDA) for use in pasteurized, processed cheese spreads and is 

currently licensed in 48 countries (Cotter et al., 2005). Nisin acts by altering the 
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structure of the cellular membrane by forming short-lived pores and binding to the 

bacterial cell-wall precursor lipid II with high affinity (Breukink et al., 1999; Wiedemann 

et al., 2001). This initial interaction facilitates further modes of action to inhibit the cell 

wall biosynthesis, spore outgrowth and activation of autolytic enzymes (Peschel and 

Sahl 2006). Thus, the lack of bacterial resistance towards nisin likely stems from its 

interaction with a number of distinct targets.  

Investigators from multiple fields have shown promising results for the use of 

nisin to treat bacterial infections, such as mastitis in humans and cows (Cao et al., 

2007; Wu et al., 2007; Fernández et al., 2008), Staphylococcus aureus infections in 

atopic dermatitis (Valentia et al., 1996), respiratory tract infections (Bush and Macielag 

2000; De Kwaadsteniet et al., 2009) and experimental gingivitis in dogs (Howell et al., 

1993). Recent in vitro and in vivo evidence has even indicated a role for nisin as an 

anticancer agent (Joo et al., 2012). Given the high therapeutic potential of nisin, we 

hypothesize that nisin can be utilized as an antimicrobial and anti-biofilm agent to 

prevent or treat oral biofilm associated diseases. Thus, the aim of this work was to 

determine the effectiveness of nisin in inhibiting the formation and maintenance of saliva 

derived multi-species oral biofilms. In addition, we examined the ability of nisin to inhibit 

the growth of common oral bacteria found in the human oral cavity, including both 

Gram-positive and Gram-negative, and aerobic and anaerobic bacteria. Lastly, we 

examined the potential cytotoxicity of nisin on human cells relevant to the oral cavity.  
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Materials and Methods 

 

Nisin Preparation 

An ultra pure food grade (> 95%) form of the nisin Z, referred to here as nisin ZP, 

was purchased from Handary (S.A., Brussels, Belgium), a primary manufacturer of nisin 

in the food industry. From here forward, nisin ZP will be referred to as nisin. Nisin 

powder was stored at 4°C in a vacuum desiccator (Thermo Scientific, Waltham, MA, 

USA). The stock solution was prepared at a concentration of 5 mg/ml in water, filter 

sterilized, and stored at 4°C for a maximum of 5 days for use in experiments.  

 

Bacterial Strains and Growth Conditions 

Streptococcus oralis 34 (kindly donated by P.E. Kolenbrander, National Institutes 

of Health, Bethesda, MA, USA), Streptococcus gordonii DL1 (kindly donated by P.E. 

Kolenbrander), Streptococcus mutans UA159 (kindly donated by M.C. Peters, 

University of Michigan School of Dentistry, Ann Arbor, MI), Streptococcus mutans ATCC 

25175, and Aggregatibacter actinomycetemcomitans Y4 were grown on Brain Heart 

Infusion agar (BHI, Difco, Sparks, MD, USA) and cultured in BHI broth media. 

Actinomyces odontolyticus ATCC 17982, Prevotella intermedia (clinical isolate, kindly 

donated by W. Loesche, University of Michigan School of Dentistry, Ann Arbor, MI), 

Fusobacterium nucleatum ATCC 25586, were grown on Fastiduous Anaerobe Agar 

(Acumedia, Lansing MI, USA) containing 5% sheep blood and cultured in BHI broth 

media supplemented with hemin (5 µg/ml) and Vitamin K (1 µg/ml). Treponema 

denticola ATCC 35405 was grown in TYGVS broth (Ohta et al., 1986; Fenno 2005). All 
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bacterial species mentioned above were incubated at 37˚C under appropriate 

atmospheric conditions in either an anaerobic chamber (Coy, Grass Lake, MI, USA) or a 

5% CO2 incubator. For each strain, a single colony was inoculated into 5 ml of culture 

medium (as indicated above) and incubated to exponential growth phase. For use in 

experiments, the optical density at 600 nm (OD) of each culture was adjusted 

approximately to 0.15 to correspond to a bacterial concentration of 109 CFU/ml in 

culture medium. 

 

MIC and MBC of Planktonic Oral Bacteria 

The minimum inhibitory concentrations (MICs) and minimum bactericidal 

concentrations (MBCs) of nisin against oral Gram-positive and Gram-negative bacterial 

strains were determined using the Clinical and Laboratory Standards Institute (CLSI) 

standards with slight modifications as described below (Wikler 2006; Wiegand et al., 

2008). A total volume of 200 µl with different concentrations of nisin and the bacterial 

culture suspended in BHI or TYGVS broth medium was added to a 96-well microplate 

(Costar, Corning Inc., NY, USA). Of the total volume, each well contained 150 µl of 

bacterial culture and 50 µl of nisin. As mentioned above, the initial optical density of the 

bacterial cultures were calibrated approximately to 0.15 (OD600) to achieve 109 CFU/ml. 

The final working concentrations of nisin were 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15, 25, 50, 

100, 200 µg/ml. The microplates were incubated at 37°C for 24 h under aerobic or 

anaerobic conditions according to the bacterial growth requirements. T. denticola was 

cultured under anaerobic conditions in TYVGS media up to six days to determine the 

MIC. The determined MIC was the lowest concentration of nisin that inhibited the visible 
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growth of bacteria compared to the zero time point, indicated by an increase (≤ 0.05) in 

optical density (OD600). For determination of MBC, 10 µl of these bacterial samples were 

removed from wells that had bacterial concentrations equivalent to and higher than the 

MIC, and inoculated on appropriate agar plates or in TYGVS broth medium. The MBC 

was defined as the lowest concentration of nisin that killed at least 99.9% of the bacteria 

in a given time.   

 

Human Saliva Collection and Preparation: Multi-species inoculum and nutrient 

source 

A saliva collection protocol was reviewed and given “not regulated status” by the 

University of Michigan Institutional Review Board (IRB) for Human Subject Research 

(HUM00095026). This protocol has been used previously (Nance et al., 2013; Samarian 

et al., 2014). Briefly, for the collection of pooled human whole saliva, the protocol 

required that at least 6 healthy individuals donate saliva. These individuals had not 

consumed any food or beverages besides water during the two hours prior to donation. 

All donors were non-smokers and had not been prescribed antibiotics for the preceding 

three months. Collected saliva was prepared for one of two purposes: to be used as a 

cell-containing saliva (CCS) inoculum or to be used as a cell-free saliva (CFS) nutrient 

source for biofilm growth. CCS was prepared by mixing native, pooled saliva with 

glycerol in a 75%/25% ratio, respectively, and then separated into 3 ml aliquots for 

storage at - 80˚C. CFS was prepared by adding 2.5 mM dithiothreitol (DTT) to the saliva 

then allowing it to stand for 10 min on ice followed by centrifugation at 17000 x g for 30 

min. The resulting supernatant was mixed with distilled water to a final concentration of 
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25% and filter sterilized through 0.2-µm syringe filter with a cellulose polyethersulfone 

membrane (VWR, Radnor, PA, USA). Aliquots of 30 ml were stored at - 80˚C. 

 

Effect of Nisin on Biofilm Development in a Static Model System 

Twenty-four well glass bottom Sensoplates (Greiner Bio-One, Monroe, NC, USA) 

were used for the static model system (Kolderman et al., 2015). 15 µl of CCS was 

inoculated into each well with 1.5 ml of CFS with or without nisin (0.5 – 50 µg/ml). Upon 

inoculation, the biofilms were incubated for 20-22 h at 37°C for overnight growth. 

Following overnight incubation, the CFS that remained in each well was aspirated. All 

wells were then washed with 500 µl of phosphate buffered saline solution (PBS) three 

times. Following the wash, PBS in each well was aspirated, and biofilms were stained 

using formulated BacLight LIVE/DEAD bacterial viability staining solution (Invitrogen, 

Carlsbad, CA, USA) or Syto-9 nucleic acid stain (Invitrogen, Carlsbad, CA, USA) 

prepared according to the manufacturer’s instructions. Syto-9 stain was used to quantify 

the total DNA content of the biofilm. 250 µl of LIVE/DEAD or 250 µl of Syto-9 solutions 

were added to each well and incubated for 45 min at room temperature and washed 

with 500 µl of PBS three times. For capturing 3D images of biofilms, confocal laser 

scanning microscopy was used as described below. The total DNA content of the 

biofilm was measured using a Victor X3 2030 Multi-label reader (PerkinElmer, Waltham, 

MA, USA) by detecting fluorescence intensity at 530 nm.  
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Effect of Nisin on Biofilm Development in a Controlled flow Microfluidic System 

Forty-eight-well BioFlux microfluidic plates (Fluxion, San Francisco, CA, USA) in 

conjunction with the BioFlux 200 system (Fluxion, San Francisco, CA, USA) were used 

for the microfluidic model system (Nance et al., 2013; Samarian et al., 2014). Prior to 

adding the CCS, the microfluidic channels were first pre-treated with CFS for cell 

attachment, salivary pellicle formation and biofilm development. 100 µl of CFS was 

added to each outlet well, then flowed towards the inlet well at 1.0 dyn/cm2 (equivalent 

to the flow rate of 93 µl/h, corresponding to a shear of 100 s-1 through the channel) for 

2 min at room temperature. Flow was then stopped and the plate was incubated at room 

temperature for 20 min. Once pre-treatment incubation was completed, the CFS 

remaining in each outlet well was transferred to the corresponding inlet well, then 100 µl 

of CCS was added to each outlet well. To introduce bacterial cells into the plate channel 

for viewing biofilm growth, the CCS was flowed from outlet to inlet wells at 1.0 dyn/cm2 

for 6 s at 37°C. Upon inoculation of bacterial cells into the growth/viewing channels, cell 

seeding was confirmed visually with a Nikon Eclipse TCS-100 inverted light microscope 

equipped with a 20x0.40 NA PH1 infinity-corrected objective. The plate was then set to 

incubate at 37°C for 40 min to allow cell adherence and initial growth of the biofilm prior 

to the nutrient flow. Following incubation, CCS was aspirated from each outlet well and 

800 µl of CFS with or without nisin (0.5 – 50 µg/ml) was added to each inlet well. Plates 

were then incubated at 37°C for 20-22 h with controlled flow of 0.2 dyn/cm2 (flow rate of 

19 µl/h, corresponding to a shear of 20 s-1) for overnight biofilm growth. Following 

overnight incubation, CFS in each inlet and outlet well was aspirated. One hundred 

microliter of PBS was added to each inlet well and flowed at room temperature for 20 
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min at 0.2 dyn/cm2 to remove remaining treatment solution. Following the wash, PBS in 

the inlet wells was aspirated, and biofilms were stained using formulated BacLight 

LIVE/DEAD bacterial viability staining solution (Invitrogen, Carlsbad, CA, USA). One 

hundred microliter of formulated BacLight solution was added to each inlet wells and 

flowed at 0.2 dyn/cm2 for 45 min at room temperature to allow staining of the biofilms. 

Once the staining was complete, the remaining solutions in the inlet wells were 

aspirated and 100 µl of PBS was added to each inlet well and flowed at 0.2 dyn/cm2 for 

20 min at room temperature to remove any excess stain in the BioFlux channels. For 

capturing 3D images of biofilms, confocal laser scanning microscope was used as 

described below. 

 

Disruption of Pre-formed Biofilms by Nisin 

To study the effect of nisin on pre-formed biofilms and to precisely control the 

exposure times, biofilms were inoculated and grown in twenty-four well Sensoplates 

(Greiner Bio-One, Monroe, NC, USA) as described above using CCS and CFS for 20-

22 hrs at 37°C. Following overnight growth, the biofilms were treated with nisin (10, 50 

µg/ml) with short exposure times (1, 5, 10 minutes). Following the treatment of pre-

formed biofilms with or without nisin in CFS, all wells were washed with PBS three 

times. The same biofilm staining protocol was followed as described above. 

 

Confocal Laser Scanning Microscopy and Quantitative Analysis of Biofilms 

After nisin treatment, biofilms were imaged using Leica confocal laser scanning 

microscopy (CLSM, SPE, Leica, IL, USA) with a 40X1.25 NA HCX PL APO infinity-
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corrected oil or a HCX PL APO  40X/0.85 CORR CS objective. All biofilms were stained 

with the Baclight Live/Dead Bacterial Viability kit (Invitrogen, Carlsbad, MA, USA), which 

contains the nucleic acid stains Syto-9 (green signal) and propidium iodide (red signal) 

as described above. Once the microscopy images were taken, biofilms were rendered 

as three-dimensional (3D) structures with Imaris (Bitplane, Zurich, Switzerland) 

computer imaging software. Image stacks were treated equally and the signal intensity 

of rendered 3D biofilm structures were confirmed using histograms generated in Imaris. 

Imaris allowed for the visualization of biofilm architecture in three dimensions, 

penetration of nisin into biofilms (inferred by the extent and degree of the red signal) 

and the preparation of 3D files for the quantification of biofilm structure using the 

computer software program Comstat2. For detailed biofilm analysis, Comstat2 was 

used to determine the biofilm biovolume (total amount of space/biomass occupied by a 

biofilm), average thickness (thickness of each biofilm extending from the bottom to the 

top of the growth/viewing channel surface), and roughness (a measure of heterogeneity 

in biofilm architecture). The degree of killing, based on green (Syto-9; live) and red (PI; 

dead/damaged) pixel intensity for every pixel in all three-dimensional planes were 

evaluated using ImageJ (National Institutes of Health). The percentages of live to 

dead/damaged cells was determined by first multiplying the total number of pixels by the 

level of intensity (0 – 255) and then summing the total value for both the LIVE and 

DEAD signals from each image stack recorded. All renderings and quantification 

analyses were performed on a dedicated laptop computer equipped with an Intel Core 

i5 CPU with 8 GB RAM, 64-bit operating system (MSI Computer Corp., CA, USA). 
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Cell Culture   

A direct cell outgrowth technique was used to obtain primary periodontal ligament 

(PDL) cells and gingival fibroblast (GF) cells as previously described (Scanlon et al., 

2011). These cells were maintained in minimum essential medium alpha (α-MEM) 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 1% 

fungizone (Gibco, Life Technologies, Grand Island, NY, USA). Passage 3 or 4 PDL and 

GF cells were used for experiments. Primary human oral keratinocytes (OK) were 

purchased from Science Cell Research Laboratories (Carlsbad, CA, USA) and 

maintained in keratinocyte growth medium (KGM) supplemented with OK growth 

supplements (OKGS) and 1% penicillin/streptomycin. Passage 1 or 2 OK cells were 

used for experiments. Osteoblast-like cells were purchased from American Type Culture 

Collection (MG63; Manassas, VA, USA) and maintained in α-MEM supplemented with 

10% FBS, 1% penicillin/streptomycin and 1% fungizone. Passage 2 to 4 MG63 cells 

were used for experiments. 

 

Apoptosis Staining and Microscopy  

To assess the effects of nisin on cell viability and nuclear morphology, an 

acridine orange/ethidium bromide (AO/EB) staining assay was used as described 

previously (Ribble et al., 2005; Kasibhatla et al., 2006). Acridine orange (AO, Acros 

Organics, Geel, Belgium) and ethidium bromide (EB, Bio-rad laboratories, Berkeley, CA, 

USA) are fluorescent DNA binding dyes that can be combined to assess apoptotic 

cellular changes and cell membrane integrity. Using a 96-well microplate (Thermo 

Scientific, Waltham, MA, USA), cells (GF, PDL, OK, and MG63 cells) were plated at 2 x 
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104 cells/cm2 and allowed to adhere and spread overnight. After 24 h, cell cultures were 

exposed to nisin (final concentrations: 1, 10, 100, 200, 400, 800 µg/ml) or left untreated 

and incubated for a following 24 to 48 h at 37°C. Following each treatment period, the 

cells were stained with the AO/EB dye solution for one minute under gentle agitation. 

The AO/EB dye reagent was comprised of 100 µg/ml of ethidium bromide and 100 

µg/ml of acridine orange in PBS. The dye solution was removed and the cells were 

viewed and imaged using an epifluorescence microscope (Eclipse 50i, Nikon, Melville, 

NY, USA). For cell counting, each well was divided into two halves where a minimum of 

150 cells was counted per half at 4X magnification. Cell viability, apoptosis, and 

necrosis were assessed as described previously (Ribble et al., 2005; Kasibhatla et al., 

2006). Experiments were performed in triplicate.  

 

Cell Proliferation Assay 

The effect of nisin on cell proliferation was assessed by measuring the level of 

intracellular lactate dehydrogenase (LDH) activity using the Cell Counting Kit-8 

(Dojindo, Kumamoto, Japan) per manufacturer’s recommendations. Using a 96-well 

microplate (Thermo Scientific, Waltham, MA, USA), the cells (GF, PDL, OK, and MG63 

cells) were plated at 2 x 104 cells/cm2 and allowed to adhere and spread overnight. The 

subsequent day, the cells were treated with different concentrations of nisin (10 – 800 

µg/ml) for 24 to 48 h. After 24 or 48 h, 10 µl of the CCK-8 solution was added to each 

well and incubated at 37°C for 3 hours, then absorbance was measured at 450 nm 

using a microplate reader (Spectra Max M2, Molecular Devices, CA, USA) to determine 
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the LDH activity. Cell proliferation was evaluated based on the LDH activity measured 

as absorbance values at 450 nm.  

 

Statistical Analysis 

Values are expressed as mean values ± standard deviation. Independent t-tests 

were used to compare the control (nisin-free) with nisin-treated samples. The difference 

between the viability, apoptosis and necrosis was analyzed by ANOVA, using Dunnett’s 

method. Individual P values for each data set are indicated either individually or as a 

group in each figure. All experiments were repeated at least three times. Values of P < 

0.05 were considered significant, and P < 0.01 were considered highly significant.  
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Results 

 

Antimicrobial Activity of Nisin on Oral Biofilm Colonizers  

The MICs and MBCs of nisin on oral bacterial species are listed in Table 1. The 

MIC and MBC of nisin ranged from 2.5 to 50 µg/ml and 15 to 200 µg/ml respectively for 

early, middle, and later colonizers of dental plaque (Table 1). S. mutans, a cariogenic 

Gram-positive bacteria, showed a 1.5 to 3 fold higher sensitivity to nisin when compared 

to the two commensal organisms S. gordonii and S. oralis (Fig. 1, Table 1). F. 

nucleatum, a Gram-negative bacteria known for its prominent role in coaggregation with 

both early and later colonizers of dental plaque showed the least susceptibility amongst 

the tested species with a MIC of 50 µg/ml (Fig. 1, Table 1). In addition, nisin exerted 

antimicrobial activities against the known Gram-negative periodontal pathogens, 

including P. gingivalis, P. intermedia, A. actinomycetemcomitans and T. denticola (Fig. 

1, Table 1) at nisin concentrations between 2.5 to 20 µg/ml. Amongst the later 

colonizers of oral biofilms, T. denticola exhibited the highest sensitivity to nisin with a 

MIC of 2.5 µg/ml and MBC of 15 µg/ml.     

 

The Anti-biofilm Effects of Nisin on Formation of Multi-Species Biofilms 

Saliva derived multi-species biofilms were grown with or without nisin using static 

and microfluidic model systems. Under the static growth condition, early signs of biofilm 

membrane damage was observed at nisin concentrations ≥ 0.5 µg/ml (Fig. 2A). From 

confocal microscopy imaging and quantitative analysis, the biofilm growth was 

significantly reduced at nisin concentrations ≥ 4 µg/ml (Fig. 2C). In the static system, the 
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average biofilm biomass and thickness of the control biofilms were 27.25 µm3/µm2 and 

29.33 µm (Fig. 2B). The average biofilm biomass and thickness of the nisin treated 

biofilms at 4 µg/ml were 3.26 µm3/µm2 and 3.05 µm (Fig. 2B). At 8 µg/ml nisin, the 

biofilm growth and architecture was abrogated when compared to the control conditions 

(Fig. 2A).  

Under controlled flow microfluidic growth conditions, the anti-biofilm effects of 

nisin were exerted at concentrations ≥ 0.5 µg/ml (Fig. 3A). The average biofilm biomass 

and thickness of the control biofilms were 30.88 µm3/µm2 and 31.02 µm (Fig. 3B).  The 

average biofilm biomass and thickness of the nisin treated biofilms at 1 µg/ml were 5.06 

µm3/µm2 and 7.17 µm (Fig. 3B). The formation of biofilms was absent at 4 µg/ml (Fig. 

3A,B).  

When evaluated under both biofilm model systems, biofilm biomass and 

thickness were significantly reduced when the biofilms were grown in presence of nisin 

at concentrations ≥ 1 µg/ml (Fig. 2B, 3B). The roughness coefficient values of the 

biofilms increased in a dose-dependent manner, suggesting an increase in 

heterogeneity within the biofilm architecture due to membrane associated structural 

damages. Collectively, our data suggest that nisin concentrations > 8 µg/ml can inhibit 

the formation of saliva derived multi-species biofilms. 

 

The Anti-biofilm Effects of Nisin on Preformed Multi-Species Biofilms 

Saliva derived multi-species biofilms formed overnight (20 – 22 h) under static 

conditions, then treated with two different concentrations of nisin (10, 50 µg/ml).  The 

biofilms were treated with nisin for short exposure times (1, 5, and 10 min). At both 
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concentrations and at all three exposure times, the 3D rendered confocal microscopy 

images of biofilms demonstrated structural damage and dissociation within the biofilm 

architecture (Fig. 4A). When compared to the control biofilms treated with PBS, nisin 

treated biofilms exhibited reduced biofilm biomass and thickness (Fig. 4B). This 

reduction in the biomass and thickness of the biofilms occurred in a dose- and time-

dependent manner. At a nisin concentration of 10 µg/ml, the viability of the biofilms was 

only slightly reduced for all exposure times (although statistically significant). However 

at 50 µg/ml, much higher biofilm killing was observed at 5 and 10 min exposure times, 

as indicated by the confocal microscopy imaging and Live/Dead signal quantification of 

the biofilms (Fig. 4A and C). In addition, the roughness coefficient values of the nisin 

treated biofilms were significantly increased compared to the control biofilms treated 

with PBS. The increase in the roughness coefficient values occurred in a time-

dependent manner at 50 µg/ml, but it did not follow a specific time-dependent trend with 

10 µg/ml.  

 

The Effects of Nisin on Viability of Human Cells Relevant to the Oral Cavity 

The effect of nisin on cell viability was assessed in human cells that are relevant 

to the oral cavity. After a 24 h treatment, GF, PDL, OK and MG63 cells were highly 

tolerant to nisin treatments (Fig. 5B). With nisin treatments of up to 400 µg/ml, GF, PDL, 

OK and MG63 cells exhibited normal cell viability levels (> 95%) and cell phenotypes 

with minimal apoptotic characteristics. After a 48 h treatment, GF, PDL and OK cells 

exhibited normal cell viability with nisin up to 200 µg/ml. Osteoblast-like MG63 cells 

exhibited the highest tolerance against nisin (Fig. 5B). At antimicrobial and anti-biofilm 
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concentrations (< 100 µg/ml), nisin treated cells maintained a normal cell shape and 

nuclear phenotype compared to the untreated control cells. Only at concentrations ≥ 

200 µg/ml and after 48 h, cells started showing low levels of apoptosis with chromatin 

condensation and nuclear fragmentation (Fig. 5A).  

 

The Effects of Nisin on Cell Proliferation 

The effect of nisin on cell proliferation was assessed by measuring the innate 

lactate dehydrogenase activity of the cells (GF, PDL, OK, MG63). After 24 h with 

treatment of up to 800 µg/ml of nisin, GF, PDL and MG63 cells exhibited normal cell 

proliferation compared to the control (Fig 6). In control experiments, nisin (10 - 800 

µg/ml) incubated in media alone exhibited negligible levels of lactate dehydrogenase 

activity (data no shown). Only OK cells exhibited reduced cell proliferation after a 24 h 

nisin treatment at concentrations > 400 µg/ml. In addition, GF and PDL exhibited normal 

cell proliferation with nisin concentrations up to 800 µg/ml, and OK and MG63 exhibited 

normal cell proliferation with nisin concentrations up to 400 µg/ml (Fig. 6). At 800 µg/ml, 

OK cells were unable to attach to the cell surface and proliferate. At antimicrobial and 

anti-biofilm concentrations (< 100 µg/ml), all cells exhibited normal cell attachment and 

proliferation.  
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Discussion 

 

The data presented here demonstrate the potential for nisin as an antimicrobial 

and anti-biofilm agent against oral pathogens. The peptide structure of nisin is 

characterized by the presence of five intra-molecular rings formed by the thioether 

amino acids lanthionine and 3-methyllanthionine (Wiedemann et al., 2001). Due to its 

unique chemical features, it has been hypothesized that nisin has various modes of 

antimicrobial action (Peschel and Sahl 2006) and exerts multiple antimicrobial activities 

based on the interaction with multiple cellular targets (Bierbaum and Sahl, 1985; Chan 

et al., 1996; Pag and Sahl 2002). However, when used in a clinical setting, there is 

potential risk of developing nisin resistance. Although there have been few examples of 

naturally occurring lantibiotic resistance, certain bacteria have been noted to possess 

innate anti-lantibiotic mechanisms. For example, nisinase is a dehydropeptide 

reductase that can inactivate nisin (de Freire Bastos et al., 2014; Draper et al., 2015). 

Nisinase activity has been associated with Lactobacillus platarum (Kooy 1952), 

Streptococcus thermophiles (Alifax and Chevalier, 1962), Clostridium botulinum 

(Rayman et al., 1983), Lactococcus lactis sub-species cremoris, Enterococcus faecalis 

and Staphylococcus aureus (Carlson and Bauer, 1957). Thus, future characterization of 

specific genetic or protein components that may contribute to nisin resistance is needed 

to understand any potential resistance issues in a clinical setting.  

Previously, studies have implicated that nisin has broad-spectrum activity against 

Gram-positive bacteria with limited potency on Gram-negative bacteria (Delves-

Broughton et al., 1996; Severina et al., 1998; Cleveland et al., 2001). Our findings 
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demonstrate that the high purity form of nisin Z (nisin ZP, > 95% purity) exhibits 

antimicrobial activity against both Gram-positive and Gram-negative oral bacteria. In 

comparison to recent studies that used a low content nisin (Tong et al., 2010; Corbin et 

al., 2011), our data suggests that nisin ZP (> 95% purity) is much more potent than low 

content nisin A (2.5% purity) in inhibiting cariogenic oral bacteria and oral biofilms. 

These earlier studies utilized low purity nisin, which is generally less soluble than the 

high purity form. In addition, when considering the preparation of nisin solutions, nisin A 

(2.5% purity) requires approximately pH 2 whereas nisin ZP can be prepared at more 

neutral pH conditions (Pag and Sahl 2002). Nisin ZP can be easily prepared in water at 

pH 7 as a colorless, odorless and tasteless solution. Hence, the utilization of high purity 

nisin ZP as a potential oral anti-microbial rinse has promising features.  

Commensal oral bacteria, such as S. gordonii and S. oralis, exhibited lower 

sensitivity to nisin than the pathogenic species S. mutans (Table 1). From the single 

species experiments, the most interesting data resulted from the Gram-negative 

anaerobes. Periodontal disease is strongly associated with pathogenic bacteria such as 

P. gingivalis, P. intermedia, A. actinomycetemcomitans and T. denticola. These 

anaerobic pathogens are believed to gain access to the periodontal tissues and thereby 

mediate tissue damage by a complex array of host-pathogen interactions, including 

modulation of inflammatory host response mechanisms (Haffajee and Socransky 1994; 

Pihlstrom et al., 2005; Darveau 2009). In our study, nisin at low concentrations < 20 

µg/ml inhibited the growth of these periodontal pathogens (Table 1). Amongst these 

pathogens, T. denticola was highly susceptible to nisin treatment, requiring only 2.5 

µg/ml to inhibit its growth up to six days (Fig. 1). T. denticola comprises up to 30% of the 
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microbiota in diseased gingival pockets and is associated with tissue and bone 

destructive mechanisms in periodontitis (Riviere et al., 1992; Baehni et al., 1992; 

Gopalsami et al., 1993, Choi et al., 2003). Thus, our findings suggest that nisin can 

inhibit the growth of both Gram-positive and Gram-negative disease-associated oral 

bacteria. 

Dental plaque is a complex of multi-species biofilm community (Marsh 2010). 

Collectively, the contained species can withstand the constantly changing conditions of 

the oral cavity and can be highly resistant to the treatment of antimicrobial agents 

(Jakubovics and Kolenbrander 2010). Since these biofilms can rapidly form and mature 

to develop additional pathogenic traits, anti-biofilm agents that inhibit the formation of 

and disperse established biofilms would benefit the prevention and treatment of oral 

diseases (Marsh 2010). Using biologically relevant human saliva as the multi-species 

biofilm inoculum and growth media, our results demonstrated that nisin exerted anti-

biofilm properties. Overnight incubation of nisin within saliva caused substantial 

inhibition of biofilm formation. Specifically, nisin concentrations ≥ 0.5 and 1 µg/ml 

caused a significant reduction in biofilm biomass and thickness of biofilms developed in 

static and microfluidic systems respectively (Figs. 3B and 2B). The resulting biofilms 

were highly disintegrated and lacked coaggregative behavior expressed in the control 

untreated biofilms (Fig. 2A, 3A).  

Similar to preventing biofilm development, the anti-biofilm properties of nisin 

against pre-formed biofilms occurred in a dose- and time-dependent manner. As 

inferred by observed changes in biofilm architecture, biofilms seemingly dispersed and 

sloughed into smaller aggregates after a 1 min exposure to 10 and 50 µg/ml of nisin. 
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(Fig. 4A). At 50 µg/ml and after a 5 min exposure, biofilms exhibited cell death and 

membrane damage indicated by the Live/Dead signal quantification (Fig. 4C). However, 

at 10 µg/ml, significant bacterial killing was not observed regardless of the treatment 

time. The antimicrobial action of nisin may be either bacteriostatic or bactericidal 

depending on multiple factors, such as nisin concentration, bacterial concentration, 

physiological state of the bacteria, and the prevailing conditions (Delves-Broughton et 

al., 1996). Thus, our data support the premise that nisin acts as a fast-acting anti-biofilm 

agent with both biofilm-static and biofilm-killing properties. 

Coaggregation of different bacterial species is considered critical to maintaining 

the stability of the architecture and species composition of dental plaque (Hojo et al., 

2009; Katharios-Lanwermeyer et al., 2014). Coaggregation interactions promote the 

development of multi-species biofilms by enabling bacterial communication and 

colonization of initial, middle and later colonizers (Kolenbrander et al., 2010). 

Previously, Smith et al. demonstrated that cationic antimicrobials, such as chlorhexidine 

digluconate and cetylpyridinium chloride, can selectively inhibit coaggregation 

interactions of later colonizers of dental plaque (Smith et al., 1991). As a cationic and a 

membrane acting bacteriocin, the modes of action of nisin may be to disrupt the 

coaggregation process needed to form a stable biofilm. Present data are suggestive 

that the likely role of nisin in inhibiting coaggregation may be at least in part responsible 

for its anti-biofilm effects. Assuming that the coaggregation process is critical for 

developing and maintaining the biofilm complex, studies are in progress to determine 

the ability of nisin to inhibit specific coaggregation interactions between oral biofilm 

colonizers.  
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After more than thirty years of use as an antiplaque agent in the dental 

profession, chlorhexidine is still considered the gold standard (Jones 1997; Baehni and 

Takeuchi 2003). However, frequent or long-term use of chlorhexidine, although still 

employed clinically, is associated with negative effects (Flötra et al., 1971; Gagari, E. 

and Kabani 1995). Previously it was reported that direct exposure to as little as 0.0025 

to 0.01% of chlorhexidine can significantly affect cell morphology and cell attachment of 

cultured gingival fibroblasts (Cline and Layman 1992). In addition, chlorhexidine is 

highly cytotoxic to neutrophils, human epithelial cells, PDL cells, fibroblasts and HeLa 

cells (Goldschmidt et al., 1977; Chang et al., 2001). Our study demonstrates that orally 

relevant human cells are highly tolerant to direct contact by nisin. Our data indicate that 

nisin at antimicrobial and anti-biofilm concentrations (< 100 µg/ml) is not cytotoxic to 

these cells (oral keratinocytes, gingival fibroblasts, periodontal ligament cells, and 

osteoblast-like cells) that play an integral role in the maintenance of healthy gingival 

tissues. It is essential to preserve the cellular characteristics of primary oral 

keratinocytes, since these cells act as the first line of defense against the oral 

pathogens (Weinberg et al., 1998; Hans and Hans 2014). When cells were incubated 

with nisin for 24 to 48 h, cell apoptosis was nearly absent unless treated with nisin at > 

200 µg/ml, which is more than 10-fold greater than the minimum concentration 

displaying anti-biofilm effects. In addition, all cell types exhibited normal cell attachment 

and proliferation when treated with up to 400 µg/ml of nisin after a 24 h incubation. 

Cationic antimicrobial peptides are unique in that they are hypothesized to play an 

important role in the immune system or to exert different effects on eukaryotic cells 

(Hancock and Diamond 2000). Although bacterially secreted, nisin is known to trigger 
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immune responses in host eukaryotic cells (Hancock and Diamond 2000; Bedge et al., 

2011). As an immunogenic agent, nisin was reported to elevate the T-cell population 

(CD4 and CD8) while reducing the B-cell population (Pablo et al., 1999). In addition, 

nisin has been shown to modulate the innate immune response through the induction of 

chemokine synthesis and suppression of lipopolysaccharide induced pro-inflammatory 

cytokines, both in vitro and in vivo (Kindrachuck et al., 2013). Thus, at certain non-toxic 

concentrations to the oral cells, nisin could potentially aid in the induction of innate 

defense mechanisms to help clear the oral pathogens. 

The work presented here demonstrates that nisin is a promising candidate for 

development as an oral therapeutic anti-biofilm agent. High purity food grade nisin (> 

95%) exerted anti-biofilm effects against saliva derived multi-species biofilms without 

causing cytotoxic effects to the human oral cells. In addition to its long history and 

utilization as a food preservative, nisin possesses great potential for other applications 

involving treating clinical bacterial infections and inhibiting biofilm growth. Further 

investigation of the clinical role of nisin in modulating the microbiome of the biofilm 

community and its immunomodulatory role in human oral cells are necessary to 

determine its potential as a therapeutic or prophylactic agent against oral diseases.  
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Figure III.1. Nisin Inhibits the Growth of Cariogenic and Periodontal Pathogens. 
Using a broth dilution method, S. gordonii DL1, S. oralis SO34, S. mutans UA159, A. 
odontolyticus ATCC 17982, S. mutans ATCC 25175, F. nucleatum ATCC 25586, A. 
actinomycetemcomitans Y4, P. gingivalis W83, P. gingivalis ATCC 33277, P. intermedia 
clinical isolate and T. denticola ATCC 35405 was cultured with or without nisin (0.1 – 
200 µg/ml) on a microplate for 24 h at 37°C, under aerobic or anaerobic conditions. The 
determined MIC was the lowest concentration of nisin that inhibited the visible growth (≤ 
0.05 increase in OD600 after 24 h growth) of the inoculated bacteria. *P < 0.05: 
significant differences from the control (nisin-free). 
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Figure III.2. Nisin Inhibits the Formation of Multi-Species Biofilms in a Static 
Model System. Cell-containing saliva (CCS) was inoculated in filter sterilized cell-free 
saliva (CFS) for 20-22h at 37°C with or without nisin. (A) Confocal microscopy images 
are represented in the x-y plane. A green signal indicates viable live cells (Syto 9), a red 
signal indicates damaged/ dead cells (propidium iodide) (B) Biofilm biomass, thickness, 
and roughness [mean (standard deviation)] were derived from imaging of at least three 
separate wells (experiments) (C) DNA content of the biofilms was quantified by 
absorption spectroscopy at fluorescence intensity of 530 nm. *P < 0.05 and **P < 0.01: 
significant differences from the control (nisin-free). 
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Figure III.3. Nisin Inhibits the Formation of Multi-Species Biofilms in a BioFlux 
Controlled Flow Microfluidic Model System. Cell-containing saliva (CCS) was added, 
then fed filter sterilized cell-free saliva (CFS) for 20-22h at 37°C with or without nisin (A) 
Confocal microscopy images are represented in the x-y plane. A green signal indicates 
viable live cells (Syto 9) and a red signal indicates damaged/dead cells (propidium 
iodide). (B) Biofilm biomass, thickness, and roughness [mean (standard deviation)] were 
derived from imaging of at least three separate channels (experiments). *P < 0.05 and 
**P < 0.01: significant differences from the control (nisin-free). 
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	Figure III.4. Nisin Disrupts the Maintenance of Three-Dimensional Architecture of 
Pre-Formed Biofilms. Cell-containing saliva (CCS) was inoculated in filter sterilized 
cell-free saliva (CFS) for 20-22h at 37°C and treated with PBS solution (control) or nisin 
at different concentrations and incubation times (A) Confocal microscopy images are 
represented in the x-y and x-y-z plane. A green signal indicates viable live cells (Syto 9) 
and a red signal indicates damaged/dead cells (propidium iodide) (B) Biofilm biomass, 
thickness, and roughness [mean (standard deviation)] were derived from imaging of at 
least three separate wells (experiments) (C) An average percentage signal from the 
biofilms was determined by the Live/viable signal (green) and the Dead/damaged signal 
(red) in relation to the total signal captured for both. *P < 0.05 and **P < 0.01: significant 
differences from the control (nisin-free). 
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Figure III.5. Nisin has Minimal Cytotoxicity to Human Cells Relevant to the Oral 
Cavity. Primary human gingival fibroblast cells, periodontal ligament cells, oral 
keratinocyte cells and osteoblast-like cells were incubated with nisin (1 – 800 µg/ml) for 
24-48 h on a 96-well microplate at 37°C. Cells were then stained with acridine-
orange/ethidium-bromide (AO/EB) to evaluate cell viability, apoptosis and necrosis 
using epifluorescence microscopy. (A) Images of the cells after 48 h incubation period 
with nisin at different concentrations (B) The cytotoxicity of nisin was quantified by 
counting viable, apoptotic and necrotic cells and expressed as bar graphs with heights 
representing mean % and error bars representing standard deviation. AO (green) 
stained cells with intact membrane integrity. Early apoptotic cells stained green but 
contained bright green dots in the nuclei due to chromatin condensation and nuclear 
fragmentation. Late apoptotic cells stained with EB (orange) with apoptotic phenotypes. 
Necrotic cells stained orange but the nuclear morphology resembled the viable cells 
with absence of chromatin condensations.  Mean values were calculated with standard 
deviations. *,#,$ represent P < 0.05: significant differences from the control (nisin free) 
for viability, apoptosis and necrosis respectively. 
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Figure III.6. Nisin Does Not Effect Cell Proliferation of Human Cells. The effect of 
nisin on cell proliferation was assessed using a Cell Counting Kit-8 measuring the 
lactate dehydrogenase (LDH) activities in cells. Using a 96-well microplate, gingival 
fibroblasts, periodontal ligament cells, oral keratinocytes and osteoblast-like cells were 
plated at 2 x 104 cells/cm2 and incubated for 24 to 48 h in the presence or absence of 
nisin (1 – 800 µg/ml). At 24 and 48 h time points, LDH levels were measured using 
absorption spectroscopy at 450 nm. Mean values were calculated with standard 
deviations. *P < 0.05: significant differences from the control (nisin-free). 
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Oral Microorganisms MIC MBC MBC/MIC 

Gram positive – Early, Middle Colonizers of Oral Biofilm 
 

Streptococcus gordonii DL1 40 µg/ml 150 µg/ml 3.75 

Streptococcus oralis SO34 30 µg/ml 150 µg/ml 5 

Streptococcus mutans UA159 20 µg/ml 100 µg/ml 5 

Actinomyces odontolyticus ATCC 17982 10 µg/ml 30 µg/ml 3 

Streptococcus  mutans ATCC 25175 10 µg/ml 200 µg/ml 20 

Gram negative – Late Colonizers of Oral Biofilm  

Fusobacterium nucleatum ATCC 25586 50 µg/ml 150 µg/ml 3 

Aggregatibacter actinomycetemcomitans Y4 15 µg/ml 100 µg/ml 6.67 

Porphyromonas gingivalis W83 20 µg/ml 100 µg/ml 5 

Porphyromonas gingivalis ATCC 33277 15 µg/ml 100 µg/ml 6.67 

Prevotella intermedia clinical isolate 10 µg/ml 150 µg/ml 15 

Treponema denticola ATCC 35405 2.5 µg/ml 15 µg/ml 6 

	
	
Table III.1. MICs and MBCs of Planktonic Oral Pathogens. MBC/MIC ratio of > 4 
indicate that nisin has a bacteriostatic effect. MBC/MIC ratio of < 4 indicate that nisin 
has a bactericidal effect (Pankey and Sabath 2004).  
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Chapter IV 

 

Biomedical Applications of Nisin 

 

Chapter IV is adapted from a previously published manuscript (Shin et al., 2016a). 

 

 

 

Abstract 

 

Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs 

to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic 

that is synthesized from mRNA and the translated peptide contains several unusual 

amino acids due to post-translational modifications. Over the past few decades, nisin 

has been used widely as a food biopreservative. Since then, many natural and 

genetically modified variants of nisin have been identified and studied for their unique 

antimicrobial properties. Nisin is an FDA approved and GRAS (generally regarded as 

safe) peptide with recognized potential for clinical use. Over the past two decades the 

application of nisin has been extended to biomedical fields. Studies have reported that 

nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin 
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resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and 

Clostridium difficile. Nisin has now been shown to have antimicrobial activity against 

both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been 

reported to have anti-biofilm properties and can work synergistically in combination with 

conventional therapeutic drugs. In addition, like host defense peptides, nisin may 

activate the adaptive immune response and have an immunomodulatory role. 

Increasing evidence indicates that nisin can influence the growth of tumors and exhibit 

selective cytotoxicity towards cancer cells. Collectively, the application of nisin has 

advanced beyond its role as a food biopreservative. Thus, this review will describe and 

compare studies on nisin and provide insight into its future biomedical applications.  

 

Nisin: A Bacterially-Derived Antimicrobial  

Nisin is an antimicrobial peptide produced by certain Gram-positive bacteria that 

include Lactococcus and Streptococcus species (Lubelski et al., 2008; de Arauz et al., 

2009).  Nisin was first identified in 1928 in fermented milk cultures and commercially 

marketed in England in 1953 as an antimicrobial agent (Rogers and Whittier, 1928; 

Delves-Broughton et al., 1996). In 1969, nisin was approved by the Joint Food and 

Agriculture Organization/World Health Organization (FAO/WHO) as a safe food 

additive. Currently, nisin is licensed in over 50 countries, and it has made a significant 

impact in the food industry as a natural biopreservative for different types of foods (de 

Arauz et al., 2009). In the United States (US), nisin was approved by the Food and Drug 

Administration in 1988 and was given a generally regarded as safe (GRAS) designation 

for use in processed cheeses (Cotter et al., 2005). 
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The originally described variant of nisin, known as nisin A, is composed of 34 

amino acids and is produced by Lactococcus lactis (Gross and Morell, 1971). Nisin 

belongs to a group of cationic peptide antimicrobials collectively called Type A (I) 

lantibiotics (Smith and Hillman, 2008). Nisin and other lantibiotics have gained 

considerable attention due to their potent and broad spectrum activity, low likelihood of 

promoting the development of bacterial resistance, and low cellular cytotoxicity at 

antimicrobial concentrations (Asaduzzaman and Sonomoto, 2009; Van Heel et al., 

2011; Cotter et al., 2013; Shin et al., 2015). Similar to other lantibiotics, nisin contains 

several unusual amino acids as a result of enzymatic post-translational modifications 

(Sahl et al., 1995). Nisin contains dehydrated amino acid residues (serine and 

threonine) and thioether amino acids that form five lanthionine rings, which are 

characteristic of nisin and lantibiotics (Karakas et al., 1999; Wiedemann et al., 2001). As 

a food biopreservative, nisin serves as a broad-spectrum bacteriocin against mostly 

Gram-positive foodborne bacteria (Delves-Broughton et al., 1996; Severina et al., 1998; 

Cleveland et al., 2001). However, research has now shown that the antimicrobial action 

of nisin can extend to a range of non-food related bacteria (Blay et al., 2007; Shin et al., 

2015). Studies have demonstrated that purified nisin and nisin in combination with other 

antibiotics can be effective against Gram-negative pathogens and that certain 

bioengineered nisin variants can enhance the activity against both Gram-positive and 

Gram-negative pathogens (Kuwano et al., 2005; Naghmouchi et al., 2010; Field et al., 

2012). In addition, with recent improvements in biotechnology, researchers from 

interdisciplinary fields have bioengineered newer forms of nisin variants that have 
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therapeutic potential for human diseases (Piper et al., 2011; Field et al., 2012; Rouse et 

al., 2012; Balciunas et al., 2013; Field et al., 2015). 

Since its discovery, nisin has garnered significant influence in the food industry 

as an alternative biopreservative. However, with demonstrated safety over the past 40 

years, the use of nisin has begun to expand to include a diverse array of unrelated 

applications, such as those related to the biomedical industry (Fig. 1). Many lantibiotics 

(and more broadly, other bacteriocins) have been reported to possess additional 

biological activities beyond their antimicrobial activities (Asaduzzaman and Sonomoto, 

2009; Benmechernene et al., 2013; Kamarajan et al., 2015). For example, nisin has 

beneficial properties in the context of biomedical applications, including bacterial 

infections, cancer, oral diseases and more. This review will provide a comprehensive 

overview of the latest findings by focusing on the advances in nisin bioengineering and 

the new discoveries in biomedical applications of nisin. 

 

Natural and Bioengineered Variants of Nisin  

Several other naturally-occurring variants of nisin have been reported. These 

variants have been identified from a range of taxonomically distinct organisms isolated 

from a broad range of environments. Nisin A was first discovered in L. lactis, an 

organism that is commonly found in dairy products and is the most widely studied nisin 

variant (Fig. 2) (Gross and Morell, 1971). Nisin Z, the closest variant of nisin A, was 

isolated from L. lactis NIZO22186 (Mulders et al., 1991). Nisin Z differs from nisin A by a 

single amino acid residue at position 27, asparagine instead of histidine (Fig. 2; Table 1) 

(Mulders et al., 1991). Nisin A and Z share similar properties as antimicrobials, but nisin 
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Z has a superior rate of diffusion and solubility under neutral pH conditions (De Vos et 

al., 1993). Nisin F was isolated from L. lactis F10 in the feces of a freshwater catfish in 

South Africa and differs from nisin A by two amino acid residues (De Kwaadsteniet et 

al., 2008). Nisin F has two amino acid substitutions at position 27 and 30 (Fig. 2; Table 

1). Nisin Q was isolated from L. lactis 61-14 that was cultured from a river in Japan 

(Zendo et al., 2003). Nisin Q contains four substitutions at position 15, 21, 27 and 30 

(Fig. 2; Table 1).  Nisin A, Z, F and Q have antimicrobial activity against a range of 

Staphylococcus aureus targets (Piper et al., 2011). Nisin U and U2 are more distantly 

related variants that were isolated from Streptococcus uberis, an organism that 

commonly inhabits the lips, skin, and udder tissues of cows and is found in raw milk 

(Wirawan et al., 2006). Nisin U and U2 contain nine and ten amino acid substitutions 

respectively, compared to nisin A (Table 1). Recently, nisin H was isolated from a 

Streptococcus hyointestinalis strain derived from porcine intestine (O’Connor et al., 

2015). The amino acid sequence of nisin H has similarities to nisin peptides produced 

by both lactococcal and streptococcal strains (Table 1). Nisin H maintains the terminal 

amino acids found in nisin A, Z, F, and Q, while harnessing features of nisin U and U2, 

including a dehydroaminobutyric acid substitution at position 18 (Table 1). Furthermore, 

nisin P was identified by genome mining techniques in Streptococcus gallolyticus subsp. 

Pasteurianus, an organism found in the alimentary tract of ruminants (Zhang et al., 

2012). The protein sequence of nisin P closely resembles that of nisin U2 but differs 

from it by two substitutions at position 20 and 21 (Fig. 2; Table 1). Thus far, based on 

published reports, there are at least eight nisin variants that have been isolated, 

identified and sequenced for cross-analysis.  
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The potential for utilizing genetic tools to modify the activity of bacteriocins has 

been recognized for several decades (Gillor et al., 2005). In addition to the naturally 

occurring nisin variants, there are bioengineered forms of nisin that have been 

developed in attempts to enhance the efficacy and stability of nisin under different 

physiologic conditions, and to enhance its pharmacokinetic properties for a variety of 

biological applications (Field et al., 2015). Here, we describe several bioengineered 

nisin variants that have been recently identified. Nisin Z N20K and M21K were derived 

from the genetic modification of L. lactis NZ9800 and first reported by Yuan and 

colleagues. These genetically modified nisin variants exhibited enhanced activity 

against pathogenic Gram-negative bacteria, such as Shigella, Pseudomonas and 

Salmonella species (Yuan et al., 2004). Nisin Z N20K and M21K contain substitutions in 

the flexible hinge-region of the peptide backbone structure of nisin Z (Table 1). 

Furthermore, these variants displayed greater thermal stability at higher temperatures 

and solubility at neutral or alkaline pH (Yuan et al., 2004). The hinge region of nisin, 

which consists of three amino acids, asparagine-methionine-lysine, is located between 

the first three and the last two lanthionine-constricted rings of nisin. Modifications in the 

hinge region have been studied extensively because this region is important for the 

insertion of nisin into the bacterial membrane (Hasper et al., 2004; Lubelski et al., 2009; 

Ross and Vederas, 2011). Healy and coworkers demonstrated that mutants of the hinge 

region exhibited enhanced activity against specific indicator strains such as L. lactis HP, 

Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and S. 

aureus RF122 (Healy et al., 2013). In addition, Zhou and colleagues demonstrated that 

by altering the length of the hinge region of nisin, the efficacy of nisin against a panel of 
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test microorganisms can be altered in a temperature and matrix dependent manner 

(Zhou et al., 2015). Recently, a wide range of bioengineered nisin peptides with greater 

activity and enhanced therapeutic properties against foodborne and clinical pathogens 

began surfacing in the literature. The newly bioengineered variants include nisin A 

K22T, A N20P, A M21V, A K22S, S29A, S29D, S29E and S29G  (Table 1) (Field et al., 

2008; Field et al., 2012). Field and colleagues applied site-directed and site-saturation 

mutagenesis to the hinge region residues of nisin A to successfully identify variants that 

displayed enhanced bioactivity and specificity against a range of Gram-positive drug-

resistant, clinical veterinary and food-borne pathogens (Field et al., 2012). Thus, based 

on emerging reports, bioengineered variants of nisin appear to be promising candidates 

for future applications in health care. 

 

Nisin and Treatment of Infectious Diseases  

Certain human infectious diseases, such as antibiotic-resistant skin and soft 

tissue infections and especially biofilm-associated infections can be difficult to prevent 

and/or treat (Mah and O’Toole, 2001; Gilbert et al., 2002; Fauci and Morens, 2012). 

While conventional medical treatments that are based on antibiotics and antivirals have 

been used for bacterial and viral infections, the emergence of drug resistance has led to 

the search for alternative or adjunctive methods to treat these drug resistant diseases 

(Zetola et al., 2005). With decades of safe usage in the food industry, investigators have 

started exploring nisin as a potential alternative agent for infectious diseases, including 

drug-resistant infections, thereby also decreasing the use of antibiotics (Table 2) 

(Balciunas et al., 2013). 
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Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant 

enterococci (VRE) has become a major medical problem in hospitals around the world.  

The difficulty in treating these infections has been extensively documented (Huycke et 

al., 1998; Chambers, 2001; Köck et al., 2010; Ahire and Dicks, 2015). MRSA and VRE 

are leading causes of bacterial nosocomial infections, urinary tract infections, and are 

known to be resistant to many standard therapies. For example, MRSA infections 

account for up to 70% of the S. aureus infections in intensive care units (Sahm et al., 

1999; Diekema et al., 2001). Both MRSA and VRE infections can manifest as skin 

infections and in medical settings as bacteremias, pneumonia, and post-surgical 

infections (Huycke et al., 1998; Center for Disease Control and Prevention, MRSA 

Infections, 2015). Numerous studies have been published regarding the efficacy of nisin 

as an antimicrobial therapeutic (Piper et al., 2009; Dosler and Gerceker, 2011; Okuda et 

al., 2013; Singh et al., 2013; Ahire and Dicks, 2015). Piper and coworkers reported that 

nisin was especially effective against antibiotic resistant staphylococci, and that further 

research into nisin and other lantibiotic compounds could result in promising 

antimicrobial alternatives (Piper et al., 2009). Dosler and colleagues investigated the in 

vitro effects of nisin against MRSA strains, and concluded that nisin was a good 

candidate for further research by itself or in combination with conventional antibiotics, 

such as vancomycin or ciprofloxacin (Dosler and Gerceker, 2011). Other studies have 

shown that nisin in combination with conventional antibiotics can promote synergistic 

effects (Brumfitt et al., 2002; Singh et al., 2013). An earlier study by Severina and 

colleagues demonstrated that nisin exhibited bactericidal effects against a large panel of 

Gram-positive bacteria including MRSA, VRE and S. pneumoniae (Severina et al., 
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1998). In addition, nisin producing L. lactis strain was shown to reduce the intestinal 

colonization of VRE in a mouse infection model (Millette et al., 2008).  

Bacteria that adhere to implanted medical devices or damaged tissue can form a 

biofilm and cause chronic infection (Stewart and Costerton, 2001). Biofilms are surface 

associated communities of microorganism that can be up to 1,000-times more resistant 

to antimicrobials. Treatment of these biofilms accounts for over a billion dollars in 

healthcare costs each year in the US (Mah and O’Toole, 2001; Gilbert et al., 2002). 

Okuda and colleagues investigated the antibiofilm effects of nisin against MRSA 

biofilms on medical devices and reported that nisin A compared to two other 

bacteriocins (lacticin Q and nukacin ISK-1) was most effective in the prevention of 

biofilm formation (Okuda et al., 2013). Recently, Ahire and Dicks demonstrated that a 

combination therapy of 2,3-dihydroxybenzoic acid, an antibiotic extracted from 

Flacourtia inermis fruit, and nisin resulted in an increase in iron concentrations that 

reduced biofilm formation of the MRSA Xen 31 strain (Ahire and Dicks, 2015).  

The potential for using nisin to treat local site-specific infections has also been 

explored. For example, the antimicrobial effects of nisin against mastitis, respiratory, 

gastrointestinal, and skin infections has been reported (Table 2). In respiratory tract 

infections, although viral etiologies are common, these can progress to bacterial 

infections that further compromise the health status (Hament et al., 1999). The upper 

and lower respiratory tract is primarily infected by S. aureus (Micek et al., 2007; Weber 

et al., 2007; Bosch et al., 2013). De Kwaadsteniet and colleagues reported that nisin F 

safely inhibited the growth of S. aureus in the respiratory tract of immunocompromised 

rats (De Kwaadsteniet et al., 2009). Furthermore, studies have shown that nisin can 
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exert synergistic effects when combined with lysozyme and lactoferrin, which are both 

antimicrobial proteins and normally secreted in the human respiratory tract (Nattress et 

al., 2001; Murdock et al., 2007; De Kwaadsteniet et al., 2009). It was proposed that 

while nisin deters cell growth by binding to the lipid II precursor of the cell wall, 

lysozyme and lactoferrin can further damage the glycosidic bonds in the peptidoglycan 

wall, and sequester iron necessary for cellular respiration, respectively (Arnold and 

Cole, 1977; Ganz, 2004; De Kwaadsteniet et al., 2009).  

Superficial and invasive skin and soft tissue infections are commonly caused by 

S. aureus (Fridkin et al., 2005; Daum, 2007). MRSA skin infections are relatively 

uneventful but failure to treat effectively can result in death (Dakota, 1999). Heunis and 

coworkers investigated the efficacy of nisin using an electrospun nanofiber wound 

dressing containing nisin, which diffused active nisin onto skin wounds (Heunis et al., 

2013). In a murine excisional skin infection model, the nisin-containing wound dressing 

significantly reduced the S. aureus colonization as analyzed by bioluminescence. In 

addition, the wound showed signs of accelerated healing (Heunis et al., 2013). Mastitis 

is a common inflammatory disease in lactating women that causes breastfeeding 

cessation (Foxman et al., 2002). S. aureus and S. epidermidis are two common 

etiologic agents that cause mastitis-associated infections (Foxman et al., 2002). 

Considering the potent antimicrobial properties of nisin against staphylococcal strains, 

investigators have explored using nisin as a clinical therapeutic for mastitis. Cao and 

colleagues reported that a nisin-based formulation was effective in the treatment of 

clinical mastitis in lactating dairy cows caused by several different mastitis pathogens 

(Cao et al., 2007). In addition, Wu and coworkers demonstrated that nisin Z was 
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effective in treatment of subclinical mastitis caused by multiple mastitis pathogens in 

lactating dairy cows (Wu et al., 2007). Recently, Fernandez and others reported that 

topical nisin treatment alleviated clinical signs of mastitis and significantly reduced the 

staphylococcal count in breast milk of nisin treated women (Fernandez et al., 2008). 

Overall, as an alternative to conventional antibiotics, the latest research suggests that 

nisin has potential as a therapeutic against certain infectious pathogens and disease 

conditions.  

 

Nisin and Oral Health  

The pervasiveness of oral diseases, such as caries and periodontal diseases, 

remains high in developed and developing countries (Marcenes et al., 2013). Oral 

diseases are considered a major public health burden due to their high prevalence and 

incidence (Petersen, 2003). Therefore, research on new strategies to prevent and treat 

oral diseases are a focus of industry and many academic, and government institutions 

(Centers for Disease Control and Prevention, Chronic Disease Prevention and Health 

Promotion, 2015). Oral biofilms, including dental plaque, play a key role in the etiology 

and the progression of biofilm-associated oral diseases (Marsh, 2010; Zijnge et al., 

2010). Enhanced antimicrobial resistance is associated with the accumulation of 

pathogens that cause dental caries and periodontal disease (Marsh, 2003; Aas et al., 

2005). Nisin’s potential as an oral antimicrobial was first described by Johnson and 

colleagues, who demonstrated that there were fewer numbers of streptococci in the 

dental plaque of monkeys that received nisin in their foods (Johnson et al., 1978). Later, 

Howell and coworkers demonstrated that a nisin-based antimicrobial mouthrinse 
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exhibited promising clinical results in prevention of plaque build-up and gingival 

inflammation in beagle dogs (Howell et al., 1993). Thus, the idea of using nisin to 

improve oral health has been around for some time.  

Emerging evidence continues to support the antimicrobial properties of nisin 

against oral pathogenic bacteria relevant to caries and periodontal diseases. Tong and 

colleagues demonstrated that nisin A can inhibit the growth of cariogenic bacteria, 

including Streptococcus mutans (Tong et al., 2010). Scanning electron microscopy 

confirmed that nisin exerted bactericidal activity by forming small pores on the surface 

of cells (Tong et al., 2010). Furthermore, investigators have reported that nisin in 

combination with poly-lysine and sodium fluoride displayed synergistic properties in 

inhibiting planktonic and biofilm forms of S. mutans (Najjar et al., 2009; Tong et al., 

2011). Nisin A has been shown to inhibit the growth of Gram-positive oral bacteria such 

as Streptococcus sanguinis, Streptococcus sobrinus and Streptococcus gordonii (Tong 

et al., 2010). In addition, Shin and coworkers demonstrated that high purity nisin Z can 

inhibit the growth of Gram-negative oral colonizing pathogens, including 

Porphyromonas gingivalis, Prevotella intermedia, Aggregatibacter 

actinomycetemcomitans and Treponema denticola (Shin et al., 2015). Shin and 

colleagues also reported that nisin exerted anti-biofilm effects on saliva derived multi-

species biofilms without causing cytotoxicity to human oral cells (Fig. 3) (Shin et al., 

2015). As a cationic bacteriocin, nisin’s mode of action may include inhibition of 

coaggregation of oral colonizers. Indeed, cationic antimicrobials can selectively inhibit 

coaggregation interactions of oral biofilm species (Smith et al., 1991). 
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In addition to dental caries and periodontal disease, nisin’s potential application 

to other oral diseases has been explored. Investigators have reported that nisin can 

inhibit Enterococcus faecalis, which is an opportunistic Gram-positive pathogen 

frequently recovered from infected root canals of teeth (Stuart et al., 2006). In an ex vivo 

root canal system, nisin successfully eradicated the colonization of E. faecalis (Turner et 

al., 2004). Nisin, when paired with MTAD (a common intracanal irrigant, consisting of 

3% doxycycline, 4.5% citric acid, and 0.5% polysorbate 80 detergent), improved the 

post-antibiotic sub-MIC effects of MTAD against E. faecalis, and made it less resistant 

to alkaline environments (Tong et al., 2014). Another potential oral application of nisin 

was demonstrated in the treatment of oral candidiasis.  Candida albicans is one of the 

most prevalent pathogens that causes mucosal fungal infections (Pfaller et al., 2002; 

Trick et al., 2002). The invasion of candida species into oral epithelial cells is a 

signature of oropharyngeal candidiasis (Eversole et al., 1997; Drago et al., 2000; Farah 

et al., 2000). Le Lay and colleagues reported that nisin Z can significantly reduce the 

growth and transition of C. albicans (Le Lay et al., 2008). In addition, nisin Z has the 

potential to work synergistically with oral gingival cells to provide greater resistance 

against C. albicans infections (Akerey et al., 2009). Thus, with recent reports 

highlighting the therapeutic potential of nisin in oral diseases, future studies will be 

essential to further evaluate the potential clinical role of nisin. 
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Bacteriocins and Cancer: Nisin as a Cancer Therapeutic  

The potential for using bacterially-derived compounds to control infectious 

disease also extends to controlling cancers (Frankel et al., 2002; Lundin and 

Checkoway, 2009; Nobili et al., 2009). For example, antimicrobial peptides have been 

indicated to exhibit cytotoxic effects on cancer cells and thus may have therapeutic 

potential (Meyer and Harder, 2007; Boohaker et al., 2012). Specifically, purified 

bacteriocins, including pyocin, colicin, pediocin, microcin, and nisin have shown 

inhibitory properties against neoplastic cell lines and in xenograft mouse models (Cornut 

et al., 2008; Lagos et al., 2009; Yates et al., 2012; Shaikh et al., 2012; Yang et al., 

2014). This is relevant because current treatment strategies have yet to reduce cancer-

related deaths below a half million per year in the USA alone (Centers for Disease 

Control and Prevention, Leading Causes of Death, 2015). Cancer is a complex disease 

characterized by the dysregulated growth of abnormal cells. Significant progress has 

been made in the treatment of cancers, however the majority of treatments involve 

surgery and chemo- and radiation therapy, which are detrimental to normal cells and 

tissues and cause further morbidity (Patel et al., 2014; DeSantis et al., 2014).  

Recently, Joo and colleagues explored the cytotoxic and antitumor properties of 

nisin A and discovered that it blocks head and neck squamous cell carcinoma (HNSCC) 

tumorigenesis (Joo et al., 2012). Nisin mediated these effects by inducing preferential 

apoptosis, cell cycle arrest, and reducing cell proliferation in HNSCC cells compared to 

primary oral keratinocytes. Nisin also reduced HNSCC tumorigenesis in vivo in a mouse 

model (Joo et al., 2012). Mechanistically, nisin exerted these effects on HNSCC, in part, 

through cation transport regulator homolog 1 (CHAC1), a proapoptotic cation transport 
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regulator and through a concomitant CHAC1-independent influx of extracellular calcium 

(Mungrue et al., 2009; Joo et al., 2012). Nisin can interact with the negatively charged 

phospholipid heads of the cell membrane, thereby mediating its reorganization and 

forming pores that allow an influx of ions (Giffard et al., 1996; Moll et al., 1997). Since 

HNSCC cells and primary oral keratinocytes differ in their lipid membrane composition 

and function, and response toward calcium fluxes, the ability of nisin to differentially 

alter the transmembrane potential and membrane composition of HNSCC cells may 

explain its predominant effects on these cells (Ponec et al., 1984; Ponec et al., 1987; 

Tertoolen et al., 1988; Eckert, 1989; Gasparoni et al., 2004; Tripathi et al., 2012). 

Indeed, recent reports support this premise as the basis for the nisin-mediated 

differential apoptotic cell death and reduced proliferation of HNSCC cells compared to 

primary keratinocytes (Schweizer, 2009). 

Recently, Kamarajan and coworkers focused on investigating the translational 

potential of a high purity form of nisin Z for the treatment of HNSCC (Kamarajan et al., 

2015). The data support the role of nisin as an alternative therapeutic for HNSCC, since 

nisin promoted HNSCC cell apoptosis, suppression of HNSCC cell proliferation, 

inhibition of angiogenesis, inhibition of HNSCC orasphere formation, inhibition of 

tumorigenesis in vivo, and it prolonged survival in vivo (Fig. 4) (Kamarajan et al., 2015). 

Considering that the FDA has approved 83.25 mg/kg in humans as the no-observed-

effect-level (NOEL) for nisin (66.7 mg/kg was used in mice as a cancer therapeutic 

dose), this study demonstrated the promising potential for nisin as an anti-cancer agent. 

In addition, Preet and colleagues demonstrated that combining doxorubicin, a 

conventional cancer drug, with nisin can potentiate the effectiveness of the treatment in 
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terms of decreasing tumor severity in skin carcinogenesis (Preet et al., 2015). 

Therapeutic strategies for utilizing nisin alone or in combination with other conventional 

drugs to treat cancer are still at an early stage. However, the few studies that have been 

reported demonstrate the significant anti-cancer potential of using nisin as a promising 

alternative or adjunctive therapeutic. Furthermore, increasing evidence suggests an 

etiologic linkage between the microbiome and cancers (Wroblewski et al., 2010; 

Bultman, 2014). Recent studies indicate that certain bacteria (i.e. oral bacteria) may 

promote carcinogenesis in humans (Ahn et al., 2012; Michaud and Izard, 2014). In 

these scenarios, it is possible that nisin may have dual benefits by altering or disrupting 

the microbiome and inhibiting the growth of cancer cells. Thus, nisin may be a useful 

therapeutic since it exerts both antimicrobial/biofilm and anti-cancer properties.  

 

Immunomodulatory Role of Nisin 

Host-defense peptides (HDPs) are ubiquitous in nature. HDPs are small 

amphiphilic cationic peptides, which play an essential role in the innate immune 

response (Sahl and Bierbaum, 2008). Almost all living organisms use antimicrobial 

peptides or HDPs as an innate defense mechanism.  Interestingly, despite differences 

in size and native structure, HDPs and bacterially secreted bacteriocins share similar 

physicochemical properties (Hancock and Sahl, 2006). Nisin is both a cationic and 

amphiphilic peptide, and thereby mediates diverse effects on membrane processes 

similar to HDPs (Cotter et al., 2005). Pablo and colleagues demonstrated that short-

term dietary administration of nisin (as Nisaplin, containing 2.5% nisin A, 77.5% NaCl 

and non-fat dried milk) resulted in an increase in CD4 and CD8 T-lymphocytes, while 
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decreasing the B-lymphocyte levels (Pablo et al., 1999). In addition, prolonged 

administration of nisin resulted in a return to normal levels of both B- and T-lymphocytes 

(Pablo et al., 1999). This study provided the first evidence of nisin’s influence on the 

immune system of mice. Recently, Begde and coworkers reported that nisin was able to 

activate neutrophils, and suggested that nisin may be influencing multiple subsets of 

host immune cells (Begde et al., 2011). Considering that nisin appears to behave similar 

to HDPs, it is possible that the immunomodulatory properties associated with HDPs 

may also apply to nisin (Kindrachuck et al., 2013). Bacteriocins were once thought to 

have a very limited role in disrupting bacterial membranes and exerting bactericidal 

activity. However, Kindrachuck and colleagues demonstrated that purified nisin Z was 

capable of modulating the innate immune response by inducing chemokine synthesis 

and suppressing LPS-induced pro-inflammatory cytokines in human peripheral blood 

mononuclear cells (Kindrachuck et al., 2013). Furthermore, nisin Z promoted 

immunomodulatory responses within both ex vivo and in vivo model systems 

(Kindrachuck et al., 2013). These reports underscore nisin’s significant potential for use 

in a variety of human diseases that are mediated by the host immune response and 

pathogenic biofilms, like periodontal disease. Given that the periodontal lesion is 

characterized by an initial burst of neutrophils that is followed by a B- and T-cell 

mediated immune response in its later stages, nisin could play a significant therapeutic 

role in modifying both the immune and biofilm signature of this lesion (Page and 

Schroeder, 1976). The ability of nisin to alter the host immune response provides yet 

another opportunity for its potential use within health care settings. Since information 
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regarding the role of nisin in modulating the host immune response is limited, this area 

merits further examination. 

 

Resistance to Nisin 

Bacteriocins have different modes of action when compared to antibiotics 

(Cleveland et al., 2001; Cotter et al., 2005). Specifically, lantibiotic bacteriocins, such as 

nisin, require a docking molecule (lipid II), through which they target cells by forming 

pores in the membrane. This depletes the transmembrane potential and/or the pH 

gradient and results in the leakage of cellular materials (Peschel and Sahl, 2006). 

Although binding of lipid II is similar to other antibiotics such as vancomycin, nisin is 

unique in that it can span the entire membrane by using the pyrophosphate cage as the 

anchoring point (Hsu et al., 2004). Some evidence suggests that resistance against 

nisin can arise from mutations that induce changes in the membrane and cell wall 

composition (thickening of the cell wall to prevent the nisin binding to lipid II), reducing 

the acidity of the extracellular medium to stimulate the binding of nisin to the cell wall 

and induce degradation, prevent the insertion of nisin into the membrane, and transport 

or extrude nisin out across the membrane (Mantovani and Russell, 2001; Kramer et al., 

2006; Kramer et al., 2008). These changes may occur independently or together and 

have been described as physiological adaptations (Sun et al., 2009). The cellular 

mechanisms of resistance to nisin are, however, still not well understood. One key 

reason for this stems from the fact that only a few examples of nisin resistance have 

emerged and only under laboratory conditions.  
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Lipid II plays an essential role in bacterial cell wall biosynthesis and growth, and 

nisin initiates its mode of action by binding to lipid II with high affinity (Breukink et al., 

1999; Wiedemann et al., 2001). Kramer and colleagues tested whether nisin resistance 

could result from differences in the lipid II levels of Gram-positive bacteria (Kramer et 

al., 2004). Those studies suggested that there was no direct role for lipid II in nisin 

resistance as there was no correlation with the amount of lipid II present and increase in 

resistance (Kramer et al., 2004). It was recently reported that lack of antibiotic 

resistance to a newly described antibiotic was due to its targeting the highly conserved 

lipid II component of bacteria; nisin may be working in the same way (Ling et al., 2015). 

Nisinase is a dehydropeptide reductase that can inactivate nisin through an enzymatic 

reaction (de Freire Bastos et al., 2014; Draper et al., 2015). Nisinase activity has been 

detected in Lactobacillus plantarum, Streptococcus thermophiles, Clostridium 

botulinum, L. lactis sub-species cremoris, E. faecalis and S. aureus (Kooy, 1952; 

Carlson and Bauer, 1957; Alifax and Chevalier, 1962; Rayman et al., 1983). However, 

despite all of the reports suggesting the presence of nisinase in several different 

species, there has not been a conclusive study indicating the presence of nisinase in L. 

lactis (Pongtharangku and Demirci, 2007). In addition, Sun and coworkers reported that 

nisin resistance protein (NSR) is a nisin degrading protease that non-nisin producing 

bacteria can produce as a novel mechanism for nisin resistance (Sun et al., 2009). NSR 

was capable of proteolytically cleaving the C-terminal tail of nisin, thereby inactivating 

and reducing nisin’s antimicrobial activity by a 100-fold (Sun et al., 2009). 

Currently, the majority of studies on the mechanisms of nisin resistance have 

been focused on single foodborne pathogens, such as Listeria monocytogenes 
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(Crandall and Montville, 1998). A number of mechanisms are now known to contribute 

to and affect nisin resistance, including environmental stress and specific genetic 

components (Mantovani and Russell, 2001; Gravesen et al., 2001; Thedieck et al., 

2006; Begley et al., 2010). As the applications of nisin expand even further into the 

biomedical field, it will be critical to study and monitor the development of nisin 

resistance in pathogenic organisms and cells relevant to disease processes. Antibiotic 

resistance is not an uncommon phenomenon, however, bacteriocins such as nisin are 

distinctly different from conventional antibiotics in both their synthesis and mode of 

action (Cleveland et al., 2001). Thus, characterization of specific genetic or protein 

components that may contribute to nisin resistance will be important to better 

understand any potential resistance issues that may arise in clinical settings. 

 

Concluding Remarks: Outlook 

In recent years, nisin research has shown its potential use in a broad range of 

fields, including food biopreservation and biomedical applications. Among different 

classes of lantibiotics, nisin is the most well-known and best-studied lantibiotic 

(Benmechernene et al., 2013). Considering that variants of nisin are now available in 

high purity forms from numerous commercial vendors, it is projected that more studies 

on different applications of nisin will be published. In addition, the mode of action of 

nisin in the context of human systems and disease will be better understood for newer 

biomedical applications. Currently, antibiotic resistance is a major concern in the food 

and biomedical industries. Until now, nisin has shown promising laboratory and clinical 

results as a useful therapeutic agent. Furthermore, different variants and forms of nisin 
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may be combined with conventional drug(s) to promote synergistic outcomes.  Further 

validation of nisin’s usefulness in biomedical fields will require in vivo studies to evaluate 

its efficacy. Although nisin has been associated with the development of minimal 

resistance, it will be critical to continue surveying for potential novel mechanisms of 

nisin resistance in vitro and in vivo. There is still much knowledge to be gained, however 

current findings support the incorporation of nisin and/or other bacteriocins into a variety 

of disease therapies.  
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Figure IV.1. Timeline of Nisin Development 
 

 

 

 

 
 
Figure IV.2. Peptide Structure of Nisin. Modified amino acids are colored gray with 
black letters. Dha, dehydroalanine (from Alanine); Dhb, dehydrobutyrine (from 
Threonine); Ala-S-Ala, lanthionine; Abu-S-Ala; β-methyllanthionine. The hinge region is 
composed of Asparagine-Methionine-Lysine.  Arrows indicate the sites of amino acid 
substitutions for natural variants. 
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Figure IV.3. Nisin Inhibits the Formation of Multi-Species Biofilms. Cell containing 
saliva was added, then fed filter sterilized cell free saliva for 20–22 h at 37°C with or 
without nisin. Confocal microscopy images are represented in the x–y plane. A green 
signal indicates viable live cells (Syto 9) and a red signal indicates damaged/dead cells 
(propidium iodide). These images were previously published (Shin et al., 2015).	
 

 

Figure IV.4. Nisin Z Inhibits Orasphere Formation in HNSCC Cells. Phase contrast 
images of oraspheres in HNSCC cells (UM-SCC-17B) cultured under suspension 
conditions and treated with control media or media containing nisin Z (100 to 800 µg/ml) 
for 36 h. These images were previously published (Kamarajan et al., 2015) 
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Natural Variants Unmodified Amino Acid Sequences Origin 
Nisin A ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK Lactococcus lactis strains 

(Gross et al., 1971) 
Nisin Z ITSISLCTPGCKTGALMGCNMKTATCNCSIHVSK Lactococcus lactis NIZO 22186 

(Mulders et al., 1991) 
Nisin F ITSISLCTPGCKTGALMGCNMKTATCNCSVHVSK Lactococcus lactis subsp. lactis 

F10 
(de Kwaadsteniet et al., 2008) 

Nisin Q ITSISLCTPGCKTGVLMGCNLKTATCNCSVHVSK Lactococcus lactis 61-14 
(Zendo et al., 2003) 

Nisin H FTSISMCTPGCKTGALMTCNYKTATCHCSIKVSK Streptococcus hyointestinalis 
(O’Connor et al., 2015) 

Nisin U ITSKSLCTPGCKTGILMT CPLKTATCGCHFG Streptococcus uberis 
(Wirawan et al., 2006) 

Nisin U2 VTSKSLCTPGCKTGILMT CPLKTATCGCHFG Streptococcus uberis 
(Wirawan et al., 2006) 

Nisin P VTSKSLCTPGCKTGILMT CAIKTATCGCHFG Streptococcus galloyticus 
subsp. Pasteurianus 
(Zhang et al., 2012) 

Bioengineered 
Variants 

  

Nisin A S29A ITSISLCTPGCKTGALMGCNMKTATCHCAIHVSK L. lactis NZ9800 
(Field et al., 2012) 

Nisin A S29D ITSISLCTPGCKTGALMGCNMKTATCHCDIHVSK L. lactis NZ9800 
(Field et al., 2012) 

Nisin A S29E ITSISLCTPGCKTGALMGCNMKTATCHCEIHVSK L. lactis NZ9800 
(Field et al., 2012) 

Nisin A S29G ITSISLCTPGCKTGALMGCNMKTATCHCGIHVSK L. lactis NZ9800 
(Field et al., 2008) 

Nisin A K22T ITSISLCTPGCKTGALMGCNMTTATCHCSIHVSK L. lactis NZ9800 
(Field et al., 2008) 

Nisin A N20P ITSISLCTPGCKTGALMGCPMKTATCHCSIHVSK L. lactis NZ9800 
(Field et al., 2008) 

Nisin A M21V ITSISLCTPGCKTGALMGCNVKTATCHCSIHVSK L. lactis NZ9800 
(Field et al., 2008) 

Nisin A K22S ITSISLCTPGCKTGALMGCNMSTATCHCSIHVSK L. lactis NZ9800 
(Field et al., 2008) 

Nisin Z N20K ITSISLCTPGCKTGALMGCKMKTATCNCSIHVSK L. lactis NZ9800 
(Yuan et al., 2004) 

Nisin Z M21K ITSISLCTPGCKTGALMGCNKKTATCNCSIHVSK L. lactis NZ9800 
(Yuan et al., 2004) 

 

Table IV.1. Natural and Bioengineered Variants of Nisin. Amino acids in white letters 
indicate the flexible hinge region. Yellow highlights indicate amino acid substitutions 
compared to nisin A. Please note that this table does not contain all variants that have 
been reported to date. 
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Disease	 Nisin	 Model	 Results	 References	
Infections 

associated with 
drug resistant 

pathogens	

	 	 	 	

	 Nisin A 
(2.5% w/w purity)	

In vitro	 Nisin exhibited bactericidal effect 
against a large panel of Gram-
positive bacteria including MRSA, S. 
pneumoniae and enterococci 

Severina et al., 
1998 

	  
Nisaplin 

(2.5% w/w purity)	

 
In vitro	

 
Nisin exhibited bactericidal effects 
against clinical isolates of S. 
pneumoniae, including penicillin- and 
other drug-resistant strains	

 
Goldstein et al., 

1998 
	

	  
Nisin A 

(> 95% purity)	

 
In vitro	

 
Nisin was active and highly 
bactericidal against C. difficile. Nisin 
was not absorbed by the 
gastrointestinal tract and did not 
have indiscriminate activity against 
all bowel flora or all anaerobes	

 
Bartoloni et al., 

2004 
	

	  
Nisin A 

(2.5% w/w purity)	

 
In vitro	

 
Nisin was active against drug 
resistant S. aureus	

 
Piper et al., 

2009	
	  

Nisin A 
(2.5% w/w purity)	

 
In vitro	

 
Nisin exhibited bactericidal effect 
against both MSSA and MRSA 
strains. In addition, it enhanced the 
activity of ciprofloxacin and 
vancomycin when used in 
combination	

 
Dosler et al., 

2011	

 
Nisin A 

(2.5% w/w purity)	

 
In vitro	

 
Nisin exhibited bactericidal activity 
against both MRSA and other 
staphylococcal biofilms grown on 
medical devices	

 
Okuda et al., 

2013	

 
Nisaplin 

(2.5% w/w purity)	

 
In vitro	

 
Nisin incorporated with 2,3-
dihydroxybenzoic acid in nanofibers 
inhibited formation of MRSA biofilms	

 
Ahire and Dicks, 

2015	

Gastrointestinal 
Infections	

	 	 	 	

	 Nisin A 
(> 95% purity)	

In vitro	 Nisin did not disrupt the intestinal 
epithelial integrity, suggesting that it 
may be suitable for the treatment of 
gastrointestinal tract infections	

Maher and 
McClean, 2006 

	

	  
Nisin A and Z 

(> 95% purity)	

 
In vitro	

 
Nisin A and Z exhibited similar 
inhibition effect against a broad 
range of intestinal Gram-positive 
bacteria	

 
Blay et al., 2007	

	  
Nisaplin 

 
In vitro	

 
Nisin was tableted with a 

 
Ugurlu et al., 
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(2.5% w/w purity)	 pectin/HPMC mixture to form an 
enzymatically controlled delivery 
system for potential colonic drug 
delivery	

2007	

	  
Nisin Z	

 
In vitro and 

Mice 
 
 

	

 
Nisin producing strain L. lactis 
modulated the intestinal microbiota 
and reduced the intestinal 
colonization of vancomycin-resistant 
enterococci in infected mice.	

 
Millette et al., 

2008	

	  
Nisin A and Z 
(unknown purity) 

 
Ex vivo using 
jejunal chyme 

from 
fistulated 

dogs	

 
Nisin was insensitive to degradation 
by the components of the jejunal 
chyme	

 
Reunanen and 

Saris, 2009	

	  
Nisin F 

(Purity in arbitrary 
units)	

 
In vitro and 

Mice	

 
Nisin may have a stabilizing effect on 
the bacterial population of the gastro 
intestinal tract	

 
van Staden et 

al., 2011	

Respiratory 
Infections	

	 	 	 	

	 Nisin F 
(Purity in arbitrary 

units) 
 
 

Nisaplin 
(2.5% w/w purity)	

In vitro and 
Rats 

  
In vitro and 

Mice 

Nisin was used to control intranasal 
S. aureus infection 
 
Low blood and tissue levels of nisin 
were sufficient to prevent the death 
of mice infected with S. pneumoniae  

De 
Kwaadsteniet et 

al., 2009 
Goldstein et al., 

1998 

Skin and Soft 
Tissue Infections	

	 	 	 	

	 Nisaplin 
(2.5% w/w purity)	

In vitro and 
Mice	

Nisin-containing nanofiber wound 
dressings significantly reduced S. 
aureus induced skin infections	

Heunis et al., 
2013	

Mastitis	 	 	 	 	
	 Nisin Z 

(18000 IU/mg)	
Cows	 Intramammary administration of nisin 

was effective in the treatment of 
mastitis in lactating dairy cows	

Cao et al., 2007 
Wu et al., 2007	

	  
Nisin A 

(Approximately 6 
µg/ml) 

 
In vitro and 

Human	

 
Topical treatment of nisin was 
effective in the treatment of 
staphylococcal mastitis	

 
Fermandez et 

al., 2008 
	

Cancer	 	 	 	 	
	 Nisin A 

(2.5% w/w purity)	
In vitro and 

Mice 
	

Nisin reduced HNSCC tumorigenesis 
by inducing preferential apoptosis, 
cell cycle arrest, and reducing cell 
proliferation in HNSCC cells 

Joo et al., 2012 
	

	  
Nisin A 

(2.5% w/w purity) 

 
In vitro and 

Mice 

 
Combination of nisin and doxorubicin 
decreased tumor severity in skin 
carcinogenesis 

 
Preet et al., 

2015 
	

	  
Nisin AP and ZP 
(* P stands for pure; 

 
In vitro and 

Mice	

 
Nisin promoted HNSCC cell 
apoptosis, suppression of HNSCC 

 
Kamarajan et 

al., 2015 
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95% purity)	 cell proliferation, inhibition of 
angiogenesis and cancer orasphere 
formation. Nisin inhibited 
tumorigenesis and prolonged 
survival of mice	

	

Oral Health	 	 	 	 	
	 Nisaplin 

(2.5% w/w purity)	
Monkeys	 Nisin reduced the numbers of 

streptococci in the dental plaque of 
monkeys that received nisin in their 
foods	

Johnson et al., 
1978	

	  
Nisin (Ambicin N) 

(unknown purity)	

 
Dogs	

 
Nisin based mouthrinse prevented 
plaque build-up and gingival 
inflammation in beagle dogs	

 
Howell et al., 

1993	

	  
Nisin A 

(2.5% w/w purity) 

 
Ex vivo using 

the root 
canals of 

human teeth  

 
Nisin eradicated the colonization of 
E. faecalis	

 
Turner et al., 

2004 

	  
Nisin Z 

(unknown purity) 

 
In vitro 

 
Nisin significantly reduced the growth 
and transition of C. albicans 

 
Le Lay et al., 

2008 
	  

Nisin Z 
(unknown purity)	

 
In vitro 
	

 
Nisin may work synergistically with 
oral gingival cells to provide greater 
resistance against C. albicans 
infections 

 
Akerey et al., 

2009 

	  
Nisin A 

(2.5% w/w purity) 

 
In vitro	

 
Nisin inhibited the growth of 
cariogenic bacteria, including S. 
mutans	

 
Tong et al., 

2010	

	  
Nisin A 

(2.5% w/w purity)	

 
In vitro	

 
Nisin in combination with poly-lysine 
and sodium fluoride displayed 
synergistic effects in inhibiting 
planktonic and biofilm forms of S. 
mutans	

 
Najjar et al., 

2009; Tong et 
al., 2011	

	  
Nisin A 

(2.5% w/w purity) 

 
In vitro 

 
	

 
Nisin paired with MTAD improved 
post-antibiotic sub-MIC effects of 
MTAD against E. faecalis 

 
Tong et al., 

2014 

	  
Nisin ZP 

(* P stands for pure; 
95% purity)	

 
In vitro	

 
Nisin inhibited growth of Gram-
positive and Gram-negative oral 
pathogens and saliva derived multi-
species biofilms without cytotoxicity 
to human oral cells	

 
Shin et al., 2015	

 

Table IV.2. Overview of Biomedical Applications of Nisin. 
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Chapter V 

 

The Effect of L-Arginine on Destabilization of Oral Biofilms Developed in a  

Swinnex Model System 

 

Chapter V is adapted from a manuscript in preparation (Shin et al., 2017b). 

 

Abstract 

 

Objectives: In vitro model systems are essential for studying biofilms and anti-biofilm 

strategies. For this chapter, we developed a novel microfluidic biofilm model, the 

modified Swinnex biofilm system, to evaluate the effects of L-arginine and other anti-

biofilm agents on multi-species oral biofilms. 

Methods: Biofilms were cultured for 40 h in Swinnex using pooled human saliva and 

were treated with water, L-arginine (Arg; 50 – 400 mM), L-lysine (Lys; 400 mM), or 

cetylpyridinium chloride (CPC; 0.075%). Biofilm parameters such as biovolume, 

thickness, roughness, viability and biomass of the sloughed aggregates (BABD) were 

captured using confocal microscopy and FlowCam®. In addition, water and Arg-treated 

biofilms and dispersed bacterial cells were characterized using 16S rRNA sequencing.   
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Results: After the short exposure with Arg, a dose-dependent reduction in biofilm 

biovolume and thickness was observed. Significant biomass reduction was observed for 

biofilms treated with 400 mM Arg compared against water and Lys-treated samples. 

Increasing the Arg concentrations led to a greater dispersal of the biofilm cells relative 

to their biomass and the number of aggregates dispersed. No antimicrobial effects were 

observed in Arg-treated biofilms. Short-term exposure of Arg did not significantly alter 

the biofilm community composition relative to control. This suggests that the observed 

physicochemical effect of Arg on biofilms is non-specific, however, Arg can significantly 

impact the biofilm architecture to promote biofilm destabilization.   

Conclusions: The Swinnex model allows the study of various aspects of biofilm biology 

and is particularly useful in studying biofilm dispersion in conjunction with confocal 

microscopy and FlowCam®. High concentrations of Arg promote biofilm destabilization 

and de-adhesion through non-specific biofilm dispersion mechanism.  
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 Introduction  

 

Oral biofilms can constitute small microcolonies of cells or be as visually 

conspicuous dental plaque. The biofilm architecture provides a microenvironment for 

cell-to-cell interactions (ie. autoaggregation and coaggregation), nutrients and signal 

sharing (ie. quorum sensing), and protection against different environmental stresses 

(ie. shear force, physical and mechanical and chemical) (Stoodley et al., 2004). In 

comparison to the planktonic species, biofilm-associated bacteria are highly resistant to 

antimicrobial challenges (Mah and O’Toole, 2001). Based on several factors such as 

location, species composition and biomass, the accumulation of cells and the 

associated development of biofilms can lead to dental caries, periodontal disease and 

systemic infections (Marsh 2003; Li et al., 2010). Thus, to reduce the health burden 

levied by oral biofilms, the use of novel anti-biofilm agents to hinder development would 

offer a valuable alternative or adjunct to antimicrobial treatments.  

One approach to prevent biofilm development is to promote destabilization. To 

promote biofilm destabilization, several strategies can be implemented. For example, 

dispersin B is a matrix-degrading enzyme that causes the biofilm structure to break 

apart (Kaplan 2010). Oral biofilm inactivating agents such as chlorhexidine gluconate 

(CHX) and cetylpyridinium chloride (CPC) interact with the membrane to not only have 

antimicrobial effects but to also promote biofilm destabilization (Hope and Wilson, 2004; 

Rao et al., 2005). Recently, evidence has shown that L-arginine (Arg) can alter the 

architecture of the oral biofilms by interfering with interbacterial coaggregation and shift 

the biofilm composition (Kolderman et al., 2015). In addition to the destabilizing effects, 
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Arg has also been shown to enhance the ecological benefit of fluoride by enriching the 

growth of alkali-generating bacteria in the mixed-species biofilm community (Zheng et 

al., 2015).  

Previously, studies have mostly focused on the long-term effects of Arg on 

biofilm ecology (Nascimento et al,. 2014). The extended exposure of high 

concentrations of Arg have been shown to prolong the destabilization effects and 

prevent growth of specific pathogens (Kolderman et al., 2015; He et al., 2016). In this 

study, we explored the short-term effects of Arg on the multi-species oral biofilm. The in 

vitro complex dental plaque-like biofilm communities were developed using the modified 

Swinnex biofilm model system (Fig. 1). Furthermore, as an innovative approach, the 

biofilm dispersion was directly measured through a real-time particle analyzer 

(FlowCam®; Levin-Sparenberg et al., 2015). Understanding the anti-biofilm mechanisms 

of Arg can lead to new drug development and formulations for improving oral health. 

The aims of this study was to i) develop and validate a novel in vitro microfluidic model 

system to study the multi-species biofilm physiology, ii) study the effects of Arg and 

other anti-biofilm agents on oral biofilms, iii) evaluate and quantify the biofilm dispersion 

effects of Arg in real-time, and lastly iv) characterize the biofilm communities and the 

bacterial cells that were removed by Arg treatment through 16S rRNA next generation 

sequencing.  
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Materials and Methods 

 

L-Arginine, L-Lysine and CPC Preparation 

L-arginine monohydrochloride (Arg; Sigma Alrich, USA), L-lysine 

monohydrochloride (Lys; Sigma Alrich, USA) stock solutions were prepared in sterile 

distilled water or molecular grade pure water (used for sequencing). Arg concentrations 

were adjusted to 50, 100 and 400 mM. Water was used as a negative control. L-lysine 

(400 mM) and cetylpyridinium chloride monohydrate (CPC; 0.075%; EMD Millipore, 

USA) was prepared in sterile distilled water as positive controls.  

 

Biofilm inoculum and nutrient collection and preparation  

Using a protocol reviewed by the University of Michigan Health Sciences and 

Behavior Sciences Institutional Review Board (HUM00042954), human saliva was 

pooled from 5 individuals and prepared as the biofilm inoculum and growth medium. 

The saliva collection and preparation protocol was adapted from a previous study (Shin 

et al., 2015). The exclusion criteria for the saliva donors were non-smokers who have 

not taken antibiotics in the past three months, had not consumed any food or beverages 

besides water at least 2 h prior to collection. The pooled saliva was prepared for one of 

two purposes: cell-containing saliva (CCS) to grow the biofilms and cell-free saliva 

(CFS) as the nutrient growth media. 
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Swinnex Biofilm Model System  

A 13 mm Swinnex filter holder (EMD Millipore, USA) was used as the biofilm 

reactor (Fig. 1A). Brown, hydrophilic polycarbonate (PC) membrane with 0.22 µm pores 

(EMD Millipore, USA) was used as the biofilm substratum (Fig. 1A). The Swinnex filter 

holder was connected to a 5 or 10 ml syringe (Becton Dickinson, USA) operated by an 

automated syringe pump (Chemyx Inc., USA).  Up to 10 syringes connected to the 

Swinnex filter holder were used per run. White nylon male and female luer style thread 

connectors (Cole Parmer, USA) were used to connect the Swinnex filter holder to the 

syringe via clear peroxide-cured silicon precision pump tubing (Masterflex, USA). 

Biofilms were grown at a constant 37 degree Celsius in an incubator (Model 132000, 

Boekel Scientific, USA). 

Following the assembly of O-ring, PC membrane, and the Swinnex filter holder, 

the Swinnex was autoclaved prior to each use (Fig. 1B). Two hundred microliter of CFS 

was used to pre-treat the substratum surface for 20 minutes to allow salivary pellicle 

formation, and to promote cell attachment and biofilm development (Fig. 1C). Two 

hundred microliter of CCS was then added, and connected to the syringe pump with 

CFS-containing syringes (Fig. 1D).  At a flow rate of 5 µl/min, biofilms were grown for 20 

h in an upright position (Fig. 1D). Following the initial growth, the Swinnex was re-

oriented for second growth period for another 20 h, in an upside down position to 

remove unattached planktonic bacteria and cellular debris (Fig. 1E). The biofilm growth 

protocol was adapted after optimization of growth parameters needed for generating 

reproducible biofilms using human saliva in the Swinnex biofilm model system.  
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Following the 40 h growth period, biofilms were treated with water, L-lysine (400 

mM), L-arginine (50, 100, 400 mM), or CPC (0.075%) solution for up to 1 or 10 minutes 

at a flow rate of 20 µl/min. Biofilms were either stained with Live/Dead Bacterial Viability 

kit (Syto-9 and Propidium iodide, Invitrogen, USA) for confocal microscopy or connected 

to the FlowCam® for real-time analysis of spent biofilm aggregates and cells (Fig. 1G, 

H).  

 

Confocal Laser Scanning Microscopy and Quantitative Analysis of Biofilms 

The effects of Arg on biofilm architecture were quantified using confocal 

microscopy and image analysis. The biofilm was carefully mounted on a 24 x 60 mm 

micro cover glass (VWR, USA) and washed to remove planktonic bacteria and debris. 

Following different treatments, biofilms were stained with Syto-9 (green signal) and 

propidium iodide (red signal) to visualize the biofilm under a confocal laser scanning 

microscope (CLSM) with a HCX PL APO 40X/0.85 CORR CS objective (SPE, Leica, 

USA). Experiments were conducted in duplicates and three representative images were 

captured for each biofilm (n=12). Independent experiments were repeated at least twice. 

Microscopy images were rendered with Imaris (Bitplane, Switzerland) and the image 

stacks were quantified using Comsat2 (Heydorn et al., 2000) to determine the biofilm 

biovolume (total amount of space/biomass occupied by a biofilm), average thickness 

(total thickness of a biofilm from the substratum to the glass surface) and average 

roughness (heterogeneity in biofilm thickness). The degree of cell damage/death was 

evaluated using ImageJ (National Institute of Health) based on the ratio of pixel intensity 

between Syto-9 and PI as previously reported (Nance et al., 2013; Shin et al., 2015).  
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FlowCam® Imaging System 

The FlowCam® VS series model was used for this study (Fluid Imaging, USA).  

For each experiment, a single Swinnex filter holder was connected to a syringe on the 

syringe pump and a flow cell unit of the FlowCam®. Olympus UPlanFL N10X/0.30 

objective (Olympus, USA) was used for imaging cells. Images were acquired at a rate of 

10 frames per second with a flash duration of 8 µSec. The particle size was measured 

as area based diameter (ABD), which is the diameter of the sphere that has the same 

surface area as a given particle, referred here as the biomass of the bacterial 

aggregates (BABD). The filter gating was set at 10 to 5000 µm. Biofilms were treated with 

water, L-lysine (400 mM), L-arginine (50, 100, 400 mM), or CPC (0.075%) solution for 1 

min at a flow rate of 20 µl/min. Four independent biofilm samples were tested for each 

treatment condition. Only the cells that were properly focused were considered for data 

analysis.  

 

Microbiome Analysis 

The samples that were collected for the 16S rRNA sequencing included 1) 

Control, water-treated biofilms, 2) Arg-treated biofilms, 3) dispersed bacterial cells from 

the control biofilms, and 4) dispersed bacterial cells from the Arg-treated biofilms.  DNA 

was extracted from the samples and was normalized to 5 ng/µl per sample prior to 

running polymerase chain reactions (PCR). The sequencing was performed based on 

the V4 hypervariable region of the 16S rRNA gene (Caporaso et al., 2011). For the 

genome sequencing, Ion Torrent Personal Genome Machine (PGM) was utilized as 

previously reported (www.mrdnalab.com, USA; Fernandez et al., 2017). The sequenced 
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raw 16S data were processed with QIIME 1.9.0. Samples with read counts less than 

20000 reads preprocessing were excluded for the microbiome analysis. Standard 

operating procedures were followed as previously reported  for the sequence 

processing (Caporaso et al., 2010; McMurdie and Holmes, 2013; Fernandez et al., 

2017).  

Downstream analytics included Shannon alpha diversity, community relative 

abundance, and weighted UniFrac beta diversity. Outcomes were measured within the 

Phyloseq package and graphical output generated with R’s ggplot package. 

Additionally, beta diversity was visualized in 2-dimensional space with principal 

component analysis (PCA) using R’s built-in prcomp function. Log-transformed read 

counts of the operational taxonomic unit (OTU) table were used as input for PCA.  

 

Statistical Analysis 

The data values for the biofilm biovolume and thickness are expressed as mean 

values ± standard deviation. The BABD data values are expressed as mean ± standard 

error. Independent one-way t-tests were used to compare the controls (water, L-lys, 

CPC) with Arg-treated samples. Data values were considered significant if the P value 

was < 0.05 and highly significant if < 0.01. 

Differences in the Shannon diversity index and the Euclidean distance for 

between groups were tested using a non-parametric Kruskal-Wallis test. Differences in 

the phyla and genus abundances were evaluated using a non-parametric Mann-

Whitney U test. An alpha significance threshold of 0.05 was used for the Kruskal-Wallis 

test and an alpha significance threshold of 0.01 was used for the Wald negative 
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binomial test. For the PCA, an Adonis test that fits linear models to weighted UniFrac 

distance matrices was performed with R’s vegan package.  
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Results 

 

Validation of the Swinnex Biofilm Model System 

Saliva derived oral biofilms were developed successfully using the Swinnex 

model system (Fig. 1). After 40 h growth period, abundant biofilm biomass was obtained 

on the surface of the PC membrane (Fig. 2A). To validate the model system for 

evaluating the effects of anti-biofilm agents, the biofilms were treated with water 

(control) or CPC (0.075%) for 10 min. The control biofilms exhibited significantly greater 

biofilm biovolume and thickness compared to the CPC-treated biofilms (Fig. 2A and B). 

The roughness was significantly increased in CPC-treated biofilms (Fig. 2B). In addition, 

there was a significant increase in the antimicrobial activity in the CPC-treated biofilms 

as indicated by the amount of cell damage occurred (red signal) in the biofilms (Fig. 2A 

and B). The average viability of biofilms were 94.29% to 21.33% for the control and 

CPC-treated biofilms, respectively. (Fig. 2B)..  

 

The Effects of L-Arginine on Oral Biofilms 

After a 10 min exposure, the biofilms treated with Arg (50, 100 and 400 mM) 

showed a decrease in biofilm biovolume and thickness in a dose-dependent manner. 

The mean biovolume and thickness of the control biofilms were 605.58 µm2, 19.01 

µm3/µm2 and 31.54 µm (Fig 3A and B). The average biovolume was significantly 

deceased for biofilms treated with Arg (50, 100, 400 mM) and Lys (400 mM). Arg and 

Lys treated biofilms exhibited a significant decrease in biofilm thickness (Fig. 3B). Only 

the 400 mM Arg-treated biofilms exhibited a significant increase in roughness (Fig. 3B).  
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When comparing the Arg and Lys at 400 mM for their anti-biofilm effects, Arg was 

superior in reducing the biofilm biovolume and thickness (Fig. 3B). Although the viability 

was statistically lower in both the Arg and Lys-treated biofilms compared to the control 

biofilms, the biofilms exhibited minimal membrane damage as indicated by the 

qualitative and quantitative biofilm analysis (Fig. 3B). 

  

The Dispersion Effect of L-Arginine on Oral Biofilms  

The Swinnex filter holder was directly connected to the FlowCam® device to 

capture the biofilm aggregates and cells dispersed upon different treatment conditions 

(water, Arg, Lys and CPC). The rate of biofilm dispersion was measured for 1 min.  The 

average BABD of biofilm aggregates of water-treated biofilms were 133.02 µm (Fig. 4A 

and B). The average BABD of biofilm aggregates of Arg-treated biofilms were 153.50, 

163.46, and 814.44 µm for Arg concentrations of 50, 100 and 400 mM, respectively 

(Fig. 4A and B).  The average BABD of biofilm aggregates for Lys- and CPC-treated 

biofilms were 425.68 and 246.05 µm, respectively (Fig. 4A and B). Four hundred 

millimolar Arg-treated biofilms exhibited significantly greater BABD than the water- and 

CPC-treated biofilms (Fig. 4A and B). For the average BABD, although not statistically 

significant (for Lys versus Arg at 400 mM; p-value = 0.055), Arg-treated biofilms 

dispersed much larger aggregates compared to the Lys-treated biofilms (Fig. 4A and B). 

Furthermore, the total biofilm biomass dispersed for 400 mM Arg-treated biofilms were 

significantly greater than the control-, Lys- and CPC-treated biofilms (Fig. 4B). Four 

hundred millimolar of Lys also exhibited significant dispersion effect on biofilms 

compared to the water-treated biofilms (Fig. 4A and B).  Both the 400 mM Arg and CPC 
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resulted significant increase in the total number of biofilm aggregates that were 

detached from the biofilm substratum (Fig. 4B).  

 

Characterization of the Microbial Community of the Remaining Biofilm and the 

Dispersed Cells  

The bacterial cells that were dispersed from the biofilms following treatment with 

water or with Arg (400 mM) were compared for differences in the microbial community 

composition (Fig. 5 and 6). Based on the community analysis at the phyla and genus 

levels, there were notable differences between the control and Arg-treated samples but 

were not statistically significant (Fig. 5A and B). Both types of samples exhibited a 

diverse microbial community structure (Fig. 5 and B). The major phyla groups in both 

the biofilms and dispersed cells were Actinobacteria, Bacteroidetes, Firmicutes, 

Fusobacteria and Proteobacteria (Fig. 6A). For both conditions (control and Arg), and 

the biofilm and biofilm cells, the most abundant genus groups included Aggregatibacter, 

Fusobacterium, Haemophilus, Neisseria, Parvimonas, Porphyromonas, Rothia, 

Streptococcus and unknown genus groups (Fig. 6B). Notably, the relative abundance of 

Prevotella and Aggregatibacter increased in the biofilm cells that were dispersed from 

the biofilms treated with Arg (Fig. 6B). While Neisseria and Porphyromonas populations 

were less abundant in the biofilm cells dispersed from the Arg-treated biofilms (Fig. 6B).  

There were no significant differences in the alpha diversity of all sample types 

based on the pair-wise comparisons (p = 0.102) (Fig. 6A). Based on the Shannon 

diversity index, the Arg-treated biofilm cells exhibited the lowest alpha diversity (Fig. 

6A). For the beta diversity comparisons, a statistical difference was found between the 
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control cells and the arginine cells (p < 0.01) (Fig. 6B). Based on the PCA, it was more 

evident that the biofilm cells that were dispersed upon Arg treatment resulted in an 

increase in beta diversity (Fig. 6C). The control water-treated biofilm communities 

exhibited the greatest clustering, whereas the Arg-treated biofilm cells exhibited the 

least clustering (Fig. 6C).   
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Discussions 

The prolonged accumulation of oral biofilms on teeth and gingival surfaces can 

lead to biofilm-associated oral and systemic diseases (Beikler and Flemming, 2011). 

Thus, the development of novel biofilm model systems and new strategies to modulate 

or eradicate biofilms are essential to prevent or treat biofilm-associated diseases. The 

evolution of in vitro biofilm systems has accelerated over the last decade (Azeredo et 

al., 2017). In this study, we constructed and modified a Swinnex biofilm model system, 

which uses a filtering apparatus as the biofilm reactor (Fig. 1). Generally, the Swinnex 

filter holder is used for vacuum filtration of liquids for microbial and particle analysis. 

Here, we developed saliva derived multi-species biofilms using the Swinnex model 

system (Fig. 1).  

In the past, the Swinnex biofilm model was used to study the growth rate and the 

pharmacokinetic response to antibiotics on single-species biofilm (Gander and Gilbert, 

1997). Additionally, the Swinnex has been used to study the growth and release 

patterns of biofilm cells of different organisms including oral bacteria and as a filter 

mating apparatus for bacterial conjugation (Kaplan and Fine, 2002; Hmelo et al., 2015). 

In this study, the biofilm dispersion was studied in real-time and at an end point using 

the Swinnex together with the FlowCam® and confocal microscopy. Given that our main 

interest was to explore the destabilization/dispersion properties of Arg on oral biofilms, 

the modified Swinnex model was ideal to address our proposed research questions 

(McBain 2009).  

In the Swinnex model, the 40 h growth period was adequate to develop a mature 

biofilm with sufficient biovolume and thickness to be tested with different anti-biofilm 
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agents. Before we explored the anti-biofilm properties of Arg, we compared the anti-

biofilm effects of water and CPC (a well known anti-biofilm agent) to validate the model 

system (Fig. 2). In comparison to the water-treated, the CPC-treated biofilms clearly 

exhibited a greater loss of biofilm biomass through enhanced detachment of biofilm 

structures from the substratum (Fig. 2 and 4). Furthermore, the antimicrobial effects of 

CPC was evident from the significant membrane damage resulted following the short-

term exposure (Fig. 2).  

Recently, Arg was shown to destabilize the architecture of oral biofilms 

(Kolderman et al., 2015). In addition, along with Arg, Lys has been indicated to inhibit 

autoaggregation and coaggregation of oral bacteria (Takemoto et al., 1995; Merritt et 

al., 2009). Arg and Lys are both amino acids that have basic side chains, however Arg 

has a guanidium group instead of an amine group as a functional side chain. Guanidine 

based compounds have been shown to prevent biofilm formation and promote 

disassembly of existing biofilm structure (Bottcher et al., 2013; Rabin et al., 2015). In 

addition, Arg/guanidium composition can increase the potency of antimicrobial peptides 

(Cutrona et al., 2015). Unlike Lys, Arg can self-dimerize and form Arg-Arg crystal 

structures in solution (Prell et al., 2009). Furthermore, Arg-Arg clustering interaction has 

been reported to play a key role in inhibiting protein-protein interactions and protein 

aggregation (Das et al. 2007; Lange et al., 2009; Shukla and Trout, 2010; Gao et al., 

2013). Here, we observed that shorter-term exposure of Arg at > 50 mM significantly 

destabilized the biofilm structure and enhanced biofilm de-adhesion (Fig. 3 and 4).  

 



	 104	

 For biofilm dispersion, there are at least few known mechanisms. Active biofilm 

dispersion is initiated by the bacterial species within the biofilm, whereas the passive 

dispersion is initiated by the external factors such as shear force and anti-biofilm agents 

(Kaplan 2010). Biofilm ‘sloughing’ is a dispersion mechanism where large clusters of 

aggregates of biofilm cells are dispersed from the substratum (Kaplan 2010). Our 

results demonstrated that Arg was causing enhanced biofilm de-adhesion through 

passive sloughing mechanism. Arg molecules may be small enough to be incorporated 

into the biofilm architecture to induce a direct effect on disrupting the bacterial 

coaggregation interactions and cause biofilm destabilization (Fig. 7).  

He and collaegues demonstrated that the long-term exposure of 1.5% Arg 

(wt/vol) modified the exopolysaccharide matrix (EPS) of mixed-species oral biofilms and 

selectively inhibited the outgrowth of Streptococcus mutans (He et al., 2016). 

Furthermore, continuous supplementation of Arg at > 5 mM dramatically reduces the 

growth of Streptococcus gordonii biofilms (Jakubovics et al., 2015). However, to our 

knowledge, the short-term effects of Arg on the community composition of the multi-

species oral biofilms have not been investigated. Here, we assessed both the biofilm 

and the bacterial cells that detached from the substratum through 16S rRNA 

sequencing (Fig. 5). The microbial community that was developed in the Swinnex model 

system resembled a subgingival biofilm community with a high abundance of anaerobic 

genus groups such as Fusobacterium, Porphyromonas and Aggregatibacter (Fig. 5B). 

The phyla composition was limited to 5 major groups, most likely due to the extended 

40 h growth period in the Swinnex (Fig. 5B). Compared to water, Arg did not induce a 

major shift in the biofilm composition (Fig. 5B). However, the measured beta diversity 
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was greatest in the bacterial cells detached following Arg treatment, which we suspect 

is due to the enhanced non-specific biofilm de-adhesion (Fig. 6B). The short-term 

exposure of Arg may have caused the biofilm structures to rapidly dissociate and be 

released from the attached substratum due to the Arg cluster mechanism (Fig. 7).  

In this study, we report that a novel in vitro biofilm model system, the Swinnex, 

can be used to develop a complex multi-species oral biofilms. Furthermore, the Swinnex 

model can be combined with the confocal microscopy and the FlowCam® for end-point 

and real-time biofilm quantification analyses. In addition to the mechanical control of 

dental plaque, chemically induced dispersion of oral biofilms can slow down and prevent 

the re-growth of recalcitrant biofilms. In our model system, Arg significantly enhanced 

biofilm de-adhesion to promote sloughing of the biofilm structures. In conclusion, Arg is 

a unique amino acid that can destabilize architecture of the multi-species oral biofilms.  
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Figure V.1. A Schematic Diagram of the Swinnex Biofilm Model System. (A – H) 
describes the protocol for the development of multi-species oral biofilms and biofilm 
analyses.  
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Figure V.2. Validation of the Swinnex Model System. Multi-species oral biofilms were 
grown for 40 h in the Swinnex model system. The biofilms were treated with water 
(Control) or CPC (0.075%) for 10 min at a shear rate of 20 µl/min. (A) Representative 
confocal microscopy images of biofilms treated with water (Control) or CPC. Biofilm 
biomass is shown in µm2. (B) Biofilm parameters including biomass (µm2), biovolume 
(µm3/µm2), thickness (µm), roughness and viability (%) for control and CPC-treated 
biofilms are shown. n=12 per condition.  ** p-value < 0.01. 
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Figure V.3. The Effects of L-Arginine on Oral Biofilms. Multi-species oral biofilms 
were grown for 40 h in the Swinnex model system. The biofilms were treated with water 
(Control), Arg (50 – 400 mM) or Lys (400 mM) for 10 min at a shear rate of 20 µl/min. 
(A) Representative confocal microscopy images of biofilms treated with water (Control), 
Arg (50 – 400 mM) or Lys (400 mM). Biofilm biomass is shown in µm2. (B) Biofilm 
parameters including biomass (µm2), biovolume (µm3/µm2), thickness (µm), roughness 
and viability (%) for control, Arg (50 – 400 mM) and Lys (400 mM) - treated biofilms are 
shown. n=12 per condition.  * p-value < 0.01 and ** ** p-value < 0.05. 
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Figure V.4. The Dispersion Effects of L-Arginine on Oral Biofilms. Multi-species 
oral biofilms were grown for 40 h in the Swinnex model system. Following growth, the 
Swinnex filter holder was directly connected to the FlowCam® device. The biofilms were 
treated with water, Arg (50 – 400 mM), Lys (400 mM), or CPC (0.075%) to monitor the 
dispersion effect for 1 min.  (A) Representative FlowCam® images are shown of biofilm 
treated with water, Arg (50 – 400 mM), Lys (400 mM), or CPC (0.075%) are shown 
along with the average BiomassABD in µm. (B) Biofilm parameters including BiomassABD, 
total biofilm biomass dispersed and number of biofilm aggregates captured are shown. 
n=4 per condition. ** ** ** p-value < 0.05. 
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Figure V.5. Community Composition of the Biofilms and the Dispersed Biofilm 
Cells. Multi-species oral biofilms were grown for 40 h in the Swinnex model system. 
Following growth, the biofilms were treated with water (Control) or Arg (400 mM) for 10 
min at a shear rate of 20 µl/min. The bacterial cells from the intact biofilms and the 
dispersed biofilm cells were harvested for 16S rRNA sequencing. (A) The phyla 
composition by Type and Treatment, and (B) The genus composition by Type and 
Treatment of the Control biofilm, Arginine biofilm, Control cells and Arginine cells.  
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Figure V.6. The Diversity of the Communities Found in the Biofilms and the 
Dispersed Biofilm Cells. Microbial community analyses of the Control biofilm, Arginine 
biofilm, Control cells and Arginine cells were conducted using the Shannon diversity 
index (for Alpha diversity) and the Euclidean distance (for Beta diversity). Principal 
component analysis (PCA) was conducted using the log-transformed read counts of the 
operational taxonomic units (OTUs) (A) Alpha diversity showed no significant differences 
between all groups, (B) Beta diversity was the greatest for the Arginine cells and a 
significant difference was detected compared to the Control cells. (C) Based on the 
PCA, there were no significant differences between the Control and Arginine biofilms 
(p=0.57) and the Control and Arginine cells (p=0.70). PCA.  
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Figure V.7. A Proposed Model for the Short and Long-term Effects of High 
Concentrations L-Arginine on Biofilm Destabilization. The model shows the 
potential interaction of Arg with the planktonic bacteria and the developed multi-species 
biofilm community. We hypothesize that the clustering effect of Arg can rapidly 
destabilize the oral biofilm structure to enhance dispersion/de-adhesion of biofilms. In 
addition, long-term exposure of Arg can inhibit biofilm formation. The proposed model is 
based on the previous work published in our lab (Kolderman et al., 2015) and the data 
presented in this dissertation project (Chapter V). 
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Chapter VI 
 
 
 

Conclusions and Future Directions 
 
 
 
 

Conclusions 
 
 
 Biofilm–associated oral diseases are a global health concern (Chronic Disease 

Prevention and Health Promotion, 2017).  Hence, the development of novel therapeutic 

anti-biofilm agents and strategies to prevent and treat biofilm-associated diseases are 

highly relevant for improving human oral health.  

 In this dissertation project, nisin and L-arginine were studied for their therapeutic 

potential as novel anti-biofilm agents. For multi-species biofilm development, three 

model systems were utilized, 1) a static MTP based system, 2) high throughput 

microfluidic BioFlux system, and 3) the Swinnex biofilm model system. For biofilm 

quantification methods, confocal microscopy and a newly developed FlowCam® 

approach was utilized. Furthermore, the development of the in vivo-plaque like biofilm 

communities in the Swinnex biofilm model was validated through the usage of next 

generation sequencing.  

High purity nisin, nisin ZP exhibited strong antimicrobial and anti-biofilm 

properties against oral bacterial species and saliva derived oral biofilms. Nisin at very 

low concentrations was effective in inhibiting biofilm development and disrupting the 
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pre-formed mature biofilm structures. Nisin at the active anti-biofilm concentrations did 

not exhibit cytotoxic effects against human oral cells. Additionally, our recent study have 

demonstrated that nisin ZP alone or in combination with sodium hypochlorite can 

effectively inhibit the growth of planktonic and biofilm populations of an endodontic 

pathogen, Enterococcus faecalis (Kajwadkar and Shin et al., 2017). In summary, nisin is 

a safe broad-spectrum bacteriocin that has been used for decades and has great 

therapeutic potential for numerous biomedical applications. Through the work 

highlighted in Chapter III and IV, we propose that nisin is a promising candidate as a 

novel oral anti-biofilm agent.  

In Chapter V, we demonstrated that the high concentrations of L-arginine 

promoted the destabilization of the multi-species oral biofilms. Short-term treatment of 

the mature biofilms with L-arginine significantly reduced the biofilm biomass and 

thickness through rapid dispersion, sloughing of the biofilm structure. Compared to L-

lysine and cetylpyridinium chloride, L-aginine exhibited significantly greater biofilm 

dispersion effect. The microbial community compositions of the treated biofilms did not 

change following the short-term exposure to L-arginine. However, the beta diversity of 

the sloughed aggregates and cells were significantly increased in the L-arginine treated 

biofilms compared to the water treated control cells. We propose that this increase is 

due to the enhanced non-specific dispersion effect caused by L-arginine on the biofilm. 

In summary, the work presented in Chapter V indicates that L-arginine has high 

potential to be incorporated in mouthrinses and dentifrices to improve the effectiveness 

of the current anti-biofilm formulations. 
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Future Directions 
 
 

As indicated by our data, nisin and L-arginine have different modes of action on 

biofilms. As a cationic peptide, nisin interferes with the negatively charged membranes 

to prevent biofilm development and maintenance, whereas, the high concentrations of 

L-arginine cause non-specific and rapid dispersion of the biofilm structure. Thus, as two 

potent anti-biofilm agents with distinct mechanisms, the combination of two agents may 

provide synergistic activities against oral biofilms. For example, using the Swinnex 

biofilm system, whether the nisin + L-arginine exerts greater anti-biofilm effects than 

nisin or L-arginine alone can be evaluated. In addition, the application of these two 

agents in combination with other anti-biofilm agents should be considered for the 

development of new mouthrinse and dentifrice formulations.  

Bacterial coaggregation has been validated as a critical process in the 

development of oral biofilms (Rickard et al., 2003). Direct inhibition of coaggregation 

can prevent the initial adhesion of bacteria to one another and to the substratum 

surface. Nisin alone was demonstrated to inhibit the growth of a variety of oral 

commensal and pathogenic bacteria (Shin et al., 2015). Coaggregation studies are 

planned to further evaluate the role of nisin in inhibiting coaggregation between a 

diverse-spectrum of oral bacteria. Previously, L-arginine and L-lsine were shown to 

inhibit autoaggregation of selective strains of Fusobacterium nucleatum (Merritt et al., 

2009). However, L-arginine and L-lysine were only tested at a single concentration (50 

mM) and their effect on intergeneric coaggregation was not assessed. Whether L-

arginine inhibits a specific coaggregation interaction or is non-specific, future studies are 

needed.  For examples, isomers of L-arginine and coaggregation defective mutants  can 
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be used to determine the specificity of L-arginine’s anti-coaggregation mechanisms. In 

addition, for future studies assessing coaggregation interactions, it will be beneficial to 

combine the traditional visual coaggregation method along with the confocal microscopy 

and the FlowCam® method (Levin-Sparenberg et al., 2016).  

In this dissertation project, the Swinnex biofilm model was revived and modified 

to develop and study oral biofilms. Instead of using pooled saliva, plaque samples can 

be used as an alternative biofilm inoculum. Recently, our lab has demonstrated that 

based on the type of the multi-species inoculum and shear force, the communities 

developed in a microfluidic device can be artificially shaped within a model system 

(Fernandez et al., 2016). Using the Swinnex model, it would be interesting to change 

the inoculum and alter the environmental parameters to develop different types of in 

vivo-like biofilms (ie. supragingival, subgingival, tongue). Furthermore, in addition to the 

microbiome sequencing, global transcriptomic analyses will allow us to understand 

other possible mechanisms of L-arginine on destabilization of oral biofilms. As of now, it 

is still unclear whether the high concentration of L-arginine is strictly causing a 

physicochemical effect (ie. clustering effect) or also has an effect at the molecular level 

to promote biofilm destabilization. By utilizing the omics approach, it should allow for 

more specific research questions to be answered. 

 Lastly, as emphasized in this dissertation thesis, the development of novel model 

systems are critical for biofilm research. Currently, the gold standard model for studying 

host-biofilm interactions is lacking. To better understand the biological effect of a biofilm 

in human host and the response to biofilm-modulating agents in vivo, models that mimic 

the host-biofilm interactions are much needed. The BioFlux system and the Swinnex 
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model system described in this thesis can be used to study the host-biofilm interactions. 

In a recent study, monolayers of mammalian cells have been co-cultured with biofilms in 

the microfluidic channels of the BioFlux plates (Trembley et al., 2015). By utilizing my 

knowledge in mammalian cell biology and microbiology, I am hoping that I can develop 

a model system for better studying the host-biofilm interactions. If a model system can 

re-create an environment for the host cells (ie. gingival epithelial cells, periodontal 

ligament cells) and the biofilms (ie. multi-species oral biofilm) to co-exist as in reality,  

such model system will be extremely valuable and highly relevant for biofilm-related 

research (Parsek and Singh, 2003; Lebeaux et al., 2013).  
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Appendix A 

 

High Purity Nisin Alone or in Combination with NaOCl is Effective Against 

Planktonic and Biofilm Populations of Enterococcus faecalis  

 

Appendix A is adapted from a manuscript that has been published (Kajwadkar and Shin 

et al., 2017). Co-1st authors. 

 

Abstract 

 

Introduction: Nisin, a broad-spectrum bacteriocin, has recently been highlighted for its 

biomedical applications. To date, no studies have examined the antimicrobial and 

antibiofilm properties of high-purity (>95%) nisin (nisin ZP) on Enterococcus faecalis 

and biofilms formed by this species. We hypothesize that nisin can inhibit E. faecalis 

and reduce biofilm biomass, and combinations of nisin and sodium hypochlorite 

(NaOCl) will enhance the antibiofilm properties against E. faecalis biofilms. 

 

Methods: Using broth cultures, disc diffusion assays, and biofilm assays, we examined 

the effects of nisin on various E. faecalis growth parameters and biofilm properties 

(biovolume, thickness, and roughness). Confocal microscopy was used in conjunction 
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with Imaris and Comstat2 software (Kongens Lyngby, Copenhagen, Denmark) to 

measure and analyze the biofilm properties.  

 

Results: Nisin significantly decreased the growth of planktonic E. faecalis dose 

dependently. The minimum inhibitory concentrations against E. faecalis strains OG-1 

and ATCC 29212 were 15 and 50 µg/mL, and the minimum bactericidal concentrations 

were 150 and 200 µg/mL, respectively. A reduction in biofilm biovolume and thickness 

was observed for biofilms treated with nisin at 10 µg/mL for 10 minutes. In addition, the 

combination of nisin with low doses of NaOCl enhanced the antibiofilm properties of 

both antimicrobial agents.  

 

Conclusions: Nisin alone or in combination with low concentrations of NaOCl reduces 

the planktonic growth of E. faecalis and disrupts E. faecalis biofilm structure. Our results 

suggest that nisin has potential as an adjunctive endodontic therapeutic agent and as 

an alternative to conventional NaOCl irrigation. 
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Introduction 

 

One of the most common and persistent bacteria associated with failed 

endodontic cases is Enterococcus faecalis (Molander et al., 1998; Sundqvist et al., 

2014). E. faecalis, a gram-positive cocci, has an inherent antimicrobial resistance and 

ability to form biofilms that adapt to harsh environmental conditions, which contribute to 

its role in endodontic failures (Lin et al., 1992; Stuart et al., 2006). Biofilms are highly 

organized structures of bacterial cells enclosed within an exopolymeric matrix attached 

to living and nonliving surfaces (Costerton 1999). For removal of pathogenic bacteria 

and their biofilms, several irrigating solutions and techniques are used during an 

endodontic procedure. Sodium hypochlorite (NaOCl) is a conventional endodontic 

irrigant that is widely used and has strong antimicrobial activity (Bystrom and Sundqvist, 

1983). However, inadvertent exposure to NaOCl can cause extensive soft tissue and 

nerve damage and even airway compromise (Zhu et al., 2013). From a clinical 

perspective, an endodontic irrigant that can effectively remove persistent bacteria with 

minimal host cytotoxicity would be a valuable addition to the endodontic armamentarium 

(Turner et al., 2004). 

Bacteriocins are bacterially secreted antimicrobial peptides with diverse 

applications, including uses in food preservation, treatment of pathogen-associated 

diseases, cancer therapy, and maintenance of human health (Shin et al., 2016; Yang et 

al., 2014). Nisin is a cationic bacteriocin that can interact with the negatively charged 

cell membranes and form pores to promote cell death (Giffard et al., 1996; Lubelski et 

al., 2008). In addition, bacteriocins like nisin exhibit various modes of action to target a 
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wide range of bacterial species (Peschel and Sahl, 2006; Shin et al., 2015). Nisin has 

been granted a generally regarded as safe status by the Food and Drug Administration, 

and it exhibits minimal cytotoxicity on human oral cells (Cotter et al., 2005; Shin et al., 

2015). Thus, the clinical applications of nisin for endodontic infections could be 

promising as an adjunct or alternative antimicrobial and antibiofilm agent. 

 To date, there have been no studies on the antimicrobial properties of high-purity 

nisin on planktonic and biofilm populations of E. faecalis. Furthermore, the effects of  

nisin and NaOCl combinations on these populations have not been explored. The 

purpose of our study was to test the antimicrobial and antibiofilm properties of high-

purity, food-grade nisin Z, herein referred to as nisin ZP, alone and in combination with 

low concentrations of NaOCl against E. faecalis and its biofilms. 
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Materials and Methods 

 

Nisin ZP Preparation 

High-purity (>95%), food-grade nisin ZP was purchased from Handary SA 

(Brussels, Belgium) and used for this study. For experimental use, a stock solution was 

prepared in a sterile tube by dissolving 5 mg nisin ZP in 1 mL filtered distilled water and 

re-filtered using a sterile 0.22-µm filter. A fresh stock solution was prepared for each 

experiment. 

 

Bacterial Culture Conditions 

E. faecalis  strains OG-1 (gift from Dr Don Clewell, Professor Emeritus, 

University of Michigan, Ann Arbor, MI) and ATCC 29212 (American Type Culture 

Collection, Manassas, VA) were used for this study. E. faecalis  strains were grown at 

37°C in brain-heart infusion broth (BHI; Becton, Dickinson and Company, Franklin 

Lakes, NJ) or trypticase soy agar supplemented with 5% sheep blood (Remel, Lenexa, 

KS). For use in experiments, a single isolated colony from a trypticase soy agar 

supplemented with 5% sheep blood plate grown from frozen stock cultures was 

inoculated in BHI medium and incubated overnight. 

 

Broth Dilution/Turbidity Assay 

Freshly prepared overnight cultures of E. faecalis were adjusted to an optical 

density at 600 nm (OD600 ) of 0.8 and then diluted 1:10 in BHI for use in experiments. In 

each well of a 24-well cell culture plate (Sigma-Aldrich, St Louis, MO), the adjusted 
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bacterial suspension (0.9 mL) and nisin stock solution (0.1 mL, diluted in distilled water 

to appropriate concentrations) were added so that the total volume in each well was 1 

mL, and the nisin concentrations obtained were 0.5, 1.0, 2.5, 5.0, 10, 15, 20, 30, 40, 50, 

100, 150, and 200 µg/mL, respectively. The bacterial culture plus phosphate-buffered 

saline (PBS) was used as a negative control (NC), and bacterial culture plus 4.125% 

NaOCl was used as a positive control (PC). For minimum inhibitory concentration (MIC) 

determination, 0.1 mL of the test samples was transferred into 96-well plates and 

incubated for 24 hours at 37 C. The optical density at 600 nm was recorded and 

obtained before and after 24 hours of incubation at 37°C. For minimum bactericidal 

concentration (MBC) determination, 0.1-mL aliquots of the test samples were spread on 

trypticase soy agar plates incubated for 24 hours at 37°C. 

 

Disc (Agar) Diffusion Assay 

The disc diffusion assay, also known as the Kirby-Bauer method, was used as an 

additional measure of the inhibitor effect of nisin on E. faecalis (Boney et al., 2008). 

Freshly prepared E. faecalis OG-1 and ATCC 29212 (0.1 mL of an overnight culture 

adjusted to OD600 of 0.8 and then diluted 1:10) were spread on trypticase soy agar 

plates. Six-millimeter Whatman filter paper discs (Sigma-Aldrich) were then placed on 

the agar plates, and 20 m L of the nisin test solutions of various concentrations (10, 50, 

75, 100, 150, and 200 µg/mL) was added onto each of the discs. Twenty microliters of 

PBS and 4.125% NaOCl (20 µL each) were used as the NC and PC, respectively. After 

incubation (24 hours at 37°C), the diameter of the zone of growth inhibition was 

measured using a vernier caliper, and images of all discs were captured using a digital 
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camera (D5200 24.1-Megapixel DX-format with CMOS image sensor; Nikon, Tokyo, 

Japan). 

 

Biofilm Development and Treatment with Nisin Alone or Nisin-NaOCl 

Combinations 

E. faecalis  biofilms were grown in 24-well glass bottom sensoplates (Greiner 

Bio-One, Monroe, NC). Fifteen microliters of fresh E. faecalis cultures (standardized and 

diluted as described previously) was inoculated into each well with 1.5 mL BHI and 

incubated for 48 hours at 37°C. This procedure was performed separately for E. faecalis 

OG-1 and ATCC 29212 strains. Biofilm growth was visually confirmed by the presence 

of an intact biofilm on the glass wells. All wells were then washed 3 times with 0.5 mL 

PBS. The biofilms were treated with 0.5 mL PBS or various concentrations of the nisin 

solution (10, 50, 100, and 200 µg/mL) for 10 minutes. After treatment with nisin, all wells 

were washed 3 times with 0.5 mL PBS in order to prepare the biofilms for staining as 

described later. To evaluate the effect of nisin-NaOCl combinations, biofilms were 

treated for 10 minutes with 0.5 mL of combinations containing 50 µg/mL nisin with 

0.05%, 0.5%, and 1% NaOCl, PBS (NC), or 4.125% NaOCl (PC). The same protocol 

described earlier was used for the washing steps. 

 

Biofilm Staining and Quantitative Analysis 

Biofilm staining and quantitative analysis of biofilm biovolume (biomass volume 

divided by the area of substratum, µm3 /µm2 ), thickness (µm), roughness (measures 

the variability within the biofilm architecture and thickness), and viability (using the 
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BacLight Live/Dead Viability Kit; Invitrogen, Carlsbad, CA) were performed using 

confocal microscopy and Imaris (Bitplane, Zurich, Switzerland) and Comstat2 (Kongens 

Lyngby, Copenhagen, Denmark) software as previously described (15) . 

 

Statistical Analyses 

Data values are expressed as mean values ± standard deviations. The statistical 

significance of the results for MIC and MBC values was determined using independent 

t-tests and 1-tailed determination of P-values. The significance between different 

concentrations of nisin alone and nisin-NaOCl concentrations for the biovolume, 

thickness, roughness, and viability was analyzed by analysis of variance using the 

Tukey method. All experiments were repeated at least 3 times in triplicate. Differences 

were expressed as not significant, significant (P  < .05), or very significant (P  < .01). 
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Results 

 

Effects of Nisin on the Growth of E. faecalis 

Broth dilution assays revealed that nisin inhibited the planktonic growth of OG-1 

and ATCC 29212 strains (Fig. 1A  and B ). The MIC and MBC of OG-1 were 15 and 150 

µg/mL (Fig. 1A). A bimodal distribution in the MIC was observed with ATCC 29212 at 

2.5 and 50 µg/mL with an MBC of 200 µg/mL (Fig. 1B). Both strains of E. faecalis 

responded in a dose-dependent manner in the disc diffusion assays (Fig. 1C and D). A 

significant zone of inhibition was observed starting at 50 and 100 µg/mL for ATCC 

29212 and OG-1, respectively. 

 

Effects of Nisin on E. faecalis Biofilms 

E. faecalis  biofilms were sensitive to 10-minute treatments with nisin (Fig. 2 ). In 

the absence of nisin, OG-1 and ATCC 29212 formed robust biofilms with an average 

biofilm biovolume and thickness of 5.12 µm3 /µm2  and 14.93 µm and 8.34 µm3 /µm2  

and 15.92 µm, respectively (Fig. 2A and B). Compared with the control biofilms, biofilms 

treated with nisin for 10 minutes exhibited significant decreases in biovolume and 

thickness at all concentrations tested (10–200 µg/mL, Fig. 2A and B). At lower 

concentrations, in the range of 10 and 50 µg/mL, biofilm viability started showing 

decreases for both OG-1 and ATCC 29212. However, at concentrations >100 µg/mL, 

biofilm viability was significantly decreased as shown by the viability quantification data 

and the confocal microscopic images (Figs. 2 and 3A and B). The roughness of the 

biofilms was increased in all nisin-treated groups, suggesting a disturbed architecture in 
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treated biofilms (Fig. 2A and B). 

 

Combination of Nisin and NaOCl on E. faecalis Biofilms 

E. faecalis biofilms were treated for 10 minutes with 50 µg/mL nisin in 

combination with 0.05%, 0.5%, or 1%NaOCl, respectively. Nisin in combination with low 

doses of NaOCl exhibited significant decreases/alterations in biofilm biovolume, 

thickness, and roughness compared with PBS treatment for OG-1 and ATCC 29212 

biofilms (Fig. 4A and B). Biofilms that were treated with 4.125% NaOCl exhibited 

negligible biofilm biovolume for both strain types (Fig. 4A and B). Furthermore, 0.5% 

and 1% nisin-NaOCl combinations were as effective in removing biofilms from the 

adherent substratum compared with those treated with 4.125% NaOCl. At the lowest 

nisin-NaOCl combination (0.05% NaOCl), biofilm cells were still intact but exhibited a 

significant reduction in biofilm biovolume, thickness, and viability (Figs. 3C and D  and 

4). Thus, the combination of low concentrations of NaOCl with nisin was more effective 

than the nisin-alone treatments and just as effective as the 4.125% NaOCl-alone 

treatment in eradicating E. faecalis  biofilms. 
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Discussions 

 

 The most common reason for the failure of endodontic treatments and 

retreatments is the persistence of pathogenic bacteria within the root canal systems (Lin 

et al., 1992). Neither irrigation nor current intracanal medicaments can render the root 

canals completely free of bacteria (Haapasalo et al., 2005). Thus, the discovery of new 

root canal irrigating agents with improved antimicrobial properties could benefit both the 

patient and the clinician. E. faecalis can persist within root canals by forming 

antimicrobial resistant biofilms and surviving harsh environmental conditions (Dahlen et 

al., 2000; , Portenier et al., 2005). Furthermore, certain species of enterococci possess 

bimodal or trimodal distribution of MICs against antimicrobials (Bywater et al., 2005). In 

endodontics, NaOCl is the most commonly used irrigant, and other agents alone or in 

combination, including calcium hydroxide, EDTA, and chlorhexidine, have shown 

evidence of improved activity and function (Dunavant et al., 2006; Haapasalo et al., 

2005). However, combining different chemical reagents can also produce toxic by-

products. For example, when NaOCl is combined with chlorhexidine, this can produce a 

carcinogenic by-product, which can occlude the dentinal tubules and affect the seal 

within the root canal (Bui et al., 2008). In our study, we showed that combinations of 

nisin with low concentrations of NaOCl exerted improved antibiofilm effects compared 

with treatment with nisin alone (Figs. 2 and 4). Future studies can be performed to 

assess the cytotoxicity of this combination on human oral cells compared with the 

standard 4.125% NaOCl solution. Recently, there has been a growing interest in using 

nisin for biomedical applications and for targeting oral biofilms and resistant 
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microorganisms (Shin et al., 2016). The two most well-known natural variants of nisin 

are nisin A and Z, which differ by a single amino acid substitution at position 27 (Vuyst 

and Vandamme, 1994). Previously, Tong et al (Tong et al., 2014a) reported that the 

MIC and MBC against E. faecalis was 1 and 2 mg/mL using nisin A (2.5%, Sigma-

Aldrich), which is at least 10-fold higher than that reported for nisin ZP in this study (Fig. 

1A and B). In addition, Shin et al (Shin et al., 2015) showed that low concentrations of 

nisin ZP exhibited strong antibiofilm properties against saliva-derived multi-species 

biofilms. Thus, our data support that nisin ZP has superior antimicrobial efficacy 

compared with low-purity nisin A. Furthermore, studies have shown that the 

antimicrobial efficacy of common antibiotics and intracanal medicaments are 

substantially enhanced when combined with nisin (Tong et al., 2014a; Tong et al., 

2014b). Our results are in agreement with these findings because combinations of nisin 

with low doses of NaOCl enhanced the antibiofilm properties of these antimicrobial 

agents (Fig. 4). As an irrigating agent, NaOCl is stable at a pH of 11, whereas nisin A is 

only soluble at an acidic pH, thereby limiting the compatibility of these agents at their 

optimal pH (Rollema et al., 1995; Zehnder 2006). However, because nisin ZP is stable 

at a neutral and basic pH, this allows preparations of nisin-NaOCl combinations for 

potential use as irrigating solutions (Rollema et al., 1995; Shin et al., 2015). As a unique 

bacteriocin, nisin has minimal cytotoxicity on mammalian cells and an absence of stable 

and transmissible resistance properties (Sahl and Bierbaum, 1998; Smith and Hillman, 

2008; Willey and Van der Donk, 2007). Here, we showed that nisin ZP exerts 

antimicrobial and antibiofilm properties against E. faecalis. In addition, when combined 

with low concentrations of NaOCl, nisin’s antibiofilm effects were enhanced in removing 
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E. faecalis biofilms from their substratum. In conclusion, because novel bacteriocins, 

such as nisin ZP, can potentially improve the prognosis of endodontic therapy, their 

exploration is important for future clinical advancement. 
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Figure A.1. Antimicrobial effects of nisin on E. faecalis. E. faecalis strains (A) OG-1 
and (B) ATCC 29212 were grown under planktonic conditions with or without nisin (0.5 
– 200 µg/ml). In addition, (C) OG-1 and (D) ATCC 29212 were grown on Whatman filter 
paper discs on agar with or without nisin (10 – 200 µg/ml). * P < 0.05 and ** P < 0.01 
compared to the PBS treated negative control (NC). 4.125% NaOCl was used as a 
positive control (PC).       
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Figure A.2. Anti-biofilm effects of nisin on E. faecalis biofilms. Biofilms formed from 
(A) OG-1 and (B) ATCC 29212 was treated with PBS (Control), or different 
concentrations of nisin (10 – 200 µg/ml). Confocal microscopy images are shown in the 
x-y plane. Green indicates viable cells stained with Syto-9 and red indicates 
damaged/dead cells stained with propidium iodide. Biofilm parameters were averaged 
from triplicates of three separate experiments. Scale bar represents 40 µm. * P < 0.05 
and ** P < 0.01 compared to the control.      
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Figure A.3. Anti-biofilm effects of low concentrations of NaOCl with nisin on E. 
faecalis biofilms. Biofilms formed from (A) OG-1 and (B) ATCC 29212 was treated 
with PBS (NC), 4.125% NaOCl (PC), or low concentrations of NaOCl (0.05 – 1%) in 
combination with 50 µg/ml of nisin. Confocal microscopy images are shown in the x-y 
plane. Green indicates viable cells stained with Syto-9 and red indicates damaged/dead 
cells stained with propidium iodide. Biofilm parameters were averaged from triplicates of 
three separate experiments. Scale bar represents 40 µm. * P < 0.05 and ** P < 0.01 
compared to the NC; + P < 0.05 and ++ P < 0.01 compared to the PC.     
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Figure A.4. Viability of E. faecalis biofilms after being treated with nisin-alone or 
in combination with low concentrations of NaOCl.  Quantification of viability was 
determined by the average percent signal between green (Syto-9) and red (propidium 
iodide) signal in relation to the total signal captured. (A, B) OG-1 and ATCC 29212 
treated with nisin. (C, D) OG-1 and ATCC 29212 treated with NaOCl and nisin.   
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Appendix B 

 

Metabolomics of Head and Neck Cancer:  A Mini-Review 

 

Appendix B is adapted from a manuscript that has been published (Shin, et al., 2016b). 

 

Abstract 

 

Metabolomics is used in systems biology to enhance the understanding of 

complex disease processes, such as cancer. Head and neck cancer (HNC) is an 

epithelial malignancy that arises in the upper aerodigestive tract and affects more than 

half a million people worldwide each year. Recently, significant effort has focused on 

integrating multiple ‘omics’ technologies for oncological research. In particular, research 

has been focused on identifying tumor-specific metabolite profiles using different 

sample types (biological fluids, cells and tissues) and a variety of metabolomic platforms 

and technologies. With our current understanding of molecular abnormalities of HNC, 

the addition of metabolomic studies will enhance our knowledge of the pathogenesis of 

this disease and potentially aid in the development of novel strategies to prevent and 

treat HNC. In this review, we summarize the proposed hypotheses and conclusions 

from publications that reported findings on the metabolomics of HNC. In addition, we 
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address the potential influence of host-microbe metabolomics in cancer. From a 

systems biology perspective, the integrative use of genomics, transcriptomics and 

proteomics will be extremely important for future translational metabolomic-based 

research discoveries.  
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Introduction 

 

The incidence of head and neck cancer (HNC) exceeds half a million cases 

annually worldwide and accounts for approximately three percent of adult malignancies 

(Johnson et al., 2011; National Cancer Institute, 2013). HNC is defined as epithelial 

malignancies that arise in the aerodigestive tract (paranasal sinuses, nasal and oral 

cavity, pharynx and larynx) and can metastasize to different locations (Rezende et al., 

2010). About seventy-five percent of HNCs are oral cancers and ninety percent of oral 

cancers are diagnosed as oral squamous cell carcinomas (OSCC) (National Cancer 

Institute, 2013; Rezende et al., 2010). Despite therapeutic and technological advances, 

the prognosis for HNC has not improved in decades due to its malignant and recurrent 

properties (Forastiere et al., 2001; Mao et al., 2004). The most widely accepted risk 

factors for HNC include tobacco (smoked or chewed), alcohol use, and human 

papillomavirus (HPV) infection (Gillison, 2004; Schmidt et al., 2004). However, these 

risk factors alone cannot explain the observed incidence and pathogenesis of HNC, 

since some patients are not in these risk categories. Thus, it is likely that other unknown 

factors play important roles in tumorigenesis, tumor progression and metastasis of 

HNC.      

There has been an increasing trend to incorporate ‘omics’ technology, including 

metabolomics, into oncological research (Cho, 2013; Vucic et al., 2012; Armitage and 

Barbas, 2014; Yu and Snyder, 2016). Investigators have explored different technologies 

and analytical methods to better understand the metabolomic properties of cancers, 

including HNC (Bathen et al., 2010; Blekherman et al., 2011; Beger, 2013; Liesenfeld et 
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al., 2013; Olivares et al., 2015). As more independent reports on metabolomics of HNC 

are being published, a comprehensive meta-analysis of these large ‘omics’ data sets 

will be of potential value in the near future to enhance translational studies. Specifically, 

metabolomic studies can help to potentially identify clinically relevant biomarkers that 

may be useful in early detection of cancer, to enhance the accuracy of diagnosis and 

prognosis, and to aid in the development of new drug targets to help improve 

therapeutic outcomes (Olivares et al., 2015; Yu and Snyder, 2016).  

The objective of this mini-review is to summarize and discuss the published 

studies on HNC metabolomics. We will discuss the different technological tools utilized 

in metabolomics, and focus on the findings from studies that used different types of 

patient samples (i.e. saliva, serum, blood, urine, tissues). In addition to the host-

metabolomic profiles, we discuss the potential relationship and influence of the 

microbial metabolome in cancers. By coupling metabolomics data with other omics 

data, we can achieve a greater understanding of complex cancer processes and derive 

new information that may help to better target aggressive and malignant cancer types, 

such as HNC.  

 

Biological samples used for head and neck cancer metabolomics 

A broad array of biological fluids, such as saliva, blood and urine have been used 

in metabolomic-based studies (Gowda et al., 2008; Psychogios et al., 2011; Bouatra et 

al., 2013; Dame et al., 2015). These biofluids contain hundreds to thousands of 

detectable metabolites that can be obtained non- or minimally invasively (Beger, 2013). 

In addition, cell and tissue extracts can be a source of samples for metabolomic-based 
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studies (Beger, 2013). With current diagnostic procedures requiring a tissue biopsy, a 

portion of the tissue samples can be harvested for further metabolomic analyses. The 

following discussion will focus on the findings, postulated hypotheses, and conclusions 

from the published metabolomic studies that used different biofluids and cell/tissue 

extracts to study HNC metabolomics.  

 

Saliva metabolomics 

Saliva is an important biological fluid required for multiple functions, including 

speech, taste, digestion of foods, antiviral and antibacterial protection, to maintain 

adequate oral health (Loo et al., 2010; Spielmann and Wong, 2011). Saliva is readily 

available, and the collection process is simple and non-invasive. Thus, saliva has been 

a popular medium for “omics’ based research studies (Zhang et al., 2012; Cuevas-

Cordoba and Santiago-Garcia, 2014). Two types of saliva that can be used for 

metabolomics studies are stimulated and unstimulated whole saliva. These two saliva 

types vary in their chemical composition, so it is important to identify the specific type of 

saliva that was used for the study (Humphrey and Williamson, 2001; Carpenter, 2013; 

Cuevas-Cordoba and Santiago-Garcia, 2014).  

Amongst different HNC types, OSCC is associated with a high morbidity rate and 

a poor 5-year survival rate of less than 50% (Epstein et al., 2002; Mao et al., 2004). To 

improve the prognosis for HNC, investigators have proposed using saliva metabolites to 

differentiate between precancerous and malignant lesions. Using hierarchical principal 

component analysis (PCA) and discriminate analysis algorithms, Yan and colleagues 

were able to distinguish between OSCC and its precancerous lesions oral lichen planus 
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(OLP) and oral leukoplakia (OLK) (Yan et al., 2008; Table 1). Although the OLP and 

OLK groups were not as well separated in the PCA plot, the OSCC group showed a 

clear separation from the healthy and precancerous groups (Yan et al., 2008). In 

addition, Wei and others used ultra-performance liquid chromatography coupled with 

quadrupole/time-of-flight spectrometry (UPLC-QTOFMS) analysis to identify a signature 

panel of salivary metabolites that could distinguish OSCC from healthy controls (Wei et 

al., 2011; Table 1). Wei selected a panel of five salivary metabolites, which included γ-

aminobutyric acid, phenylalanine, valine, n-eicosanoic acid and lactic acid. This 

combination of metabolites accurately predicted and distinguished OSCC from the 

control samples, suggesting that metabolomic approaches could complement the 

clinical detection of OSCC for improved diagnosis and prognosis (Wei et al., 2011).  

Work presented by Almadori and colleagues discovered that salivary glutathione 

(antioxidant), but not uric acid (antioxidant), was significantly increased in patients with 

oral and pharyngeal SCC compared to healthy controls (Almadori et al., 2007; Table 1). 

However, although there were significant alterations in the glutathione levels potentially 

due to metabolism of malignant cells, the concentrations were too inconsistent to 

suggest glutathione as a definitive SCC diagnostic marker (Almodori et al., 2007). 

Furthermore, Sugimoto and colleagues identified 28 metabolites that correctly 

differentiated oral cancers from control samples in their study (Sugimoto et al., 2010). 

Among these differentially expressed metabolites, salivary polyamine levels were 

markedly higher in oral cancer samples compared to other cancer samples (breast and 

pancreatic) and controls (Sugimoto et al., 2010). Polyamines are small molecules 

derived from amino acids that are essential for many biological functions (Dimery et al., 



	 142	

1987; Pegg 2009). Increased polyamine levels have been associated with increased 

cell proliferation, decreased apoptosis and elevated expression of genes affecting tumor 

invasion and metastasis (Gerner and Meyskens, 2004). Thus, it is hypothesized that 

polyamine homeostasis is important for regulation of cancer related functions, such as 

cell proliferation and apoptosis.  

Based on published studies that analyzed the salivary metabolome of HNC, there 

is a general consensus that unique metabolites specific to HNC exist. However, due to 

differences in detection and analytical methods, the current data still lacks coherency, 

and a common HNC metabolomic signature has yet to be identified. 

 

Blood and urine metabolomics 

In addition to saliva, blood and urine are commonly used for metabolomic-based 

studies (Psychogios et al., 2011; Bouatra et al., 2013). Blood is divided into plasma - a 

cellular portion containing red and white blood cells and platelets, and serum - a non-

cellular protein-rich liquid separately obtained following blood coagulation. Both plasma 

and serum contain a wide variety of metabolites, and current studies suggest that 

plasma and serum are similar in terms of metabolite content within the aqueous phase 

(Psychogios et al., 2011). Importantly, numerous studies have demonstrated that an 

altered chemical and protein metabolic composition can now be detected in blood 

samples obtained from subjects with pathology or diseases, such as cancer 

(Psychogios et al., 2011; DeBerardinis and Thompson 2012). Tiziani and colleagues 

reported that OSCC patients exhibited abnormal metabolic activity in blood serum, 

wherein altered activity related to lipolysis, the TCA cycle and amino acid catabolism 
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was detected (Tiziani et al., 2009; Table 1). For example, there was an increased level 

of ketone bodies present in OSCC samples, suggesting that increased lipolysis was a 

backup mechanism for energy production (Tiziani et al., 2009). Furthermore, a common 

signature for many cancers includes a high rate of glycolysis followed by lactic acid 

fermentation in the cytosol, rather than by a comparatively low rate of glycolysis 

followed by oxidation of pyruvate in the mitochondria, known as the “Warburg effect”. 

Similarly in HNC, Tiziani demonstrated that OSCC tumors relied heavily on glycolysis as 

a main energy source (Warburg, 1956; Tiziani et al., 2009).  

Yonezawa and others identified several metabolites that were altered in serum 

and tissue samples of HNSCC patients who experienced relapse (Yonezawa et al., 

2013). The four metabolites that were significantly altered were glucose, methionine, 

ribulose and ketoisoleucine (Yonezawa et al., 2013). Interestingly, when the authors 

compared the metabolomic profiles of the OSCC serum and tissue samples, an inverse 

relationship was observed in the differentially expressed metabolites (Yonezawa et al., 

2013; Table 1). Metabolites associated with glycolytic pathways (i.e. glucose) were 

lower in the tissues, whereas amino acids (i.e. valine, tyrosine, serine, methionine) were 

expressed in higher levels in the tissues than the serum (Yonezawa et al., 2013). In 

addition, the serum metabolomic profiles differed between patients with or without 

HNSCC relapse (Yonezawa et al., 2013). Several other studies further support that 

serum and plasma samples from HNC subjects possess distinct metabolomic profiles. 

For example, elevated levels of choline-containing compounds were detected in OSCC 

samples in numerous studies (Maheshwari et al., 2000; El-Sayed et al., 2002; Bezabeh 

et al., 2005; Zhou et al., 2009; Tiziani et al., 2009). Choline is an important constituent 
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of phospholipid metabolism in cellular membranes and is considered a biomarker for 

cancer cell proliferation, survival and malignancy (Ackerstaff et al., 2003; Glunde et al., 

2006; Glunde et al., 2011). Through our comprehensive analysis, choline was identified 

as one of the metabolites that was consistently over expressed in HNC samples 

regardless of sample types (Fig. 1B). Studies have suggested a link between cancer 

feedback cell signaling and choline metabolism (Aboagye and Bhujwalla, 1999; 

Ackerstaff et al., 2003; Janardhan et al., 2006; Glunde et al., 2011; Ridgway, 2013). 

Thus, an abnormal choline metabolism in cancer has gained much attention and is 

regarded as a metabolic hallmark for tumor development and progression (Glunde et 

al., 2011).  

The use of urine samples in HNC metabolomic studies is not as common 

compared to the other types of biofluids mentioned above. However, urine is widely 

used by metabolomic researchers for other conditions or diseases due to its ease of 

collection and the wide coverage of metabolites that is possible with urine samples 

(Bouatra et al., 2013). Thus far, there has only been a single study reported on HNC 

metabolomics using urine. From patient urine samples, Xie and colleagues identified a 

panel of differentially expressed metabolites and demonstrated their utility by logistic 

regression (LR) modeling (Xie et al., 2012; Table 1). When two metabolites, valine and 

6-hydroxynicotic acid, were inputted together in the LR prediction model, the authors were able to 

identify OSCC with a 98.9% accuracy, and a greater than 90% sensitivity, specificity 

and positive predictive value (Xie et al., 2012). However, similar to saliva and blood 

metabolomics, the use of urine samples for HNC metabolomics will require further 

validation through more independent studies.  
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Cell and tissue metabolomics 

The current gold standard for diagnosis of HNC is a scalpel-obtained biopsy and 

subsequent histopathological interpretation. However, the current procedure is 

subjective and does not capture the full heterogeneic properties of neoplastic 

processes, as it is difficult to distinguish between precancerous from cancerous and 

malignant lesions (Rezende et al., 2010; Yu and Snyder, 2016). Early studies with 

magnetic resonance spectroscopy (MRS) using patient tissue samples demonstrated 

that a higher choline to creatine ratio was observed in HNC samples compared to 

healthy controls (Mukherji et al., 1997; El-Sayed et al., 2002; Table 1). In addition, 

Mukherji and colleagues reported that elevated levels of amino acids, such as alanine, 

glutathione, histidine, isoleucine, valine, lysine and polyamines were more likely found 

in tumors compared to controls, and similar metabolites, such as glutathione and 

polyamines were also elevated in saliva associated with HNC (Mukherji et al., 1997; 

Almadori et al., 2007; Sugimoto et al., 2010). Srivastava and others used proton high-

resolution magic angle spinning magnetic resonance (HR-MAS MR) spectroscopy to 

identify the metabolic perturbations of OSCC tumors compared to healthy controls. The 

data revealed higher levels of lactate, phosphocholine, choline and amino acids, and 

decreased levels of PUFA and creatine in OSCC samples compared to non-malignant 

samples (Srivastava et al., 2011). As previously mentioned, higher levels of detected 

choline in HNC tissues may indicate increased cancer cell proliferation and membrane 

biosynthesis, as a result of reciprocal interactions between oncogenic signaling and 

choline metabolism (Glunde et al. 2011). The reduced level of creatine could also be an 
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indication of increased energy metabolism in tumors (Mukherji et al., 1997; El-Sayed et 

al., 2002).  

Somashekar and colleagues reported that tumorous tissues biopsied from 

different anatomical locations (tongue, lip, oral cavity and larynx) displayed similar 

metabolomic profiles between one another, suggesting that HNSCC tissues share 

similar metabolic activity during malignant transformation (Somashekar et al., 2011; 

Table 1). Primary and metastatic HNSCC tissues both showed increased/altered levels 

of branched chain amino acids, lactate, alanine, glutamine, glutamate, glutathione, 

aspartate, creatine, taurine, phenylalanine, tyrosine and choline compounds, with 

decreased levels of triglycerides (Somashekar et al., 2011; Table 1). In addition, Tripathi 

and others demonstrated that the cell extracts of HNSCC displayed comparable 

metabolic phenotypes as observed in the HNSCC tissues (Tripathi et al., 2012; Table 

1). Thus, based on published reports, the metabolites associated with malignant 

transformation of HNC are associated with multiple dysregulated metabolic pathways, 

including glycolysis, glutaminolysis, oxidative phosphorylation, energy metabolism, TCA 

cycle, osmo-regulatory and anti-oxidant mechanisms (Fig 1.; Somashekar et al., 2011; 

Tripathi et al., 2012; Wang et al., 2014).  

 

Influence of microbial metabolomics   

The human body is a host to taxonomically diverse multi-species microbial 

communities. In particular, the oral cavity and the gut are home to hundreds of transient 

and resident microbial species (Eckburg et al., 2005; Dewhirst et al., 2010). Several 

publications suggest that the microbiota that colonize the human body (particularly the 
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oral cavity and gut) contribute to the etiology of different types of cancers because of 

their ability to alter the community composition and induce inflammatory reactions, DNA 

damage and apoptosis, and an altered metabolism (Meurman, 2010; Chen et al., 2012; 

Farrell et al., 2012; Louis et al., 2014). Thus, when considering cancer-associated 

metabolomics, the influence of the microbiota and its repertoire of metabolites should 

also be considered, since the microbiota are profoundly abundant in the human body 

and cancerous tissues.   

Colorectal cancer (CRC), like HNC, is associated with risk factors that include 

diet and lifestyle (Gingras and Béliveau, 2011). Specific bacterial genera, like 

Fusobacterium, are found in greater abundance in patients diagnosed with CRC, 

colorectal adenomas, pancreatic cancer and HNC (Castellarin et al., 2012; Kostic et al., 

2012; Farrel et al., 2012; McCoy et al., 2013). Accumulated data suggest that diverse 

polymicrobial communities can produce a wide range of metabolites by metabolic 

fermentation (Tang 2011). For instance, gut microorganisms can secrete a variety of 

metabolites that may play a role in the etiology and prevention of complex diseases 

(Heinken and Thiele, 2015). These microbial metabolites can directly regulate and 

modulate the host-tumor cell metabolism (Fig. 1A); bacteria isolated from the gut can 

produce metabolites that are protective or detrimental to the host tissues and cells. For 

example, short-chain fatty acids (SCFAs) like butyrate, acetate, and propionate function 

in the suppression of inflammation and cancer, whereas other metabolites, such as 

polyamines, are toxic and cancer-promoting at high levels (Louis et al., 2014). 

Alterations in microbial diversity and function due to known risk factors for HNC (alcohol 
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and tobacco use) and unknown factors could actively contribute to HNC tumorigenesis 

(Schwabe and Jobin, 2013; Fig. 1A).  

 

Concluding Remarks 

The complement of ‘omics’ based approaches could significantly enhance our 

understanding of the complex processes of HNC tumorigenesis. Although it is extremely 

complex, progress has been made in integrating two or more omics data sets to study 

cancer (Cho, 2013). For example, studies have examined the molecular differences 

between HPV+ and HPV- HNCs by comparing the differences in their genomic, 

transcriptomic and proteomic profiles (Sepiashvili et al., 2015). Since Otto Warburg’s 

first hypothesis of the altered metabolism of cancer cells, the field of cancer 

metabolomics has rapidly expanded and revealed intriguing new data regarding 

metabolic pathways associated with cancers (Warburg 1956). With fast-moving 

advancements in technology and bioinformatics, the quality of data output and the 

ability to detect small molecular metabolites has significantly improved. Thus, 

investigators will likely soon be able to transition from untargeted global metabolomic 

approaches to more focused targeted and mechanistic-based metabolomic studies. In 

addition, with the availability of growing public databanks, investigators can now search 

for specific omics variations that characterize different types of cancers and phenotypes 

of a cancer (Cho, 2013).  

From the clinical perspective, understanding the metabolic pathways associated 

with life threatening conditions, such as cancer, could be extremely valuable in 

decreasing the burden of disease. With saliva-based DNA screening tests already 
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available for chair-side use in dentistry for HNC, we can envision a saliva-based 

screening or diagnostic test that incorporates omics that replaces the surgical biopsy 

and provides a more individualized and robust patient health, disease, or risk profile. 

Here, we discussed the metabolomics of both the host (normal and cancerous 

conditions) and co-existing microbiota (Fig. 1A). In addition, we organized the 

differentially expressed metabolites from previous publications by sample types (saliva, 

blood and urine, cells and tissues) and detection methods (Fig. 1B, C). The full 

integration and routine inclusion of metabolomics in the clinic has yet to be 

implemented, however, continued research and translational efforts will reinforce the 

promise of this evolving technology and science. Studies to date have been conducted 

with relatively small patient sample sizes, with different sample types and detection 

methods. In the future, it will be critical to follow up with larger, more comprehensive 

population studies to confirm the validity of the current findings. In addition, sharing 

detailed sample collection and analytical methods between investigators will be 

essential to conduct sound HNC metabolomics research. From the systems biology 

perspective, the integration of other omics data with metabolomics data will be required 

for a greater understanding of cancer biology.  
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Figure B.1. Head and neck cancer metabolism. A) Proposed schematic 
representation of HNC tumor microenvironment. Altered metabolism in HNC can result 
in differential expression of metabolites associated with carbohydrates, lipids, amino 
acids and nucleotide metabolism. The co-inhabiting microbiota of the TME can further 
result in altered metabolic activity. In addition to the genomic transformation of cancer 
cells, diet and lifestyle (alcohol, tobacco) are risk factors contributing to the altered 
cancer metabolism. B-C. Venn diagrams showing, B) overlap of differentially expressed 
metabolites identified in HNC in saliva, blood and urine, and cells and tissues. C) 
overlap of differentially expressed metabolites in HNC identified by different detection 
methods such as HPLC/GC/MS, NMR/MAS, MRS and other. Metabolites were selected 
and compiled from studies in Table 1.  
Red – detected in increased levels; Blue – detected in decreased levels; Green – 
detected in increased and decreased levels 
 
Abbreviations: Ala(alanine); Asp (aspartate); Bet (betaine); Cit (citrate); Cr (creatinine); 
Cho (choline); Glu (glutamate); Gluc (glucose); Gln (glutamine); Glut (glutathione); Gly 
(glycine); GPC (glycerophosphocholine); His (histidine); Ile (isoleucine); Lac (lactate); 
Leu (leucine); Lys (lysine); PCho (phosphocholine); Phe (phenylalanine); Pro (proline); 
Pyr (pyruvate); Tau (taurine); Thr (threonine); Tyr (tyrosine); Val (valine).  
 

Carbohydrate metabolism 
Glycolysis, TCA cycle, glutaminolysis,  

oxidative phosphorylation,  

energy, anaplerosis  

Lipid metabolism 
Lipolysis, Lipogenesis 

Ie. Phospholipids, fatty acids 
Amino acid and nucleotide  

metabolism 
Ie. Choline, glutamate, taurine, essential and non-essential AAs 

Squamous epithelial cell 

HNSCC cell 

Fibroblast 

Tumor associated 
immune cell 

Vascular and lymphatic  
structures 

Tumor associated 
microbial biofilm 

Basement membrane 

Other metabolism 
Alcohol and tobacco 

Microbial metabolism 
Protective or detrimental 

Ie. SCFAs, polyamines 

A 

B C 

4 
1 

10 Cho  
Glu Tau 
Ala Val 

6 
1 
11 

10 
11 

49 
 

Blood & Urine 

Saliva 
 

29 

56 
 

Cells & Tissues 

HPLC/GC/MS 
 
24 

MRS 
 
11 

NMR/MAS 
	

52 

38 
 

Other 

Asp Glu Glut  
His Phe 

     Ala Gly  Lys  
      Pro Thr Tyr  

     Val 

Ala Glu  
Glut His 

Lys 3 
2 

              Bet Cho  
            PCho Tau 

     Ala Cit Cr Gluc  
   Gln GPC Gly His Ile 

Lac Leu Lys  
Phe Pyr Thr Val 

Ala Cho His 
Ile Tau 

7 2 

2 
3 

1
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Subjects Cancer  Sample  
Detection 
Method Metabolomic findings Reference 

50 HNSCC 
77 healthy HNSCC Saliva HPLC Increased: 

Glutathione 
Almadori et 

al., 2007 
20 OSCC, 

20 OLP 
7 OLK 

11 healthy 

OSCC 
OLP 
OLK 

 

Saliva HPLC/MS 

Metabolic profiling data 
distinguished between 
OSCC, OLP and OLK 

 

Yan et al., 
2008 

 

69 oral cancer 
patients 

87 healthy 

Oral 
cancer Saliva CE-TOF-

MS 

28 differentially expressed 
metabolites were detected 

and was used to predict 
oral cancer outcome 

Sugimoto et 
al, 2010 

 

37 OSCC 
32 oral 

leukoplakia 
34 healthy 

OSCC 
Oral 

leukoplakia 
Saliva UPLC-

QTOFMS 

41 metabolites 
distinguished OSCC from 
control, 61 distinguished 
OSCC from OLK, and 27 
distinguished OLK from 

control 
 

Wei et al., 
2011 

 

      

33 OSCC 
5 OLK 

28 healthy 

OSCC 
OLK 

Healthy 

Blood 
(plasma) 

1H NMR 

At least 17 metabolites 
were differentially 

expressed and 
differentiated OSCC from 

healthy 

Zhou et al., 
2009 

 

15 OSCC 
10 healthy 

 
 

OSCC Blood 
(serum) 

1D 1H and 
2D 1H J-
resolved 

NMR 

Altered energy 
metabolism: 

Lipolysis (increased levels 
of ketone bodies) 

TCA cycle (i.e. ↓citrate, 
succinate, formate) 

Amino acid catabolism 
(i.e. ↑ 2-hydroxbutyrate, 

ornithine, asparagine 
 

Tiziani et al., 
2009 

 
 

25 HNSCC 
(Of these 

patients, 17 
used for serum 
and 19 used for 
tissue analysis) 

HNSCC 
 

Blood 
(serum) 
Tissues 

GC/MS 

Serum: 
↑ Glycolysis, ↓ Amino 

acids 
Tissues 

↑ Amino acids, ↓ 
Glycolysis 

Yonezawa et 
al., 2013 

 
 

37 OSCC 
32 OLK 

34 healthy 
 
 
 
 
 

OSCC 
OLK Urine GC-MS 

Increased: 
Alanine, tyrosine, valine, 

serine, and cysteine 
Decreased: 

Hippurate and 6-
hydroxynicotic acid 

 
Regression model based 

Xie et al., 
2012 
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on valine and 6-
hydroxynicotic acid 

yielded an accuracy of 
98.9%, sensitivity of 
94.4%, specificity of 
91.4%, and positive 

predictive value of 91.9% 
in distinguishing OSCC 

from the controls. 

 
In vitro: 

19 HNSCC 
13 healthy 

3 metastatic 
cervical lymph 

node 
SCC cell line 

 
In vivo: 

7 HNSCC 
7 healthy 

HNSCC Tissues 1H MRS 

 
Mean choline/creatine 

ratio was higher in 
HNSCC samples. Several 

amino acids including 
alanine, isoleucine, 

glutathione, histidine, 
valine, lysine and 
polyamine were 

differentially found in 
HNSCC samples. 

 
 
 

Mukherji et 
al., 1997 

 
 
 
 
 

85 HNSCC 
50 healthy HNSCC Tissues 1H MRS 

Increased: 
Taurine, choline, glutamic 

acid, lactic acid, lipid 

El-Sayed et 
al., 2002 

 

159 OSCC 
(Tumor and 
neighboring 
margins and 
bed tissues) 

 

OSCC Tissues HR-MAS 
NMR 

Increased: 
Acetate, glutamate, 

lactate, choline, 
phosphocholine, glycine, 

taurine, leucine, 
isoleucine, valine, lysine, 

and alanine 
Decreased: 

Creatine, polyunsaturated 
fatty acids 

Srivastava et 
al., 2011 

 
 

 
22 HNSCC 
(matched 

samples divided 
into 18NAT, 18 

tumor and 7 LN-
Met) 

 

HNSCC Tissues HR-MAS 
1H NMR 

HNSCC and LN-Met 
tissues showed elevated 
levels of lactate, amino 
acids and decreased 
levels of triglycerides. 

 

Somashekar 
et al., 2011 

 
 

5 HNSCC cell 
lines 

3 primary 
normal human 

oral 
keratinocytes 

HNSCC Cells 1H NMR 

21 differentially expressed 
metabolites: 
Increased: 

Lactate, isoleucine, valine, 
alanine, glutamine, 

glutamate, aspartate, 

Tripathi et 
al., 2012 
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from patients 
 
 
 

glycine, phenylalanine, 
tyrosine, choline-

containing compounds, 
creatine, taurine, 

glutathione 
 

Decreased: 
Triglycerides 

 

 

2 cell lines 
(HNSCC cells 
and stem-like 
cancer cells) 

HNSCC Cells Cap IC-MS 
Changes in energy 

metabolism pathways:  
Glycolysis and TCA cycle 

Wang et al., 
2014 

 

Table B.1. Summary of metabolomic-based studies on head and neck cancers 
 
Abbreviations: 
 
Cap IC-MS: Capillary anion exchange ion chromatography-mass spectrometry   
CE-TOF/MS: Capillary electrophoresis-time-of-flight mass spectrometry 
GC/MS: Gas chromatography/mass spectrometry  
1H-NMR: Proton nuclear magnetic resonance 
HR-MAS: High resolution magic angle spinning 
1H-MRS: Proton magnetic resonance spectroscopy 
HPLC: High performance liquid chromatography 
LC/GC: Liquid chromatography/gas chromatography 
NMR: Nuclear magnetic resonance 
UPLC-QTOFMS: Ultra-performance liquid chromatography coupled with 
quadrupole/time-of-flight spectrometry 
 
LN-Met: lymph node metastasis  
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Appendix C 

 

Microbial Communities Associated with Primary and Metastatic Head and Neck 

Squamous Cell Carcinoma – A High Fusobacterial and Low Streptococcal 

Signature 

 

Appendix C is adapted from a manuscript that is under revision. 

 

Shin, J. M., Luo, T., Kamarajan, P., Fenno, J. C., Rickard, A. H. and Kapila, Y. L. (2017) 
Microbial Communities Associated with Primary and Metastatic Head and Neck 

Squamous cell Carcinoma – A High Fusobacterial and Low Streptococcal Signature. 
Nat Sci Rep ‘under revision’ 

 
 
 
 
 

Abstract 

Given the potential relationship between head and neck squamous cell 

carcinoma (HNSCC) and microbial dysbiosis, we profiled the microbiome within healthy 

normal and tumorous (primary and metastatic) human tissues from oral cavity, larynx-

pharynx, lymph nodes using 16S rRNA sequencing. Alpha and beta diversity analyses 

revealed that normal tissues had the greatest richness in community diversity, while the 

metastatic populations were most closely related to one another. Compared to the 

normal, the microbiota associated with tumors supported altered abundances in the 

phyla Fusobacteria, Firmicutes, Actinobacteria and Proteobacteria. Most notably, the 
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relative abundance of Fusobacterium increased whereas Streptococcus decreased in 

both primary and metastatic samples. Principal coordinate analysis indicated a 

separation and clustering of samples by tissue status. However, random forest analysis 

revealed that the microbial profiles alone were a poor predictor for primary and 

metastatic HNSCC samples. Here, we report that the microbial communities residing in 

the tumorous tissues are compositionally distinct compared to the normal adjacent 

tissues.  However, likely due to the smaller sample size and sample-to-sample 

heterogeneity, our prediction models were not able to distinguish by sample types. This 

work work provides a foundation for future studies aimed at understanding the role of 

the dysbiotic tissue microbiome in HNSCC.   
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Introduction 

 

With greater than 48,000 new cases each year in the United States and 

>500,000 cases diagnosed annually worldwide, head and neck squamous cell 

carcinoma (HNSCC) levies a major public health burden (Rezende et al., 2010; Siegel 

et al., 2016). Furthermore, the prognosis and the five-year survival rate of HNSCC have 

been constant for decades (Argiris et al., 2008). The known primary risk factors for 

HNSCC include tobacco and alcohol use, and infection by certain human papillomavirus 

(HPV) genotypes (Gillison, 2004; Ragin and Taioli, 2007; Schmidt et al., 2004). 

However, these risk factors alone have not been sufficient to explain the incidence and 

the mechanisms of tumorigenesis, and it is likely that other undescribed factors are 

playing important roles in HNSCC tumor development, progression and metastasis.      

The human microbiome maintains a dynamic relationship with the human host 

(Cho and Blaser, 2012). For example, if the microbiome experiences an ecological 

imbalance, also known as dysbiosis, disease processes can emerge (Carding et al., 

2015; Blumberg and Powrie, 2012). Alternatively, changes in the human host, such as 

changes in the host adaptive immunity, can alter the associated microbiome (Zhang et 

al., 2015). Numerous studies have now reported that microbial dysbiosis is linked to 

cancer (Michaud and Izard, 2014; Schwabe and Jobin, 2013; Sobhani et al., 2011; 

Xuan et al., 2014). For example, imbalances in the gut microbiota promote altered host-

microbial interactions that mediate colorectal cancer (CRC) tumorigenesis (Kostic et al., 

2013; McCoy et al., 2013; Nugent et al., 2014). Genomic analysis of the microbiome of 

CRC patients have revealed a significant enrichment in Fusobacterium species with 
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depletion in species from the phyla Bacteroidetes and Firmicutes relative to the normal 

healthy controls (Kostic et al., 2013; Tahara et al., 2014). Furthermore, Schmidt and 

colleagues reported that alterations in the oral microbiota were strongly associated with 

oral cancer (Schmidt et al., 2014).   

Close interactions between host cells and the microbiota will cause a variety of 

physiological responses in both the host and the host’s microbial inhabitants, including 

changes in individual microbes or in the collective microbial community. These 

interactions can be beneficial, neutral, or detrimental to the host. For example, bacterial 

communities within the gut maintain a mutually beneficial relationship with the human 

intestinal cells but in CRC, the increased abundance of certain bacteria (ie. 

Fusobacterium nucleatum) and their metabolic byproducts can potentiate and promote 

tumor growth by eliciting tumor promoting immune and host cell responses (Jobin, 

2012; Nugent et al., 2014; Shreiner et al., 2015). Accordingly, studies have suggested 

that local or distant cancer-associated microbiota can influence the cancer cells to 

exhibit cancer-specific inflammatory, immune and metabolic responses, or vice versa 

(Arthur et al., 2012; Burns et al., 2015). In this study, we hypothesized that the local 

microbiota of HNSCC tissues have a distinct bacterial community profile compared to 

the healthy normal tissues. To understand whether bacterial organisms contribute to 

HNSCC development and progression or whether the abundance of bacterial organisms 

is altered in response to HNSCC development and progression, it is important to identify 

and analyze the associated microbial communities. If the tumor environment favors a 

specific microbial population or vice versa, further research is warranted to better 

understand these interactions in the development and progression of HNSCC.  
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Materials and Methods 

 

Study Design and Human Subject Information 

Normal and HNSCC human tissue specimens were obtained from ProteoGenex 

(ProteoGenex, USA). All clinical specimens were obtained following standard protocols 

and with appropriate Institutional Review Board/Independent Ethics Committee 

(IRB/IEC) approval by University of Michigan and ProteoGenex. Tissue samples were 

acquired based on availability. Tissues were snap-frozen in liquid nitrogen immediately 

following surgical removal and preserved at -80°C until needed. In total, 72 tissue 

samples (normal, primary, metastatic) originating from the oral cavity, larynx, pharynx 

and lymph nodes of 34 HNSCC subjects (32 males and 2 females with an age range of 

48-83 years and mean age of 59 ± 5.6 years) were used for this study. Among the 

collected tissue samples, i) matched normal adjacent, primary and metastatic HNSCC 

tissues were obtained from 14 subjects, ii) matched normal adjacent and primary 

HNSCC tissues were obtained from 10 subjects, and metastatic-only tissues were 

obtained from 10 subjects. We used each human subject as his/her own control (except 

the 10 metastatic non-matched samples).  The subject specific information, including 

gender, age, tumor anatomic location, clinical diagnosis, TNM staging (extent of the 

tumor (T), extent of spread to the lymph nodes (N), the presence of distant metastasis 

(M) and tumor grade as established by histopathological evaluation), are included in 

Table 1.   
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RNA Extraction and cDNA Synthesis 

Total RNA was isolated from the tissue samples using the RNeasy mini, RNA 

isolation kit (Qiagen, Germany) according to the manufacturer's instructions. The cDNA 

was then synthesized using the high-capacity cDNA reverse transcription kit according 

to the manufacturer’s instructions (Applied Biosystems, USA). 

 

Microbiome Sequencing and Analysis  

cDNA was normalized to 5 ng/µl per sample prior to running polymerase chain 

reactions (PCR). Targeted amplification and sequencing of the V4 variable region of the 

16S rRNA gene was conducted in a single-step 30 cycle PCR using PCR primers 

51/806 (Caporaso et al., 2011). The HotStarTaq Plus Master Mix Kit (Qiagen, Valentia, 

CA, USA) was used at the following conditions: 94°C for 3 minutes, followed by 28 

cycles (5 cycle used on PCR products) of 94°C for 30 seconds, 53°C for 40 seconds 

and 72°C for 1 minute, after which a final elongation step at 72°C for 5 minutes was 

performed. Genome sequencing was performed at MR DNA (www.mrdnalab.com, USA) 

on an Ion Torrent Personal Genome Machine (PGM) following the manufacturer’s 

guidelines.  

Raw 16S data sequences were processed with QIIME 1.9.0. Samples with read 

counts less than 3000 preprocessing were excluded for microbiome analysis. Of 72 total 

samples collected, 71 samples had read counts over 3000. Sample M32 was excluded. 

Sequences with any ambiguous base calls, average Phred quality score below 25, max 

homopolymer length of > 6, primer mismatch exceeding 0, or sequence length below 

200bp were discarded. All sequences that remained after filtering had primers, 
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adaptors, and linker sequences truncated. Operational taxonomic units (OTUs) were 

clustered by 97% identity using the Uclust method. An open-reference OTU picking 

strategy was used where sequences that do not cluster against a reference database of 

sequences are clustered de novo. GreenGenes 13.8 was used as the 16S reference 

database. Sequences were aligned with GreenGenes-aligned sequences as template 

using PyNast. Taxonomy was assigned using the RDP Classifier in QIIME (Wang et al., 

2007). Singleton OTUs were filtered out as part of the default QIIME parameters. 

Additionally, OTUs constituting less than 0.05% of total reads were filtered out. The final 

OTU table was analyzed with QIIME and the Phyloseq package in R (Caporaso et al., 

2010; McMurdie and Holmes, 2013).  

Downstream analytics included Shannon alpha diversity, community relative 

abundance, weighted UniFrac beta diversity, differential OTUs between HNSCC and 

healthy tissue samples. Outcomes were measured within the Phyloseq package and 

graphical output generated with R’s ggplot package. Additionally, beta diversity was 

visualized in 2-dimensional space with principal coordinate analysis using R’s built-

in prcomp function. Log-transformed read counts of the OTU table was used as input for 

principal coordinate analysis.  

 

Random Forest Analysis  

Random forest analysis (RFA) was used to predict normal or HNSCC status. The 

random forest regression modeling is a nonparametric approach, which accounts for the 

nonlinearities and interactions within the dataset to identify a subset of OTUs that are 

predictive of HNSCC. Another advantage of this approach is that cross-validation is built 
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into the model generation procedure to limit the risks of over-fitting the model to the data 

(Breiman, 2001). Both primary and metastatic HNSCC tissues were considered different 

sample types that can be predicted by RFA. Ten RFA iterations were performed 

with random seeds 1-10 for each dataset where each iteration selected a random 

subset of 2/3 of the 41 samples to designate as the training dataset. The remaining 1/3 

of the samples were designated as the testing dataset where random forest makes its 

best predictions on the sample types based on the training dataset.   

 

Statistical Analysis 

Differences in Shannon alpha diversity as well as Euclidean distance for beta 

diversity between groups were tested using a non-parametric Kruskal-Wallis test. 

Differences in phyla abundances were evaluated using a non-parametric Mann-Whitney 

U test. Differential OTUs were detected using a Wald negative binomial test with the 

DEseq2 package in R. An α significance threshold of .05 used for the Kruskal-Wallis 

test and an α significance threshold of .01 was used for the Wald negative binomial test. 

A more conservative α threshold was selected for differential OTU tests to reduce the 

number of false positives that would be expected testing a large quantity of OTUs. To 

test whether microbial communities differ by HNSCC tissue type, an Adonis test that fits 

linear models to weighted UniFrac distance matrices was performed with R’s vegan 

package. Significance threshold indicating dissimilar communities was set at an α level 

of .05. 
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Results 

 

Alpha and Beta diversity of Normal, Primary and Metastatic Tissue Samples 

To compare the diversity captured from our samples, we conducted alpha and 

beta diversity analyses. Alpha diversity was calculated based on the Shannon diversity 

index, which measures the ecosystem biodiversity. The Shannon alpha diversity 

algorithm accounts for species richness and species evenness. Normal adjacent tissues 

had the greatest richness in community diversity compared to the primary and 

metastatic HNSCC tissue samples (Fig. 1A). The Kruskal-Wallis rank sum p-value was 

.005, indicating at least one pairwise comparison for Shannon alpha diversity was 

significant. The pairs driving significance were normal versus primary and normal 

versus metastatic (Fig. 1A).  

For beta diversity, samples were clustered by each category level based on 

sample groups (normal, primary, metastatic) and each pairwise sample-to-sample 

dissimilarity was measured using Euclidean distance. Comparing across three sample 

types, the metastatic microbial taxa populations were more closely related to each other 

than to those in both the normal versus normal, and the primary versus primary HNSCC 

tissue samples (Fig. 1B). The p-values comparing within normal versus within primary, 

within normal versus within metastatic, and within primary versus within metastatic were 

all < .001 (Fig. 1B). 
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Phylum Distribution of the Normal, Primary and Metastatic HNSCC Tissue 

Samples    

Tissues were harvested from the oral cavity (lip and tongue), larynx and pharynx, 

and the mandibular lymph node (Table 1). To account for the differences in the 

microbiome profiles based on anatomic locations, community analyses were conducted 

by sample type and location (Fig. 2). Compared to the normal tissues from the oral 

cavity, primary HNSCC tissues showed increased abundance in Bacteroidetes, 

Proteobacteria, Spirochaetes and Fusobacteria (Fig. 2A).  In addition, 

Firmicutes and Actinobacteria showed a marked decrease in abundance in the  

tumor tissues compared to the normal controls (Fig. 2A). Larynx and pharynx also 

exhibited prominent differences between the normal and the tumorous tissues, where 

Fusobacteria increased and Firmicutes decreased in relative abundance (Fig. 2A). As 

for the metastatic lymph node samples, the increased abundance in Fusobacterium 

species belonging to the phyla Fusobacteria and decreased abundance in 

Streptococcus species belonging to the phyla Firmicutes was consistent with that in 

tumor tissues from other locations. However, metastatic tissues selectively exhibited a 

higher prevalence of Proteobacteria (Fig. 2A). The community composition of the oral 

cavity (n=8) and the larynx-pharynx (n=40) region differed significantly, since Firmicutes 

and Actinobacteria flourished much more in the oral cavity (Fig. 2A). However, the 

power to detect statistical significance in the normal versus primary tumor group was 

hampered by the smaller sample size for each group. Overall, the microbiota of the 

tissues collected from the oral cavity exhibited greatest OTU richness (data not shown). 
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Based on the analysis conducted by tissue status, microbial species 

from Firmicutes and Actinobacteria were less abundant in both primary and metastatic 

HNSCC tissues compared to normal adjacent tissues (Fig. 2B). The relative abundance 

of Firmicutes was significantly lower in both primary and metastatic samples compared 

to the normal tissue samples (Table 2). The relative abundance of Actinobacteria was 

only significantly lower in primary HNSCC samples when compared to the normal 

samples (Table 2). The abundance of Fusobacterial populations was increased in both 

primary and metastatic tumor tissues compared to normal tissues (Fig. 2B); however, 

only the primary versus normal comparison was statistically significant (Table 2). 

Statistically significant differences in the abundance of Proteobacterial populations was 

present when comparing primary and metastatic tumor samples but not when 

comparing normal and primary tissue samples (Fig. 2B; Table 2).  There was no 

significant difference in Spirochaetes abundance in each pairwise comparison by tissue 

type. The phyla Tenericutes, Synergistetes, SR1 and Thermi represented less than 1% 

of the overall composition and their relative abundances were most disparate when 

comparing metastatic versus normal tissue samples (Table 2).   

 

Genus Distribution of the Normal, Primary and Metastatic HNSCC Tissue 

Samples    

Notable genus groups that increased in abundance in the oral cavity HNSCC 

tumor samples compared to the normal samples included Fusobacterium and 

Treponema (Fig. 2C). A marked decrease in Streptococcus and Actinomyces were 

observed in the HNSCC tissues (Fig. 2C). For larynx and pharynx samples, an increase 



	 165	

in Fusobacterium, Prevotella, Neisseria and Capnocytophaga was observed, while a 

decrease in Streptococcus was observed (Fig. 2C). Furthermore, the genus 

Lactobacillus, Parvimonas, Peptoniphilus, Rothia and Veillonella were differentially 

abundant in the primary HNSCC samples collected from the larynx and pharynx 

compared to the normal samples (Table 2).  

When the samples were pooled by status, compared to the normal to the primary 

HNSCC samples, the abundance of Fusobacterium, Prevotella, and Capnocytophaga 

increased whereas, Streptococcus, Veillonella, Parvimonas, Lactobacillus and Rothia 

significantly decreased (Fig. 2D, Table 2). In comparison to the normal to the metastatic 

samples, the abundance of Fusobacterium, Neisseria and other unknown genus groups 

increased, and Streptococcus, Veillonella, Parvimonas and Lactobacillus decreased 

(Fig. 2D; Table 2). In addition, other significantly altered genus included Bacteroides, 

Campylobacter, Capnocytophaga and Rothia (Table 2).  

 

Relative Abundance of Fusobacterial and Streptococcal Populations by Sample 

Types 

The relative abundance of Fusobacterium and Streptococcus was compared by 

sample types. Matched samples were divided into two groups, 20 (N, P) samples and 

41 (N, P, M) samples (Fig. 3). Ten non-matched samples were metastatic tissue 

samples (Fig. 3). In both matched groups, normal samples expressed greater 

abundance of Streptococcus species than primary HNSCC samples (Fig. 3). In both 

matched groups, the relative abundance of Fusobacterium species in primary HNSCC 

samples was much greater than the normal samples (Fig. 3). Matched metastatic 
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samples exhibited more Streptococcus species than the primary samples, but were 

much less than the normal samples (Fig. 3). Both matched and non-matched metastatic 

samples exhibited lower abundance for both genera compared to the normal and 

primary samples (Fig. 3).  

 

Differential OTUs Detected between Normal, Primary and Metastatic HNSCC 

Tissue Samples 

 Wald negative binomial testing was performed to detect differentially abundant 

OTUs in 71/72 samples that contained more than 3,000 reads. In the primary versus 

normal tissue samples, there were 37 differentially abundant OTUs detected, with most 

belonging to the genera Streptococcus (24), Fusobacterium (4) and Neisseria (3). The 

direction of change was consistent across these 3 genera: Normal tissue samples had 

more Streptococcus, less Fusobacterium, and less Neisseria (see Supplementary Table 

1).  

 In the primary versus metastatic tissue samples, there were 60 differentially 

abundant OTUs. Streptococcus (26), Actinomyces (7), and Fusobacterium (5) genera 

constituted a significant portion of the differential OTUs. All of the Streptococcus and all 

of the Actinomyces OTUs were differentially abundant in the same direction: all were 

more abundant in the metastatic tissue samples. Fusobacterium OTUs (4/5) were less 

abundant in the metastatic samples. There was 1 Fusobacterium OTU that was more 

abundant in the metastatic tissue samples compared to primary tissue samples. 

 The comparison between normal versus metastatic tissue samples was the most 

disparate in terms of quantity of differential OTUs, which resulted in 104 OTUs. Some 
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genera of note were Streptococcus (23 OTUs, and all of them were more abundant in 

normal samples), Fusobacterium (10 OTUs, with 8 that were more abundant in 

metastatic samples), and Actinomyces (6 OTUs, with all 6 more abundant in normal 

samples). 

 

Principal Coordinate Analysis (PCoA) Based on OTUs  

Forty-one matched samples (normal, primary, metastatic) were used for the 

PCoA. A clustering pattern exhibited a left to right transition for a normal to primary then 

to a metastatic tissue status (Fig. 4). Across the sample population, the greatest 

clustering of communities was observed in the metastatic group, where the distances 

between samples were the smallest (Fig. 3). The ellipsoid boundaries of all 3 types of 

samples overlapped with one another. However, there was more substantial overlap in 

the microbial communities with most of the metastatic samples, such that the metastatic 

samples’ ellipsoid co-localized within the primary samples’ ellipsoid (Fig. 4). The 

separation between the normal versus primary (p=0.11), normal versus metastatic 

(p=0.194), and primary versus metastatic samples (p=0.966) was not statistically 

significant as assessed by the Adonis test.  

 

Random Forest Regression Model to Predict HNSCC Using Microbial OTUs 

The predictive accuracy of the random forest analysis was 39% (54/140). The 

majority of misclassifications were metastatic samples misclassified as primary tumor 

samples and primary tumor samples misclassified as metastatic samples (Table 3). 

When we categorized primary-metastatic samples as unhealthy, random forest analysis 
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was able to better differentiate between the two groups. The predictive accuracy of 

correctly identifying an unhealthy (primary and metastatic) and normal sample 

increased to 76% and 59%, respectively. In aggregate, the predictive accuracy 

increased to 98/140 (70%) when the primary and metastatic tumors were combined 

under one umbrella as “tumor” tissue samples. Based on the RFA results, the outcomes 

coincided with the intersecting normal, primary and metastatic samples’ ellipsoids 

shown in the PCoA plot (Fig. 4). 
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Discussions 

 

Bacteria in the human host often exist as compositionally diverse biofilm 

communities (Human Microbiome Project Consortium, 2012). The environment created 

by the host influences the composition of the bacterial community, which is further 

shaped by other parameters, including temperature, oxygen tension, pH, substratum 

properties, nutrient availability, and exposure to cell and immune signaling (Cho and 

Blaser, 2012; Costello et al., 2012). In this study, we evaluated the microbial 

communities of HNSCC tissues and their normal tissue counterparts. Analysis of alpha 

diversity revealed that normal tissues are significantly more diverse compared to the 

tumorous (primary and metastatic) tissues (Fig. 1A). Recently, Guerrero-preston and 

others reported that the saliva of HNSCC patients had significantly lower bacterial 

richness and diversity (Guerrero-Preston et al., 2016). In this study, the beta diversity 

was greater in the primary HNSCC tissue samples and lower in the metastatic tissue 

samples (Fig. 1B). However, since the primary tumor tissues were harvested from 

different anatomic locations compared to the metastatic samples (lymph node), the 

greater beta diversity may partly reflect the differences in the microbiome profiles based 

on different biofilm habitats.  

Based on our community analyses, the two major differences that were detected 

in these tissues were related to the abundance of members of the phyla Fusobacteria 

and Firmicutes (Fig. 2A and B). Compared to the normal tissue samples, an alteration of 

these two phyla was clearly observed within primary and metastatic tissue samples 

regardless of tissue status and location (Fig. 2A and B; Table 2). In both primary and 
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metastatic HNSCC samples, Fusobacteria levels were increased, whereas Firmicutes 

and Actinobacteria were decreased compared to the normal samples (Fig. 2B; Table 2). 

In addition, a significant increase in Proteobacteria was observed in the metastatic 

samples (Fig. 2B). These data demonstrate that the host tumor microenvironment 

(TME) supports or is influenced by an altered microbial community.    

Members of the genera Fusobacterium and Streptococcus are both highly 

abundant in the oral cavity (Dewhirst et al., 2010). In addition, Fusobacterium species 

are highly associated with periodontal disease (Signat et al., 2011). Fusobacterium 

nucleatum, a Gram-negative anaerobe, is well known to coaggregate with both aerobic 

and obligate anaerobic bacterial species (Bradshaw et al., 1998). This strong 

coaggregative behavior elicited by Fusobacterium species is likely to provide additional 

benefits to the interacting species, beyond assisting with adherence and facilitating 

multi-species biofilm formation (Kolenbrander et al., 2010). For example, F. nucleatum 

has the ability to adhere to and invade human gingival epithelial cells and help other 

bacteria to enter host cells by altering endothelial integrity (Fardini et al., 2011; Han et 

al., 2000). In solid tumors such as HNSCC, Fusobacterium species may play a role in 

providing protection for the tumor cells from the circulating immune cells. Gur and 

colleagues demonstrated that the presence of F. nucleatum inhibited tumor cell killing 

through inhibitory protein-receptor interactions with the immune cells (Gur et al., 2015). 

The bacteria and tumor relationship is multifactorial and studies are starting to reveal 

clues about the specific role of bacteria in cancer. With the significant enrichment of a 

Fusobacterial population in primary HNSCC, these bacteria may be i) providing tumor 

cell immunity, ii) shaping the microbial community structure, and iii) providing benefits to 
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the tumor cells by residing in the TME through bacteria-tumor cell interactions. 

Currently, studies are ongoing in our lab to further investigate the cellular mechanism of 

Fusobacterium species such as F. nucleatum in promoting HNSCC tumorigenesis. 

Microbial community structure in a habitat is determined by the available 

nutrients, environmental conditions and the available colonizing species (Kolenbrander 

et al., 2010). A hypoxic and pro-inflammatory TME may promote increases in 

abundance of certain bacterial populations, such as Fusobacteria and Bacteroidetes, 

while limiting the abundance of others like Firmicutes and Actinobacteria (Fig. 1A). In 

this study, an inverse relationship in the abundance of Fusobacterium and 

Streptococcus species was observed in the tumor tissues versus normal controls (Fig. 

3). Schmidt and colleagues also demonstrated that this relationship was present in oral 

swab samples collected from oral cancer patients (Schmidt et al., 2014). A significant 

reduction in the abundance of Streptococcus species and an increase in the abundance 

of Fusobacterium species was observed in oral cancer samples relative to the 

anatomically matched clinical normal samples (Schmidt et al., 2014). In contrast, Gong 

and colleagues reported that Streptococcus dominated over Fusobacterium in the 

mucosa samples of laryngeal SCC patients (Gong et al., 2013). Although these studies 

used different sample types (oral swabs, mucosal tissues, complex tissues) and 

different sequencing platforms (MiSeq, pyrosequencing, PGM), the inverse relationship 

relative to abundance between Fusobacterium and Streptococcus appears to remain 

robust.  

In this study, we hypothesized that HNSCC tissues have distinct microbial 

communities compared to their normal healthy counterparts. If this community change 
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occurs as the tissue transition from pre-malignant to malignant, these distinct microbial 

phenotypes might serve as risk indicators or predictors of disease status. For example, 

Treponema denticola is an oral Spirochaete that is normally found in low abundance in 

the oral cavity. In this study, the Treponema species were selectively increased in the 

primary tumor samples of the oral cavity (Fig. 2C). Frequent and preferential abundance 

of T. denticola has been associated with periodontal disease and esophageal tumor 

tissues (Holt et al., 2005; Narikiyo et al., 2004). The oral treponemes are known to be 

resistant to host antimicrobial peptides (ie. human β-defensins), which can enhance the  

initial adhesion of other bacterial species to form the multi-species biofilm structures 

(Sela, 2001). In addition, Treponema species are capable of inducing destruction of the 

host basement membrane structures through their innate proteases, which can further 

contribute to the tumor development and progression (Grenier et al., 1990).  

Over the years, identification of strong risk factors, such as tobacco and alcohol 

use, and HPV infection, have proven to be useful indicators for HNSCC. Smoking can 

alter the bacterial acquisition and colonization of oral biofilms, and alter the composition 

of bacterial communities in saliva and biofilms in the subgingival pockets (Bizzarro et 

al., 2013; Kumar et al., 2011). In addition, Thomas and colleagues reported that 

bacterial richness was significantly reduced as a consequence of tobacco or alcohol 

use.47 Recently, strong evidence has pointed to microbial dysbiosis as a causative or 

contributing factor to different types of cancer (Schwabe et al., 2013). Alternatively, this 

dysbiosis may be the result of tumor development and progression. According to our 

PCoA plot, although not statistically significant, a microbial transition from a healthy to 

‘HNSCC’ status can be seen with ellipsoids moving from a left to right direction along 
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the PCoA 1 axis (Fig. 4). The primary and metastatic HNSCC samples pooled together 

with a tighter clustering pattern compared to the normal samples, and the greatest 

clustering was noted within the metastatic samples (Fig. 4). Further research is 

warranted to more closely examine the potential relationship between microbial shifts 

and HNSCC, and the specific role of microbial dysbiosis in HNSCC.   

Recently, in a colon cancer mouse model system, RFA was successfully used to 

predict the behaviors of colon tumors. Specifically, Zackular and others predicted the 

final number of tumors based on the changes that occurred in the composition of the gut 

microbiota (Zackular et al., 2016). In this study, we utilized RFA to determine if we can 

predict the HNSCC (primary or metastatic) outcome by using the tissue microbiome 

data. Our results demonstrated that the accuracy was low in predicting primary and 

metastatic samples (19%, 37%), but greatly improved when we grouped the primary 

and metastatic samples into a single group as ‘unhealthy’ (76%; Table 2). The use of 

differential OTUs to predict the HNSCC outcome might not be sufficient, since the 

majority of the OTUs were shared between the normal and the HNSCC tissue types. In 

addition, unlike the Zackular study that generated predictions from a controlled animal 

model scenario, the current analysis was applied to human samples, which exhibit a 

greater level of heterogeneity, and therefore likely explain the lower predictive accuracy. 

However, it has been demonstrated that differential OTUs can successfully discriminate 

HNSCC tumor from control samples (Guerrero-Preston et al., 2016).  

The ideal clinical approach to improve the poor prognosis of HNSCC is through 

prevention and early detection and treatment. HNSCC is a complex multifactorial 

disease that is often only detected at advanced stages (Argiris et al., 2008). Hence, 
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understanding the changes that occur in the microbiome associated with HNSCC 

tumors may provide a foundation for discovering new risk factors for early detection and 

diagnosis. In addition, a variety of omics biomarkers may be useful as early diagnostic 

tools for HNSCC (Shin et al., 2016). In this study, we report on the alterations in 

microbial communities observed in primary and metastatic HNSCC tissues. Limitations 

of this study were i) relatively small sample size, ii) limited subject diversity and patient 

health history (specifically for tobacco usage, alcohol consumption and HPV status), 

and iii) heterogenic nature of microbial community based on tissue geography. In this 

study, we present findings that can serve as a key baseline data for future validation 

studies. If the altered microbiome is an important risk factor for HNSCC, it will be critical 

to understand its contributions along with those of other known risk factors. Although it 

is unclear whether the changes in the microbial composition cause or promote HNSCC 

or are the result of changes in the cellular activity of cancer cells, more comprehensive 

analyses involving tissue transcriptomics, proteomics, metabolomics and the 

microbiome will help better understand the role of host-microbial interactions in cancer.     
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Figure C.1. Alpha and Beta diversity of Normal, Primary and Metastatic Tissue 
Samples. (A) Alpha diversity based on the Shannon diversity index is shown for normal, 
primary and metastatic HNSCC tissue samples. (B) Beta diversity was measured by 
Euclidean distance for normal, primary and metastatic HNSCC tissue samples. 
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Figure C.2. Phylum and Genus Distribution of the Normal, Primary and Metastatic 
HNSCC Tissue Samples. (A) The relative distribution of phyla based on anatomical 
locations is shown for normal, primary and metastatic HNSCC tissue samples.  Matched 
samples were used for analysis. (B) The relative distribution of phyla based on tissue 
status. Matched and non-matched samples were pooled for analysis.  (C) The relative 
distribution of genus based on anatomical locations is shown for normal, primary and 
metastatic HNSCC tissue samples. Matched samples were used for analysis. (D) The 
relative distribution of genus based on tissue status. Matched and non-matched 
samples were pooled for analysis. Rothia, Peptoniphilus, Aggregatibacter were detected 
in the top 20 genera by site and status not by status alone (Panel C), whereas, 
Peptostreptococcus, Peptococcus and Helicobacter were in the top 20 genera by status 
alone but not by site and status (Panel D). 
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Figure C.3. Relative Abundance of Fusobacterium and Streptococcus Population 
by Sample Types. The relative abundance of Fusobacterium and Streptococcus is 
shown for matched and non-matched samples. Matched groups are divided into two 
groups, one containing (N, P) and other (N, P, M) samples. The non-matched group 
contains only the metastatic samples. Red bars represent the relative abundance of 
Fusobacterium and the blue bars represent the relative abundance of Streptococcus.     
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Figure C.4. Distinguishing Normal and HNSCC Samples. Principal Coordinate 
Analysis (PCoA) was conducted based on the log-transformed read counts of the 
OTUs. Matched samples (Normal, Primary, Metastatic) were used for the PCoA.  
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Subject	 Gender	 Age	 Location	 TNM*	 Grade	 Sample type**	
	

	 	 	 	 	 	 	 	
	

20	 M	 64	 Larynx, Lymph node	 T2N2bM0	 G3	 N, P, M	
	

21	 M	 53	 Larynx, Lymph node	 T2N2bM0	 G2	 N, P, M	
	

22	 M	 56	 Larynx, Lymph node	 T2N2M0	 G3	 N, P, M	
	

23	 M	 54	 Larynx, Lymph node	 T3N2M0	 G1	 N, P, M	
	

	 	 	 	 	 	 	
	

24	 M	 59	 Oral cavity, Lymph node	 T4aN1M0	 G3	 N, P, M	
	

25	 M	 63	 Laryngopharynx,	 T3N2M0	 G3	 N, P, M	 	

Lymph node	 	

	 	 	 	 	 	 	
	

26	 M	 71	 Larynx, Lymph node	 T4aN2bM0	 G2	 N, P, M	
	

27	 M	 60	 Pharynx, Lymph node	 T3N2bM0	 G3	 N, P, M	
	

28	 M	 53	 Larynx, Lymph node	 T4aN2cM0	 G3	 N, P, M	
	

29	 M	 61	 Larynx, Lymph node	 T3N2cM0	 G2	 N, P, M	
	

30	 M	 60	 Larynx, Lymph node	 T4aN2bM0	 G3	 N, P, M	
	

31	 M	 57	 Larynx, Lymph node	 T3N2aM0	 G2	 N, P, M	
	

32	 M	 54	 Larynx, Lymph node	 T4aN2cM0	 G1	 N, P, M	
	

33	 M	 56	 Larynx, Lymph node	 T4aN2bM0	 G3	 N, P, M	
	

2	 M	 62	 Oral cavity	 T3N0M0	 G2	 N, P, M	
	

9	 M	 57	 Oral cavity	 T4N0M0	 G1	 N, P	
	

10	 F	 83	 Oral cavity	 T3N0M0	 G3	 N, P	
	

11	 M	 59	 Larynx	 T3N0M0	 G2	 N, P	
	

12	 M	 50	 Larynx	 T3N0M0	 G3	 N, P	
	

	 	 	 	 	 	 	 	

13	 M	 70	 Larynx	 T3N0M0	 G2	 N, P	
	

14	 M	 59	 Larynx	 T3N0M0	 G1	 N, P	
	

15	 M	 67	 Larynx	 T1N2bM0	 G2	 N, P	
	

16	 M	 67	 Larynx	 T3N1M0	 G2	 N, P	
	

	 	 	 	 	 	 	 	

18	 M	 60	 Larynx	 T3N0M0	 G3	 N, P	
	

M1	 M	 51	 Lymph node	 T3N1M0	 G2	 M	
	

M2	 M	 68	 Lymph node	 Recurrent	 G2	 M	
	

M3	 M	 59	 Lymph node	 T3N1M0	 G2	 M	
	

M4	 M	 48	 Lymph node	 T2N1M0	 G1	 M	
	

M5	 M	 58	 Lymph node	 Recurrent	 N/A	 M	
	

M6	 M	 58	 Lymph node	 Recurrent	 N/A	 M	
	

M7	 M	 64	 Lymph node	 Recurrent	 N/A	 M	
	

M8	 M	 62	 Lymph node	 Recurrent	 N/A	 M	
	

M9	 M	 61	 Lymph node	 T3N2cM0	 G2	 M	
	

M10	 F	 61	 Lymph node	 T2N2bM0	 G1	 M	
	

 
Table C.1. Human Subject Information. All head and neck tumor samples examined 
in the study were clinically diagnosed and confirmed as squamous cell carcinoma. 
The numbers in the ‘Subject’ column are for sample identification without any special 
meaning.  
*TNM – TNM classification of malignant tumors is a cancer staging notation system; T 
describes the size of the original tumor and whether it has invaded nearby tissue; N 
describes the extent of lymph node involvement; M describes the presence of distant 
metastasis.24 
**N – normal; P – primary tumor; M – metastatic tumor 
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	 	 	 	 Normal	 Normal	
Phylum	 Normal	 Normal	 Primary	 Vs.	 Vs.	

	 Vs.	 Vs.	 Vs.	 Primary	 Primary	
	 Primary	 Metastatic	 Metastatic	 (Oral Cavity)	 (Larynx-	
	 	 	 	 	 Pharynx)	

[Thermi]	 .0672	 .0338*	 .7808	 N/Aa	 .0640	
Actinobacteria	 .0045*	 .1290	 .1134	 .2000	 .0094*	
Bacteroidetes	 .9593	 .0459*	 .0298*	 .6857	 .8831	
Firmicutes	 .0021*	 .0138*	 .2666	 .1143	 .0042*	
Fusobacteria	 .0337*	 .1086	 .6351	 .4857	 .0634	
Proteobacteria	 .3514	 .1345	 .0372*	 .3429	 .1738	
Spirochaetes	 .4552	 .1334	 .3221	 .4857	 .2423	
SR1	 .0655	 .0044*	 .4072	 1.000	 .0385*	
Synergistetes	 .1662	 .0260*	 .2746	 .8857	 .0923	
Tenericutes	 .4258	 .0225*	 .1443	 .8857	 .4886	

Genus	 	 	 	 	 	
	 	 	 	 	 	

[Prevotella]	 .6903	 .9580	 .7121	 .8857	 .5648	
Actinomyces	 .0271	 .8398	 .0527	 .2000	 .0375	
Aggregatibacterb	 .8930	 .6153	 .4999	 .3094	 .9675	
Bacteroides	 .1904	 .0017	 .0345	 .8857	 .1478	
Campylobacter	 .4803	 .0077	 .3922	 .0571	 .2012	
Capnocytophaga	 .1472	 .0102	 .1474	 .8857	 .1022	
Fusobacterium	 .0533	 .0022	 .2951	 .4857	 .0965	
Helicobacterc	 .6609	 .8574	 .5445	 .4533	 .4989	
Lactobacillus	 .0401	 .7738	 .1032	 .4857	 .0498	
Neisseria	 .0926	 .0683	 .8726	 .3429	 .2034	
Parvimonas	 .0302	 .4795	 .0535	 .6857	 .0283	
Peptococcusc	 .8524	 .3385	 .2519	 .4857	 .9567	
Peptoniphilusb	 .0832	 .8555	 .0700	 .8845	 .0285	
Peptostreptococcusc	 .2199	 .5198	 .0866	 .4857	 .2977	
Porphyromonas	 .1253	 .0508	 .6053	 1.000	 .0634	
Prevotella	 .9756	 .7438	 .8744	 .3429	 .8410	
Pseudomonas	 .9753	 .4628	 .4125	 .6857	 .8181	
Rothiab	 .0003	 .0186	 .3312	 .4857	 .0002	
Staphylococcus	 .3514	 .1039	 .0094	 .4857	 .1572	
Streptococcus	 .0002	 .1521	 .0088	 .2000	 .0014	
Treponema	 .4188	 .2130	 .5160	 .4857	 .2211	
Veillonella	 .0182	 .0719	 1.000	 .4857	 .0210	

 
Table C.2. The p-value matrix indicates the differential abundance of each phylum 
between tissue samples by status. The average phylum abundance for each tissue 
sample by status compared to average phylum abundance for each status (normal, 
primary and metastatic) is shown. Differences in abundance were examined using the 
Mann-Whitney U-test in R. Boldface* indicates a p-value < .05. 
a Indicates no reads belonging to the phylum [Thermi] in both comparison groups. 
b Top 20 genera when stratified by site and status, but not by status alone. 
c Top 20 genera when stratified by status alone, but not by site and status. 
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48 Primary Samples	 43 Metastatic Samples	 49 Normal Samples	 140 Total Samples	

	

	 	 	 	
	

9(19%) predicted	 16(37%) predicted correctly	 29(59%) predicted	 54 (39%) predicted	
	

correctly	 	 correctly	 correctly	
	

21(44%) misclassified as	 23(53%) misclassified as	 14(29%) misclassified as	 	
	

metastatic	 primary	 primary	 86 (61%) misclassified	 	

18(37%) misclassified as	 4(10%) misclassified  as	 6(12%) misclassified as	 	

	
	

normal	 normal	 metastatic	 	
	

91 Unhealthy Samples	 49 Normal Samples	 140 Total Samples	
	

	 	 	 	
	

69 (76%) predicted correctly	 29 (59%) predicted	 98 (70%) predicted	
	

correctly	 correctly	 	

	 	
	

22 (24%) misclassified as Normal	 20 (41%) misclassified as	 42 (30%) misclassified	 	

unhealthy	 	

	 	 	
	

 

Table C.3. Random forest analysis (RFA) was conducted to predict the tissue 
status by OTUs. Matched samples (Normal, Primary, Metastatic) were examined to 
assess the accuracy of using microbial diversity to predict normal and HNSCC tissue 
conditions.  
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