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Abstract 

 

The complexity of vocal communication varies widely across taxa – from humans who 

can create an infinite repertoire of sound combinations to some non-human species that 

produce only a few discrete sounds. A growing body of research is aimed at 

understanding the origins of ‘vocal complexity’. And yet, we still understand little about 

the evolutionary processes that led to, and the selective advantages of engaging in, 

complex vocal behaviors. I contribute to this body of research by examining the 

phylogeny and function of vocal complexity in wild geladas (Theropithecus gelada), a 

primate known for its capacity to combine a suite of discrete sound types into varied 

sequences. First, I investigate the phylogeny of vocal complexity by comparing gelada 

vocal communication with that of their close baboon relatives and with humans. 

Comparisons of vocal repertoires reveal that geladas – specifically the males – produce 

a suite of unique or ‘derived’ call types that results in a more diversified vocal repertoire 

than baboons. Also, comparisons of acoustic properties reveal that geladas produce 

vocalizations with greater spectro-temporal modulation, a feature shared with human 

speech, than baboons. Additionally, I show that the same organizational principle – 

Menzerath’s law – underpins the structure of gelada vocal sequences (i.e., 

combinations of derived and homologous call types) and human sentences. Second, I 

investigate the function of vocal complexity by examining the perception of male 

complex vocal sequences (i.e., those with more derived call types), the contexts in 
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which they are produced, and how their production differs across individuals. A 

playback experiment shows that female geladas perceive ‘complex’ and ‘simple’ vocal 

sequences as being different. Then, two observational studies show that male 

production of complex vocal sequences mediates their affiliative interactions with 

females, both during neutral periods and periods of uncertainty (e.g., following conflicts). 

Finally, I find evidence that vocal complexity can act as a signal of male ‘quality’, in that 

more dominant males exhibit higher levels of vocal complexity than their subordinate 

counterparts. Collectively, the work presented in this dissertation presents an integrative 

investigation of the ultimate origins of complex communication systems, and in the 

process, it highlights the critical importance of approaching the study of complexity from 

several scientific perspectives.
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Chapter 1:  

Introduction 

 

‘Complexity’ is a feature that has evolved in a wide range of systems – from the 

organization of sub-atomic particles to the organization of entire ecosystems (S. E. 

Page, 2010; Wolfram, 2002). While difficult to directly quantify, complexity is thought to 

hover between randomness and predictability and characterizes systems with emergent 

properties that are greater than the sum of its parts (Kane & Higham, 2015; Lloyd & 

Pagels, 1988; S. E. Page, 2010). One of the most impressive complex systems is that 

of communication signals like spoken human language (Fitch, 2000, 2010; Shannon, 

1948). An emergent property of language is that we can create an infinite array of 

meanings with an extensive, yet finite, repertoire of units like phonemes and words 

(Hauser, Chomsky, & Fitch, 2002; Pinker & Jackendoff, 2005). This is possible because 

of phonological, syntactical, semantic and pragmatic components (Fitch, 2010). In other 

words, humans can: (a) produce an extensive range of discrete sounds (phonology), (b) 

arrange these sounds into rule-governed sequences (syntax), (c) encode meaning into 

different combinations of sounds (semantics), and (d) modify these meanings based on 

context (pragmatics). There is an immense amount of interest in understanding the 

origins of complex vocal communication systems like spoken human language. Despite 

this great interest, however, why these systems have evolved remains a mystery 

(Hauser et al., 2014).  
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One solution to understanding the evolution of complex communication systems 

is to expand the comparative dataset from which we can draw inferences (Fitch, 2000; 

Hauser et al., 2014). Expanding our comparative dataset is also important because then 

we can better apply an ultimate perspective to the study of these complex vocal 

behaviors (Tinbergen, 1963). The ultimate perspective contains two components, 

phylogeny and function. “Phylogeny” refers to the evolutionary history of a behavior. 

The types of questions asked when exploring the phylogeny of a behavior include: (a) 

How has a behavior diverged between closely related species and converged amongst 

distantly related species? (b) What types of behaviors are shared or homologous across 

species and which are more recently evolved, or derived? “Function” refers to the 

adaptive value of a behavior. The types of questions asked when exploring the function 

of a behavior include: (a) What are the costs and benefits to using a behavior? and (b) 

What are the potential fitness consequences of a behavior? 

In this dissertation, I describe a series of studies investigating the phylogeny and 

function of vocal complexity, using geladas (Theropithecus gelada) as a study model. 

Since captive and wild studies first began on them in the 1970s, geladas have been 

identified as a species with potentially unique vocal abilities (Aich, Moos-Heilen, & 

Zimmermann, 1990; Aiello & Dunbar, 1993; Dunbar & Dunbar, 1975; Richman, 1976, 

1987). Specifically, geladas were shown to produce a large repertoire of sounds at 

incredibly high rates, and these sounds appeared to contain speech-like acoustic 

features (e.g., plosives, fricatives). Since the 1990s, little systematic work has followed 

up on these earlier observations. Meanwhile, there has been a wealth of literature 

published on the vocal abilities of the gelada’s closely related baboon relatives (e.g., 
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(Rendall, Seyfarth, Cheney, & Owren, 1999)). In Chapters 2-4, I investigate the 

phylogeny of ‘complexity’ in gelada vocal communication by making comparisons 

between geladas and baboons, as well as between geladas and humans. Then, in 

Chapters 5-8, I investigate the functions of vocal complexity in gelada society. 

 

Phylogeny of vocal complexity 

Several comparative studies have investigated the components of vocal 

communication that have changed throughout recent evolutionary history in non-human 

taxa (Blumstein & Armitage, 1997; Krams, Krama, Freeberg, Kullberg, & Lucas, 2012; 

McComb & Semple, 2005; Pollard & Blumstein, 2012). One of the primary features of 

communication that has become more ‘complex’ in some species over others is vocal 

repertoire size, or the number of discrete sound types produced by a species. One of 

the explanations for this variation in vocal complexity comes from the ‘social complexity 

hypothesis’, which states that increases in some aspect of sociality – such as group size 

– promotes the need for a more diversified vocal communication system (Freeberg, 

2006; Freeberg, Ord, & Dunbar, 2012). One of the prevailing questions that comes out 

of this comparative work is what parts of the vocal repertoire have diversified? This 

distinction matters because the answer results in different conclusions regarding how 

social complexity may co-evolve with vocal complexity. If, for example, the number of 

alarm calls are increased in species with large group sizes, then it would suggest that 

the diversified vocal repertoire is an outcome of greater predator threat that may come 

along with a living in a larger group. On the other hand, if the number of contact calls 

are increased in species with large group size, then it would suggest that more call 
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types might function to help individuals coordinate their movements in the environment. 

To determine which components of vocal repertoires are diversified, it is important to 

compare closely related species. This maximizes the ability to figure out which 

vocalizations are homologous or conserved across taxa and which are unique or 

derived in a species. This line of thinking is what set up the rationale for Chapter 2.  

In Chapter 2 (Gustison, le Roux, & Bergman, 2012), I address the questions: (a) 

What components of primate vocal repertoires have diversified and (b) What are the 

implications for the social complexity hypothesis? I begin by making a qualitative 

exploration of the variation in vocal repertoires across a range of primate and non-

primate taxa by separating vocal repertoires into six contextual based categories. The 

comparisons suggest that vocal repertoires have diversified in a modular way, with 

specific parts of the vocal repertoires diversified depending on the species. Second, I 

compare the vocal repertoire of geladas to baboons, a taxonomic group thought to have 

diverged from geladas only 4 mya (S. L. Page, Chiu, & Goodman, 1999). I compare 

these species because they are closely related and they differ greatly in standard socal 

complexity measures – geladas live in larger groups and spend more time socializing 

than do baboons. The gelada-baboon comparison shows that most of their vocal 

repertoires are shared. However, a suite of call types appears to be unique to gelada 

males. The male derived call types are relatively low-amplitude and tonal calls that 

appeared to fit in the same contextual category as ‘exhaled grunts’, a call type shared 

between geladas and other Papionins. These data imply that the gelada and baboon 

vocal repertoires differ because geladas evolved a diversified suite of ‘contact call’ 

vocalizations used in affiliative social interactions. I make some predictions about the 
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functions of this subset of vocalizations and the resulting implications for the social 

complexity hypothesis. One of the limitations of this study, however, was that we were 

left with uncertainty about whether gelada vocalizations were also more acoustically 

complex than baboon vocalizations. Is it just the case that geladas make more types of 

vocalizations or are these vocalizations also more difficult to produce? This gap in 

knowledge is what set up the rationale for Chapter 3.  

In Chapter 3 (Gustison & Bergman, n.d.), I address the questions: (a) What 

spectral and temporal properties of gelada vocalizations have diverged from baboons? 

(b) Do the spectro-temporal properties of gelada vocalizations show any similarities with 

human speech? Currently, there are two main hypotheses on the vocal capabilities of 

non-human primates (Fitch, de Boer, Mathur, & Ghazanfar, 2016). The prevailing view – 

the “peripheral hypothesis” – states that non-human primates lack the anatomical ability 

to produce coordinated movements of the vocal tract that could produce modulated 

speech-like sounds. The alternative view – the “neural hypothesis” – states that non-

human primates have the anatomical ability to produce complex sounds but lack the 

neural architecture needed to produce the sophisticated movements. In this chapter, I 

explore the capacity of geladas to modulate the spectrum based (e.g., fundamental 

frequency and formant bandwidths) and temporal based (i.e., cyclic patterns in wobbles) 

properties of their calls. First, I compare the exhaled grunts of geladas and baboons. 

Then, I compare gelada male exhaled grunts to the ‘derived’ call types described in 

Chapter 2. Overall, I found that gelada grunts show higher levels of vocal modulation 

than baboons, and this degree of modulation was even more extreme in some of the 
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derived call types (exhaled moans, wobbles and yawns). I make the argument that the 

data provide further support for the neural hypothesis. 

Chapters 2 and 3 focus on describing ‘vocal complexity’ in terms of repertoire 

size. Another feature of communication that seems to have become more ‘complex’ in 

some species over others is the ability to combine sounds together into variable 

sequences (Kershenbaum et al., 2014). Generally, animals rarely combine more than a 

few sounds together and for those that do, these sequences tend to be stereotyped. 

This means that the same sound or same pattern is repeated across vocal utterances. It 

is actually quite rare for animals to produce non-stereotyped sound combinations (for 

some exceptions see Kershenbaum, Ilany, Blaustein, & Geffen, 2012; Okanoya, 2004). 

Upon revisiting the older literature on gelada vocal behavior (Richman, 1987) and our 

database of acoustic recordings, I realized that male geladas were not producing 

exhaled grunts and derived call types on separate occasions, rather, they were 

combining these different sounds into varied sequences ranging anywhere from a single 

call to over 20 calls. By comparison, baboons rarely combine more than six grunts 

together, and they do not combine multiple call types (Rendall et al., 1999). These 

observations led me to ask whether similar organizing principles predict the structure of 

gelada and human communication systems, and this is the rationale for Chapter 4. 

In Chapter 4 (Gustison, Semple, Ferrer-i-Cancho, & Bergman, 2016), I test the 

hypothesis that organizing principles of human language – specifically ‘Menzerath’s 

Law’ – underpin the structure of gelada call sequences. Menzerath’s law predicts that 

constituent size (e.g., call duration) is negatively associated with construct size (e.g., 

sequence size in number of calls). I found evidence for this organizing principle in 
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gelada male call sequences in that longer sequences tended to be composed of 

shortened calls (e.g., exhaled and inhaled grunts) and shorter sequences tended to 

contain prolonged calls (e.g., exhaled moans, wobbles and yawns). Taken together, 

these findings suggest that specific organizing principles may dictate how taxa evolved 

complex forms of combinatorial vocal systems. In addition, the data show that when 

describing ‘vocal complexity’ in geladas, we must look at the level of vocal sequences 

and not just individual vocalizations. 

 

Function of vocal complexity 

 The findings of Chapters 2-4 are helpful for understanding the divergent and 

convergent evolutionary processes underlying gelada vocal complexity, but we still lack 

an understanding of the adaptive value of vocal complexity. In other words, how does 

vocal complexity benefit male geladas? I seek to answer this overarching question in 

Chapters 5-8. My first step in tackling this broad question was to better understand the 

receiver’s point of view. Communication systems are ‘2-way’ in that they involve the 

production of a message from a sender and the perception of that message from a 

receiver (Bradbury & Vehrencamp, 1998; Shannon, 1948). Although it is easy for 

human scientists to categorize vocal sequences as ‘complex’ or not, this does not 

guarantee that this categorization has ecological validity. To other geladas, derived call 

types may be perceived as redundant with exhaled grunts. On the other hand, derived 

call types may modify the ‘meaning’ of vocal sequences in some way. If the makeup of 

vocal sequences matters, then we would expect that receivers respond differently to 
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sequences based on their composition. This line of thinking is what set up the rationale 

for Chapter 5. 

 In Chapter 5 (Gustison & Bergman, 2016), I test the hypothesis that female 

geladas differentially respond to gelada male vocal sequences based on whether or not 

they contain one of the three most acoustically ‘elaborate’ derived call types – exhaled 

moans, wobbles and vocal yawns (hereto called the “derived call types”). We focused 

on females because they appear to be the intended receivers for these vocal 

sequences. This is because gelada social systems are harem-like and sequences are 

produced almost exclusively by males. To test whether females respond differently to 

sequences based on their composition, I used an experimental playback design in 

which I played male vocal sequences to females and monitored their acute responses 

to the sounds. Specifically, I looked at orientation behavior (i.e., looking time) and 

proximity behavior (i.e., time spent close to the speaker). Females looked longer at and 

spent more time in proximity to playbacks of sequences that contained one of the 

derived call types. The findings support the hypothesis that females perceive derived 

call vocal sequences differently from grunt-only sequences. These findings also open 

the door to a suite of follow up questions regarding the contexts in which complex 

sequences are produced. In Chapter 2, I proposed that the evolution of derived call 

types in geladas may have something to do with ‘social complexity’. I follow up on this 

hypothesis in Chapter 6. 

 In Chapter 6, I test the hypothesis that vocal complexity has specific functions 

related to measures of social complexity in geladas – specifically large group size and 

high levels of gregariousness. Challenges faced by species living in large groups 
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include high levels of conspecific noise and difficulty maintaining visual/vocal contact 

with social partners. Highly gregarious species are faced with the challenge of needing 

effective strategies to form and maintain social bonds. In this chapter, I explore whether 

sequence production and complexity are predicted by features of the social environment 

(e.g., level of conspecific noise) or types of social interactions (e.g., approaches and 

grooming). I also investigate whether sequences are directed at females and whether 

producing a sequence leads to affiliative interactions with females. The data support the 

hypothesis that social complexity may lead to vocal complexity in geladas. Specifically, 

more complex sequences were produced by males during noisy conditions and during a 

wide range of affiliative interactions. Vocal sequences were directed at females and the 

use of more derived call types resulted in female investment in the social bond via 

grooming behavior. Taken together, these findings largely support the predictions made 

in chapter 2 (Gustison et al., 2012), that the need to maintain bonds within a noisy 

backdrop of conspecific vocalizations may favor greater vocal complexity. One of the 

limitations of this chapter is that the behavioral observations typically occurred during 

relatively stable periods in the male-female relationships. If vocal complexity functions to 

facilitate and maintain social relationships, then this vocal strategy should be particularly 

important when the stability of these relationships is at stake. This remaining question 

was the rationale for carrying out the study in Chapter 7. 

 In Chapter 7, I test the hypothesis that vocal complexity is the strategy that male 

geladas prefer to engage in following conflicts with other members of their society. 

There is a wealth of evidence to suggest that non-human animals engage in tactile-

based strategies (e.g., grooming) during reconciliation and consolation interactions 
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following conflicts (Aureli, 2002; McFarland & Majolo, 2013). Yet, as outlined in the 

Chapter, there are several reasons why vocal strategies may be preferred. For 

example, individuals that need to maintain social bonds with several partners (e.g., 

gelada males) would benefit from strategies that reach several individuals at once rather 

than one at a time (like in grooming). To test this hypothesis, I quantified the non-vocal 

and vocal behaviors that occurred following conflicts. Then, I used a pseudo-

experimental design to track male vocal behavior following conflicts and during control 

periods. I found that males preferentially engage in vocal over tactile post-conflict 

strategies, while females were the opposite. I also found that male vocal sequences 

following conflicts were longer and more complex following conflicts than during control 

periods. Moreover, more complex sequences were more predictive of subsequent 

female investment in the relationship (female to male grooming).  

Taken together, the findings of Chapters 5, 6 and 7 support the hypothesis that 

gelada male vocal complexity is particularly important in maintaining social bonds with 

females. The conclusions of these studies also fit more broadly in the discourse on 

sexual selection of extravagant traits (Johnstone, 1995; Zahavi, 1975). The findings of 

these chapters provide good evidence to suggest that gelada male vocal complexity 

evolved through inter-sexual selection. For an extravagant trait to be selected for in this 

capacity, however, it must be an honest advertisement of a male’s quality. Without this 

piece of the puzzle, it is difficult to conclude that inter-sexual selection could promote an 

extravagant behavior such as gelada vocal complexity. This missing puzzle piece was 

the rationale for Chapter 8. 
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 In Chapter 8, I test the hypothesis that vocal complexity mirrors male quality in 

geladas. First, I compare sequence production and complexity in dominant (leader) 

males and subordinate (follower) males. Second, I investigate changes in sequence 

production and complexity throughout leader male tenure, with the assumption that new 

leaders are higher quality than older leaders. Third, I investigate whether sequence 

production and complexity in the beginning of a leader’s tenure predicts direct and 

indirect measures of fitness (e.g., units size, tenure length and number of births). I found 

that higher quality males produce more complex sequences than lower quality males, 

but no evidence that there were clear associations between vocal complexity and 

fitness measures. Overall, the findings support the hypothesis that vocal complexity is 

an honest signal of male quality. Combined with chapters 5-7, there is evidence to 

suggest that inter-sexual selection drove the evolution of vocal complexity in geladas. 

 Taken together, the studies in this dissertation reveal several answers regarding 

the phylogeny and function of vocal complexity in geladas. In Chapter 9, I summarize 

the implications of these answers and discuss remaining lines of inquiry to be tackled in 

future research. 
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Chapter 2: 

Derived vocalizations of geladas (Theropithecus gelada) and the evolution of 

vocal complexity in primates 

 

Abstract 

Primates are intensely social and exhibit extreme variation in social structure, making 

them particularly well suited for uncovering evolutionary connections between sociality 

and vocal complexity. Although comparative studies find a correlation between social 

and vocal complexity, the function of large vocal repertoires in more complex societies 

remains unclear. We compared the vocal complexity found in primates to both 

mammals in general and human language in particular and found that non-human 

primates are not unusual in the complexity of their vocal repertoires. To better 

understand the function of vocal complexity within primates, we compared two closely-

related primates (chacma baboons and geladas) that differ in their ecology and social 

structures. A key difference is that gelada males form long-term bonds with the 2-12 

females in their harem-like reproductive unit, while chacma males primarily form 

temporary consortships with females. We identified homologous and non-homologous 

calls and related the use of the derived non-homologous calls to specific social 

situations. We found that the socially-complex (but ecologically-simple) geladas have 

larger vocal repertoires. Derived vocalizations of geladas were primarily used by leader 

males in affiliative interactions with ‘their’ females. The derived calls were frequently 
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used following fights within the unit suggesting that maintaining cross-sex bonds within 

a reproductive unit contributed to this instance of evolved vocal complexity. Thus, our 

comparison highlights the utility of using closely-related species to better understand the 

function of vocal complexity. 

 

Introduction 

The complexity of vocal communication varies enormously across species, from 

humans with an endless repertoire of sound combinations, to species of mongoose that 

produce only three different sounds [1]. As we continue to document the diversity that 

exists in nature, we are increasingly able to use comparative studies to identify the 

selective pressures responsible for increasing vocal complexity. One of the most salient 

findings that has emerged is that high levels of sociality are found in combination with a 

high degree of vocal complexity (e.g. [2–5]). For example, ground-dwelling sciurid 

species with socially complex groups (e.g., number of age/sex classes) produce more 

acoustically distinct alarm calls than species with fewer age/sex classes [2]. Although 

non-primate taxa can be excellent study subjects for investigating the evolution of vocal 

complexity in general (e.g., rodents: [6]; bats [5]; primates, as our closest relatives, can 

provide insight into the evolution of the most complex vocal system—our own [7,8]). 

Moreover, primates exhibit extreme variation in social structure, making them 

particularly well suited for uncovering evolutionary connections between sociality and 

vocal complexity.  

Facets of primates’ sociality distinguish them from most other mammals. First, 

primates exhibit an unusual degree of sociality that some have proposed has resulted in 
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a kind of ‘Machiavellian intelligence’ [9,10] in that individuals are capable of forming 

coalitions [11], deceiving others [12], and maintaining strong, long-term social bonds 

with both kin and non-kin [13–15]. Second, primates are unusual among mammals in 

that the size of their groups is positively associated with some aspects of brain size 

[10,13]. One intriguing explanation for this relationship is that primates require highly 

sophisticated cognitive abilities for keeping track of and maintaining complex networks 

of social relationships [9,16,17] – particularly considering recent data that indicate such 

social networks actually enhance individuals’ fitness [18,19]. Offering further support, 

the strong positive relationship between group size, time spent grooming and diversity 

of vocal repertoire in primates [20] suggests that more vocalisations may indeed be 

necessary for navigating the complex network of social relationships in primate 

societies. 

In this review, we first focus on the evolution of vocal complexity in primates, and 

then propose a novel approach for studying the function of vocal complexity. Although a 

species’ repertoire size provides one useful comparative metric, it is a composite 

measure with no information about the function of the individual calls that comprise it. 

Here, we propose that the function of vocal complexity can be understood by comparing 

vocalisations among closely-related species with differing repertoire sizes to identify 

species-specific derived calls. In such cases, the function of greater vocal complexity 

equates to the function of the derived calls. As an example of how this approach can 

provide insights about the evolution of complexity, we compare the vocalisations of 

geladas (Theropithecus gelada) and chacma baboons (Papio ursinus) – two closely-
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related Old World monkeys with overlapping vocal repertoires but very different 

ecological and social structures.  

 

Vocal repertoires of primates and other mammals 

(a) Repertoire size as a measure of complexity 

Mammalian vocal communication is typically described as being made up of 

discrete, functional units, or “calls” [21–23]. Based on these functional units, vocal 

complexity is quantified in terms of (a) number of discrete vocalisations in the repertoire 

(repertoire size) (e.g., [2,20,24,25], or, less commonly, (b) degree of individuality within 

discrete calls [5,6,26]). Other ways of assessing vocal complexity include quantifying 

syllable complexity, amount of information contained within a call [5], or the number of 

calls within a specific category of vocalizations (alarm calls: [2]). 

Several mammalian species produce call variants, or graded calls, which vary 

slightly in acoustic properties [27–31], such as fundamental frequency [28], ‘pitch’ [29] 

or duration [24] and, as a result, have different meanings to receivers [29,32–34]. For 

species with small, fixed vocal repertoires, these subtle alterations may help to extend 

the flexibility of an otherwise limited repertoire [7]. However, identifying graded calls 

requires detailed acoustic and behavioural analyses and data of comparable detail are 

rarely available for multiple species. Therefore, as has become the convention in vocal 

studies [2,20,24,25], we refer to repertoire size as the number of discrete calls that 

animals in a population or species produce.   

 

(b) Vocalisation types 
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Vocalisations are produced in many different contexts. Some are produced in 

response to external stimuli such as predators and food. We call these ‘allospecific’ 

vocalizations (Table 2.1) and include alarm calls and food calls. Alarm calls can 

communicate the degree of risk involved [2,24], indicate predator type (i.e., aerial or 

terrestrial) [35,36], or combine information on risk and predator type (e.g., [37]). 

Primates, in particular, are known to produce alarm vocalizations specific to predator-

type, eliciting appropriate responses in receivers [38–40]. Notably, the complexity of 

primate alarm calls is generally attributed to a complex physical (rather than social) 

environment [41]. If different predators have different modes of hunting, primate prey 

should have evolved different predator responses to each. By contrast, the complexity 

of alarm calls in a small social carnivore, the meerkat (Suricata suricatta), has been 

attributed to the need for social coordination [4]. Relative to a sympatric-living herbivore 

species like Cape ground squirrels (Xerus inauris), meerkats travel farther from 

underground shelters in their open habitat to find living prey, and they depend on 

‘sentinels’ to emit referential alarm calls that vary acoustically based on predator type 

[4]. This strategy allows individual meerkats to decrease time spent being vigilant and 

increase foraging efficiency.  

The other allospecific vocalisations, food calls, are less variable than alarm calls. 

Only a handful of studies have demonstrated that variation in calls are related to the 

quantity or quality of the food source (e.g., [42]); but most studies report a lack of 

variation (e.g., [43]). Although alarm and food calls differ substantially in degree of 

complexity, they share two features: (1) they are elicited by non-conspecifics, and (2) 

they are the only two contexts where proto-syntax (i.e., the combination of call elements 
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to form new meanings) has been reported, specifically in primates (food calls [44]; alarm 

calls [45]).  

The vast majority of mammalian vocalizations are emitted during social 

interactions with conspecifics, under conditions of varying motivational states (e.g., 

mating, aggression, fear). We call these ‘social’ vocalisations and divide them into two 

main classes – calls that function over a long distance (‘loud calls’) and calls produced 

in close-range social interactions (‘close-range calls’, Table 2.1). Loud calls may 

function to attract or defend mating partners [46], defend a territory or food source 

through maintenance of intergroup spacing [47,48], or re-establish contact with group 

members that are out of sight (‘separation calls’) [49].  

Close-range calls are produced in agonistic, neutral, or affiliative contexts. Calls 

produced in agonistic contexts may function to assess or warn rivals, such as contest 

calls that advertise fitness [48] or threat calls that maintain a dominance hierarchy 

[50,51]. Harassed individuals, on the other hand, may produce distress calls, which 

likely function to appease the aggressor and attract coalition partners [52]. The specific 

function of some close-range calls made in strictly neutral or affiliative social situations 

has been more difficult to ascertain and little is known about them besides the contexts 

in which they are produced [7]. Copulation calls, for example, do not appear to have the 

same function across different species and may even serve no function in some 

instances [53,54]. Other close-range calls are ascribed an affiliative function, often 

described as ‘contact calls’ (e.g., in raccoons (Procyon lotor) [51]; capuchins (Cebus 

capucinus) [55]). Contact calls can be produced in various ‘friendly’ contexts, such as 

during post-conflict reconciliation interactions [56] and prior to friendly behaviour like 
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allogrooming [52,57,58]. These close-range contact calls are also produced in more 

‘neutral’ behavioural states like foraging and resting and therefore could be involved in 

the maintenance of group cohesion and inter-individual spacing [59].  

Primate vocal repertoires are similar to those of other terrestrial mammals (Table 

2.1). Although primate repertoires may be slightly larger (on average), there is 

considerable overlap between primates and other taxa, both in total repertoire size and 

within each category of calls. Species with large repertoires relative to other species in 

their Order generally produce a large proportion of calls in just one or two categories of 

calls (e.g., long distance and competitive calls – Callicebus moloch [49]; distress and 

contact calls – Pan troglodytes [50]; allospecific and contact calls – Suricata suricatta 

[37,60]). This suggests that specific needs related to one domain (e.g., competition or 

affiliation) might drive the development of large repertoires, rather than an overall 

increase in repertoire across all categories. Within primates, no clear taxonomic pattern 

has emerged with respect to repertoire size. Each family of primates (including great 

apes) contains species with large and small repertoires. Surprisingly, despite the social 

complexity of primates, there is no consistent trend for primates to have more social 

calls than other mammals, which suggests that simple comparisons of numbers of calls 

are of limited utility.  

 

(c) Function of larger repertoires 

One of the primary hypotheses put forward to explain large, complex vocal 

repertoires is that social complexity creates the need for more vocalisations [21,61–64]. 

Comparative studies have found a positive relationship between social complexity and 
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communicative complexity, providing support for this hypothesis [2,3,5,20]. In sciurids, 

the alarm call repertoire size increases with the number of demographic ‘roles’ [2]. 

Additionally, in primates, an increase in total vocal repertoire size was associated with 

both larger groups and increases in time spent grooming – a measure of social 

cohesion [20]. These studies have been important for pinpointing aspects of sociality 

(i.e., large sociable groups, various demographic roles) that may drive the evolution of 

large repertoires. However, vocal repertoires of different species may be ‘large’ for 

different reasons (Table 2.1), and more work is clearly needed to understand the 

selective pressures underlying expansions in repertoires.  

 

Vocal complexity of humans and other primates 

Relative to humans, nonhuman primates (henceforth referred to as ‘primates’) 

exhibit surprisingly simplistic vocal production [65,66]. (Note that a focus on vocal 

production ignores the more sophisticated language-like abilities that primates exhibit in 

terms of vocal perception [67]). According to the ‘source-filter-theory’ first developed to 

describe human speech [68,69], vocal production entails two components: the ‘source’ 

of a vocalisation (i.e., lungs and the vocal folds) and the means by which a vocalisation 

is shaped, or ‘filtered’, in the vocal cavities (i.e., vocal tract). Speech relies heavily on 

the control of ‘formants’ or vocal resonances (a product of vocal tract morphology) to 

produce distinct syllables and hence encode information [69]. Primates also produce 

formants but the formant structure (i.e., distance between sound frequency ‘peaks and 

valleys’ [69]) mainly encodes limited information such as individual identity [70,71] and 

body size [72–74]. Even more elaborate are humans’ filtering tools, the descended 
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larynx and tongue [69]. In most primates and other mammals, the tongue remains flat 

inside of the mouth. By contrast, humans have remarkable control over the location and 

shape of the tongue [69,75], giving humans unmatched plasticity in sound invention 

[76]. This unique vocal plasticity allows us to imitate complex sounds and invent novel 

sounds, a feat shared with some birds and cetaceans [77,78] but not with other 

primates [65,66]. 

Despite having a limited ability to imitate and create new sounds, there are 

features of primate vocal production that show similarities to human language. For 

instance, some primates exhibit vocal dialects – geographic variation in the acoustic 

structure of certain vocalizations [79–81]. Calls are recognizably homologous between 

different populations of the same species, but show acoustic distinctions related to 

variation in habitat and the duration of isolation, similar to patterns in human linguistic 

diversity (e.g., [82]). Additionally, primates such as chimpanzees (Pan troglodytes) 

[83,84], blue monkeys (Cercopithecus mitis) [85] and capuchins (Cebus apella) [86,87] 

produce or suppress vocalizations depending on the composition of the conspecific 

audience.  

Primate communication also resembles the semantic content of human 

language. Several primates exhibit potentially ‘referential’ allospecific calls that are 

elicited by external stimuli (Table 2.1). In some cases, the referential nature of these 

calls has been supported with playback experiments. For example, each vervet monkey 

(Chlorocebus pygerythrus) alarm call ‘refers’ to a different type of predator (leopards, 

eagles, and snakes). Experimental playbacks in the wild indicate that these different 

alarm calls produce different predator-appropriate responses in the absence of a 
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predator [39]. In further support of the functionally-referential nature of primate 

vocalizations, habituation-dishabituation experiments on Diana monkeys (Cercopithecus 

aethiops) demonstrated that playbacks of leopard alarm calls or leopard growls resulted 

in predator-appropriate responses. These results suggest that Diana monkey responses 

are based on the underlying referent (the predator) rather than any differences in the 

calls’ acoustic properties [88].  

Despite some language-like properties of primate communication, humans 

exhibit unrivaled flexibility in mixing and matching different sounds to create new 

meanings through syntax [65,66,89]. Very few mammalian species use combinations of 

calls, and even those that do are unlikely to use these combinations to generate new 

meanings. There are only a few rare cases where primates were found to combine calls 

in ways that change the meaning of the call elements (red-capped mangabeys 

(Cercocebus torquatus) [90]; Campbell’s monkeys (Cercopithecus campbelli) [44]; 

Diana monkeys (Cercopithecus diana) [40]). Importantly, these semantic combinations 

of sounds only comprise a few specific elements and are highly constrained [90,91]. 

Non-human primate vocal ‘productivity’ [92] is therefore far simpler than human 

communication and may, at best, be labelled as ‘proto-syntax’ – a term that refers to 

rule-governed, rather than random, combinations of discrete sounds that lack the 

sophistication of human grammar [44].  

 

Function of derived vocalisations 

Although previous studies have been pivotal for identifying aspects of sociality 

that drive vocal complexity, we still know relatively little about how large vocal 
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repertoires function in complex societies. One reason for this is that comparisons of 

repertoire size alone fail to identify the specific calls that may have evolved in 

association with social complexity. With no knowledge on which calls are derived, we 

can say nothing about how those calls function. Another reason is that comparisons of 

group size alone fail to identify the specific features about group life that require an 

increase in vocal complexity. Thus, several questions remain unanswered: First, what 

specific aspects of sociality create a need for vocal complexity? Is it the number of 

relationships, the nature of relationships, or something else? Second, can we identify 

the derived components of the vocal repertoire that relate to the demands of increased 

sociality? That is, if more social species have more calls, how are they using these 

‘extra’ calls?   

To help answer these questions, we propose a systematic investigation of closely 

related species that make detailed comparisons of the functions of ‘homologous’ 

(shared between species) and ‘derived’ (unique to a species) vocalisations. Note that, 

although a vocalization may be unique to a species because it was present in the 

common ancestor and lost in the other species, we call them derived calls for simplicity, 

although the direction of the change (gain or loss) remains a hypothesis that can be 

examined by comparison to an outgroup. Previous studies have used comparisons 

among closely-related species to understand vocal evolution (e.g., [58]) although not 

with the goal of understanding vocal complexity per se. In the primate literature, several 

researchers have made comparisons of vocal behaviour between related species (e.g., 

[93–96]). These studies often include general similarities and differences of call 

categories [93], acoustic structure [94], and/or contextual use [95]. In one case [95], 
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there was a clear attempt to identify homologous and unique calls in two species of 

macaque (bonnet macaque (Macaca radiata) and lion-tailed macaque (M. silenus)) and 

two species of langurs (Nilgiri langur, Presbytis johnii) and common langur (P. 

entellus)), however much of the ensuing analyses focused on the differential use of the 

homologous calls rather than explaining the function of unique calls. The only study to 

date to focus on unique calls [97], compared the vocal behavior of the forest-dwelling 

mandrill (Mandrillus sphinx) to published accounts of savannah-living baboons (Papio 

spp.) and geladas (Theropithecus gelada). Kudo [97] reported that mandrills produced 

two unique long distance contact calls instead of the various short-range calls made by 

baboons and geladas. He proposed that this difference was likely due to ecological 

pressures, as low-amplitude vocalisations do not travel well in a forested environment 

where visual contact is also limited [97].  

Identifying homologous and derived vocalisations is critical for identifying the 

specific social or ecological factors that may account for complex vocal repertoires. 

Here, we use a comparison of the vocal complexity in geladas with that in chacma 

baboons to demonstrate how this homologous-derived vocalisation strategy may be 

implemented. By analysing calls from both species (all obtained from wild populations 

under natural conditions), we control for variability in how calls are classified which may 

drive some of the variation in overall repertoire size found in meta-analyses. 

 

Geladas and baboons – A case study 

Early researchers were struck by the intricate vocal behaviour of geladas as well 

as their unusually-complex social groups [98–100]. Although some have proposed a 



 27	

causal connection between these factors [98], little progress has been made towards 

understanding why geladas, the only extant Theropithecus species, have elaborate 

vocal communication compared to other primates. Thus, a comparison between the 

vocal behaviour of geladas and Papio baboons serves two purposes. First, these two 

taxa split relatively recently (about 4 million years ago), and Theropithecus and Papio 

are likely sister genera [101]. To human observers, they appear to produce similar calls 

in similar contexts (e.g. affiliative grunts, threat grunts, and alarm calls). It is therefore 

relatively straightforward to identify homologous calls, and simultaneously, to pinpoint 

the unique call types that result in differences in vocal repertoire size. We can then 

assess how these unique calls are used, to highlight the selective pressures that may 

have favoured greater vocal complexity.  

Second, the differences in the social system and ecology of geladas and 

baboons make the comparison particularly useful for testing contrasting predictions 

about the evolution of behavioural differences [102]. Both species live in matrilineal 

groups in which males disperse [99,103,104]. Geladas aggregate into a multi-level, 

fission-fusion society (forming groups as large as 1100 individuals) [105,106] and within 

this group they only recognize and primarily interact with a small subset of the 

individuals within ‘harem-like’ reproductive units of 2-15 individuals [99,105–108]. In 

these reproductive units, ‘leader’ males must maintain social relationships with several 

females, and it is thought that maintaining close social bonds with his unit females may 

serve to decrease the likelihood that he will be out-competed by a non-unit, ‘bachelor’ 

male [109,110]. In contrast to their complex social system, gelada diets are simple and 

specialized, with grass as the primary food item [111–113]. 
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Unlike geladas, many baboons (e.g., chacma baboons (Papio ursinus)) have a 

single-level, multimale-multifemale society with no discrete reproductive units (20-120 

animals, [114–116]). Baboons maintain differentiated relationships based on kinship 

and dominance with all members of their group, but cross-sex relationships consist 

mainly of temporary consortships [114–117]. In terms of ecology, baboons are 

extremely complex; they live in a range of habitat types and consume anything from 

fruits and seeds to insects and vertebrates [118–121].  

Given that geladas and baboons differ in their sociality and ecology, we predict 

corresponding differences in the call types comprising their vocal repertoires. For 

instance, geladas – specifically males – may produce more types of calls that are used 

in affiliative situations. On the other hand, baboons may use proportionally more 

allospecific calls to communicate about general features of the environment such as 

food items. To test our predictions, we compared the vocal behaviour of geladas with 

one representative of the Papio genus – the chacma baboon [97] – to identify derived 

call types. While we recognize that vocalizations from a single population may obscure 

variation within the genus, both the literature and our experience with multiple types of 

Papio baboons suggests that repertoire variation within Papio is minimal [97] and that 

the types of vocalizations used by chacma baboons are very similar to even the 

socially-divergent Papio species, P. hamadryas [97,122]. Furthermore, our descriptions 

of gelada vocalisations closely match those from captive geladas [123] suggesting that 

such vocalisations extend beyond those unique to one population. For any derived 

vocalisations, we then conducted intra-specific analyses to determine their possible 

functions.  
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(a) Study subjects 

Data for this study come from 14 units within 3 different bands in one community 

of wild geladas (about 1200 individuals) living in the Sankaber area of the Simien 

Mountains National Park, Ethiopia (2008-2010) [104,105] and a single group of chacma 

baboons (group C) living in the Moremi Game Reserve in the Okavango Delta of 

Botswana (2001-2002). The gelada units were comprised of one leader male, 0-3 

follower males, and 1-11 females and their immature offspring. The gelada habitat 

consisted of high-elevation open grassland and adjacent escarpments (sleeping sites). 

The chacma baboon group ranged from 82-91 individuals, including 9-11 adult males, 

29-31 adult females, and their immature offspring. The baboon habitat was patchy scrub 

forest interspersed with seasonally-flooded grasslands. 

 

(b) Comparison of gelada and chacma vocal repertoires 

Data analysis 

We opportunistically recorded vocalisations from 81 adult geladas (males=36; 

Feb 2008 – Apr 2010) and 32 adult chacma baboons (males=11; Apr 2001 – May 2002) 

with a Sennheiser ME66 directional microphone connected to a digital stereo recorder 

(Marantz PMD 660 Digital Recorder for geladas; Sony VW-D6 Professional Walkman 

for chacma baboons). The call types and contexts of all vocalisations were described at 

the time of recording. Our analyses focus on common calls that occurred repeatedly 

during focal sampling and we do not attempt to describe all vocalisations produced in 

each species. The inter-observer reliability (between assignments made in the field and 
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assignments that were blind to previous designations and assignments based on 

isolated calls in the absence of contextual information) of a subset of these calls (5 

exemplars/call type/species/sex class) was 96.0%. We used Avisoft (version 5.1.12, R. 

Specht, Berlin) to generate spectrograms with a fast fourier transformation size of 1024 

points. Focusing on spectrograms with high signal-to-noise ratio, we categorised call 

types by ear, visual inspection of the spectrograms and the contexts in which they 

occurred (chacma females=50 calls; chacma males=32 calls; gelada females=72 calls; 

gelada males=92 calls). There were an equal number of calls per individual (within 

species/sex class) for each call type (n=1-3 call replicates per individual, 6-12 total calls 

per call type). We optimised the frequency range of different call types (11 or 22 kHz) 

where appropriate (time resolution of 2.667-2.903 ms and a 100% frame).  

We used Avisoft to quantify 8 temporal and spectrum-based acoustic parameters 

in the spectrograms: duration, mean bandwidth, frequency under which 25% of the 

call’s energy lies (start, maximum and mean), number of harmonic peaks under 20 dB 

(maximum and mean), maximum peak frequency. Then, to determine the probability of 

correctly assigning each vocalisation to a pre-categorized call type, we performed 

stepwise discriminant function analyses (DFAs) with a subsequent leave-on-out cross-

validation procedure for each of the 4 species/sex classes separately [124]. We used 

multivariate analyses of variance (MANOVAs) to verify the significance of the final DFA 

parameters. Finally, we identified homologous calls between species based on both 

acoustic and contextual similarity. 

 

Results 
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Male and female geladas and chacma baboons produced a range of allospecific 

and social calls used in both affiliative contexts (e.g., grooming and copulation) and 

non-affiliative contexts (e.g., challenge displays and dominance interactions), with 

geladas producing a greater number of call types (Table 2.2). Of the 14 call types we 

identified, 8 were found in both geladas and chacmas and 6 were unique to geladas. 

The derived gelada calls occurred primarily in short-range affiliative contexts (Table 

2.2). Extant literature and our own observations indicated that most of the homologous 

call types are produced in a similar morphological way – a vocalised exhale – while 

geladas produce both inhaled and exhaled versions of calls that are acoustically distinct 

(we only separate inhaled and exhaled grunts here because they are the most common, 

but they also produce inhaled ‘moans’ and ‘wobbles’, Table 2.2). 

We performed further analyses on 12 vocalisation types, of which only 7 were 

found in chacmas (Figures 2.1-2.2). Other call types were excluded from further DFA 

analyses because they were rarely produced without overlapping vocalisations, and 

hence, there were too few high-quality recordings to analyse (gelada female: display 

calls, moans, inhaled grunts, wobbles and yawns; gelada male: how barks, nasal 

inhaled grunts and alarm calls; chacma female: alarm calls; chacma male: fear grunt, 

alarm calls and copulation calls). We were able to discriminate between all call types for 

each age-sex class, using DFAs; based on 8 acoustic parameters, we classified call 

types at a higher rate (range: 67.4-93.8%; leave-one-out classification range: 50-90.6%) 

than expected by random classification (range: 10-33.3%). A MANOVA test carried out 

for each of the 4 species/sex classes showed that pre-categorized call types were 
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significantly different from each other based on variation in at least 4 of the chosen 

acoustic parameters (p < 0.003).  

In sum, acoustic analysis shows geladas share a number of vocalisation types 

with chacma baboons. While chacma baboons did not appear to have any unique calls, 

the analysis allowed identification of at least 5 derived vocalisation types in geladas: 

inhaled grunts, moans, pre-copulation calls, wobble calls and yawns. We then carried 

out intraspecific analysis to determine how these calls function in gelada society. 

 

(c) Intraspecific analysis of derived gelada vocalisations 

Comparison of derived call use in gelada males and females 

To determine the function of the derived gelada vocalisations identified above, 

we first examined potential sex differences in the use of these calls. By definition, pre-

copulation calls were produced only by females in very straightforward contexts (i.e., 

produced prior to copulation). Thus, we focused here on the use of inhaled grunts, 

moans, wobbles and yawns for which the use of these calls is less obvious. Behavioural 

data on adult male and female geladas were obtained between January 2009 and 

December 2010 during repeated 15-minute focal follows of 53 females (mean + SD: 

6.55 h + 2.59 h per female; 348.50 h in total) and 13 leader males (6.60 + 1.86 h per 

male, 85.75 h in total). During these focal follows we noted all vocalisations uttered by 

the focal animal, as well as all social behaviour (e.g., approaches and grooming 

interactions) involving the focal individual.  

Next, we determined sex differences in the use of derived vocalisations by 

carrying out a general linear model (GLM) with sex and average reproductive unit size 



 33	

(over the entire study period) as fixed factors. We found that gelada males produced 

four of the derived calls (i.e., inhaled grunts, moans, wobbles and yawns) at a higher 

mean rate (14.13 calls/h) than did gelada females (0.39 calls/h) (F(1,63)=708.144, p < 

0.001), and reproductive unit size did not come out as a significant covariate 

(F(1,63)=0.942, p=0.336). Thus, males appeared to be the sex utilising derived 

vocalisations, and as such, we next explored whether these unique calls were used in 

contexts that are unique to males in gelada society.  

 

Functionality of derived gelada male calls 

First, we tested the hypothesis that derived social calls are used by males to 

maintain social relationships within the unit females by examining vocal behaviour in the 

context of conflict resolution. Using all adult female focal data, we identified every fight 

(both as actor and receiver) in which the focal animal was involved. These fights (N=107 

events) were characterized by loud screams from the focal animal (n=48 events), or 

direct, physical attacks from the focal animal that included biting and slapping (n=59 

events). We deliberately excluded any inconspicuous agonistic interactions (such as 

soft threat calls or visual threats) that may have gone unnoticed by other group 

members. For each fight event we counted all derived vocalizations directed at the focal 

animal by males in the 2 minutes preceding the event and the 2 minutes following the 

event and compared these values with binomial tests of proportions. 

Second, we tested the hypothesis that derived social calls were used by males in 

association with the presence of non-unit, ‘bachelor’ males that pose a threat to the 

leader males (all leader males are eventually ousted by bachelor males). We used all 
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adult leader male focal data for which the location of bachelors was stable throughout 

the entire 15-minute focal sample. In other words, bachelor groups were either close to 

the focal male (within 20 m: N=16 focals), far (more than 20 m; N=24 focals), or out of 

sight (N=26 focals). We carried out two GLMs with male identity as a random factor, 

bachelor distance as a fixed factor, and the rate of derived calls as the dependent 

variable (first model: close vs. far; second model: close vs. out of sight).  

We found evidence that males used non-homologous derived calls to maintain 

cross-sex social relationships with females in his units. Specifically, we found that males 

directed derived non-homologous calls at females after fights happened (14 

occurrences), and they never used them before a fight (binomial test of proportions: 

C2
1= 12.916, p < 0.001). On the other hand, we did not find any evidence that males 

used the derived calls in response to the presence of bachelors. Leader males did not 

produce derived calls at a high rate when bachelor groups were close (3.23 calls/h) 

compared to when they were far away (2.04 calls/h) (F(1,8)=0.394,  p=0.548). Similarly, 

leader males did not produce derived calls at a higher rate when bachelor groups were 

close compared to when they were out of sight (2.51 calls/h) (F(1,11)=0.078, p=0.785).  

 

(d) General discussion 

Geladas have an elaborate, almost ‘choral’ vocal repertoire [100] and live in a 

complex society with social groups of varying sizes making geladas an important model 

system for addressing hypotheses about vocal evolution. Identifying homologous 

vocalisations shared with Papio baboons allowed us to study the function of geladas 

derived vocalisations. It did not appear that interacting with many individuals [20,125] 
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was necessarily an important factor in the use of derived calls, as their production was 

not correlated with the size of the reproductive unit. Rather, the need to maintain long-

term bonds within the unit seemed most important; leader males used these derived 

vocalisations after fights broke out within their units. Thus, the gelada-specific 

vocalisations may have evolved as an adaptations to simultaneously maintaining 

relationships both with and among multiple females – leader males that are better able 

to ‘maintain the peace’ of their reproductive units may, in turn, have better reproductive 

success [109]. It remains to be determined why the cross-sex bonds seen in geladas 

seem more tightly linked to vocal complexity than the within-sex bonds found in both 

species.  

Our results suggest that future studies should examine whether hamadryas 

baboons (Papio anubis), a Papio species that also has a ‘harem-like’ structure [126], 

have any evidence of greater elaboration of affiliative call use by males. This 

comparison is particularly important for uncovering how vocalizations relate to specific 

aspects of long-term bonds because hamadryas males form long-term bonds with 

females but the relationship is more coercive than in geladas and there does not appear 

to be a need to ‘keep the peace’. In geladas, investigations of how females respond to 

derived vocalisations and the subsequent benefits to leader male fitness is an exciting 

direction for future research. It may be the case, for instance, that these derived 

vocalisations directly benefit fitness by reducing female anxiety, similar to the proposed 

anxiolytic effects of grooming [127–129].  

One puzzling aspect of our findings is that the derived calls used by males are all 

used in similar contexts. Further work is needed to tease apart any potential differences 
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between the derived gelada calls but this redundancy suggests an additional 

hypothesis. Perhaps the extremely large groups of geladas (herds can number of 1,000 

individuals) and high rates of vocalizations (mean + SD: chacmas: 8.84 + 4.49 calls/h, 

geladas: 16.95 + 8.51 calls/h) create ‘vocal clutter’ that the geladas have overcome by 

diversifying their most common call types—affiliative vocalizations. Thus the need to 

maintain bonds within a noisy backdrop of conspecific vocalisations may favour greater 

vocal complexity, possibly explaining some of the group size effects seen in other 

studies [20].  

 

Conclusions 

Comparisons of repertoire size and components found that primates are broadly 

similar to other mammals, despite primates having greater social complexity. However, 

our comparison of baboons and geladas highlights the utility of making detailed 

comparisons among closely related species to understand vocal evolution. We were 

able to examine the function of recently-evolved calls in detail and examine the specific 

social implications of increased repertoires by focusing on specific call types, 

addressing sexual differences, and using behavioural measures to describe social 

complexity. We found that the larger repertoire of geladas is linked to the maintenance 

of cross-sex bonds within the reproductive unit. Broadly focused theoretical and 

comparative analyses [2,3,5,20] are vital to drive the investigation of communicative 

complexity, but we would argue that there is also a need for more focused analyses 

among carefully chosen taxa using directly comparable measures in the study of vocal 

complexity.  
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Table 2.1. Vocal repertoire size for exemplar species from Primata, Rodentia, and Carnivora broken down into six 
categories: Allospecific (alarm calls and food calls), Long distance (separation calls, intergroup spacing calls), Contact 
(short-range soft calls), Competitive (threat and display calls), Distress calls (fear calls during agonism), and Other (contexts 
unknown or made in several different contexts).  

Species name Allospecific 
Long 

distance Contact Competitive Distress Other 
Total 
size Citation 

Order Primata 
        Alouatta palliata - 1 - 8 2 1 12 [130] 

Arctocebus 
calabarensis - 1 - 1 1 - 3 [93] 
Callicebus moloch 1 3 1 1 3 1 10 [131] 
Callimico goeldii 4 7 3 6 4 1 25 [49] 
Cebus olivaceus - - 4 4 2 1 11 [132] 
Cercocebus torquatus 4 1 3 5 1 - 14 [133] 
Cercopithecus 
aethiops 5 - 3 5 3 3 19 [134] 
Euoticus elegantulus 2 1 2 - 1 - 6 [93] 
Galago alleni 1 - 2 1 1 - 5 [93] 
G. demidovii 1 1 3 1 1 1 8 [93] 
Macaca fascicularis 2 2 1 1 4 5 15 [48] 
M. radiata 1 1 3 7 4 3 19 [95] 
M. silenus 1 2 3 5 2 1 14 [95] 
Mandrillus sphinx 1 3 1 - 4 - 9 [97] 
Pan paniscus - - 4 - 1 4 9 [135] 
P. troglodytes 3 1 8 4 8 3 27 [50] 
Perodicticus potto - 1 

 
2 1 1 5 [93] 

Pongo pygmaeus 1 1 1 2 2 1 8 [136] 
Presbytis entellus 3 1 2 3 3 2 14 [95] 
P. johnii 2 1 3 4 3 1 14 [95] 
Procolobus badius 2 - - 5 2 2 11 [137] 

Order Rodentia 
        Notomys alexis - - 1 1 1 2 5 [23] 

N. cervinus - - - 1 1 2 4 [23] 
N. mitchellii - - 1 1 1 2 5 [23] 
N. fuscus - - 1 1 1 2 5 [23] 
Octodon degus 2 - 4 5 2 - 13 [138] 
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Order Carnivora 
        Lycaon pictus 3 2 7 5 2 6 25 [52] 

Suricata suricatta 11 - 7 2 2 3 25 [37,60] 
Cynictis penicillata 3 - 2 2 - 1 8 [24] 
Speothos venaticus - 1 3 2 1 - 7 [27] 
Cerdocyon thous 2 1 2 1 - - 6 [27] 
Chrysocyon 
brachyurus 1 2 2 2 1 - 8 [27] 
Note: Sources from Primata are drawn from the repertoire analysis made by McComb and Semple [20], excluding captive 
studies. Total repertoire sizes in this paper are slightly different because we did not count sequences of discrete call units 
as separate calls if the units were produced singly. Sounds that are not strictly ‘vocalisations’, such as sneezes, coughs, 
and teeth chattering, are excluded from the table. For comparison, we focus on exemplar species from Rodentia and 
Carnivora because of similarities in social and vocal behaviour.  
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Table 2.2. Descriptions of call types used by geladas and chacma baboons in short-range and in long-
distance situations, including the way in which they are physically produced and the contexts in which they 
occur. CF=chacma female; CM=chacma male; GF=gelada female; GM=gelada male. Asterisks denote 
vocalisations that were not used in discriminant function analyses due to low sample size. 
I. Shared vocalisations in chacma baboons and geladas 
Call type Mode of production Context 
affiliative grunt  
(CF, CM, GF, GM) 

exhale A soft tonal contact call used during approaching, 
grooming, and infant-handling, as well as while moving 
and foraging [30,100,123,139,140] 

copulation call  
(CF, CM*, GF, GM) 

exhale Loud grunts given before and during mating [123] 

fear bark  
(CF, CM*, GF) 

exhale with 
retracted lips 

A 'cough-like' vocalisation [141] given by subordinate 
individuals to high-ranking animals [123] 

threat grunt  
(CF, CM, GF, GM) 

exhale A staccato-like vocalisation uttered by the dominant 
individual in an aggressive encounter [123,142,143] 

alarm call  
(CF*, CM*, GF) 

exhale Noisy, harsh calls used in response to predators and 
other environmental threats [100,114] 

display call or 
'wahoo' (CM, GF*, 
GM) 

inhale and exhale Loud calls typically uttered during competitive displays. 
[123,141]. Chacma and gelada males, in particular, make 
a ‘roar’ that often comes before these wahoo calls. 

lost call 
(CM*,CF*,GF*,GM*) 

long exhale A noisy vocalisation that rises in pitch towards the end of 
the call and associated with separation from the group or 
particular individuals 

scream  
(CF, GF, GM) 

long exhale with 
retracted lips 

A noisy drawn-out defensive call, usually given by 
subordinates when attacked by a higher ranking 
individual [100,123,139] 

II. Derived gelada vocalisations 
Call type Mode of production Context 
inhaled grunt  
(GF*, GM) 

vocal inhale Vocalised inhales often part of an affiliative grunt calling 
bout [140]. Sometimes, inhaled grunts can have an 
audibly ‘nasal’ sound, produced by the withdrawn lip 
obscuring nasal passages [140]. 

moan (GF*, GM) long exhale 
(sometimes inhaled) 

Long drawn-out affiliative grunt, often given by leader 
males to their unit’s females ([100,123,144]; this study) 
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wobble (GF*, GM) vocal inhale or 
exhale with lip or 
tongue-flicking 

Soft, undulating calls usually given by males to their unit 
females, often when nervous (this study). 

yawn (GF*, GM) inhale A vocalised yawn given in social contexts, often involving 
grooming sessions and also after mating or in competitive 
situations ([145]; this study) 

pre-copulation call 
(GF) 

short exhale Calls given by estrous females while presenting their 
genitals to males 

how barks (GM*) exhale High-pitched barks/ whinnies given by non-leader males 
giving chase to other males in competitive displays 
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Figure 2.1. Spectrograms of homologous calls shared by geladas and chacma 
baboons. Dashes represent calls that were not produced or produced at a very low rate. 
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Figure 2.2. Spectrograms of derived call types produced only by geladas. Dashes 
represent calls that were not produced or produced at a very low rate.  
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Chapter 3: 

Divergent acoustic properties of gelada and baboon vocalizations and 

implications for the evolution of human speech 

 

Abstract 

Human speech has many complex spectral and temporal features traditionally thought 

to be absent in the vocalizations of other primates. Recent explorations of the vocal 

capabilities of non-human primates are challenging this view. Here, we continue this 

trend by exploring the spectro-temporal properties of gelada (Theropithecus gelada) 

vocalizations. First, we made cross-species comparisons of geladas, chacma baboons, 

and human vowel space area. We found that adult male and female gelada exhaled 

grunts – a call type shared with baboons – have formant profiles that overlap more with 

human vowel space than do baboon grunts. These gelada grunts also contained more 

modulation of fundamental and formant frequencies than did baboon grunts. Second, 

we compared formant profiles and modulation of exhaled grunts to the derived call 

types (those not shared with baboons) produced by gelada males. These derived calls 

contained divergent formant profiles, and a subset of them, notably wobbles and 

vocalized yawns, were more modulated than grunts. Third, we investigated the rhythmic 

patterns of wobbles, a call type shown previously to contain cycles that match the 3-8 

Hz tempo of speech. We use a larger dataset to show that the wobble rhythm overlaps 

more with speech rhythm than previously thought. We also found that variation in cycle 
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duration depends on the production modality; specifically, exhaled wobbles were 

produced at a slower tempo than inhaled wobbles. Moreover, the variability in cycle 

duration within wobbles aligns with a linguistic property known as “Menzerath’s law” in 

that there was a negative association between cycle duration and wobble size (i.e., the 

number of cycles). Taken together, our results add to growing evidence that non-human 

primates are anatomically capable of producing modulated sounds. Specifically, gelada 

vocalizations – as compared to baboons – appear to have evolved spectro-temporal 

characteristics that are more akin to the acoustic properties of human speech. These 

findings support and expand on current hypotheses of speech evolution, including the 

“neural hypothesis” and the “bimodal speech rhythm hypothesis”. 

 

1. Introduction 

Human speech is a complex trait encompassing both spectral and temporal 

features that are argued to be unique among primates (Fitch, 2000, 2010; Ghazanfar, 

2013).  Knowing the extent to which these ‘unique’ acoustic features of speech are due 

to special physical and mechanical adaptations (in addition to a behavioral and 

neurobiological ones), however, requires a clear understanding of the physical 

limitations of our non-human primate relatives. To better differentiate the features that 

are truly unique to human speech from those which are shared, explorations of the 

vocal limitations of monkeys and apes are becoming increasingly common (Boë et al., 

2017; Fitch, de Boer, Mathur, & Ghazanfar, 2016). Here, we summarize contemporary 

views on spectral and temporal features thought to be evolutionarily derived – or 

‘unique’ – acoustic features of speech compared to the vocal capacities of other 
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primates. For each of these unique acoustic features, we briefly review current findings 

from non-human primate studies that put the ‘uniqueness’ of each feature into question. 

Additionally, we further test the boundaries of what makes human speech unique by 

providing new analyses of the spectro-temporal vocal capacities of the gelada 

(Theropithecus gelada), a monkey known for its dynamic vocal behavior (Aich, Moos-

Heilen, & Zimmermann, 1990; Benítez, le Roux, Fischer, Beehner, & Bergman, 2016; 

Bergman, 2013; Gustison, le Roux, & Bergman, 2012; Gustison, Semple, Ferrer-i-

Cancho, & Bergman, 2016; Richman, 1976, 1987). 

 

1.1 Spectral features of vocal production in humans and other primates 

Source-filter theory is a well-established framework used to understand spectral 

components of vocal signal production in humans and other terrestrial vertebrates 

(Chiba & Kajiyama, 1941; Fant, 1960; Fitch & Suthers, 2016; Taylor, Charlton, & Reby, 

2016; Taylor & Reby, 2010). This theory describes vocal signal production as a two-step 

process in which specific parts of the vocal apparatus contribute in independent ways to 

the final vocal signal. The “source” signal, or “glottal wave”, is created by vibrations in 

the vocal folds that result in a series of frequency components known as the 

fundamental frequency (f0) and its harmonic overtones (Titze et al., 2015). The “filter” 

signal, is the result of the source signal being molded by the resonance properties of the 

supralaryngeal vocal tract. These resonance properties are dictated by the shape of the 

oral and nasal cavities which results in emphasized frequencies, or “formants”, denoted 

by Fn (Titze et al., 2015). Humans appear to be the only primates able to flexibly control 

the formants of their vocal signals, primarily through the modification of articulators 
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(e.g., tongue, lips, velum, and lower jaw); the relationships between the first three 

formants make up distinct vowels (Fitch, 2000; Ghazanfar & Rendall, 2008; Lieberman, 

Klatt, & Wilson, 1969). The five monophthong vowels most common across languages 

are /α/, /i/, /ɛ /, /o/, and /u/, and many of these make up the extreme corners of vowel 

space area (VSA) (Maddieson, 1984). English VSA, for example, ranges between /i/ as 

in ‘beet’ with a low-frequency F1 and high-frequency F2, /u/ as in ‘boot’ with a low-

frequency F1 and a low-frequency F2, and /a/ or /ɑ/ as in ‘boss’ with a high-frequency 

F1 and a moderate-frequency F2 (Fitch & Hauser, 1995). 

 A widely accepted hypothesis about why non-human primates lack control of 

their formant profiles is that they are limited by the anatomical design of their vocal 

tracts. Referred to as the “peripheral hypothesis” (Fitch et al., 2016), this hypothesis 

originally gained traction in the 1960s when Lieberman and colleagues (Lieberman et 

al., 1969) simulated the formants of a rhesus macaque based on vocal tract shape 

variation in an anesthetized monkey to conclude that rhesus macaques have a 

physically constrained range of acoustic variability. This hypothesis was supported by a 

similar study on chimpanzees (Lieberman, Crelin, & Klatt, 1972) and remains the 

prevailing hypothesis to explain why humans appear to have the unique ability to flexibly 

modulate the spectral properties of their vocalizations (D. Crystal, 2003; Raphael, 

Borden, & Harris, 2007; Yule, 2006).  

An alternative hypothesis is that non-human primates have the anatomical 

capacity to modulate their vocal system in a speech-like way, but lack the brain 

mechanisms needed to do so (Hockett, 1960). Referred to as the “neural hypothesis” 

(Fitch et al., 2016), this hypothesis is gaining attention as emerging research on monkey 
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and ape vocal systems challenge the peripheral hypothesis. Case studies on captive 

gorillas (Gorilla gorilla) and orangutans (Pongo abelii) suggest that great apes can 

control their vocal tract enough to acquire new vocalizations with vowel- or consonant-

like properties (Lameira, Hardus, Mielke, Wich, & Shumaker, 2016; Lameira, 

Maddieson, & Zuberbühler, 2014; Perlman & Clark, 2015). Moreover, old world 

monkeys like chacma baboons (Papio ursinus), hamadryas baboons (Papio 

hamadryas), and rhesus macaques (Macaca mulatta) produce short vocalizations – 

often referred to as “grunts” – that have formant profiles that align closely with human 

vowels (Andrew, 1976; Boë et al., 2017; Fitch, 1997; Ghazanfar et al., 2007; Owren, 

Seyfarth, & Cheney, 1997; Pfefferle & Fischer, 2006; Rendall, 2003; Rendall, Kollias, 

Ney, & Lloyd, 2005). Recently, Fitch and colleagues (Fitch et al., 2016) found that 

rhesus macaque vocal tract configurations were highly diverse during natural behaviors 

(i.e., vocalizing, facial displays, and feeding). They concluded that macaques have the 

capacity to vocalize in a large formant space but lack the neural mechanisms for doing 

so. In addition, a recent study looking across the vocal repertoire of baboons found that 

they produce a broad range of sounds indicating extensive articulatory control (Boë et 

al., 2017). Together, these findings suggest that non-human primates’ ability to 

modulate the spectral properties of vocalizations may not be as constrained as 

predicted by the peripheral hypothesis (Fitch et al., 2016; Owren et al., 1997). Still 

lacking is a comparative understanding of the limits of non-human primates in their 

ability to modulate f0 and formant profiles, particularly within single vocalizations 

(Pisanski, Cartei, McGettigan, Raine, & Reby, 2016).        

 



 62	

1.2 Temporal features of vocal production in humans and other primates 

The human ability to modulate sound extends beyond the spectral domain to the 

temporal domain. Among the “unique” temporal features of human speech are the ~5 

Hz (3-8 Hz range) rhythm in the production rate of small meaningful units like syllables 

and phonemes bounded by consonants; this speaking rhythm (i.e., 3-8 syllables per 

second) is facilitated by the controlled movement of facial articulators (e.g., tongue and 

lips) and breathing (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 

2009; T. H. Crystal & House, 1982; Ghazanfar & Rendall, 2008; Greenberg, Carvey, 

Hitchcock, & Chang, 2003; MacLarnon & Hewitt, 1999; Malécot, Johnston, & Kizziar, 

1972). The 3-8 Hz rhythm is thought to be a universal characteristic of human speech 

and exists in all languages studied to date, including British English, American English 

and French (Chandrasekaran et al., 2009). Disrupting the natural speaking rhythm 

reduces intelligibility (Drullman, 1994; Elliott & Theunissen, 2009; Saberi & Perrott, 

1999; Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995; Smith, Delgutte, & 

Oxenham, 2002). This reduction occurs, in part, because the human auditory cortex 

appears designed to entrain to a speech rhythm in the approximate range of 3-8 Hz 

(Gross et al., 2013; Peelle & Davis, 2012; Schroeder, Lakatos, Kajikawa, Partan, & 

Puce, 2008).  

Furthermore, the variation in human speech rhythm abides by Menzerath’s law, 

which states “the greater the whole, the smaller its constituents” (Altmann, 1980; Köhler, 

2012; Malécot et al., 1972; Menzerath, 1954). Originally, this law was used to 

characterize structural properties of written text (Altmann, 1980; Teupenhayn & 

Altmann, 1984), and it has since been applied to a wide range of complex systems 
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including music and genomic structures (Boroda & Altmann, 1991; Ferrer-i-Cancho & 

Forns, 2010). Menzerath’s law applies to spoken language in that syllable duration 

decreases (and syllable rate increases) with increasing phrase or utterance lengths (T. 

H. Crystal & House, 1990; Grégoire, 1899; Lindblom, 1968; Malécot et al., 1972; 

Nakatani, O’Connor, & Aston, 1981; Quené, 2008; Schwab & Avanzi, 2015). Better 

understanding of the levels at which Menzerath’s law operates will help us gain insight 

into the role of self-organization (Köhler, 1987) and compression of information 

(Cramer, 2005; Köhler, 2012) in the evolution of complex vocal systems. 

It has been presumed that humans can vocalize at rates 10 times faster than any 

non-human primate (Lieberman, Laitman, Reidenberg, & Gannon, 1992), and this was 

thought to be because non-human primates are highly constrained by their breathing 

and facial articulator abilities (Ghazanfar & Rendall, 2008; Lieberman, 1968; MacLarnon 

& Hewitt, 1999). Current research challenges these presumptions, however, and a 

model – the bimodal speech rhythm hypothesis – proposes that rhythmic facial 

expressions, like lip-smacking, characterized our ancestral primates and set the stage 

for the fast paced vocalizations that would later become speech (Ghazanfar, 2013; 

Ghazanfar & Takahashi, 2014). Data from studies on monkey lip-smacking supports this 

hypothesis by showing that, like humans, rhesus macaques (Macaca mulata) move 

their mouths in a 3-8 Hz rhythm, and this range is preferred by observer monkeys over 

faster or slower rhythms (Ghazanfar, Morrill, & Kayser, 2013; Ghazanfar, Takahashi, 

Mathur, & Fitch, 2012). Since then, data on the ‘faux-speech’ calls of Sumatran 

orangutans (Pongo abelii) and the ‘wobble’ calls of geladas (Theropithecus gelada) 

show that non-human primates can even go one step further; both species move their 



 64	

lips in a ~3-8 Hz rhythm while vocalizing (Bergman, 2013; Lameira et al., 2015, 2016, 

2014). These findings extend the biomodal speech rhythm hypothesis by demonstrating 

that the coupling of voice to rhythmic facial expressions may not be as complex an 

evolutionary process as previously thought (Ghazanfar & Takahashi, 2014). 

We still lack enough data to build an understanding of the processes shaping 

rhythm variability in primate vocalizations. In other words, what determines when a 

primate vocalization will be produced at 3 Hz compared to 8 Hz rhythm? The data on 

gelada ‘wobbles’, for example, were limited to wobbles produced on an inhale. This is 

significant because it is known from human research that vocal tract anatomy operates 

differently during exhaled and inhaled speech, which results in slower voice-onset times 

in exhaled speech (Moerman et al., 2016; Ng, Chen, Wong, & Xue, 2011; Vanhecke et 

al., 2016). As such, a gelada wobble produced on an exhale may have a rhythm that 

overlaps more or even less with the 3-8 Hz of human speech compared to inhaled 

wobbles (which range from 5.0-7.5 Hz according to Bergman (2013)). The numbers of 

wobbles cycles might also make a difference in dictating rhythm. Similar to how 

Menzerath’s law applies to speaking rates in human speech, geladas produce 

sequences of calls at rates that increase as the sequence size gets larger (Gustison et 

al., 2016). Yet, even the longest of these call sequences (a 26-call sequence) are 

produced at the relatively low rate of 3.018 calls per second. It remains to be seen 

whether the lip movement rhythm of single vocalizations, notably wobbles, gets faster 

as wobble size increases. Data on how production mode (inhale and exhale) and 

wobble size (number of lip smacks) influence rhythm will help refine our application of 

the bimodal rhythm speech hypothesis to human speech evolution.  
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1.3 A gelada case study  

Our goal is to test the boundaries of what makes human speech unique by 

further exploring the spectro-temporal properties of gelada vocalizations. Geladas, a 

monkey endemic to the Ethiopian highlands, have been a prime example of a vocally 

complex non-human primate since studies on them began in the 1970s (Bergman, 

2013; Gustison et al., 2012; Richman, 1976, 1987). Early research used case studies to 

illustrate that gelada calls have distinct vowel qualities, which implies that geladas 

control the resonance chambers of their vocal tract (Richman 1976). Recent studies 

show that geladas and baboons share a homologous call type (i.e., exhaled grunts) and 

that gelada males produce phylogenetically “derived” calls which have acoustic 

properties (e.g., long duration, larger F1 bandwidth, higher F1 coefficient of variance ) 

that make them more salient than exhaled grunts (Gustison & Bergman, 2016; Gustison 

et al., 2012). These derived calls are produced almost exclusively by males (Gustison et 

al., 2012). Research also shows that geladas use quick changes in pitch and 

consonantal onsets to produce rhythmic units of sound (Richman, 1987). One of the 

derived gelada calls, the ‘wobble’, is a form of vocalized lip-smacking that has a speech-

like rhythm ranging from 6 to 9 Hz (Bergman, 2013). This call is made almost 

exclusively by males and is the only call with a speech-like rhythm. Due to previous 

small sample sizes, however, it is unclear whether the periodicity of gelada wobbles 

follows the temporal organization pattern predicted by Menzerath’s law, although this 

law has emerged in larger units of gelada communication like call sequences (Gustison 

et al., 2016). 
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Here, we investigate the modulation of spectro-temporal properties in discrete 

gelada vocalizations. First, we measure the formant space areas and contours of 

gelada calls to better understand their vowel-like qualities. We do this by comparing the 

F1-F2, F1-F3 and F1-F4 formant space of male and female gelada exhaled grunts to 

chacma baboons and human vowel space area, and by testing the degree to which 

geladas vary their f0 and F1-F4 contours relative to baboons. Then, we compare the 

formant profiles and modulation of the five derived male gelada call types (inhaled 

grunts, exhaled moans, inhaled moans, wobbles and yawns) to exhaled grunts. These 

calls are used in the similar context of non-competitive social interactions. Second, we 

test for evidence of Menzerath’s law in the temporal organization of wobble calls to 

better understand the levels at which this universal principle operates. We do this by 

associating the cycle duration (i.e., time from mouth closed to mouth closed) with the 

number of cycles in each wobble. A negative association would support Menzerath’s 

law. We also test whether cycle duration depends on the production mode of wobbles 

(inhaled vs. exhaled). Finally, we put the findings on gelada spectro-temporal 

modulation into context by integrating our conclusions with the neural hypothesis and 

bimodal speech rhythm hypothesis.  

 

2. Methods 

2.1 Study sites and animals 

Data for this study come from three different bands in one community of wild 

geladas (about 1200 individuals) living in the Sankaber area of the Simien Mountains 

National Park, Ethiopia (2008–2014) and a single group of chacma baboons (group C) 
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living in the Moremi Game Reserve in the Okavango Delta of Botswana (2001–2002). 

The gelada units were comprised of one leader male, 0–3 follower males, and 1–11 

females and their immature offspring. The chacma baboon group ranged from 82 to 91 

individuals, including 9–11 adult males, 29–31 adult females and their immature 

offspring. All subjects were habituated to humans on foot up to 3-5 m and could be 

identified by unique body markings (e.g., ear tears and coloration). Research was 

approved by the University Committee on Use and Care of Animals (UCUCA) at the 

University of Michigan, the Institutional Animal Care and Use Committee (IACUC) at the 

University of Pennsylvania, and was carried out in accordance with the laws and 

approved guidelines of the Ethiopian government. 

 

2.2 Acoustic recordings and processing 

We opportunistically recorded vocalizations from 25 adult male and 32 adult 

female geladas (Feb 2008–Jun 2014) and 9 adult male and 15 adult female chacma 

baboons (Apr 2001– May 2002) with a Sennheiser ME66 directional microphone 

connected to a digital stereo recorder (Marantz PMD 660 and 661 Digital Recorder for 

geladas; Sony VW-D6 Professional Walkman for chacma baboons). Call recordings 

were chosen for spectro-temporal analyses if they were free of background noise (e.g., 

wind and other animal calls).  A subset of these recordings have been used in other 

papers for different types of analyses (Bergman, 2013; Gustison et al., 2012, 2016). The 

call types and contexts of all vocalizations were described at the time of recording. Our 

analyses focused on chacma baboon and gelada exhaled grunts, as well as gelada 

male derived calls (inhaled grunts, exhaled moans, inhaled moans, wobbles, and 
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yawns); these are the call types that occurred repeatedly during affiliative interactions 

and foraging (Figure 3.1). Previous studies show that these call types have a high inter-

observer reliability of 96% (Gustison et al., 2012). Because gelada grunts and moans 

(an elongated version of a grunt) grade into each other somewhat, density plots of call 

durations (log-transformed) for exhaled and inhaled grunts/moans were used to 

determine thresholds to distinguish between grunt and moan call types (Gustison et al., 

2016). These density plots show bimodal distributions. The threshold (lowest point 

between the two peaks) between exhaled grunts and moans was 0.768 s and the 

threshold between inhaled grunts and moans was 0.513 s. 

 

2.3 Spectro-temporal parameters 

Extraction of spectro-temporal parameters was performed using Praat© acoustic 

software (version 6.0.23) on the Macintosh OX operating system (Boersma & Weenink, 

2011). First, we made comparisons of fundamental frequency (f0) and formant profiles 

(F1-F4) across species and gelada male call types. To obtain f0 contours, we used a 

custom Praat script that applied Praat’s autocorrelation algorithm to extract points every 

6.25 ms. We set a broad search range of 25-500 Hz for chacma baboon grunts and 

gelada grunts, moans and wobbles. We set a search range of 25-1000 Hz for gelada 

yawns since they covered a larger f0 range. All call recordings were set to a 11025 Hz 

sampling frequency with no filters using Avisoft SAS Pro 5.2 (R. Specht, Berlin, 

Germany). f0 contours were checked manually for outliers and any artificial pitch jumps. 

Then, edited f0 contours were used to calculate the mean f0 frequency and f0 

bandwidth (maximum f0 frequency minus minimum f0 frequency) for each call.  
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We identified formant contours (F1-F4) with linear predictive coding (LPC) using 

the burg method in Praat. We define formants as peaks in the frequency spectrum. LPC 

estimates the frequency values of formants based on the assumption that the vocal 

signal is produced by a buzz generated at the glottis or source and is shaped into 

resonances as it passes through the vocal tract filter (throat, mouth and nose) (Owren & 

Bernacki, 1998; Taylor et al., 2016). Without anatomical measurements of the vocal 

tract, however, it is important to note that we cannot say that these identified formants 

are precise estimates of vocal tract resonances. For further discussion on the definitions 

of formants and vocal tract resonances, please see Titze et al (2015). Before carrying 

out LPC analyses, we reduced the sampling frequencies to 11025 Hz (the nyquist 

frequency) so that the corresponding frequency range would be 5512.5 Hz. The only 

exception to this were gelada females, for which we used sampling frequencies of 

22050 Hz. This sampling frequency was higher because female gelada grunts 

sometimes had harmonics that ranged beyond 5512.5Hz. We used a 50 Hz high-pass 

IIF filter to dampen any lingering low-frequency background noise. Sampling frequency 

conversion and filtering was carried out with Avisoft SASLab Pro. This frequency range 

was chosen because it was the highest frequency found in the majority of gelada and 

chacma baboon recordings in our dataset, and it is a standard range used for studies of 

formants in baboons (Pfefferle & Fischer, 2006; Rendall et al., 2005).  

We used a Praat to extract data from LPC spectrum slices every 6.25 ms with a 

frequency analysis window of 25 ms and coefficient settings ranging from 14-18. We 

identified the first four formants (F1-F4) per slice by locating the peaks in the LPC 

spectra across the 0-5512.5 Hz range. Two methods were used to check the goodness 
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of fit of formants predicted by the LPC slices. First, LPC spectra were overlaid on three 

independently derived FFT spectra (512-point Hanning window with a pre-emphasis 

filter) at one-, two- and three-quarters of the way through each call (512-point Hanning 

window). Second, the formant contours were compared with the actual call 

spectrograms (512-point Hanning window). All recordings used in the following analyses 

had at least three detectable formant contours. Any outliers (i.e., points outside of the 

formant median ± 2 SEM) in the formant contours were removed so that there were no 

artificial frequency jumps. Then, edited F1-F4 contours were used to calculate the mean 

formant frequencies and bandwidths (maximum formant frequency minus minimum 

formant frequency) for each call. 

Durations of inhaled wobble and exhaled wobble cycles were measured with 

Praat (Figure 3.2a-b). A cycle corresponds to an opening and closing of the mouth. For 

an visual example of a wobble, see the supplementary movie published in (Bergman, 

2013). To quantify cycle duration, we created ‘intensity tiers’ (Bergman, 2013) from a 

wobble using a minimum frequency of 100 Hz. Local amplitude minimums in these 

intensity contours were identified manually (Figure 3.2c). Cycle durations were then 

calculated as the time between local amplitude minimums (the start of a wobble was 

counted as a local amplitude minimum). 

 

2.4 Data analysis 

Mean f0, F1, F2, F3, and F4 frequencies and bandwidths were determined for 

each individual per call type. Individuals were retained for data analyses if they had 

available data for f0 and each of the four formant measurements. Formant dispersion 
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(Df), was then calculated as the average distance between adjacent pairs of formant 

frequencies using the following formula (Fitch, 1997): 

!" = 	 %&'()%&*+(
&,(

-). ,         (1) 

where Df is formant dispersion (in Hz), N is the total number of formants measured, and 

Fi is the frequency (in Hz) of formant i. Df was then used to estimate vocal tract length 

(VTL, in cm) using the following formula (Taylor et al., 2016): 

/01 = 	 2
3∗	56

∗ 100,         (2) 

where c is the speed of sound in air (~ 350 m/s in the warm humid air of a mammalian 

vocal tract). 

Formant space was determined for each formant pair (F1-F2, F1-F3, F1-F4) by 

calculating the ellipse of the 95% confidence region that was formed with the 

“dataEllipse” function in the R software package “car” (Fox & Weisberg, 2011). These 

formant space areas were compared across gelada and chacma baboon exhaled grunts 

and human English vowels. Vowel formant frequencies in men and women were 

obtained from Table 5 in Hillenbrand et al. (1995). Then, two-way ANOVAs were used 

to compare f0, F1, F2, F3, and F4 mean frequencies and mean bandwidths across 

species (chacma baboon and gelada), sex and the interaction between species and 

sex. Linear Mixed Models (LMM) were used to compare f0, F1, F2, F3, and F4 mean 

frequencies and mean bandwidths across gelada male call types. In these comparisons, 

call type (exhaled grunt, inhaled grunt, exhaled grunt, exhaled moan, wobble, yawn) 

was the fixed effect. We investigated differences between call types using pairwise 

comparisons based on the LMM output. For the above analyses, we combined inhaled 
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and exhaled wobble recordings into one ‘wobble’ category due to low sample size of 

high quality wobble recordings.  

To investigate the temporal dynamics of wobble calls, we first used Spearman 

rank correlation tests, a method introduced to examine Menzerath’s law and remain 

objective about the exact functional dependency between variables (Baixeries, 

Hernández-Fernández, Forns, & Ferrer-i-Cancho, 2013; Ferrer-i-Cancho et al., 2014; 

Nikolaou, 2014). In these tests, cycle durations were correlated with the size (number of 

total cycles) of their associated wobble. If Menzerath’s law applies to wobbles, then 

there should be a negative association between cycle duration and wobble size. We 

also tried this analysis for each production mode (exhaled or inhaled) separately 

because it is not yet known whether the cycle length depends on the way in which a 

wobble is vocalized. Previous research focused on inhaled wobbles (Bergman, 2013). 

Although use of Spearman rank correlations can help to avoid potential problems of 

previous research on Menzerath’s law (Ferrer-i-Cancho et al., 2014), we recognize that 

its application with our dataset involves pseudo-replication. Therefore, we used a LMM 

to test whether the variation in cycle duration corresponds to production mode (exhaled 

or inhaled) or wobble size (number of cycles in a wobble) while controlling for the 

position of the cycle within a wobble (first, second, third, etc.), the wobble recording, and 

caller identity. In this LMM, cycle duration was the dependent variable, wobble size and 

production mode (exhaled or inhaled) were fixed effects, and cycle position, wobble 

recording, and caller identity were random effects. 

We ran the LMMs using the function “lmer” of the R package “lme4” (Bates, 

Maechler, & Bolker, 2012). The “lmerTest” package was implemented to determine the 
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significance of the LMM coefficients (Kuznetsova, Brockhoff, & Christensen, 2013). We 

used the “difflsmeans” function in the lmerTest package to make pairwise comparisons 

between call types. Unless noted otherwise, all calculations and statistical tests were 

carried out in R 3.3.0 (R Development Core Team, 2016). Critical values were set at 

alpha = 0.05, and all tests were two-tailed. 

 

3. Results 

3.1 Comparison of spectral properties across species 

 The following analyses are based on the f0 and formant measurements of 280 

exhaled grunts from 73 individuals (Table 3.1). The formant space of adult gelada 

exhaled grunts covered higher frequencies compared to chacma baboons and 

overlapped to a large degree with human vowel space (Table 3.1; Figure 3.3a-c). 

ANOVAs revealed that mean formant frequencies differed across species and sex. 

Geladas had higher mean f0 (F1,69 = 528.98, P < 0.0001), F1 (F1,69 = 227.98, P < 

0.0001), F2 (F1,69 = 69.37, P < 0.0001), F3 (F1,69 = 104.49, P < 0.0001), and F4(F1,69 = 

210.71, P < 0.0001) frequencies compared to chacma baboons. Females had higher 

mean f0 (F1,69 = 97.52, P < 0.0001), F1 (F1,69 = 30.43, P < 0.0001), F2 (F1,69 = 36.78, P 

< 0.0001), F3 (F1,69 = 82.55, P < 0.0001), and F4 (F1,69 = 116.78, P < 0.0001) 

frequencies compared to males. No species-sex interactions were found for mean f0 

(F1,69 = 3.37, P = 0.0709), F1 (F1,69 = 0.24, P = 0.6233), F2 (F1,69 = 2.12, P = 0.1503) or 

F3 (F1,69 = 2.51, P = 0.1176) frequencies. There was an interaction for mean F4 in that 

gelada and chacma females were more different from each other than were males (F1,69 

= 17.50, P = 0.0001). 
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ANOVAs also showed that f0 and formant modulation, as measured by 

bandwidth for each call per formant, differed across species and sex (Figure 3.3d-h). 

Geladas had larger mean bandwidths of f0 (F1,69 = 36.23, P < 0.0001), F1 (F1,69 = 79.12, 

P < 0.0001), F2 (F1,69 = 76.62, P < 0.0001), F3 (F1,69 = 46.84, P < 0.0001), and F4 (F1,69 

= 42.49, P < 0.0001) compared to chacma baboons. Compared to males, females had 

larger mean bandwidths for f0 (F1,69 = 10.50, P = 0.0018) and F1 (F1,69 = 28.80, P < 

0.0001), but there were no clear sex differences for F2 (F1,69 = 3.33, P = 0.0725), F3 

(F1,69 = 1.82, P = 0.182) or F4(F1,69 = 0.06, P = 0.808). No species-sex interactions were 

found for bandwidths of f0 (F1,69 = 3.17, P = 0.0793), F2 (F1,69 = 0.66, P = 0.4199), F3 

(F1,69 = 0.47, P = 0.4949), or F4 (F1,69 = 3.38, P = 0.0702). There was an interaction for 

F1 bandwidth in that gelada and chacma females were more different from each other 

than were males (F1,69 = 12.69, P = 0.0007). 

 

3.2 Comparison of spectral properties across gelada calls 

The following analyses are based on the f0 and formant measurements of 

exhaled grunts (n = 107 calls), inhaled grunts (n = 66 calls), exhaled moans (n = 14 

calls), inhaled moans (n = 32 calls), wobbles (n = 15 calls), and yawns (n = 19 calls) 

made by 25 gelada males (Table 3.1-3.2). LMMs revealed that exhaled grunts and 

derived calls had different formant profiles (Table 3.3, Figure 3.4a,c,e,g,i) and levels of 

within-call modulation (Table 3.4, Figure 3.4c,d,f,h,j). There was no evidence that mean 

frequencies and bandwidths differed between exhaled and inhaled grunts. Exhaled 

moans had higher mean F2 frequencies than exhaled grunts. Inhaled moans had lower 

mean f0 and F1 frequencies than exhaled grunts. Wobbles had lower mean F2-F4 
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frequencies and larger F1-F3 bandwidths than exhaled grunts. Yawns had lower mean 

f0 and F1-4 frequencies and larger f0 and F1-4 bandwidths than exhaled grunts. 

 

3.3 Temporal properties of gelada wobble calls 

We analyzed 28 inhaled and 25 exhaled wobble recordings (composed of a total 

of 239 cycles) recorded from 25 study males (1–14 wobble recordings per male). The 

wobbles ranged between 2—17 cycles and a total duration of 0.376—2.763 seconds. 

Cycle duration averaged 0.204 ± 0.006 seconds (4.912 Hz) and ranged from 0.555–

0.056 seconds (1.802–17.857 Hz) (Figure 3.5). Inhaled wobbles ranged between 2—7 

cycles (mean duration of 0.180 ± 0.007 seconds (5.569 Hz) and range of 0.555–0.080 

seconds (1.802—12.500 Hz). Exhaled wobbles ranged between 2—17 cycles (mean 

duration of 0.221 ± 0.008 seconds (4.522 Hz) and range of 0.544—0.056 seconds 

(1.838—17.857 Hz). 

We first used Spearman rank correlations to test how the durations of wobble 

cycles were related to the size (number of cycles) of their corresponding wobbles. We 

found a negative correlation between cycle duration and wobble size (rho = -0.156, P = 

0.0156; Figure 3.5a). This negative association was also characteristic of exhaled 

wobbles only (rho = -0.330, P < 0.0001) and inhaled wobbles only (rho = -0.410, P < 

0.0001). We then used a LMM to investigate how variability in cycle duration was 

associated with both wobble size and production mode (exhaled and inhaled) while 

including cycle position, caller identity, and wobble recording as random effects. 

Corroborating the findings of the Spearman correlation, the LMM showed a negative 

association between cycle duration and wobble size (Estimate ± SEM = -0.008 ± 0.003, 
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t = 2.731, P = 0.0138; Figure 3.6A). Cycles were shorter in inhaled compared to exhaled 

wobbles (Estimate ± SEM = -0.065 ± 0.016, t = 3.951, P = 0.003; Figure 3.5b). To test 

whether the slopes between wobble size and cycle duration differed based on wobble 

type, we ran a separate model to investigate whether there was an interaction between 

wobble type and size. We found no evidence that this was the case (Estimate ± SEM = -

0.010 ± 0.009, t = 1.112, P = 0.2721). 

 

4. Discussion 

 Gelada vocalizations exhibited spectro-temporal dynamics that had several 

similarities to the modulatory capacity of human speech as compared to the 

vocalizations of their baboon relatives. We found that gelada exhaled grunts covered a 

formant space area that overlapped more with human vowel space area (VSA) than did 

chacma baboon grunts. The f0 and first four formants were more modulated in gelada 

grunts than in chacma baboon grunts. Also, the exhaled grunts and derived calls 

showed diverse formant profiles. Wobbles and yawns had particularly high levels of f0 

and formant modulation. We also found that wobbles, vocalized lip-smacking with a 

speech-like rhythm, has a rhythm that overlaps more with human speech than 

previously thought. Wobble rhythm depends on the production mode (inhaled vs. 

exhaled) of the call and the size (number of cycles in a wobble). Following Menzerath’s 

law, wobble cycle duration was shorter if the corresponding wobble size was larger. 

Together, these findings suggest that geladas have a significant capacity to modulate 

the spectro-temporal dynamics of their vocalizations, which in turn, has important 
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implications for proposed hypotheses on the evolution of a speech-like ability in 

primates. 

 Previous research on the vocal capabilities of our non-human primate relatives 

have supported one of two hypotheses, the “peripheral” hypothesis or the “neural” 

hypothesis. The neural hypothesis advocates that non-human primates have the 

anatomical capacity but lack the neural mechanisms to flexibly control how they 

modulate their sounds (Fitch et al., 2016; Hockett, 1960). The present study falls in line 

with several other recent studies on apes and old world monkeys supporting the neural 

hypothesis (Boë et al., 2017; Fitch et al., 2016; Lameira et al., 2016, 2014). Our findings 

support the neural hypothesis in three ways. First, our cross-species comparison 

suggests that geladas have a greater ability to control the spectral properties of grunt 

calls than do baboons, whose grunts were already thought to cover a substantial degree 

of formant space (Boë et al., 2017; Owren et al., 1997; Rendall et al., 2005). The 

formant space of gelada grunts overlapped more with human VSA than baboon grunts. 

Specifically, gelada male formant space fell in the VSA shared by men and women, and 

female geladas covered most of women’s VSA. Moreover, gelada males and females 

varied the formant (and f0) frequencies within individual grunts to a level that exceeded 

the relatively unmodulated grunts made by chacma baboons. One potential caveat of 

the present study is that formants were measured by finding peaks in spectrum rather 

than vocal tract resonances, and so, there are limits to comparisons that can be made 

with human VSA. Modeling research on the vocal anatomy of modern humans, 

Neanderthals and rhesus macaques suggests that a combination of physical traits can 

result in larger formant space: a lower larynx, increased pharynx size, and enhanced 
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gestures of the tongue body (lips and jaw) (Boë, Heim, Honda, & Maeda, 2002; 

Lieberman & Crelin, 1971; Lieberman et al., 1969). Recent studies in macaques and 

baboons suggest that human-like anatomy is not necessary for producing calls that 

cover a wide formant space (Boë et al., 2017; Fitch et al., 2016). However, without 

morphological data on gelada vocal tract anatomy, we do not know what, if any, 

anatomical adaptations underlie their diverse vocalizations. Regardless, the current 

findings still suggest that geladas have a greater tendency to vary the spectral 

properties of their calls than do chacma baboons. 

 The second way in which our data support the neural hypothesis is through 

comparisons of the homologous and derived call types produced by gelada males. 

Exhaled grunts (the homologous call type shared with baboons) had a similar degree of 

f0 and formant modulation as inhaled grunts and inhaled/exhaled moans, but they were 

less modulated than wobbles and yawns. Additionally, the exhaled grunts and most of 

the derived calls had unique formant profiles. The only call types that had similar 

formant profiles were exhaled and inhaled grunts. The diversity in formant profiles 

across these six call types is important because these are the calls used to form call 

sequences (Gustison et al., 2016). Thus, a given vocal sequence will contain enhanced 

spectral modulation if it combines derived call types with exhaled/inhaled grunts. 

Presumably, geladas must exhibit some control over their supralaryngeal vocal tract so 

they can flexibly filter sound across a single call or call sequence. Furthermore, the 

variability that we describe is almost certainly underestimating the capabilities of 

geladas as we focus on only those calls used in the same contexts (affiliative social 

interactions) as grunts. Including more acoustically divergent calls such as alarm calls, 
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screams, and display calls, would likely expand the formant space covered by geladas 

as it does in baboons (Boë et al., 2017). 

 The third way in which our data support the neural hypothesis is through the 

speech-like rhythmic capacity of gelada male wobble calls. We replicated previous 

findings showing that gelada males move their facial articulators (e.g., mouth) during 

wobbles in a similar rhythm to human speech. By using an larger dataset than previous 

research (Bergman, 2013), we show that the rhythm of this vocalized lip-smacking 

overlaps more with human speech rhythm than previously thought. In the present study, 

wobble rhythm ranged from 2 to 15 Hz, which overlaps entirely with the 3-8 Hz rhythm 

of speech (Chandrasekaran et al., 2009). Moreover, this wobble rhythm depends on the 

production mode, with exhaled wobbles having longer cycles on average than inhaled 

wobbles. Furthermore, we found evidence that the variation in wobble rhythm abides by 

Menzerath’s law (Grégoire, 1899; Quené, 2008) in that there is a negative association 

between wobble cycle length and wobble size. In other words, wobble tempo got faster 

as wobble size got larger. Menzerath’s law also applied to inhaled and exhaled wobbles 

separately, although it should be noted that it is unclear the degree to which this pattern 

in exhaled wobbles is driven by the cycle durations of an unusually large 17-cycle 

wobble (Figure 3.5). The presence of Menzerath’s law in gelada vocalizations also has 

been discovered at the level of call sequences in that calls from larger sequences had 

shorter durations than calls from smaller sequences (Gustison et al., 2016). Our current 

findings therefore demonstrate that Menzerath’s law, and by extension the compression 

of vocal signals, operates at multiple levels of gelada communication. Additionally, 

these speech-like patterns of rhythm modulation in gelada calls support the neural 
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hypothesis and expand on the bimodal speech rhythm hypothesis. The bimodal speech 

rhythm hypothesis proposes that primate rhythmic facial expressions set the stage for 

fast paced vocalizations (Ghazanfar, 2013). The current findings expand on this 

hypothesis by showing that geladas not only have the capacity to couple vocalization to 

rhythmic facial expression, but that “linguistic” laws of compression predict the variability 

in this rhythm. Thus, the coupling of voice to facial movement is not an adaptation 

specific to human speech.  

Our findings have implications for research on the selective pressures driving 

derived vocal traits in humans and geladas. In humans, listeners have a difficult time 

understanding speech that has smaller vowel space, reduced articulation, and abnormal 

speech tempos (Bradlow, Torretta, & Pisoni, 1996; Neel, 2008). These speech deficits 

are characteristic of people with dysarthria, Parkinson’s, depression, and PTSD, for 

example (Levy et al., 2015; Scherer, Lucas, Gratch, Rizzo, & Morency, 2016; Skodda, 

Grönheit, & Schlegel, 2012; Volkmann, Hefter, Lange, & Freund, 1992; Whitfield & 

Goberman, 2014). Thus, expanded VSA and moderately paced syllable rates are 

crucial for the effective transfer of complex information. It does not appear that the 

expanded formant space and speech-like rhythm in the gelada male vocal system has 

led to enhanced referential information transfer. Rather, social functions appear more 

important. A playback study showed that gelada females appear to pay more attention 

to male utterances that included derived call types with the greatest formant modulation 

– exhaled moans, wobbles and yawns (Gustison & Bergman, 2016). Considering that 

there is a sex-bias in the production of these call types, it is likely that sexual selection 

played a role in driving the morphological and/or behavioral traits needed to produce 
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complex sounds (Gustison et al., 2012). These findings align with human studies 

showing that men tend to use a larger and more unique vocabulary around women, and 

women tend to prefer men with a larger vocabulary (Prokosch, Coss, Scheib, & Blozis, 

2009; Rosenberg & Tunney, 2008). 

There is notable debate over which traits of speech are unique to humans (Boë et al., 

2002; Fitch, 2010; Ghazanfar & Rendall, 2008; MacLarnon & Hewitt, 2004). Our findings 

on the spectro-temporal properties of gelada calls add to this ongoing conversation by 

building on hypotheses about the evolution of complex vocal ability. By exhibiting a high 

degree of modulation in the spectrum-based and temporal-based features of their calls, 

as compared to baboons, geladas challenge the traditional hypothesis that non-human 

primates lack the physical capacity to produce complex speech-like sounds. Instead, 

our findings support the alternative hypothesis that primates have a capacity to produce 

complex sounds but lack the appropriate neural mechanisms to fully control this 

capacity. The distinction between humans and other primates on the basis of vocal 

ability may be smaller than previously assumed. Future work will be essential in 

identifying selective pressures that may have contributed to the evolution of these 

modulatory skills in geladas and other non-human primates. 
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Table 3.1. Fundamental frequency (f0), formant frequencies (F1-4), formant dispersion (Df), and estimated vocal tract length 
(est. VTL) measured from the exhaled grunts of adult chacma baboons and geladas. Values listed as mean [SEM]. 
Species Sex Subjects 

(# per subject) 
f0 (Hz) F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) Df (Hz) est. VTL 

(cm) 
chacma male 9 (2-15) 55.442 

[3.033] 
285.041 
[7.716] 

1041.743 
[34.095] 

1855.466 
[37.803] 

2786.111 
[67.944] 

833.69 
[22.795] 

21.121 
[0.594] 

chacma female 15 (1-5) 130.61 
[5.553] 

400.38 
[12.827] 

1339.255 
[22.534] 

2528.91 
[77.114] 

3315.737 
[69.447] 

971.786 
[23.467] 

18.148 
[0.416] 

gelada male 17 (1-23) 268.605 
[7.945] 

633.419 
[12.212] 

1512.539 
[33.355] 

2644.149 
[60.05] 

3739.164 
[78.711] 

1035.248 
[27.013] 

17.118 
[0.519] 

gelada female 32 (1-6) 383.772 
[9.946] 

773.731 
[24.192] 

2037.829 
[76.625] 

3646.951 
[94.151] 

5220.054 
[101.858] 

1482.108 
[30.07] 

11.965 
[0.255] 
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Table 3.2. Fundamental frequency (f0) and formant frequencies (F1-4) measured from the derived calls of adult male 
geladas. Values listed as mean [SEM]. 

Call type Subjects 
(# per subject) 

f0 (Hz) F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) 

inhaled grunt 14 (1-19) 259.694 
[16.64] 

607.69 
[16.746] 

1473.629 
[28.858] 

2701.323 
[62.49] 

3766.168 
[78.262] 

exhaled moan 8 (1-6) 294.225 
[14.119] 

624.123 
[34.747] 

1644.51 
[50.437] 

2676.738 
[85.385] 

3778.811 
[115.865] 

inhaled moan 15 (1-8) 202.027 
[21.293] 

570.885 
[19.799] 

1494.908 
[38.862] 

2707.291 
[66.193] 

3873.213 
[99.126] 

wobble 9 (1-5) 226.81 
[25.475] 

593.682 
[24.32] 

1305.587 
[46.38] 

2261.6 
[140.619] 

3246.065 
[176.438] 

yawn 17 (1-2) 369.45 
[33.448] 

693.313 
[25.637] 

1333.182 
[23.775] 

2320.329 
[67.317] 

3156.244 
[101.521] 
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Table 3.3. Results of five LMMs used to test for differences in mean fundamental (f0) and formant (F1-4) frequencies (Hz) between exhaled grunts and all 
derived call types. Each column represents a single LMM. 

Derived 
call type 

f0 F1 F2 F3 F4 
Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* 

Inhaled 
grunts 

-5.12 
[28.15] 

0.18 0.8564 -25.68 
[26.85] 

0.96 0.3435 -38.91 
[46.39] 

0.84 0.4043 66.65 
[95.89] 

0.70 0.4899 50.09 
[130.45] 

0.38 0.7026 

Exhaled 
moans 

17.89 
[34.00] 

0.53 0.6006 -14.44 
[32.38] 

0.45 0.6573 131.97 
[55.11] 

2.40 0.0192 42.02 
[115.15] 

0.37 0.7164 32.67 
[156.92] 

0.208 0.8358 

Inhaled 
moans 

-69.30 
[27.81] 

2.49 0.0155 -63.54 
[26.51] 

2.40 0.0201 -17.63 
[45.53] 

0.39 0.6997 65.00 
[94.49] 

0.69 0.4942 144.52 
[128.64] 

1.12 0.2662 

Wobbles -44.75 
[33.23] 

1.35 0.1824 -39.94 
[31.58] 

1.27 0.2104 -206.95 
[52.98] 

3.91 0.0002 -383.58 
[111.72] 

3.43 0.0010 -488.94 
[152.54] 

3.21 0.0021 

Yawns 99.33 
[26.92] 

3.69 0.0005 57.96 
[25.66] 

2.26 0.0280 -179.36 
[44.08] 

4.07 0.0001 -316.42 
[91.46] 

3.46 0.0010 -571.43 
[124.51] 

4.59 < 0.0001 

* Bolded values indicate P < 0.05 
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Table 3.4. Results of five LMMs used to test for differences in the bandwidth of fundamental (f0) and formant (F1-4) frequencies (Hz) between exhaled grunts and all 
derived call types. Each column represents a single LMM. 

Call type f0 F1 F2 F3 F4 
Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* Estimate 

[SEM] 
t P* 

Inhaled 
grunts 

-11.61 
[26.94] 

0.43 0.6681 -0.81 
[44.87] 

0.02 0.9856 -75.427 
[80.54] 

0.94 0.3521 -40.37 
[87.48] 

0.46 0.6460 -41.73 
[97.68] 

0.43 0.6708 

Exhaled 
moans 

40.81 
[32.41] 

1.26 0.2126 70.55 
[53.31] 

1.32 0.1898 92.16 
[95.68] 

0.96 0.3386 55.66 
[104.51] 

0.53 0.5961 192.28 
[117.12] 

1.64 0.1055 

Inhaled 
moans 

1.25 
[26.57] 

0.05 0.9625 42.29 
[44.05] 

0.96 0.3401 -42.07 
[79.06] 

0.53 0.5963 7.13 
[86.03] 

0.08 0.9342 108.47 
[96.20] 

1.13 0.2639 

Wobbles 3.77 
[31.52] 

0.12 0.9051 205.46 
[51.26] 

4.01 0.0001 255.99 
[92.00] 

2.78 0.0068 216.48 
[100.89] 

2.15 0.0354 112.05 
[113.45] 

0.99 0.3268 

Yawns 308.87 
[25.71] 

12.01 < 0.0001 243.90 
[42.65] 

5.72 < 0.0001 406.03 
[76.55] 

5.30 < 0.0001 425.91 
[83.28] 

5.11 < 0.0001 643.97 
[93.11] 

6.92 < 0.0001 

* Bolded values indicate P < 0.05 
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Figure 3.1. Spectrograms (Hanning window of 25 ms) of adult male and female chacma 
baboon and gelada exhale grunts, as well as a gelada male derived call types (inhaled 
grunt, exhaled moan, inhaled moan, wobble, and yawn). These are call types produced 
during affiliative contexts. Mean formant (1-4) frequencies are denoted by arrows. 
Spectrograms were made in Praat. 
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Figure 3.2. A gelada male wobble: (a) spectrogram (Hanning window of 25 ms), (b) 
waveform, and (c) intensity contours used to extract cycles start/end times (i.e., the 
local amplitude minimums of intensity tiers). Images were produced in Praat. 
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Figure 3.3. Between-species comparisons of (a-c) formant space, (d) fundamental 
frequency (f0) modulation and (e-h) formant modulation. Formant space comparisons 
were made for (a) F1-F2 space, (b) F1-F3 space, and (c) F1-F4 space in chacma 
baboon and gelada exhaled grunts and in human English vowels. Circle symbols and 
dotted lines (chacma baboons) and squares and solid lines (geladas) represent the 
mean formant frequencies surrounded by the 95% confidence interval ellipses. Open 
symbols represent females and solid symbols represent males. Human vowels (red – 
women; blue –men) are represented by convex hulls determined from published vowel 
formant frequencies (Hillenbrand, Getty, Clark, & Wheeler, 1995). f0 and formant 
bandwidths are used to characterize modulation (d-h) in chacma baboon and gelada 
exhaled grunts. Points and whiskers indicate mean ± 2 SEM. To make comparisons, 
ANOVAs included species, sex and the species*sex interaction as fixed effects. * P < 
0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Sample sizes (each data point 
representing a single individual) are reported in Table 1. 
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Figure 3.4. Comparisons of the mean frequencies and bandwidths of (a-b) f0, (c-d) F1, 
(e-f) F2, (g-h) F3, and (i-j) F4 frequencies of gelada male exhaled grunts (orange) and 
derived call types (shade of blue). The six call types include exhaled grunts (“eg”), 
inhaled grunts (“ig”), exhaled moans (“em”), inhaled moans (“im”), wobbles (“w”), and 
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yawns (“y”). Bars and whiskers indicate mean ± 2 SEM. To make comparisons, LMMs 
included f0 and F1-F4 means or bandwidths as the dependent variable, call type as the 
fixed effect, and caller identity as the random effect. Letters above the bars represent 
the outcome of pairwise comparisons between the call types. Calls that do not share a 
letter differed from each other at the level of P < 0.05. Sample sizes (each data point 
representing a single individual) are reported in Tables 1 and 2. 
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Figure 3.5. Associations between cycle duration and (a) wobble size and (b) production 
mode. Cyan circles represent individual cycles from inhaled wobbles and purple 
diamonds represent individual cycles from exhaled wobbles. Points and whiskers in plot 
(b) indicate mean ± 2 SEM. To make comparisons, LMMs included cycle duration as the 
dependent variable, wobble size and production mode as fixed effects, and wobble 
recording, cycle position, male identity as random effects. * P < 0.05, ** P < 0.01, *** P < 
0.001, **** P < 0.0001. 
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Chapter 4: 

Gelada vocal sequences follow Menzerath’s linguistic law 

 

Abstract 

Identifying universal principles underpinning diverse natural systems is a key goal of the 

life sciences. A powerful approach in addressing this goal has been to test whether 

patterns consistent with linguistic laws are found in non-human animals. Menzerath’s 

law is a linguistic law that states that the larger the construct, the smaller the size of its 

constituents. Here, we present the first evidence that Menzerath’s law holds in the vocal 

communication of a non-human species. We show that in vocal sequences of wild male 

geladas (Theropithecus gelada), construct size (sequence size in number of calls) is 

negatively correlated with constituent size (duration of calls). Call duration does not vary 

significantly with position in the sequence, but call sequence composition does change 

with sequence size and most call types are abbreviated in larger sequences. We also 

find that inter-call intervals follow the same relationship with sequence size as do calls. 

Finally, we provide formal mathematical support for the idea that Menzerath’s law 

reflects compression – the principle of minimizing the expected length of a code. Our 

findings suggest that a common principle underpins human and gelada vocal 

communication, highlighting the value of exploring the applicability of linguistic laws in 

vocal systems outside the realm of language. 
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Introduction 

Identifying fundamental principles that underpin diverse natural phenomena is a 

central goal of the life sciences (1, 2). The existence of such principles, revealed by the 

occurrence of common statistical patterns, can shed light on the basic processes 

shaping biological systems (3). In recent years, exploration of the universality of the 

statistical laws of human language has proved a fruitful starting point for identification 

and investigation of these fundamental principles (4, 5). The power of such an approach 

is illustrated by recent studies of the generality of Zipf’s law of abbreviation (6). This 

linguistic law, also commonly known as Zipf’s law of brevity, states that more frequently 

used words tend to be shorter, and it has been found to hold true in all languages 

assessed to date (5). Analyses of the non-vocal surface behavioral repertoire of 

dolphins (7), the vocal repertoire of Formosan macaques (8), close-range calls of 

common marmosets (9), and social calls of four species of bats (10) reveal that they too 

conform to an inverse general relationship between magnitude (e.g., duration) and 

frequency of use. This common pattern provides evidence that compression – the 

information theoretic principle of minimizing the expected length of a code – is a general 

principle of animal (including human) behavior, reflecting selection for energetic 

efficiency (4, 11).  

Further evidence of compression in human language - this time not at the level of 

individual elements, but at the level of elements combined into sequences - may come 

from studies of another linguistic law, Menzerath’s law, which states simply that “the 

greater the whole, the smaller its constituents” (12–14). Traditionally, this law has been 

used to explore the structuring of language in written text, and evidence supports this 
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law at different scales of analysis: the longer a word in terms of syllable number, the 

shorter on average are its constituent syllables (e.g., 14), and the longer a sentence in 

terms of number of clauses, the shorter on average those clauses are (e.g., 16). 

Although Menzerath’s law was originally induced as a linguistic law, it has since been 

applied to a wide range of systems beyond human language: a negative correlation 

between construct and constituent size has been found in domains such as music (16) 

and at the molecular level, with species that have a larger number of chromosomes 

tending to have a smaller mean chromosome size (4, 17–20), genes that have a higher 

number of exons having shorter exons on average (21, 22), and proteins with a higher 

number of domains having on average shorter domains (23). This broad adherence to 

Menzerath’s law can be interpreted as a manifestation of self-organization (24) and 

compression of information (14, 25), and suggests that these processes may be 

widespread in shaping multi-level systems as diverse as macromolecules, language 

and music.  

To date, no study has tested Menzerath’s law in the vocal communication of any 

species except our own. Carrying out such studies is essential if the generality of this 

law across different communication systems is to be evaluated. Such an investigation 

would also contribute to our understanding of the multifaceted nature of animal vocal 

signaling; identifying the processes by which animals take singular sounds and combine 

them into diverse sequences is a key goal for those wishing to quantify, compare and 

explain variation in vocal complexity across taxa, including humans (26). Moreover, 

finding conformity to Menzerath’s law in animal vocal behavior would highlight an 

important commonality between human language and the vocal systems of other 
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animals, with respect to the basic structural patterns underpinning how sounds are 

combined into larger units and structures. This commonality would provide evidence for 

selection acting on the communicative systems of these disparate taxa, either to 

constrain them to a common ancestral state, or to drive their convergent evolution (5). 

Here we test Menzerath’s law in the vocal communication of wild geladas 

(Theropithecus gelada), a gregarious primate species with a well described vocal 

repertoire, and in which individuals - typically adult males - produce long and complex 

vocal sequences during affiliative contexts (27–30). The constituent parts of these 

sequences are discrete, individual calls, and six different call types in total are seen in 

sequences. Playback experiments indicate that sequences composed of only the most 

common call type - grunts - elicit weaker responses from receivers than do more varied 

sequences; furthermore, regardless of composition, playbacks of sequences comprised 

of multiple call types elicit similar strong responses from receivers (31). These results 

suggest that, in contrast to what happens when words are combined to form sentences, 

geladas do not seem to combine elements into sequences to convey a different 

meaning. Instead, these vocal sequences may function similarly to bird song in that 

increasing the diversity of calls within them provides a more effective way to convey the 

same message (32). 

First, we test for (a) a negative correlation between the number of calls in a 

sequence and the average duration of these calls; this provides a test of Menzerath’s 

law in the gelada vocal system. Patterns consistent with Menzerath’s law could result 

from one or more different processes, which we explore in further analyses. One such 

process would be energetic or breathing constraints on vocal production leading to 
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shorter vocal utterances being made later in sequences (and more of these shortened 

calls being seen in sequences with more calls overall); we therefore assess whether (b) 

durations of calls become shorter later in sequences. Patterns consistent with the law 

could also occur if sequences with more calls contain a higher proportion of the shorter 

call types in the repertoire; therefore, we test whether (c) sequence composition 

changes with the number of calls. Another possible process underlying emergence of 

this law would be calls of a particular type being shortened in duration in sequences 

with more calls; we explore this possibility by testing whether (d) within specific call 

types, durations are shorter in sequences containing a larger number of calls. We then 

extend our analyses to explore the silences between calls (inter-call intervals) testing 

whether (e) Menzerath’s law also holds for silences, such that inter-call intervals are 

shorter in sequences with more calls, and (f) durations of inter-call intervals become 

shorter later in sequences. Finally, as a link between Menzerath’s law and the principle 

of compression has previously been proposed (14, 25), but not systematically 

established, we (g) use a mathematical approach to provide formal support for this link 

and (h) put forward a unified explanation for the origins of both Menzerath’s law and 

Zipf’s law of abbreviation. 

 

Materials and Methods 

 

(a) Study site and subjects 

Data for this study come from 57 adult male geladas across three different bands in one 

wild community (about 1200 individuals) living in the Sankaber area of the Simien 
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Mountains National Park, Ethiopia (64). Gelada bands are comprised of smaller harem-

like units with a leader male, 0-3 follower males, and 1-11 females with their immature 

offspring (64). Male geladas were chosen as the target of the study because they 

produce more complex vocalizations than females (27, 30). The study males included 

33 unit leaders, 14 followers, and 7 males who were a leader and a follower at different 

times during the study period, from across 30 reproductive units. The remaining 3 study 

males were bachelors from all-male groups in the study bands, and one of these males 

was a leader and a bachelor at different times during the study period (65). This 

population has been under intensive behavioral study since January 2006, and study 

subjects are fully habituated to human observers on foot (approach distances less than 

3 m) (66). 

 

(b) Vocal sequence data collection and processing 

From March 2008 to June 2014, we opportunistically recorded vocal sequences during 

behavioral observations, using a Sennheiser ME66 directional microphone connected to 

a Marantz PMD 660 or 661 Digital Recorder. We define a vocal sequence (i.e., the 

whole construct) as one or more discrete calls (i.e., the constituent parts) made by the 

same individual and, for those sequences with two or more calls, separated by an inter-

call interval of less than 5 seconds (Figure 4.1). Sequence size refers to the number of 

calls in the sequence. Call (or interval) position refers to the placement of the call (or 

interval) in the entire sequence (1st, 2nd, 3rd, 4th, etc.). To control for behavioral context, 

we focus only on the vocal sequences made during close-range affiliative social 

situations. These ‘contact call’ vocal sequences are thought to play an important role in 
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facilitating contact with group members, and they are known to vary widely in size, 

composition, and complexity of individual calls (27, 30). Six call types are made during 

these vocal sequences: exhale grunts, exhale moans, inhale grunts, inhale moans, 

wobbles and yawns (30). Call types in a vocal sequence were described at the time of 

the recording and reassessed during visual and auditory inspection of the spectrogram; 

an earlier study of gelada vocalizations, which examined calls from many of the 

sequences analyzed here, found 96% inter-observer reliability of call type identification 

(30). Because grunts and moans (an elongated version of a grunt) grade into each 

other, density plots of call durations (log-transformed) for exhaled and inhaled 

grunts/moans were used to determine thresholds to distinguish between grunt and 

moan call types. These thresholds were defined as the minimum value between the first 

two peaks. By this definition, the threshold between exhaled grunts and moans was 

0.768 s and the threshold between inhaled grunts and moans was 0.513 s. 

 

Our analyses focus on vocal sequences with sufficiently high noise-to-signal ratio to 

categorize call types, and which are uninterrupted by a call from another adult unit 

member. We used Avisoft (v. 5.1.12, R. Specht, Berlin) to generate spectrograms with a 

fast Fourier transformation (size of 1024 points) and to label the start time, end time and 

call type of all calls in a vocal sequence. These start and end times were used to 

calculate the call duration and inter-call interval duration. Calculations of call durations, 

inter-call interval durations, and all statistical tests were carried out in R 3.2.2. (67). 

  

(c) Statistical analysis 
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To explore the relationship between call duration (and inter-call interval duration) and 

sequence size, we first used Spearman rank correlation tests, a method introduced to 

examine Menzerath’s law and remain objective about the exact functional dependency 

between the variables (22, 37, 68). In these tests, the duration of individual calls or 

inter-call intervals for each sequence size was correlated with sequence size. While this 

can help to avoid potential problems of previous research on Menzerath’s law (37), we 

recognize that its application with our dataset involves pseudoreplication. Therefore, 

linear mixed models (LMM) were constructed in order to assess the relationships 

between call (and interval) duration and sequence size while taking call (or interval) 

position, call type, male identity and sequence recording (i.e., the vocal sequence that a 

call was from) into account. We ran the LMMs in R 3.2.2. using the function lmer of the 

R package lme4 (69). The lmerTest package was implemented to determine the 

significance of the LMM coefficients (70). (a) First, we examined variation in individual 

call duration by including sequence size, call position and call type as fixed factors and 

male identity and the sequence recording as random effects. (b) An effect of call 

position was assessed in the LMM for part (a), and to examine further the relationship 

between call position and individual call duration, we ran an additional LMM with 

duration of the first call in vocal sequences as the dependent variable, sequence size as 

a fixed effect, and male identity as a random effect. (c) To examine whether the 

proportion of call types changes as sequence size changes, we ran six LMM models, 

one for each call type. For these models, the proportion of each call type was calculated 

for all vocal sequences as the number of calls of a given call type divided by the 

sequence size. Call type proportion was included as a dependent variable, with 
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sequence size as a fixed effect and male identity as a random effect. (d) Then, to 

assess whether a relationship between call duration and sequence size applied to 

specific call types, six LMM models were run, one for datasets limited to each of the call 

types. In these models, call duration was the dependent variable with sequence size as 

a fixed effect and with male identity and sequence recording as random effects. See 

Supporting Information for rationale behind the exclusion of call position as a fixed effect 

for the LMMs on datasets for specific call types and the results of analyses including call 

position. (e) We examined variation in inter-call interval duration by including sequence 

size, interval position and call type as fixed effects and male identity and sequence 

recording as random effects. (f) An effect of inter-call interval position was assessed in 

the LMM for part (e), and to examine further the relationship between interval position 

and interval duration, we ran an additional LMM with duration of the first inter-call 

interval as the dependent variable, sequence size as a fixed effect, and male identity as 

a random effect. All statistical tests were assessed using a significance level of a = 

0.05.  

 

Results 

We analyzed 1065 vocal sequences (comprised of 4747 individual calls) 

recorded from 57 study males (1-113 sequences per male). The sequence sizes ranged 

between 1 and 26 calls (242 single call sequence recordings, 1-156 recordings for 

sequences with two or more calls, with 1-24 recordings per male per sequence size). 

There were no recordings available for sequences of 22 calls or 25 calls. Since 242 

sequences were comprised of a single call, this means that 823 sequences were used 
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in the analyses involving inter-call intervals. Total sequence duration averaged 1.97 s 

(SEM: 0.05 s; range: 0.12 s to 8.33 s), and the distribution of the sequences sizes was 

consistent with a geometric distribution, suggesting that the probability of sequence 

termination is not dependent on sequence size (see supporting information for further 

details about the variation of sequence duration and size). Example spectrograms of 

short and long vocal sequences from the same male, showing each of the six call types, 

are shown in Figure 4.1.  

 

(a) Is call duration negatively correlated with sequence size?  

To test whether there is a negative association between construct size and the 

duration of constituent parts, we tested for a correlation between sequence size and the 

duration of individual calls. Supporting Menzerath’s law, individual call duration was 

negatively correlated with sequence size (rs = -0.229, n = 4747, p < 0.0001 - Figure 

4.2A). This finding was further supported by a Linear Mixed Model (LMM) that included 

individual call duration as the dependent variable, sequence size, call position, and call 

type as fixed effects, and male identity and sequence recording (i.e., the vocal 

sequence that a call was from) as random effects (P < 0.0001 - Table 4.1). 

 

(b) Does call duration get shorter later in the sequence? 

To test whether such a Menzerath’s law effect could be due to constraints on 

vocal production, resulting in shorter calls towards the end of a sequence, we explored 

the role of call position in the LMM (Table 4.1). Call position was not associated with call 

duration, indicating that calls were relatively similar in duration throughout an entire 
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vocal sequence (Figure 4.2B). This finding was corroborated by an LMM showing that 

the duration of first position calls was negatively associated with sequence size 

(Estimate ± SEM: -0.020 ± 0.005, t = 4.151, P < 0.0001), indicating that the duration of 

calls in the beginning of sequences reflected sequence size.  

 

(c) Do proportions of call types change with sequence size? 

To test whether a Menzerath’s law effect could be due to a varying proportion of 

shorter or longer call types in sequences of different sizes, we explored differences in 

duration across the six call types and examined associations between sequence size 

and proportions of each call type given in each sequence size. There was marked 

variation in duration among the six call types (Table 4.2). On average, inhale grunts 

were the shortest of the call types, exhale grunts were the second shortest call type, 

followed by inhale moans, wobbles, yawns and exhale moans (Table 4.1 and Table 

4.2). The proportions of both exhale grunts (Estimate ± SEM: -0.019 ± 0.002, t = 8.130, 

P < 0.0001) and exhale moans (Estimate ± SEM: -0.008 ± 0.002, t = 4.747, P < 0.0001) 

in vocal sequences were negatively associated with sequence size (Figure 4.3). The 

proportions of inhale grunts (Estimate ± SEM: 0.023 ± 0.001, t = 20.173, P < 0.0001), 

inhale moans (Estimate ± SEM: 0.005 ± 0.001, t = 3.979, P = 0.0001) and wobbles 

(Estimate ± SEM: 0.001 ± 0.000, t = 4.676, P < 0.0001) in vocal sequences were 

positively associated with sequence size (Figure 4.3). The proportion of yawns in vocal 

sequences was unrelated to sequence size (Estimate ± SEM: -0.001 ± 0.001, t = 1.351, 

P = 0.1772 - Figure 4.3). 
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(d) Do calls of a particular type shorten in duration in longer sequences? 

To test whether a Menzerath’s law effect could be due to the shortening of 

specific call types in longer sequences, we explored the relationships between call 

duration and sequence size within particular call types using LMMs. Individual call 

duration was negatively associated with sequence size for exhale grunts (Estimate ± 

SEM: -0.002 ± 0.001, t = 2.299, P = 0.0219), exhale moans (Estimate ± SEM: -0.044 ± 

0.013, t = 3.471, P = 0.0006), inhale grunts (Estimate ± SEM: -0.005 ± 0.001, t = 6.001, 

P < 0.0001) and wobbles (Estimate ± SEM: -0.083 ± 0.029, t = 2.873, P = 0.0090) 

(Figure 4.4). Call duration was unrelated to sequence size for inhale moans (Estimate ± 

SEM: 0.003 ± 0.003, t = 0.863, P = 0.3892) and yawns (Estimate ± SEM: 0.008 ± 0.010, 

t = 0.771, P = 0.4422) (Figure 4.4). 

 

(e) Is inter-call interval duration negatively correlated with sequence size? 

We extended our definition of constituent parts to include the inter-call intervals 

(the silences between calls) in vocal sequences and carried out analyses similar to 

those using individual call duration as a dependent variable. Supporting Menzerath’s 

law, individual inter-call interval duration for each sequence was negatively correlated 

with sequence size (rs = -0.413, n = 3682, P < 0.0001 - Figure 4.5A). This finding was 

further supported by a LMM that included individual inter-call interval duration as a 

dependent variable, sequence size and interval position as fixed effects, and male 

identity and sequence recording as random effects (P < 0.0001; Table 4.3). 

 

(f) Do inter-call intervals become shorter later in a sequence? 
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To test whether such a Menzerath’s law effect of inter-call intervals could be due 

to constraints on vocal production, resulting in shorter intervals towards the end of a 

sequence, we explored the role of interval position in the LMM (Table 4.3). There was 

support for the prediction that inter-call interval duration shortens as a sequence 

progresses, as interval duration was negatively associated with interval position (Figure 

4.5B). Moreover, an LMM showed that the duration of first position inter-call intervals 

was negatively associated with sequence size (Estimate ± SEM: -0.021 ± 0.003, t = 

6.365, P < 0.0001), indicating that the intervals in the beginning of sequences also 

reflected sequence size. 

 

(g) A formal mathematical exploration of the link between Menzerath’s law and 

compression 

In quantitative linguistics, the presence of Menzerath’s law has been interpreted 

as a compression effect ((26), p. 147; (15), p. 42); however, the connection between 

this law and the problem of compression in information theory is not obvious and has 

never been formally explored mathematically. In standard coding theory, the problem of 

compression is based on the minimization of the mean code length (33)  

! = #$%$&
$'( ,             [1] 

where pi and li are, respectively, the probability and the length of the i-th element of a 

repertoire (e.g., an alphabet) of size V. Solving the problem of compression consists of 

finding the lengths so as to minimize L, assuming that the probabilities of the elements 

are constant and that two elements cannot have the same code. The minimization of L 

and a negative correlation between probability and length are intimately related (11). 

For instance, it has been shown that the minimization of L leads to the law of 
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abbreviation, i.e. a negative correlation between probability and length (4, 11). For 

Menzerath’s law in human language and the vocalizations of geladas, we propose the 

minimization of the following function  

* = %$+
$'( ,             [2] 

where li is now the magnitude of the i-th construct in a series of T constructs. For 

instance, li could be the total duration of the i-th vocalization of a gelada or the length in 

words of the i-th sentence in text (see (5) for a review of costs associated to duration). 

Notice that there is an important difference between L and M; to illustrate this point, we 

borrow the concept of type and token from quantitative linguistics (34). While L is 

defined as a summation over types (elements of the repertoire or vocabulary), M is 

defined as a summation over tokens, namely occurrences of elements of the repertoire.  

Interestingly, M can be expressed equivalently as the total sum of the duration of the 

parts of every occurrence, namely 

* = %$,-.
,'(

+
$'( ,            [3] 

where lij is the length of the j-th part of the i-th occurrence (token). If one assumes that 

given a certain occurrence, all the parts are identically distributed, it turns out that the 

expectation of M is  

/ * = 0$/ %$, 1+
$'( ,           [4] 

where E[lij|i] is the expected magnitude of the parts of the i-th occurrence, assuming that 

parts are identically distributed for a given occurrence. Now it is easy to see that L and 

E[M] follow the same scheme: both are a weighted sum of the magnitude of elements 

from a set. Applying the arguments employed to derive the law of abbreviation from the 

minimization of L (11) one can also derive Menzerath’s law from the minimization of 
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E[M]. This argument relies on the simplifying assumption that parts are identically 

distributed, which is supported by the absence of an overall effect of call position (Table 

4.1).  

 

(h) A unified explanation for the origins of Zipf’s law of abbreviation and Menzerath’s law 

through a general cost function. 

The generality of the principle of compression becomes more evident when regarding 

the minimization of L and E[M] as instances of the minimization of a generalized cost 

function 

2 = 3$4$$ ,             [5] 

where xi and yi are respectively the weight and the magnitude of the i-th element of a 

set (we assume that all “xi”s and “yi “s are positive). L is a particular case of K when xi 

and yi are, respectively, the probability and the length of the i-th element (in this case, K 

is defined over the alphabet or species repertoire). E[M] is a particular case of K when xi 

is the number of parts (the number of calls) of the i-th occurrence (token) and yi is the 

expected magnitude of its parts; i.e., E[lij|i] (in that case, the set consists of occurrences 

or tokens). Applying the same arguments of Ferrer-i-Cancho et al. (11) to the 

minimization of K, a negative correlation between the weight of a unit and its magnitude 

is expected.  To conclude, the minimization of K can be viewed as a general principle of 

compression, shedding light on the origins of both the Zipf’s law of abbreviation and 

Menzerath’s law. This provides theoretical support for the intuition that Menzerath’s law 

is an effect of compression (14, 23, 25). Indeed, one can also conclude that 

minimization of K and a negative correlation between the weight of a unit and its 
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magnitude (Zipf’s law of abbreviation, Menzerath’s law) are intimately related, based 

upon previous arguments for L (11). 

  
Discussion 
 

The complex vocal sequences of adult male geladas follow Menzerath’s law, with 

sequences that are larger - i.e., that contain more calls - being composed of calls with 

shorter duration. This finding provides new support for the generality of this linguistic 

law beyond the realm of human language. There is currently great controversy about 

why diverse biological systems exhibit Menzerath’s law and related laws (4, 5, 8, 18, 20, 

35), and indeed about whether such laws hold at all (9, 36). Our findings make a 

significant contribution to this ongoing debate, providing the first evidence for 

Menzerath’s law in non-human animal vocal systems, and complementing a growing 

body of comparable evidence from a range of mammalian species (7, 8, 10) that 

behavior can be described by another, related linguistic law – Zipf’s law of abbreviation 

(6). A virtue of our analysis of the presence of Menzerath’s law is that it considers the 

duration of individual calls within a sequence and thus the finding of the law cannot be 

attributed to an artefact of employing mean durations (37). Our results also provide new 

support for the hypothesis that Menzerath’s law, as is the case for Zipf’s law of 

abbreviation, is an effect of compression – the information theoretic principle of 

minimizing the expected length of a code. 

The finding that gelada vocal sequences show the same negative relationship 

between the size of the whole construct and the size of its constituents, as is found in 

human language, suggests that equivalent principles of self-organization (24) underpin 

the vocal communication of our own species and another primate. While there are 



 117	

elementary differences between the vocal faculties of humans and of other animals (38–

40), exploring and comparing mathematical, structural properties of their communication 

systems can be informative (26, 41). As language is inherently sequence-based and 

animals of many taxa, from bacteria (42) to great apes (43), combine individual signals 

into sequences, identifying basic patterns of sequence structure that are shared by 

human and non-human animal communication provides evidence for evolutionary 

preservation, or convergent evolution, of the processes underlying the emergence of 

such patterns (41). Importantly, adherence to Menzerath’s law need not involve any 

cognitively demanding planning by the animals producing sequences of sound. Finding 

Menzerath’s law in gelada communication suggests that strings of sound following this 

law could pre-date the evolution of meaningful combinations. 

Our further analyses revealed insights into how the negative relationship 

between call duration and sequence size arises in gelada vocal sequences. Firstly, our 

analyses of call duration and call position in a vocal sequence suggest that conformity 

to Menzerath’s law cannot be explained simply by physiological or mechanical 

constraints on vocal production leading to shorter calls being made at the end of 

sequences (and more of these abbreviated calls being added to the end of longer 

sequences). Considering all call types together, a negative association was not seen 

between call position and duration as would be expected if such constraints were 

important; this indicates that from the start of vocal sequences, male geladas make calls 

of the ‘appropriate’ duration for that sequence size, and call duration does not then 

reduce predictably as the sequence progresses.  
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The emergence of patterns consistent with Menzerath’s law may be in part due 

to the composition of vocal sequences varying with the number of calls. In particular, the 

proportion of exhale grunts decreased and the proportion of inhale grunts increased in 

larger sequences. This is likely to be due to males increasing the frequency with which 

they make both an inhale and an exhale grunt on the same breath as sequence size 

increases. Most significantly, once sequences exceed about 15 calls, inhale and exhale 

grunts - the two call types with the shortest duration - made up the vast majority of the 

constituent calls, and the relative proportion of each call type in the sequences varied 

little. Abbreviation of some individual call types in larger sequences may also underpin 

conformity to Menzerath’s law: the durations of inhale grunts and exhale moans (the 

second and third most common call types in sequences) were negatively related to the 

number of calls in the sequence. There is little evidence from studies of human 

language of a comparable effect (i.e., that the same constituent of a construct 

decreases in length in larger constructs), not least because Menzerath’s law is almost 

exclusively investigated in written texts where a given word has a fixed length. However, 

one of the earliest studies of this phenomenon (conducted before its formal description 

as a linguistic law) suggests a similar shortening of a particular spoken sound when it 

appears in a larger construct. Grégoire (44) found that in spoken French, the duration of 

the pronunciation of the syllable pâ- decreased with increasing duration of the word or 

phrase that it began; the sound lasted 325ms in pâte, but only 195ms in pâteuse.  

Conformity to Menzerath’s law in gelada vocal sequences may reflect constraints 

linked to the respiratory and energetic demands of signal production. The lack of a 

strong association between call duration and position in the sequence does not 
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preclude the possibility that physiological or mechanical constraints are important 

limiting factors in gelada vocal sequences. Non-human primates’ relatively limited 

breathing control while vocalizing restricts their ability to produce long, continuous vocal 

sequences (45, 46), and an increase in the frequency with which vocalizations are 

made on both the inhale and exhale of the same breath could lead to hyperventilation 

(47). Additionally, as revealed both by comparative analyses (48) and single species 

studies (49–51), the duration of vocal signals in vertebrates can be constrained by 

energy availability. While reducing signal duration can therefore save energy and/or 

may be a necessary result of breathing patterns, it remains an open question as to 

whether or not the shortening of a vocalization results in the loss of transmission fidelity. 

Theoretical analyses of communication indicate that transmission fidelity is increased by 

adding redundancy, e.g. increasing signal duration (52), and studies of human speech 

support this idea: when asked to speak particularly clearly, people significantly increase 

the duration of individual speech sounds (53). A reduction in signal length also 

increases the risk both of confusing different signals and of perturbation of the signal by 

noise in the environment (54). Menzerath’s law may therefore emerge in gelada vocal 

sequences as a compromise between effectiveness of communication, and the 

energetic demands and breathing constraints of vocal production.  

Our analyses extended the standard approach of exploring Menzerath’s law by 

considering the gaps between constituents of a construct (inter-call intervals in our 

study), as well as the constituents themselves (calls); to our knowledge, no study of 

Menzerath’s law in humans has explored these inter-constituent gaps. The same 

negative relationship with sequence size was found for inter-call interval duration as 
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was seen for call duration. Thus, larger vocal sequences have a faster tempo – they 

contain calls of shorter duration, with shorter gaps in between, and therefore are 

delivered at a higher rate. This variation in sequence tempo may reflect the emotional 

arousal state of the vocalizing animal (55) and potentially signal such information to 

receivers (56). A promising avenue for future research will be to investigate whether 

these longer and faster sequences have a different communicative function from shorter 

and slower sequences, such as expressing affective state to potential listeners (55). 

Indeed, it has been proposed that the rhythm of gelada vocal sequences has important 

communicative function in itself (27), but this idea has never been formally tested. One 

advantage of longer sequences being produced at a faster tempo is that it reduces the 

risk of being ‘talked over’ by other geladas; this is a serious potential problem, due to a 

noisy environment of conspecific vocalizations in which these animals need to 

communicate (30). Notably, the duration of inter-call intervals was negatively related to 

position in the sequence; this was not the case for calls, where no such relationship was 

seen. This indicates that tempo increases towards the end of sequences. 

Although no previous study of non-human animal communication has explicitly 

tested Menzerath’s law, results from the literature indicate that a negative relationship 

between sequence size and call duration is not inevitable. For example, baboons give 

longer sequences of grunts in infant handling compared to movement contexts, but the 

grunts in the longer sequences were longer, not shorter, in duration (57). Similarly, in a 

study of Barbary macaque female copulation calling (58), sequences given around the 

time of ovulation had a higher number of calls than sequences given early in the cycle, 

and these calls were again longer in duration. The difference between these findings 
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and the present results may be due to the nature of the respective vocal sequences. 

Unlike gelada vocal sequences, sequences of baboon grunts are both homogenous and 

shorter, and so there may be less opportunity for Menzerath’s law to emerge. In Barbary 

macaques, copulation sequences not only consist of the same call type repeated 

multiple times, but are very loud and appear to be aimed at distant as well as nearby 

receivers (59). In long-range communication, a potential reason for Menzerath’s law not 

to emerge is the conflict between compression and transmission success, which lead to 

opposing constraints; it is easier for compression to dominate when successful 

communication over long distances is not necessary (5). Our analysis of short-range 

vocalizations in geladas provides support for the hypothesis that compression prevails 

in short range communication (10). 

Although a connection between Menzerath's law and compression has been 

suggested various times (14, 25), it has not been formally investigated. Here, we 

provide the first mathematical demonstration of the connection between compression 

and Menzerath’s law. We also provide the first unified explanation for both Zipf's law of 

abbreviation and Menzerath's law by means of a general cost function, which could 

explain the recurrence of these patterns across biological systems and levels of 

organization. The power of the argument relies on its mathematical simplicity and its 

general scope: it covers both individual elements and also the (possibly recursive) 

sequential structures they form. Furthermore, our explanation makes no linguistic or 

communicative assumptions about the elements or their combinations (e.g., with 

respect to whether they convey meaning, or serve a particular function). Therefore, our 

theoretical framework can bridge gaps across a broad range of biological disciplines.      
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Conclusion 

Quantitative methods have proved extremely powerful in the field of linguistics, 

for example revealing shared fundamental properties of geographically and 

morphologically diverse languages, which are not revealed by qualitative approaches 

(60, 61). The full power of linguistic laws may, however, extend far beyond the field in 

which they were developed (4, 5). Testing for conformity to linguistic laws in other 

biological systems facilitates a move from exploration of universal properties of 

language (62) to the development and testing of hypotheses about the fundamental 

principles that may explain the repeated occurrence of these statistical patterns across 

diverse biological contexts (4, 5). Our demonstration of a pattern consistent with 

Menzerath’s law in gelada vocal communication further highlights the value of exploring 

the full scope of linguistic laws outside the realm of language. This law can be tested 

wherever a structure, process or system can be broken down into a construct and its 

constituents; the law’s mathematical simplicity belies its enormous potential explanatory 

power, and we hope our work will encourage others to test the generality of Menzerath’s 

law in biology. Finally, our demonstration of how a generalized principle of compression 

produces Menzerath’s law, in conjunction with our previous work indicating that Zipf’s 

law of abbreviation also reflects this principle (5), suggests that compression may 

underpin biological information systems in a broad sense. Compression exists not only 

at different levels of the chemistry of life - codons (63), proteins (23), genes (22) and 

entire genomes (19) - but also in multiple forms of animal behavior, from elementary 
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patterns of behavior (7) to vocal communication in non-humans (8, 10) and human 

language (4, 25). 
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Supporting Information 

1. Variation of vocal sequence duration and sequence size 

To test whether there is an association between sequence size and sequence 

duration (the amount of time between the start of the first call and the end of the final 

call in a sequence), we carried out a Linear Mixed Model (LMM) that included sequence 

duration as a dependent variable, sequence size as a fixed effect, and male identity as 

a random effect. This analysis revealed that sequence size was positively associated 

with sequence duration (Estimate ± SEM: 0.326 ± 0.008, t = 39.988, P < 0.0001 - Figure 

4.S1). 

The empirical distribution of sequence sizes is close to a straight line when taking 

logs on the y-axis (Figure 4.S2), suggesting that sequence sizes follow a geometric 

distribution - i.e. the probability that a sequence has size l is p(l) = π (1 - π)l-1 - where π 

is the probability of termination, the only parameter of the distribution. The maximum 

likelihood estimator of π, i.e. 1/L, where L is the mean size of the sequences (71), gives 

π = 0.224. With this parameter, a geometric distribution provides a high quality visual fit 

to the actual distribution of sequence sizes (Figure 4.S2). The consistency of sequence 

sizes with a geometric distribution suggests that the process of generating sequences is 

‘memory-less’ (72): during the process of sequence generation, the current length does 

not change the probability of ending the sequence. 

    

2. Additional analyses of the relationships between the duration of particular call 

types and sequence size.  
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In the main text, call position is not included as a fixed effect in the analyses on 

call duration and sequence size for particular call types because inhale moans, exhale 

moans, wobbles and yawns are rarely produced repeatedly in a single vocal sequence. 

This means that our power of using repeated measures (i.e., sequence recording as a 

random effect) is greatly reduced, limiting the ability of the Linear Mixed Models (LMM) 

to effectively compare calls at different positions within sequences of a given size. Also, 

this means that call position and sequence size are not always independent. Certain call 

types like yawns, inhaled moans and wobbles are frequently found near the end of 

vocal sequences. In these instances, ‘sequence size’ and ‘call position’ can be similar or 

the same for several of the data points. Consequently, results from the following LMMs 

(below) - in which call position is included as a fixed effect, and that we report for 

completeness sake - should be interpreted with caution. 

As a supplement to our main analyses, we ran six LMMs (one for each call type) 

with call duration as a dependent variable, sequence size and call position as fixed 

effects, and male identity and sequence recording as random effects. When including 

call position as a fixed effect, the LMMs show that call duration is negatively associated 

with sequence size only in inhaled grunts and inhaled moans (Table 4.S1). The LMMs 

also show a negative association between call duration and call position for exhale 

grunts and exhale moans, and a positive association between call duration and call 

position for inhale grunts and inhale moans. 
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Table 4.1. Results of LMM used to test for relationships between call duration and 
sequence size, call position and call type. 

Factor Estimate SEM t  Pb 

Intercept 0.333 0.009 35.228 < 0.0001 
Sequence size -0.006 0.001 -5.041 < 0.0001 
Call position 0.003 0.001 1.841 0.0658 
Call typea     
   exhaled moan 1.280 0.015 85.754 < 0.0001 
   inhaled grunt -0.037 0.010 -3.836 0.0001 
   inhaled moan 0.535 0.013 40.636 < 0.0001 
   wobble 0.673 0.039 17.235 < 0.0001 

a Exhale grunt was the reference level for call type 
b Bolded values indicate P < 0.05 
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Table 4.2. Duration of the call types used in gelada male vocal sequences. 
Call type N Mean (s) SEM Range (s) 

Exhale grunt 2982 0.296 0.002 0.064 - 0.766 
Exhale moan 300 1.597 0.430 0.770 - 4.153 
Inhale grunt 872 0.244 0.004 0.029 - 0.511 
Inhale moan 435 0.840 0.012 0.514 - 1.985 
Wobble 41 0.948 0.127 0.261 - 4.250 
Yawn 117 0.996 0.037 0.200 - 2.406 
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Table 4.3. Results of LMM used to test for relationships between inter-call interval 
duration and sequence size and interval position. 

Factor Estimate SEM t Pa 

Intercept 0.452 0.017 26.827 < 0.0001 
Sequence size -0.023 0.002 -11.130 < 0.0001 
Interval position -0.003 0.001 -2.271 0.0232 

a Bolded values indicate P < 0.05. 
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Table 4.S1. Results of LMMs used to test for relationships between call duration and 
sequence size and sequence position for datasets focused on each of the six call types. 

Model (call type) Factor Estimate SEM t Pa 
Exhale grunt Intercept 0.306 0.007 41.655 < 0.0001 

 Sequence size -0.001 0.001 -1.058 0.2904 

 Call position -0.002 0.001 -2.365 0.0181 
Exhale moan Intercept 1.832 0.084 21.748 < 0.0001 

 Sequence size -0.024 0.016 -1.498 0.1353 

 Call position -0.049 0.025 -1.981 0.0488 
Inhale grunt Intercept 0.291 0.009 31.168 < 0.0001 

 Sequence size -0.010 0.001 -9.238 < 0.0001 

 Call position 0.009 0.001 7.290 < 0.0001 
Inhale moan Intercept 0.806 0.030 26.483 < 0.0001 

 Sequence size -0.030 0.007 -4.250 < 0.0001 

 Call position 0.040 0.008 5.232 < 0.0001 
Wobble Intercept 1.865 0.314 5.939 < 0.0001 

 Sequence size -0.075 0.037 -1.997 0.0546 

 Call position -0.012 0.035 -0.344 0.7333 
Yawn Intercept 1.00 0.088 11.380 < 0.0001 

 Sequence size -0.043 0.036 -1.182 0.2401 

 Call position 0.053 0.036 1.459 0.1478 
a Bolded values indicate P < 0.05. 
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Figure 4.1. Example spectrograms of (A) a 5-call vocal sequence, (B) an 8-call 
sequence, and (C) a 24-call sequence from the same study male. Brackets on the 
spectrograms denote the start and end of each call, and the lowercase letters above the 
brackets represent different call types: (a) exhale grunt, (b) inhale grunt, (c) exhale 
moan, (d) inhale moan, (e) wobble and (f) yawn. Spectrograms were made in Avisoft (v. 
5.1.12, R. Specht, Berlin). 
 
  

(A)

(B)

(C)
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Figure 4.2. Relationship between call duration and (A) vocal sequence size (i.e., 
number of discrete calls) and (B) call position in a vocal sequence. Points and whiskers 
indicate mean ± 2 SEM, and lack of whiskers indicates that there was a sample size of 
1 sequence. 
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Figure 4.3. Relationship between proportions of specific call types and sequence size. 
Bars and whiskers indicate the mean proportion + 2 SEM of the specific call type in 
vocal sequences of that given size, and lack of whiskers indicates that there was no 
variation in the proportion values. Call types are (A) exhale grunts, (B) exhale moans, 
(C) inhale grunts, (D) inhale moans, (E) wobbles, and (F) yawns. 
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Figure 4.4. Relationship between call duration and sequence size for datasets focusing 
on each of the six call types. Points and whiskers indicate mean ± 2 SEM, and lack of 
whiskers indicates that there was a sample size of 1 sequence. Call types are (A) 
exhale grunts, (B) exhale moans, (C) inhale grunts, (D) inhale moans, (E) wobbles, and 
(F) yawns. 
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Figure 4.5. Relationship between inter-call interval duration and the (A) vocal sequence 
size and (B) inter-call interval position in a vocal sequence. Points and whiskers indicate 
mean ± 2 SEM, and lack of whiskers indicates that there was a sample size of 1 
sequence. 
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Figure 4.S1. Relationship between vocal sequence size and sequence duration (i.e., 
total duration of sequence from start of first call to end of last call). Points and whiskers 
indicate mean ± 2 SEM, and lack of whiskers indicates that there was a sample size of 
1 sequence. 
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Figure 4.S2. The distribution of the vocal sequence size (black) against a geometric 
distribution (red) where the parameter (π = 0.224) has been obtained by maximum 
likelihood. p(l) is the probability that a sequence consists of l calls. 
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Chapter 5: 

Vocal complexity influences female responses to gelada male calls 

 

Abstract 

Extensive research indicates that inter-sexual selection drives the evolution of complex 

vocal communication in birds, but parallel lines of evidence are almost entirely absent in 

mammals. This dearth of evidence, particularly among primates, limits our 

understanding of the link between sociality and vocal complexity. Here, we use a 

playback experiment to quantify how wild female geladas (Theropithecus gelada) 

respond to three call types that are ‘derived’ (i.e., unique to geladas) and made by 

males during various affiliative contexts. These derived calls appeared to be highly 

salient and preferable to females: they looked longer towards and spent more time in 

proximity to playbacks of male vocal sequences containing one of the derived calls than 

to sequences containing only common and less elaborate ‘grunt’ calls. Our results 

provide the first experimental evidence for vocal elaboration as a male-specific strategy 

to maintain social bonds with females in non-human primates. 
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Introduction 

Human’s ability to combine sounds together into an endless array of meaningful 

words and sentences is unique, making the evolutionary roots of language a focus of 

intense interest1,2. Despite this uniqueness, several aspects of language can be studied 

comparatively 3,4. In particular, there is tremendous interest in documenting the diversity 

of ‘vocal complexity’ in animals 5. Vocal complexity is typically defined as the number of 

different vocalizations a species can make, or vocal repertoire size, and this trait differs 

extensively across taxa 6–8. This diversity is useful because it allows for comparative 

studies that can identify the main types of selective pressures driving the evolution of 

complex forms of communication. Several comparative studies in birds and mammals, 

including humans, suggest an important role for social pressures in the evolution of 

vocal complexity by showing that broad measures of vocal complexity (e.g., repertoire 

size) are positively associated with sociality (e.g., group size) 6,7,9–12. However, our 

understanding of the specific social functions of individual features of vocal systems, 

such as complex strings of sound, is more limited. 

 The most comprehensive data on the social functions of complex strings of 

sound come from research on inter-sexual selection in bird song 13–15. Male songbirds 

(Passeriformes) often produce songs during courtship, and females show preference for 

males with larger repertoires of syllable, phrase or song types 16–21 and males producing 

songs composed of more complex elements 14,22,23. In either case, sexual selection of 

songbird vocal complexity appears to act at the level of the “sequence”, meaning that 

the functional unit of sound is the combination of elements rather than the individual 

elements themselves. While individual elements can affect responses to the song, each 
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song element has a similar shared function (e.g., mate attraction). In some species, 

females may gain direct or indirect benefits by using vocal complexity as an index of 

male quality 24,25, while for other species, vocal complexity may primarily be a way for 

males to exploit females’ auditory sensory biases 19. Regardless of the specific pathway 

leading to a preference, the outcome is the same: in many bird species, vocal 

complexity can facilitate inter-sexual social interactions. However, we do not know if 

these findings are unique to songbirds and their unusual vocal system. The function of 

complexity in other animal vocal systems remains largely unexplored. 

Most relevant for understanding the origins of language are the vocal systems of 

primates. Humans and other primates exhibit several homologies in the brain circuitry 

involved with communication 26, and like humans, many primates maintain long-term 

relationships and live in large social groups 27. These shared traits make primates useful 

comparative models to explore the role that sociality plays in the evolution of vocal 

complexity. Yet, unlike songbirds, non-human primates exhibit relatively small 

repertoires of discrete and graded sounds (i.e., calls) and much less is known about 

how and why they combine multiple call types into sequences 4. Broad comparative 

research suggest that primate species with large vocal repertoires are characterized by 

living in large social groups and spending a great deal of time engaged in affiliative 

behaviors 12. Moreover, narrower comparative studies show that some non-human 

primate taxa exhibit a greater degree of vocal complexity than their close relatives 

because they produce more types of calls during within-group aggressive or affiliative 

social interactions 9,28. Together, this body of comparative work suggests that some 

primates have more complex vocal systems because they produce unique ‘derived’ call 



 146	

types that evolved to better facilitate social interactions. For example, mandrills 

(Mandrillus sphinx) produce a unique suite of long distance contact calls that are 

thought to play a species-specific role in coordinating group movements in densely 

forested environments; analogous call types are not found in closely related species like 

baboons and geladas 29. 

Identifying derived call types and the social contexts in which they are produced 

are the first steps towards understanding how vocal complexity functions in primates. 

We also need complimentary studies that examine how these derived call types are 

perceived by potential receivers, which we currently know little about in primates and 

other mammals 30–32. We address this gap by investigating behavioral responses to 

derived calls in wild geladas (Theropithecus gelada), a primate known for its large and 

unique vocal repertoire and for which derived call types (i.e., calls with no clear analogs 

in the vocal repertoires of their close baboon relatives) have already been identified 

28,33–36. Three of these derived call types – “moans”, “wobbles”, and vocalized “yawns” – 

are of particular interest because they are produced almost exclusively by adult males 

and are the most acoustically elaborate of the derived calls. Moans are long in duration, 

wobbles have a high degree of frequency modulation, and yawns take up a large 

frequency bandwidth 28,34. Due to the male-biased production and their elaborate form, it 

appears that these calls are sexually selected call types, although this possibility has 

never been experimentally tested.  

Gelada males typically produce moans, wobbles and yawns in vocal sequences, 

and they do this by combining them with a homologous call type – exhaled grunts – and 

another ‘derived’ call type – inhaled grunts – both of which are commonly produced by 
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both male and female geladas 36. Males produce grunt sequences containing none, a 

single, or multiple elaborate derived calls during close-range affiliative social 

interactions (e.g., approaches, allogrooming and after female-female conflicts) with 

females 28,33,36. As in birds, geladas combine different types of sounds in a single social 

context, suggesting that the function of each element is to add to the sequence 

complexity rather than to serve a unique social function. However, it remains unknown 

whether the vocal sequences containing elaborate derived calls and grunts elicit 

different responses from those containing only grunts. One intriguing possibility is that, 

as in birdsong, the diversification of gelada males’ affiliative vocal sequences may 

function to attract or bond with their female counterparts 28. Geladas aggregate into 

extremely large groups of over 1000 individuals that are made up of smaller ‘harem-like’ 

reproductive units composed of a dominant leader male, up to a few subordinate 

follower males, several females and their dependent offspring 37. Leader males of 

reproductive units that use effective strategies to maintain their long-term social 

relationships may decrease the chance of being cuckolded by within-unit subordinate 

males 38,39 or out-competed by a non-unit ‘bachelor’ 40. It is still unknown in geladas, and 

in primates more generally, whether vocal sequences containing elaborate derived calls 

from males influence female behavior in a way that could benefit male fitness. Such a 

finding would be the first evidence for inter-sexual selection of vocal complexity in a 

non-human primate. 

 We build off prior studies on the production of vocal complexity in male geladas 

by examining the perception of vocal complexity by female geladas. Using an 

experimental playback design, we modeled established behavioral assays to assess 
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female responses to male vocal displays 41–44. First, we tested whether or not female 

geladas discriminate between vocal sequences that do or do not contain one of the 

elaborate derived calls and grunts by comparing females’ visual orientation towards 

playbacks of male vocal sequences. Second, we tested whether females show a 

‘preference’ for these derived calls by comparing the amount of time that females spent 

in proximity to these same playbacks of derived call and grunt only sequences. 

 

Methods  

 

Study site and animals 

Experimental playback data were collected from February to June 2014 in the 

Sankaber area of Simien Mountains National Park, Ethiopia. Research was approved 

by the University Committee on Use and Care of Animals (UCUCA) at the University of 

Michigan and was carried out in accordance with the laws and approved guidelines of 

Ethiopia. Study subjects were 36 adult female geladas from outside the three main 

study bands followed by the University of Michigan Gelada Research Project since 

2006. Females from outside of the main study bands were chosen so they would be 

uniformly unfamiliar with the males from which we recorded playback stimuli. Although 

the vocalizations used here are typically exchanged between familiar individuals, it is 

very difficult to conduct realistic playback trials among members of the same unit as 

they are usually within visual contact of each other. In addition to being more tractable, 

using unfamiliar callers and subjects also controls for variation in relationship quality 

between caller and subject, ensuring that any differences in responses are likely due to 
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differences in the stimuli. Female subjects were habituated to humans on foot up to 3-5 

m and could be identified by unique body markings (e.g., ear tears and coloration). 

 

Playback stimuli and experimental design 

Vocal sequences were recorded from 12 adult male geladas who were unit 

leaders and/or followers from one of the three main study bands between 2008-2014. 

These recordings were made from less than 10 m using a Sennheiser ME-66 directional 

microphone and a Marantz PMD 660 or 661 digital recorder. Playback stimuli were 

made using PRAAT 5.2.29 for Macintosh. Each playback stimulus was composed of 2-9 

calls from a natural sequence with a high signal-to-noise ratio. The majority of recorded 

vocal sequences were manipulated (e.g., excluding call(s) from the beginning and/or 

end of a sequence) to produce playback stimuli that were clear of overlapping calls and 

were of a similar overall duration. The amplitude of extraneous sounds (e.g. bird chirp or 

vocalization from another gelada) found in the intervals between calls was dampened 

using PRAAT.  

The playback stimuli consisted of 18 ‘grunt only’ and 18 ‘derived call’ vocal 

sequences. Grunt only sequences were composed of exhaled grunts and inhaled grunts 

(mean ± SE [range]: 5.000 ± 0.406 [3 - 9] calls per stimulus). Derived call vocal 

sequences (3.222 ± 0.4759 [2 - 9] calls per stimulus) were composed of exhaled and 

inhaled grunts mixed with one of the three elaborate derived calls: exhaled moans (n = 

6 stimuli; 2.500 ± 1.021 [2 - 4] calls per sequence), exhaled (n = 3) or inhaled (n = 3) 

wobbles (4.500 ± 1.837 [2 - 9] calls per sequence), and inhaled vocalized yawns (n = 6; 

2.667 ± 1.089 [2 - 4] calls per sequence). The elaborate derived calls were acoustically 
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different from exhaled and inhaled grunts in various ways: exhaled moans, wobbles and 

yawns used in the derived call playback stimuli were longer in duration compared to 

exhaled and inhaled grunts, wobbles had the highest frequency modulation, and yawns 

had the highest formant (F1) frequency (Table 5.S1).  For further descriptions of these 

call types, see Gustison et al. 28, and see Figure 5.1 for spectrograms of grunt only and 

derived call sequence playback stimuli. 

Six study males contributed one grunt only and one derived call sequence and 

six study males contributed two grunt only and two derived call sequences. Each of the 

grunt only sequences was paired with a derived call sequence – forming 18 playback 

‘sets’. A counterbalanced matched-control design was used; 18 of the study females 

were presented with a grunt only sequence first and a derived call sequence second, 

and the other 18 females were presented with a derived call sequence first and a grunt 

only sequence second. Therefore, the 36 female subjects were each exposed to two 

playback stimuli (grunt only and derived call vocal sequences) for a total of 72 playback 

trials. This repeated measure design ensured that the variation in internal (e.g., 

reproductive state) and external (e.g., recent interactions with unit members) factors 

were similar for female subjects exposed to grunt only and derived call playbacks. 

Several precautions were taken to ensure that playback stimuli of grunt only and 

derived call sequences were similar except for the call composition. First, we controlled 

for other acoustic signals that could affect female responses, like inter-male variation in 

fundamental frequency, by matching male callers across playback sets. For every 

playback set that consisted of a grunt only sequence from male A and a derived call 

sequence from male B, there was a corresponding playback set that consisted of a 
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grunt only sequence from male B and a derived call sequence from male A. Second, 

variation in female response due to vocal sequence duration was controlled for by 

matching the durations of grunt only (2.768 s ± 0.652 [1.411-3.782]) and derived call 

(2.637 s ± 0.621 [1.698-3.680]) vocal sequences in a playback set (Wilcoxon signed-

rank test: W = 123, N = 18, p = 0.1084). Vocal sequence duration also was similar 

across the 3 types of derived call sequences (Mann-Whitney U tests: moan (3.031 s ± 

1.237 [2.264-3.680]) vs. wobble (2.447 s ± 0.999 [1.945-3.170]): U = 29, N1 = N2 = 6, p 

= 0.0931; moan vs. yawn (2.432 s ± 0.993 [1.698-3.361]): U = 28, N1 = N2 = 6, p = 

0.132; wobble vs. yawn: U = 20, N1 = N2 = 6, p = 0.8182). Third, grunt only and derived 

call sequences were played at a similar decibel level. A Radioshack Digital Sound Level 

Meter was used to check that the maximum dB of each sequence in a quiet indoor 

environment was similar for grunt only (69.833 dB ± 16.460 [67-75]) and derived call 

sequences (69.667 dB ± 16.421 [64-78]; Wilcoxon signed-rank test: W = 57.5, N = 18, p 

= 0.7764). The maximum dB also was similar across types of derived call sequences 

(Mann-Whitney U tests: moan (68.167 dB ± 27.829 [64-72]) vs. wobble (70.667 dB ± 

28.850 [67-78]): U = 11.5, N1 = N2 = 6, p = 0.3315; moan vs. yawn (70.167 dB ± 28.645 

[67-74]): U = 10.5, N1 = N2 = 6, p = 0.2573; wobble vs. yawn: U = 15.5, N1 = N2 = 6, p 

= 0.7462). 

 

Playback protocol 

An adult female was chosen as a subject for a playback trial if she was relatively 

stationary (i.e., feeding or resting), was not engaged in social activity, and was close to 

vegetation where the speaker could be hidden. No individuals were located between the 
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subject and the speaker. During playback sessions, playback stimuli were presented 

with a SanDisk Clip mp3 player connected to a Bose Roommate II portable 

loudspeaker. The speaker was concealed behind vegetation 3-10 m from the subject in 

the direction of the gelada herd. Thus, playback stimuli presumably represented vocal 

sequences from unit males rather than bachelors 47. Female behavior was recorded 

with a Kodak PlaySport HD waterproof pocket video camera. The playback stimulus 

was played after 10 s of video recording if the subject remained engaged in non-social 

stationary behavior and her body and head were oriented 90 degrees from the speaker. 

The subject continued to be video recorded for one minute following the playback 

stimulus. Previous research has shown that one minute adequately captures gelada 

responses to contact calls such as grunts 47. The second trial involving the same subject 

was played at least two minutes after the end of recording the first trial from a location 

that was at least 3 m away from the location of the first playback stimulus. At the end of 

each playback set, the relative locations and distances between the video recorder, 

closest adult unit male, speaker and study female (at both the presentation of the 

playback stimuli and after one minute) were recorded. The presentation order of 

different playback sets was randomized across subjects.   

Following the guidelines put forth by Fischer et al. 43, several precautions were 

made to avoid habituation of female subjects to the playback stimuli. For example, we 

played male vocal sequences at a much lower rate than they occur naturally; we played 

no more than three playback sets per day (6 vocal sequences), whereas gelada males 

naturally produce vocal sequences including grunts and derived calls at least 14 times 

per hour on average 28. Given that geladas range in herds that include many males, 
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females are exposed to these vocal sequences at a much higher rate 28. For playback 

sets carried out on the same day, we chose female subjects from different units that 

were out of sight (and likely audible range) from the location of the previous playback 

set. Playback stimuli were never repeated on the same day. 

 

Analysis of female behavioral responses to playback stimuli 

An independent observer scored behavior using Windows Live Movie Maker 

2011 (Microsoft, Redmond, WA, USA) from at least 10 seconds before to over one 

minute after the playback stimulus using frame-by-frame analysis (behavioral responses 

were later calculated from the time frame from the end of the playback stimuli to one 

minute after). The sound was turned off so that the observer was blind to when and 

what type of playback stimulus was played. The observer scored the start and end of all 

visual orientation towards the speaker, defined as the subject’s head being oriented ± 

45 degrees in the direction of the speaker. From these data, we computed three specific 

visual orientation measures: duration of the first visual orientation towards the speaker, 

duration of the total visual orientation towards the speaker, and the number of separate 

visual orientations towards the speaker. All behavioral measures were taken from the 

end of the playback sequence so that it could be assured that we were quantifying the 

female responses to an entire sequence. Because of this, we do not measure a females 

latency to look, which is common in playback experiments with non-human primates 43. 

Females often looked towards the speaker prior to the conclusion of the sequence, and 

so lag to look is not a relevant measure of female response to the entire playback 

stimulus. The independent observer also scored the videos for the amount of time that 
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the female spent in proximity to the speaker, defined as the time post-stimulus until the 

female moved over 1 m in a direction 90-180 degrees from the speaker. We focus on 

proximity behavior rather than other potential ‘preference’ behaviors such as approach 

or copulation displays because the social structure of wild geladas is such that females 

do not commonly engage in close-range affiliative interactions (e.g., approach, 

grooming, and copulation) with non-unit males. Previous studies suggest that female 

geladas do not mate with non-unit males, and if they mate with subordinate follower 

males in their units, they are at risk of aggression from the leader male 38,39. In the 

present study, there was only one instance following a grunt only sequence that the 

female subject moved closer to the speaker. 

To check for intra-observer reliability, the observer re-scored each video for a 

second time at least 56 days after the original scoring. Rho values from Spearman 

signed-rank correlations were used to assess consistency in the four analyzed 

behaviors. All behaviors had intra-observer reliability rho values over 0.84 (duration of 

first visual orientation – 0.877; duration of total visual orientation – 0.876; number of 

looks – 0.863; time spent in proximity to speaker – 0.840). 

We used Shapiro-Wilk tests to check whether behavioral variables fit a normal 

distribution. No variables fit a normal distribution and this remained true after 

transformation (square-root transformation, p < 0.05; natural log transformation, p < 

0.05). Therefore, we used non-parametric tests. For each behavioral measure, we first 

used Wilcoxon sign-rank tests to see if females responded differentially to grunt only 

and derived call vocal sequences. We did not compare responses to different types of 

derived calls because of small sample sizes. Second, we used Wilcoxon sign-rank tests 
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to see if there were any order effects by comparing within-female responses to the first 

and second playback stimulus. All tests were two-tailed (α= 0.05) and carried out using 

Cran R package version 3.1.1. Descriptive statistics are reported as mean ± SE [range]. 

 

Results 

 

Visual orientation towards the speaker 

There was good evidence that female geladas distinguish between playbacks of 

grunt only and derived call sequences from unfamiliar males (Figure 5.1). The first 

visual orientation that females made towards the speaker in the minute following the 

conclusion of playback stimuli was longer following derived call sequences (mean ± SE 

[range]: 1.139 s ± 0.190 [0.000 – 4.370 s]) than to grunt only sequences (0.421 s ± 

0.070 [0.000 – 1.980 s]; W = 73.5, N = 36, p = 0.0007; Figure 5.2A). Females also spent 

more time overall visually orienting towards playbacks of derived call sequences (1.834 

s ± 0.305 [0.000 – 7.970 s]) than to grunt only sequences (0.873 s ± 0.145 [0.000 – 

4.510 s]; W = 134, N = 36, p = 0.0261; Figure 5.2B). There was no evidence that 

females made different numbers of separate visual orientations towards the speaker 

following playbacks of derived call (1.583 looks ± 0.264 [0 – 7 looks]) and grunt only 

sequences (1.417 looks ± 0.236 [0 – 6 looks]; W = 113, N = 36, p = 0.6669; Figure 

5.2C). Visual orientation towards the three types of derived call playbacks were similar, 

although on average, females tended to looked longer towards sequences including 

wobbles or yawns than those including moans (Table 5.1). 
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There was no evidence that the presentation order of playback stimuli affected 

females’ visual orientation responses to vocal sequences from unfamiliar males. The 

first visual orientation that females made towards the speaker in the minute following 

the playback stimuli was similar following the vocal sequence of the first playback trial 

(0.913 s ± 0.152 [0.000 – 4.089 s]) compared to the second playback trial (0.648 s ± 

0.108 [0.000 – 4.370 s; W = 322.5, N = 36, p = 0.1470]). Females also spent a similar 

amount of time overall visually orienting towards the vocal sequence of the first 

playback trial (1.524 s ± 0.254 [0.000 – 6.482 s]) as to the second playback trial (1.183 

s ± 0.197 [0.000 – 7.970 s]; W = 305, N = 36, p = 0.2682). Additionally, females made a 

similar number of distinct visual orientations (i.e., “looks”) towards the speaker following 

the vocal sequence of the first playback trial (1.639 looks ± 0.273 [0 – 7 looks]) as to the 

second playback trial (1.361 looks ± 0.227 [0 – 4 looks]; W = 163.5, N = 36, p = 0.2270). 

 

Time spent in proximity to the speaker 

There was evidence to indicate that females spent more time in proximity to the 

speaker following playbacks of derived call sequences (58.775 s ± 9.796 [17.027 – 

60.000 s]) than to grunt only sequences (48.836 s ± 8.139 [1.501 – 60.000 s]; W = 0, N 

= 36, p = 0.0039; Figure 5.3). Proximity behavior was the same towards the three types 

of derived call playbacks in that females almost always spent at least one minute in 

close proximity to the speaker upon hearing a moan, wobble or yawn sequence (Table 

5.1). There was no evidence that the presentation order of playback stimuli affected the 

amount of time that females spent in proximity to the speaker. Females spent a similar 

amount of time in proximity to the speaker following the vocal sequence of the first 
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playback trial (56.139 s ± 9.357 [11.820 – 60.000 s]) as to the second playback trial 

(51.472 s ± 8.579 [1.501 – 60.000 s]; W = 50, N = 36, p = 0.1424).  

 

Discussion 
 

This is the first study to systematically show that vocal complexity may be driven 

by inter-sexual selection in a non-human primate. We found that female geladas clearly 

distinguish between derived and homologous calls and the direction of the differences in 

responding all suggest a stronger salience of and, possibly a preference for, the derived 

calls. Specifically, females hearing playbacks of male vocal sequences containing one 

of three derived call types – moans, wobbles and yawns – oriented longer as well as 

spent more time in proximity to the speaker. These results align with an extensive body 

of research in songbirds demonstrating that diversified male vocal signals may function 

to attract mates and maintain long-term social bonds 16–21.  

Although similar evidence in mammalian species is relatively sparse 30, our 

results do support a growing body of work in rodents and bats suggesting that vocal 

complexity may have analogous social functions in mammals. As with female geladas, 

female mice (Mus musculus) spend more time around playbacks of male song 

containing many elaborate syllable types than those composed of only a simple syllable 

type 41. In addition, male greater sac-winged bats (Saccopteryx bilineata) producing 

songs with several unique syllable types have more females who consistently roost in 

their harem territories than do males producing fewer syllable types 45. Therefore, both 

male geladas and sac-winged bats utilizing a a more complex string of sounds may be 

better equipped to maintain bonds with the females in their harem-like reproductive 
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units. Thus, these results are the first to indicate that the diversification of call types may 

have evolved as a male-specific strategy to maintain long-term social bonds with 

females in primates. 

Our findings also have implications for gelada society and the evolution of 

tolerance. Females had generally weak responses and stayed in proximity to derived 

call sequences (and many of the grunt sequences) even though the males vocalizing 

were unfamiliar to the subject. This is surprising considering that the close and sudden 

presence of a stranger is a rare and potentially distressing event for primates that tend 

to live in long-term and relatively stable social groups 46. One likely correlate of this 

apparent tolerance of strangers is that females may simply be unable to recognize the 

vocal signals of males from their band but outside of their reproductive units and are 

consequently quite habituated to hearing calls from unrecognized individuals. This 

corresponds with previous evidence showing that male geladas do not distinguish vocal 

sequences of familiar males from unfamiliar males 47. Another possibility is that, in 

addition to a primary function of derived calls in male-female bonding within units, the 

calls may have an inherent attractiveness that leads to a secondary function in 

maintaining cohesion across units. Geladas live in fission-fusion societies, and it is a 

regular occurrence for reproductive units to travel with unfamiliar units 37. Derived calls 

may play a particularly important role in coordinating these flexible group dynamics. 

Additionally, female composition in the reproductive units is stable, but leader male 

tenures rarely last more than a few years 39. This means that females need to rapidly 

form strong associations with new leader males following takeovers. An intriguing line of 



 159	

future research will be to explore how new leader males may use derived calls as a 

strategy to develop their social bonds with females. 

The main caveat of the present study is that it is still unknown whether females 

are attending specifically to ‘derived calls’ or to ‘complex vocal sequences’. Orientation 

responses are notoriously difficult to interpret 43, and so derived calls may invoke a 

greater orientation response than grunts because they are rarer or more indicative of 

salient social stimuli instead of reflecting female interest 28. However, females stayed 

close to playbacks of derived calls, suggesting that it is not simply the case that those 

calls are startling. Also, given that geladas live in large fission-fusion societies and 

vocalize at a high rate 28, it is not unusual for females to hear complex vocal sequences 

from unfamiliar males. Instead, our findings indicate that females may show a 

preference for innovative vocal signals, which would align with studies of non-primate 

taxa like zebra finches (Taeniopygia guttata) 19. Derived calls also are characterized by 

acoustic properties that may make them more elaborate and potentially more attractive 

than the typical grunt (e.g., long duration, frequency modulation and large bandwidth). 

Such acoustic properties are also found in call types preferred by female birds 22,23,48,49, 

anurans 50, and other mammals 41,45,51. Conversely, female geladas may be attending to 

the degree of complexity in vocal sequences rather than to the specific use of derived 

calls. This explanation would align with studies showing that female birds are attracted 

to vocal stimuli containing large syllable and song repertoires 16–21. Even in many of 

these bird studies, however, it is unclear whether females are exhibiting a preference for 

large repertoires or whether repertoire diversification is actually driven by a greater 

signal value in individual components 14. In both birds and geladas, it is difficult to 
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untangle these explanations because presenting females with individual components 

alone rather than in sequences would be an unnatural stimulus that may evoke 

responses that are not ecologically relevant.  

Future studies are needed to tease apart the types of information gained from 

different vocal sequence combinations made by geladas. Females in our study did not 

appear to distinguish between sequences containing different derived call types, but 

small sample sizes prevented us from making statistical comparisons. One exciting 

possibility is that derived call vocal sequences are honest indicators of mate quality 

(being produced at a higher rate by the best quality males), which would make them 

particularly attractive to females 52. Given that every male used in this study contributed 

equal numbers of derived call and grunt sequences, it is unlikely that our results reflect 

female preference for the acoustic qualities of specific males 42. Instead, it seems more 

likely that gelada females prefer males giving a higher output of derived call vocal 

sequences. Further work will be needed to test the possibility that variation in the 

complexity of male vocal behavior translates to reproductive success. Until then, we are 

unable to completely rule out the possibility that variation in female orientation and 

proximity behavior in response to male calls reflect differences in motivation to engage 

with a social partner rather than a sexual partner. Additionally, these derived call 

sequences may serve an alternative or complimentary role in female detection and 

identification of unit males 53. In other words, derived call sequences could counteract 

environmental noise such as the chorus of other geladas in their large communities. 

Similar solutions to cope with conspecific noise has been proposed for other species 

such as Túngara frogs (Physalaemus pustulosus) 50. 
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There is great debate over the evolutionary origins of highly complex and 

diversified forms of communication such as human language. One focus has been on 

investigating comparative evidence for semantic communication as a key driver in the 

evolution of complex communication 54,55. Despite the small vocal repertoires of non-

human primates, there are many well-studied examples of how diversified primate calls 

and call combinations may have evolved as a tool to communicate functionally 

referential information about food and predators 56–58. Another focus has been on 

investigating comparative evidence for elaboration in affective communication, or types 

of holistic communication that may seem multi-faceted in appearance but serve singular 

social functions 59. While best exemplified by the elaborate bird songs that function to 

successfully interact with mates and deter rivals 15, there is only limited evidence that 

non-human primate vocal systems can be elaborate in similar contexts (e.g., gibbons 

(Hylobates sp.) 60). By providing novel evidence of a potential role for sexual selection in 

the emergence of vocal complexity in primate vocalizations, our results build support for 

non-semantic vocal elaboration as an early step towards language 34. 

 

Acknowledgements 

MLG was supported by grants from the National Geographic Society (Gr# 9122-

12, W304-14), Leakey Foundation, University of Michigan, and Petridish (primary 

supporter: John Allen). TJB and the gelada project were supported by the Wildlife 

Conservation Society (SSF Gr# 67250), the National Geographic Society (Gr# 8100-

06), the Leakey Foundation, the National Science Foundation (Gr# BCS-0715179, BCS-

0962118), and the University of Michigan. We are grateful to the Ethiopian Wildlife 



 162	

Conservation Authority and the wardens and staff of the Simien Mountains National 

Park for granting us permission to conduct this research in Ethiopia. Marcela Benitez, 

Megan Gomery, Elizabeth Johnson, Levi Morris, Ambaye Fanta and Tara Regan for 

helped with conducting experiments, Aliza le Roux provided access to acoustic 

recordings, and Niki Abdou helped with video scoring.  



 163	

References 

1. Bickerton, D. Language evolution: A brief guide for linguists. Lingua 117, 510–526 

(2007). 

2. Pinker, S. & Jackendoff, R. The faculty of language: what’s special about it? 

Cognition 95, 201–36 (2005). 

3. Berwick, R. C., Okanoya, K., Beckers, G. J. L. & Bolhuis, J. J. Songs to syntax: 

The linguistics of birdsong. Trends Cogn. Sci. 15, 113–121 (2011). 

4. Fedurek, P. & Slocombe, K. E. Primate vocal communication: a useful tool for 

understanding human speech and language evolution? Hum. Biol. 83, 153–73 

(2011). 

5. Freeberg, T. M., Ord, T. J. & Dunbar, R. I. M. The social network and 

communicative complexity: preface to theme issue. Philos. Trans. R. Soc. Lond. 

B. Biol. Sci. 367, 1782–1784 (2012). 

6. Blumstein, D. T. & Armitage, K. B. Does sociality drive the evolution of 

communicative complexity? A comparative test with ground-dwelling sciurid alarm 

calls. Am. Nat. 150, 179–200 (1997). 

7. Manser, M. B. et al. Vocal complexity in meerkats and other mongoose species. 

Adv. Study Behav. 46, 281–310 (2014). 

8. Wilkinson, G. S. in Anim. Soc. Complex. Intell. Cult. Individ. Soc. (eds. de Waal, 

F. B. M. & Tyack, P. L.) 322–341 (Harvard University Press, 2003). 

9. Bouchet, H., Blois-Heulin, C. & Lemasson, A. Social complexity parallels vocal 

complexity: a comparison of three non-human primate species. Front. Psychol. 4, 

390 (2013). 

10. Freeberg, T. M. Social complexity can drive vocal complexity: group size 

influences vocal information in Carolina chickadees. Psychol. Sci. 17, 557–61 

(2006). 

11. Hay, J. & Bauer, L. Phoneme inventory size and population size. Language 

(Baltim). 83, 388–400 (2007). 

12. McComb, K. & Semple, S. Coevolution of vocal communication and sociality in 

primates. Biol. Lett. 1, 381–5 (2005). 

13. Catchpole, C. K. Bird song, sexual selection and female choice. Trends Ecol. 



 164	

Evol. 2, 94–97 (1987). 

14. Byers, B. E. & Kroodsma, D. E. Female mate choice and songbird song 

repertoires. Anim. Behav. 77, 13–22 (2009). 

15. Nowicki, S. & Searcy, W. A. Song and mate choice in birds: How the development 

of behavior helps us understand function. Auk 122, 1–14 (2005). 

16. Baker, M. C., Bjerke, T. K., Lampe, H. U. & Espmark, Y. O. Sexual response of 

female yellowhammers to differences in regional song dialects and repertoire 

sizes. Anim. Behav. 35, 395–401 (1987). 

17. Buchanan, K. L. & Catchpole, C. K. Female choice in the sedge warbler 

Acrocephalus schoenobaenus: multiple cues from song and territory quality. Proc. 

R. Soc. B Biol. Sci. 264, 521–526 (1997). 

18. Catchpole, C. K. Sexual selection and the evolution of complex songs among 

European warblers of the genus Acrocephalus. Behaviour 74, 149–165 (1980). 

19. Collins, S. A. Is female preference for male repertoires due to sensory bias? Proc. 

R. Soc. B Biol. Sci. 266, 2309–2314 (1999). 

20. Mountjoy, D. J. & Lemon, R. E. Female choice for complex song in the European 

starling: a field experiment. Behav. Ecol. Sociobiol. 38, 65–71 (1996). 

21. Reid, J. M. et al. Song repertoire size predicts initial mating success in male song 

sparrows, Melospiza melodia. Anim. Behav. 68, 1055–1063 (2004). 

22. Vallet, E. & Kreutzer, M. Female canaries are sexually responsive to special song 

phrases. Anim. Behav. 49, 1603–1610 (1995). 

23. Rehsteiner, U., Geisser, H. & Reyer, H. Singing and mating success in water 

pipits: one specific song element makes all the difference. Anim. Behav. 55, 

1471–81 (1998). 

24. Darolová, A., Krištofík, J., Hoi, H. & Wink, M. Song complexity in male marsh 

warblers: does it reflect male quality? J. Ornithol. 153, 431–439 (2012). 

25. Hiebert, S. M., Stoddard, P. K. & Arcese, P. Repertoire size, territory acquisition 

and reproductive success in the song sparrow. Anim. Behav. 37, 266–273 (1989). 

26. Ghazanfar, A. A. & Eliades, S. J. The neurobiology of primate vocal 

communication. Curr. Opin. Neurobiol. 28, 128–135 (2014). 

27. Aiello, L. C. & Dunbar, R. I. M. Neocortex size, group size, and the evolution of 



 165	

language. Curr. Anthropol. 34, 184–193 (1993). 

28. Gustison, M. L., le Roux, A. & Bergman, T. J. Derived vocalizations of geladas 

(Theropithecus gelada) and the evolution of vocal complexity in primates. Philos. 

Trans. R. Soc. Lond. B. Biol. Sci. 367, 1847–59 (2012). 

29. Kudo, H. The study of vocal communication of wild mandrills in Cameroon in 

relation to their social structure. Primates 28, 289–308 (1987). 

30. Charlton, B. D. Experimental tests of mate choice in nonhuman mammals: the 

need for an integrative approach. J. Exp. Biol. 216, 1127–30 (2013). 

31. Slocombe, K. E., Waller, B. M. & Liebal, K. The language void: The need for 

multimodality in primate communication research. Anim. Behav. 81, 919–924 

(2011). 

32. Ramsier, M. A., Cunningham, A. J., Finneran, J. J. & Dominy, N. J. Social drive 

and the evolution of primate hearing. Philos. Trans. R. Soc. B Biol. Sci. 367, 

1860–1868 (2012). 

33. Aich, H., Moos-Heilen, R. & Zimmermann, E. Vocalizations of adult gelada 

baboons (Theropithecus gelada): Acoustic structure and behavioural context. 

Folia Primatol. 55, 109–132 (1990). 

34. Bergman, T. J. Speech-like vocalized lip-smacking in geladas. Curr. Biol. 23, 

R268–9 (2013). 

35. Richman, B. Some vocal distinctive features used by gelada monkeys. J. Acoust. 

Soc. Am. 60, 718–24 (1976). 

36. Richman, B. Rhythm and melody in gelada vocal exchanges. Primates 28, 199–

223 (1987). 

37. Snyder-Mackler, N., Beehner, J. C. & Bergman, T. J. Defining higher levels in the 

multilevel societies of geladas (Theropithecus gelada). Int. J. Primatol. 33, 1054–

1068 (2012). 

38. le Roux, A., Snyder-Mackler, N., Roberts, E. K., Beehner, J. C. & Bergman, T. J. 

Evidence for tactical concealment in a wild primate. Nat. Commun. 4, 1462 

(2013). 

39. Snyder-Mackler, N., Alberts, S. C. & Bergman, T. J. Concessions of an alpha 

male? Cooperative defence and shared reproduction in multi-male primate 



 166	

groups. Proc. R. Soc. B Biol. Sci. 279, 3788–3795 (2012). 

40. Pappano, D. J., Snyder-Mackler, N., Bergman, T. J. & Beehner, J. C. Social 

‘predators’ within a multilevel primate society. Anim. Behav. 84, 653–658 (2012). 

41. Chabout, J., Sarkar, A., Dunson, D. B. & Jarvis, E. D. Male mice song syntax 

depends on social contexts and influences female preferences. Front. Behav. 

Neurosci. 9, 1–16 (2015). 

42. Charlton, B. D., Reby, D. & McComb, K. Female red deer prefer the roars of 

larger males. Biol. Lett. 3, 382–385 (2007). 

43. Fischer, J., Noser, R. & Hammerschmidt, K. Bioacoustic field research: a primer 

to acoustic analyses and playback experiments with primates. Am. J. Primatol. 

75, 643–63 (2013). 

44. Tomaszycki, M. L. & Adkins-Regan, E. Experimental alteration of male song 

quality and output affects female mate choice and pair bond formation in zebra 

finches. Anim. Behav. 70, 785–794 (2005). 

45. Davidson, S. M. & Wilkinson, G. S. Function of male song in the greater white-

lined bat, Saccopteryx bilineata. Anim. Behav. 67, 883–891 (2004). 

46. Harris, T. R. Testing mate, resource and infant defence functions of intergroup 

aggression in non-human primates: issues and methodology. Behaviour 144, 

1521–1535 (2007). 

47. Bergman, T. J. Experimental evidence for limited vocal recognition in a wild 

primate: implications for the social complexity hypothesis. Proc. R. Soc. B Biol. 

Sci. 277, 3045–53 (2010). 

48. Ballentine, B., Hyman, J. & Nowicki, S. Vocal performance influences female 

response to male bird song: An experimental test. Behav. Ecol. 15, 163–168 

(2004). 

49. Drăgănoiu, T. I., Nagle, L. & Kreutzer, M. Directional female preference for an 

exaggerated male trait in canary (Serinus canaria) song. Proc. R. Soc. B Biol. Sci. 

269, 2525–31 (2002). 

50. Rand, A. S. & Ryan, M. J. The adaptive significance of a complex vocal repertoire 

in a neotropical frog. Z. Tierpsychol. 57, 209–214 (1981). 

51. Behr, O. & von Helversen, O. Bat serenades—complex courtship songs of the 



 167	

sac-winged bat (Saccopteryx bilineata). Behav. Ecol. Sociobiol. 56, 106–115 

(2004). 

52. Gil, D. & Gahr, M. The honesty of bird song : multiple constraints for multiple 

traits. Trends Ecol. Evol. 17, 133–141 (2002). 

53. Endler, J. A. & Basolo, A. L. Sensory ecology, receiver biases and sexual 

selection. Trends Ecol. Evol. 13, 415–420 (1998). 

54. Seyfarth, R. M. & Cheney, D. L. Meaning and emotion in animal vocalizations. 

Ann. N. Y. Acad. Sci. 1000, 32–55 (2006). 

55. Zuberbühler, K. Referential signaling in non-human primates : Cognitive 

precursors and limitations for the evolution of language. Adv. Study Behav. 33, 

265–307 (2003). 

56. Cäsar, C., Zuberbühler, K., Young, R. J. & Byrne, R. W. Titi monkey call 

sequences vary with predator location and type. Biol. Lett. 9, 20130535 (2013). 

57. Clay, Z. & Zuberbühler, K. Bonobos extract meaning from call sequences. PLoS 

One 6, e18786 (2011). 

58. Seyfarth, R. M., Cheney, D. L. & Marler, P. Monkey responses to three different 

alarm calls: evidence of predator classification and semantic communication. 

Science (80-. ). 210, 801–803 (1980). 

59. Locke, J. L. Cost and complexity: selection for speech and language. J. Theor. 

Biol. 251, 640–52 (2008). 

60. Geissmann, T. & Orgeldinger, M. The relationship between duet songs and pair 

bonds in siamangs, Hylobates syndactylus. Anim. Behav. 60, 805–809 (2000). 

 

  



 168	

Table 5.1. Results for visual orientation and proximity responses to the three types of 
derived call playback stimuli. 

Dependent variable N trials Mean ± SE (s) Range (s) 
First visual orientation    
      Moan 12 0.905 ± 0.261 0.000 – 2.270 
      Wobble 12 1.333 ± 0.385 0.000 – 4.370 
      Yawn 12 1.179 ± 0.340 0.000 – 3.730 
Total visual orientation    
      Moan 12 1.172 ± 0.338 0.000 – 4.190 
      Wobble 12 2.394 ± 0.691 0.000 – 6.482 
      Yawn 12 1.937 ± 0.559 0.000 – 7.970 
Number of visual orientations    
      Moan 12 1.250 ± 0.361 0 – 4 
      Wobble 12 2.167 ± 0.625 0 – 7 
      Yawn 12 1.333 ± 0.385 0 – 3 
Time spent in proximity to speaker    
      Moan 12 60.000a 60.000a 

      Wobble 12 60.000a 60.000a 
      Yawn 12 56.326 ± 16.260 17.027 – 60.000 

a All subjects engaged in this behavior for at least 60 seconds. 
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Table 5.S1. Acoustic parameters for call types used in playback stimuli, reported in 
mean ± SE [range]. 

Call type N Duration (s)a F1 Frequency (Hz)b F1 Bandwidth (Hz) F1 Modulation 
(CV) 

Exhaled 
grunt 94 

0.324 ± 0.012 
[0.136 – 
0.766] 

714.168 ± 8.084 
[515.224 – 
859.491] 

421.950 ± 27.350 
[58.464 – 1202.765] 

12.988 ± 0.798 
[2.336 – 34.448] 

Inhaled grunt 30 
0.470 ± 0.068 

[0.101 – 
1.430] 

764.651 ± 24.096 
[523.135 – 
968.694] 

586.732 ± 67.626 
[82.359 – 1414.826] 

16.350 ± 2.011 
[2.592 – 47.127] 

Moan 6 
2.131 ±  0.274 

[1.265 – 
3.247] 

746.734 ± 37.475 
[593.810 – 
857.523] 

417.137 ± 69.587 
[149.807 – 623.556] 

9.019 ± 1.066 
[5.757 – 12.319] 

Wobble 6 
1.129 ± 0.192 

[0.507 – 
1.680] 

750.921 ± 38.804 
[631.204 – 
871.575] 

707.137 ± 193.463 
[227.722 – 
1504.683] 

19.822 ± 6.110 
[7.709 – 44.466] 

Yawn 6 
1.321 ± 0.166 

[0.728 – 
1.840] 

817.020 ± 29.881 
[710.988 – 
886.753] 

619.122 ± 100.842 
[333.326 – 987.294] 

14.900 ± 2.438 
[8.046 – 22.304] 

a Duration calculated with Avisoft SASLab Pro.  
b The 1st formant (F1) was calculated with PRATT using standard settings. Coefficients of variation (CV) 
were calculated from the listing of all first formant (F1) measures (every 0.00625 s increment) for 
individual calls. Fundamental frequency (F0) was not included because it could not be determined for all 
calls. 
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Figure 5.1. Example playback stimuli of a (a) grunt-only vocal sequence and derived 
call vocal sequences that include either a (b) moan, (c) wobble or (d) yawn. ‘G’ refers to 
exhaled grunts, ‘I’ refers to inhaled grunts, ‘M’ refers to a moan, ‘W’ refers to a wobble, 
and ‘Y’ refers to a yawn. All of the vocal sequences include exhaled and inhaled call 
types. Spectrograms were made with Avisoft SAS Lab Pro.  
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Figure 5.2. Visual orientation towards the speaker following the conclusion of unfamiliar 
male vocal sequences. Vocal sequences were composed of only grunts (grunt) or 
included one of the derived calls (moan, wobble, yawn). Behaviors measured include 
(a) the duration of the first visual orientation towards the speaker, (b) the duration of the 
total visual orientation towards the speaker, and (c) the number of distinct visual 
orientations towards the speaker. Lines connect trials carried out with the same female 
subject. * p < 0.05, ** p < 0.01, *** p < 0.001.  
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Figure 5.3. Time spent in proximity to the speaker following the conclusion of unfamiliar 
male vocal sequences. Vocal sequences were composed of only grunts (grunt) or 
included one of the derived calls (moan, wobble, yawn). Lines connect trials carried out 
with the same female subject. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Chapter 6: 

The social functions of vocal complexity in geladas 

 

Abstract 

In support of the social complexity hypothesis, we know that more social taxa (species 

with larger group size or that spend more time spent socializing) tend to produce more 

complex vocalizations. We know very little about the specific function that vocal 

complexity plays within a highly social setting. Here, I address the function of vocal 

complexity in male geladas living in the Simien Mountains National Park in Ethiopia. I 

tested whether complex vocal sequences function to counteract challenges that gelada 

males face by living in a large group (more conspecific noise to compete with) or to help 

maintain their social bonds with females. I found support for both hypotheses. Vocal 

sequences were more complex (more derived call types) when the conspecific noise 

level was high. Furthermore, producing sequences with more derived calls leads to 

being groomed by females. Together, these findings suggest that the need to maintain 

cross-sex bonds within a noisy backdrop of conspecific vocalizations may favor greater 

vocal complexity. 
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Introduction 

The complexity of animal vocal communication varies enormously across taxa, 

from humans with an infinite repertoire of sound combinations to a mongoose species 

that only produces three different sound types (Baker, 1988). One of the most promising 

evolutionary explanations for why vocalizations become more diversified comes from 

the social complexity hypothesis, which states that high levels of sociality (e.g., group 

size, amount of time socializing) led to the evolution of more complex forms of 

communication (Blumstein & Armitage, 1997; Freeberg, 2006; Wilkinson, 2003). To 

date, this hypothesis has been supported by inter-species comparative studies 

(Blumstein & Armitage, 1997; Bouchet, Blois-Heulin, & Lemasson, 2013; Krams, Krama, 

Freeberg, Kullberg, & Lucas, 2012; Manser et al., 2014; K. McComb & Semple, 2005; 

Wilkinson, 2003). However, while correlations across species are an important starting 

point for understanding vocal evolution, they do not tell us how complex vocalizations 

help animals navigate their social environment.  Without this critical piece, our 

understanding of the adaptive nature of vocal complexity remains very limited. In other 

words, what we need know is, what is the specific function of vocal complexity in 

species shown to have comparatively high levels of sociality? 

The first step to determining the specific functions of vocal complexity in highly 

social species is to identify the types of social challenges they need to be overcome. It 

is thought that species living in large social groups face high levels of conspecific noise 

and frequent separation with social partners in dense aggregations of conspecifics (Bee 

& Micheyl, 2008; H Brumm & Zollinger, 2011; Henrik Brumm & Slabbekoorn, 2005; 

Richardson & Lengagne, 2010; Schmidt & Römer, 2011). Complex vocalizations may 
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function to counteract masking from conspecific noise or to help reach social partners 

outside of acoustic and/or visual contact of the caller. Altering vocalizations as a 

counterstrategy to noise occurs in anurans, marmosets, and humans, and several 

species produce salient ‘contact calls’ thought to help maintain intra-group spacing 

(Bee, 2007; Bee & Micheyl, 2008; Gustison & Townsend, 2015; Reichard & Welklin, 

2014; Roy, Miller, Gottsch, & Wang, 2011). For species living in highly gregarious social 

groups, one of the challenges individuals face is in forming and maintaining social 

bonds (Curley & Keverne, 2005; Dunbar & Shultz, 2010). Complex vocalizations may 

serve to facilitate social bonding by promoting affiliative behaviors, such as close 

proximity, mating and grooming. Male songbirds, for example, are well-known to 

produce highly diverse sequences of notes that attract females and facilitate mating and 

the formation of pair bonds (B. E. Byers & Kroodsma, 2009; Kagawa & Soma, 2013; 

Vallet, Beme, & Kreutzer, 1998). Papionin primates frequently produce ‘grunt’ 

vocalizations that facilitate approaches and grooming interactions between social 

partners (Cheney & Seyfarth, 1997; Cheney, Seyfarth, & Silk, 1995; Palombit, Cheney, 

& Seyfarth, 1999; Rendall, Seyfarth, Cheney, & Owren, 1999; Whitham, Gerald, & 

Maestripieri, 2007). 

 An excellent species in which to study the specific social functions of complex 

vocalizations are geladas (Theropithecus gelada) – a non-human primate known for its 

high levels of sociality and unique vocal abilities compared to closely related species 

like baboons (Aich, Moos-Heilen, & Zimmermann, 1990; Bergman, 2013; Gustison, le 

Roux, & Bergman, 2012; Richman, 1976, 1987). Geladas live in large multi-level 

communities that are composed of smaller aggregations of harem-like reproductive 
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units (Snyder-Mackler, Beehner, & Bergman, 2012). Two features of gelada sociality set 

them apart from other Papionins. First, within reproductive units, leader males form 

long-term (up to 8 years), affiliative bonds with the females in their unit (Gustison et al., 

2012; Snyder-Mackler, Alberts, & Bergman, 2012). Second, reproductive units are 

found in dense aggregations (‘herds’) with 1-100 other units (occasionally >1,000 

individuals, typically 200-500) (Snyder-Mackler, Beehner, et al., 2012). Thus, geladas 

are known for their high levels of sociality both in-terms of high levels of cross-sex 

bonding and the enormous numbers of individuals they encounter daily. 

 Geladas have also been publicized for their vocal complexity since the first 

studies in the 1970s (Dunbar & Dunbar, 1975; Richman, 1976). Recently, comparative 

data have shown that geladas have an expanded vocal repertoire because they 

produce a suite of low-amplitude call types not found in their baboon relatives (Gustison 

et al., 2012). Most of these phylogenetically “derived” calls – exhaled moans, wobbles, 

and vocalized yawns – are produced almost exclusively by adult males and contain 

highly salient acoustic properties (Gustison & Bergman, In Review, 2016). Exhaled 

moans are long in duration, wobbles contain rhythmic fluctuations in fundamental and 

formant frequencies, and yawns cover a wide frequency bandwidth. Gelada males 

almost always produce these derived call types in combination with exhaled grunts (a 

call type shared with baboons and many other primates) to form elaborate sequences 

that vary in composition and length (Gustison, Semple, Ferrer-i-Cancho, & Bergman, 

2016). In terms of the function, complex sequences are generally used in close-range 

interactions between males and females (Gustison & Bergman, 2016; Gustison et al., 
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2012). However, why geladas need strings of multiple call types in situations that 

baboons use only grunts (Cheney et al., 1995; Palombit et al., 1999) remains a puzzle. 

 Here, we test the non-exclusive hypotheses that gelada vocal sequence 

complexity has a specific function that corresponds to (a) large group size or (b) long-

term male-female social bonds. To test these hypotheses, we first identify which factors 

– social environment, social behaviors, and recipient type – determine the production 

and complexity of sequences. Then, we examine recipient responses to these 

sequences. Given their large group size, geladas frequently experience a social 

environment that is noisy and crowded (Gustison et al., 2012). Thus, longer vocal 

sequences or those containing salient derived call types may function to help males 

contact others in their reproductive units during conditions with limited acoustic and/or 

visual contact. If so, male vocal sequences should be produced at a higher rate, be 

longer in length, and/or contain more derived call types when conspecific noise level is 

high, unit females are farther away, and/or the level of conspecific density is high. It 

would also be expected that sequences are used during behavioral states in which 

individuals are out of contact with each other – like foraging and traveling.  

On the other hand, geladas are characterized by stable long-term male-female 

social bonds that develop during a male’s reproductive tenure (Gustison et al., 2012). 

Thus, complex vocal sequences may function to facilitate the social bonds that males 

maintain with unit females. As initial support for this hypothesis, a playback study 

showed unit females attend more strongly to male vocal sequences that contain a 

derived call (Gustison & Bergman, 2016). While suggestive that complex sequences are 

at least more salient to females, we still do not know how they function in natural male-
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female interactions. If longer complex sequences promote bond maintenance, male 

sequences that are longer in length or contain derived call types should be preferentially 

used during affiliative social behaviors like approaches and grooming. We also expect 

that males would produce these sequences specifically around unit females. Finally, we 

examine the responses of recipients to these sequences. If these complex vocal 

sequences function to facilitate social bonding, we would expect that they promote 

affiliative responses from females like approaches and grooming. 

 

Methods 

 

Study site and subjects 

Data for this study come from adult male geladas across three different bands in 

one wild community (about 1,200 individuals) living in the Sankaber area of the Simien 

Mountains National Park, Ethiopia (Snyder-Mackler, Beehner, et al., 2012). Gelada 

bands are comprised of smaller harem-like units with a leader male, 0-3 subordinate 

follower males, and 1-11 females with their immature offspring (Snyder-Mackler, 

Beehner, et al., 2012). This population has been under intensive behavioral study since 

January 2006, and study subjects are fully habituated to human observers on foot 

(approach distances less than 3 m) (Bergman, 2010). The gelada research was 

approved by the University Committee on Use and Care of Animals at the University of 

Michigan and adhered to the laws and guidelines of Ethiopia. 

 

Behavioral observations 
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From January to June 2014, we collected 251 15 minute focal samples from 13 

leader and 6 follower males (1-20 focals per male) (Altmann, 1974). These samples 

included continuous monitoring of behavioral states (foraging, traveling, resting, 

socializing) and all-occurrence recording of affiliative behaviors. These social events 

included approaches, ano-genital inspection, copulation, grooming, infant handling, lip-

smacking, and vocalizations. Vocalizations were also recorded with acoustic recording 

equipment (see below). Scan samples were taken at 5 minute intervals throughout the 

focal samples (n = 1,002 samples, 3-4 per focal). During scans, we recorded the focals’ 

distance to the nearest same-unit adult female, as well as the number of other-unit adult 

males within a 10 m radius to the focal. The latter measurement was used as an index 

of conspecific density. The number of non-unit males within 10m to focal males during 

scans averaged 4.20 ± 0.15 (mean ± SEM) males (range: 0 to 26 males). The nearest 

unit female distance during scans averaged 2.75 ± 0.15m (range: 0 to 60m).  

To determine precise timing latencies between vocal sequences and behavioral 

states, we collected 400 3-5 min video samples of 16 leader and 4 follower males using 

Flip UltraHD and Kodak Playsport video camcorders. These videos were taken during 

February 2013 to June 2014. Videos were taken ad libitum during a range of behavioral 

activities. These videos were labeled for behaviors using the same focal sampling 

protocol, and the start times of focal males’ vocal sequences were recorded. We 

examined latencies between sequences and behavioral states that occurred within 5 s 

of each other. These videos also were used to determine the inter-call interval threshold 

that defined the boundary of a ‘vocal sequence’ (see Supplementary Materials). 
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Acoustic recordings 

 All occurrences of exhaled grunts, inhaled grunts, exhaled moans, inhaled 

moans, wobbles and vocal yawns were recorded during focal sampling (n = 6,195 

individual calls from 1,406 sequences, 8-150 sequences per male) using a Sennheiser 

ME66 directional microphone connected to a Marantz PMD 661 Digital Recorder. These 

call types are combined together to make sequences, and have been described in 

previous studies (Gustison & Bergman, 2016; Gustison et al., 2012, 2016). We define a 

vocal sequence as one or more discrete calls made by the same individual and, for 

those sequences with two or more calls, separated by an inter-call interval of less than 

2.983 s. This cut-off threshold was determined by creating a density plot of log-

transformed inter-call interval durations of the six call types produced during 400 

continuous 3-5 minute video recordings (see Supplemental Materials). Avisoft SAS Lab 

Pro (version 5.1.12, Avisoft Bioacoustics) was used to make spectrograms with a Fast 

Fourier transformation (size of 1,024 points) and label the calls in each sequence. The 

researcher labeling these recordings was blind to the male identity and behavior during 

the corresponding focal sample. 

 To determine conspecific noise level, 10 s acoustic recordings were taken at 

each 5 min scan sample. These recordings were made at the same volume level, with 

the microphone pointed in the direction of the focal male. A researcher blind to the focal 

male and behavioral events surrounding the scans labeled the start and end times of all 

gelada vocalizations in the scans using Praat (version 5.2.29). Spectrograms in Praat 

were viewed with a 0-6000 Hz range, 0.025 s window length, and 50 dB dynamic range. 

Vocalizations had to be visible on the spectrograms to be counted. Conspecific noise 
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level was defined as the percentage of each scan that contained gelada calls. 

Conspecific noise in the 10-second scan recordings averaged 34.04 ± 0.01% (range: 

0% to 100%). Preliminary analysis using a Linear Mixed Model (LMM) showed that 

conspecific noise was related to other social environment variables and focal behavioral 

state during the scan samples. In this LMM, conspecific density, female distance, and 

behavioral state were fixed factors, and the focal sample and male identity were random 

effects. We found that the percent of conspecific noise was negatively associated with 

unit female distance (Intercept = 28.783 ± 2.585, Estimate (± SEM) = -0.492 ± 0.183, t = 

-2.69, p = 0.0074) and positively associated with the number of non-unit males within 10 

m (Estimate = 2.142 ± 0.220, t = 9.752, p < 0.0001). Conspecific noise during resting 

(45.54%) and socializing (42.27%) was higher than during foraging (26.38%; rest vs. 

forage: t = 2.27, p = 0.0236; social vs. forage: t = 2.12, p = 0.0339) and traveling 

(26.44%; rest vs. travel: t = 2.21, p = 0.0272; social vs. travel: t = 2.05, p = 0.0408). 

Conspecific noise during resting and socializing did not differ (p > 0.05), nor did it differ 

during foraging and traveling (p > 0.05). 

 

Data analysis 

Six dependent variables were used to represent sequence production and 

complexity. ‘Production’ was quantified by the sequence rate and sequence size 

(number of calls per sequence). The time window used to calculate sequence rate 

depended on the analysis. Sequence ‘complexity’ was quantified by the repertoire size 

of derived calls (exhaled moans, wobbles, and vocalized yawns) and the total number of 

each type of derived call per vocal sequence. A series of LMMs were used to test the 
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causes and consequences of sequence production and complexity. All LMMs included 

focal sample and male identity as random effects. 

First, we tested the effects of social environment on sequence production and 

complexity. Social environment fixed factors included conspecific noise, conspecific 

density, and female distance. These factors were measured for each 5 min focal sample 

interval (n = 753 intervals) by averaging the values from the two adjacent scan samples. 

Then, we ran six LMMs, each with the averages of conspecific noise, conspecific 

density, and female distance as fixed factors. The behavioral states of the first and 

second adjacent scan samples were included as random effects. The first LMM tested 

whether the sequence rate for each 5 min interval was predicted by any of the three 

social environment variables. The next five LMMs tested whether sequence size or 

complexity was predicted by the social environment variables for the 5 min intervals that 

the sequences (n = 1,406) were produced in.  

Second, we tested the effects of male behavioral states on sequence production 

and complexity. We separated each behavioral state into two time intervals, a transition 

period (5s before to 5s after the start of the current state) and a non-transition period (5s 

after the start of the current state to 5s before the start of the next state). Then, we ran 

six LMMs, each with behavioral state and time interval as the fixed factor. The first LMM 

tested whether the sequence rate (per 10 s) was predicted by the corresponding state 

and its time interval. For this model, only behavior states that (a) lasted at least 20 s and 

(b) had at least 5s of observation before they started were used so that there was a 

minimum of 10s per time interval for each state. Thus, we examined sequence rates in 

the transition and non-transition periods. The next five LMMs tested whether sequence 
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size or complexity was predicted by the behavioral state/time interval that each 

sequence occurred in. 

Third, we tested the effects of specific social behaviors on sequence production 

and complexity. We first used LMMs to test whether sequence rate was higher in the 10 

s window during the start of each social behavior compared to the 15-5 s before and 5-

15 s after the behavior started. These LMMs included time interval (before, during, after) 

as a fixed factor. Then, we used LMMs to test whether the size or complexity of ‘non-

social’ sequences produced during the 10 s window of a social behavior differed from 

those produced outside the 10 s window. In this analysis, comparisons were only made 

for social behaviors for which sequence rate was enhanced. 

Fourth, we tested the effect of receiver type on sequence production and 

complexity. It is often difficult to tell who the receivers are during a vocalization, and so 

we focused on sequences given within the 10 s window surrounding approach events. 

Specifically, we compared approaches that either were or were not towards an adult 

unit female (the fixed factor in LMMs). We used an LMM to test whether sequence rate 

differed between approaches with a unit female or other individuals. Then, we used 

LMMs to test whether the size or complexity of sequences produced during approach 

with unit females differed from approaches with other individuals. 

Last, we tested the potential influence of sequence production and complexity on 

receiver responses. We examined two types of responses – (a) change in unit female 

proximity to the focal males and (b) elicitation of grooming behavior from a unit female 

following an approach. The first LMM included sequence rate (per 5 min focal interval) 

as a dependent variable and the changes in nearest unit female and non-unit male 
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distances (scan sample 2 minus scan sample 1 distances) as fixed factors. Non-unit 

male distances were included in the model to control for potential changes in overall 

herd density. The next five LMMs included sequence size or complexity measures as 

the dependent variable and changes in unit-female and non-unit male distances in the 

corresponding focal interval as fixed effects. Then, we ran an LMM that included 

sequence rate (per 10 s) during an approach with a unit female as the dependent 

variable and grooming outcome that occurred within 10 s of the approach as the fixed 

factor. The next five LMMs included size or complexity measures as the dependent 

variable and grooming outcome as the fixed factor.  

LMMs were run using the function “lmer” of the R package “lme4” (Bates, 

Maechler, & Bolker, 2012). The “lmerTest” package was implemented to determine the 

significance of the LMM coefficients (Kuznetsova, Brockhoff, & Christensen, 2013). We 

used the “difflsmeans” function in the lmerTest package to make pairwise comparisons. 

All calculations and statistical tests were carried out in R 3.3.0 (R Development Core 

Team, 2016). Critical values were set at alpha = 0.05, and all tests were two-tailed. 

 

Results 

 

Gelada male vocal sequences were produced at a mean (± SEM) rate of 1.87 ± 0.06 

(range: 0-10) sequences per 5 min and had a mean size of 4.41 ± 0.10 (1-23) calls. 

Sequences had a mean repertoire of 0.36 ± 0.02 (0-3) derived call types and contained 

0.27 ± 0.01 (0-3) exhaled moans, 0.05 ± 0.01 (0-6) wobbles, and 0.08 ± 0.01 (0-1) 

yawns. First, we explored the effect of social environment, male behavior and receiver 
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type on sequence production and complexity. Then, we explored receiver responses to 

the production and complexity of sequences. 

 

Effect of social environment 

We used LMMs to test the potential effects of conspecific noise, conspecific 

density, and unit female distance on vocal sequence production and complexity (Table 

6.1). Conspecific noise level was positively associated with sequence rate. Conspecific 

noise level also was positively associated with the number of derived call types per 

sequence (Fig 6.1a), and the number of exhaled moans per sequence (Fig 6.1b). There 

was no evidence that conspecific noise level was associated to sequence size or the 

number of wobbles and yawns per sequence. Conspecific density was negatively 

associated with sequence rate and positively associated with the number of yawns per 

sequence (Fig 6.1c). There was no evidence that conspecific density was associated to 

the number of derived call types per sequence or the number of exhaled moans and 

wobbles per sequence. There also was no evidence that nearest unit female distance 

was associated to the any of the dependent variables. 

 

Effect of male behavior 

 First, we used LMMs to test the potential influence of behavioral states (foraging, 

n = 562, traveling, n = 367, resting, n = 246, and socializing, n = 269) and the 

corresponding time interval (transition or non-transition periods) on sequence 

production and complexity. Pairwise comparisons showed that sequence rate was 

highest during transitions to socializing compared to all other state/time interval 
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categories (p < 0.0001 for all comparisons, Fig 6.2a). The only other difference found 

was that sequence rate was higher during foraging transitions than during non-transition 

foraging periods (t = 2.44, p = 0.0148; Fig 6.1a). Then, we examined the latency 

between sequence production in the transition periods of foraging and socializing states 

from the video samples. On average, sequences occurred about 0.59 ± 0.38 s after a 

foraging state (n = 61 latencies) started and 1.12 ± 0.35 s before the start of a 

socializing state (n = 52 latencies; Fig 6.2b). There were subtle differences in sequence 

size and complexity measures across behavioral state/time intervals (Table 6.2). 

Sequence size was smallest in non-transition foraging and non-transition socializing 

periods. Derived call repertoire size per sequence was highest during resting and 

socializing. The number of exhaled moans per sequence was highest during resting and 

transitions to socializing. The number of wobbles per sequence was highest during 

transitions to socializing. The number of yawns per sequence was highest during resting 

and transitions to socializing. We also explored the sequence structure in the four 

behavioral states (see Supplementary Material). Sequence structure was not 

remarkably different between the states and all sequence types had transitional 

probabilities that differed from what was expected due to chance. Most sequences 

began with exhaled grunts or exhaled moans and ended with inhaled moans or 

vocalized yawns. Sequences also contained frequent alterations between exhaled and 

inhaled grunts. 

 Next, we compared sequence production and complexity across different types 

of affiliative social behaviors (give and receive approaches, give ano-genital 

inspections, give copulations, give and receive grooming, infant handling, and give and 
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receive lip-smacking). First, we carried out a suite of LMMs to test whether sequence 

rate was higher during the 10 s window during the start of a social behavior compared 

to the 15-5 s before and 5-15 s after (Table 6.3, Fig 6.3). Sequence rates were higher 

during approaches (give = 350 approaches, receive = 374 approaches; Fig 6.3a-b) and 

all other social behaviors except for when males received lip-smacking. Also, sequence 

size and complexity differed between non-social sequences and those produced during 

social behaviors (Table 6.4, Fig 6.3). Sequence size was larger in sequences produced 

during all social behaviors except for when males received grooming. The derived call 

repertoire size of sequences was larger when males gave and received approaches, 

engaged in ano-genital inspection, received grooming, and gave a lip-smack. The 

number of exhaled moans per sequence was only greater in sequences produced when 

males gave an approach. The number of wobbles per sequence was greater during all 

social behaviors expect for infant handling. The number of yawns per sequence was 

greater when males gave an approach, received grooming, and handled infants. The 

number of yawns per sequence was lower when males gave grooming. 

 

Effect of receiver type 

 We examined how sequence production and complexity differed based on 

whether the recipient was an adult female from the focal male’s unit. First, we tested 

whether sequence rate was greater during an approach to a unit female (n = 490 

approaches) compared to others (n = 252). We found that sequence rate was higher 

during an approach to a unit female than another individual (t = 2.77, p = 0.0057; Fig 

6.4a). Next, we tested whether sequences produced during an approach differed in size 
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or complexity when the approach was with a unit female (n = 192 sequences) compared 

to others (n = 71). We found that sequences were larger in size if they were directed at 

a unit female (t = 2.26, p = 0.0249; Fig 6.4b), but they did not differ in their derived call 

repertoire size (t = 0.52, p = 0.6027; Fig 6.4c). There was also no evidence that 

sequences differed in the number of exhaled moans (unit female: 0.40 ± 0.04 moans, 

other: 0.21 ± 0.03 moans; t = 1.52, p = 0.1290), wobbles (unit female: 0.17 ± 0.05 

wobbles, other: 0.14 ± 0.04 wobbles; t = -0.40, p = 0.6908), or yawns (unit female: 0.14 

± 0.03 yawns, other: 0.18 ± 0.03 yawns; t = -0.84, p = 0.4024). 

 

Receiver responses to sequences  

 We examined whether sequence production and complexity played a potential 

role in influencing receiver proximity to the focal and affiliative behavior. First, we 

examined changes in unit female and non-unit male distances to the focal across 5 min 

intervals (753 intervals, 1,406 sequences). As expected, we found that unit female 

distances decreased as sequence rate increased (Intercept (± SEM) = 1.867 ± 0.131, 

Estimate (± SEM) = -0.041 ± 0.014, t = -2.97, p = 0.0031), and there was no clear 

change in non-unit male distances based on sequence rate (Estimate = -0.004 ± 0.011, 

t = -0.32, p = 0.7517). Sequence size did not predict changes in unit female distance 

(Intercept = 4.140 ± 0.310, Estimate = 0.011 ± 0.024, t = 0.45, p = 0.6497) or non-unit 

male distance (Estimate = -0.027 ± 0.018, t = -1.5, p = 0.1341). Derived call repertoire 

size per sequence did not predict changes in unit female distance (Intercept = 0.365 ± 

0.046, Estimate = -0.001 ± 0.004, t = -0.15, p = 0.877) or non-unit male distance 

(Estimate = 0.000 ± 0.003, t = 0.12, p = 0.9079). The number of exhaled moans per 
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sequence did not predict changes in unit female distance (Intercept = 0.272 ± 0.042, 

Estimate = -0.002 ± 0.003, t = -0.7, p = 0.4815) or non-unit male distance (Estimate = 

0.004 ± 0.002, t = 1.74, p = 0.0822). The number of wobbles per sequence did not 

predict changes in unit female distance (Intercept = 0.049 ± 0.016, Estimate = 0.002 ± 

0.002, t = 0.91, p = 0.3656) or non-unit male distance (Estimate = 0.000 ± 0.002, t = -

0.28, p = 0.7802). The number of yawns per sequence did not predict changes in unit 

female distance (Intercept = 0.092 ± 0.012, Estimate = -0.001 ± 0.002, t = -0.37, p = 

0.7121) or non-unit male distance (Estimate = -0.002 ± 0.001, t = -1.28, p = 0.1999). 

 Then, we examined whether sequence production or complexity during an 

approach with a unit female was predicted by the grooming outcome (no grooming, 

males giving grooming, males receiving grooming). First, we compared sequence rates 

during approaches followed by no grooming (n = 372 approaches) to approaches 

followed by males giving grooming (n = 52) and males receiving grooming (n = 49). We 

found that sequence rate was higher if males gave (t = 6.99, p < 0.0001) or received 

grooming (t = 6.44, p < 0.0001) compared to if there was no grooming (Fig 6.5a). Then 

we compared the size and complexity of approach sequences followed by no grooming 

(n = 109 sequences), males giving grooming (n = 43) and males receiving grooming (n 

= 37). We found no evidence that sequence size differed if males gave (t = 0.24, p = 

0.8126) or received (t = -0.31, p = 0.7565) grooming compared to no grooming (Fig 

6.5b). We also found no evidence that the derived call repertoire differed if males gave 

grooming (t = -0.62, p = 0.5385) compared to no grooming, however, derived call 

repertoire size was larger if males received grooming (t = 2.05, p = 0.0421) compared to 

no grooming (Fig 6.5c). We found no evidence that the number of exhaled moans per 
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sequence differed if males gave grooming (t = -0.73, p = 0.4655) or received grooming 

(t = -0.22, p = 0.8292) compared to no grooming (Fig 6.5d). The number of wobbles per 

sequence was greater if males gave grooming (t = 2.64, p = 0.0091) compared to no 

grooming, but there was no evidence that wobble number differed if males received 

grooming (t = 0.27, p = 0.7858) compared to no grooming (Fig 6.5e). Finally, sequences 

were less likely to contain a yawn if males gave grooming (t = -2.28, p = 0.0239) and 

more likely to contain a yawn if males received grooming (t = 3.45, p = 0.0007) 

compared to no grooming (Fig 6.5f). 

 

Discussion 

 In this study, we show that complex gelada vocal sequences have specific 

functions that tie into two social complexity metrics – large group size and high levels of 

socializing. First, we found evidence that complex vocal sequences function to combat 

the conspecific noise created by living in a large and crowded social group. Second, we 

found evidence that complex vocal sequences facilitate prosocial interactions between 

adult males and females. 

 One of the challenges vertebrates face when in proximity to several conspecifics 

is noise level, and counterstrategies to noise include diversifying vocalizations to be 

more salient as well as making vocalizations redundant through repetition or 

prolongation (Bee & Micheyl, 2008; Henrik Brumm & Slabbekoorn, 2005; Hotchkin & 

Parks, 2013; Richardson & Lengagne, 2010; Schmidt & Römer, 2011). We found 

evidence for both counterstrategies. Gelada males diversified their vocal sequences by 

using a larger repertoire of derived call types during periods of high noise levels. This 
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finding mirrors analogous work on the choruses of male Túngara frogs (Physalaemus 

pustulosus), which shows that males produce higher proportions of complex sequences 

(i.e., those that include ‘chuck’ vocalizations) when chorusing in higher male densities, 

and therefore higher noise, conditions (Bernal, Page, Rand, & Ryan, 2007). This finding 

also supports the interpretations of a previous playback experiment showing that female 

geladas respond more strongly to vocal sequences containing derived call types – it 

was proposed that this result occurred because of the higher salience of derived calls 

(Gustison & Bergman, 2016). Second, gelada males engaged in more redundant vocal 

behaviors during high noise levels. They produced vocal sequences at higher rates and 

produced more exhaled moans, a derived call type known for its extended duration 

(Gustison & Bergman, In Review, 2016). Such findings support studies of captive 

marmosets (Callithrix jacchus), which are thought to produce prolonged phee calls 

during noise to enhance signal transmission (Brumm, 2004).  

Overall, we found little evidence to suggest that gelada male vocal sequences 

function to counteract other challenges of living in a large group, like limited visual 

contact with unit females or needing to contact several individuals simultaneously. 

Sequence rate and derived call repertoire size were unrelated to conspecific density, 

and sequences were produced at low rates during foraging and traveling, which is when 

individuals would be most likely to be out of visual contact with social partners. The one 

exception to this rule was the production of vocal yawns. We found that vocal 

sequences were more likely to contain vocal yawns when male density was high, a 

finding that supports previous captive gelada work suggesting that vocal yawns may 

serve as a multi-model agonistic displays between males (Leone, Ferrari, & Palagi, 
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2014). Taken together, these contrasting associations between specific derived call 

types and social environment (exhaled moans with conspecific noise and vocal yawns 

with conspecific density) suggest that different selective pressures associated with large 

group size may have promoted the development of different derived call types in 

geladas. 

Apart from the several avian taxa that express monogamy, highly gregarious and 

long-term male-female social bonds are relatively rare among vertebrates (Greenwood, 

1980; Kleiman, 1977). One of the challenges faced by males in such a position is how 

to effectively form and maintain their social bonds with reproductive females. Male 

vertebrates commonly use elaborate vocal displays to attract short-term female mating 

partners, which is characteristic of red deer (Cervus elaphus), túngara frogs (P. 

pustulosus) and canaries (Serinus canaria), for example (Charlton, Reby, & McComb, 

2007; Drăgănoiu, Nagle, & Kreutzer, 2002; Kime, Rand, Kapfer, & Ryan, 1998; 

McComb, 1991; Vallet et al., 1998). Less understood is how males might use complex 

vocal strategies to develop long-term associations with females. Males of monogamous 

species – like zebra finches (Taeniopygia guttata) and California mice (Peromyscus 

californicus) – continue to direct vocalizations towards their female partners after a pair 

bond has formed (Pultorak, Fuxjager, Kalcounis-Rueppell, & Marler, 2015; Tomaszycki 

& Adkins-Regan, 2006). In humans, higher conversation quality and quantity with an 

intimate partner is associated with higher relationship satisfaction (E. S. Byers, 2005; 

Emmers-Sommer, 2004). The findings of the current study expand on these earlier 

insights into the role of vocal communication in maintaining cross-sex social bonds by 

showing that gelada males rely on vocal sequences, specifically those containing more 
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derived call types, to facilitate their affiliative interactions with females. Importantly, the 

composition of gelada vocal sequences predicted the directionality of heterosexual 

social interactions. The presence of a sequence during an approach and its size 

(number of calls) equally predicted giving or receiving of grooming. However, diversified 

vocal sequences (i.e., more derived call types) and those containing vocal yawns 

predicted female to male grooming, while sequences containing more wobbles 

predicted male to female grooming. These vocal sequence types may therefore serve 

as referential signals in social contexts. This interpretation is supported by earlier 

experimental work in which female geladas chose to spend more time close to 

playbacks of male derived call vocal sequences than grunt-only sequences (Gustison & 

Bergman, 2016). 

Previous comparative research in primates demonstrated that vocal repertoire 

size increased in taxa expressing larger group sizes and higher grooming rates (K. 

McComb & Semple, 2005). These conclusions left an open question about how 

increased levels of sociality promote the need for more communicative complexity. 

Comparing the current study with previous baboon work starts to answer this question 

by emphasizing the significance of conspecific noise and density levels of large groups 

and the need to effectively maintain long-term heterosexual social bonds. A previous 

study showed that geladas range in larger aggregations and vocalize at higher rates 

than chacma baboons (Papio ursinus), suggesting that conspecific noise is a factor 

promoting gelada vocal complexity (Gustison et al., 2012). The current findings support 

this interpretation by showing that sequences containing more derived call types – 

specifically exhaled moans – occur in noisier social environments, and sequences 
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containing vocal yawns are more prevalent in high density environments. On the other 

hand, geladas and baboons have contrasting social systems that can account for 

differences in communicative abilities. Most baboons live in multi-male multi-female 

polygamous social groups in which males form temporary consortships and ‘friendships’ 

with females (Clutton-Brock, T. H., Harvey, 1977; Palombit et al., 1999). Similar to 

geladas, baboon males who approach female ‘friends’ while grunting were more likely to 

engage in grooming and other affiliative interactions than if approaches did not co-occur 

with grunting (Palombit et al., 1999). A key difference, however, is that gelada males 

maintain intimate relationships with multiple females, and appear to use derived vocal 

sequences as rudimentary referential signals that predict the directionality of affiliative 

interactions. By having a more diverse way of communicating, gelada males appear 

better able to elicit female investment in the relationship. It is also possible that gelada 

males can reach several unit members simultaneously when they use vocal sequences, 

thereby maintaining multiple social bonds in a single vocal utterance. This strategy – 

termed ‘vocal grooming’ – is a well-known explanation for the high vocal rates in 

humans and geladas (Dunbar, 1998, 2003).  

Taken together, the findings show that the need to maintain bonds within a noisy 

backdrop of conspecific vocalizations may favor greater vocal complexity. Future work 

will be needed to examine why it is that gelada vocal complexity is significant for cross-

sex bonds but not in same-sex female bonds, even though both types occur in a noisy 

environment. One possibility is that males need to form new social bonds, whereas 

females are born into their social bonds, suggesting that vocal complexity may help 

accelerate a male’s integration into a unit. 



 195	

 

Acknowledgements 

We thank the Ethiopian Wildlife Conservation Authority (EWCA) as well as the 

wardens and staff of the Simien Mountain National Park for permission and support in 

conduction research on geladas. We also thank all the members of the University of 

Michigan Gelada Research Project (UMGRP) for assistance in data collection and 

valuable insight on analyses and interpretation. MLG was supported by grants from the 

National Geographic Society (9122-12, W304-14), Leakey Foundation, University of 

Michigan, and Petridish (primary supporter: John Allen). UMGRP was supported by the 

Wildlife Conservation Society (SSF 67250), the National Geographic Society (8100-06), 

the Leakey Foundation, the National Science Foundation (BCS-0715179, BCS-

0962118, IOS- 1255974), and the University of Michigan. 

  



 196	

Supplementary Materials 

 

Determination of vocal sequence boundaries 

From February 2013 to June 2014, 400 3-5 min video recordings were taken on 

20 males using Flip UltraHD video camcorder and Kodak Playsport video camcorders. 

We used Audacity (version 2.0.5) to extract the audio from these recordings and Avisoft 

SAS Lab-Pro (version 5.1.12, Avisoft Bioacoustics) to label the start and end times of 

exhaled grunts, inhaled grunts, exhaled moans, inhaled moans, wobbles and yawns 

(5,218 total calls) produced by the focal males. Then, we measured the inter-call 

intervals (n = 4,868 intervals) between calls produced during the same videos. 

Following previously published methods (Kershenbaum, Ilany, Blaustein, & Geffen, 

2012), we chose the cut-off threshold for interval length based on the lowest point 

between the first two peaks of a density plot of log-transformed inter-call interval lengths 

(Fig 6.S1). This analysis showed that 2.983 s was an appropriate threshold to split 

adjacent calls into different sequences. 

 

Sequence structure across behavioral states 

We performed lag sequential analysis (Bakeman & Gottman, 1986; Bakeman & 

Quera, 1992) to characterize patterns of call transitions in gelada male vocal sequences 

using the GSEQ program 5.1 (Bakeman & Quera, 1992). Lag sequential analysis shows 

whether the association between any two calls is non-random by testing whether the 

transitions occur at rates significantly different than expected given the observed 

frequency of calls. We examined the frequency of calls at Lag1 (the call immediately 

following the initial call, Lag0). All calls, including ‘silence’ (indicating the start or end of 

a sequence), were used as initial and following calls, producing a 7x7 table of p-values 

for the conditional probabilities. Calls were not allowed to repeat (i.e., a repeated call 

was counted once) so that the diagonal of the transition matrix did not contain any 

structural zeros (Bakeman & Gottman, 1986). We used a chi-squared test to examine 

whether the observed frequency table differed from the expected frequency table. When 

analyzing specific call transitions, we used an alpha value of 0.05. 
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We looked at sequences produced during the different behavioral states, 

foraging (2,554 calls from 627 sequences across 18 males), traveling (988 calls from 

181 sequences across 17 males), resting (831 calls from 174 sequences across 16 

males) and socializing (1,822 calls from 424 sequences across 19 males) separately. 

Lag sequential analysis suggested that call transitions in gelada sequences are non-

independent. We found that transition frequencies deviated from random expectations 

for foraging sequences (c2 = 1,047.496, df = 29, p < 0.0001), traveling sequences (c2 = 

439.114, df = 29, p < 0.0001), resting sequences (c2 = 277.218, df = 29, p < 0.0001), 

and socializing sequences (c2 = 501.468, df = 29, p < 0.0001). Further analysis of these 

transitions revealed that certain call types tended to start or end sequences, groups of 

calls tended to occur together, and patterns were similar across states (Fig 6.S2). 

Sequences were typically begun with exhaled grunts or exhaled moans and ended by 

inhaled moans and yawns. Exhaled and inhaled grunts were often produced in 

alternating cycles.  



 198	

References 

Aich, H., Moos-Heilen, R., & Zimmermann, E. (1990). Vocalizations of adult gelada 

baboons (Theropithecus gelada): Acoustic structure and behavioural context. Folia 

Primatologica, 55, 109–132. 

Altmann, J. (1974). Observational study of behavior : Sampling methods. Behaviour, 49, 

227–267.  

Baker, C. M. (1988). Vocalizations of Captive Water Mongooses, Atilax-Paludinosus. 

Zeitschrift Fur Saugetierkunde, 53, 83–91. 

Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using 

S4 classes. Retrieved from http://cran.r-project.org/ package=lme4 

Bee, M. a. (2007). Sound source segregation in grey treefrogs: spatial release from 

masking by the sound of a chorus. Animal Behaviour, 74, 549–558.  

Bee, M. a, & Micheyl, C. (2008). The cocktail party problem: what is it? How can it be 

solved? And why should animal behaviorists study it? Journal of Comparative 

Psychology, 122, 235–51. 

Bergman, T. J. (2010). Experimental evidence for limited vocal recognition in a wild 

primate: implications for the social complexity hypothesis. Proceedings of the Royal 

Society B: Biological Sciences, 277, 3045–53.  

Bergman, T. J. (2013). Speech-like vocalized lip-smacking in geladas. Current Biology, 

23, R268-9. 

Bernal, X. E., Page, R. A., Rand, A. S., & Ryan, M. J. (2007). Natural history miscellany 

- Cues for eavesdroppers: Do frog calls indicate prey density and quality? The 

American Naturalist, 169, 409–415. 

Blumstein, D. T., & Armitage, K. B. (1997). Does sociality drive the evolution of 

communicative complexity? A comparative test with ground-dwelling sciurid alarm 

calls. The American Naturalist, 150, 179–200. 

Bouchet, H., Blois-Heulin, C., & Lemasson, A. (2013). Social complexity parallels vocal 

complexity: a comparison of three non-human primate species. Frontiers in 

Psychology, 4, 390.  

Brumm, H. (2004). Acoustic communication in noise: regulation of call characteristics in 

a New World monkey. Journal of Experimental Biology, 207, 443–448.  



 199	

Brumm, H., & Slabbekoorn, H. (2005). Acoustic Communication in Noise. Advances in 

the Study of Behavior, 35, 151–209. 

Brumm, H., & Zollinger, S. A. (2011). The evolution of the Lombard effect: 100 years of 

psychoacoustic research. Behaviour, 148, 1173–1198.  

Byers, B. E., & Kroodsma, D. E. (2009). Female mate choice and songbird song 

repertoires. Animal Behaviour, 77, 13–22.  

Byers, E. S. (2005). Relationship satisfaction and sexual satisfaction: a longitudinal 

study of individuals in long-term relationships. Journal of Sex Research, 42, 113–

118. 

Charlton, B. D., Reby, D., & McComb, K. E. (2007). Female red deer prefer the roars of 

larger males. Biology Letters, 3, 382–385.  

Cheney, D. L., & Seyfarth, R. M. (1997). Reconciliatory grunts by dominant female 

baboons influence victims’ behaviour. Animal Behaviour, 54, 409–18. 

Cheney, D. L., Seyfarth, R. M., & Silk, J. B. (1995). The role of grunts in reconciling 

opponents and facilitating interactions among adult female baboons. Animal 

Behaviour, 50, 249–257.  

Clutton-Brock, T. H., Harvey, P. H. (1977). Primate ecology and social organization. 

Journal of Zoology, 183, 1–39. 

Curley, J. P., & Keverne, E. B. (2005). Genes, brains and mammalian social bonds. 

Trends in Ecology and Evolution, 20, 561–567.  

Drăgănoiu, T. I., Nagle, L., & Kreutzer, M. (2002). Directional female preference for an 

exaggerated male trait in canary (Serinus canaria) song. Proceedings of the Royal 

Society B: Biological Sciences, 269, 2525–31.  

Dunbar, R. I. M. (1998). Grooming, Gossip, and the Evolution of Language. In 

Grooming, Gossip, and the Evolution of Language. Cambridge, MA: Harvard 

University Press. 

Dunbar, R. I. M. (2003). The social brain: Mind, language, and society in evolutionary 

perspective. Annual Reviews in Anthropology, 32, 163-181. 

Dunbar, R. I. M., & Dunbar, P. (1975). Social Dynamics of Gelada Baboons. Basel, 

Switzerland: Karger. 

Dunbar, R. I. M., & Shultz, S. (2010). Bondedness and sociality. Behaviour, 147, 775–



 200	

803.  

Emmers-Sommer, T. M. (2004). The effect of communication quality and quantity 

indicators on intimacy and relational satisfaction. Journal of Social and Personal 

Relationships, 21, 399–411. 

Freeberg, T. M. (2006). Social complexity can drive vocal complexity: group size 

influences vocal information in Carolina chickadees. Psychological Science, 17, 

557–61. 

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and 

mammals. Animal Behaviour, 28, 1140–1162. 

Gustison, M. L., & Bergman, T. J. (In Review). Divergent acoustic properties of gelada 

and baboon vocalizations and their implications for the evolution of human speech. 

Journal of Language Evolution. 

Gustison, M. L., & Bergman, T. J. (2016). Vocal complexity influences female responses 

to gelada male calls. Scientific Reports, 6, 19680.  

Gustison, M. L., le Roux, A., & Bergman, T. J. (2012). Derived vocalizations of geladas 

(Theropithecus gelada) and the evolution of vocal complexity in primates. 

Philosophical Transactions of the Royal Society of London. Series B, Biological 

Sciences, 367, 1847–59.  

Gustison, M. L., Semple, S., Ferrer-i-Cancho, R., & Bergman, T. J. (2016). Gelada vocal 

sequences follow Menzerath’s linguistic law. Proceedings of the National Academy 

of Sciences, 113, E2750–E2758.  

Gustison, M. L., & Townsend, S. W. (2015). A survey of the context and structure of 

high- and low-amplitude calls in mammals. Animal Behaviour, 105, 281–288.  

Hotchkin, C., & Parks, S. (2013). The Lombard effect and other noise-induced vocal 

modifications: insight from mammalian communication systems. Biological 

Reviews, 88, 809–24. 

Kagawa, H., & Soma, M. (2013). Song performance and elaboration as potential 

indicators of male quality in Java sparrows. Behavioural Processes, 99, 138–144.  

Kime, N. M., Rand, A. S., Kapfer, M., & Ryan, M. J. (1998). Consistency of female 

choice in the túngara frog: a permissive preference for complex characters. Animal 

Behaviour, 55, 641–649. 



 201	

Kleiman, D. G. (1977). Monogamy in mammals. The Quarterly Review of Biology, 52, 

39–69. 

Krams, I., Krama, T., Freeberg, T. M., Kullberg, C., & Lucas, J. R. (2012). Linking social 

complexity and vocal complexity: a parid perspective. Philosophical Transactions of 

the Royal Society of London. Series B, Biological Sciences, 367, 1879–91.  

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2013). lmerTest: Tests for 

random and fixed effects for linear mixed effect models (lmer objects of lme4 

package). Retrieved from http://cran.r-project.org/package=lmerTest 

Leone, A., Ferrari, P. F., & Palagi, E. (2014). Different yawns, different functions? 

Testing social hypotheses on spontaneous yawning in Theropithecus gelada. 

Scientific Reports, 4, 4010.  

Manser, M. B., Jansen, D. A. W. A. M., Graw, B., Hollén, L. I., Bousquet, C. A. H., 

Furrer, R. D., & Le Roux, A. (2014). Vocal complexity in meerkats and other 

mongoose species. Advances in the Study of Behavior, 46, 281–310.  

McComb, K. E. (1991). Female choice for high roaring rates in red deer, Cervus 

elaphus. Animal Behaviour, 41, 79–88.  

McComb, K., & Semple, S. (2005). Coevolution of vocal communication and sociality in 

primates. Biology Letters, 1, 381–5.  

Palombit, R. A., Cheney, D. L., & Seyfarth, R. M. (1999). Male grunts as mediators of 

social interaction with females in wild chacma baboons (Papio cynocephalus 

ursinus). Behaviour, 136, 221–242. 

Pultorak, J. D., Fuxjager, M. J., Kalcounis-Rueppell, M. C., & Marler, C. A. (2015). Male 

fidelity expressed through rapid testosterone suppression of ultrasonic 

vocalizations to novel females in the monogamous California mouse. Hormones 

and Behavior, 70, 47–56.  

R Development Core Team. (2016). R: A language and environment for statistical 

computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from 

http://www.r-project.org/ 

Reichard, D. G., & Welklin, J. F. (2014). On the existence and potential functions of low-

amplitude vocalizations in North American birds. The Auk, 132, 156–166.  

Rendall, D., Seyfarth, R. M., Cheney, D. L., & Owren, M. J. (1999). The meaning and 



 202	

function of grunt variants in baboons. Animal Behaviour, 57, 583–592.  

Richardson, C., & Lengagne, T. (2010). Multiple signals and male spacing affect female 

preference at cocktail parties in treefrogs. Proceedings of the Royal Society B: 

Biological Sciences, 277, 1247–52. 

Richman, B. (1976). Some vocal distinctive features used by gelada monkeys. The 

Journal of the Acoustical Society of America, 60, 718–24. 

Richman, B. (1987). Rhythm and melody in gelada vocal exchanges. Primates, 28, 

199–223. 

Roy, S., Miller, C. T., Gottsch, D., & Wang, X. (2011). Vocal control by the common 

marmoset in the presence of interfering noise. The Journal of Experimental Biology, 

214, 3619–29.  

Schmidt, A. K. D., & Römer, H. (2011). Solutions to the cocktail party problem in 

insects: selective filters, spatial release from masking and gain control in tropical 

crickets. PloS One, 6, e28593. 

Snyder-Mackler, N., Alberts, S. C., & Bergman, T. J. (2012). Concessions of an alpha 

male? Cooperative defence and shared reproduction in multi-male primate groups. 

Proceedings of the Royal Society B: Biological Sciences, 279, 3788–3795.  

Snyder-Mackler, N., Beehner, J. C., & Bergman, T. J. (2012). Defining higher levels in 

the multilevel societies of geladas (Theropithecus gelada). International Journal of 

Primatology, 33, 1054–1068.  

Tomaszycki, M. L., & Adkins-Regan, E. (2006). Is male song quality important in 

maintaining pair bonds? Behaviour, 143, 549–567. 

Vallet, E., Beme, I., & Kreutzer, M. (1998). Two-note syllables in canary songs elicit high  

Whitham, J. C., Gerald, M. S., & Maestripieri, D. (2007). Intended receivers and 

functional significance of grunt and girney vocalizations in free-ranging female 

rhesus macaques. Ethology, 113, 862–874. 

Wilkinson, G. S. (2003). Social and vocal complexity in bats. In F. B. M. de Waal & P. L. 

Tyack (Eds.), Animal social complexity: Intelligence, culture, and individualized 

societies (pp. 322–341). Cambridge, MA: Harvard University Press. 

 

References – Supplementary Materials 



 203	

Bakeman, R., & Gottman, J. M. (1986). Observing interaction: An introduction to 

sequential analysis. New York: Cambridge University Press. 

Bakeman, R., & Quera, V. (1992). SDIS: A sequential data interchange standard. 

Behavior Research Methods, Instruments, & Computers, 24, 554–559.  

Kershenbaum, A., Ilany, A., Blaustein, L., & Geffen, E. (2012). Syntactic structure and 

geographical dialects in the songs of male rock hyraxes. Proceedings of the Royal 

Society, Series B: Biological Sciences, 279, 2974–81.  



 204	

Table 6.1.  Results of Linear Mixed Models testing associations between vocal sequence production and complexity with features of the social 
environment. 

Dependent 
variable 

Intercept Conspecific Noise  
(proportion of scan) 

Conspecific Density (non-
unit males in 10 m radius) Unit Female Distance (m) 

Estimate 
[SEM] t p Estimate 

[SEM] t p Estimate 
[SEM] t p Estimate 

[SEM] t p 

Sequence 
rate1 

1.98 
[0.304] 

 
6.52 

 

0.0004 
 

0.811 
[0.351] 2.31 0.0210 -0.061 

[0.02] -2.99 0.0030 0.000 
[0.019] 0.01 0.9947 

Sequence 
size2 

4.092 
[0.536] 7.63 <0.0001 0.664 

[0.572] 1.16 0.2458 0.019 
[0.032] 0.61 0.5409 -0.004 

[0.038] -0.11 0.9151 

Derived call 
repertoire 
size2 

0.295 
[0.089] 3.33 0.0127 0.279 

[0.089] 3.14 0.0018 0.005 
[0.005] 1.10 0.2722 -0.006 

[0.006] -1.08 0.2804 

Number of 
exhaled 
moans2 

0.219 
[0.051] 4.25 0.0002 0.273 

[0.076] 3.60 0.0004 -0.003 
[0.004] -0.77 0.4443 -0.009 

[0.005] -1.88 0.0616 

Number of 
wobbles2 

0.015 
[0.028] 0.52 0.6052 0.062 

[0.05] 1.25 0.2116 0.004 
[0.003] 1.64 0.1026 0.000 

[0.003] 0.09 0.9263 

Number of 
yawns2 

0.081 
[0.062] 

 
1.30 0.2724 0.004 

[0.041] 0.09 0.9262 0.009 
[0.002] 3.76 0.0002 0.001 

[0.003] 0.45 0.6538 
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Table 6.2. Comparisons between sequence size and complexity measures based on the corresponding behavioral state and time intervals. Descriptive 
statistics listed as mean [SEM], and values in the same row with no overlapping letters differ from each other (p < 0.05) based on pairwise comparisons using 
Linear Mixed Models. 

Dependent 
variable 

Forage Travel Rest Socialize 
Transition 

(n = 68) 
Non-transition 

(n = 559) 
Transition 

(n = 82) 
Non-transition 

(n = 99) 
Transition 

(n = 29) 
Non-transition 

(n = 145) 
Transition 
(n = 135) 

Non-transition 
(n = 289) 

Sequence size 5.07 [0.50] 
a,c 

3.95 [0.14] 
b 

4.90 [0.51] 
a,b 

5.92 [0.45] 
c 

5.48 [0.82] 
a,c 

4.63 [0.33] 
a,d 

5.39 [0.37] 
a,c 

3.79 [0.17] 
a,d 

Derived call 
repertoire size  

0.25 [0.06] 
a 

0.22 [0.02] 
a 

0.23 [0.05] 
a 

0.33 [0.06] 
a,b 

0.72 [0.14] 
c,d 

0.68 [0.07] 
c 

0.50 [0.06] 
d,e 

0.42 [0.04] 
b,e 

Number of 
exhaled moans 

0.22 [0.05] 
a 

0.23 [0.02] 
a,c 

0.20 [0.05] 
a,c 

0.23 [0.05] 
a,c 

0.45 [0.12] 
b 

0.36 [0.05] 
b 

0.31 [0.05] 
b,c,d 

0.31 [0.03] 
a,b,d 

Number of 
wobbles 

0.00 [0.00] 
a,b,d 

0.00 [0.00] 
a 

0.01 [0.01] 
a,d 

0.11 [0.05] 
b,d 

0.00 [0.00] 
a,b,d 

0.06 [0.03] 
a,b,d 

0.21 [0.06] 
c 

0.07 [0.02] 
d 

Number of 
yawns 

0.03 [0.02] 
a,d 

0.01 [0.00] 
a 

0.05 [0.02] 
a,d 

0.04 [0.02] 
a,d 

0.34 [0.09] 
b 

0.33 [0.04] 
b 

0.13 [0.03] 
c 

0.09 [0.02] 
c,d 
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Table 6.3. Results of Linear Mixed Models comparing sequence rates before, during and after affiliative social behaviors. 

  Sequence Rate per 10s 
(mean [SEM]) 

During vs. Before 
LMM Results 

During vs. After 
LMM Results 

Social Behavior N Before During After t P t P 
Ano-genital inspection 44 0.07 [0.04] 0.80 [0.10] 0.07 [0.04] 8.32 <0.0001 8.32 <0.0001 
Copulation 14 0.00 [0.00] 1.21 [0.21] 0.00 [0.00] 6.96 <0.0001 6.96 <0.0001 
Give grooming 354 0.06 [0.01] 0.32 [0.03] 0.04 [0.01] 10.50 <0.0001 11.18 <0.0001 
Receive grooming 374 0.07 [0.01] 0.34 [0.03] 0.03 [0.01] 10.56 <0.0001 12.26 <0.0001 
Handle infant 11 0.09 [0.09] 1.00 [0.13] 0.00 [0.00] 7.11 <0.0001 7.82 <0.0001 
Give lip smack 129 0.02 [0.01] 0.28 [0.04] 0.05 [0.02] 6.98 <0.0001 6.16 <0.0001 
Receive lip smack 14 0.00 [0.00] 0.07 [0.07] 0.07 [0.07] 0.87 0.3918 0.00 1.0000 
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Table 6.4. Results of Linear Mixed Models comparing sequence size and complexity measures of sequences produced outside of affiliative behaviors 
(sequence type: ‘non-social’) and during one of the affiliative behaviors. 

Sequence 
type N 

Sequence size Derived call repertoire # Exhaled moans # Wobbles # Yawns 
mean 
[SEM] t p mean 

[SEM] t p mean 
[SEM] t p mean 

[SEM] t p mean 
[SEM] t p 

Non-social 1003 4.02 
[0.11] - - 0.29 

[0.02] - - 0.24 
[0.01] - - 0.02 

[0.01] - - 0.05 
[0.01] - - 

Give 
approach 180 6.24 

[0.33] 7.40 <0.0001 0.57 
[0.05] 5.02 <0.0001 0.37 

[0.04] 2.49 0.0130 0.15 
[0.05] 4.77 <0.0001 0.17 

[0.03] 4.86 <0.0001 

Receive 
approach 78 5.45 

[0.47] 4.53 <0.0001 0.49 
[0.08] 3.22 0.0013 0.31 

[0.06] 1.60 0.1096 0.17 
[0.06] 5.61 <0.0001 0.13 

[0.04] 0.99 0.3223 

Ano-genital 
inspection 35 6.03 

[0.71] 2.73 0.0065 0.71 
[0.12] 3.54 0.0004 0.37 

[0.09] 0.43 0.6641 0.40 
[0.13] 9.85 <0.0001 0.14 

[0.06] 1.31 0.1915 

Copulation 17 7.35 
[0.92] 3.47 0.0006 

0.65 
[0.15] 1.83 0.0669 

0.29 
[0.11] 

-
0.47 0.6356 

0.65 
[0.26] 11.66 <0.0001 

0.06 
[0.06] 0.10 0.9195 

Give 
grooming 112 5.50 

[0.41] 4.44 <0.0001 
0.44 

[0.06] 0.98 0.3263 
0.30 

[0.05] 0.25 0.8039 
0.24 

[0.07] 6.83 <0.0001 
0.04 

[0.02] 
-

3.12 0.0019 
Receive 
grooming 127 4.46 

[0.31] 1.66 0.0963 
0.57 

[0.07] 5.25 <0.0001 
0.31 

[0.05] 1.87 0.0611 
0.06 
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Figure 6.1. Relationships between vocal sequence production and complexity and 
features of the social environment. (a) Sequence rate, (b) number of derived call 
types (exhaled moans, wobbles and yawns) per sequence, and (c) number of exhaled 
moans per sequence were positively associated with conspecific noise levels. (d) 
Sequences contained a yawn if conspecific density was higher. Points and whiskers 
represent means plus two SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 6.2. Sequence production during the transition and non-transition periods 
of different behavioral states. Pairwise comparisons were used to test (a) differences 
in sequence rates in transition and non-transition periods of behavioral states. Bars and 
whiskers represent means plus two SEM, and rates that are different from one another 
do not share any letters (p < 0.05). (b) Boxplots (with whiskers representing 95% 
confidence intervals) showing the latencies between the start of a sequence relative to 
the start of a behavioral state. 
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Figure 6.3. Comparisons of sequence production in the 10 s before, 10 s during, 
and 10 s after males (a) gave or (b) received an approach. Bars and whiskers 
represent means plus two SEM. **** p < 0.0001 
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Figure 6.4. Comparisons in sequence production and complexity during 
approaches with adult unit females or other individuals. Bars and whiskers 

represent means plus two SEM. * p < 0.05, ** p < 0.01, p > 0.05 denoted as N.S. 
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Figure 6.5. Grooming outcomes based on the production (a-b) and complexity (c-
f) of sequences made during males’ approaches to unit females. Comparisons 
were made between a no grooming outcome and outcomes that involved males either 
giving or receiving grooming with a unit female. Bars and whiskers represent means 
plus two SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, p > 0.05 denoted as 
N.S. 
  

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
at

e 
(p

er
 1

0s
)

(a)

none give receive

**** ****

0

2

4

6

8

10

Si
ze

 (#
 o

f c
al

ls
)

(b)

none give receive

N.S. N.S.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

D
er

ive
d 

ca
ll 

re
pe

rto
ire

(c)

none give receive

N.S. *

0.0

0.2

0.4

0.6

0.8

# 
Ex

ha
le

d 
m

oa
ns

(d)

none give receive

N.S. N.S.

0.0

0.2

0.4

0.6

0.8

# 
W

ob
bl

es

(e)

none give receive

** N.S.

0.0
0.1
0.2
0.3
0.4
0.5
0.6

# 
Ya

w
ns

(f)

none give receive

* ***



 213	

 
 
Figure 6.S1. Density plots of male inter-call intervals from continuous 3-5 minute 
acoustic recordings. The blue dotted line and point indicates the lowest point between 
the adjacent peaks and the cut-off thresholds for vocal sequence boundaries. 
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Figure 6.S2. Flow diagrams showing conditional probabilities in gelada male 
vocal sequences in the four behavioral states (a) foraging, (b) traveling (c) resting 
and (d) socializing. Arrows represent the conditional probability of occurrence (# of 
transitions of call pair divided by the total number of transitions starting with the initial 
call type). Arrow thicknesses are proportional to the corresponding transitional 
probability, which is written next to each arrow. All transitional probabilities shown are 
significant at p < 0.05. 
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Chapter 7: 

Male geladas use complex vocal sequences to manage conflicts 

 

Abstract 

Vertebrates engage in a wide range of behavioral strategies to manage conflict, and the 

majority of these strategies are tactile in form (e.g., allogrooming). However, little is 

known about how animals utilize non-tactile behaviors, such as vocalizations, to 

manage conflict. Here, we study the post conflict behavior of wild geladas 

(Theropithecus gelada), a species known for producing vocal sequences composed of a 

diverse repertoire of affiliative call types. We collected male and female focal samples 

during control and post-conflict periods, as well as during 3 minute post-conflict (PC) 

and matched-control (MC) videos from male geladas. Conflicts consisted of threats, 

chases and physical aggression within and between harem-like reproductive units, as 

well as with bachelor groups. Both males and females engaged in non-aggressive 

approaches and agonistic interactions after conflicts, and males engaged in self-

directed behaviors after conflicts. The sexes differed in their grooming and vocal 

responses to conflict: females engaged in grooming while males engaged in 

vocalizations. In addition, males produced vocal sequences sooner in PC sessions than 

MC sessions and these post-conflict sequences were longer and contained more 

derived call types. These findings suggest that gelada males preferentially use complex 

vocal sequences to engage in conciliation or reconciliation with multiple partners. We 
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outline the implications of these findings for understanding the role of social complexity 

(e.g., group size) in promoting vocal complexity. 

 

Introduction 

 Species gain several benefits from being social, including protection from 

predators, resource defense, and shared knowledge (Alexander, 1974). One of the 

primary costs of sociality, however, are the conflicts resulting from competition over 

resources, which can lead increased physiological stress, injury, and even death (Smith, 

1974). As a solution to this problem, many species engage in affiliative behavioral 

strategies after the occurrence of conflicts, and such strategies are thought to serve 

reconciliatory, conciliatory, and consolation functions (Aureli, 2002; Silk, 1998). Post-

conflict behavioral strategies typically manifest in the form of body touching and 

allogrooming and are found in a wide range of taxa, including bottlenose dolphins 

(Tursiops Truncatus), corvid species, domestic goats (Capra hircus), horses (Equus 

caballus), spotted hyenas (Crocuta crocuta), dogs and wolves (Canis familiaris and 

lupus), wallabies (Macropus rufogriseus), and non-human primates (Baan, Bergmüller, 

Smith, & Molnar, 2014; Cools, Van Hout, & Nelissen, 2008; Cordoni & Norscia, 2014; 

Cozzi, Sighieri, Gazzano, Nicol, & Baragli, 2010; Fraser & Bugnyar, 2011; Logan, 

Emery, & Clayton, 2013; Silk, 2002; Tamaki, Morisaka, & Taki, 2006; Wahaj, Guse, & 

Holekamp, 2001). Interestingly, the primary feature in common with the majority of 

affiliative post-conflict strategies studied to date is that they are tactile in form 

(McFarland & Majolo, 2013). 
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An alternative to tactile-based strategies is to engage in vocal communication, a 

complex conflict management strategy used predominantly by humans (Aureli & de 

Waal, 2000; Blum-kulka & Olshtain, 1984; de Waal, 2000; Silk, 1998). There are many 

potential benefits of using vocal over tactile post-conflict strategies. Vocalizations can 

reach several recipients at once, thereby serving reconciliatory and conciliatory 

functions simultaneously. Vocalizations are also ‘cheap’ in that they require little energy 

to produce and can easily co-occur with other behaviors (Dunbar, 1998, 2003; Silk, 

Kaldor, & Boyd, 2000). Despite the potential to be an incredibly effective tool to manage 

conflicts, empirical evidence for vocal strategies among non-human taxa is surprisingly 

rare. The only systematic evidence of vocal post-conflict strategies comes from work on 

the soft tonal ‘grunt’ calls of chacma baboons (Papio ursinus) (Cheney & Seyfarth, 

1997; Cheney, Seyfarth, & Silk, 1995; Silk, Cheney, & Seyfarth, 1996; Wittig, Crockford, 

Wikberg, Seyfarth, & Cheney, 2007). Baboons groom each other following conflicts just 

like several other non-human primates. However, dominant female baboons will 

sometimes direct grunts towards subordinates following fights, even in the absence of 

grooming. 

Although baboons are the only non-human taxa shown to engage in a vocal post-

conflict strategy, comparative work suggests that this strategy should be more common, 

at least in non-human primates. Primate taxa living in larger social groups, where more 

opportunities for conflict exist, produce larger repertoires of vocalizations (McComb & 

Semple, 2005). It has been an ongoing puzzle as to why these more diversified forms of 

vocal communication are needed in larger social groups (Freeberg, 2006; Freeberg, 

Ord, & Dunbar, 2012; Gustison, le Roux, & Bergman, 2012; Wilkinson, 2003). One 
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hypothesis, the “vocal grooming hypothesis”, states that individuals have a limited 

amount of time to invest in socializing and therefore need more efficient strategies to 

maintain social bonds with several partners (Dunbar, 1998, 2003). In contexts when the 

stability of multiple social bonds is at risk, therefore, it would be expected that 

vocalizations are favored over one-on-one forms of affiliative interaction like grooming. 

To test the hypothesis that species living in large and highly social groups favor 

vocal communication as a post-conflict strategy over tactile strategies, we investigated 

the post-conflict behavior of wild geladas (Theropithecus gelada), a primate known for 

living in extremely large communities (up to 1,200 individuals) and for engaging in high 

levels of both non-vocal and vocal affiliative behaviors (Aich, Moos-Heilen, & 

Zimmermann, 1990; Richman, 1976, 1987; Snyder-Mackler, Beehner, & Bergman, 

2012; Tinsley Johnson, Snyder-Mackler, Beehner, & Bergman, 2014). These larger 

communities break down into smaller harem-like reproductive units comprised of one 

dominant leader male, up to a few follower males, several related females and their 

dependent offspring. Thus, conflicts can occur at several levels in gelada society – 

within units, between units, and between units and all-male bachelor groups. 

Preliminary findings from captive studies of post-conflict behavior suggest that geladas 

engage in vocal and non-vocal affiliative interactions after conflicts (Leone & Palagi, 

2010; Swedell, 1997). Due to limitations in sample size and the types of conflicts 

available in captive studies, it is still unknown whether specific types of post-conflict 

behaviors characterize geladas (Leone & Palagi, 2010).  

Compared to other Papionins, wild geladas vocalize at higher rates and spend 

large amounts of time grooming (Aiello & Dunbar, 1993; Gustison et al., 2012; McComb 
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& Semple, 2005). Moreover, wild geladas have a more diversified vocal repertoire than 

their baboon relatives, with males producing several species-specific call types: inhaled 

grunts, inhaled moans, exhaled moans, wobbles and vocalized yawns (Gustison et al., 

2012). All the unique, or ‘derived’, call types are combined with exhaled grunts to 

produce complex vocal sequences. Sequences containing the three most acoustically 

salient derived calls – exhaled moans, wobbles and yawns – yield greater responses 

from females (Gustison & Bergman, n.d.-a, 2016). These complex vocal sequences 

facilitate social interaction between males and females, and there is preliminary 

evidence that they may even serve consolation functions following female-female 

conflicts (Gustison & Bergman, n.d.-b; Gustison et al., 2012).  

We studied three aspects wild gelada post-conflict behavior. First, we 

characterized whether there were any specific types of non-vocal behaviors (e.g., 

approaches and grooming) that characterized gelada male or female post-conflict 

strategies. This included testing whether any features of conflicts (e.g., unit membership 

of opponents, intensity of the conflict) predicted non-vocal strategies. Second, we tested 

whether males or females responded to conflict with vocal strategies and whether a 

vocal strategy was predicted by any features of the conflict. For males, we also tested 

whether ‘complexity’ measures (e.g., sequence size and number of derived call types) 

specifically characterized post-conflict vocal behavior. Finally, we tested whether post-

conflict vocal production or complexity impacted the subsequent affiliative behavior of 

receivers.  

 

Methods 
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Study site and subjects 

Data for this study come from adult geladas across three different bands in one 

wild community (about 1,200 individuals) living in the Sankaber area of the Simien 

Mountains National Park, Ethiopia (Snyder-Mackler et al., 2012). Gelada bands are 

comprised of smaller harem-like units with a leader male, 0-3 subordinate follower 

males, and 1-11 females with their immature offspring (Snyder-Mackler et al., 2012). 

This population has been under intensive behavioral study since January 2006, and 

study subjects are fully habituated to human observers on foot (approach distances less 

than 3 m) (Bergman, 2010). The gelada research was approved by the University 

Committee on Use and Care of Animals at the University of Michigan and adhered to 

the laws and guidelines of Ethiopia. 

 

Focal sample collection 

 From January 2009 to June 2016, we collected 3,892 hr of 15 minute focal 

samples from 279 adult geladas. Focal samples included all-occurrence sampling 

(Altmann, 1974) of agonistic, affiliative, and self-directed behaviors on a palm pilot. 

Focal samples were categorized as ‘matched-control’ (MC) and ‘post-conflict’ (PC) 

following guidelines of previous studies (de Waal & Yoshihara, 1983). MC focal samples 

were those in which the focal animal did not express any agonistic behaviors in the first 

ten minutes of the sample, and PC focal samples were those in which the focal 

individual engaged in at least one agonistic behavior within the first 10 minutes. 

Agonistic behaviors included vocal threat grunts, visual threats (eye-brow raises or teeth 

grinding), chases, and physical aggression (biting, grabbing and hitting). Multiple 
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agonistic events that occurred with the same opponent within a 10 s window were 

lumped together, and the end of the conflict was defined as the last agonistic event. PC 

focal samples were only used for analysis if the first agonistic behavior involved a single 

opponent for which the observer could determine the sex/age (immature individual, 

adult male or adult female), and unit membership (in the same reproductive unit, a 

different reproductive unit, or an all-male unit). We also categorized features of the 

conflicts, such as intensity and outcome. Conflict intensity was either mild (vocal/visual 

threats only) or severe (chases and/or physical aggression). Conflict outcome was 

whether the focal animal won the conflict, lost the conflict, or the winner could not be 

determined. A winner was decided if only one individual (the focal animal or the 

opponent) expressed a submissive vocalization (fear grunt or scream) or visual 

behavior (lip flip, crouch or presentation of the rump). To ensure that we had a 

representative dataset for all study animals, we retained focal samples for individuals 

with at least 10 MC and 10 PC focal samples. With these specifications in place, we 

retained 6,702 MC focal samples (13-249 samples per animal) and 967 PC focal 

samples (10-41 samples per animal) from 28 males and 26 females. 

 To test for potential post-conflict strategies, rates of affiliative, agonistic and self-

directed behaviors were measured in the 10-13 min of MC focals and in the 3 min 

following the end of the first conflict in PC focals. Affiliative behaviors included ‘friendly’ 

approaches (did not occur simultaneously with agonistic behavior), copulation, 

grooming, lip-smacking, and contact call vocalizations (e.g., grunts). Agonistic behavior 

included any vocal/visual threats, chases or physical aggression. Self-directed 

behaviors included any scratching, self-grooming, body shakes or silent yawns. Finally, 
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the behavioral state – foraging, traveling, resting, or socializing – at the start of the 3 

min interval was recorded so that it could be included as a random effect in the 

analyses. 

 

Video samples and acoustic analysis 

 One major limitation of using observational focal sampling to study post-conflict 

strategies is that it is impossible to explore the properties of vocal sequences that are 

characteristic of gelada males. As such, we supplemented our focal sample dataset on 

males by collecting a suite of video samples in control (MC) and post-conflict (PC) 

situations. This video-based PC-MC paradigm is based off established methods 

published by de Waal and others (de Waal & Yoshihara, 1983). From February 2013 to 

June 2014 we collected 400 3-minute video samples (MC = 200, PC = 200) from 20 

gelada males (1-19 PC-MC pairs per male) using Flip UltraHD and Kodak Playsport 

video camcorders. PC video samples were collected by filming study males starting at 

the end of a conflict to at least 3 minutes afterwards. As with PC focal samples, the 

conflicts of PC video samples conflict could involve vocal/visual threats, chases or 

physical aggression. We also noted the opponents’ sex/age and unit membership, 

conflict intensity and outcome, and the initial behavioral state of the male. The end of a 

conflict was defined as time at which the focal male ceased aggression and turned 

away from the opponent. We carried out MC video sessions by taking a 3-minute video 

recording of study males within two weeks after a PC session. The protocol for MC 

video recording was the same as PC session except that there were two conditions that 

had to be met: males could not have engaged in a conflict for at least 10 minutes prior 
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to recording, and males had to start in the same type of behavioral state as the 

associated PC session (socializing/resting or foraging/traveling). All PC and MC videos 

were made between 0700 and 1730. 

 The acoustic data of each video file were extracted using Audacity (version 2.0.5) 

and saved as WAV files. Then, we used Praat (version 5.2.29) to locate vocal 

sequences and save each one as separate WAV files (see Fig 7.1 for examples). We 

define a vocal sequence as one or more discrete calls made by the same male and, for 

those sequences with two or more calls, separated by an inter-call interval of less than 

2.983 s (Gustison & Bergman, n.d.-b). Vocal sequence files were given neutral 

numerical filenames so that they could be labelled by an observer blind to the caller 

identity and session type. The blind observer used Avisoft SAS-Lab Pro (version 5.1.12, 

Avisoft Bioacoustics) to generate spectrograms with a Fast Fourier transformation (size 

of 1,024 points) and labeled the start times, end times, and call types of all low-

amplitude “contact calls” in a sequence. These contact calls included: exhaled grunts, 

inhaled grunts, exhaled moans, inhaled moans, wobbles and yawns (Fig 7.1) and are 

described in previous studies (Gustison & Bergman, 2016; Gustison, le Roux, & 

Bergman, 2012; Gustison, Semple, Ferrer-i-Cancho, & Bergman, 2016; Gustison et al. 

In Prep). We extracted 436 sequences (2,649 calls) from 179 PC videos and 224 

sequences (979 calls) from 131 MC videos. The latency to give a vocal sequence was 

determined for each video (those without a sequence were given a 3 min latency). In 

addition, the size (total number of calls) and complexity of each sequence was 

determined following previous methods (Gustison & Bergman, n.d.-b). Sequence 

complexity was measured by derived call repertoire size and the total number of each 
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derived call type per sequence. These derived calls included exhaled moans, wobbles 

and yawns. Finally, each video was scored for affiliative, agonistic, and self-directed 

behaviors so that latencies to non-vocal behaviors could be determined. 

 

Data analysis 

 A series of Linear Mixed Models (LMM) were used to test the influence of 

conflicts on non-vocal and vocal behavior in geladas and the potential effect of post-

conflict vocalizations on subsequent social interactions. First, we tested whether the 

rates of non-vocal affiliative, agonistic and self-directed behaviors differed in male and 

female MC and PC focal samples. In each LMM, the rate of a specific behavior type 

was the dependent variable, focal sample type (MC or PC) was a fixed effect with date, 

focal animal identity, and the initial behavioral state as random effects. Next, we 

explored whether the rates of non-vocal behaviors after a conflict depended on any 

features of the conflict (opponent unit membership, opponent sex/age, conflict intensity, 

and conflict outcome). These LMMs had behavior latencies as the dependent variable, 

conflict features as the fixed factors, and date, focal animal identity, and the initial 

behavioral state as random effects. Next, we explored whether male sequence 

production and complexity differed in MC and PC video sessions. We ran an LMM to 

test whether the vocal sequence rate, sequence size, derived call repertoire per 

sequence, number of exhaled moans, number of wobbles, or number of yawns per 

sequence differed in MC and PC videos. In all LMMs, video type (MC vs PC) was the 

fixed factor and male identity, date, and initial behavioral state (foraging/traveling or 

resting/socializing) were random effects. For LMMs involving sequence size and 
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complexity, we restricted the male sequences to any produced during MC sessions (n = 

390) and the first ones produced during PC sessions (n = 188).  

We also explored whether PC male sequence production and complexity 

depended on any conflict features. These LMMs had sequence rate, latency, size or 

complexity measures as the dependent variable, conflict features as the fixed factors, 

and date, focal animal identity, and initial behavioral state as random effects. Last, we 

explored the social consequences of producing complex vocal sequences after 

conflicts. We first tested whether sequence production within the minute after conflict 

predicted the percent of time that male groomed or were groomed by females in their 

reproductive unit. In these LMMs, the percent of time spent grooming was the 

dependent variable, sequence production (yes or no) was the fixed factor, and male 

identity was the random effect. Then, we tested whether the grooming outcome 

(groomed by female or not) predicted the size and complexity of sequences produced 

within a minute after conflicts. In these LMMs, the sequence parameter (size, derived 

call repertoire, number of exhaled moans, number of wobbles, or number of yawns) was 

the dependent variable, grooming outcome was the fixed factor, and male identity was 

the random effect. 

LMMs were run using the function “lmer” of the R package “lme4” (Bates, 

Maechler, & Bolker, 2012). The “lmerTest” package was implemented to determine the 

significance of the LMM coefficients (Kuznetsova, Brockhoff, & Christensen, 2013). We 

used the “difflsmeans” function in the lmerTest package to make pairwise comparisons. 

All calculations and statistical tests were carried out in R 3.3.0 (R Development Core 

Team, 2016). Critical values were set at alpha = 0.05, and all tests were two-tailed. 
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Results 

Characterization of non-vocal behavior after conflicts 

  First, we used LMMs to test the effect of conflicts on non-vocal affiliative, 

agonistic and self-directed behaviors in male and female geladas (Table 7.1). We found 

that both sexes gave more friendly approaches after conflicts than during control 

periods. Also, females were more likely to give grooming after conflicts than during 

control periods. Neither sex showed differences in copulation or lip-smacking rates in 

MC and PC focal samples. Both sexes engaged in more agonistic behaviors after 

conflicts compared to control periods, and only males engaged in more self-directed 

behaviors after conflicts than during control periods. Then, we used LMMs to test 

whether rates of these behaviors after conflicts depended on features of the conflict: 

opponent unit membership, opponent age/sex, conflict intensity, and conflict outcome 

(Tables 7.2-7.3). There was some evidence that rates of approaches, grooming and 

aggression varied based on conflict features. Males were more likely to give a friendly 

approach if the opponent was a bachelor male than if the opponent was from the same 

reproductive unit. Females were more likely to groom after severe intensity conflicts 

compared to mild intensity conflicts. Males were less likely to engage in aggression after 

a conflict if they were the clear winner. 

 

Characterization of vocal behavior after conflicts 

 We used LMMs to test whether vocal sequence rates in males and females 

differed in MC and PC focal samples. We found that male geladas gave vocal 
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sequences at higher rates following conflicts than during control periods (t = 6.88, p < 

0.0001; Fig 7.2a). However, female vocal rates did not differ across PC and MC focal 

samples (t = 0.14, p = 0.8890; Fig 7.2b). Next, we used LMMs to examine whether male 

sequence production and complexity differed across MC and PC video sessions. Males 

gave vocal sequences sooner after conflicts than during control sessions (t = -13.60, p < 

0.0001 Fig 7.3a). Then, we used LMMs to compare the size and complexity of MC male 

sequences to the first sequences produced in PC sessions. Compared to MC 

sequences, the first PC sequences were longer (t = 7.65, p < 0.0001; Fig 7.3b) and 

contained a larger derived call repertoire (t = 7.058, p < 0.0001; Fig 7.3c), more exhaled 

moans (t = 3.93, p = 0.0001; Fig 7.3d), more wobbles (t = 2.68, p = 0.0075; Fig 7.3e), 

and more yawns (t = 5.33, p < 0.0001; Fig 7.3f).  

Next, we tested whether male sequence production and complexity depended on 

conflict features (Tables 7.4-7.5). From the PC focal samples, we found that male 

sequence rate was higher if he was the winner of the conflict compared to when the 

conflict winner was undecided. From the PC video sessions, we found that males’ 

latency to give a vocal sequence depended a variety of conflict characteristics. Males 

vocalized sooner if the conflict involved a same-unit opponent compared to a bachelor 

male. Males also vocalized sooner if the conflict opponent was another male rather than 

a female. Males vocalized sooner following a severe conflict compared to a mild conflict. 

Also, males vocalized sooner if they were the winner of a conflict rather than the loser of 

a conflict. Male vocal sequence size was larger if the opponent was from the same 

reproductive unit rather than a different reproductive unit. Sequence size was also 

larger if the opponent was another adult male rather than an immature individual. There 
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was no evidence that the complexity of post-conflict sequences depended on conflict 

features.  

 

Influence of post-conflict vocalizations on subsequent social interactions 

 We used LMMs to examine whether sequence production and complexity 

following a conflict influences prosocial interactions with unit females. First, we tested 

whether the production of a sequence in the first minute following a conflict (conflicts 

with sequences = 162, conflicts without sequences = 38) predicted whether males gave 

or received grooming with females from their unit. We did not find evidence that males 

gave different amounts of grooming after conflicts based on whether they produced a 

vocal sequence (t = 1.01, p = 0.3153; Fig 7.4a). However, males received more 

grooming following a conflict if they produced a sequence (t = 2.33, p = 0.0208; Fig 

7.4b). Latencies between sequence production and grooming revealed that sequences 

occurred before grooming (Fig 7.4c). Males gave grooming about 44.62 ± 10.05 s after 

starting to vocalize (n = 29 videos) and received grooming about 55.56 ± 9.50 s after 

starting to vocalize (n = 31 videos). Next, we tested whether being groomed by a unit 

female predicted the size or complexity of sequences produced in the first minute after a 

conflict. We found no evidence that sequence size varied based on grooming outcome 

(t = 1.54, p = 0.1257; Fig 7.5a). However, sequences followed up with receipt of 

grooming contained larger derived call repertoire (t = 3.59, p = 0.0004; Fig 7.5b), more 

exhaled moans (t = 2.37, p = 0.0191; Fig 7.5c), more wobbles (t = 2.62, p = 0.0097; Fig 

7.5d) and more yawns (t = 3.20, p = 0.0017; Fig 7.5e).  
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Discussion 

 Gelada males preferentially respond to conflicts with complex vocal sequences 

instead of other available tactile strategies like grooming. Currently, only a few non-

human empirical studies show that vocalizations are used in reconciliation, conciliation 

or consolation contexts (Silk, 2002, 2007), and we are not aware of any that 

demonstrate that complex vocal strategies are preferred over tactile forms of interaction 

like ‘grooming’. Therefore, this study makes a significant contribution to our 

understanding of the evolution of conflict management strategies by showing evidence 

for a vocal strategy outside of humans. Specifically, our study supports the controversial 

‘vocal grooming’ hypothesis that states that vocal strategies to maintain social bonds 

may outweigh one-on-one interactions in species living in comparatively large groups, 

like humans and geladas (Dunbar, 1998, 2003).  

It has been an ongoing mystery why primates living in larger groups produce a 

more diversified repertoire of vocalizations (Bouchet, Blois-Heulin, & Lemasson, 2013; 

Gustison et al., 2012; McComb & Semple, 2005). The current findings show that the 

need for complex vocal strategies in specific contexts, like social instability, could be 

one of the driving forces in this association. Previous research indicates that longer, 

more complex vocal sequences function to facilitate male social bonds with female unit 

members (Gustison & Bergman, n.d.-b, 2016). Our study supports and expands on this 

interpretation by demonstrating that these complex calls may help males attenuate 

potential uncertainty in their social bonds with females during periods of instability. This 

interpretation is further supported by the finding that males giving more complex 
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sequences after conflicts are also more likely to be subsequently groomed by females in 

their units.  

The vocal post-conflict strategy was not generalizable to both sexes in geladas. 

Instead of vocalizing, females began to groom others after an approach. One 

explanation for this difference comes from the vocal grooming hypothesis in that male 

and female geladas differ in the number of social partners with which they maintain 

strong relationships. Although males maintain relationships with all females in their 

units, females tend to focus their socializing on specific individuals (Tinsley Johnson et 

al., 2014). Given this distinction, we would expect that males would prefer a vocal 

strategy in order to reach multiple social partners. On the other hand, it is unclear why 

female baboons, but not gelada females, engage in grunts after conflicts (Cheney & 

Seyfarth, 1997; Cheney et al., 1995; Silk et al., 1996). Future work will be needed to 

tease apart the potential situations in which gelada females engage in different post-

conflict strategies. 

One of the main questions asked when characterizing post-conflict behavior is 

whether opponents engage in reconciliatory or ‘triadic’ type conciliatory/consolation 

interactions (Fraser & Aureli, 2008; Koski & Sterck, 2007; Logan et al., 2013). While 

most studies of post-conflict behavior demonstrate that reconciliation occurs between 

opponents, some studies are starting to reveal that these strategies depend on the 

social system. For example, corvids are known to have the highest-quality relationships 

with their mates, and conflicts typically occur with individuals outside of these close 

relationships. Following a fight, corvids avoid former opponents and instead seek out 

triadic affiliative interactions with their mates (Fraser & Bugnyar, 2011; Logan et al., 
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2013). Our study suggests that gelada post-conflict behavior is more closely aligned 

with corvids over other non-human primates. Like corvids, most gelada conflicts 

occurred between individuals in different units, yet post-conflict behavior was relatively 

unaffected by the unit membership of opponents. Males almost always approached unit 

members while vocalizing, and this tended to be followed up by consolation-like 

behavior from unit females. A key difference between corvids and geladas is that gelada 

males specifically engage in vocal over tactile strategies. This means that a potential 

secondary benefit of these post-conflict vocalizations is that they affect non-unit 

members in addition to unit members. Future work will be needed to test whether 

gelada behavior is influenced by whether a non-unit opponent gave a post-conflict vocal 

sequence. 

Currently, there is very little evidence to suggest that non-human species – other 

than humans, baboons and geladas – engage in affiliative vocal strategies to manage 

conflicts. It is important to note, however, that this lack of evidence does not mean that 

affiliative vocalizations are non-existent after conflicts. Studies of post-conflict behavior 

rarely include affiliative vocalizations in the ethograms, and so it is very possible that 

these affiliative vocalizations occur but are not measured. Victims of conflicts are often 

noted to produce loud ‘submissive’ vocalizations during conflicts (de Waal & van 

Roosmalen, 1979; Kutsukake & Clutton-Brock, 2008; Palagi, Antonacci, & Norscia, 

2008). We suggest that future post-conflict studies also investigate the production of 

affiliative types of vocalization. 
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Table 7.1. Comparisons of affiliative, agonistic and self-directed behavior rates across 
matched-control (MC) focals and post-conflict (PC) focals in males and females.  

Behavior MC rate per 3 min PC rate per 3 min LMM results 
 Mean [SEM] Mean [SEM] t p 

Males n = 2,222 n = 582   
Friendly approach 0.10 [0.01] 0.25 [0.02] 7.43 <0.0001 
Copulation 0.01 [0.00] 0.02 [0.01] 0.96 0.3363 
Give grooming 0.18 [0.01] 0.13 [0.02] 0.15 0.8835 
Lip-smacking 0.05 [0.01] 0.04 [0.01] 0.57 0.5670 
Aggression 0.07 [0.01] 0.37 [0.03] 14.93 <0.0001 
Self-directed behavior 0.33 [0.02] 0.49 [0.04] 3.03 0.0025 
Females n = 4,480 n = 385   
Friendly approach 0.10 [0.01] 0.18 [0.02] 3.09 0.0002 
Copulation 0.00 [0.00] 0.00 [0.00] -0.05 0.9607 
Give grooming 0.20 [0.01] 0.23 [0.03] 3.14 0.0017 
Lip-smacking 0.02 [0.00] 0.01 [0.01] -0.84 0.4035 
Aggression 0.03 [0.00] 0.13 [0.02] 7.68 <0.0001 
Self-directed behavior 0.12 [0.01] 0.12 [0.02] -0.15 0.8804 
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Table 7.2. Mean rates of affiliative, agonistic and self-directed behaviors in the 3 minutes following different types of conflicts that occurred during focal samples.  

Behavior 
Opponent unit Opponent sex/age Conflict intensity Conflict outcome 

Same 
unit 

Different 
unit 

All-male 
unit 

Same-
sex 

Opposite-
sex Immature Mild Severe Winner Loser Unknown 

Males n = 136 n = 416 n = 30 n = 330 n = 175 n = 77 n = 521 n = 61 n = 132 n = 9 n = 441 

Friendly approach 0.26  
[3.92] 

0.24  
[0.03] 

0.50  
[0.13] 

0.24  
[0.03] 

0.25  
[0.04] 

0.32  
[0.07] 

0.25  
[0.02] 

0.28  
[0.07] 

0.24  
[0.05] 

0.22  
[0.15] 

0.26  
[0.03] 

Copulation 0.00  
[0.00] 

0.02  
[0.01] 

0.03  
[0.03] 

0.02  
[0.01] 

0.02  
[0.01] 

0.00  
[0.00] 

0.02  
[0.01] 

0.02  
[0.02] 

0.02  
[0.01] 

0.00  
[0] 

0.02  
[0.01] 

Give grooming 0.15  
[0.03] 

0.11  
[0.02] 

0.17  
[0.11] 

0.10  
[0.02] 

0.17  
[0.04] 

0.14  
[0.05] 

0.12  
[0.02] 

0.13  
[0.04] 

0.15  
[0.04] 

0.44  
[0.34] 

0.11  
[0.02] 

Lip-smacking 0.05  
[0.02] 

0.03  
[0.01] 

0.00  
[0.00] 

0.03  
[0.01] 

0.07  
[0.02] 

0.00  
[0.00] 

0.04  
[0.01] 

0.03  
[0.02] 

0.05  
[0.02] 

0.11  
[0.11] 

0.03  
[0.01] 

Aggression 0.43  
[0.07] 

0.31  
[0.03] 

0.77  
[0.21] 

0.35  
[0.04] 

0.41  
[0.07] 

0.34  
[0.08] 

0.35  
[0.03] 

0.51  
[0.15] 

0.31  
[0.05] 

1.33  
[0.67] 

0.36  
[0.03] 

Self-directed  0.36  
[0.07] 

0.50  
[0.05] 

0.83  
[0.22] 

0.49  
[0.06] 

0.55  
[0.08] 

0.31  
[0.08] 

0.50  
[0.05] 

0.34  
[0.09] 

0.35  
[0.07] 

0.56  
[0.38] 

0.53  
[0.05] 

Females n = 143 n = 241 n = 1 n= 243 n = 37 n = 105 n = 309 n = 76 n = 78 n = 14 n = 293 

Friendly approach 0.17 
[3.92] 

0.19 
[0.03] 0 0.21 

[0.03] 
0.19 

[0.07] 
0.12 

[0.04] 
0.17 

[0.03] 
0.22 

[0.05] 
0.17 

[0.05] 
0.14 
[0.1] 

0.19 
[0.03] 

Copulation 0 0 0 0 0 0 0 0 0 0 0 

Give grooming 0.34 
[0.06] 

0.17 
[0.03] 0 0.21 

[0.03] 
0.16 

[0.06] 
0.32 

[0.06] 
0.17 

[0.03] 
0.50 

[0.08] 
0.36 

[0.09] 
0.14 

[0.10] 
0.20 

[0.03] 

Lip-smacking 0.01 
[0.01] 

0.01 
[0.01] 0 0.01 

[0.01] 
0.03 

[0.03] 
0.00 

[0.00] 
0.01 

[0.00] 
0.03 

[0.02] 
0.01 

[0.01] 
0.07 

[0.07] 
0.01 

[0.00] 

Aggression 0.11 
[0.03] 

0.14 
[0.02] 0 0.15 

[0.02] 
0.03 

[0.03] 
0.12 

[0.04] 
0.13 

[0.02] 
0.13 

[0.04] 
0.09 

[0.03] 
0.07 

[0.07] 
0.14 

[0.02] 

Self-directed  0.06 
[0.02] 

0.15 
[0.03] 0 0.14 

[0.03] 
0.16 

[0.07] 
0.04 

[0.02] 
0.12 

[0.03] 
0.12 

[0.04] 
0.09 

[0.04] 
0.00 

[0.00] 
0.13 

[0.03] 
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Table 7.3. Results of Linear Mixed Models comparing rates of affiliative, agonistic and self-directed behaviors in the 3 minutes following different types of conflicts that occurred 
during focal samples. 
 Opponent unit Opponent sex/age Conflict intensity Conflict outcome 
Behavior latency Same vs 

Different 
Same vs. All-

male 
Same sex vs 

Opposite 
Same sex vs 

Immature Mild vs. Severe Winner vs. Loser Winner vs. 
Undecided 

 t p t p t p t p t p t p t p 
Males 
Friendly approach 0.01 0.9881 2.03 0.0431 0.58 0.5634 1.27 0.2054 0.24 0.8132 -0.18 0.8540 0.50 0.6204 
Copulation 1.81 0.0701 1.68 0.0926 0.94 0.3499 -0.29 0.7752 0.22 0.8239 -0.47 0.6393 -0.79 0.4317 
Give grooming 0.25 0.8043 0.82 0.4136 1.17 0.2441 0.59 0.5533 -0.96 0.3373 1.59 0.1114 -0.96 0.3394 
Lip-smacking -0.80 0.4248 -1.18 0.2376 1.04 0.2986 -1.50 0.1354 -0.95 0.3407 0.54 0.5870 -0.72 0.4699 
Aggression -1.56 0.1185 1.83 0.0672 1.42 0.1560 -0.30 0.7666 1.80 0.0730 4.28 <0.0001 2.00 0.0455 
Self-directed  0.32 0.7506 1.46 0.1437 1.92 0.0550 -0.10 0.9187 -0.62 0.5365 0.61 0.5410 1.50 0.1347 
Females 

Friendly approach 0.59 0.5587 -0.38 0.7079 -0.61 0.5442 -1.93 0.0548 1.32 0.1886 -0.38 0.7060 0.01 0.9937 
Copulation 0.29 0.7736 0.04 0.9685 -0.40 0.6886 -0.31 0.7583 -0.10 0.9229 0.09 0.9296 0.21 0.8362 
Give grooming -0.06 0.9519 0.05 0.9606 -1.13 0.2590 -1.02 0.3078 2.60 0.0096 -0.98 0.3300 -1.50 0.1344 
Lip-smacking -0.28 0.7793 -0.10 0.9171 -0.09 0.9248 -1.49 0.1365 1.15 0.2508 1.30 0.1958 -0.37 0.7143 
Aggression 0.11 0.9149 -0.14 0.8887 -1.90 0.0584 -0.28 0.7799 0.71 0.4797 0.40 0.6917 1.11 0.2693 
Self-directed  1.00 0.3199 -0.31 0.7573 1.02 0.3084 -1.60 0.1102 1.66 0.0981 -1.21 0.2291 0.43 0.6709 
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Table 7.4. Vocal sequence production and complexity in the 3 minutes following different types of conflicts that occurred during focal samples. Results listed as means 
[SEM]. 

Behavior 
Opponent unit Opponent sex/age Conflict intensity Conflict outcome 

Same 
unit 

Different 
unit 

All-male 
unit 

Same-
sex 

Opposite-
sex Immature Mild Severe Winner Loser Unknown 

Female focal samples n = 143 n = 241 n = 1 n = 243 n = 37 n = 105 n = 309 n = 76 n = 78 n = 14 n = 293 

Sequence rate (per 3 min) 0.41  
[0.06] 

0.68  
[0.06] 0 0.64  

[0.06] 
0.57  

[0.12] 
0.44  

[0.08] 
0.63  

[0.05] 
0.38  

[0.08] 
0.38  

[0.08] 
0.43  

[0.17] 
0.64  

[0.05] 

Male focal samples n = 136 n = 416 n = 30 n = 330 n = 175 n = 77 n = 521 n = 61 n = 132 n = 9 n = 441 

Sequence rate (per 3 min) 1.22  
[0.11] 

1.12  
[0.06] 

1.23  
[0.22] 

1.13  
[0.06] 

1.17  
[0.09] 

1.17  
[0.17] 

1.16  
[0.06] 

1.05  
[0.12] 

1.41  
[0.12] 

1.33  
[0.44] 

1.07  
[0.06] 

Male video sessions n = 49 n = 116 n = 35 n = 144 n = 37 n = 19 n = 111 n = 89 n = 51 n = 8 n = 141 

Latency to vocalize (s) 19.51  
[6.6] 

36.82  
[5.34] 

44.57  
[11.04] 

34.98  
[4.67] 

30.65  
[10.21] 

32.44  
[12.65] 

42.78  
[5.98] 

22.91  
[4.89] 

17.82  
[5.67] 

62.79  
[26.85] 

38.13  
[5.02] 

Male video sequences n = 47 n = 108 n = 33 n = 138 n = 33 n = 17 n = 103 n = 85 n = 49 n = 6 n = 133 

Sequence size 9.13  
[0.77] 

6.17  
[0.43] 

8.58  
[1.32] 

7.22  
[0.48] 

8.55  
[0.98] 

5.88  
[0.89] 

6.38  
[0.47] 

8.48  
[0.66] 

8.1  
[0.76] 

3.83  
[0.60] 

7.20  
[0.49] 

Derived call repertoire 0.79  
[0.1] 

0.56  
[0.06] 

0.85  
[0.15] 

0.64  
[0.06] 

0.88  
[0.12] 

0.53  
[0.12] 

0.61  
[0.07] 

0.74  
[0.08] 

0.78  
[0.09] 

0.33  
[0.21] 

0.65  
[0.06] 

# of exhaled moans 0.53  
[0.1] 

0.44  
[0.05] 

0.33  
[0.09] 

0.43  
[0.05] 

0.42  
[0.1] 

0.59  
[0.15] 

0.50  
[0.06] 

0.38  
[0.06] 

0.51  
[0.09] 

0.17  
[0.17] 

0.43  
[0.05] 

# of wobbles 0.21  
[0.09] 

0.08  
[0.03] 

0.24  
[0.12] 

0.12  
[0.04] 

0.33  
[0.12] 

0.00  
[0.00] 

0.06  
[0.03] 

0.25  
[0.07] 

0.22  
[0.08] 

0.00  
[0.00] 

0.12  
[0.04] 

# of yawns  0.19  
[0.06] 

0.08  
[0.03] 

0.39  
[0.09] 

0.17  
[0.03] 

0.24  
[0.08] 

0.00  
[0.00] 

0.11  
[0.03] 

0.24  
[0.05] 

0.16  
[0.05] 

0.17  
[0.17] 

0.17  
[0.03] 
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Table 7.5. Results of Linear Mixed Models comparing vocal sequence production and complexity in the 3 minutes following different types of conflicts that occurred during focal 
samples. 
 Opponent unit Opponent sex/age Conflict 

intensity Conflict outcome 

Measure Same vs 
Different 

Same vs. All-
male 

Same sex vs 
Opposite 

Same sex vs 
Immature Mild vs. Severe Winner vs. 

Loser 
Winner vs. 
Undecided 

 t p t p t p t p t p t p t p 
Vocal sequence rate & latency 
Female rate 0.89 0.3733 -0.59 0.5534 0.15 0.8805 -0.06 0.9532 -1.08 0.2814 0.48 0.6321 0.90 0.3685 
Male rate 0.67 0.5010 0.13 0.8934 0.27 0.7903 -0.42 0.6744 -1.42 0.1562 -0.70 0.4844 -3.23 0.0013 
Male latency 0.96 0.3375 2.00 0.0471 2.31 0.0217 1.77 0.0789 -2.43 0.0159 2.66 0.0084 1.72 0.0876 
Male sequence characteristics 

Sequence size -3.15 0.0019 -1.43 0.1541 -0.66 0.5073 -2.01 0.0457 1.62 0.1066 -0.90 0.3695 0.79 0.4305 
Derived call repertoire -0.78 0.4349 0.48 0.6346 1.04 0.3012 -0.93 0.3526 0.04 0.9652 -0.61 0.5449 0.18 0.8553 
# of exhaled moans -1.52 0.1296 -1.45 0.1501 -0.92 0.3592 -0.31 0.7577 -1.52 0.1297 -1.14 0.2540 -0.14 0.8866 
# of wobbles 0.05 0.9577 0.78 0.4370 1.32 0.1879 -0.75 0.4536 1.74 0.0831 -0.13 0.8931 -0.04 0.9679 
# of yawns  -0.71 0.4794 1.96 0.0515 1.25 0.2133 -1.02 0.3069 1.17 0.2449 0.52 0.6031 0.38 0.7053 
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Figure 7.1. Example spectrograms of vocal sequences produced during (a) 
matched-control sessions and (b-c) post-conflict sessions. Uppercase letters 
above each utterance represent the call types: (G) exhaled grunt, (I) inhaled grunt, (Mi) 
inhaled moan, (W) wobble, (Y) vocal yawn, and (Me) exhaled moan. Spectrograms 
were made in Pratt (version 5.2.29). 
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Figure 7.2. Male and female vocal sequence rates in the 3 minutes after a 10-min 
‘conflict-free’ control period or a conflict during focal samples. Bars and whiskers 
represent means plus two SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, 
and p > 0.05 denoted as N.S. 
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Figure 7.3. Male vocal sequence production and complexity during matched-
control (MC) and post-conflict (PC) video sessions. Latency to give a sequence (a) 
was defined as the time after the start of the video (MC) or end of the conflict (PC). Bars 
and whiskers represent means plus two SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001. 
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Figure 7.4. Comparisons of post-conflict grooming behavior with unit females 
based on whether males produced a vocal sequence within the minute after 
conflicts. Percent time (a) giving and (b) receiving grooming were calculated for the 3 
min after the conflict. (c) Latencies to groom were calculated as the time between the 
first sequence and first grooming bout. Bars/points and whiskers represent means 
plus/minus two SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and p > 0.05 
denoted as N.S. 
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Figure 7.5. Comparisons of grooming outcomes based on the (a) size and 
complexity features (b-e) of the first sequences produced within a minute after 
conflicts. Points and whiskers represent means plus/minus two SEM. * p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001, and p > 0.05 denoted as N.S. 
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Chapter 8: 

Vocal complexity varies with male quality in wild geladas 

 

Abstract 

The honest signaling hypothesis of sexual selection predicts that extravagant and 

complex vocal displays advertise caller quality. A wide range of literature on avian 

species supports this hypothesis, but we are lacking non-avian examples. Here, we 

investigate whether the complexity of gelada (Theropithecus gelada) male vocal 

sequences may function as a quality signal. Given that gelada males produce complex 

vocal sequences during affiliative interactions with females in their harem-like units, we 

tested the hypothesis that variation in sequence production (i.e., rate and sequence 

size) and complexity (e.g., number of derived call types per sequence) can signal a 

male’s potential as a high-quality mate. Specifically, we compared sequence production 

and complexity in males thought to be higher and lower quality in gelada society (e.g., 

male status). We also examined correlations between sequence production and 

complexity and measures of fitness. We found that higher quality males (e.g., leader 

males) produce complex vocal sequences at higher rates. We did not find evidence that 

sequence production or complexity was related to fitness. Our findings are consistent 

with the hypothesis that gelada male vocal complexity is a quality signal, adding a new 

non-avian contribution to comparative study of extravagant displays in light of sexual 

selection. 
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Introduction 

 The honest signaling hypothesis of sexual selection states that extravagant and 

complex (i.e., multi-component) displays evolve because they are honest 

advertisements of individuals’ quality or condition to potential mates and rivals 

(Johnstone, 1995; Zahavi, 1975, 1977). Vocalizations are one of the primary forms of 

displays in birds, amphibians and mammals. These vocal displays can function as 

quality signals if there are associated costs or constraints that prevent lower-quality 

individuals from making them (Johnstone, 1995; Zahavi, 1975). One of the best studied 

forms of extravagance in vocal displays is that of ‘vocal complexity’ or repertoire size in 

sequences of sounds (Byers & Kroodsma, 2009; Catchpole, 1987; Nowicki & Searcy, 

2004, 2005; Searcy, 1992; Searcy, Nowicki, & Peters, 1999). A wide range of literature 

in songbirds (i.e., Passiformes) suggests that the ability to combine together a diverse 

repertoire of sounds characterizes individuals, typically males, who are high quality 

mates or competitors (Boogert, Giraldeau, & Lefebvre, 2008; Darolová, Krištofík, Hoi, & 

Wink, 2012; DeVoogd, 2004; Kagawa & Soma, 2013; Spencer, Buchanan, Goldsmith, & 

Catchpole, 2004).  

While these associations between vocal complexity and male quality are quite 

common in songbirds, we are currently lacking comparable models in other lineages. 

Several non-avian species produce varied combinations of sounds in contexts relevant 

for inter- or intra-sexual selection: humans (Gao et al., 2017; Lange, Hennighausen, 

Brill, & Schwab, 2016; Lange, Zaretsky, Schwarz, & Euler, 2014; Rosenberg & Tunney, 

2008), gibbons (Cowlishaw, 1992, 1996; Mitani, 1988), bats (Behr & von Helversen, 

2004; Davidson & Wilkinson, 2004), mice (Chabout, Sarkar, Dunson, & Jarvis, 2015; 
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Holy & Guo, 2005), and frogs (Kime, Rand, Kapfer, & Ryan, 1998; Rand & Ryan, 1981; 

Ryan, 1983). However, direct associations between vocal complexity and caller quality 

are currently missing. Instead, acoustic properties such as frequency modulation, calling 

rate, call duration and amplitude are shown to act as quality signals in vocal displays 

(Barelli, Mundry, Heistermann, & Hammerschmidt, 2013; Benítez, le Roux, Fischer, 

Beehner, & Bergman, 2016; Charlton, Reby, & McComb, 2007; Fischer, 

Hammerschmidt, Cheney, & Seyfarth, 2002; Fischer, Kitchen, Seyfarth, & Cheney, 

2004; Kitchen, Seyfarth, Fischer, & Cheney, 2003; Neumann, Assahad, 

Hammerschmidt, Perwitasari-Farajallah, & Engelhardt, 2010). 

 In this report, we seek to expand our understanding of vocal complexity as a 

quality signal by studying its variation in geladas (Theropithecus gelada), a non-human 

primate. There are two reasons why geladas make for an excellent study species for 

this question: their social system and their production of complex vocal displays. First, 

the gelada social system results in clear variation in male quality. Geladas live in large 

communities that are composed of smaller harem-like reproductive units with a 

dominant ‘leader’ male, up to a few subordinate ‘follower’ males and 2-11 related 

females and their immature offspring (Snyder-Mackler, Beehner, & Bergman, 2012). 

Unit males father all the offspring for the females in their units, and for units with 

follower males, the leaders father the majority (~85%) of the offspring (Snyder-Mackler, 

Alberts, & Bergman, 2012). Thus, there are clear ‘high quality’ (leaders) and ‘low quality’ 

(followers) males. Moreover, leader male quality is thought to deteriorate across tenure. 

Males are in their prime upon taking over units from the previous leader male, but their 

ability to maintain their position drops as tenure progresses (Snyder-Mackler, Alberts, et 
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al., 2012). Thus, even within leaders, males earlier in their tenures are thought to be 

higher quality than males later in their tenures. 

 Second, gelada males are known for producing long and complex vocal 

sequences that are thought to function in facilitating social interactions with unit females 

(Aich, Moos-Heilen, & Zimmermann, 1990; Richman, 1987). ‘Complexity’ in gelada male 

vocal communication comes from their ability to produce a diversified vocal repertoire 

with a suite of five call types not found in their close baboon relatives (Gustison, le 

Roux, & Bergman, 2012). Three of the unique or ‘derived’ call types are thought to be 

the most salient and contain acoustic properties that make them difficult to produce 

(Gustison & Bergman, n.d.-a, 2016). These derived call types are combined with a 

shared call type (grunts) into sequences ranging anywhere from a single call to over 

twenty calls that contain none to all the derived call types (Gustison, Semple, Ferrer-i-

Cancho, & Bergman, 2016). Vocal sequences containing more derived call types – 

specifically the three most salient derived calls – are produced during affiliative social 

interactions with unit members (especially females) and elicit grooming behavior from 

females (Gustison & Bergman, n.d.-b). In addition, females respond more strongly to 

playbacks of male vocal sequences that contain one of these three derived call types 

(Gustison & Bergman, 2016). Taken together, these data suggest that males who 

produce more complex vocal sequences (i.e., containing more derived call types) have 

stronger relationships with unit females. 

 Here, we investigate whether vocal sequence complexity maps on to male quality 

in male geladas. First, we test the prediction that leader males produce more complex 

vocal sequences than do followers. Second, we test the prediction that leader males 
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early in their tenure produce more complex vocal sequences than leaders later in their 

tenure. In addition to investigating ‘complexity’ in gelada male vocal sequences, we also 

explore more generic measures of vocal production, specifically sequence rate and 

sequence size (number of calls in a sequence). Finally, we investigate whether 

sequence production or complexity at the start of leader tenures predicts the indirect 

and direct measures of fitness. 

 

Methods 

 

Study site and subjects 

Data for this study come from adult geladas across three different bands in one 

wild community (about 1,200 individuals) living in the Sankaber area of the Simien 

Mountains National Park, Ethiopia (Snyder-Mackler, Beehner, et al., 2012). This 

population has been under intensive behavioral study since January 2006, and study 

subjects are fully habituated to human observers on foot (approach distances less than 

3 m) (Bergman, 2010). The gelada research was approved by the University Committee 

on Use and Care of Animals at the University of Michigan and adhered to the laws and 

guidelines of Ethiopia. 

 

Behavioral observations and acoustic sampling 

 From January 2009 to June 2016, we collected 977 hr of 15 minute focal 

samples from 85 adult male geladas (41 leaders, 24 followers, and 20 males who were 

leaders and followers during different parts of the study period). Focal samples included 
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all-occurrence sampling (Altmann, 1974) of vocal, agonistic, and affiliative behaviors on 

a palm pilot. In addition, 2,128 vocal sequences (10,350 calls) were recorded from 49 

males (30 leaders, 15 followers, and 4 males who were both leaders and followers) on 

an ad libitum basis from 2008-2009 and 2013-2014.  

We define a vocal sequence as one or more discrete calls made by the same 

male and, for those sequences with two or more calls, separated by an inter-call interval 

of less than 2.983 s (Gustison & Bergman, n.d.-c). Avisoft SAS-Lab Pro (version 5.1.12, 

Avisoft Bioacoustics) was used to generate spectrograms with a Fast Fourier 

transformation (size of 1,024 points) and label the start times, end times, and call types 

of all calls in a vocal sequence. These call types included: exhaled grunts, inhaled 

grunts, exhaled moans, inhaled moans, wobbles and yawns and are described in 

previous studies (Gustison & Bergman, 2016; Gustison, le Roux, & Bergman, 2012; 

Gustison, Semple, Ferrer-i-Cancho, & Bergman, 2016). The size (total number of calls) 

and complexity of each sequence was determined following previous methods 

(Gustison & Bergman, n.d.-c). Complexity was measured by derived call repertoire size 

and the total number of each derived call type (exhaled moans, wobbles and yawns) per 

sequence.  

 

Data analysis 

 We used Linear Mixed Models (LMM) to test for differences in sequence 

production and complexity based on male status (leader vs. follower) and the time since 

starting a leader tenure (number of days after takeover). In each LMM, sequence 

production (focal rate or sequence size) and complexity (derived call repertoire size per 
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sequence or the number of exhaled moans, wobbles or yawns per sequence) was the 

dependent variable, and male status or time since beginning tenure was the fixed effect. 

In all LMMs, male identity, sampling date, and unit identity were random effects. LMMs 

were run using the function “lmer” of the R package “lme4” (Bates, Maechler, & Bolker, 

2012). The “lmerTest” package was implemented to determine the significance of the 

LMM coefficients (Kuznetsova, Brockhoff, & Christensen, 2013). 

Next, we tested for associations between leader male sequence production and 

complexity with a range of fitness parameters. Since leader male tenures range widely 

in length, we restricted sequence production and complexity measurements to the first 

six months of male tenures. In tests involving sequence rates we used males for which 

we had at least 4 focal samples, or 1 hour of observations, and we calculated the rate 

per 15 min. In tests involving sequence size and complexity, we used males for we had 

at least 4 sequence recordings, and we calculated the mean size and complexity 

measures. We investigated five fitness parameters: unit size at takeover (number of 

adult females), latency to first birth (for males that had at least one birth during tenure), 

tenure length (in years), female years (sum of the total number of years each female 

was in a male’s unit), and total number of births. For birth-related fitness parameters, we 

only looked at births that occurred at least six months after the start of tenure, which is 

the gestation length of geladas (Roberts, Lu, Bergman, & Beehner, 2012), so that we 

could be confident that the offspring were not from a previous leader male. We could be 

confident that these offspring born after 6 mo were from the leader males, as extra-pair 

offspring in geladas are extremely rare (le Roux, Snyder-Mackler, Roberts, Beehner, & 

Bergman, 2013; Snyder-Mackler, Alberts, et al., 2012). First, we carried out Pearson 



 255	

correlations to test whether sequence production or complexity measures were 

associated with the unit size at takeover (number of adult females) or latency to the first 

birth. Then, we carried out Pearson correlations to test whether sequence production or 

complexity measures were related tenure length, female years or total number of births. 

We constrained these latter correlations to males for which we had data on the entire 

tenure (i.e., from takeover to takeover). 

All calculations and statistical tests were carried out in R 3.3.0 (R Development 

Core Team, 2016). Critical values were set at alpha = 0.05, and all tests were two-

tailed. 

 

Results 

Comparison of leader and follower vocal sequence performance 

 We used a series of LMMs to compare leader and follower males in their 

sequence rate, size (number of calls per sequence) and complexity (derived call 

repertoire size and number of each derived call type per sequence). We found that 

leaders produce sequences at higher rates (per 15 min) than followers (Estimate ± SE = 

0.518 ± 0.180, t = 2.886, p = 0.0040; Figure 8.1a), and leaders’ sequences were larger 

in size (Estimate ± SE = 1.678 ± 0.405, t = 4.143, p < 0.0001; Figure 8.1b) and 

contained more derived call types (Estimate ± SE = 0.276 ± 0.057, t = 4.845, p < 

0.0001; Figure 8.1c) than follower sequences. Specifically, leaders’ sequences 

contained more exhaled moans (Estimate ± SE = 0.225 ± 0.050, t = 4.481, p < 0.0001; 

Figure 8.1d) and vocalized yawns (Estimate ± SE = 0.088 ± 0.027, t = 3.257, p = 

0.0021; Figure 8.1f). The only sequence feature for which we did not detect a difference 
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was the number of wobbles per sequence in leaders compared to followers (Estimate ± 

SE = -0.033 ± 0.052, t = -0.642, p = 0.5216; Figure 8.1e). 

 

Changes in vocal sequence performance across leader tenure 

 Leader tenures ranged from a couple weeks to 8 years. We used a series of 

LMMs to test whether there were any longitudinal changes in vocal sequence 

production and complexity across leader tenures. Sequence rate (per 15 min focal) was 

negatively associated with the number of days after tenure began (Intercept = 4.404 ± 

0.251, Estimate ± SE = -5.057 x10-4 ± 1.654 x10-4, t = -3.058, p = 0.0023; Figure 8.2a). 

However, we found no evidence that sequence size was associated with the number of 

days after tenure began (Intercept = 5.405 ± 0.309, Estimate ± SE = -1.081 x10-4 ± 

3.290 x10-4, t = -0.328, p = 0.7429; Figure 8.2b). On the other hand, the derived call 

repertoire size per sequence was negatively associated with the number of days after 

tenure began (Intercept = 0.625 ± 0.044, Estimate ± SE = -1.419 x10-4 ± 0.494 x10-4, t = 

-2.871, p = 0.0052; Figure 8.2c). Similarly, the number of wobbles per sequence was 

negatively associated with the number of days after tenure began (Intercept = 0.109 ± 

0.018, Estimate ± SE = -6.519 x10-5 ± 2.120 x10-5, t = -3.075, p = 0.0034). We found no 

clear evidence that the number of exhaled moans (Intercept = 0.436 ± 0.038, Estimate ± 

SE = -6.744 x10-5 ± 4.172 x10-5, t = -1.616, p = 0.1086) or number of yawns (Intercept = 

0.163 ± 0.022, Estimate ± SE = -4.054 x10-5 ± 2.483 x10-5, t = -1.633, p = 0.1086) were 

associated with the number of days after tenure began. 

 

Correlations between vocal sequence performance and fitness parameters 
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 We found no evidence that sequence production or complexity was related to 

fitness parameters (Table 8.1). Although none of the correlations were statistically 

significant, the largest effect sizes were between sequence measures and latency to 

first birth. Sequence rate had a negative r value suggesting that males that produced 

sequences at higher rates tended to have births faster (Figure 8.3a). In contrast, 

sequence size and derived call repertoire had positive r values in that males that 

produced longer sequences containing more derived call types tended to have births 

later (Figure 8.3b-c). 

 

Discussion 

 To our knowledge, this study is the first to systematically demonstrate that ‘vocal 

complexity’ can signal male quality in a non-avian species. Specifically, dominant leader 

male geladas produce vocal sequences that are more complex (i.e., contain more 

derived call types) than subordinate follower males, and vocal complexity decreases 

throughout leaders’ tenure. Even other measures of vocal performance (sequence rate 

and sequence size) differed based on male quality. Compared to followers, leaders 

vocalized at higher rates and used longer sequences compared to followers, and 

sequence rate dropped as leaders’ tenures progressed. Taken together, these findings 

support the honest signaling hypothesis predicting that extravagant, multi-component 

displays advertise quality in contexts relevant for sexual selection (Johnstone, 1995; 

Zahavi, 1975, 1977). Moreover, these data align with an extensive body of research on 

courtship song in Passerine birds (Catchpole, 1987; Nowicki, Searcy, Hughes, & Podos, 
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2001; Searcy, 1992) and extends the work on the exaggerated acoustic properties of 

male-male competitive displays in non-human primates (reviewed in: Delgado, 2006). 

 Several non-avian taxa produce varied combinations of vocalizations in contexts 

relevant for sexual selection, but we are unaware of studies showing a direct link with 

caller quality (Behr & von Helversen, 2004; Chabout et al., 2015; Cowlishaw, 1996; 

Kime et al., 1998; Rosenberg & Tunney, 2008). Although studies on non-avian taxa 

sometimes show that females prefer males who produce complex vocal sequences 

(e.g., Chabout et al., 2015; Kime et al., 1998), female preference for complex vocal 

displays does not guarantee that the callers also differ in quality (Collins, 1999; Endler & 

Basolo, 1998; Ryan, 1998). For example, exploitation of sensory bias is thought to 

underlie female preference of complex calls in Túngara frogs (Physalaemus 

pustulosus), and males that differ in quality do not differ in complex call production 

(Bernal, Page, Rand, & Ryan, 2007). Prior research on gelada female responses to 

complex male vocal sequences showed rudimentary support for either explanation. 

Female geladas looked longer at playbacks of male sequences containing one of the 

three most salient derived call types than playbacks of grunt-only sequences, but it was 

unclear if this was because callers of complex sequences were perceived as higher 

quality, signaled an affiliative social interaction, or because the derived calls were more 

acoustically salient that grunts (Gustison & Bergman, 2016). The present study provides 

support for the first two explanations, that females may be responding to signals of male 

quality and context. 

 For complex vocal signals to act as honest advertisements of quality, they must 

be difficult to produce. The current study, combined with previous work, supports this 



 259	

prediction in geladas. The three most salient derived call types contain more potentially 

costly acoustic properties like prolonged duration, coordination of sophisticated facial 

movements, and modulation of fundamental and formant frequency profiles (Gustison & 

Bergman, n.d.-a, 2016). Even long sequences containing several calls are thought to be 

more difficult to produce, which results in compression as a possible coping mechanism 

(Gustison et al., 2016). The current study supports the prediction that these complex 

vocal sequences are difficult to produce given that we saw robust differences across 

males differing in quality. This is the second study to demonstrate that wild gelada vocal 

displays may act as male quality signals. The first study focused on bouts of louds calls 

given by males during male-male competition, finding that measures of male quality 

(e.g., leader vs. follower status and estimated age) predicted acoustic properties of 

display calls (Benítez et al., 2016). Higher quality males produced bouts of display calls 

that were longer, lower in overall frequency, and covered a larger frequency range. 

Taken together, there is now good evidence that gelada male vocal displays may act as 

quality signals in both inter- and intra-sexual selection contexts. 

Our findings also have implications for understanding the social functions of 

gelada male vocal sequences. Previous work indicated that gelada males produce 

complex sequences to facilitate affiliative interactions with females during periods of 

stability (Gustison & Bergman, n.d.-c) and instability (Gustison & Bergman, n.d.-b). 

Moreover, production of complex sequences appeared to elicit female investment in the 

male-female social bond. One of the outstanding questions was why males, but not 

females, produce these complex vocal sequences (Gustison & Bergman, n.d.-c). One 

hypothesis was that gelada males are in the unique position of having to build new 
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social relationships upon taking over a reproductive unit. In support of this hypothesis, 

our findings show that leaders produce a higher rate of sequences containing more 

derived call types earlier in tenure. This finding also reveals that the usage of gelada 

complex sequences is more analogous to avian and human communication than 

previously thought. Like geladas, male zebra finches (Taeniopygia guttata) engage in 

complex songs when forming a long-term pair bond with a female, but then they 

transition to using simpler calls for the duration of the partnership (Elie et al., 2010; 

Tomaszycki & Adkins-Regan, 2005, 2006). Communication changes also happen in a 

similar direction during the development of intimate human relationships (Punyanunt-

Carter, 2004). 

It is still unknown whether variation in gelada leader male production and 

complexity of sequences aligns with indirect or direct fitness benefits. We found no 

evidence that a leader male’s vocal performance during the beginning of tenure was 

correlated with unit size, tenure length, or the latency to and number of births. Two 

potential explanations may explain this lack of association. On the one hand, it is 

possible that we did not have a large enough sample size to detect an association. 

There were a limited number of males for which we could collect substantial behavioral 

observations and acoustic recordings early in tenure and continue following them until 

their tenure ended. On the other hand, it may also be the case that there is little 

variability in the fitness potential of new leaders because males must successfully 

compete to become leaders, and therefore, may already be high quality. Before 

untangling these possible explanations, intense longitudinal studies of complex vocal 

behaviors throughout leader male tenures will be needed.  
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Table 8.1. Results of Pearson correlation tests between leader male sequence production and complexity 
measures (from the first 6 months of tenure) and fitness measures. 

Sequence 
measure 

Unit size at 
takeover 

Latency to 1st 
birth (days) 

Tenure length 
(years) Female years Total # of 

births 

 r (df) p r (df) p r (df) p r (df) p r (df) p 

Rate per 15 min 
0.12 
(35) 

0.4868 
-0.20 
(26) 

0.3093 
0.02 
(21) 

0.9462 
-0.05 
(21) 

0.8300 
0.06 
(21) 

0.7708 

Mean size 
-0.07 
(12) 0.8072 

0.33 
(9) 0.3166 

0.04 
(7) 0.9230 

-0.11 
(7) 0.7821 

-0.20 
(7) 0.6037 

Mean derived 
call repertoire 

0.29 
(12) 

0.3211 
0.22 
(9) 

0.5065 
0.06 
(7) 

0.8739 
0.03 
(7) 

0.9463 
-0.12 
(7) 

0.7650 

Mean # exhaled 
moans 

0.32 
(12) 

0.2596 0.13 
(9) 

0.6965 -0.14 
(7) 

0.7254 -0.01 
(7) 

0.9838 0.01 
(7) 

0.9876 

Mean # wobbles 
0.10 
(12) 

0.7453 
-0.08 
(9) 

0.8150 
-0.42 
(7) 

0.2608 
-0.46 
(7) 

0.2129 
-0.42 
(7) 

0.2637 

Mean # yawns 
0.12 
(12) 

0.6719 
0.25 
(9) 

0.4622 
0.32 
(7) 

0.4068 
0.21 
(7) 

0.5805 
0.09 
(7) 

0.8092 
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Figure 8.1. Sequence (a-b) production and (c-f) complexity in follower and leader 
males. Bars and whiskers represent means + 2 SEM. * p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001 and p > 0.05 denoted as N.S. 
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Figure 8.2. Sequence (a-b) production and (c) complexity throughout leader male 
tenure. Points and whiskers represent means + 2 SEM. * p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001 and p > 0.05 denoted as N.S. 
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Figure 8.3. Associations between latency to 1st birth and sequence (a-b) 
production and (c) complexity in the first 6 months of leader male tenures. Each 
point represents a single tenure. 
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Chapter 9: 

Conclusions 

 

This dissertation has examined the phylogeny (Chapters 2-4) and function 

(Chapters 5-8) of vocal complexity in wild geladas. In doing so, this work provides a 

foundation for thinking about the ultimate origins of ‘complexity’ in vocal communication 

systems. Additionally, this work has provided key insights in three areas. 

First, comparative work on the parallels between social complexity and vocal 

complexity have left us with the puzzle of how these two entities are linked. Our work 

provides the first thorough demonstration of how this can happen, and it sets up 

guidelines for how this link can be understood in other taxa. As a first step, it is critical to 

identify the specific features of vocal communication that are thought of as ‘complex’, 

and this identification can be helped by making comparisons between closely related 

species. In the case of geladas, comparing them to baboons helped us to determine 

which call types in their repertoire were unique and therefore created a larger vocal 

repertoire size (Gustison, le Roux, & Bergman, 2012). Then, we could focus on 

determining the social function of these unique ‘derived’ calls (Gustison & Bergman, 

2016; Gustison et al., 2012). There are many ways that a complex communication 

system could function in a species thought to be socially complex. If a species is 

thought to be socially complex because of their large group sizes, then it is necessary to 

determine if complex vocalizations are used to combat conspecific noise, facilitate 
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contact between individuals who are lost in the crowd, enhance the ability to compete 

for resources, and/or deal with an influx of potential predators, for example. In geladas, 

we found support for the idea that complex sequences help gelada males overcome the 

noise created by living in a large and dense community (Chapter 6). If a species is 

thought to be socially complex due to being incredibly gregarious, then it is necessary to 

determine if complex vocalizations function by replacing or facilitating specific types of 

affiliative interactions. In geladas, we found support for the idea that complex 

sequences facilitate gelada males’ ability to engage in affiliative interactions with 

females, especially during periods of uncertainty (Chapters 6 and 7). These links 

between social complexity and vocal complexity in geladas may apply to other species, 

but this is not necessarily the case. To better understanding how social complexity 

drives vocal complexity (or vice versa) we need to know how this link manifests in a 

wide range of species. 

Second, our work provides novel comparative data with which to make 

inferences about the origins spoken human language, the vocal communication system 

presumed to be the most complex (Fitch, 2000; Hauser et al., 2014). ‘Complexity’ in 

human language comes in many forms. The form that is potentially the easiest to 

compare to our non-human relatives is our phonological capacity to produce an 

impressive repertoire of sounds. Traditionally, our capacity to produce a wide range of 

sounds was thought to be a unique outcome of advanced anatomy among the primate 

lineage (Lieberman, Klatt, & Wilson, 1969). However, this view is being challenged by 

recent studies of vocal tract morphology in baboons and macaques (Boë et al., 2017; 

Fitch, de Boer, Mathur, & Ghazanfar, 2016). Our work fits into this larger discussion by 
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showing that geladas can produce sounds that are even more modulated than their 

Papionini relatives – both in spectrum-based and temporal-based acoustic properties 

(Gustison & Bergman, n.d.). Our work, combined with recent studies on other Papionini 

species, suggests that the human phonological capacity is better explained by 

taxonomic differences in neural circuitry rather than vocal tract morphology.  

Another potential form of complexity in spoken human language is our emergent 

capacity for ‘discrete infinity’, or the ability to produce an infinite range of messages 

from a finite repertoire of sounds (Hauser et al., 2014; Hauser, Chomsky, & Fitch, 

2002). Our ability to do this comes from our application of syntactical rules to decode 

the organization of speech and use semantic rules to infer meaning. One of the major 

questions for understanding language origins is which came first: the ability to produce 

a structured string of sounds or the ability to map meaning onto specific sounds. A 

wealth of literature explores the syntax-like and semantic-like capacity of non-human 

vocal systems with the goal of trying to figure out the evolutionary history of these 

abilities (Berwick, Okanoya, Beckers, & Bolhuis, 2011; Collier, Bickel, van Schaik, 

Manser, & Townsend, 2014; Manser, 2013; Seyfarth et al., 2010). These non-human 

studies typically fall under one of two categories: those who focus on syntax-like ability 

in the absence of ‘meaning’ (e.g., the courtship songs of birds) and those who focus on 

semantic-like ability in both the presence and absence of proto-syntax (e.g., predator 

and food calls of non-human primates). Our work is best aligned with the idea that 

complex forms of vocal communication can evolve in the absence of intricate semantic 

content. This is comparable to the ‘redundancy’ property of human language – despite 

having over 20,000 word families, we only require 6,000-7,000 (Rosenberg & Tunney, 
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2008). Our work shows that geladas are a useful non-human primate model with which 

to investigate how ‘extravagance’ emerges (Chapter 8). 

Another potential form of complexity in spoken human language is our capacity 

for pragmatics – often described as the ability to use context to modify the meaning of 

communication signals (Fitch, 2010). Our work shows that geladas may be a useful 

comparative model for understanding the role of pragmatics in complex vocal 

communication. Overall, the information content or ‘meaning’ of derived call types used 

by males during vocal sequences seemed to be relatively redundant – all derived call 

types appeared to act as signals of benign intent (Chapters 5-7). That said, there were 

subtle differences in their use that varied based on the social context. For example, 

vocal sequences containing more wobbles were predictive of male callers grooming 

female recipients, while vocal sequences containing more vocal yawns were predictive 

of female recipients grooming male callers. Meanwhile, the number of exhaled moans 

per sequence did not predict grooming outcomes (Chapter 6). On the other hand, vocal 

sequences containing more exhaled moans, wobbles or yawns, were predictive of 

female receipts grooming male callers (Chapter 7). These findings suggest that social 

context (fight or no fight) could potentially modify the meaning of complex vocal 

sequences in geladas.  

Third, our work offers novel insight into the evolution of complexity in biological 

systems. One way it does this is by showing that the use of ‘diversity’ as an index of 

complexity has ecological validity. Complexity is a tricky property to quantify, and to 

cope with this limitation, scientists often use diversity as an indirect measure of 

complexity (D’Arnoldi, Foulley, & Ollivier, 1998; Kershenbaum, 2014; Page, 2010; 
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Shannon, 1948; Weitzman, 1992). Diversity can be measured on a variety of levels in 

multi-component systems – from the number of unique attributes and entropy (the 

studies in this dissertation) to the degree of distance between components. Our work 

suggests that relatively simple measures of diversity can be used to better understand 

the origins of ‘complexity’ in communication systems.  

It is important to note that there are trade-offs to producing complex forms of 

communication. It is not a given that complex communications are ‘better’. For example, 

signals that rely on brevity can be more efficient in transmitting a message than signals 

that are more complex (Kempe, Puts, & Cárdenas, 2013; Luo et al., 2013; Semple, Hsu, 

& Agoramoorthy, 2010). Complex signals may also require more physiological and 

developmental investment, which be more costly than beneficial (Suzuki, Ikebuchi, 

Bischof, & Okanoya, 2014). Our work suggests that the social benefits of vocal 

complexity can outweigh potential costs, at least in certain contexts and environments.  

A final way our work offers insight into the evolution of complexity is by 

supporting the idea that universal principles may dictate how it emerges in biological 

systems (Gustison & Bergman, n.d.; Gustison, Semple, Ferrer-i-Cancho, & Bergman, 

2016; Poincaré, 1913; Popper, 1934). Menzerath’s law, for example, is a principle 

thought to underpin the organizational structure of many combinatorial systems. It 

simply states that “the greater the whole, the smaller its constituents” (Altmann, 1980; 

Köhler, 2012; Menzerath, 1954). This principle has been applied to several systems – 

molecules, genes, music, and human language (Altmann, 1980; Baixeries, Hernández-

Fernández, & Ferrer-i-Cancho, 2012; Boroda & Altmann, 1991; Shahzad, Mittenthal, & 

Caetano-Anollés, 2015). By applying this law to multiple levels of gelada vocal 
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communication (i.e., sequences and wobbles) we show that vocal complexity does not 

necessary evolve haphazardly, but rather by following principles that balance 

complexity with brevity (Chapter 4). However, it is also important to note that 

Menzerath’s law might apply to non-communication systems and may not be only a 

‘linguistic law’. Future work will be needed to determine the extent to which Menzerath’s 

law applies to a broad range of information-based systems. 

 

Future directions 

 In addition to providing new insights into research on the ultimate origins vocal 

complexity, the work described in this dissertation inspires several avenues for future 

research regarding the proximate origins of vocal complexity. 

 

Ontogeny of vocal complexity 

 A growing body of evidence suggests that non-human animals have a 

rudimentary capacity to learn how to produce their vocalizations or the appropriate 

contexts in which to make them (Petkov & Jarvis, 2012). However, our understanding of 

the development of elaboration in combinations of sound is mostly limited to three 

lineages of birds (e.g., hummingbirds, parrots, and songbirds). These taxa exhibit high 

levels of vocal learning during critical periods, and their ability to effectively learn can be 

inhibited by disruptions to their development (Brumm, Zollinger, & Slater, 2009). These 

processes align closely with patterns of vocal learning in humans, who learn language 

fundamentals in the first year of life (Kuhl, 2004). The human ability to effectively 

produce spoken language is also sensitive to early life experiences (Harlaar, DeThorne, 
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Smith, Betancourt, & Petrill, 2016; Hoff, 2006). In addition, a host of genes are thought 

to set up the human (and avian) brain to be able to learn complex communication 

(Fisher & Vernes, 2015; Petkov & Jarvis, 2012). FOXP2, for example, is a candidate 

gene that encodes a transcription factor that is involved in the construction of neural 

systems controlling orofacial coordination (Enard, 2011; Fisher & Scharff, 2009). 

 Developmental studies of the vocal complexity are rare outside of humans and 

birds. Our work suggests that geladas may be a useful species in which to make such 

observations. Given the paucity of studies demonstrating that primates learn their 

vocalizations, the null hypothesis is that the production of complex sequences are 

innate. Still, we know little about infant, juvenile, sub-adult, and bachelor male vocal 

behavior in geladas. If male geladas were to learn how to produce complex vocal 

sequences, then we would expect that males born to new leader males would develop 

more complex vocal abilities than males born to older leader males (based on results 

from Chapter 8). Even if the ability to produce complex vocal sequences is innate, 

gelada males may learn the appropriate contexts in which to produce these sequences 

while living in their natal units or in all-male bachelor groups. Another line of inquiry 

could be to look at the structure of candidate genes related to vocal capacity. Although 

FOXP2 is generally conserved across taxa, recent evidence suggests that mutated 

forms of FOXP2 exist in echolocating bats compared to non-echolocating bats (G. Li, 

Wang, Rossiter, Jones, & Zhang, 2007; Webb & Zhang, 2005). As in bats, comparing 

the structure of the candidate genes involved with vocal control in geladas to other 

mammals could illuminate potential patterns of divergence involving genetic mutations. 
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Mechanisms of vocal complexity 

  A wealth of literature describes the neural mechanisms underlying the production 

of vocal communication in vertebrates (Jürgens, 2002, 2009; Petkov & Jarvis, 2012; 

Simonyan, Horwitz, & Jarvis, 2012). These systems include cortico-stratial-thalamic 

loops that differ based on whether the vocalizations of interest are learned or innate. 

Most of the work investigating links between neural mechanisms and vocal complexity 

focus on songbird models (Ca & Devoogd, 2000; DeVoogd, 2004; J. Li, Zeng, Zhang, & 

Zuo, 2006; Markman et al., 2008; Schmidt, Moore, MacDougall-Shackleton, & 

MacDougall-Shackleton, 2013; Spencer, Buchanan, Leitner, Goldsmith, & Catchpole, 

2005). A limitation of this avian work, however, is that there are major structural 

differences in mammalian and avian brains, and it can often be difficult to make 

inferences to mammalian neural systems.  

Geladas would make for an exciting non-human primate model of the neural 

underpinnings of vocal complexity, except that invasive studies needed to answer these 

questions are not currently feasible. Instead, future studies trying to link gelada vocal 

complexity to proximate mechanisms will need to focus on hormones (e.g., androgens 

and glucocorticoids) that can be measured in fecal samples. In addition, a growing body 

of evidence suggests that rodents might be useful for exploring neural underpinnings of 

vocal complexity. Mice produce multi-component songs during affiliative interactions, 

and these songs are sometimes disrupted when altering components of the cortico-

striatal-thalamic pathways (Burgdorf, Wood, Kroes, Moskal, & Panksepp, 2007; Fischer 

& Hammerschmidt, 2011; Lahvis, Alleva, & Scattoni, 2011; Wöhr, van Gaalen, & 
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Schwarting, 2015; Wright, Dobosiewicz, & Clarke, 2013). These neurobiological studies 

of rodent ultrasonic vocalizations (USVs) focus on rats and mice.  

Another excellent study system is that of voles. Not only is there extreme 

variation in mating systems both within and between vole species, but one of the 

species – prairie voles (Microtus orchogaster) – form long-term male-female pair bonds. 

Like geladas, prairie voles exhibit male-biased production of diverse vocalizations 

during affiliative interactions (Getz, 1993; Lepri, Theodorides, & Wysocki, 1988; Ma, 

Resendez, & Aragona, 2014; Williams, Catania, & Carter, 1992). As a supplement to my 

dissertation research, I ran a series of experiments exploring the links between the 

dopamine system and vocal complexity (i.e., repertoire size) in prairie voles in Dr. 

Brandon Aragona’s lab at the University of Michigan. These experiments reveal that 

stimulating specific types of dopamine receptors in the brain (i.e., D2-like receptors) 

elicit higher USV rate and repertoire size in males in response to exposure to females. 

D2-like receptors also promote the formation of pair bonds in prairie voles (Aragona et 

al., 2006; Aragona & Wang, 2009; Wang et al., 1999). Thus, these data suggest that the 

same mechanisms promoting social bonding also promote vocal complexity, at least in 

prairie voles. Additionally, the USV repertoire size of males when they first meet a 

female is positively associated with the level of dopamine (DA) transmission in the 

nucleus accumbens (NAc) shell (i.e., a primary component of the brain’s reward and 

motivation systems) after establishing a pair bond with the same female. Previous 

research suggests that males in stronger pair bonds show greater DA transmission in 

the NAc shell (Aragona et al., 2006; Aragona & Wang, 2009). Thus, my findings suggest 

that a male’s vocal complexity predicts his ability to form a ‘pair-bonded brain’. I propose 
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that the vole lineage will make for an excellent model system in which to simultaneously 

study the proximate and ultimate functions of vocal complexity. 
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