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ABSTRACT 
 

 

An intimidating aspect of cancer is its ability to spread out to distant organs causing 90% 

of cancer-associated deaths. This metastatic progression is driven by circulating tumor cells 

(CTCs) shed from the primary tumor into bloodstream of carcinoma patients. As a result, CTCs 

hold great promise as a potential biomarker in areas of cancer diagnosis, monitoring, and 

evaluation of therapeutic efficacy for personalized medicine, which can serve as surrogate for 

invasive tissue biopsy. However, theses cells are extremely rare with a frequency of only 1-10 

cells surrounded by billions of normal blood cells in 1mL of blood. This thesis delineates the 

shortcomings of existing CTC isolation methods followed by development and implementation 

of new microfluidic-based platforms to improve the sensitivity, specificity, and throughput for 

CTC enrichment.  

First, an affinity-based CTC isolation chip is introduced incorporating functional 

graphene oxide for high-density tumor specific antibody presentation. The two-dimensional 

surface-capture approach shows an overall CTC capture efficiency of >82.3% for flow rates up 

to 3mL/hr, while maintaining high viability (>90%) from low shear stress generated during 

sample processing. The extremely low blood cell contamination rate in the order of 100 cells/mL 

enables subsequent downstream analysis of CTCs. The clinical validity of the chip is 

demonstrated in a cohort of 47 metastatic breast cancer patients. Second, a size based CTC 

isolation chip is presented utilizing the inertial force effects to isolate CTCs by differentially 

focusing. Channel design parameters including the height, width, and radius of curvature and 
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flow conditions are investigated to observe their effect on particle/cell focusing and streak 

migration. Optimal flow regimes to achieve maximum separation of 10/20 µm particles, 

representing leukocytes and CTCs respectively, in various channel configurations are identified. 

Based on these results, a cascaded spiral chip is designed for label-free CTC isolation achieving 

87.76% recovery rate with 97.91% leukocyte depletion. Finally, a catheter based in-vivo CTC 

isolation system is implemented for large blood volume CTC screening. The system includes a 

dual lumen catheter to connect the patient blood veins, a peristaltic pump for continuous blood 

sampling, heparin injector to prevent blood clogging and clotting, and a CTC capture module.  
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CHAPTER 1 
 

1 Introduction 
 

1.1 Circulating Tumor Cells as 'Liquid Biopsy' 

The most common cause of cancer related deaths is from the ability of cancer to spread to 

various distant organs through metastasis, causing 90% of cancer-related deaths1. Metastasis is a 

multistep process in which tumor cells escape from the primary tumor site, enter the 

bloodstream, arrest at a secondary site, extravasate, and proliferate to form secondary tumor 

colonies (Figure 1.1). To migrate through the primary tissue and intravasate into the blood, the 

cell experiences several changes. An aggressive tumor cell is able to fight impediments to 

intravasation posed by the microenvironment. Only a small percentage of these tumor cells will 

ultimately grow into micrometastases, and of those micrometastases few still will proceed into 

full blown macrometastatic lesions. This process occurs in parallel to the development of the 

primary tumor, and often before that tumor is initially detected. Less than 0.00004% of initially 

disseminated cells complete the metastatic process, and yet it is these few cells lead that charge 

of cancer mortality. To be able to isolate and identify these cells is a clear direction of interest in 

cancer research.  
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The detection and quantification of these cells known as, circulating tumor cells (CTCs), 

found in peripheral blood of carcinoma patients have emerged as potential biomarker that can 

complement traditional tissue biopsy2. CTCs that shed from the primary or metastatic tumor 

deposits are thought to be enriched for metastatic precursors3,4. CTCs as a surrogate diagnostic 

tissue could constitute a ‘liquid biopsy’ which are easily accessible with minimal risk from 

routine blood draw, enabling continuous real-time monitoring patients’ disease state and 

therapeutic responses5,6. Previously, blood testing with CTC counts in cancer patients have 

shown to be an independent prognostic factor for progression-free and overall survival7 and 

multiple interventional trials are under study to further address different but complementary 

aspects of the CTC’s clinical utility8. In addition, it have been confirmed that CTCs could be 

detected weeks before the primary tumor becomes overtly invasive in mice9 and patients with 

pre-invasive lesions, such as ductal carcinoma in situ, in breast cancer10,11.  Although these early 

disseminating cells needs to be clinically assessed for its capability of forming manifest 

metastases, CTC are indeed promising biomaterials to understand the metastatic process and to 

improve the quality of life of cancer patients3.   

 

 

Figure 1.1 Tumor metastasis and circulating tumor cells. 
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1.2 Challenges of Circulating Tumor Cell Isolation 

Although, isolation and analysis of CTCs is becoming important for many clinical 

applications, including but not limited to serving as a surrogate for invasive biopsy as an 

emerging biomarker for early cancer diagnosis, progression, and evaluation of drug’s therapeutic 

efficacy for personalized treatment12-14, due to their extremely rare frequency in patient blood 

samples (~1-100 CTCs per 109 hematologic cells), this remains a challenge.   

 

 

Figure 1.2 CELLSEARCH® System from Veridex (which is now Janssen Diagnostics). 
 

Currently, the CELLSEARCH® System is the only FDA-cleared system for 

identification, isolation, and enumeration of circulating tumor cells (CTCs). The machine 

requires 7.5-mL blood sample and utilizes ferrofluid nanoparticles with antibodies targeting 

epithelial cell adhesion marker, EpCAM, to magnetically separate CTCs from the bulk of normal 

blood cells. Using fluorescence imaging technology, the machine then detects and enumerates 

CTCs of epithelial origin (CD45-, EpCAM+, and cytokeratins 8, 18+, and/or 19+). Over the past 

years, considerable attention has been made to the CELLSEARCH® System for its high clinical 

relevance such as in establishing disease-free or overall survival in cancer patients. Clinical trials 

have shown that in patients with metastatic breast, prostate, or colorectal cancer, CTCs were 

consistently and markedly more prevalent while they were rarely found in healthy people or in 
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people with nonmalignant tumors. Other platforms developed for CTC isolation, although not 

approved by FDA for its use in clinical practice, includes bulk filtration and centrifugation. A 

different strategy exploits the interaction of specific antibodies and cell surface markers, similar 

to the CELLSEARCH® System, but present on blood cells for its depletion. However, the limited 

sensitivity and specificity of current approaches prevent the realization of the full promise of 

CTCs as a biomarker.  

 

 

Figure 1.3 CTC isolation techniques using its physical and biological properties. 15 
 

1.3 Scope of the Thesis 

This dissertation discusses the development of microfluidic platforms to isolate CTCs 

based on their physical and/or biological characteristics. Followed by isolation, CTCs are 

analyzed in its protein or mRNA level to understand and discover signatures related to 

metastasis. The remainder of the thesis is outlined below. 
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In Chapter 2, a sensitive microfluidic device using functionalized graphene oxide (GO) 

nanosheets to identify and isolate CTCs is discussed. This chapter presents the development and 

characterization of the next generation immunoaffinity based CTC capture device utilizing the 

advantage of favorable properties afforded by nanomaterials. GO serves the purpose of 

packaging the CTC capture antibody with high density on the chip surface allowing sensitive 

capture with strong bonding strength upon contact. This also reduces the required chip surface 

area for sufficient CTC capture resulting in a decreased non-specific binding of contaminating 

blood cells, which is desirable in further downstream analysis. Given the high sensitivity and 

specificity of this technology, in Chapter 3, CTCs are characterized in its protein and molecular 

level to begin answering questions regarding the genotypes and phenotypes of these rare cells. 

To this end, isolation of CTCs from 47 breast cancer patients and their subsequent examination is 

presented. 

Chapter 4 outlines the development of a label-free, cascaded spiral microfluidic platform 

to isolate CTCs with high purity based on its size difference compared to normal blood cells 

using inertial focusing effects. This chapter presents methods on defining design parameters and 

flow conditions for optimal operation for inertial microfluidic devices, particularly in low aspect 

ratio curvilinear microchannels, which remained nondeterministic due to incomplete 

understanding of the mechanics and has led to challenges in designing efficient systems. By 

systematically varying parameters including the channel height, width, and radius of curvature 

over a wide range of flow velocities, its effect on size dependent differential focusing and 

migration behaviors of binary (10 µm and 20 µm) particles are analyzed. These results are used 

to identify optimal flow regimes to achieve maximum separation in various channel 

configurations tailored to potentially arbitrary flow conditions for size based CTC separation. To 
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this end, a fully integrated, sheath-less cascaded spiral microfluidic device is described to 

continuously separate human breast cancer epithelial cell-lines, MCF-7, from leukocytes, with 

high purity and sustaining high viability upon collection.   

In Chapter 5, an indwelling catheter system for in-vivo CTC collection is proposed. This 

allows enrichment of CTCs in larger quantities from directly connecting this portable system to 

blood veins of cancer patients using dual lumen catheter. Since the event of detecting CTCs are 

rare, hampering problems of the Poisson statistics, the analysis of a larger blood volume is 

envisioned to aid clinical analysis and decisions, particularly for early-stage cancer patients. This 

chapter presents the development of the indwelling catheter system with preliminary results 

including antibody selection, CTC capture efficiency, sterilization test, and future experimental 

plans using canine models. 
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CHAPTER 2 
 

2 Immunoaffinity Based Isolation and Analysis of Circulating 
Tumor Cells Using Functionalized Graphene Oxide 

Nanosheets 
 

2.1 Motivation 

In early stage cancers, CTCs are present in the blood stream at a low concentration and 

epithelial cell adhesion molecule (EpCAM) expression, along with other cancer related 

biomarkers, may be heterogeneous16,17. Hence, methods for detecting CTC in early stage cancer 

patients need to be more sensitive, reliable and specific12. Existing microfluidic-based 

technologies have improved the recovery of CTC from cancer patients14,18; however, these 

technologies rely on micro-structures, trapping arrays18 or microfilters19, limiting downstream 

analysis and further culture. The development of a novel platform that enhances CTC isolation, 

is sensitive, allows imaging of captured CTCs and enables cell culture would dramatically 

increase the use of CTCs in diagnostics and prognostics.  

Nanomaterials offer excellent opportunities to improve the sensitivity of biomolecule 

detection due to their high surface area to volume ratio and similar size to biomolecules20,21. 

Recently, silicon-nanopillars22, quartz-nanowires23 and TiO2 nanofibers24 have been used to trap 
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CTCs, with enhanced capture efficiency for nanomaterials with higher aspect ratios; however, 

capture yields were found to be lower than those observed for microfluidic-based CTC chips. 

Graphene oxide (GO) is a promising nanomaterial in application such as drug delivery25, 

biosensing26 and nanocomposites27. Its ease of surface modification using PEG-based 

chemistry28, control over the size of its sheets using sonication and filtration29 and its unique 

optical properties30 make GO an attractive material for use in biomolecule detection. This 

chapter presents and demonstrates an effective approach to isolate CTCs from blood samples of 

pancreatic, breast and lung cancer patients, by using functionalized graphene oxide nanosheets 

on a patterned gold surface.  

 

2.2 Material and Methods 

2.2.1 Preparation of PEG functionalized GO suspension 

10 mg of single layer graphene oxide (SLGO) powder was prepared by a modified 

Hummer’s method (Cheap Tubes Inc.). 10 mL of N,N-dimethylformamide (DMF) and 300 µL of 

tetrabutylammonium (TBA) hydroxide (40% in water) were added to form a graphene oxide 

suspension (Figure 2.1 A). Using a tip sonicator, the graphene oxide suspension was 

ultrasonicated for 30 minutes (Figure 2.1 B). To avoid the temperature increase during 

sonication, a temperature sensor was monitored and the suspension tube was immersed in an ice 

bath. The suspension was reserved for 3 days at room temperature. 4 mL of the supernatant was 

extracted and 15 mg of phospholipids-polyethylene-glyco-amine (PL-PEG-NH2, NOF Co.) was 

dissolved (Figure 2.1 C), bath sonicated for 1 hour (Figure 2.1 D), and subsequently centrifuged 
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at 12,000 rpm for 3 minutes (Figure 2.1 E). The supernatant was collected and stored at 4 °C 

(Figure 2.1 F). The supernatant included PEG functionalized GO. 

 

 

Figure 2.1 Preparation process of PEG functionalized GO suspension. 
 

 

2.2.2 Microfabrication and Device Assembly 

Figure 2.2 shows the fabrication process of the GO chip. 4 inch N-type silicon wafers are 

cleaned by RCA cleaning. A 3000 Å thermal oxide is grown by wet oxidation process. Cr and 

Au (100 Å/1000 Å) layers are deposited by e-beam evaporation. Photoresist is coated by 

automatic spinner (ACS-200, Karl Suss) and patterned by mask aligner (MA-6, Karl Suss). To 

pattern Au and Cr layers, wafers are put into Au/Cr etch solution. Finally, photoresist is removed 

by acetone and rinsed by isopropyl alcohol (IPA).  
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Figure 2.2 Fabrication process of the GO chip. 
 

 

To self-assemble GO sheets before bonding, a silicon substrate with gold patterns (Figure 

2.3 A) was dipped into a functionalized GO suspension for 10 minutes (Figure 2.3 B) and 

washed with DI water and IPA. A PDMS layer with a chamber was bonded onto the silicon 

substrate by corona discharge treatment (Figure 2.3 C).  

 

 

Figure 2.3 Preparation process of GO chip. 
(A) Cross-sectional view of the silicon substrate with gold patterns. (B) Dipping the silicon 
substrate into the functionalized GO suspension. (C) Bonding a PDMS layer to the silicon 
substrate.  
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2.2.3 Surface Modification 

GMBS solution was flowed through the PEG functionalised GO chip at a 20 µL/min flow 

rate using a syringe pump (Harvard Apparatus). After 30 minutes of incubation, the device was 

washed with ethanol at 100 µL/min. 50 µg/mL NeutrAvidin was prepared and flowed through 

the device at 20 µL/min. After 1 hour incubation, the device was flushed with phosphate 

buffered saline (PBS) at 100 µL/min to remove the excessive NeutrAvidin. Finally, biotinylated 

EpCAM antibody at a concentration of 20 µg/mL in PBS with 1% (w/v) BSA was flowed 

through the device for 10 minutes at 20 µL/min. After 1 hour incubation, PBS was flowed to 

wash then, 1% or 3% BSA solution in PBS was flowed at 100 µL/min for 5 minutes. After 

flowing BSA solution, the device was allowed to incubate for 30 minutes. 

 

2.2.4 Cell Culture and Labeling  

Tissue culture reagents were purchased from GIBCO Invitrogen Corporation/Life Technologies 

Life Sciences unless otherwise specified. MCF-7/Hs-578T and PC-3 cells were cultured in 

DMEM and DMEM/F12 medium containing 10% fetal bovine serum and 1% penicillin-

streptomycin solution. When cells reached more than 70-80% confluence, they were harvested 

and labeled with a green cell tracking dye (Invitrogen, CellTracker Green CMFDA, C7025). 

Subsequently, these fluorescence tracked cells were used to perform the capture efficiency 

experiments. For a low number cell spiking (3-20), cells were diluted in serum-free medium 

starting at an initial concentration of 1 × 105 cells/mL. 1 µL of the concentrated cell suspension 

was transferred to a low-attachment 96-well plate. The transferred cells were counted under the 

microscope, then immediately pipetted into a 1 mL of whole blood. After removing the cells 
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from the 96-well plate, we counted the remaining cells at the same position. By subtracting these 

cells left behind from the original spot, the total number of cells spiked into blood was estimated. 

 

2.2.5 Cytokeratin and CD45 Staining 

After flowing blood samples with low number of non-labeled cells, the captured cells 

were washed with PBS, fixed with 4% paraformaldehyde (PFA), permeabilized with 0.2% 

Triton-X and incubated for 30 minutes followed by PBS wash. The device was incubated for 30 

minutes with 1 mL of blocking buffer containing 2% normal goat serum and 3% BSA. Anti-

cytokeratin 7/8 (BD Biosciences) and anti-CD45 (BD Biosciences) were diluted to 5 µg/mL in 

1% BSA. These antibodies were flowed through the GO chip for 20 minutes at 50 µL/min and 

incubated for 1 hour. After absorption of the primary antibody, the GO chip was washed with 

PBS. Anti-cytokeratin was probed with Alexa Fluor 488 IgG2a FITC (Invitrogen) and the anti-

CD45 was probed with Alexa Fluor 546 IgG1 (Invitrogen). The secondary antibodies were 

diluted in 1% BSA at a 1:200 ratio, flowed through the GO chip for 20 minutes at 50 µL/min, 

incubated for 1 hour and followed by washing with PBS. To stain nuclei of the captured cells, 

DAPI (1:1000 dilution in PBS) was flowed for 20 minutes at 50 µL/min and the device was 

incubated for 15 minutes and washed with PBS. 

 

 

 

 



	 13	

2.2.6 Blood Specimen Collection  

Blood samples were drawn from patients with tumours and healthy donors after obtaining 

informed consent under an IRB-approved protocol. All specimens were collected into EDTA 

tubes and were processed within 3 hours. 

 

2.2.7 Cell Treatment with EdU  

To measure cells’ ability to proliferate, Click-iT EdU Imaging Kit (Invitrogen, C10340) 

was used. After capturing cells, the GO chip was washed with PBS, and 10 µM EdU solution 

was added to the chip. The chip was incubated overnight, washed with PBS and followed by cell 

fixation with 4% PFA. After 15 minutes of incubation, the chip was washed with 3% BSA twice, 

followed by cell permeabilization with 0.5% Triton X-100 in PBS and incubated for 20 minutes. 

The chip was washed with 3% BSA twice and 0.5 mL of Click-iT reaction cocktail was added, 

followed by 30 minutes incubation and washing once with 3% BSA. For nucleus staining, 1 mL 

of 1X Hoechst 33342 solution was added and cells in the chip were incubated for 30 minutes and 

washed with 1 mL of PBS.   

 

2.2.8 RT-qPCR Analysis of Captured CTCs  

The RNA from captured CTCs either from spike samples or from patient’s blood samples 

was extracted from the GO chip using Arcturus Picopure RNA isolation kit according to the 

manufacturer’s instruction (ABI, Life Technologies). Then concentrated preparation of total 

RNA for each sample was used in RT reaction followed by pre-amplification of cDNAs using 
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the pooled TaqMan Gene Expression assays of target genes and Cell-to-CT Kit according to the 

manufacturer’s instruction (Ambion, Life Technologies) on the Eppendorf mastercycler pro S 

instrument. Finally, gene expression experiments for each pre-amplified sample were performed 

using TaqMan Gene Expression Assays for GAPDH and HER2 (Life Technologies) in a 

multiplex qPCR setting on the ABI 7900HT instrument. Data were presented as mean Ct for 

mRNA expression level of studied genes. 
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2.3 Graphene Oxide Device Design 

The previously developed ‘CTC-Chip’ has shown the promise of MEMS (microelectro-

mechanical systems) based approach for efficient isolation of CTCs from cancer patients. 

However the platform was not amenable to traditional imaging or study, as the CTCs were 

captured around EpCAM coated three-dimensional post structures of 100 µm in height. It was 

also difficult to release these cells for evaluation (Figure 2.4 A). A second generation of 

microchip technology to isolate CTCs used EpCAM immobilized herringbone structures to 

create microvortices to enhance the capture without the aid of microposts (Figure 2.4 B), but this 

device still had 45 µm tall structures to create passive mixing, occupying 40% of the depth of the 

device. Moreover, the herringbone structures were functionalized, hence the capture occurred 

around these structures along with the flat surface, providing some of the same constraints of the 

original CTC chip. To address these challenges, we have developed a truly 2D planar capture 

system using a novel nanomaterial graphene oxide (Figure 2.4 C). 

 

 

 

Figure 2.4 Schematic view of microfluidic devices for CTC capture. 
(A) Three-dimensional post structures. (B) Herringbone structures. (C) Planar structure with gold 
patterns.  
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The GO chip present here takes advantage of this novel nanomaterial for sensitive 

capture of CTCs using functionalized GO nanosheets on a flat substrate (Figure 2.5 A, B). The 

silicon substrate has 58,957 flower-shaped gold patterns with a dimension of 100 µm × 100 µm. 

The distance between each structure in a column is 150 µm and the overall size of the 

microfluidic device is 24.5 mm × 60 mm × 3 mm. The PDMS (polydimethylsiloxane) layer 

forms a microfluidic chamber with a 50 µm height and a total volume of 45 µL. Unlike other 

CTC capture devices with microposts (50~100 µm-thick)18, the effective functionalized surface 

created here enables the device to be a simple, flat and chamber-like structure (Figure 2.4). 

GO nanosheets are adsorbed onto the patterned gold surface, and then chemically 

functionalized with EpCAM antibodies. The GO functionalization in this study uses a method 

described by Li et al. with some modifications (Figure 2.5 C)31. GO nanosheets are non-

covalently functionalized by phospholipid-polyethylene-glyco-amine (PL-PEG-NH2) and the 

hydrophobic lipid chains of PL-PEG-NH2 are strongly immobilized onto the GO surface. 

Tetrabutylammonium (TBA) hydroxide is added for intercalation and complete exfoliation of 

GO. TBA cations and the amino group of PL-PEG-NH2 interact with the patterned gold surface 

by electrostatic attraction32. N-γ-maleimidobutyryloxy succinimide ester (GMBS) is introduced, 

which has N-hydroxysuccinimide (NHS) esters that react with amine groups of GO-PEG to form 

amide bonds. The CTCs are then captured using the following NeutrAvidin and biotinylated 

EpCAM antibody interactions. SEM images reveal that gold patterns were covered with 

functionalised GO nanosheets (Figure 2.5 D). This shows the high selectivity of GO adsorbed 

onto the gold patterns rather than silicon dioxide substrate as well as the uniform assembly and 

saturation density of GO on the gold pattern.   
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Figure 2.5 GO chip and functionalisation/characterisation of GO. 
(A) Schematic diagram of the GO chip. (B) Schematic showing the conjugation chemistry 
between functionalized GO nanosheets and EpCAM antibodies. GO nanosheets are adsorbed 
onto the gold pattern. The GMBS cross linker binds to PL-PEG-NH2 onto the GO nanosheets. 
The NeutrAvidin is connected to the GMBS and biotinylated EpCAM. (C) Preparation 
procedures of the functionalized GO. (D) SEM image of gold patterns. Inset: magnified SEM 
image of adsorbed GO nanosheets on gold patterns. 
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AFM images demonstrated that the GO nanosheets were on the gold patterns (Figure 2.6 

A). The thickness of the GO in the assembly was 1-3 nm. SEM images of cell spike capture 

reveal a captured MCF-7 cell on the functionalized gold pattern (Figure 2.6 B, C). 

 

 

Figure 2.6 AFM image and SEM images. 
(A) AFM image of GO nanosheets on the gold surface. (B, C) SEM images of the captured 
MCF-7 cell. 
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2.4 Circulating Tumor Cells Capture Efficiency 

Human breast cancer cell lines (MCF-7, Hs-578T originally from ATCC) and a human 

prostate cancer cell line (PC-3, originally from ATCC) were labeled with a fluorescent cell 

tracker dye, spiked into buffer at varying concentrations, and flowed through the GO chip. The 

captured cells in the GO chip and the non-captured cells collected in the waste were then 

counted. Different flow rates were applied to find the optimal flow rate (Figure 2.7 A), and at the 

1-3 mL/hr rate range, the capture yield was over 82.3% (n=3). 100-1000 MCF-7 cells per 

milliliter were then spiked into buffer solution and captured at a flow rate of 1 mL/hr (Figure 2.7 

B). There was little difference in capture yield between MCF-7 cells (high EpCAM expression 

cells) and PC3 cells (relatively low EpCAM expression cells), whereas the capture yield was less 

than 10% for a non-EpCAM expressing cell line Hs-578T33 (Figure 2.7 C). Next, the 

functionalized GO chip and a functionalized flat silicon device without micro posts were 

compared to examine how GO might increase the capture yield (Figure 2.7 D). The results from 

spiked cells in buffer solution clearly showed that the GO chip increased capture efficiency. 

Furthermore, it can be seen that cells were specifically captured on the flower-shaped gold 

surfaces functionalized with GO. (Figure 2.7 E, F, Figure 2.6 B, C).  

	  



	 20	

 

Figure 2.7 Characterization of the GO-chip with cells in buffer solution. 
(A) Flow rate dependency on capture efficiency of MCF-7 cells. Error bars represent the 
standard deviation of three replicates. (B) Capture efficiency of MCF-7 cells at the 1 mL/hr. The 
red solid line is a fit to the result expected. (C) Comparison of different cell lines; MCF-7 cells 
(high EpCAM expression), PC-3 cells (low EpCAM expression), and Hs-578T cells (no EpCAM 
expression). Error bars represent the standard deviation of three replicates. (D) Cell recovery of 
MCF-7 cells compared to functionalized flat silicon device. Error bars represent the standard 
deviation of three replicates. Inset: photograph of GO chip (left) and photograph of 
functionalized flat silicon device (right). (E) Fluorescence image of the captured MCF-7 cells. 
Inset: magnified (10x) fluorescence image of the captured MCF-7 cells. (F) SEM image of the 
captured MCF-7 cell on the gold pattern. Inset: magnified SEM image of the captured MCF-7 
cell. 
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To further investigate capture efficiency in human blood samples, varying numbers of 

MCF-7 cells (3-5 cells, 10-20 cells, 100 cells) were spiked into 1 mL of whole blood and run 

through the GO chip and the functionalized flat silicon device (Figure 2.8 A, Figure 2.9). 

 

 

 

Figure 2.8 Characterization of the GO-chip with MCF-7 cells spiked into whole blood. 
(A) Cell recovery MCF-7 cells spiked into 1 mL of whole blood at varying spike concentration 
from 3 to 100 cells/mL. Error bars represent the standard deviation of replicates. (B) 
Fluorescence microscope image of MCF-7 and white blood cells stained with DAPI (blue), 
cytokeratin (red), and CD 45 (green). (C) Fluorescence microscope image of 6-day-cultured 
MCF-7 cells. (D) Fluorescence microscope image depicting proliferation of cells. (E) SEM 
image of a captured and 6-day-cultured MCF-7 cell. 
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Figure 2.9 Functionalized flat silicon device. 
(A) Photograph of the functionalized flat silicon device as a control device. (B) Chemistry 
structure of the functionalized flat silicon device. 

 

To differentiate captured CTCs and white blood cells, immunostaining was performed by 

using anti-cytokeratin and anti-CD45, where white blood cells were identified as positive for 4’, 

6-diamidino-2-phenylindole (DAPI) and cluster of differentiation 45 (CD45, a common 

leucocyte antigen), while CTCs were identified as positive for DAPI and cytokeratin (CK), but 

negative for CD45 (Figure 2.8 B). The average recovery rates of 10-20 and 100 spiked cells per 

1 mL were 94.2% (n=9) and 87.3% (n=3), respectively (Figure 2.8 A). In the case of 3-5 spiked 

cells per 1 mL, the average recovery rate was 73% (n=10) and five of the samples had 100% 

recovery rate (Table 2.1). The higher standard deviation in the 3-5 spiked cell group may be 

explained by the inherent limitations in capture with cell numbers at low levels. The control 

functionalized flat silicon device had around 48% capture for both 10-20 and 100 spiked cells 

and only 13.3% capture for 3-5 spiked cells (Figure 2.8 A). Similar cell spike experiments were 

performed with the low EpCAM expressing PC-3 cell line and the recoveries were greater than 

65% for both 3-5 and 10-20 spiked cells (Figure 2.10 A). Furthermore, we compared the 
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recovery of MCF-7 and PC-3 cells across the GO chip, the GO chip without gold patterns and 

the functionalized flat silicon device and found that the GO chip with gold patterns has higher 

sensitivity for low frequency (3-5 cells) cell recovery (Figure 2.10 B).  

 

 

Table 2.1 Cell recovery of few number of MCF-7 cells spiked into 1 mL of whole blood. 
Number of cells Device number Spiked MCF-7 

cells 
Captured MCF-7 

cells Recovery rate 

3~5 cells 

D11 5 1 20 % 
D12 5 3 60 % 
D13 4 1 25 % 
D14 3 3 100 % 
D15 5 5 100 % 
D16 4 2 50 % 
D17 4 4 100 % 
D18 5 5 100 % 
D19 4 3 75 % 
D20 5 5 100 % 

Average recovery rate 73 % 

10~20 cells 

D21 15 15 100 % 
D22 15 15 100 % 
D23 10 8 80 % 
D24 13 11 84.6 % 
D25 18 16 88.9 % 
D26 17 16 94.1 % 
D27 11 11 100 % 
D28 12 12 100 % 
D29 17 17 100 % 

Average recovery rate 94.2 % 

100 cells 

D31 102 81 79.4 % 
D32 101 91 90.1 % 
D33 107 99 92.5 % 

Average recovery rate 87.3 % 
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Figure 2.10 Capture efficiency of MCF-7 and PC-3 cells spiked into whole blood. 
(A) Comparison of different cell lines (MCF-7 and PC-3) upon 3-5 and 10-20 cells spiked into 1 
mL whole blood. Error bars represent the standard deviation of replicates. (B) Comparison of 
GO-Chips with control devices (GO-Chips without pattern, functionalized flat silicon devices) 
upon 3-5 cells spiked into 1 mL whole blood. Error bars represent the standard deviation of 
replicates. 

 

2.5 Circulating Tumor Cell Culture and Expansion 

After MCF-7 cells were captured on the GO chip, they were cultured in the device for 6 

days (Figure 2.8 C, Figure 2.11 A-F). The captured cells spread on the surface of the substrate 

and showed evidence of active proliferation, measured by 5-Ethynyl-2’-deoxyuridine (EdU) 

staining shown in red fluorescence (Alexa Fluor 647)34 (Figure 2.8 D, Figure 2.11 G-I). Scanning 

electron microscopy (SEM) images showed the cultured MCF-7 cells spread nicely onto the 

surface of the GO chip (Figure 2.8 E). The cultured cells were released from the chip by 

trypsinization and further re-cultured in a 96 well plate (Figure 2.12). 
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Figure 2.11 Fluorescence microscope images of captured and cultured MCF-7 cells. 
Fluorescence microscope images of 6-day-cultured MCF-7 cells after capture experiment. (A) 4x 
magnification. (B) 10x magnification. (C) Merged image with a bright field image (4x). 20x 
magnification fluorescence microscope images of 6-day-cultured MCF-7 cells with 
DAPI/cytokeratin staining after capture experiment. (D) DAPI channel (Blue) only for nucleus. 
(E) Cytokeratin channel (Red) only. (F) Merged channel. Fluorescence microscope images to 
identify proliferation of MCF-7 cells after capture experiment. Captured cells were stained by 
Hoechst and Alexa Fluor 647 (Click-iT EdU Imaging Kit). (G) Merged image. (H) Blue 
fluorescence represents nuclei of MCF-7 cells. (I) Red fluorescence represents proliferating cells. 
	

 

Figure 2.12 Fluorescence microscope images of MCF-7 cells re-cultured on a 96 well plate. 
These cells were collected and transferred into the well plate after culturing captured cells in the 
device for 7 days. 
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2.6 CTC Isolation from Patients with Various Tumor Types 

Fresh blood samples obtained from patients with metastatic breast cancer (n=7), early 

stage lung cancer (n=4) and metastatic pancreatic cancer (n=9) along with 6 age matched healthy 

individuals (Figure 2.13, Figure 2.14) were processed on GO chips. Clinical data on these 

patients are available in Table 2.2. CTCs in these samples were identified as DAPI positive 

nucleated cells staining positive for CK 7, 8 and negative for CD45 (Figure 2.13 A, D, G). Up to 

23 CTCs/mL were captured from patient samples (n=39), with all patients analyzed (n=20) 

having ≥ 2 CTCs/mL (see Table 2.2). We were unable to measure any CTCs in healthy controls 

(n=6, Figure 2.13 H, Table 2.2). A small number of double positive cells (both CD45+ and CK+) 

were found in some patient samples. Given, very little has been known about the origin and 

significance of these cells35,36, we excluded these from CTC enumeration.  
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Figure 2.13 Fluorescence microscope images and quantification of CTCs captured from 
cancer patient samples. 
(A) CTC captured from breast cancer patient #6 (Br6). (B) CTCs captured from breast cancer 
patient #2 (Br2). (C) Quantification of CTCs captured from breast cancer patients. (D) CTC 
captured from pancreatic cancer patient #2 (Pan2); Fluorescence particle from Alexa Fluor 488 
dye shows that CTC has no FITC (green). (E) Two CTCs captured from pancreatic cancer 
patient #9 (Pan9). (F) Quantification of CTCs captured from pancreatic cancer patients. (G) CTC 
captured from early lung cancer patient #3 (L3). (H) Quantification of CTCs captured from lung 
cancer patients and 6 healthy donors. (I) HER2 gene expression (normalized to GAPDH) of 
captured CTCs by RT-qPCR. Four out of six patients showed expression higher than the gene 
expression of MCF-7 cells (100 cells) 
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Table 2.2 Quantification of CTCs from cancer patients and healthy donors. 
Sample 
number Cancer type Age Gender Cancer stage at 

the diagnosis Staining CTC/mL 

Br1 Breast 65 F IIB 

CK 2 
CK 1 
CK 2 
CK 4 
CK 5 
CK 1 

Br2 Breast 54 F IIIA CK 5 
HER2 23 

Br3 Breast 38 F IIB CK 5 
HER2 14 

Br4 Breast 60 F IIB CK 3 
HER2 12 

Br5 Breast 81 F IIB CK 2 
HER2 4 

Br6 Breast 61 F IIIB CK 5 
HER2 7 

Br7 Breast 80 F IIB CK 4 
HER2 11 

Pan1 Pancreatic 73 F IV CK 2 

Pan2 Pancreatic N/A N/A N/A CK 6 
Zeb-1 4 

Pan3 Pancreatic N/A N/A N/A CK 6 
Zeb-1 2 

Pan4 Pancreatic 69 M N/A CK 4 
Zeb-1 5 

Pan5 Pancreatic 75 M N/A CK 14 
Zeb-1 6 

Pan6 Pancreatic 74 F N/A CK 6 
Zeb-1 1 

Pan7 Pancreatic 53 F N/A CK 7 
Zeb-1 2 

Pan8 Pancreatic 53 F N/A 
CK 4 

Zeb-1 1 

Pan9 Pancreatic 50 M N/A CK 0 
Zeb-1 5 

L1 Lung 75 M IB CK 5 
L2 Lung 71 M IA CK 5 
L3 Lung 53 M IIA CK 2 
L4 Lung 79 F N/A CK 3 
H1 None 64 F N/A CK 0 
H2 None 62 F N/A CK 0 
H3 None 34 M N/A CK 0 
H4 None 20 F N/A CK 0 
H5 None 36 F N/A CK 0 
H6 None 36 F N/A CK 0 
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Two capture experiments were run in parallel for blood samples from breast cancer 

patients (n=6): one to collect the number of CK+ CTCs and another to stain cells with Human 

Epidermal Growth Factor Receptor 2 (HER2) along with CD45 to exclude the white blood cells 

(Figure 2.13  B). Almost all patients had a greater number of EpCAM+, HER2+ and CD45- cells 

(11 ± 6 CTCs/mL) than EpCAM+, CK+ and CD45- cells (3 ± 1 CTCs/mL) (Figure 2.13 C). 

Although both HER2-positive and HER2-negative primary breast tumour tissues were analyzed, 

CTCs from the respective blood samples showed a higher percentage of HER2-positive cells. It 

has been previously reported that the Veridex CellSearch platform is unable to capture CTCs in 

30 to 35% of metastatic breast cancer patients7,37,38 and detected less than 5 CTCs per 7.5 mL in 

70% of the samples with greater than 1 CTC per 7.5 mL. In a study comparing microfluidic 

approaches to CellSearch, the reported number of CTCs in metastatic breast cancer patients was 

≤ 5 per 7.5 mL from 9 analyzed breast cancer patients39. For a similar cohort size, we detected 22 

CTCs per 7.5 mL in metastatic breast cancer patients.  

 

Table 2.3 Clinical features of breast cancer patients with the HER2 expression in CTCs. 

Sample 
Number 

Cancer 
Stage 

HER2 Primary HER2 Metastatic 
lesion CTC 

IHC FISH IHC FISH CK+ HER2+ RT-PCR 
Br2 IIIA 3+ N/A 3+ N/A 5 23 Negative 
Br3 IIB 0 N/A 2+ 1.81 5 14 0.72 
Br4 IIB 0 N/A N/A N/A 3 12 Negative 
Br5 N/A N/A N/A 0 N/A 2 4 1.46 
Br6 IIIB N/A 4.5 3+ N/A 5 7 34.53 
Br7 IIB 1+ N/A N/A N/A 4 11 7.16 
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Nine total pancreatic cancer patients were also analyzed, among which 7 were stage IV 

metastatic cancer patients, and 2 were patients with stage III disease. All patients had ≥ 2 

CTCs/mL, with a mean of 5 ± 4 CTCs/mL. In addition to staining for CK, we analyzed samples 

in parallel for the epithelial to mesenchymal transition (EMT) marker, Zinc finger E-box-binding 

homeobox 1 (ZEB-1) along with CD45 to distinguish the white blood cells. Figure 2.13 E 

presents a cluster of two CTCs expressing ZEB-1 which co-localized with the DAPI-stained 

nucleus. The average number of ZEB-1+ CTCs isolated was 2 ± 2 CTCs/mL. Among four early 

stage lung cancer patients analyzed, all of had ≥ 2 CTCs/mL, with a mean of 4 ± 1 CTCs/mL.  

To demonstrate downstream molecular assay feasibility, we extracted RNA from CTCs 

recovered from breast cancer patients. RNA extracted from four out of six breast cancer samples 

showed HER2 gene expression (Figure 2.13 I), whereas healthy control samples were negative 

for HER2. The bar chart shows the HER2 gene expression normalized with Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) in pure MCF-7 cells (100 cells), CTCs extracted from 

breast cancer patients. The negative controls (healthy blood run through the device) did not show 

the HER2 expression (up to 35 cycles). 
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Figure 2.14 Fluorescence microscope images of CTCs captured from breast, pancreatic, 
and lung cancer patient’s blood samples. 
(A-D) CTC captured from breast cancer patient #6 (Br6), stained by CK. (E-H) Two CTCs 
captured from breast cancer patient #2 (Br2), stained by HER2. (I-L) CTC captured from 
pancreatic cancer patient #2 (Pan2), stained by CK. (M-P) CTCs captured from pancreatic cancer 
patient #9 (Pan9), stained by ZEB-1. (Q-T) CTC captured from lung cancer patient #3 (L3), 
stained by CK. 
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2.7 Purity of CTC Isolation Process 

To demonstrate the improved purity afforded by the GO chip, patient samples were 

processed on the GO chips and blood from healthy control donors was processed on the 

functionalized flat silicon device.  When compared with a control device, GO chips contained 

fewer non-specifically captured white blood cells (Figure 2.15). 

 

Figure 2.15 Number of captured white blood cells by non-specific binding. 
 

2.8 Conclusion 

In summary, we present a novel strategy using GO for sensitive planar CTC capture. 

Capture yields and detection sensitivities for single digit CTCs spiked into blood were much 

higher than the reported yields in the literature22. With functionalized GO nano-assemblies on the 

patterned gold surface as an effective tool, we were able to isolate, capture, identify and 

characterize rare CTCs in the blood of cancer patients for early cancer detection. The GO chip 

successfully isolates CTCs from early stage lung cancer patients along with advanced metastatic 
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cancer patients. Recently two approaches were reported that are antibody independent and rely 

strictly on isolation of CTCs based on cell size39,40. However their sensitivity in isolating CTCs 

in clinical samples was suboptimal compared to the capture efficiencies noted in this study. 

Furthermore, with filter-based techniques, downstream molecular assays still remain a significant 

challenge.  Although larger clinical studies are warranted to validate our approach, the results 

demonstrate our ability to isolate CTCs from early stage cancer patients. Of interest, analysis of 

6 breast cancer patient samples revealed both HER2-positive and HER2-negative cells primary 

tumours, but a relatively increased presence of HER2+ cells in the circulation. This warrants 

further mechanistic investigation, however studies have shown that metastatic lesions vary from 

the primary tumour in 5-30%41,42 and that CTCs can be HER2-positive when the primary tumour 

is HER2-negative43-45, highlighting the importance of understanding the functional heterogeneity 

of cancer cells. Although further work is needed to refine the conditions, the extension of the 

platform to conventional cell culture techniques is a useful advantage. In summary, we 

demonstrate the efficacy of graphene oxide in a sensitive planar CTC capture device GO chip 

that provides a platform for functional studies of captured CTCs from blood.  
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CHAPTER 3 
 

3 Characterizing Circulating Tumor Cells Isolated from 
Metastatic Breast Cancer Patients Using Graphene Oxide 

Based Microfluidic Assay 
 

3.1 Motivation 

Breast cancer is one of the most frequently occurring malignancies in women. In fact, 

over 1.3 million new cases are being diagnosed worldwide each year46. Advances in early 

detection and treatments have significantly reduced breast cancer mortality over the past years as 

the primary tumor often can be controlled by surgical resection. Currently, the survival of 

patients with breast cancer is closely linked to the incidence of distant metastasis. It has been 

hypothesized that the development of this metastatic disease is mediated by circulating tumor 

cells (CTCs) that shed from the primary tumor into blood stream of patients and are emerging as 

potential biomarker3,5,6. The detection and enumeration of CTCs has been shown to be an 

independent prognostic factor for progression-free survival (PFS) and overall survival (OS) in 

breast cancer7,47-49. In addition, several studies have demonstrated that elevated CTC counts can 

be an indication of disease progression and be used to monitor and evaluate therapeutic efficacy 

during treatment13,50. 
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Although enumeration of CTC has strong prognostic relevance, little is known about the 

biology of CTCs and to what degree they may truly represent the actual primary or metastatic 

tumors. Moreover, prior studies have observed that CTCs can be highly heterogeneous with 

plastic phenotype51,52. Expression of markers including hormone receptors, which are commonly 

used to guide therapy in breast cancer, has been found to vary remarkably within individual 

patient’s CTCs43,44,53,54 and their phenotypic transitions between epithelial-like and 

mesenchymal-like states seem to occur frequently55-58. These findings indicate that each CTC 

may possess diverse functional and malignant properties. Thus, beyond simple enumeration, 

there is an urgent need to implement detailed molecular and genomic characterization steps for 

CTC studies, which may also provide valuable information aiding current treatment selections 

toward personalized medicine. 

Despite these great promises as a prospective tumor biomarker, CTC analysis has been 

challenging due to their rarity. Approximately 1 to 10 CTCs are surrounded by millions of 

leukocytes and billions of erythrocytes per 1 mL of patient blood. Early approaches to isolate 

CTCs include macro-scale separation methods such as bulk filtration59 and centrifugation60. A 

different strategy exploits the interaction between antibodies and cell surface markers present on 

CTCs, including the FDA-cleared CellSearch® System (Janssen Diagnostics, LLC)7,61,62. 

However, limited sensitivity and specificity of these technologies, which are essential for 

downstream CTC analysis, have prevented achieving the full clinical utility of CTCs. The 

incorporation of microfluidic techniques into the field of CTC isolation18 stimulated the 

development of a number of technologies, while the next generation of CTC capture devices are 

taking advantage of favorable properties afforded by nanomaterials. Several studies have 

achieved increased yield of isolating CTCs using various nanomaterials63. However, many 
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devices have been tested using spiked samples as a substitute for clinical specimens, which could 

adversely influence the performance of the assay. In order to evaluate applicability and expedite 

translation of these technologies into clinical settings, thorough validation with a broader pool of 

patients needs to be investigated. 

Previously, we developed a sensitive microfluidic device using functionalized graphene 

oxide (GO) to isolate CTCs64. During whole blood (WB) processing, GO served the purpose of 

increasing the surface area on which the tumor specific capture antibody was present. In this 

chapter, we modify the channel geometry to obtain a uniform flow distribution improving the 

purity from blood cell contamination and develop protocols for multiple downstream analyses to 

validate the clinical applicability of our assay. Our present investigation includes (i) 

quantification of CTCs isolated from a large number of metastatic breast cancer (MBC) patients 

to evaluate capture performance of detecting CTCs from small volumes (1ml) of blood sample; 

(ii) comparison of human epithelial growth factor receptor 2 (HER2) status in primary and 

metastatic tumors with HER2 expression on CTCs; (iii) immunofluorescence (IF) analysis using 

Vimentin and N-cadherin to classify distinct cellular subtypes with epithelial-to-mesenchymal 

transition (EMT) properties; (iv) transcriptional analysis for CTC characterization using pooled 

96 genes selected based on their importance in pathways aberrant in cancer to correlate our 

findings with clinical and pathological characteristics of MBC. 
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3.2  Material and Methods 

3.2.1 GO Chip Fabrication and Surface Functionalization 

The GO chip consists of a gold patterned silicon dioxide substrate bonded to a 

polydimethylsiloxane (PDMS) top layer to form a microfluidic chamber64. In brief, Cr and Au 

thin films were deposited using evaporation and patterned subsequently using conventional 

photolithography. Concurrently, PDMS fluidic channels were manufactured using conventional 

soft lithography. Silicon dioxide substrates with gold patterns were dipped in a GO suspension 

for 10 minutes and rinsed with DI water and isopropanol. The substrate and a PDMS chamber 

were bonded via corona discharge. The device was then functionalized via a conjugation 

chemistry consisting of N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS), NeutrAvidin, and 

biotinylated anti-epithelial cell adhesion molecule (EpCAM) antibody (Figure 3.1 B) and 

blocked with 3% bovine serum albumin before use. All steps following the introduction of 

GMBS were conducted using a syringe pump (Harvard Apparatus).  

 

3.2.2 Metastatic Sample Collection and Processing 

Whole blood was drawn from patients diagnosed with MBC and healthy donors after 

obtaining informed consent under an Institutional Review Board (IRB)-approved protocol at the 

University of Michigan. All specimens were collected in EDTA vacutainers and processed 

within 4 hours of blood draw. A detailed summary of all patient data is illustrated in Table S1. 

Following device functionalization and blocking, 1 mL of WB was processed through individual 

GO chips at a target flow rate of 1 mL/hr. After a vigorous washing step with PBS at 100 µL/min 
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for 1 hour, cells were fixed with 4% paraformaldehyde (PFA, Thermo Scientific) and stored at 

4°C until staining. Cell fixation step was omitted for chips subjected to RNA isolation.  

 

3.2.3 Multichannel Immunofluorescence Analysis 

Captured cells were permeabilized with 0.1% Triton-X and blocked with 3% BSA with 

2% goat serum. Immunofluorescence staining was conducted using primary antibodies against a 

combination of markers including any of the following: cytokeratin 7/8 (CK, BD Biosciences), 

CD45 (BD Biosciences), HER2 (Santa Cruz Biotechnology), Vimentin (Santa Cruz 

Biotechnology), N-cadherin (Santa Cruz Biotechnology). Secondary antibodies conjugated with 

Alexa Fluor 488, 546, or 647 (Invitrogen) were diluted in 1% BSA and used for detection. Cell 

nuclei were then counterstained with 4’,6-diamidino-2-phenylindole (DAPI; Invitrogen). All 

chips were stored at 4°C until imaging. Cells were observed under 10x magnification using the 

inverted epifluorescence microscope (Ti Eclipse, Nikon) with an automated motor stage. Images 

were reviewed manually. Cells positively stained for CK, HER2, or EMT markers (Vimentin, N-

cadherin), with DAPI-positive/CD45-negative, were subjected to our analysis.  

 

3.2.4 RT-qPCR Gene Expression Analysis  

Total RNA was extracted by lysing the captured cells on-chip using Arcturus Picopure 

RNA isolation kit (ABI, Life Technologies). After incubating the GO chip at 42 °C for 30 

minutes, the lysate was collected and stored at -80 °C until analysis. cDNA was synthesized from 

the effluent followed by pre-amplification using the corresponding pooled TaqMan gene 

expression assays (Life technologies) and Cell-to-CT kit (Ambion, Life Technologies) on an 
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Eppendorf Mastercycler pro S instrument. Finally, the expression patterns of pre-amplified 

cDNAs for each sample were determined in a quantitative polymerase chain reaction (qPCR) 

setting using the same TaqMan gene expression assays that were used during the pre-

amplification step on the ABI 7900HT or BioMark HD qPCR platform (Fluidigm). A 

housekeeping-gene, GAPDH, was used as internal control and for normalization. Control blood 

samples from healthy volunteers were processed in the same manner as patients’ blood for 

comparison.  

 

3.2.5 Statistical Analysis  

Enumeration of CK-positive CTCs isolated from two replicate sampling of the same 

patient blood was compared to evaluate sensitivity and reproducibility of the assay. The intra-

class correlation coefficient (ICC) was calculated to measure the agreement between two tests. 

Difference in CTC counts between different primary tumor subtypes and healthy controls were 

evaluated using Mann-Whitney test. To compare proportion of epithelial or mesenchymal-like 

CTCs between different primary tumor subtypes, a generalized linear regression model 

(specifically, logit link) was used. Tukey adjustment was used for multiple comparisons and 

significance was determined when the adjusted P < 0.05. To compare expression levels of target 

gene signatures between patient and healthy samples, each transcript was normalized to GAPDH 

and reported as -ΔCT, where ΔCT = CT gene – CT GAPDH. Data points were plotted in heat maps 

with hierarchical clustering. Fold change was defined as 2-ΔΔCT , where -ΔΔCT is the difference in 

ΔCT and P-values were calculated using the two-sample t-test to examine statistical significance 

of individual genes. P < 0.05 or FC > 2 was considered statistically significant. Cycle threshold 

(CT) values above limit of detection (LOD) were treated as off-scale data and in cases where the 
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amplification was not detected during the qPCR cycle, an arbitrary ΔCT value was assigned from 

a pre-specified range for numerical analysis. To determine this range, the maximum ΔCT value 

among the observed data was set for the lower bound and the maximum value of LOD – CT 

GAPDH was used for the upper bound. The range based on the above definition potentially covers 

all possible values that an unobserved data could have leading to a conservative P-value. For 

each imputed dataset, a final P-value was calculated by averaging the P-values from 100 imputed 

datasets. All statistical analysis was conducted using R (version 3.2.4) or SAS (version 9.4, SAS 

Institute, Cary, NC). 

 

3.3 Isolation of CTCs from MBC Patients 

A total of 47 female patients with MBC were enrolled in our study (Table 3.1). The 

medical record was searched for immunohistochemistry (IHC) results of estrogen receptor (ER), 

progesterone receptor (PR), and HER2 performed on primary and metastatic tumors. Patients 

were grouped and classified into ER+/PR+ (n = 27), HER2+ (n = 14), and triple negative breast 

cancer (TNBC, n = 6) to observe correlations with CTC counts as well as proteomic and 

genomic characteristics. Within our studied population, all patients with available tissues from 

both primary and metastatic tumor had no discordance in subtypes between primary and 

metastatic tumors. A schematic overview of the experimental workflow is described in Figure 

3.1 A. Peripheral blood from individual patients was drawn and sampled for CTC analysis. One 

mL of sampled volume was processed through single GO chips in parallel to either analyze the 

protein or gene expression patterns of CTCs (Figure 3.2). 
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Figure 3.1 CTC isolation and identification.   
 (A) Study workflow to analyze CTCs isolated from MBC patients using GO assay. WB drawn 
from MBC patients was sampled and processed through parallel GO chips for enumeration and 
analysis at both the protein and transcript level. (B) Schematic of antibody conjugation chemistry 
for device functionalization. (C) Representative image of CK+ CTC showing individual and 
merged fluorescence channels. (D) Enumeration of isolated CTCs stained for 
DAPI+/CK+/CD45-. The CTC numbers of samples processed and quantified through multiple 
GO chips were averaged.  
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Table 3.1 Cell recovery of few number of MCF-7 cells spiked into 1 mL of whole blood. 
Patient ID Cancer Type Stage Tumor Type Age Average 

CK+ CTC/mL Primary Metastatic 

Br 1 Breast Cancer Metastatic ER+/HER2- n/a 53 2.5 
Br 2 Breast Cancer	 Metastatic ER-/HER2+ n/a 64 3 
Br 3 Breast Cancer	 Metastatic ER+/HER2+ n/a 70 2 
Br 4 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 50 1.5 
Br 5 Breast Cancer	 Metastatic n/a ER+/HER2- n/a 1 
Br 6 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 63 1.5 
Br 7 Breast Cancer	 Metastatic ER+/HER2+ n/a 39 0.5 
Br 8 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 43 2 
Br 9 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- n/a 1.5 

Br 10 Breast Cancer	 Metastatic ER+/HER2+ ER+ 53 0 
Br 11 Breast Cancer	 Metastatic ER+/HER2- n/a 66 0 
Br 12 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 53 2 
Br 13 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 69 4 
Br 14 Breast Cancer	 Metastatic ER-/HER2+ ER-/HER2+ 55 1.5 
Br 15 Breast Cancer	 Metastatic ER+/HER2+ n/a 40 0.5 
Br 16 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 66 2 
Br 17 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 74 0.5 
Br 18 Breast Cancer	 Metastatic ER+/HER2- n/a 39 8 
Br 19 Breast Cancer	 Metastatic ER+/HER2- ER+ 31 2 
Br 20 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 64 7 
Br 21 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 67 3 
Br 22 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 68 2.5 
Br 23 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 45 4 
Br 24 Breast Cancer	 Metastatic ER+/HER2- n/a 64 1 
Br 25 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 56 1 
Br 26 Breast Cancer	 Metastatic ER-/HER2+ ER-/HER2+ 63 0 
Br 27 Breast Cancer	 Metastatic ER-/HER2- ER-/HER2- 55 3 
Br 28 Breast Cancer	 Metastatic ER+/HER2+ n/a 58 1 
Br 29 Breast Cancer	 Metastatic ER-/HER2- n/a 54 3 
Br 30 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 54 2 
Br 31 Breast Cancer	 Metastatic ER-/HER2- ER-/HER2- 68 2 
Br 32 Breast Cancer	 Metastatic ER+/HER2- ER+ 66 1 
Br 33 Breast Cancer	 Metastatic ER-/HER2+ ER-/HER2+ 55 2.5 
Br 34 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 64 3.33 
Br 35 Breast Cancer	 Metastatic ER-/HER2- ER-/HER2- 44 21 
Br 36 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 55 2.33 
Br 37 Breast Cancer	 Metastatic ER+ ER+/HER2+ 50 3.33 
Br 38 Breast Cancer	 Metastatic ER-/HER2- ER-/HER2- n/a  
Br 39 Breast Cancer	 Metastatic ER+/HER2+ n/a n/a 2.5 
Br 40 Breast Cancer	 Metastatic ER-/HER2+ n/a 50 0 
Br 41 Breast Cancer	 Metastatic ER+/HER2- n/a 67 0.67 
Br 42 Breast Cancer	 Metastatic ER+/HER2- ER+ 36 1.67 
Br 43 Breast Cancer	 Metastatic ER+/HER2- ER+ 44 2.33 
Br 44 Breast Cancer	 Metastatic ER+/HER2- ER+/HER2- 68 2.67 
Br 45 Breast Cancer	 Metastatic ER-/HER2- n/a n/a 6 
Br 46 Breast Cancer	 Metastatic ER-/HER2+ n/a n/a 2 
Br 47 Breast Cancer	 Metastatic ER+/HER+ n/a n/a 2.5 
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Figure 3.2 REMARK diagram for patient enrollment and distribution. 
 



	 44	

CTCs have been classically defined as DAPI positive nucleated cells that are stained 

positive for CK and negative for CD45 (Figure 3.1 C). Based on these criteria, CTC counts were 

compared for individual cancer patients after processing 1 mL of blood through two separated 

chips to first evaluate the sensitivity and repeatability of the GO assay. Excluding the one sample 

with extremely high number of CTCs (Br 35), the average difference of captured CTCs between 

experiments was less than 1 cell. Overall, a high concordance was observed between the two 

tests (ICC=0.80 with 95% CI: 0.64,0.89), demonstrating the reproducibility of measurements. In 

total, 42 out of 47 patients (89.36%) were scored positive for ≥ 1 CTC/mL across the entire 

MBC patient cohort analyzed showing high sensitivity of CTC isolation (Figure 3.1 D). The 

number of contaminating white blood cells was consistently less than 500 cells/mL due to the 

modified channel geometry (Figure 3.3), which minimizes dead volumes, thereby improving the 

washing process. The range of detected CTCs varied from 0-27 CTCs/mL with an average 

number of 2.54 CTCs/mL. No CTCs were found in any of the healthy individuals (n = 9). The 

average number of CTCs found in ER/PR+, HER2+, and TNBC was 2.33, 1.52, and 5.83 

cells/mL, respectively (Table 3.2). However, no clear association between the CTC positivity 

rates or absolute CTC counts among age or immunohistochemical tumor subtypes was observed. 

Although most cells were detected in single CTCs, clusters comprising two or more CTCs 

(range, 2-6 CTCs) were also identified in 10 out of 47 (21.28%) cases across all tumor subtypes.  
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Table 3.2 MBC patient characteristics. 

Characteristics No.  Patients (%) No. Patients w/ 
CK+ CTC (%) 

Average 
 CTCs/mL 

Total Patients 47  (100) 42  (89.36) 2.54 
    
Age (31-74)    
   < 50 9  (19.15) 9  (100) 4.67 
   ≥ 50 31  (65.96) 27  (87.10) 1.99 
 Unknown 7  (14.89) 6  (85.71) 2.21 

    
ER status    
 Positive 35  (74.47) 33  (94.29) 2.33 
 Negative 12  (25.53) 9  (75.00) 2.82 

    
HER2 status    
 Positive 13  (27.66) 10  (76.92) 1.52 
 Negative 34  (72.34) 32  (94.12) 2.97 

    
Tumor subtype     
   ER+/PR+ 27  (57.45) 26  (96.30) 2.33 
   HER2+ 14  (29.79) 11  (78.57) 1.52 
   TNBC 6  (12.77) 5  (83.33) 5.83 
 

 

 

Figure 3.3 Comparison between two fluidic channels used in the GO CTC-chip.  
The modified channel geometry minimizes dead volumes within the fluidic channel allowing 
uniform flow distribution and improved washing performance, which results in an enhanced 
purity upon CTC isolation. Fluid simulation performed using COMSOL Multiphysics 4.2 to 
depict overall flow field in the two channel geometries. 
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3.4 HER2 Expression in CTCs from Metastatic Breast Cancer 

HER2 growth factor receptor has been known to play important role in breast cancer 

development and progression65 and has become one of most effective therapeutic targets66. To 

examine the distribution of HER2 expressing CTCs and its correlation with HER2 status of the 

primary tumor, a subset of GO chips was subsequently counterstained with anti-HER2 antibody 

(Figure 3.4 A). Among 33 samples with detectable CTCs, 26 (78.79%) patients showed 

positivity in CTC HER2 expression (Figure 3.4 C) with a mean count of 2.13 cells/mL, while 

more than two HER2+ CTCs were identified in 19 (57.58%) patients regardless of the primary 

tumor type. 21 out of 27 (77.78%) patients with HER2-negative primary tumor showed at least 

one CTCs expressing HER2. Discordant HER2 expression was also observed in patients with 

HER2-positive primary tumor where 1 out of 6 (16.67%) patients had no CTCs with HER2 

expression. The overall discrepancy of HER2 status in primary tumor and expression on the 

corresponding CTCs was 66.67% (22/33). 

Interestingly, taking into account all cells presenting HER2 with CD45-/DAPI+ 

regardless of CK expression in our enumeration, a high number of patients had HER2+ cells 

(30/34, 88.24%). The average number of CD45- cells assessed by HER2 positivity was also 

higher (4.45 cells/mL) than CK+ CTCs (3.03 cells/mL). So far, due to the classical definition of 

CTCs, CK- but HER2+ cells might have been overlooked in clinical assessment. Our finding 

suggests the need to further investigate these cellular subtypes and evaluate their clinical 

relevance in screening patients for new therapeutic approaches targeting HER2 in MBC.  
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Figure 3.4 Phenotypic characterization of CTCs in HER2 expression. 
(A) Characteristic image of CTCs showing differential expression of CK and HER2. (B) 
Composite image of fluorescently stained CTC clusters.  CK, CD45, and the cell nucleus are 
shown in red, green, and blue while HER2 is shown in pink. (C) Distribution of CK+ and 
CK+/HER2+ CTCs in MBC patients. All scale bar measures 10 µm. 
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3.5 EMT Signatures in Metastatic Breast Cancer CTCs 

Increasing evidence revealed that epithelial markers including keratins can be 

downregulated during metastatic spread due to EMT in breast cancer57,67,68. This raises questions 

regarding the common characterization of CTCs as those cells identified by CK positivity, which 

may be responsible for the high frequency of HER+/CK- cells observed in HER2 staining. To 

evaluate EMT features present in CTCs isolated from MBC patients, two separate GO chips 

were additionally stained with antibodies against EMT markers, Vimentin or N-cadherin. Cells 

presenting at least one epithelial (CK) or mesenchymal (Vimentin/N-cadherin) marker were 

quantified as candidate CTCs in our analysis. Here, in particular, DAPI+/CD45- was essential for 

enumeration to confirm that cells characterized as potential CTCs were of non-hematopoietic 

origin. Out of the 13 samples examined, 9 (69.2%) scored positive for at least one EMT marker 

in the isolated CTC population (Figure 3.5 E, F). When we further stratified CTCs into epithelial 

(CK+/EMT-), intermediate/hybrid (CK+/EMT+), and mesenchymal-like (CK-/EMT+) 

phenotypes (Figure 3.5 A, B), the CTCs isolated from ER+ primary tumor patients were 

predominantly epithelial compared to HER2+ (P=0.0436) and TNBC (P=0.0003), whereas those 

from HER2+ and TNBC displayed increased level of EMT marker expressions (Figure 3.5 G). 

Notably, the occurrence of hybrid state CTCs comprised of both epithelial and mesenchymal 

phenotype was most frequently identified in TNBC patients, conferring both invasive and 

proliferative properties that potentially reflect the aggressiveness of the disease. This finding 

aligns with previous studies showing that downregulation of keratin expression in EpCAM 

positive CTCs is more likely associated with triple negative histology and shorter OS 69. All CTC 

clusters identified expressed CK; some clustered cells expressed Vimentin, while no N-cadherin 

expression was observed (Figure 3.5 C, D).  
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Figure 3.5 Identification of EMT in CTCs. 
(A) Representative images of cells classified as epithelial, hybrid/intermediate, and 
mesenchymal-like CTCs based on their expression of CK, Vimentin, and (B) N-cadherin. (C) 
Examples of composite image of CTC clusters identified in GO chips stained for CK/Vimentin 
(D) Examples of composite image of CTC clusters identified in GO chips stained for CK/N-
cadherin. (E) CTC enumeration from MBC patients based on CK, Vimentin, and (F) N-cadherin 
expressions. (G) Average proportion of epithelial, hybrid/intermediate, and mesenchymal-like 
CTCs by primary tumor subtypes. All scale bar measures 10 µm.  
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3.6 Multiplex mRNA expression profiling of circulating tumor cells 

To explore characteristic markers associated with MBC at the transcription level, mRNA 

expression patterns were analyzed using multiplex RT-qPCR for 18-selected genes. The quality 

of RNA from all samples was verified by the internal control, GAPDH, which was also used as a 

reference gene for normalization purposes. Comparison of mRNA expression between MBC 

patients and healthy controls using unsupervised hierarchical clustering and principal component 

analysis (PCA) yielded a significant difference between the two groups (Figure 3.6 A, B). The 

primary discriminating factors included epithelial markers (EPCAM, KRT7, KRT8, or CDH1) 

and the breast cancer-specific marker, ERBB2 (HER2), which were exclusively expressed in 

patients indicating the presence of CTCs in MBC patients. Genes involved in EMT such as 

CDH2 and TWIST1 were also significantly elevated in the MBC population. 

 

 

Figure 3.6 Gene expression analysis of CTCs enriched from MBC patients. 
(A) Expression heat map of CTC enriched cell population compared with three healthy controls. 
Data are shown in relative expression to GAPDH and plotted as log 2 expression values. P-value 
< 0.05 (*) (B) Principal component analysis classifying MBC patients and healthy individuals.  
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We further performed RNA analysis by expanding our gene panel based on pathways 

aberrant in cancer (Figure 3.7 A). Similar to the previous results, epithelial genes such as, CDH1, 

EPCAM, KRT7, KRT8, and KRT19 as well as oncogenes including ERBB2 and MET and 

hormone receptors ESR1 and AR were exclusively expressed in MBC patients. Analyzing the 

data using the comparative Ct method (2-ΔΔCt) with a log FC cutoff greater than 2, several 

genes were differentially expressed between patients and healthy groups (Figure 3.7 C). EMT 

specific transcripts (CDH2, CTNNB1, SNAI1, ZEB1, and ZEB2) and cancer stem cell marker 

(ALDH1A3) were highly expressed in MBC patients. In addition, genes known to play a role in 

tumor proliferation (MKI67) and metastasis (MMP9) as well as oncogenes (PI3K and AR) and 

inflammatory genes (CXCR1, IL6ST, and IL6) displayed increased level of expression in MBC 

patients. The patients furthermore showed low expression of apoptotic marker, BAX, while 

exhibiting increased transcription of the anti-apoptotic gene, BCL2, potentially conferring the 

survival properties of CTCs during transit. Interestingly, upon further analysis, several ECM 

genes (MGP, LGALS3, and LGALS3BP) which are typically observed in stromal components 

but not in epithelial tumor, revealed substantially higher expression in MBC patients, suggesting 

the importance of tumor stromal signaling in priming CTCs for intravasation and metastasis 

(Figure 3.7 B). No distinct characteristics in gene patterns were observed between tumor 

subtypes due to the limited sample cohort studied but rather high heterogeneity in overall 

expression was observed between patients, indicating inter-individual differences.  



	 52	

 

 

Figure 3.7 Characterizing molecular signatures of CTCs in MBC patients. 
 (A) Expression heat map of genes represented for epithelial, mesenchymal, stem, oncogenes, 

tumor suppressor genes, proliferation, metastasis, apoptosis, inflammation, hormone receptors, 

and (B) ECM genes. Data are plotted as log 2 expressions with MBC patients grouped according 

to their primary tumor subtypes and 3 healthy donor samples for comparison. P-value < 0.05 (*) 

(C) Relative expression of differentially expressed genes with log 2 fold change greater than 2. 

Fold change was calculated using the comparative CT method (2-ΔΔCT).  
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Table 3.3 Comprehensive CTC gene panels used for transcriptional analysis. 
ALK ERCC1 MAPK1 TTF-1 KRAS RB1 AKT1 ALDH1A1 

ALDH1A2 ALDH1A3 ANXA2 AR TRIM29 ATL1 BAX BCL2 

BMI1 BRAF BRCA1 CCDC80 CCND1 ITGAM PROM1 CD14 

MCAM MS4A1 CD24 CD3D CD44 PTPRC THY1 CDH1 

CDH2 MYC COL1A2 COL3A1 CTNNB1 CXCR1 CXCR4 DCN 

EGFR EMP2 EPCAM ESR1 GAPDH GEMIN2 GLI1 IL6ST 

ERBB2 HPRT1 IGFBP5 IL6 IL6R CXCL8 KLF4 KRT18 

KRT19 KRT20 KRT5 KRT7 KRT8 LGALS3 LGALS3BP MCL1 

MET MGP MKI67 MMP2 MMP9 NANOG NES NKX2-1 

POU5F1 TP53 TP63 PCNA PDX1 PGR PI3K PON1 

PTEN RAB7A SHH SLUG SNAI1 SPARC SPON2 TGFB1 

TIMP1 TIMP2 TIMP3 TWIST1 VIM WNT2 ZEB1 ZEB2 

 

3.7 Discussion 

In this work, we applied a microfluidic nanomaterial-based chip to isolate CTCs from 

WB of MBC patients and facilitate the subsequent analysis of those cells. By incorporating GO 

as the base material of the antibody conjugation chemistry, the GO chip was capable of detecting 

CTCs from only 1mL of blood with high yield and reproducibility due to the high-density 

antibody presentation. Also the unique design offering surface capture of CTCs with the 

modified channel enabled extremely low blood cell contamination rate during sample processing 

which is essential for multiple downstream analyses. CTC enumeration based on the expression 

of CK+/DAPI+/CD45- labeled cells revealed increased incidence of detecting CTCs from MBC 

patients, compared to conventional CTC isolation platforms7,37. Correlation of CTC counts or 

CTC clusters with breast tumor histological subtypes revealed no statistical significance, which 

aligns with previous observations70. However, overall proportion of highly elevated CTC counts 

(≥ 5 CTCs/mL) were more frequently observed in TNBC subtypes, which may be associated 
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with its poor clinical outcome69. Subsequent analysis using additional markers and multiplex 

mRNA analysis of the captured CTCs indicated a high level of intra- and inter-patient 

heterogeneity. 

Immunofluorescence staining of captured CTCs with HER2 revealed the presence of both 

CK+/HER2- and CK+/HER2+ CTCs in MBC patients where oftentimes both phenotypes were 

detected within the same individual. Overall, a wide discordance over HER2 expression between 

CTCs and their corresponding primary tumor was noticed. Similar observation has been reported 

in HER2 protein expression among primary tumor, CTCs, and metastatic lesions43,44,71,72. 

Although this discrepancy maybe caused by the sampling bias during diagnostic biopsy where 

only a small fraction of tumor is examined, recent study have shown that CTCs can acquire 

HER2+ subpopulations during tumor progression with a proliferative favor and also interconvert 

spontaneously in ER+/HER2- primary tumors73. In addition, it has been found that HER2 can be 

selectively expressed in cancer stem cell population and play role in its regulation74,75. This may 

explain in part the association between the presence and high frequency of HER2+ CTCs and 

shorter disease-free survival and OS seen in previous publication76. In this work, we interestingly 

observed a large number of CK-/HER2+/CD45- cells, which has not been considered in previous 

correlative studies due to the conventional criteria of defining CTCs as CK+ cells. There is a 

possibility that these particular cells may have lost their epithelial marker during preparation for 

intravasation57,67,68 and may possess potential value for clinical implication. These findings may 

indicate the need to adjust the standard of defining positivity in HER2 status on CTCs and 

further re-evaluate method of screening patients that may benefit from HER2 targeted treatments 

which are currently only administered to patients displaying HER2 gene amplification in their 

primary tumors.  
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The plastic properties of CTCs and their ability to alter their expressions of certain 

epithelial proteins during the metastatic development has led us to further evaluate CTCs using 

EMT markers. Extensive evidence has shown that CTCs tend to lose their apical-basal polarity, 

which permits them to effectively detach from the basement membrane and to intravasate into 

blood streams through adjacent tissues77. This process known as EMT is characterized by a loss 

of cell adhesion, increased migration, and invasion78,79. Hence, to compliment the alteration of 

CK expression, we sought to apply Vimentin or N-cadherin as EMT markers for CTC IF 

analysis. Heterogeneous expression of EMT markers in CTCs was identified with a spectrum of 

various phenotypes ranging from epithelial, hybrid/intermediate, and mesenchymal-like cells. 

Increased levels of EMT specific transcripts such as CDH2, CTNNB1, SNAI1, TWIST1, ZEB1, 

and ZEB2 in our gene expression analysis further revealed the occurrence of EMT. Notably, we 

observed higher proportion of Vimentin and N-cadherin expression in CTCs from patients with 

HER+ or TNBC tumor histology whereas CTCs from ER/PR+ primary tumor were 

predominantly epithelial. The abundant occurrence of this CTC population in tumor subtypes, 

which are known to have more aggressive properties, has important implications. In a prior 

study, serial profiling of EMT transcripts in MBC CTCs using RNA in-situ hybridization showed 

that decrease in mesenchymal expression during treatment reflects responsive treatment, whereas 

patients with progressive disease showed increased proportion of CTCs with EMT 

characteristics58. In addition, CTCs presenting EMT markers were more frequently observed in 

advanced-stage disease78,79 indicating the association between EMT and cancer progression58. 

Although the captured cells in our study may not be representative for a pure mesenchymal 

phenotype due to the EpCAM based enrichment method used, studies have indicated that tumor 

cells with complete mesenchymal characteristics appear to lack the tumor-initiating ability80,81, 



	 56	

substantiating the use of CK or EpCAM expressing CTCs in indicating the prognosis in MBC 

patients. It has been assumed that tumor cells co-expressing both epithelial (EpCAM or CK) and 

mesenchymal marker are suggested to have the highest plasticity and therefore may represent 

cancer stem cells. This has been supported by recent studies showing that patient derived CTCs 

with intermediate phenotype have higher metastatic potential after xenotransplantation in mice82. 

Epithelial tumor cells exiting the primary tumor site into the bloodstream are vulnerable 

to attack by immune effector cells or likely undergo anoikis after losing the adhesion dependent 

survival signals83. For CTCs to survive during transit, a mechanism for these cells to resist the 

immune attack and prevent apoptotic outcome is essential. Our gene expression data supports 

this finding by showing an increased level of anti-apoptotic gene, BCL2, and decreased 

expression of its counterpart gene, BAX, which have been known to correlate with the severity of 

malignancy in many types of tumor including breast cancer84,85. Furthermore, transcripts 

involved in cancer inflammation such as IL-6, IL6ST and CXCL8 were also highly expressed in 

our analysis. Certain interleukins such as IL-6 or IL-8 and its receptors acquired in cancer cells 

have been demonstrated to promote survival signals through autocrine/paracrine signaling that 

enables them to escape from immune surveillance.  

Another interesting observation was the significant increase of stroma-associated 

transcripts including MGP, LGALS3, and LGALS3BP in MBC patients. These genes are 

normally expressed in stromal cells, rather than the epithelial cancer, and have been thought to 

promote the survival of CTCs in circulation86. However, recent study has shown that tumor cells 

at the epithelial-stromal interface appear to express both keratin and ECM genes87. Furthermore, 

abundant expression of ECM genes have been found to be a common feature in majority of CK+ 

CTCs87. Although the functional role of these ECM gene products needs to be further evaluated, 
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these data supports the possibility that CTCs may express ECM genes to complement the effect 

of tumor stromal signaling, providing a survival advantage and promote the early growth of 

metastatic lesion. 

One limitation of our GO assay was the false signal presented by contaminating blood 

cells during the gene expression analysis. To overcome this limitation, we and others have 

developed a platform which enables CTC collection after antibody enrichment allowing access 

for single-CTC analysis88-91. However, limited yield of releasing CTCs after capture followed by 

manual manipulation of these cells significantly restricts the use of these platforms for clinical 

use. Furthermore, due to the difficulty of identifying and selecting CTCs after collection before 

single cell analysis, the majority of the cells turn out to be leukocytes rather than actual CTCs. 

Although our analysis relies on the CTC enriched fraction, due to the level of sensitivity and 

purity inherent in the GO assay, our findings demonstrate the capability to detect and provide 

transcript level information carried by CTCs relevant to cancer. For future studies, we plan to 

utilize our GO based CTC assay to analyze CTCs across various cancers and time points and 

correlate their information to clinical outcomes. The additional advantage of potential inter-

changeability of antibodies in our platform will enable us to target markers specifically related to 

various cancer types improving the isolation performance.  

 

3.8 Conclusion 

The GO chip shows high sensitivity with reproducibility in isolating CTCs from MBC 

patients. The unique surface-capture design enables high cell viability and purity upon blood 

processing which is amenable to downstream proteomic or molecular analyses. Multi-marker 

analysis using IF staining and RT-qPCR on the captured CTCs indicated inter-patient 
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heterogeneity and revealed oncogenetic signatures involved in metastasis including EMT and 

apoptotic resistant mechanisms which coincide with previous findings. Although clinical 

significance and implications of these results should be further investigated with a larger cohort 

of patients, we envision that this current study is the first step towards translating our GO 

platform into clinical settings, facilitating our understanding of metastasis and helping to identify 

pathways relevant to potential therapeutic targets for personalized therapy. 
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CHAPTER 4 
 

4 Size Based Label-free Isolation and Analysis of Circulating 
Tumor Cells Using Differenential Focusing Using Inertial 

Forces 
 

4.1 Motivation 

Microfluidic technologies for CTC isolation are promising due to their low cost, rapid 

operation, and the control they offer over the sample processing environments with improved 

sensitivity.  Existing microfluidic CTC separation methods are mainly based on size-based 

filtration92, immunoaffinity based capture18,64, or external force field mediated cell manipulation 

(i.e. dielectrophoresis93,94, magnetophoresis 95,96, acoustic wave97, and optical interference98,99).  

Among various strategies, affinity based CTC binding methods targeting tumor membrane 

epitopes with antibodies against the epithelial cellular adhesion molecule (EpCAM) provide 

enhanced recovery rates at a great level of purity.  However, non-efficient retrieval of captured 

CTCs from the chemically functionalized channel surfaces is a major hurdle for these platforms 

along with their limited sample processing rate100.  Most importantly, CTCs continuously change 

their expression level and morphology through the process of epithelial-to-mesenchymal 
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transition (EMT) during blood circulation101, and therefore heterogeneously expressed epithelial 

markers alone cannot adequately identify every subpopulation of CTCs58,102.   

Recently, inertial focusing of finite sized particles using microfluidic systems has 

emerged as an effective method for continuous CTC isolation103-105.  Although fluid inertia has 

historically been neglected in low Reynolds fluid flows, studies show that precise manipulation 

of particles can be achieved using geometry dependent hydrodynamic forces, which cause size 

based lateral migration of particles into distinct equilibrium positions103,106-108.  Such simple 

passive devices demonstrate the potential for application in biological filtration or purification, 

as well as blood cell sorting, and may serve as a promising alternative to traditional separation 

techniques109.  Since the diameter of epithelial tumor cells is generally larger than that of normal 

blood cells110, microfluidic devices exploiting this strong size dependent inertial effect (known as 

inertial microfluidics) are capable of high throughput, continuous CTC separation without pre-

labeling or loss of cell viability.  Also, the capability to sort and analyze CTCs without fixation 

under conditions compatible with downstream molecular and functional characterization steps 

will allow the utilization of their full clinical potential, beyond simple enumeration111.   

Despite the effectiveness of inertial microfluidic devices, large background 

contamination associated with normal blood cells in whole blood limits its practical use for CTC 

specific applications.  Since cells are concentrated to a few relatively narrow streamlines during 

separation, the total volume fraction of suspension is typically required to be below 1% to 

minimize any cell-to-cell interactions and steric crowding effects that can severely deteriorate the 

focusing behavior107,109.  This necessitates a significant dilution of the running sample, which 

increases the overall processing time or sacrifices the purity of CTCs collected.  In addition 

various channel configurations, diverse flow parameters defined, and the limited flow ranges 
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tested across previous studies complicate the development of newly designed inertial 

microfluidic devices due to the lack of continuity between experiments107,112-114.  This makes 

them applicable only to particular channel geometries and flow conditions and eventually leads 

to an unavoidable time-consuming trail-and-error flow optimization process.  Currently, due to 

the lack of controlled information on some structural parameters as well as an incomplete 

understanding of focusing mechanics, no successful general engineering strategy for design has 

been proposed and established as of yet.  To address these challenges, a systematic channel 

design strategy for precise control over cell streak equilibriums relative to various flow 

conditions is necessary.  This will allow flexibility and ease of integration with other 

upstream/downstream lab-on-chip devices to improve critical device performances such as 

throughput, CTC recovery rate, and purity for clinical cancer research. 

In this chapter, spiral microfluidic devices of varying configurations have been 

investigated to comprehensively study the effect of channel geometry on size based particle 

migration and separation.  We systematically examine the dependence of channel width (W), 

height (H), and radius of curvature (R) and separately determine their influence on focused 

particles streak behaviors.  By varying each channel parameter, several ordered focusing 

positions can be achieved at new flow rates, thus allowing application defined flow conditions to 

be chosen for optimal separation, instead of settling for a fixed flow rate yielding sub-optimal 

separation and purity.  Based on this renewed understanding, we propose an optimal design 

approach targeting desired flow conditions in a spiral microfluidic device to provide additional 

flexibility in design with deterministic equilibrium predictions and to enable better integration 

with other microfluidic technologies.  Finally, we introduce a high throughput cascaded spiral 

CTC separator using our suggested design principles. 
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4.2 Material and Methods 

4.2.1 Sample Preparation 

Neutrally buoyant polystyrene microspheres (Polysciences Inc.) with diameters of 10 µm 

(10.08, σ = 1.3 µm) and 20 µm (18.68, σ = 0.73 µm) were used to examine the size dependent 

focusing streak behaviors in the spiral channel geometries.  Each particle was fluorescently 

labeled with either DAPI (10 µm particles) or FITC (20 µm particles).  Particle suspensions were 

diluted in deionized water to a final concentration of 2 × 105 particles/mL before running 

through the device.  Mixtures of binary particles were also prepared in solution at a 1:1 ratio 

(same concentration) mixing to demonstrate the separation quality of these spiral devices. 

To further validate its clinical applicability, cells from malignant human breast cancer 

epithelial cell line, MCF-7 (diameter 16-24 µm), was recovered from a suspension containing 

leukocytes (diameter 6-15 µm).  Leukocytes were extracted from fresh blood specimens drawn 

from healthy donors using a dextran sedimentation and fractionation method: one part filtered 

6% dextran in 0.9% NaCl (Sigma) was added to an EDTA tube containing 10 parts of whole 

blood115.  Samples were kept at room temperature for 40 minutes to allow red cells to settle on 

the bottom of the tube.  After collecting the supernatant, the solution was centrifuged at 12000 

rpm for 1 min to remove the remaining blood plasma.  Cytofix/Cytoperm (BD Biosciences) was 

then applied to the processed sample and incubated for 30 minutes followed by re-suspension in 

1× phosphate buffered saline (PBS, GIBCO, Life Technologies) of pH 7.4.  The nuclei of the 

isolated leukocytes were labeled with DAPI, washed, and again re-suspended to the original 

blood sample volume.  The concentration of this leukocyte suspension averaged around 3-4 × 
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106 cells/mL.  Subsequently, approximately 1 × 106 cultured MCF-7 cells labeled with green 

cell tracker dye (Invitrogen, CellTracker Green CMFDA, C7025) were counted and spiked into 

the leukocyte suspensions, serving as the input sample for the cell separation experiments 

(Figure 4.1).  MCF-7 cells were cultured in DMEM medium containing 10% fetal bovine serum 

and 1% penicillin-streptomycin solution, and harvested when they reached ~70-80% confluence.  

A hemacytometer (Reichert bright line, Hausser Scientific) was used to determine the number of 

particles and cells in suspension during experiments. Cell culture reagents, unless otherwise 

specified, were purchased from GIBCO Invitrogen Corporation/Life Technologies Life Sciences.  

Cell samples were processed through the microfluidic chip within 3 hours of preparation. 

 

 

Figure 4.1 Sample preparation procedure for MCF-7 and leukocyte suspensions. 
 

 



	 64	

4.2.2 Microfabrication  

To fabricate the spiral microfluidic devices, a silicon master mold was produced using a 

conventional photolithography process.  Briefly, a negative photoresist, SU-8 (2025, Microchem 

Corp.), was spun on a flat 4-inch silicon wafer to a desired thickness, exposed to UV light 

through a printed photomask (Fineline Imaging), and developed.  Microchannel replicas were 

formed by casting a 10:1 ratio mixture of polydimethylsiloxane (PDMS, Sylgard 184, Dow 

Corning) elastomer and curing agent onto the patterned silicon/SU-8 master using standard soft 

lithography methods.  After degassing and curing in an oven for 6 hours at 65 °C, the PDMS 

channels were peeled off and flip bonded to a plasma treated microscope glass slide (Fisher 

Scientific).  To ensure complete bonding, devices were heated on a 65°C hot plate for 10 

minutes.  Inlet and outlet ports were manually punched with a coring tool (Harris Uni-core).  

Tygon tubings (Cole-Parmer) were then press fitted into the holes, forming tight connections.   

 

4.2.3 Experimental Setup 

Following air plasma exposure and glass bonding, the PDMS microchannels were soaked 

with 0.1% pluronic (F127, Sigma) and incubated for 30 minutes to block the channel surfaces 

and prevent adhesion or clogging during sample flow116.  After washing with deionized water, 

the device was mounted on an inverted epifluorescence microscope (Ti Eclipse, Nikon) equipped 

with a 12-bit monochromatic CCD camera (Retiga 200R, Qimaging).  Particle or cell 

suspensions were loaded with a syringe and infused through the channel at varying flow rates 

using a syringe pump (PHD2000, Harvard Apparatus).  For a given channel geometry, streak 

positional data and width measurements were obtained by averaging five consecutive line scan 
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images taken with Nikon NIS-Elements AR 4.0 software at each flow rate.  For every initial 

sample flow and changing flow rates, images were captured after waiting 1 minute to ensure a 

complete flow development and pressure stabilization. 

Several low aspect ratio spiral microfluidic devices were designed by varying each 

geometric parameter to systematically study the effect of channel geometry on particle focusing 

behaviors (Figure 4.2).  The variables considered were the height, width, and radius of curvature.  

Each device consisted of an inlet with a filter region to prevent debris and particle aggregates 

from entering the microchannel, multiple 180° sections of curvatures followed by an outlet.  

Initially, a single turn of a specific radius of interest, ranging from 1250 to 20000 µm, was 

connected before an outlet where the focusing particle streaks were imaged and analyzed.  

Additional consecutive turns with a 500 µm increment in radius of curvature were added to 

provide sufficient channel length to allow particles to reach their equilibrium positions 

completely.  The lengths of each devices were calculated based on the lateral migration velocity 

of 10 µm diameter particles along the channel width resulting from the inertial forces for the 

lowest measured flow rate109.  Samples were run through the device from the largest radius of 

curvature inward.  By modifying the width and height of the channels, from 200 to 400 µm and 

50 to 100 µm respectively, streak images for different particle sizes were obtained.  The inlet and 

outlet were large enough to fit the tubing for particle injection and collection.   
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Figure 4.2 Schematic representation of the spiral device design for particle focusing and 
streak equilibrium characterization. 
Each device consists of an inlet, filter, and consecutive channel curvatures to ensure complete 
focusing of 10 and 20 µm particles, followed by an outlet.  Prior to the outlet exists a curved 
channel structure of particular interest for streak analysis.  Channel width, height, and radius of 
curvature at this analysis region have been systematically varied to observe the channel’s 
geometric effect on streak migration behaviors.   

 

4.3 Theoretical Background of Inertial Forces 

After Segré and Silberberg first introduced inertial focusing of particles in cylindrical 

Poiseuille flow117, the mechanics of particle train migration across streamlines in finite Reynolds 

number (Re) fluid flow have been well characterized as the balance of two dominant inertial lift 

forces acting normal to the flow direction118,119.  A shear induced lift force (FS) caused by the 

parabolic velocity gradient drives particles toward the channel wall, while a wall induced lift 

force (FW) pushes back particles toward the channel center due to the interaction with adjacent 

walls.  This yields an annulus equilibrium at ~0.2D away from wall, where D is the diameter of 

the pipe.  However, in straight microfluidic channels, there is a radial asymmetry present from 

the normally square or rectangular cross-section geometry.  In this case, particle streaks similarly 

migrate and settle at ~0.22H (or W) near the channel wall120, but concentrate toward the wall’s 

center from the rotation induced lift force (FR)121.  More specifically, for high or low aspect ratio 
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channels (H/W >> 1 or << 1), only two equilibriums centered at the longer sidewalls develop 

from the added asymmetry rather than four.  Using a point-particle assumption, the net inertial 

lift force (FL) is known to scale uniformly throughout the channel and is given by 

𝐹!  =  
𝜌𝑈!!𝑎!!

𝐷!!
𝐶! 

where ρ is the density of the fluid medium, Um is maximum fluid velocity approximated as Um ≈ 

1.5×Uavg, and CL is a non-dimensional lift coefficient that is a function of channel Reynolds 

number (Rc = 𝜌𝑈!𝐷!/𝜇) and is dependent on the particle’s position119,122. 

Introducing a curvature to the channel structure develops a secondary lateral flow, known 

as Dean flow, which is characterized by two counter-rotating vortices located above and below 

the central plane of symmetry of the channel106,112,120.  The magnitude of this flow is described 

by a dimensionless Dean number (De) given by 

𝐷!  =  
𝜌𝑈!𝐷!
𝜇

𝐷!
2𝑅

 =  𝑅!
𝐷!
2𝑅

 

where, µ is the fluid viscosity, and R is the radius of curvature of the channel.  According to 

Stokes’ Law, Dean flow leads to a drag force upon particles (Dean force, FD) expressed as107 

 

𝐹! ~ 5.4 × 10!! 𝜋𝜇𝐷!!.!"𝑎! 

Thus, in curved microfluidic channels, the combination of inertial lift force (FL) and additional 

Dean force (FD) results in a Dean coupled inertial migration of particles, which ultimately 

determines the final equilibrium. 
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A visual representation of the Dean coupled inertial focusing profiles of particles in a 

curved low aspect ratio microchannel is shown in Figure 4.3.  Randomly dispersed particles 

injected from the inlet are first abruptly driven towards the top and bottom wall due to a steep 

shear gradient along the vertical direction of the channel. These particles constantly settle at 22% 

and 78% of the channel depth120 from the counterbalancing wall lift, forming two broad bands.  

Comparatively, the flat shear gradient in the horizontal direction has less effect at this stage.  At 

a low flow velocity, rotation lift forces slowly concentrate these bands into two focusing streaks 

near the channel center as particles propagate further through the channel (Figure 4.3 (A). i).  

Here, particle migration occurs as if in straight channels where Dean flow is mostly negligible 

from the strong lift as a result of limited fluid flow.  However, as the flow velocity is increased, 

an inner wall migration is induced by the apparent Dean forces oriented toward the inner wall, 

which become nontrivial at higher channel Reynolds numbers (Figure 4.3 (A). ii).  This 

migration occurs until a particular threshold where single point focusing is achieved along the 

height of the channel resulting in a tight equilibrium closest to the inner wall (Figure 4.3 (A). 

iii)114.  Increasing the flow velocity past this threshold results in an outer wall migration where, 

again, the two particle equilibrium position near the top and bottom of the channel emerges and 

shifts back towards the outer wall (Figure 4.3 (A). iv).   
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Figure 4.3 Inertial focusing and migration behaviors of particles with increasing fluid flow 
velocity (Uavg) in a curved low aspect ratio microchannel. 
(A) Particles injected from the inlet of the channel first abruptly equilibrate into two broad bands 
near the longer channel wall under the influence of shear lift (FS) and wall lift forces (FW) acting 
vertically with respect to the channel height.  (i) At a relatively low flow velocity, particles 
migrate laterally towards the center equilibrium due to a rotation lift force (FR), forming two 
focusing streaks.  (ii) As the flow velocity increase, the two streaks start to migrate towards the 
inner channel wall, followed by (iii) a single point focusing at a particular threshold due to the 
differential interplay between the net lift force (FL) and the Dean drag force (FD).  (iv) Outer wall 
migration is induced as the flow velocity is increased above this threshold.  (B) Top down view 
of fluorescent images illustrating the migration pattern of 10 µm diameter particle in a curved 
microchannel (200 µm × 50 µm cross-section at 20000 µm radius of curvature). 

 

 

4.4 Parametric Study of Geometric Effect on Particle Focusing  

4.4.1 Size based Differential Focusing 

Inertial focusing and migration behavior of particles of different sizes were evaluated by 

analyzing the fluorescent intensity profiles of the particle streak distributions across the channel 

width (Figure 4.2).  10 µm and 20 µm diameter particles, fluorescently labeled with DAPI and 
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FITC, were used to model leukocytes and CTCs.  For these experiments, a curved channel of 300 

µm width, 50 µm height, and 5000 µm radius of curvature was used.  Composite images of 10 

µm and 20 µm diameter particle streams were captured and arranged (Figure 4.4 (A)).  Focused 

particle streak patterns were plotted as a function of average flow velocity, a parameter included 

in both non-dimensional channel Reynolds number (Rc) and Dean number (De).   

Similar migration patterns were observed regardless of size as both 10 and 20 µm 

particles experienced inner wall migration followed by outer wall migration with increasing flow 

velocity; however, the size difference caused a relative shift in the overall migration pattern 

which allows for efficient sized based separation of the particles.  Specifically, a ‘left shift’ in the 

migration pattern of the 10 µm particles was observed relative to the 20 µm particles.  This was 

produced by two differential size-dependent factors reliant upon the interplay between Dean and 

lift forces: the initial focused streak position and particle migration rate.   

Initial focused streak positions, defined as the first equilibrium positions that arose once a 

minimum focusing velocity was reached by both particles, was a function of particle size where 

the initial focused streak position of 10 µm particles was closer to the inner wall in the given 

channel geometry.  For these small particles, the Dean force appeared to be non-negligible 

relative to the net lift, which scales with the fourth power of the particle diameter, even at the 

minimum focusing velocities.  In contrast, stronger net lift forces experienced by larger particles 

dominated the Dean force thereby maintaining the 20 µm particles’ initial equilibrium position 

near the channel center for a greater span of velocities.  In effect, there was a delayed response 

for larger particles, which required higher fluid velocities to begin the inner wall migration 

phase.  Furthermore, migration rate with constant flow increment for both inner and outer wall 

migration differed with particle size.  With increasing fluid velocities, 20 µm particle streaks 



	 71	

slowly migrated towards the inner wall while faster migration was observed during the outer wall 

migration compared to 10 µm particle streaks.  Thus, this distinct response, which is highly 

dependent on the diameter of particles, enables size based differential streak positioning and 

hence successful separation of binary particles in curved microchannel geometries. 

	

 

Figure 4.4 Inertial focusing and migration behaviors of different sized particles in varying 
channel geometries. 
(A) Composite fluorescent line-scan images of 10 µm (blue) and 20 µm (green) polystyrene 
particle streaks are plotted as a function of average flow velocity (Uavg) in a curved microchannel 
with a 300 µm × 50 µm cross-section at 5000 µm radius of curvature.  Y-axis represents the 
normalized streak distance from the inner channel wall.  Migration pattern of 10 µm and 20 µm 
diameter particles are re-constructed at a modified channel (B) width (W = 400 µm), (C) height 
(H = 100 µm) and (D) curvature of 10000 µm.  Positional information where peak intensity of 10 
µm and 20 µm particle streaks occurred is measured for varying channel (E) width (W = 200-400 
µm), (F) height (H = 50-100 µm), and (G) radius of curvature (R = 1250-20000 µm).  Data points 
represent the raw measurement value and are curve fitted through the averaged peaks.   
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4.4.2 Geometric Effect on Particle Focusing Patterns 

To investigate the effect of channel geometry on the lateral migration of particle 

trajectories, width, height, and radius of curvature were individually varied from the previous 

spiral design with initial dimensions of 300 µm width, 50 µm height, and 5000 µm radius of 

curvature prior to the outlet.  Channel Reynolds number and Dean number values corresponding 

to each channel structures are given in Figure 4.5.  Images and experimental data illustrating the 

channel’s geometric dependency of streak motion behaviors are shown in Figure 4.4.  With a 

large span of average velocity, ranging from 0 up to 3 m/s, focusing particle equilibrium 

positions were measured by calculating the distance from the inner channel wall to the peak 

fluorescence position for 10 µm and 20 µm diameter particles.  

As shown in Figure 4.4 (B), channels of varying width (W = 200 µm - 400 µm) displayed 

little effect on the normalized streak migration patterns.  Regardless of channel width, particle 

streaks exhibited similar behavior in inner wall migration patterns, reaching a minimum distance 

to the inner wall at a specific flow velocity around 0.8 m/s and 1.8 m/s for 10 µm and 20 µm 

diameter particles respectively (Figure 4.4 (E)).  In contrast, channels of varying height (H = 50 

µm - 100 µm) induced a major shift in the normalized streak migration patterns (Figure 4.4 (C)).  

With increasing height, streak patterns of both particle sizes tended to shift left (Figure 4.4 (F)).  

This can be explained by the growing Dean force paired with decreasing inertial lift forces at a 

given average flow velocity.  Interestingly, for channel heights above 75 µm, the inner wall 

migration patterns were no longer observable.  This provides insight as to why only the outer 

wall migration was observed in certain previous geometries in literature107,120.  These two results 

confirm that in a curved low aspect ratio microchannel, the shortest channel dimension in the 

channel cross-section acts as the critical factor in determining streak equilibration positions123.  
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Also, this clearly indicates that a simplistic geometric aspect ratio is insufficient to predict the 

final focusing positions of particles.  Rather than the aspect ratio value itself, each channel 

parameters that show different effects on migration patterns should be independently considered. 

 

 

Figure 4.5 Channel Reynolds number and Dean number as a function of average fluid flow 
velocity for different spiral channel geometries. 
(A, B) Channel width, (C, D) height, and (E, F) radius of curvature are modified from an initial 
channel geometry of 300 µm width, 50 µm height, and 5000 µm radius of curvature spiral 
channel.   
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Along with the width and height, the effect of the channel’s radius of curvature (R = 1250 

µm - 20,000 µm) on particle focusing position is shown in Figure 4.4 (D, G).  Differences in 

channel curvature modify the Dean number (𝐷! ∝  !
!
) and therefore the Dean force, although the 

linear velocity remains constant.  This allowed for further investigation into particle streak 

behavior by imposing a distinct Dean flow field on a constant net lift force.  The Dean and lift 

forces could then be uncoupled and compared so that the curvature could be manipulated in 

order to achieve maximum separation for a given system.  With increasing curvature, the Dean 

force decreased resulting in a diminished rate of inner wall migration.  As a result, particle 

focusing positions reached a minimum distance from the inner wall at higher linear flow 

velocities (Figure 4.4 (D)).  Additionally, the inner wall migration occurred in order of ascending 

curvature, where migration in smaller channel curvatures began at lower flow velocities (Figure 

4.4 (G)).  Beyond a curvature of 20,000 µm, where Dean numbers approached their asymptotic 

limit, no obvious change in streak behaviors was observed.   

Through the quantification of equilibrium positions, migration rates of each particle 

streak not only differed by particle size but also had distinct slope constants dependent on each 

channel configuration.  However, these slope constants within the presented experimental data 

set slightly differed from previous classifications114.  During streak measurements, it was found 

that at high flow rates, high pressure built up inside the PDMS microchannels and started to 

distort the cross sectional dimensions, thus altering the equilibrium positions significantly.  To 

examine how the pressure induced geometric deformation affects streak equilibriums, two spiral 

channels were fabricated with different channel lengths (Figure 4.6(A)).  At the overlapping flow 

ranges tested (900-1000 µL/min) with the two spirals, the device with longer length showed a 

large channel expansion due to higher pressure (Figure 4.6 (B)).  Increase in channel cross 
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section tended to decrease the average linear flow velocity while increasing the Dean flow, 

causing a large shift in streak patterns under identical flow conditions and channel geometric 

parameters (H, W, R).  This was similar to increasing the height of the channel, since the 

deformation mainly occurred in the height direction in low-aspect-ratio microchannels124.  Thus, 

to acquire accurate particle response to inertial force effects, streak positions needed to be 

measured taking into account of the total channel length not only to ensure complete focusing 

but also to avoid pressure induced geometric deformation of the PDMS microchannels.  In our 

experiments, each data was acquired before the channel had observable deformation.   

 

 

Figure 4.6 Pressure induced deformation of PDMS microchannel and its effect on particle 
streak equilibrium. 
(A) Equilibrium positions of 10 µm focused particle streaks are measured using two spiral 
devices with identical channel configurations (analysis region (Figure 4.2)) but different channel 
lengths.  (B) Composite image of the channel wall (bright field) and 10 µm particle streaks 
(fluorescent) imposed are shown at the overlapping flow ranges tested.  (C) Schematic 
illustrating the channel cross section being pressurized and the corresponding streak shift 
induced during outer wall migration phase.   
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4.4.3 Optimal Flow Regimes for Efficient Particle Separation 

State diagrams for the separation distance between 10 µm and 20 µm particle streaks 

were acquired by measuring the proximity between the boundaries of the focused streak widths, 

which was calculated from the full width at half peak maximum of the fluorescent intensity 

profile from the background noise floor (Figure 4.7).  To better apply these parametric data sets 

in designing spiral devices for separation and estimating the proper flow conditions, state maps 

were plotted as a function of volumetric flow rates. 

 

 

Figure 4.7 State diagrams of separation distances between 10 µm and 20 µm focused 
particle streaks. 
measured by the half-width-peak intensity as a function of volumetric flow rate in a (A) curved 
channel with rectangular cross section of 300 µm width and varying height, at a 5000 µm radius 
of curvature; (B) curved channel with rectangular cross section of 50 µm height and varying 
width, at 5000 µm radius of curvature; (C) curved channel with rectangular cross section of 50 
µm ×  300 µm (H×W) with varying curvature.  State maps are generated using linear 
interpolation from individual data points obtained experimentally in units of micrometer. 

 

From the difference in equilibrium patterns, two distinct separation regimes existed 

respectively at low flow and high flow rate ranges.  For these two regimes, the ordering of 

focused particles occurred in a reversed manner; that is, in the low flow separation regime the 

smaller particle streak was closer to the inner channel wall, whereas the opposite occurred in the 
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high flow separation regime (Figure 4.8 (A)).  Once the focused particles reached the nearest 

inner channel wall, the finest focusing quality was obtained which was specified by a narrow 

fluorescent intensity profile with few fluctuations.  Better focusing near the inner channel wall 

indicated that the counterbalance between competing Dean drag and net lift forces was occurring 

at this point.  Additionally, this focusing position for 20 µm particles remained constant for a 

longer span as the flow velocity increased.  In contrast, the 10 µm diameter particle streaks 

switched their migration direction more abruptly and a slightly higher separation resolution was 

achieved between the two streaks in the high flow separation regime.  However, both regimes 

offered a high separation rate (> 90%) of binary particles, providing an additional flexibility in 

flow rate defined designing of inertial based spiral devices.   

 

Figure 4.8 Schematic illustration of streak migration patterns. 
(A) streak migration patterns of different size particles and (B) the influence of each channel’s 
geometric parameter.  Black line represents a reference condition.   

 

4.4.4 Flow defined Design Strategies for Inertial Microfluidic Device 

Quantitative characterization of the effect of channel geometry on particle focusing and 

migration behaviors to better understand their full transient behavior in response to the change in 
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flow rate in curved microchannels offers a systematic design guideline for efficient inertial 

separation of particles under various conditions.  To efficiently adjust the channel design to a 

desired optimal flow condition, each of the geometric factors can be independently modified 

based on predictions of its influence on equilibrium patterns.  Since focusing positions of 

particles are most sensitive to the variation in channel height, it is essential to first accurately 

define the channel height and the corresponding flow velocity that allows greatest separation.  In 

particular, cases that require specific particle positions and the ordering must operate in the low 

flow separation regime, consequently the height of the channel needs to be designed below 75 

µm for 10 and 20 µm particle separation (Figure 4.7 (A)).  The optimal flow rate in the high flow 

separation regime, on the other hand, can be freely tuned by varying the channel height as long 

as the particle focusing requirement ap/Dh ≥ 0.07 is satisfied26.  

Once the height is determined, the total sample throughput can be subsequently adjusted 

by modifying channel width.  As long as the low aspect ratio condition is preserved, the 

normalized streak patterns are mostly invariant to the width factor.  Increasing the channel width 

not only offers a simple linear increase in volumetric flow rate but also in separation resolution 

(Figure 4.7 (B)), since the gap between the two particle streaks as well as the streak dispersion 

(streak width) scales linearly with the channel width.  One tradeoff of this would be an increase 

in device footprint due to the longer channel length required for complete focusing.   

With increasing radius of curvature, both inner wall and outer wall migration phase 

occurred gradually.  This adds tolerance to any flow rate variations during device operation since 

streak equilibrium position varies less per unit flow increments.  Applying precise flow is critical 

for inertial separation devices yet this is often difficult to control.  However, desensitizing a 

device to flow rate variation through increased channel curvature can offer improved stability 
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and yield in separation performances.  Optimal flow rates for both separation regimes can also be 

pushed further up to a higher flow rate in a large channel curvature as long as the pressure 

accumulation does not exceed the device failure condition (Figure 4.7 (C)).  Thus, by 

engineering the channel width, height, and radius of curvature simultaneously, inertial devices 

tailored to operate at any flow rate conditions within the range of approximately 200 to 3000 

µL/min can be easily designed and controlled for optimal particle separation. 

 

4.4.5 Focused particle streak breakdown 

Some of the unpredictable phenomena such as dual focusing and streak breakdown 

hindered the process of designing optimal separation devices.  Dual stable equilibria often 

occurred when the particle streaks reached the nearest inner channel wall.  In some cases, during 

the inner-to-outer wall transition, single point focusing equilibrium showed less dominancy over 

the pre- and post-state equilibriums resulting in three equilibrium positions.  This was more 

obvious at larger curvatures where the particle migration rates decreased and the migration 

occurred more gradually (Figure 4.4 (D)).  While stable focusing was maintained during streak 

migration of 20 µm particles across the centerline of the channel width, 10 µm particles showed a 

complete defocus during the outer wall migration (Figure 4.4 (C)).  10 µm particles with smaller 

confinement ratio (ap/H) were subjected to dominant Dean drag force while 20 µm particles 

maintained focused from the competing lift forces.  Thus, defocusing occurred more obviously 

while the channel height increased.  To further elucidate the exact dynamics of streak migration 

and more accurately estimate its equilibria by theoretical calculations and understand focus 

breakdowns, a three-dimensional computational model should be developed in future studies.   
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Figure 4.9 Focused particle streak breakdown.   
 

4.5 Cascaded Spiral Device Design and Characterization 

Based on these parametric observations, we designed and fabricated a fully integrated 

cascaded spiral microfluidic chip for CTC isolation.  Through these studies we aimed to establish 

the clinical applicability of the founding principles to design better device for sensitive and 

specific separation.  For a sheath-less, continuous two-stage separation, two consecutive spiral 

structures were serially connected with bifurcating channel sections located at the end of each 

spiral channels to isolate CTCs from leukocytes with high purity (Figure 4.12 (A)).  Operating 

flow rate was determined from the low flow separation regimes to specifically position CTCs, 

which are generally larger than the rest of the blood cells, closer to the channel center during 

separation.  Without any repetitive optimization processes, this cascaded channel structure 

including the dimension of both bifurcating outlets was designed in a single attempt by precisely 

predicting cell equilibrium positions at specific flow conditions.   
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Sample mixtures of MCF-7 and human leukocytes were used which were previously 

represented by the 20 and 10 µm diameter particles respectively.  MCF-7 breast cancer cells 

were chosen here to model the presence of CTCs in human peripheral blood of metastatic cancer 

patients.  Cells injected at an initial flow rate of 550 µL/min from the inlet started to focus while 

traveling along the 400 µm width and 50 µm height spiral channel.  By the time cells reached the 

first bifurcating region (R = 5000 µm), the majority of leukocytes were focused near the inner 

channel wall and filtered out through a 30 µm width sub channel while MCF-7 cells and the 

remaining leukocytes continued to flow along the main channel which narrows down to a width 

of 200 µm.  Finally, after an additional focusing and second bifurcation (at R = 2200 µm), MCF-

7 cells were recovered at an average separation efficiency of 86.76 % with a 97.91% leukocyte 

depletion rate (Figure 4.12 (B)).  These numbers were comparable to complicated current 

continuous immunoaffinity based depletion techniques39.  The viability of MCF-7 cells after 

collection was examined with live/dead cell viability assay (GIBCO, Life Technologies) and 

remained above > 90% with most cells retaining their initial morphology.   

Optimal flow conditions for separation predicted from the particle studies matched well 

with cell experiments but showed subtle differences in streak positions.  In contrast to rigid 

leukocytes, MCF-7 cell streaks tended to migrate towards the inner channel wall earlier than the 

estimated flow rate, causing a slight left-shift in its overall streak pattern.  The cell elasticity and 

deformability of MCF-7 cells subject to high shear resulted in a physical shape change, 

compared to rigid spherical particles.  However, this was not significant enough to deteriorate the 

quality of the separation and with a slight calibration accounting for the streak shift of cells 

(adjusted within a few ~10’s of µL/min), a successful sheath-less, two-step CTC isolation was 

achieved with high purity using the given geometric design parameters.   
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Figure 4.10 Design of the cascaded spiral device. 
(A) Schematic and operating principle of the low aspect ratio cascaded spiral separator are 
shown with its dimensions at each bifurcation regions.  Channel height is fixed to 50 µm and the 
cell mixture is injected through the inlet at a flow rate of 550 µL/min.  (B) Top down fluorescent 
streamline image of focusing streaks of leukocytes (left) and MCF-7 cells (right) near the two 
bifurcation region in the cascaded spiral separator.   
 

 

Figure 4.11 Cell separation efficiency in a cascaded spiral microfluidic chip.   
(A) Recovery rate of MCF-7 cells and (B) leukocyte depletion rate is shown after processing 
through the 1st, 2nd separation region at different volumetric flow rates.  (C) Total separation 
efficiency of the cascaded spiral device is calculated after sample collection.  Error bars 
represent the standard deviation of the results from three experiments.   
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Figure 4.12 Cascaded spiral microfluidic device characterization. 
(A) Schematic illustrating the fully integrated cascaded spiral microfluidic device.  (B) 
Characterization of cell separation efficiency. 

 

 

4.6 Conclusion 

In this chapter, the inertial focusing mechanics and streak behaviors in various curved 

channel configurations over a large parametric space is presented and experimentally examined.  

The channel height, width, and radius of curvature each independently had distinct effects on 

particle equilibrium and streak patterns.  This complete systematic study of geometric factors 

would be advantageous in envisioning a base guideline for predicting the equilibrium positions 

of particles and cells in the device development stage with an improved understanding of the 

underlying physical mechanisms and their limitations.  Channel design strategies for specific 

flow rates introduced along with the state diagrams would simplify the process and reduce the 

trials attempted for device optimization as well as permitting additional flexibility that enables 

integrations with other lab-on-chip systems and microfluidic technologies, which is currently 

limited.  Based on this design principal, we developed a high-throughput, fully integrated 
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cascaded spiral microfluidic device to isolate MCF-7 cells from leukocytes with high purity in a 

continuous manner.  The device was designed in a single attempt to operate at a pre-determined 

flow condition without any repetitive channel optimization procedures or complicated sheath 

flow control, to achieve an overall MCF-7 recovery rate of 86.76% and 97.91% leukocyte 

depletion rate.  By applying and demonstrating the robust ability and performance of a spiral 

design to enrich cancer cells from leukocyte mixtures, we expect that the deterministic models 

for channel design suggested in this report will be readily applicable to the further development 

of low cost, high throughput, continuous CTC separation medical devices. 
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CHAPTER 5 
 

5 Indwelling Catheter System for Circulating Tumor Cell 
Isolation and Analysis 

 

5.1 Motivation 

The major cause of cancer-associated mortality is closely linked to distant metastases. 

The metastatic lesions arise from circulating tumor cells (CTCs) that are shed from the primary 

tumor and circulate through the bloodstream of cancer patients125. Consequently, CTCs hold 

great promise as a biomarker with high clinical relevance in the area of predicting disease 

prognosis, real-time monitoring of tumor status, and identifying therapeutic targets for 

personalized medicine126. However, CTCs are extremely rare with a frequency of only 1-10 cells 

in one mL of peripheral blood, which consists of billions of leukocytes and erythrocytes. So far, 

numerous ex-vivo CTC capture devices have been developed for improving the sensitivity and 

specificity in isolation. However, CTC isolation using these technologies mostly relies on small 

blood volumes and cannot detect sufficient numbers of CTCs, especially in early staged cancer, 

which restricts the clinical utility of CTCs as a potential biomarker. Limited sample volume also 

results in statistical variability associated with rare event detection127. Moreover, the stem-like 
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properties and inherent heterogeneity of CTCs adds complications to the scheme, undermining 

the reliability and precision of this rare cell analysis.  

To increase the likelihood of CTC isolation, alternative sites including the tumor draining 

vessels have been considered for blood sampling. However, the accessibility to these sources is 

limited according to the location of the tumor and oftentimes requires intraoperative collection 

during surgical tumor resection, which may not be applicable for most patients. Furthermore, 

despite the considerable amount of CTCs detected in samples from the tumor draining vessels, it 

is not sure whether all of these cells may pose any clinical value. Most cancer cells rapidly 

undergo apoptosis after being shed from primary tumor, leaving only few to survive in 

circulation. In order to harvest sufficient number of CTCs in peripheral blood, catheter based 

CTC enrichment methods have been developed for in-vivo CTC isolation. Utilizing 

leukapheresis, it has been demonstrated that CTCs can be collected together with mononuclear 

cells using extracorporeal density based separation from several liters of patient blood128,129. 

Although this enabled substantial increase in detecting CTCs, the enrichment process was rather 

nonspecific. The leukapheresis product was mainly consisted of concentrated peripheral blood 

mononuclear cells, which required an additional high throughput screening step for CTC 

identification. Another approach used a stainless steel medical wire covered with gold and a 

hydrogel layer covalently coupled with antibodies against epithelial cellular adhesion molecule 

(EpCAM) protein130,131. This wire was inserted into the cubital vein for 30 minutes through a 20 

gauge peripheral venous catheter. However, physiologic variations between patients affecting 

blood flow and affinity makes it difficult to standardize quantitative interpretation of CTCs by 

time of insertion.  
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To address the shortcomings of current approaches, in this chapter, we present a micro-

apheresis CTC isolation system and demonstrate its clinical utility for in-vivo CTC capture. The 

system consists of four major parts: a microcontroller, a CTC capture module, a peristaltic pump 

for continuous blood sampling from the peripheral vein through a dual-lumen catheter, and a 

heparin injector to prevent blood clot formation during operation. Whole blood is routed at a 

defined flow rate through the CTC capture module for several hours, allowing the screening of 

large blood volumes for improved probability of detection and statistical accuracy of the 

analysis. The compact design offers portability and wearability, which can decrease the patient’s 

burden during operation. While any chip-based CTC isolation platform would be compatible 

with the system, for our proof of concept, we designed and tested a high throughput HBGO-CTC 

Chip to be used as a CTC capture module. The HBGO-CTC chip incorporates functional graphene 

oxide (GO) nanosheets as a conjugation material to present antibodies against EpCAM antigen 

on a gold plated substrate, which is assembled with a vortex generating fluidic channel optimized 

for enhanced cell-surface interactions. Finally, we validate the system for in-vivo CTC isolation 

in canine models. 

 

5.2 Material and Methods 

5.2.1 Fabrication of System Manifold and HBGO-CTC Chip 

The design of the system manifold was created by CAD software (Solidworks) and 

fabricated using a high-resolution 3D printer (Projet 3500 Max). An acrylic based resin, M3 

crystal, was used for the printing process for its mechanical integrity and biocompatibility. Each 

component including the pump, heparin injector, power source, and micro controller were placed 
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in the designated compartment and enclosed. The production of the HBGO-CTC Chip involved 

two separate processes. First, to fabricate the chip substrate, Cr and Au was evaporated onto a 4 

inch silicon dioxide wafer and patterned. The wafer was then diced into individual pieces. Next, 

to fabricate the PDMS (polydimethylsiloxane) structure, a silicon master mold was created by 

standard photolithography. Negative photoresist (SU-8 2050, MicroChem) was patterned on a 4 

inch bare silicon wafer using two separate masks: one for the main fluidic channel (40 µm 

height) and the other for the herringbone grooves (60 µm). The height of each layer was 

measured after each process with a surface profilometer (Veeco Dektak 6M). PDMS pre-

polymer mixed with cross linkers at a 10:1 weight ratio was poured onto the mold, degassed, and 

baked in an oven at 65°C for 24 hours. The cured PDMS structure was then carefully peeled off 

and cut. At last, two through holes were punched at both ends of the channel to feed and connect 

tubing.  

 

5.2.2 HBGO-CTC Chip Assembly and Surface Functionalization 

To chemically modify the chip surface, tetrabutyl ammonium hydroxide intercalated GO 

nano sheets grafted with phospholipid-polyethylene glycol-amine were prepared and assembled 

on the gold patterned silicone dioxide substrate as described previously64. The substrates and 

PDMS replicas were subjected to oxygen plasma treatment and bonded to form the final device. 

N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS) was flowed through the chip using a 

syringe pump (Harvard apparatus) and incubated for 30 min. The chip was then flushed with 

70% ethanol to pre-sterilize the inner chamber wall. Subsequently, neutravidin and biotinylated 

anti-EpCAM antibody was introduced followed by 3% bovine serum albumin (BSA) to block the 

remaining binding surface. 
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5.2.3 Sterilization Process 

To prevent any microbial contamination, all disposable units with in direct contact to the 

blood including the tubes, lure connectors, and syringes were sterilized using heat or ethylene 

oxide gas sterilization method and packaged separately. For the CTC capture chip, the substrate 

was exposed to UV and the PDMS was autoclaved before assembly. All surface modification 

steps were performed in a germ poor environment. Each reagent was sterilized and tested for 

endotoxin level using limulus-amebocyte-lysate (LAL) gel clot assay (0.5 EU/mL sensitivity, 

Lonza) before use. After complete functionalization, the fluid within a subset of chip was 

sampled, plated on sheep blood agar, and cultured for 2 weeks to observe any presence of 

bacterial growth.  

 

5.2.4 Cell Culture and Labeling 

Human epithelial breast cancer cell line MCF-7 was purchased from the American Type 

Culture Collection (ATCC, LGC Standards). MCF-7 cells were cultured at 37°C with 5% CO2 

and maintained by regular passage in complete media consisting of Dulbecco’s Modified Eagle’s 

Media (DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin solution 

(GIBCO®, Life Technology). When cells reached a confluency of 70-80%, they were collected 

and fluorescently labeled with green cell tracker dye (Invitrogen, CellTracker Green CMFDA, 

C7025) for cell capture experiments.  
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5.2.5 Cell Viability Assay 

To measure cell viability after processing samples through the HBGO CTC-Chip, a 

live/dead viability/cytotoxicity assay kit (GIBCO®, Life Technology) was used. The chip was 

washed with 1× PBS (phosphate bufferd saline, GIBCO®, Life Technology) after capturing the 

cells. Subsequently, a live/dead reagent consisting of calcein AM and ethidium homodimer-1 

was prepared according to the manufacturer’s instruction and applied. Following 30 min 

incubation, cells were imaged and manually counted under a fluorescent microscope for 

quantification. 

 

5.2.6 Human Blood Specimen Collection 

Whole blood was drawn from healthy volunteers after obtaining informed consent under 

an Institutional Review Board (IRB)-approved protocol. All samples were and collected into an 

EDTA tube and processed within 4 hours. 

 

5.2.7 Immunofluorescent Staining 

Non-labeled cells spiked into blood or injected into canine models were fixed with 4% 

paraformaldehyde (PFA) on chip after capture. Before staining, the cells were permeabilized 

with 0.1% Triton-X followed by blocking with a blocking buffer containing 2% normal goat 

serum and 3% BSA. A cocktail of primary antibodies including anti-pan cytokeratin and anti-

human/canine CD45 were diluted in 1% BSA and flowed through the chip. After a quick wash, 

secondary antibodies conjugated with Alexa Fluor 546 and 488 (Invitrogen) were prepared in 1% 
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BSA and applied for probing. The cell neclei were stained with 4’,6-diamidino-2-phenylindole 

(DAPI, Invitrogen) as the final step before microscopic imaging.  

 

5.3 System Design 

The overall system configuration and strategy for CTC isolation is depicted in Figure 5.1. 

Each functional component is integrated into a compact 3D printed manifold to permit 

portability and controlled through a custom built mobile application via Bluetooth 

communication. For vascular access, a dual lumen catheter is introduced to sample and route the 

blood flow through the system with minimum inoculation. Each end of the catheter is connected 

to a silicone tube with luer lock adaptors that threads into a peristaltic pump and CTC capture 

module forming a closed loop structure. Whole blood is infused into the system by the peristaltic 

pump with a pre-programmed flow rate and total volume. In between, a flow rate sensor is 

implemented to monitor and maintain a constant flow through a feedback control. To prevent 

blood clot formation during operation, heparin is continuously infused through an injection 

pump. Every unit, in direct contact to the blood during sampling and re-transfusion, are sterilized 

and individually inspected before use and disposed afterwards.  
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Figure 5.1 Proposed integrated catheter system for whole blood sampling and CTC 
isolation 
 

 
Figure 5.2 Schematic of the integrated catheter system and its operation procedures 
(A) Schematic of the system without the CTC capture module. (B) Wireless controller and 
custom application. (C-J) System operation procedure; connect peristaltic pump with disposable 
tubing unit, connect syringe filled with heparin, place system cover and mount CTC capture 
module, prime system and connect to dual lumen catheter (not shown), and attach Bluetooth 
receiver to start system. 
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5.4 Design of HBGO CTC-Chip 

The HBGO-CTC Chip consists of a 24.5 × 60 mm silicon dioxide substrate with patterned 

gold thin film layer bonded to a polydimethylsiloxane (PDMS) structure containing four 

bifurcating microchannels with herringbone grooves embedded on their top surface. Functional 

GO nano sheets are assembled onto the gold layer presenting high-density anti-EpCAM 

antibodies on the substrate surface through chemical cross-linkers. The geometry of the 

herringbone structure has been determined based upon previous designs used for chaotic mixing 

at low Re number (laminar flow). However, unlike early devices where the interaction mainly 

takes place near the grooves, the geometry of the herringbone structure has been modified to 

maximize the contact frequency of cells to the substrate where the antibodies are tethered.  

Twenty-four chevrons, a set of twelve staggered asymmetrically, was defined as a single 

mixing unit and periodically shifted along the channel axis to place each vertex points with a 

spacing of 25 µm. The distribution of these points where a vertical drag force is induced by 

adjacent micro vortexes increased the chance for cells to be directed toward the antibody coated 

substrate. The dimension of the groove height, width, and pitch was also adjusted to decrease the 

hydraulic resistance past that of the main fluidic channel. This unbalanced resistance between the 

channel and grooves increased the overall fluidic circulation by deflecting a significant portion 

of fluid and cells into the herringbone structure. Cell immersed and guided through the 

herringbone moved in a zigzag trajectory until captured which increased its traveling time and 

distance within the chip. The final dimension of the PDMS structure was as followed: overall 

height of the main fluidic channel was 40 µm, with a groove height set to 60 µm; the groove 

pitch and width was 200 and 160 µm respectively and the angle between the chevrons was 45°.  
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5.5 Evaluation of HBGO-CTC Chip by Capture of Cancer Cell Lines 

To validate the performance of the HBGO-CTC Chip for CTC capture at high flow rates, a 

flat chamber GO-CTC Chip previously reported was used for comparison (Figure 5.3). Human 

breast cancer cell-line, MCF-7 cells were labeled with a fluorescent cell-tracker dye and spiked 

into 5 mL of PBS buffer solution with a concentration of 50-200 cells/mL. Both cells captured 

on-chip and non-captured cells collected into a waste well were counted after processing the 

samples to calculate the capture efficiency through mass-balance. As predicted, at a flow rate of 

1 mL/hr (≈ 16.67 µL/min), where most affinity based microfluidic devices operate, both chips 

showed high capture efficiency with a mean yield above 90% (data not shown). However, with 

an increasing flow rate, the average cell capture efficiency for the GO-CTC Chip dramatically 

dropped below 70% at 50 and 100 µL/min, and further decreased below 50% at 200 µL/min and 

above. In contrast, the HBGO-CTC Chip maintained a target yield of > 80% up to 200 µL/min 

with no significant decrease in overall capture efficiency indicating the effect of the herringbone 

mixer for improved cell surface interaction.  

The spatial distribution of the cells captured on the chip surface was also analyzed along 

the channel by dividing the chip surface into ten sections. At a flow rate of 50 µL/min, a wide 

spread distribution was observed in the GO-CTC Chip, whereas most cells were immobilized 

near the inlet of the HBGO-CTC Chip.  More than 80% of the cells were captured within the first 

half of the device, suggesting its capability to isolate cells in higher throughput. The location of 

these cells became more scattered across the chip at higher flow rates reaching its maximum 

capacity to achieve a mean yield of > 80% at 200 µL/min.  

In addition, cell viability was assessed at different flow rates to determine the effect of 

shear force induced by increasing flow rates during the isolation process. This was one of the 
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critical readouts as the viability could adversely affect further downstream analysis performed on 

the immobilized cells. Up to a flow rate of 200 µL/min, > 90% of cells were found to be viable 

with no significant reduction compared to the viability at lower flow rates. Moreover, majority of 

cell aggregates spiked into buffer to mimic CTC clusters preserved their shape and were intact 

upon isolation. However, at 300 µL/min, the cell viability significantly decreased (< 70%) and 

cell aggregates began to dissociate being observed mostly in single cells due to high shear stress.  

 

 

Figure 5.3 Characterization of the HBGO-CTC Chip 
a Schematic of the chip. b, SEM image and micrograph image illustrating the structure of the 
herringbone grooves. c, Comparison of the CTC capture efficiency using the GO-CTC chip and 
HBGO-CTC Chip. Time lapse fluorescent image showing the trajectory of cell with in the two 
chips. D, Spatial distribution of the immobilized CTC captured on the chip surface. e, Cluster of 
CTC captured on the chip. f, live dead assay after sample processed through the chip. 
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5.6 In-vivo Study Design in Canine Model (Future work) 

A single young adult male Walker hound will be purchased from a commercial vendor 

and housed individually in an AALAC-approved facility with standard day/light, watering and 

feeding schedules. Baseline hematology, clinical chemistry, urinalysis and coagulation profile 

will be obtained. All studies will be performed under an approved IACUC protocol at Colorado 

State University. 

A series of preclinical studies to establish proof of principal that the device can be worn 

by a living vertebrate animal (in this case a dog), and to determine if there is an optimal time that 

establishes both safety and efficacy in capturing circulating tumor cells will be conducted. These 

studies will be performed in sequence, using a series of canine models. Our first experiments will 

involve in vivo injection of cultured MDCK canine epithelial cancer cells. Once we have 

established the success of safe cannulization and handling of the device, as well as successful 

harvesting of MDCK cells in the device from the circulation, we will embark on a series of 

studies in dogs bearing spontaneous epithelial cancers. 

In the first experiment, 3 x 107 heparinized MDCK cells, suspended in 5 mL sterile 

pyrogen free NaCl, will be injected intravenously via the cephalic vein. 10 minutes, 30 minutes, 

and 1, 2, 4, 8 and 24 hours following injection, peripheral blood will be collected into CellSave 

tubes and evaluated for capture efficacy in vitro. Following demonstration of appropriate capture 

ex vivo, the dog will be sedated with butorphanol and dexmedetomidine, the ventral cervical 

region clipped and aseptically scrubbed and an 8-French double-lumen catheter (Arrow/Teleflex, 

Morrisville, NC) will be placed in the jugular vein. Extension sets will be attached to both 

catheters and heparin-locked. The flow-through tumor cell collection device (CTC capture 

module) will be attached and primed. Ten minutes following injection, the device will be 
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activated and blood allowed to circulate through the device for up to 120 minutes (circulation 

time will depend on the results of the ex vivo experiment). Following completion of the 

collection time, the central catheter will be removed and blood collected for coagulation testing. 

Sedation will be reversed and the dog will be monitored continuously until completely 

recovered. The following day and 7 days later, blood and urine will be submitted for hematology, 

clinical chemistry, urinalysis, and coagulation profile.  

The dog will undergo daily examination, to include temperature, pulse, respiration, 

monitoring of food and water intake, and examination of the catheter site. After 1 week, the dog 

will be off-protocol and eligible for adoption or transfer to other protocols as appropriate. We 

anticipate no long-term adverse effects from the procedure, as MDCK cells should not be 

tumorigenic in an allogeneic, Immunocompetent host – they should be eliminated in the same 

way that any other tissue type-unmatched cells or organs would following transplant.  
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CHAPTER 6 
 

6 Conclusion  
 

6.1 Limitations and Future Directions 

The study of circulating tumor cells (CTC) has enormously improved our understanding 

of clinical cancer biology and the steps involved in metastasis. Of the efforts, the development of 

various microfluidic technologies has enabled the realization of sensitive isolation and detailed 

characterization of CTCs. The platforms introduced in this report show improvement over 

existing microfluidic technologies with regards to sensitivity, specificity, and throughput of CTC 

isolation. However, each platform also possesses limitations and opportunities to improve. In this 

section we focus on these opportunities as well as current challenges that should be addressed to 

ultimately implement these tools into routine clinical care.  
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6.1.1 What are the best biological or physical properties to use to 
isolate CTCs? 

CTC enrichment strategies utilize the unique properties of CTCs that differentiate them 

from normal hematopoietic cells. Methods to isolate CTCs can be broadly categorized as label 

dependent, using cell specific protein expression (biological properties), or label independent, 

using size, deformability, density, or electric charge differences (physical properties).  

The GO-CTC Chip and the HBGO-CTC Chip (Chapter 2, 3, 5) are affinity-based 

approaches targeting the membrane protein, EpCAM, expressed in CTCs for enrichment. The 

nano material mediated immunological capture procedure offers sensitivity to isolate even CTCs 

with low level of EpCAM expression. However, due to the strong ionic bonding between 

EpCAM antigens on the cell surface of CTCs and the antibodies, the release process from the 

chip after capture has been extremely challenging or requires rigorous steps which tends to 

significantly reduce the viability of the cells. Although downstream applications including 

transcriptional profiling of these cell population is feasible (Chapter 3), the confounding signals 

from the contaminating leukocytes complicate the data analysis. This is mainly due to the fact 

that many transcripts highly expressed in tumor originating cells are also expressed at low levels 

in normal blood cells12. In addition, bulk cell analysis makes it impractical to frame and examine 

the heterogeneous characteristics of individual CTCs. To overcome these limitations, a 

functionality to gently release the immobilized cells needs to be incorporated into the platform. 

So far, several mechanisms to enable CTC capture and release has been proposed including the 

GO embedded thermal sensitive polymer chip developed in our group88. Despite many 

approaches, these platforms either exhibit low yield in capture and detachment of viable CTCs or 
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require excessive lab equipment with complicated material handling which must be addressed in 

future studies.  

Another limitation of the presented GO Chips is the dependence on an EpCAM based 

CTC capture approach. Emerging evidence suggests that CTCs are highly heterogeneous and a 

subset of CTCs have been identified with reduced or non-detectable expression of epithelial 

markers. These cells may represent carcinoma cells undergoing EMT or alternatively, cancer 

stem cells that have not yet shown epithelial differentiation. This suggests that the use of single 

antibody fails to recognize all subtypes of CTCs, which may lead to an underestimation of these 

subpopulations. Recent studies have demonstrated that not only EpCAM positive CTCs but also 

CTCs negative for EpCAM expression isolated from breast cancer patients were highly enriched 

for metastasis initiating capability when injected into the tail vein of immune compromised mice, 

forming lung and brain tumor metastasis82,132. Thus, to avoid these incomplete findings, there is a 

need for a broad-spectrum enrichment method based on the use of tumor specific antibody 

cocktails for cell surface epithelial and mesenchymal markers. Since the conjugation chemistry 

of the GO platforms allows any biotinylated antibodies to be used for surface functionalization, 

in future studies we plan to use a combination of antibodies against various markers that cover 

the complex heterogeneity of CTCs.  

A different way to enrich CTCs from blood is to use their physical properties. Tumor 

cells have been known to be larger in size and less deformable than hematopoietic cells. The 

cascaded spiral microfluidic chip (Chapter 4) is a two-step CTC isolation platform utilizing the 

size dependent differential inertial focusing effect to improve purity upon CTC collection. The 

chip is designed to separate cells with a cutoff diameter of 17 to 18 µm. Since the sorting 

procedure is label free and done in a continuous manner, unlike the affinity-based approach, the 
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device is able to isolate both EpCAM positive or negative cells and produces and effluent that is 

amenable to any type of downstream analysis. However, CTCs of various size have been 

identified, some being less than 4 µm in diameter61, which are likely to be unfocused and filtered 

out. In addition, all circulating cells isolated by this size selection method may not necessarily be 

tumor derived. They may represent normal blood vessel or stromal cells, circulating 

mesenchymal cells or stem cells, or other host cells that normally exist in rare quantities in 

circulation133. Also, the diameter of monocytes, consisting an approximate of 5% of WBCs, can 

range from 15-30 µm. This size overlap compromises the specificity of the CTC isolation 

process resulting in an impure CTC collection, therefore requiring further purification steps.  

While the inertial chips offer a high sample processing rate, a preprocessing step is 

required due to the large number of RBC counts in blood, which tends to interfere with the 

focusing streaks. These steps include RBC lysis, density gradient separation, or a significant 

dilution of the original whole blood product. As RBC lysis buffers may potentially affect the 

viability of CTCs, which are relatively fragile, we have incorporated a dextran sedimentation 

method with 5x dilution using PBS to deplete RBCs before processing. However, this became 

the rate-limiting factor of the entire protocol comprising a one-hour incubation and multiple 

manual pipetting steps. Therefore, future work will involve development of a RBC presorting 

chip employing similar concepts of inertial focusing effect to increase the process throughput.  

So far, no single methodology is capable of enriching all types of CTCs with sufficient 

purity for subsequent analysis. Recently, as an alternative approach, negative selection in which 

blood samples are depleted of known leukocytes using antibodies against CD45 have been 

proposed to avoid any bias and loss of CTCs with high phenotypic plasticity134,135. However, not 

all CD45 negative cells in blood are tumor cells and the technology struggles with purity from 
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blood cell contaminations. The debate over which isolation strategies best reveal the clinical 

utility of CTCs seems to be meaningless at this point, since it is not yet clear which CTC 

subtypes are clinically meaningful. Thus along with the development of advanced CTC 

enrichment protocols, there is a necessity to implement microfluidic based assays that can 

interrogate certain functional characteristics of CTCs such as tumor initiating capability.  

 

6.1.2 How do we define CTCs? 

The major issue in detecting CTCs is the lack of reliable immunochemical markers. An 

ideal CTC marker would be expressed on all CTCs but not on autochthonous blood cells such as 

leukocytes, endothelial cells, hematopoietic stem cells, and mesenchymal stem cells. In addition, 

the expression should not be repressed during invasion and circulation. Currently, epithelial 

markers such as EpCAM and members of cytokeratin family (CK8, CK18, CK19) have become 

the gold standard for the detection of CTCs in carcinoma patients. They have been frequently 

used since these markers are normally expressed in the epithelia or epithelial tumors but are 

absent on mesenchymal leukocytes and rarely present in blood samples from healthy individuals. 

However, circulating epithelial cells have been identified in patients with benign colon disease 

raising concerns with the current detection methods with regards to false positive findings136. 

More recently, cytokeratin negative or EpCAM negative CTCs have been identified, and CTC 

enumeration analysis using these markers may cause false negative results. This was also 

apparently observed in our multi-marker study (Chapter 3) from CTCs isolated from metastatic 

breast cancer patients. To overcome theses limitations, more tumor tissue specific markers 

should be studied and validated for their clinical value accompanied by the establishment for a 

standardized optimal cutoff for future CTC enumeration. To this end, our future direction will 
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involve selecting and examining various tissue markers to test their expression by CTCs and 

perform correlation studies with patient status. Furthermore, we plan to establish multi channel 

staining protocols, which currently have been limited to 4 channels, to facilitate our analysis.  

 

6.1.3 How many CTCs are sufficient for clinical assessments? 

To date, due to the difficulty of isolating and characterizing CTCs, especially from early 

cancer patients, only a relatively small number of CTCs out of the entire patient’s pool of CTCs 

has been adequately characterized. Their paucity as well as the plasticity that posits extreme 

amount of heterogeneity under various selection pressures during circulation or therapeutic 

treatments has hampered our understanding of their full clinical characteristics. It is not clear 

how many CTCs is sufficient to make any clinical decisions based on their analysis to account 

for their heterogeneity and statistical variations. To resolve this issue, techniques capable of 

isolating CTC in sufficient number are required. Many efforts have been made to expand the 

number of CTCs after enrichment through sophisticated CTC culture techniques137-139 and 

transplantation into xenograft assays82,140. However, these assays still require high CTC yield 

with an order of magnitude of 100s of CTCs/mL, which have so far only been achieved in highly 

aggressive tumor patients. Moreover, despite potential use for therapeutic testing, in-vivo 

xenograft models may not recapitulate tumor-host interactions that may play role in drug 

resistance. The catheter based in-vivo CTC isolation system (Chapter 5) shows advantages over 

previous ex-vivo CTC enrichment platforms in that it allows direct blood sampling from the 

patient vein and enables analysis over large blood volumes. The continuous procedure, which re-

transfuses the remaining blood products after processing, permits the system to be operated for a 

long period of time harvesting more CTCs potentially from even early stage cancers without 
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severe burden on the patient. These CTCs can then be used for multiple characterization steps 

such as real time drug testing which can provide information about the therapeutic efficacy for 

future treatment decisions. However, there are a couple of drawbacks and issues that need to be 

resolved. Compared to recent catheter based CTC collection systems, the overall throughput is 

limited and must be improved. The operable flow rate of the CTC module needs to be designed 

to fit flow rate nears the ml/min scale to screen a total blood volume of at least 100s of mL in a 

few hours. Furthermore, there is a need to reduce the size of the dual lumen catheter to be placed 

in human peripheral subjects. In order to circumvent these issues, a high throughput CTC chip 

module should be developed with custom designed catheters suitable for system integration.  

 

6.2  Conclusion 

The CTC enrichment platforms introduced in this report utilize various strategies to 

improve the isolation process, offering versatility for detailed CTC characterization. Although 

the adoption of these tools into clinical practice will necessitate rigorous demonstration of their 

clinical validity and utility, the use of microfluidic based CTC assays in research settings will 

broaden our understanding of basic cancer biology and improve personalized targeted treatment 

for cancer patients. 
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