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Abstract 

 

Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicles 

by 

Ryan J. Klock 

 

Chair: Carlos E. S. Cesnik 

 

Hypersonic vehicles operate in a high-energy flight environment characterized by high 

dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment 

induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight 

regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive 

understanding of each of these disciplines must be developed not only in isolation, but also when 

coupled. Limitations on scaling and the availability of adequate test facilities mean that physical 

investigation is infeasible. Ever growing computational power offers the ability to perform 

elaborate numerical simulations, but also has its own limitations. The state of the art in numerical 

simulation is either to create ever more high-fidelity physics models that do not couple well and 

require too much processing power to consider more than a few seconds of flight, or to use low-

fidelity analytical models that can be tightly coupled and processed quickly, but do not represent 

realistic systems due to their simplifying assumptions. Reduced-order models offer a middle 
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ground by distilling the dominant trends of high-fidelity training solutions into a form that can be 

quickly processed and more tightly coupled. 

 This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for 

the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and 

surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered 

and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune 

in-the-loop flight controllers, and inform future design considerations. A partitioned approach to 

vehicle simulation is considered in which regions dominated by particular combinations of 

processes are made separate from the overall solution and simulated by a specialized set of models 

to improve overall processing speed and overall solution fidelity. A number of enhancements to 

this framework are made through 

1. the implementation of a publish-subscribe code architecture for rapid prototyping of 

physics and process models. 

2. the implementation of a selection of linearization and model identification methods 

including high-order pseudo-time forward difference, complex-step, and direct 

identification from ordinary differential equation inspection. 

3. improvements to the aeroheating and thermal models with non-equilibrium gas dynamics 

and generalized temperature dependent material thermal properties. 

 A variety of model reduction and surrogate model techniques are applied to a representative 

hypersonic vehicle on a terminal trajectory to enable complete aerothermoelastic flight 

simulations. Multiple terminal trajectories of various starting altitudes and Mach numbers are 

optimized to maximize final kinetic energy of the vehicle upon reaching the surface. Surrogate 
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models are compared to represent the variation of material thermal properties with temperature. A 

new method is developed and shown to be both accurate and computationally efficient. 

 While the numerically efficient simulation of high-speed vehicles is developed within the 

presented framework, the goal of real time simulation is hampered by the necessity of multiple 

nested convergence loops. An alternative all-in-one surrogate model method is developed based 

on singular-value decomposition and regression that is near real time. 

 Finally, the aeroelastic stability of pressurized cylindrical shells is investigated in the 

context of a maneuvering axisymmetric high-speed vehicle. Moderate internal pressurization is 

numerically shown to decrease stability, as showed experimentally in the literature, yet not well 

reproduced analytically. Insights are drawn from time simulation results and used to inform 

approaches for future vehicle model development. 
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1. CHAPTER I       

Introduction and Literature Review 

 

This chapter outlines the problem of aerothermoelastic simulation of hypersonic vehicles 

(HSVs) and begins with an overview of the history of hypersonic flight. The dominant physical 

processes encountered in the hypersonic regime are then introduced along with their coupling 

mechanisms. Literature relevant to the processes and couplings investigated in this dissertation are 

noted, including research into supersonic and hypersonic aerodynamics, aeroheating, structural 

thermodynamics, aerothermoelasticity, and hypersonic flight dynamics. The University of 

Michigan High Speed Vehicle (UM/HSV) simulation framework is then introduced along with its 

development over the last decade. A review of the reduced-order and surrogate modeling 

techniques that underpin its operation is given. Finally, a list of the main objectives of this 

dissertation is provided. 

 

1.1 Introduction 

Hypersonic flight is loosely defined as flight above the speed of Mach 5,1 although there is 

no clear threshold at which hypersonic principles become important. When a vehicle travels 

supersonically, shock waves form as a means for the surrounding air to react to the vehicle’s 

presence and move aside. If leading edges of the vehicle are sufficiently sharp, then these shock 

waves can approach and attach to the surface of the vehicle as oblique shock waves that slant away 
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from the vehicle surface in the direction of the prevailing flow, similar to as shown in Figure 1.1. 

As the Mach number of the vehicle is increased, the shocks lie closer to the surface of the vehicle 

and create a region of intense pressure and temperature. The pressures and temperatures are 

sufficient to cause the air to chemically react due to molecular dissociation, recombination, and 

even ionization.2 The exact Mach number at which the heat or reactivity of the air becomes a 

design consideration for the vehicle is the Mach number at which the vehicle is said to be 

hypersonic. 

 

 

Figure 1.1: Supersonic flow regimes 

 

HSVs are often lifting bodies due to the high dynamic pressure present at high speeds and the need 

to mitigate the buildup of heat within the vehicle structure. It is this buildup of heat that 

distinguishes hypersonic aerothermoelastic design from classical aeroelastic design by influencing 

the elastic behavior of the structure and modifying the flow properties surrounding the vehicle. 

Time traces of a representative hypersonic terminal trajectory3 are shown in Figure 1.2 which 

highlight the extreme velocities, pressure loads, and flow temperatures present in this regime. 
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Figure 1.2: Representative hypersonic terminal trajectory3 

 

A summary of the driving disciplines and their couplings is shown by Collar’s triangle,4 modified 

to a tetrahedral with the inclusion of thermal considerations in Figure 1.3. 
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Figure 1.3: Modified Collar’s triangle of aerothermoelasticity 

 

The four primary disciplines to consider are elastic, inertial, aerodynamic, and thermal. 

Collar’s triangle originally described the interactions of these disciplines for the consideration of 

dynamic aeroelasticity, shown as the green face of the tetrahedral. By way of exemplifying how 

these disciplines interact in practice, consider a flexible vehicle traveling at hypersonic velocities. 

Aerodynamic pressures load the outer surface and deform the vehicle’s shape. The aerodynamics 

then responds to the newly deformed shape by modifying the pressure loads. The rigid body 

velocities and rotations are then modified due to the new net external loads and further change the 

pressure loads. Meanwhile, flow compression and viscous heating are quickly warming the outer 
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surface. This heat seeps into the vehicle’s structure and changes the stiffness of its materials while 

uneven thermal expansion warps the vehicle’s shape, further modifying the structure’s response to 

the pressure loading, modifying the pressure field, leading to new heating patterns, changing the 

shape further, resulting in new rigid body motions, modifying the pressure field, and so on. If one 

is to design effectively such a vehicle, a robust understanding of each discipline in isolation and 

when interacting with others is necessary. 

 Humanity’s foray into hypersonic flight began in the latter part of World War II with the 

use of Nazi Germany’s V-2 rocket. The sub-orbital trajectories of these rockets sometimes 

included a phase during reentry into the upper atmosphere that induced low-hypersonic 

thermoelastic effects which could lead to the loss of the vehicle.5 Following the defeat of Nazi 

Germany, a United States appropriated V-2 was used as a boost-stage to a WAC Corporal rocket 

which achieved 5,150 miles per hour, in excess of Mach 6.7, over the White Sands Missile Range, 

New Mexico, February 24th, 1949.2,6 However, the vehicle was destroyed on reentry and only 

charred remains were recovered. Several years later the U.S. – U.S.S.R. space race commenced 

and the consideration of HSVs, particularly for spaceflight and reentry, found new urgency. 

 As a product of the space race came the development of the NASA X-15 rocket plane 

proposed in 1954, which eventually traveled up to 67 miles in altitude, reached Mach 6.77 and 

featured a blunted nose for thermal management with wedge airfoil stabilizers that would be 

characteristic of many HSVs for the decades to come. Lifting bodies were introduced soon after 

with experimental studies focused on manned space access such as the Boeing X-20 Dyna-Soar in 

1957, which featured a large delta wing for hypersonic glide and controlled speed bleed-off.8 Such 

an approach to controlled and lifting reentry would be seen again in the design of the NASA Space 

Shuttles in 1981.9 The Rockewell X-30 National Aero-Space Plane (NASP) in 1986 was the next 
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major attempt at hypersonic flight and featured a super-sonic combustion ramjet (scramjet) 

propulsion system to assist in its acceleration to upwards of Mach 20, so to provide single-stage to 

orbit space access. As a byproduct of the scramjet system, some conceptions of NASP were also 

wave-rider type HSVs that trapped a shock wave beneath the fuselage and rested on the resulting 

high-pressure flow to generate lift. However, the development of high temperature materials  and 

development of feasible scramjet propulsion systems proved too difficult for the time and lead to 

the cancellation of the unrealizable NASP project.10,11 

 It was not until the successful flight of the unmanned NASA X-43 in 2004, as part of the 

NASA Hyper-X program, that the scramjet design limitations of the past were overcome. After 

separation from a Pegasus solid-rocket booster, the wedge-type X-43 HSV accelerated under 

scramjet power for 11 seconds to reach Mach 6.8.12 A later flight of a revised vehicle, the X-43A, 

would reach Mach 9.6.6,13 The success of the X-43 spurred the development of the Boeing X-51 

WaveRider that was designed in 2005 and first flown in 2010. Whereas the X-43 was simply to 

prove the practicality of air-breathing hypersonic flight, the X-51 was to prove its feasibility by 

using JP-7 fuel and eventually kept the scramjet active for up to 210 seconds.14–16 

 

1.2 Literature Review 

Although the prospect of hypersonic aerothermoelastic modeling is daunting, the last six 

decades of literature provide a rich collection of techniques specific to the aerodynamic, thermal 

dynamic, and structural dynamic disciplines, as well as their couplings. A multitude of model 

reduction and surrogate model methods are also available, and range from general tools for 

arbitrary systems to discipline-specific approaches that leverage properties of the governing 
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equations to limit the number of degrees of freedom to be considered. The techniques, models, and 

methods leveraged in this thesis and by related studies are reviewed. 

 

1.2.1 Aerothermoelasticity 

As described in the introduction, the field of aerothermoelasticity is composed of a collection 

of coupled disciplines whose interactions must be understood if effective HSV models are to be 

formulated. Integral to this is understanding simply how coupled each discipline must be to the 

others for accurate simulation. Numerous studies17–22 have attempted to implement various levels 

of coupling and can be distilled into Figure 1.4. 

 

 

Figure 1.4: Coupling strength between disciplines23 
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Aerodynamic pressure loads, inertial forces, and elastic forces are all strongly 

interdependent, as a change in shape or motion of a body will immediately result in a new pressure 

field which in turn drives a new shape or motion. Heat loads and the thermal system, however, are 

somewhat less coupled. For a body of considerable thermal capacity, a change in the temperature 

occurs on a slower time scale than the inertial or elastic dynamics, and so receives only weak 

influences from these systems. Aerodynamic pressure does play a meaningful role in the 

determination of heat flux on the boundary conditions, but the temperature does not strongly 

influence pressure. The thermal solution does strongly affect material properties and so has a 

strong influence on the elastic forces. 

Work by Culler and McNamara19 evaluated the levels of coupling required to simulate a 

carbon-carbon panel characteristic of a hypersonic vehicle’s skin. Oblique shock1 and piston 

theory24 were used to determine unsteady aerodynamic pressure loads, Eckert’s reference enthalpy 

method25 was used for the thermal loads, and finite element models were used to integrate the 

thermal and elastic solutions. It was found that coupling between the aerodynamic heating and 

elastic deformation resulted in low to moderate increases in surface temperature on the order of 

10% and large increases on the order of 100% in the surface ply failure index due to thermal 

expansion compared to the uncoupled solution. The expanded panel also exhibited snap-through 

behavior when there was no coupling between the surface deformation and aerodynamic pressure 

during long duration simulations; however, with additional pressure due to deformation, snap-

through was shown to onset much sooner. Including aerodynamic heating effects into the coupled 

pressure and deformation was also shown to prevent snap-through altogether under some 

conditions. 
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Miller et al.20,21,26 built upon this work to demonstrate that time simulation of 

aerothermoelastic systems could be carried out, this time with CFD pressure solutions, with a 

loosely coupled scheme that used multi-cycling during integration to emphasize pressure 

calculations with the most iterations, structural deformation with fewer, and finally thermal with 

the least. Near second-order accuracy was maintained for all three disciplines compared to more 

tightly coupled, non-multi-cycling solutions. This approach of multiple time cycles for different 

processes was later shown to work well for more complex, built-up structures and a completely 

ROM-based analysis by Gogulapati et al.17 

 

1.2.2 Hypersonic Flight Dynamics 

Research by Bolender and Doman27 described a two-dimensional longitudinal flight 

dynamics model that employed a combination of oblique shock, Prandtl-Meyer expansion, and a 

quasi-one-dimensional duct with heat addition1 to determine the stability characteristics of a two-

dimensional HSV. The inclusion of shock-expansion theory, rather than the previously studied28 

Newtonian impact theory,29–31 allowed for the consideration of engine inlet spillage and inlet shock 

patterns which are both considered with respect to a movable inlet door intended to maintain a 

shock-on-lip condition. Pressures on the aft body resulting from the propulsion exhaust are also 

considered. Flat plates are used to approximate control surfaces positioned near the tail of the 

vehicle, which also employed shock-expansion theory in order to determine lift and drag 

characteristics during simulation. Vehicle flexibility was approximated by a pair of cantilevered 

beams, one reaching fore and the other aft, joined at the center of mass of the vehicle. The 

frequency response of the joined-beam model was then analyzed to determine the main vibrational 

modes of the beam structure and used to generalize the equations of motion for the vehicle. The 



10 

 

equations of motion were linearized about a trim condition and used to show unstable short period 

and phugoid modes.32 Bolender and Doman27 concluded that research into a closed-loop control 

system would be required. However, consideration of only two-dimensional flight limited the 

development of HSV control laws, which would ultimately be required to operate in full three-

dimensional, six-degree-of-freedom environments where both longitudinal and lateral flight 

characteristics must be considered. 

In order to explore the characteristics of a three-dimensional vehicle flight, Frendreis, 

Skujins, and Cesnik33 conducted a full six-degree-of-freedom analysis of a generic hypersonic 

vehicle which included a rigid vehicle structure, two-dimensional shock expansion theory for the 

external panel pressures, and a one-dimensional area ratio model of the propulsion system. This 

work was then expanded by Falkiewicz, Frendreis, and Cesnik34 to include the effects of a flexible 

fuselage, flexible control surfaces, the resulting inertial coupling, unsteady aerodynamics, and 

aerothermal effects by partitioning the HSV into discrete component regions among which 

information was exchanged to maintain vehicle continuity. The work by Falkiewicz et al.35–38 

focused on enhancing the fidelity of the HSV control surfaces by considering the unsteady 

aerodynamics, aerothermal heating, and the resulting material property degradation of the control 

surface structure by way of structural Ritz modes and proper orthogonal decomposition (POD) of 

the dominant thermal modes. Meanwhile Frendreis and Cesnik39 focused on the application of 

vehicle flexibility to the three-dimensional model by a modal representation of the fuselage 

deformations. Work by Dalle et al.40 applied the two-dimensional Michigan-AFRL Scramjet In 

Vehicle (MASIV)41–46 propulsion model to three-dimensional flight of a rigid HSV to determine 

vehicle trim. Further work by Dalle and Driscoll47 eventually led to the continuous differentiation 

of a HSV system for flight trajectory simulation, stability analysis, and model parameter sensitivity 



11 

 

analysis for a simple rigid six-degrees-of-freedom on an ellipsoidal Earth, as well as optimization 

of ascent trajectories, coordinated turns, and ramjet to scramjet mode transitions.48–51 

 

1.2.3 Trajectory Optimization 

It is often the case during model reduction that not only the system dynamics need to be 

considered, but also the expected system inputs. For HSVs, this is particularly true for the thermal 

model, which is a slow integration of heat loads, exhibits strong hysteresis, and is highly path 

dependent. Thus significant model reduction can be achieved if the trajectory of the HSV can be 

identified a priori.  For several of the studies described in this thesis, a representative trajectory 

was required, for which to tailor structural, thermal, and thermo-structural reduced order models 

(ROMs). In the literature, the optimization of hypersonic trajectories for a wide range of vehicle 

and mission types has been approached using many different optimization tools.52–54 Zhao and 

Zhou55 employed a multiple phase Gauss Pseudospectral method to maximize cross range and 

minimize trajectory time for a reentering hypersonic vehicle subjected to heating, loading, 

waypoint, and no-fly zone constraints. This was done by partitioning the trajectory into segments 

with matching final/initial conditions at the segment interfaces to create a continuous trajectory 

while refining the Legendre-Gauss sample density around periods of constraint influence. Rao and 

Clarke56 used the Legendre Pseudospectral method to optimize a hypersonic reentry trajectory, 

however with a focus on maximizing control margin that would allow for unmodeled perturbations 

to the vehicle during an actual flight. The possibility of using the pseudospectral method as a 

guidance law was also discussed. An intelligent method based on multi-objective particle swarm 

optimization was developed by Grant and Mendeck57 to explore the design space of the Mars 

Science Laboratory entry trajectory in terms of parachute deployment altitude, range error, and 
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acceleration loading. This method was especially well-suited to handle Pareto fronts, solution loci 

in the design space along which even trade-offs occur between multiple objective functions and 

provide no single superior solution. Also available is the Optimal Trajectories by Implicit 

Simulation (OTIS) software by Hargraves et al.58 which can generate open-loop control functions 

based on Hermite interpolation of the trajectory and nonlinear programming. Many types of point-

mass and rigid-body problems have been considered using the OTIS tools including single- and 

multi-stage-to-orbit hypersonic vehicle trajectories. 

For the work presented in this thesis, the General Pseudospectral Optimization Software 

(GPOPS-II) was used to apply the Radau Pseudospectral method,59 previously used by Rexius et 

al.60 to optimize the launch, staging, and descent of a rocket-boosted hypersonic glider similar to 

the common aero vehicle (CAV).61 GPOPS-II was viewed by the authors as a suitable trajectory 

optimizer due to similar flight constraints during the final descent phase of the CAV presented by 

Rexius60 and the sample HSVs considered in this work, as well as the ease of use due to its Matlab 

based implementation. 

 

1.2.4 Reduced Order Modeling 

It is often noted in literature that full-order simulation, particularly computational fluid 

dynamics (CFD) and finite element analysis (FEA) for aerodynamic, structural dynamic, and 

thermodynamic coupled systems, can be prohibitively costly in terms of computational 

reasources.62–65 To reduce the computational cost associated with obtaining a thermal solution for 

a vehicle structure using traditional finite element analysis, ROMs are often employed. A 

straightforward ROM approach is to use eigenmode analysis as described by Shore,66 which is 

analogous to the derivation of free-vibration modes for a structure, except that thermal 
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conductivity and capacity are considered in place of the stiffness and inertia matrices. This leads 

to a set of basis modes from which a subset of temperature distributions may be selected and used 

as generalized degrees of freedom of the thermal problem. This approach may be extended with 

the component mode synthesis method described by Craig and Bampton.67 In component mode 

synthesis, a structure is first partitioned into a set of interfacing substructures. Each substructure’s 

eigenmodes are determined with fully constrained boundary conditions at the interfaces to form a 

basis set for each substructure. The basis sets are then augmented with boundary modes derived 

from perturbation of the substructure interfaces, which are selected to ensure continuity between 

substructures. By reducing the order of the basis sets of each substructure, the number of degrees 

of freedom of the overall structure may be reduced. This approach is useful for structures with a 

small number of components that have dissimilar properties, but can be cumbersome as the number 

of interfaces increases, requiring more and more boundary modes. The Guyan reduction method68 

is possible if the thermal loading locations are known a priori and may be used to construct 

matrices whose entries only pertain to degrees of freedom that are known to vary and yet sacrifices 

none of the structural complexity. This approach is useful for thermal problems in which there are 

a few localized heat sources, but is poor at reducing the model complexity in scenarios with widely 

distributed loads, such as aerodynamic heating of a vehicle. Another possible technique to reduce 

the thermal problem is the modal identification method.69 In this approach, a set of eigenmodes of 

a state-space representation of the full-order system are identified through minimization of a 

criterion related to the difference between the outputs of the full and reduced-order systems. This 

is useful when a full eigenmode analysis of the state-space is computationally infeasible and the 

thermal conductivity and capacity matrices are unknown. However, for the studies in this thesis, 

the thermal matrices will be known and thus, the advantage is inconsequential. Furthermore, the 
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modal identification method has been shown to be effective for systems with low numbers of 

thermal loads (1 to 3), but will become infeasible for the thousands of loads considered over the 

entire outer surface of a hypersonic vehicle.35 

Nearly all of these ROMs involve the transformation of a governing system of equations 

into modal space and differ in the identification of the basis set and correction for nonlinear effects. 

However, these methods largely rely on the matrices of the governing systems of equations rather 

than the actual response of the system when observed during simulation or experimentation. 

Furthermore, eigenvector bases may not be optimal in the sense of capturing the most system 

energy with the fewest number of modes. If the transient responses of the thermal system can be 

characterized a priori, as is the case in this thesis by beginning with known structural models, the 

method of Proper Orthogonal Decomposition (POD) may be used.35 The POD method provides 

an inherent optimality condition of providing the most efficient capture of the dominant energy 

modes of a system with a finite number of basis modes70 and has been widely used in literature to 

reduce both linear71,72 and nonlinear73 thermal problems. 

For structural dynamics, ROMs are often applications of the Rayleigh-Ritz/Galerkin 

methods74 and matrix transformation to the eigenvalue and eigenvector form.75 Once expressed as 

a set of eigenvectors or modes, the basis set is truncated to reduce the degrees of freedom of the 

system and thus reduce the effort of integrating the structural equations of motion. However, as a 

goal of this thesis is to capture the coupling of thermal and structural effects, this approach cannot 

be applied directly to the problem studied here because of the change of the structural stiffness 

from geometric stiffening and material degradation effects. Instead, the approach taken in this 

thesis is to perform an initial calculation of the free-vibration mode shapes at some reference 

thermal state. These mode shapes are then to be used as the modal basis for simulation with updates 
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to the stiffness matrix from a kriging surrogate model based on training samples in different 

thermal states described by the thermal POD basis modes.36 

 

1.2.5 Surrogate Modeling 

Sometimes a system’s governing equations are not well understood or are not readily reduced 

by the techniques previously described. In these cases, it is advantageous to substitute the high-

order governing equations with a low-order surrogate function that can be trained or tuned to 

imitate the full solution for a greatly reduced computation cost.76–85 For nearly all surrogate 

techniques, this is done by exposing the model to a training set of high-order solutions that span 

the design space that the model will be expected to operate in. There is a rich array of surrogate 

model techniques in the literature, many of which are general, and many of which offer specialized 

functions suited to capture a particular flavor of dynamics. However, these models broadly fall 

into one of several category types. Perhaps the simplest type of such surrogate model are the 

regression models86–90 which contain some base function that describes a response surface and has 

one or more tuning parameters. These tuning parameters are varied so to minimize the total error 

of the surface to a set of training samples. Regression models are best used when the modeled 

system order is at least approximately known and when it is desirable to have a surrogate with 

predictable computational cost that does not vary with the number of training samples. Some 

limited extrapolation can also be considered, depending on the base function. However, regression 

models often reach convergence with relatively few training points and do not improve further 

with additional samples. 

Radial basis functions (RBF)91–95 offer a second form of surrogate that is based on one or more 

kernel functions. Each of the training samples are used as the center of a kernel function that 
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occupies some portion of the design space. Interpolation is done by a weighted sum of the kernel 

functions, whose influence is some variant of inversely proportional to the distance between the 

training samples and the sought point in the design space. This approach is ideal when the order 

of the modeled system is unknown but training samples are plentiful and one desires the solution 

at any training point to be recoverable. RBF surrogates will typically improve asymptotically to 

the behavior of the modeled system when given more training samples, but increase in 

computational expense linearly with the number of training samples. Extrapolation outside of the 

training set is typically not possible. 

Kriging96–101 is a combination of regression and radial basis functions that leverages the 

strengths of each to produce a response surface that quickly converges and maintains the solutions 

of the training samples. A regression process is first used to fit a base function to the training 

samples as best as possible in order to identify the underlying trends. Error corrections are then 

applied via radial basis kernels that augment the surface so to pass through the training samples. 

Under most circumstances, a kriging model will improve in accuracy when provided with 

additional samples and offers limited extrapolation. However, too many training samples will 

increase computational cost as the kriging begins to behave more as a radial basis model. 

Artificial neural networks (ANN)102–106 are a numerical model inspired by the connectivity of 

biological neurons in a brain or nervous system. It consists of an array of bounded activation 

functions (neurons), such as sigmoid or hyperbolic tangent, that are interconnected along linear 

gains that sum at the input of each neuron (synapses). At model initiation, random gains are 

assigned to each synapse. The ANN is then used to predict one or more output values when given 

an input to a training sample. The error between the prediction and training sample solution is then 

distributed across the synapses according to the product of the synapse gains connecting the output 
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to a given synapse (back-propagation). Repeated prediction of training samples, determination of 

error, and back-propagation causes the ANN to converge onto the behavior of the training set. 

ANNs are ideal when considering highly nonlinear systems that are not well understood and have 

high-dimensional inputs. The number of training samples required to converge an ANN grows 

exponentially with the number of neurons if the network is fully connected, and thus vast numbers 

of samples are required to model complex systems. 

Finally, space mapping107–110 is a hybrid type of surrogate model which is useful when one has 

access to only a space training set of high-fidelity solutions, but a rich set of simplified solutions. 

The assumption is that the simplified solutions capture the general behavior of the modeled system, 

and can be used to make a response surface with one of the aforementioned surrogate techniques. 

A global correction is then performed to adjust the response surface to agree with the high-fidelity 

solutions. This results in a model that exactly reproduces the high-fidelity training data and the 

overall trends despite the sparse training set. 

 

1.2.6 Material Thermal Property Modeling 

The variation of material thermal properties has been considered in literature, although 

often in a limited capacity. In a study by McMasters et al.111 of nonlinear thermal diffusion, an 

exact analytical solution was derived with a thermal conductivity that varied linearly with 

temperature and was later used to verify the results of a finite element thermal analysis code, 

CALORE.112 While thermal conductivity was variable, all other thermal properties were assumed 

to be constant. 

Matney et al.113 considered the variation of thermal properties for the problem of 

hypersonic flow over a panel with underlying stiffeners in the development of an adaptive thermal 
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basis set. In their study, aerodynamic pressure was modeled using piston theory24 and heat flux 

was modeled using the Eckert reference enthalpy method.114 These aerodynamic and thermal 

loading solutions were then applied to a finite element model (FEM) to observe structural and 

thermal responses. Variation of the in-plane thermal conductivity with respect to the temperature 

of the panel was modeled using a property lookup table. Each element of their panel FEM was 

identical and could use the same lookup table for all elements. This approach to modeling the 

variation of material thermal properties with respect to temperature was therefore limited to very 

simple geometries where uniform finite elements could be used. 

The force-derivative method originally developed by Camarda115,116 for nonlinear structural 

dynamics has also been shown by Balakrishnan, Hou, and Camarda117 to work well for nonlinear 

thermal problems by modifying the heat load based on previously linearized thermal capacity and 

conductivity properties. In this approach, variation of the thermal properties of both structures and 

materials could be considered but required repeatedly solving an eigenproblem and inverting a 

variable FEM conductivity matrix. This allows for transient thermal solutions more quickly than 

a full FEM simulation but not without its own overhead that could become prohibitive if more than 

a couple degrees of freedom are considered. 

 

1.2.7 Estimation of State Spaces 

Methods of combining ROM techniques and linear parameter-varying (LPV) models have 

often begun with already determined state spaces with many degrees of freedom and sought to 

reduce the number of degrees of freedom while retaining the dominant behavior of the system in 

order to produce control laws. Such methods include modal reduction,118 balanced realization and 

truncation,118,119 Krylov methods,120 and others.121,122 It is not uncommon to use multiple 
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techniques in combination when considering systems of very high order, such as in aeroelastic 

analyses of flexible aircraft. A recent example has been the simulation of the X-56A flight model 

where the influence of the airspeed and fuel weight was considered.122 In that work, a collection 

of state space matrices was first reduced by a combination of regular state truncation, modal 

reduction, and balanced truncation from 180 to 21 states. However, in this reduction process, the 

final 21 states did not have consistent meaning for all state spaces. To remedy this, a common 

subspace was determined, from which all the state space matrices could be recovered. Matrices for 

state spaces outside of the original collection were determined through linear interpolation between 

nearest neighbor samples and shown to correctly predict the frequency response of most retained 

states. 

A different model reduction technique was developed by Carlson et al.123 in which the partial 

differential equations (PDEs) of motion for an F-16 similar aircraft were generalized using proper 

orthogonal decomposition (POD) modes derived from high-fidelity flight simulations of the 

maneuvering aircraft. The PDEs considered contained both linear and bi-linear terms in order to 

model some nonlinear behaviors including post-stall and aeroelasticity effects. Comparison of the 

reduced model and Kestrel124,125 flight simulation results showed good agreement, but with some 

loss of high-frequency dynamics. 

 

1.2.8 Aeroelastic Stability of Pressurized Cylindrical Shells 

In the experimental and analytical work of Olson and Fung,126 a low-aspect ratio cylindrical 

copper shell was exposed to supersonic flow ranging from Mach 2.5 to 3.5. The behavior of the 

shell’s flutter motion was studied and the effect of internal pressure and axial load on the flutter 

boundary was investigated. It was found that the nonlinear geometric behavior of a cylindrical 



20 

 

shell induced a series of circumferentially travelling waves whose amplitudes eventually grow at 

the onset of flutter.127 Axial load reduced the flutter boundary until the shell buckled, later 

reproduced by Barr and Stearman128 and Bismarck-Nasr.129 After buckling, the new corrugated 

shape was stable. Internal pressure was shown to initially have a destabilizing effect, reducing the 

flutter boundary, but stabilized the shell at sufficiently high pressures. Early analytical solutions 

based on shallow shell theory were unable to reconcile the destabilizing and then restabilizing 

behavior observed in experiments.126 

Evensen and Olson127,130 later refined the analysis of the cylindrical shells using a nonlinear 

four-mode approach to study the limit cycle oscillation and traveling circumferential waves.126 The 

works of Barr and Stearman128,131 and later Amabili and Pellicano132,133 showed how shell 

imperfections can account for the disagreement between theory and experiment and that the 

application of nonlinear piston theory did not appear to affect the onset of flutter. 

Several works have also studied the application of finite element methods and were 

summarized by Bismarck-Nasr.134 Sabri and Lakis135 appears to be the most recent study which 

focused on the development of a finite element specialized for circular cylindrical shells. Sander’s 

thin shell theory was used to determine displacement fields from exact solutions of the governing 

equations after which the classical finite element method was applied. The resulting flutter 

boundary predication was an improvement over past analysis,126 but failed to reproduce 

experimental results. 

 

1.3 Objectives of this Dissertation 

As the previous section shows, many advances have been made in the literature toward the 

efficient modeling of individual aerothermoelastic disciplines and some coupled. However, a 
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unified framework for modeling HSVs has yet to be established and shown to model accurately 

full six degree-of-freedom flight for general-purpose analyses. It is therefore the objectives of this 

thesis to 

1. enhance an aerothermoelastic reduced-order model framework capable of producing 

numerically efficient flight simulations of supersonic and hypersonic vehicles. This 

framework was outlined by Falkiewicz and Cesnik136 with preliminary development 

performed by Frendries et al.33,39,40,137 Generalization of this framework for all high-speed 

vehicles will be carried out and comparisons made to classical methods for verification. 

2. develop an all-in-one reduced-order model to simulate aero-servo-thermo-elastic HSVs 

faster than real-time. While the framework previously described may be efficient on a 

model-by-model basis, moderate to tight coupling still requires online convergence 

iterations present computational overhead and increases processing time. Estimation of the 

HSV and a unified system relieves this overhead and accelerates processing. 

3. demonstrate the importance of temperature dependent material thermal properties for heat 

transfer systems and investigate modeling techniques to capture the property variations. 

Several surrogate modeling approaches will be compared and contrasted based on accuracy 

and computational cost. 

4. investigate the aeroelastic stability of pressurized vehicles on terminal trajectories and 

when maneuvering. 
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2. CHAPTER II       

Foundational Theory 

 

The theories that underpin this dissertation and were present at the onset of this study are 

overviewed in the context of the University of Michigan High Speed Vehicle Simulation 

Framework. These theories include analytical models of aerodynamics and aerodynamic heating, 

as well as model reduction techniques for heat transfer, structural dynamics, and thermoelastic 

coupling. Ramjet and scramjet models are also visited, which use combinations of the 

aforementioned theories along with models of combustion and heat addition. 

 

2.1 University of Michigan High Speed Vehicle Simulation Framework 

The simulation of high-speed flight vehicles involves the consideration of multiple, highly 

coupled disciplines. Each of these disciplines can be daunting to consider with a realistic level of 

fidelity individually, and combined, they present a virtually intractable problem that is extremely 

difficult to numerically integrate and analyze. An information flowchart of the discipline 

interactions is shown in Figure 2.1. The University of Michigan High Speed Vehicle (UM/HSV) 

framework strives to couple one or more families of reduced-order and surrogate models in order 

to simulate such high-speed vehicles. To reduce the numerical burden of individual disciplines, a 

suite of model reduction techniques are used to identify dominant modes of physical processes, 

determined from observations of high order solutions. When high order solutions are not available, 
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fundamental models may be used in their place. For especially complex systems where the 

underlying governing processes are not well understood or not readily condensed, surrogate 

models may be introduced which provide best-guess approximations to high fidelity solutions, but 

do not require the numerical overhead typically required. The three primary disciplines and their 

interactions are shown in Figure 2.2 along with the types of models available in this thesis to 

represent each process. 

 

 

Figure 2.1: Information flow between aerothermoelastic disciplines 
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Figure 2.2: Collar's triangle of aerothermoelastic processes with related models 

 

While it is possible to develop models for each discipline that apply to an entire vehicle, it 

may not be possible to emphasize the driving processes of a particular component of the vehicle 

without significantly increasing the numerical cost. Furthermore, not all models need be applied 
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2.2 Partitioned Solution Approach 

A primary feature of the simulation framework described in this thesis is the 

implementation of a partitioned approach to vehicle modeling and simulation.  In this approach, a 

vehicle is divided into a number of different components with uncommon aerothermoelastic 

characteristics.  A main body is chosen to provide a body-fixed frame for the flight mechanics 

portion of analysis.  At predetermined time intervals, the motion of the main body is transferred to 

attached components.  Each component’s behavior is then integrated independently before forces 

and moments at the interfaces are transferred back to the main body as shown in Figure 2.3. 

 

 

Figure 2.3: High-level overview of information exchange between partitioned domains 
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Furthermore, the partitioned approach permits entire components to be exchanged, removed, or 

isolated without affecting the operability of the others.  This enables fast trade studies for various 

component types and models of varying fidelity. 

 

2.3 Model Reduction and Surrogate Techniques 

In many cases, it is possible to reduce the order or number of degrees of freedom of a given 

dynamics formulation by identifying the underlying modes or trends of the system to be 

represented. This identification can be done through inspection of the dynamic equations, 

observation of the system behavior during integration, or some combination thereof. Once the 

dominant trends are determined, then they may be used to generalize the dynamic equations or 

used to fit some representative simple model. 

 

2.3.1 Modal Basis Projection 

Many dynamic systems may be represented in the form 

 

         M x t C x t K x t F t    , (2.1) 

 

where  x t  is a column matrix of some degrees of freedom (DOFs) to be tracked over the 

integration of t , M  is an inertial matrix which represents a systems resistance of changes to the 

DOF rates, C  is a damping matrix which represents a systems resistance to the DOF rates, K  is 

a stiffness matrix which represents how any one DOF influences the other DOFs, and F  is some 

external forcing represented by a column matrix. In a full- or high-order system, there may be 

hundreds of thousands to millions of unique DOFs to consider, which cause matrices M , C , and 
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K  to be prohibitively large for timely integration of the dynamics. However, in many cases, it is 

possible to identify or assume some basis set of vectors which approximates the DOFs as a sum of 

weighted mode shapes, i.e., 

 

   x t   , (2.2) 

 

where   are the mode shape weights which vary along t  and   is a matrix whose columns are 

constant mode shapes, i.e., 

 

 

 
1 2 m

   
   

 

 . (2.3) 

 

Critical to the reduction of the system is that the number of mode shapes m  is significantly smaller 

than the number of DOFs initially considered. Substituting (2.2) into (2.1) and pre-multiplying by 

T
  yields 

 

         
T T T T

M t C t K t F t             . (2.4) 

 

Multiplication of the matrices then yields 

 

  
T

M m    , (2.5) 
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T

C c    , (2.6) 

 

  
T

K k    , (2.7) 

 

     
T

F t f t   , (2.8) 

 

where the number of entries in m , c , and k  are significantly smaller than their full order 

counterparts and  f t  represents generalized forces to the newly defined basis set. Pictorially 

this process is shown in Figure 2.4. 

 

 

Figure 2.4: Visual representation of the reduction of system dynamics by modal projection 
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One may notice that in the fourth row of equation blocks in Figure 2.4, the generalized 

matrices have been diagonalized. This may be achieved by selection of orthogonal mode shapes 

for the basis set. This transforms the dynamic equations into a series of independent ordinary 

differential equations that can be easily processed compared to the full order, coupled equations. 

Selection of the appropriate basis set is highly dependent on the system that is to be represented 

and will be revisited in the following sections for the systems considered in this thesis. 

 

2.3.2 Kriging 

Kriging, sometimes called Gaussian process regression, is a statistical method for 

interpolating between n-dimension data samples through a combination of regression and 

correlation kernels.138,139 It provides a flexible and computationally efficient approximation that is 

particularly suited to numerical experimentation, where there is no random perturbations to the 

samples, by maintaining the ability to exactly reproduce the data points to which the response 

surface was fitted.140 A kriging model takes the form of 

 

       ˆ , ,
kr ig

y b R b X Z b X   , (2.9) 

 

where ŷ  is the kriging estimation of some output vector, b  is a vector of inputs for the sought 

kriging estimation, 
k r ig

R  is a chosen regression function, Z  is a chosen correlation function, and 

X  is a collection of training points to which the regression function was fitted and with which the 

correlation function weights determined. It is assumed that the underlying trends of the data 
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samples are determined by the regression function and that the mean error of the samples is zero 

about the fitted regression surface.141 Error corrections are then applied to the regression surface 

by way of correlation functions local to each data sample. Many regression functions can be used, 

but in many applications are considered as polynomials. Similarly, there are a wide selection of 

correlation functions from which to choose. Popular methods include Gaussian, exponential, 

spherical, spline, and linear distributions. For further details on the fitting of the regression 

coefficients and optimization of the correlation weighting parameters, the reader is encouraged to 

review the work by Sacks, Welch, and Mitchell.139 An interesting aside of the kriging method is 

that when the regression function is chosen to be a 0th-order polynomial that produces a constant 

mean value of the data samples, then the method reduces to another popular interpolation method 

know as radial basis functions. In this case, the correlation functions serve as the radial basis 

kernels and their weighting parameters specify the kernels’ range in the design space. 

 

2.4 Aerodynamic Models 

To determine the flow properties on the outer mold-line (OML) of a vehicle or body, an 

aerodynamic model is required. These models can range in fidelity and numerical cost from the 

simple and inexpensive Newtonian impact theory up to the expensive but accurate direct numerical 

simulation. Regardless of which aerodynamic model is used, the surface pressure, viscous traction, 

near-surface Mach number, and near-surface temperature must be determined. These flow 

properties will be used as the inputs to the thermodynamic and structural dynamic models 

described later in this chapter. 
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2.4.1 Newtonian Impact Theory 

For high Mach numbers and sharp leading edged vehicles where the shock lies close to the 

OML, Newtonian impact theory may be used. The utility of Newtonian impact theory is derived 

from the simplicity of its formulation. That is, the pressure coefficient is a function only of the 

local surface geometry and freestream as 

 

   
2

ˆ
P

c k u n   , (2.10) 

 

where u  is the freestream flow vector, n̂  is the unit normal to the local surface, and the coefficient 

k  is 2  in the classical Newtonian equation or the coefficient of pressure at the stagnation of the 

flow for a blunt body with a detached shock. However, this formulation only applies to surfaces 

that the flow can “see” and are not shadowed either by a surface upstream or on the leeward side 

of a body. For shadowed surfaces 

 

  0
P

c   . (2.11) 

 

The local pressure of a surface is then 
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2
P

p p u c
 

   , (2.12) 

 

where p


 and 


 are the freestream pressure and density respectively, and u  is the magnitude of 

the freestream flow velocity. 
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2.4.2 Shock-Expansion Theory 

For a planar panel exposed to a steady, inviscid, supersonic flow at an angle,  , measured 

between the panel and freestream flow vector, there are four possible solution types for 

determining the flow conditions on the panel. These flow types are shown in Figure 2.5. 

 

 

Figure 2.5: Panel flow solution types 

 

The first flow type is a detached shock, shown in Figure 2.5 a, which occurs when the 
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where 
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2

1 1

m a x

4
s in

b M c

a


  
  , (2.14) 

 

where 

 

  2

1
4a M   , (2.15) 

 

  1b    , (2.16) 

 

 
   

2 2

1 1
1 6 8 1c M M b    

 
 , (2.17) 

 

where 
m ax

  is the maximum attached shock wave angle, 
1

M  is the Mach number upstream of the 

panel, and   is the ratio of specific heats. To determine the ratio of conditions pre- and post-shock, 

one first determines the wave angle by 

 

 

  
m a x

m a x m a x

m a x

2




   
 



  


 . (2.18) 

 

Then the Mach number upstream and normal to the shock wave, 
1

n

M , is determined by 

 

  
1 1

s in
n

M M   . (2.19) 
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Using the normal shock relations, the ratios of the conditions pre- and post-shock are found to be 

 

 
 

 
2

12

1

2 1

1

n

Mp

p

 



 



 , (2.20) 

 

 
 

 

 

2

12

2

1 1

1

1 2

n

n

M

M



 




 
 , (2.21) 

 

 
 2 2 1

1 2 1

T p p

T  
  . (2.22) 

 

The second flow type is an oblique shock, shown in Figure 2.5 b, which occurs when the 

deflection angle,  , is between a maximum deflection angle, 
m ax

 , determined by (2.13) and 0°. 

To determine the ratios of conditions, one again first determines the wave angle approximated by 

the root of142 

 

  3 2
0X b X c X d     , (2.23) 

 

where 

 

  2
sinX   , (2.24) 
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 , (2.25) 
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 , (2.26) 

 

 
 

2

4

1

c o s
d

M


   . (2.27) 

 

As (2.23) is a cubic polynomial, it is expected that three roots exist. Of these roots, there is 

a complex pair and two real solutions. The complex pair solution is nonphysical. The greater real 

solution corresponds to the strong shock angle that manifests when the backpressure following the 

shock is unusually high. One takes the lesser real solution corresponding to the weak shock angle 

which is typical of supersonic flow on the outer surface of a vehicle. With the wave angle,  , 

determined, (2.19), (2.20), (2.21), and (2.22) may be used to determine the ratios of flow properties 

across the shock. 

The third flow type is an expansion fan, shown in Figure 2.5 c, which occurs when the 

deflection angle,  , is between 0° and minimum deflection angle, 
m in

  , determined by 

 

   m in 1 m in
M     , (2.28) 

 

where 
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    
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 
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 , (2.29) 

 

 
 

m in
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2 1

 




 
    

 , (2.30) 

 

To determine the ratio of flow properties across the expansion fan, one determines the 

Mach number,  
2

M , following the expansion using 

 

     1 2
M M     , (2.31) 

 

where the Prandtl-Meyer function,   , is given in (2.29). Since a flow expansion is isentropic, 

once the post-expansion Mach number, 
2

M , is known, the isentropic relations yield 
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The fourth flow type is separated flow, shown in Figure 2.5 d, which occurs when the 

deflection angle,  , is less than the minimum deflection angle, 
m in

 , determined by (2.28). In this 

scenario, the supersonic flow is unable to expand quickly enough to remain flush with the panel 

and instead juts off at an angle equal to the minimum deflection angle, 
m in

 . The region in contact 

with the panel is typically highly turbulent and low pressure. Accurate description of this region 

is beyond the scope of the basic engineering theory used in this section. Thus it is assumed that in 

regions of supersonically separated flow, the pressure, 
2

p , temperature, 
2

T , and density, 
2

 , are 

zero. 

 

2.4.3 Piston Theory 

The term “piston theory”, as used in this section, refers to any method for calculating the 

aerodynamic loads in which the local pressure generated by the body’s motion is related to the 

local normal component of fluid velocity in the same way these quantities are related at the face 

of a piston moving in a one-dimensional channel. In general, piston theory may be employed for 

high flight Mach numbers or high reduced-frequencies of unsteady motion, whenever the surface 

involved is nearly a plane and not inclined too sharply to the direction of the free stream. The 

foregoing shape conditions are fulfilled by all but the immediate tip (and possibly leading edge) 

regions of most supersonic wings. In most aeronautical applications, the normal component of 

fluid velocity is the given quantity and the surface pressure is the unknown to be determined, so 
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that a point-function relationship between the two is a great convenience. These observations, 

coupled with the fact that arbitrary small deformations and arbitrary time-dependent unsteady 

motions can be taken into account, make piston theory a powerful tool for analyzing high-speed 

problems. 

 

 

Figure 2.6: Piston in a one-dimensional channel 

 

Figure 2.6 depicts a piston moving with velocity  u t  in the end of a channel containing 

perfect gas, whose undisturbed pressure, density, and speed of sound are p


, 


, and a


. 

Provided that the piston generates only simple waves, the darkly shaded region of Figure 2.6, and 

produces no entropy change, the exact solution for the instantaneous pressure,  p t , on its face 
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Depending on the magnitude of the ratio, /u a


, (2.35) may be approximated by the linear relation 
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   , (2.36) 

 

by its second-order binomial expansion 
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or by its third-order expansion 
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 . (2.38) 

 

Reasoning from a suggestion by Hayes,143 Lighthill144 pointed out that (2.38) can be used 

with excellent accuracy even under non-isentropic conditions to calculate the pressure on an airfoil 

in steady or unsteady motion whenever the flight Mach number has such an order of magnitude 

that 2
1M . An additional limitation is that the product of M   cannot be too large, where   is 

the thickness ratio of the airfoil or the ratio of the maximum amplitude of unsteady motion to 

airfoil chord length. 

At hypersonic flight speeds, one can imagine a column of air passing over a sharp edged, 

narrow-bodied vehicle as remaining essentially intact, providing an analog to the one-dimensional 

channel of air. The boundary of the vehicle then acts as the piston face advancing into and 

retreating from the flow. 
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Figure 2.7: Shaded columns of air as they flow past a slender body 

 

Figure 2.7 depicts a hypersonic diamond airfoil passing through a series of air columns. As 

the airfoil presses into each column, a darkly shaded compression wave is formed and moves along 

the air column. After mid-chord, the airfoil retreats from the column and a lightly shaded set of 

expansion waves are formed and also move along the air column. The speed, w , which the airfoil 

surface moves into the air columns is 
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where   is the deflection angle due to an inclined surface and 
u

u  is any unsteady motion of the 

surface due to vibration, vehicle maneuvers, etc., which is handled on a case-by-case basis 

depending on the type of analysis performed. The local surface pressures can then be solved using 

(2.38). Note that a sharply inclined surface, such that the piston speed is greater than or equal to 
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the speed of sound, w a


 , exceeds the scope of piston theory since it is assumed that only simple 

waves are generated. 

 

2.4.4 Shock-Expansion Theory with Unsteady Piston Theory Correction 

To overcome the limitation of piston theory for a steeply inclined panel whose normal 

velocity component exceeds the speed of sound or highly unsteady motions where 
u

u  of (2.39) 

exceeds the speed of sound, a combination of the shock-expansion theory previously described 

and an unsteady correction term derived from piston theory may be used. Given a planar surface 

inclined to a supersonic flow, one of the four shock-expansion scenarios previously described and 

shown in Figure 2.5 will exist and may be used to determine a steady component of the 

aerodynamic pressure on the surface. In all scenarios except the separated flow, where the speed 

of sound at the surface is undefined due to the lack of medium, once the flow is processed by the 

leading shock or expansion, piston theory may be applied given the local speed of sound and 

density as shown in Figure 2.8. 

 

Figure 2.8: Steady shock and expansion scenarios with unsteady piston theory corrections 
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To determine the steady component of the pressure and local flow conditions, one of the 

following equation sets in Table 2.1 are used. 

 

Table 2.1: Equation sets to determine steady pressure and surface local flow properties 

Scenario Equations 

Detached shock  m ax
9 0       (2.14), (2.20), (2.21), and (2.22) 

Oblique shock  m ax
0      (2.23), (2.20), (2.21), and (2.22) 

Expansion fan  m in
0       (2.31), (2.32), (2.33), and (2.34) 

 

Once the steady component of the pressure is determined, (2.38) may be modified slightly to40 
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 , (2.40) 

 

where 
2

  and 
2

a  are the local flow density and speed of sound respectively after the flow is 

processed by the leading edge wave system. The local speed of sound, 
2

a , is determined by 

 

  
2 2

a R T  , (2.41) 

 

where 1 .4    is the ratio of specific heats for air as an ideal gas, but approaches 1 when real gas 

effects are taken into account, and 2 8 7 .1R   J/kg/K is the specific gas constant for air, but may 

also change if dissociation and ionization modify the flow species interacting with the surface. The 

overall pressure on the surface accounting for both steady and unsteady effects is then 
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 , (2.42) 

 

2.5 Aerodynamic Heating Models 

Once the surface flow conditions are determined by the aerodynamic models and the 

temperature of the vehicle OML is known or assumed, the surface heat flux may be determined. 

Two primary regions of a given vehicle often require unique aerodynamic heating models. The 

first region is the stagnation point and is usually where the greatest heat flux is experienced. Here 

the flow is processed by a nearly normal shock wave close to the surface of the vehicle, creating a 

nonequilibrium flow, meaning that flow chemistry is particularly important. The second region is 

the bulk of the body, where the flow direction is nearly parallel to OML in any given location. 

Here the behavior of the boundary layer is most important and governs the heat flux to the OML. 

 

2.5.1 Eckert Reference Temperature 

With the Eckert reference temperature method, variations in the flow properties across a 

boundary layer are accounted for by a reference temperature which is used to determine integrated 

properties through the thickness of the boundary layer. The precise profile of the properties cannot 

be determined with this method, but this approach has been shown to provide surface quantities 

such as skin friction and heat transfer with acceptable accuracy.145 

 To begin, the static pressure p , Mach number M , and static temperature T  local to each 

panel of the OML is determined from the aerodynamics model any time the surface heat flux is 

required. These values are treated as the outer flow conditions of a turbulent boundary layer. A 
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turbulent boundary layer is assumed due to the yet unknown transition characteristics of the flow, 

and thus provided a worse-case scenario for the heat transfer. This lead to a recovery factor of 

 

 1/ 3
P r

f
r   , (2.43) 

 

where P r  is the Prandtl number which is assumed to be constant at 0 .7 . By definition, the recovery 

temperature is 

 

  0r f
T r T T T    , (2.44) 

 

which allowed Eckert’s reference temperature to be found as 

 

    
*

0 .5 0 .2 2
w r

T T T T T T      , (2.45) 

 

where 
w

T  is the local wall temperature on the OML. The reference boundary layer flow properties 

are 
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 , (2.47) 
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 *

*

*
R e

u x


  . (2.48) 

 

Here the reference density *
  is found using the ideal gas law. The reference dynamic viscosity 

*
  is found using Sutherland’s law of viscosity with Sutherland’s reference temperature 

2 8 8  K
re f

T   and Sutherland’s constant for air 1 1 0  KS  . The reference Reynolds number *
R e  is 

then determined by definition using the local steady flow velocity u  outside of the boundary layer 

and distance along the body from the stagnation point, x . The coefficient of skin friction was then 

determined by the Blasius relation for * 6
R e 4 .5 6 1 0  ,146 

 

 

 
0 .2

*

0 .0 5 9 2

R e
f

c   , (2.49) 

 

and the Schultz-Grunow equation147 for * 6
R e 4 .5 6 1 0  , 

 

 

 
2 .5 8 4

*

1 0

0 .3 7

lo g R e
f

c   . (2.50) 

 

The recommended Reynolds number to transition between the skin friction models is 107 by 

Arthur, Schultz, and Guard,147 however for the work presented in this thesis, this threshold is 

adjusted to have a continuous transition between the models. Both models are necessary since a 

vehicle 1 to 10 meters in length, traveling at low hypersonic velocities, and stratospheric altitudes 
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will encounter Reynolds numbers on the orders of 106 to 108. The Stanton number is determined 

by the Colburn-Reynolds analogy, 

 

 
2 / 3

S t P r
2

f
c

k


  , (2.51) 

 

where k  is a geometry dependent coefficient. For a flat plate 1k  , and for a cone 1 .2 8k  , as 

shown by Young and Van Driest.148 The heat transfer coefficient can be found from the definition 

of the Stanton number 

 

 *
S t 

h p
c c u  , (2.52) 

 

where the constant pressure specific heat capacity 
p

c  can be found using the simple harmonic 

vibrator model for air 

 

 

 
 

  

*2

2*
*

e x p /1
1

e x p / 1

p p
p e r f

T
c c

T
T





  
    
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 , (2.53) 

 

where   1 0 0 6  J /K /k g
p

p e r f

c   is the constant pressure specific heat capacity of calorically perfect 

air and 2 7 7 8  K   is the characteristic temperature of the diatomic vibrational mode of air. 

Finally, the heat flux to the surface is given by 
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    
4 4

h r w w
q c T T T T 


     , (2.54) 

 

where 8 2 4
5 .6 7 0 4 1 0  W /m /K


   is the Stefan-Boltzmann constant,   is the emissivity of the 

surface material, and T


 is the far-field freestream temperature from the 1976 standard 

atmospheric model,149 thus accounting for the conductive and radiative heat transfer. 

 

2.5.2 Fay-Riddell Stagnation Heating 

While the Eckert reference temperature method is well suited for regions of the vehicle 

where the flow is nearly parallel to the surface, it fails to provide accurate heat flux estimates when 

the surface is steeply inclined to the flow, such as around the stagnation point and on the leading 

edges of wings. In these regions, it is considerably better to use the Fay-Riddell heat flux 

equation.150,151 

To begin, one must first determine if the flow near the stagnation point is frozen or at 

equilibrium. It is very likely that the flow is in neither of these conditions, but solution to a non-

equilibrium flow that has only partially relaxed its energy modes is beyond the scope of this simple 

formulation. To determine the flow properties just beyond the shock if the flow is considered 

frozen, the normal shock relations of (2.14), (2.20), (2.21), and (2.22) may be used. If the flow is 

considered to be at equilibrium, then the post-shock temperature 
2

T  may be used as an initial guess 

to a convergence problem match the flow enthalpy h , which is conserved across the shock, since 

the pressure-specific heat capacity 
p

c  is a function of temperature 
2

T , i.e., 
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  2 2p
h c T T  . (2.55) 

 

The NASA thermodynamic coefficients data tables152 may be used to approximate the heat 

capacity as 
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  , (2.56) 

 

where 
u

R  is the universal molar gas constant, each o  is an empirical coefficient from the NASA 

data tables,152 and 
W

M  is the molecular weight of the gas species. Once 
2

T  and 
p

c  have been 

determined, other post-shock flow properties may be determined by 
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The stagnation properties are then determined by the isentropic relations, i.e., 
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Sutherland’s formula (2.47) is then used to determine the stagnation flow viscosity 
0

  and wall 

flow viscosity 
w

  using the stagnation temperature 
0

T  and wall temperature 
w

T , respectively. The 

density of the flow at the wall is then determined by 

 

 
2

w

w

p

R T
   , (2.64) 

 

Next, the flow velocity gradient near the stagnation point is assumed to be the modified Newtonian 

flow solution over a hemisphere, i.e., 
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where r  is the radius of the hemisphere. Finally, the Fay-Riddell heat flux equation is used to 

determine the heat flux as153 

 

 
       

0 .1 0 .4 0 .5 4

0 0 00 .6

0

0 .7 6 3
1 1

P r

D

w w w

h d u
q L h h

h d x
   

 
    

 

 , (2.66) 

 

where the Fay-Riddell Lewis number is assumed 1L   for an atom-molecule mixture and the 

dissociation enthalpy is taken to be 2 4 .6 5 7
D

h   MJ/kg for air. 

 

2.5.3 Stanton Number Kriging 

When the properties of the flow and surface temperatures are known over a body, the 

Stanton number S t  may be used to determine the surface heat flux due to aerodynamic heating 

a ero
q  by154 

 

        0
, , S t , , , ,

a ero p w
q x y t c u x y t T x y t T

 
   

 , (2.67) 

 

where 
p

c  is the constant pressure heat capacity, u


 is the freestream velocity, 


 is the freestream 

density of the flow, 
w

T  is if the surface temperature of the body, and 
0

T  is the total temperature of 

the flow. To model the Stanton number, the work of Crowell and McNamara155 is considered, in 

which a kriging surrogate model is trained on CFD solution samples. 

A flowchart of the process used to model steady CFD data is provided in Figure 2.9. First, 

the input parameters and bounds for the steady model are established. Latin hypercube sampling 
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(LHS) is then used to identify a diverse set of sampling points. Next n K  sample 

aerothermodynamic responses are computed from CFD solutions to the Navier-Stokes equations 

at each of the sample points; n  sample points for model construction, and K  sample points for 

evaluation. If further accuracy is desired, more sample responses are added and the process is 

repeated. 

 

 

Figure 2.9: Schematic of the process for modeling steady CFD data155 

 

2.6 Thermal Models 

The heat flux on the OML serves as the boundary conditions to the heat transfer problem in 

which the internal temperature distribution of a structure is determined. The method of finite 
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elements is the standard approach to solving for the internal temperature, but can be too 

computationally costly to perform quickly for a realistic structure. In this section, model reduction 

techniques are described to simplify the governing equations while sacrificing as little accuracy as 

possible. The nonlinear effects of temperature dependent material properties are also considered. 

 

2.6.1 Thermal Basis Identification 

To reduce the order of the thermal model, the work of Falkiewicz and Cesnik35 is 

considered which expresses the temperature distribution of the vehicle structure as the sum of a 

small number of basis vectors multiplied by time varying coefficients, i.e., 
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 , (2.68) 

 

where 
i

T  is the temperature of the ith of s nodes in the structure model,  j
c t  is the jth of r time-

varying coefficients of the thermal basis vectors, and 
 j

i
  is the ith entry of the jth thermal basis 

vector. To determine the thermal basis vectors  , the method of snapshots is used. With the method 

of snapshots, a high-fidelity thermal model is simulated using finite element analysis (FEA) 

software. Given a surface heat flux derived from the aerodynamic and aeroheating models, a 

transient heat transfer solver can be used to simulate the thermal state forward in time. Snapshots 

of the temperature of each node in the finite element model (FEM) are taken at prescribed time 

intervals and used to form the snapshot matrix 
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where each column is a vector of the FEM nodal temperatures at a single moment in the simulation, 

 j

i
T  is the ith of s node temperatures at the time the jth of n snapshots of the thermal state. A 

correlation matrix C , is then formed from the snapshot matrix A  as 

 

1 T
C A A

n
  . (2.70) 

 

The eigenvectors and eigenvalues of the covariance matrix C  are found from 

 

C s s  , (2.71) 

 

where s  is a matrix whose columns are the eigenvectors corresponding to the entries of the 

diagonal matrix   which contains the eigenvalues of C  arranged in decreasing magnitude. The 

thermal basis vectors are then determined as 
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where 
k

  is the kth thermal basis vector, n is the number of snapshots originally taken, 
k

  is the 

kth diagonal entry of the eigenvalue matrix, and 
k

s  is the kth column of the eigenvector matrix. 

Arranging the base thermal modes as the columns of a matrix gives the thermal basis matrix,  , 
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Note that n thermal basis vectors are determined since n thermal snapshots were considered by the 

snapshot matrix. With this thermal basis matrix, the snapshot matrix may be reproduced exactly 

as72 

 

A    , (2.74) 

 

where   is an n-dimensional square matrix of coefficients of the thermal basis vectors 
k

  which, 

when summed, reproduce the thermal state at that time. Thus, row k of   is a time history of the 

magnitude of basis 
k

  during simulation at each of the original snapshots. 

 To reduce the order of the thermal basis matrix, consider that 
1

  is the largest magnitude 

eigenvalue and thus 
1

  contains the most dominant thermal basis. Correspondingly, 
n

  was the 

smallest magnitude eigenvalue and 
n

  contains the least dominant thermal basis. Truncating the 

thermal basis matrix by removing the least dominant thermal modes allows one to reduce the 

number of thermal degrees of freedom while preserving the most dominant features of the thermal 

state, 
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 , (2.75) 

 

where   is the truncated thermal basis matrix. By truncating the thermal basis, one loses the 

ability to reproduce exactly the snapshot matrix. However, the snapshot matrix can still be 

approximated by 

 

A c   , (2.76) 

 

where c  is now an m by n matrix of the coefficients of the truncated thermal basis vectors. The 

error incurred by truncation of the thermal basis matrix may be interpreted as the relative energy 

lost 
re l

  by projecting the snapshot matrix A  of n dimension onto the m dimensional space spanned 

by the truncated thermal basis matrix  , given by156 
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2.6.2 Generalization of the Thermal Problem 

Once an appropriate thermal basis is determined, one may generalize the governing system 

of equations for the thermal problem 

 



56 

 

           M T t T t K T t T t F t   , (2.78) 

 

into 
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where 
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T

f t F t   , (2.82) 

 

and where  M T  and  K T  are the thermal capacity and conductivity matrices, each a function 

of the time varying temperature vector  T t , and  F t  is the time varying thermal load vector. 

 

2.6.3 Numerical Integration 

To numerically integrate the generalized thermal problem forward at discrete times 
n

t  and 

1n
t


, separated by the time interval t  , the Crank-Nicolson algorithm is considered due to its 

known unconditional stability for both linear and nonlinear heat conduction systems.157 This 

results in 
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   
   

1

1

1

2 2 2

n n

n n

f t f tk m k m
c t c t

t t







    
        

     

 . (2.83) 

 

2.7 Structural Dynamics Models 

A variety of reduced structural model methods are described which together fit the 

framework of a partitioned approach to simulating structural dynamics. Elastic equations of motion 

for free-free and displacement driven structures are generalized by modal bases. 

 

2.7.1 Ritz Modes Generalization of Free Structures 

Application of the partitioned approach creates two distinct types of elastic model 

requirements. For the main body, the elastic model is a free structure that will have forces imposed 

upon it by the interfaces to the sub-bodies, aerodynamic pressures, and thermal stresses. To reduce 

the order of a free structural model, the structural equations of motion may be generalized by a 

basis of assumed mode shapes. These shape bases are often composed of free-vibration modes and 

can be enhanced by including static loading shapes which capture deformation due to specific 

loading conditions of interest36 or higher-order mode shapes which capture geometric 

nonlinearities.158–160 Consider the undamped full-order structural dynamic equations 

 

     M x t K x t F t   , (2.84) 

 

where M  is the mass matrix, K  is the stiffness matrix, F  is the load vector, ( )x t
 
are the physical 

degrees of freedom, and t  is time. The free-vibration mode shapes may be determined from the 

solution of the eigenproblem 
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 
2

0
j j
M K     , (2.85) 

 

where 
j


 
is the frequency and 

j
  is the corresponding jth mode. Truncation of the shape bases is 

carried out by excluding modes outside of some frequency range of interest. The physical degrees 

of freedom are then expressed as a linear combination of these modes such that 

 

     
1 n

x t d t d t
  

   
 

 , (2.86) 

 

where   is the modal matrix whose columns are the mode shape column vectors  . Substituting 

(2.86) into (2.84) and pre-multiplying by T
  yields 

 

     
T T T

M d t K d t F t        , (2.87) 

 

     S
m d t k d t f t   , (2.88) 

 

where the modal terms m , k , and f  have lower rank compared to their full-order counterparts. 

 

2.7.2 Displacement Driven Structures 

The second elastic model requirement created by the application of the partitioned 

approach is for a model that can take in prescribed accelerations and displacements and return the 
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forces and moments in response to that motion and other external forces. For a sub-body with 

prescribed accelerations and displacements at selected degrees of freedom (DOFs), r , the 

equations of motion can be partitioned as 

 

   

   

r r r u r r r r u r r

H A

u r u u u u r u u u u u

M M x K T K T x F

M M x K T K T x F F

        
        

        

 , 
(2.89) 

 

where 
rr

M , 
ru

M , 
u r

M , and 
u u

M  are the physical mass matrices, 
r

x  and 
u

x  are the physical degrees 

of freedom,  
H

F T  is the load vector due to heating,  
A

F t  is the load vector due to aerodynamic 

pressure, the subscript r  corresponds to the restrained DOFs (those with the prescribed 

accelerations and displacements), and the subscript u  corresponds to the unrestrained DOFs (those 

without prescribed accelerations and displacements).  The modified stiffness matrix,  K T  , is 

given by 

 

     C G
K T K T K T   , (2.90) 

 

where  C
K T  is the conventional stiffness matrix that varies due to the temperature-dependence 

of the material properties and  G
K T  is the geometric stiffness matrix resulting from thermal 

stresses.  In this formulation, the equations of motion for the unrestrained control surface DOFs 

are cast in terms of the elastic displacements relative to the constraint motion caused by the 

enforced displacements at the restrained DOFs.  The term “constraint motion” refers to the 

displacements that the structure would undergo if the prescribed motion were applied statically 
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and inertial effects were not present.  Note that the term “constraint motion” is specifically used 

instead of “rigid body motion” because the number of DOFs with prescribed motion is greater than 

that required to constrain rigid body motion in this case.  Such a formulation is advantageous 

because the constraint motion is accounted for separately and the equations of motion are 

associated only with the elastic response, the structural modal matrix does not need to be modified 

to include constraint modes.  Therefore, the sub body modal matrix is composed only of elastic 

modes in this formulation.  The first step is to calculate the constraint motion due to enforced 

motion at the unrestrained DOFs, denoted by C

u
x  .  This quantity is obtained by neglecting inertial 

loads and external loads in the second row of (2.89) and solving for 
u

x , i.e., 

 

 
1C

u u u u r r r
x K K x U x



    , (2.91) 

 

If the number of DOFs with prescribed motion were exactly equal to the minimum number of 

DOFs required to constrain rigid body motion, the columns of U  would represent rigid body 

modes.  Because in this case the number of DOFs with prescribed motion is greater than that 

required to constrain rigid body motion, the columns of U  represent constraint modes. 

The next step is to derive the equations governing the elastic deformation of the 

unrestrained DOFs, E

u
x , relative to the constraint motion.  Expanding (2.89), one obtains 

 

rr r ru u rr r ru u r
M x M x K x K x F     , (2.92) 

 

H A

u r r u u u u r r u u u u u
M x M x K x K x F F      . (2.93) 
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Recall that the total motion of the unrestrained DOFs is the sum of the constraint motion plus the 

elastic motion, i.e., 

 

C E

u u u
x x x   . (2.94) 

 

Substituting (2.94) into (2.93), one obtains 

 

   
C E C E H A

u r r u u u u u r r u u u u u u
M x M x x K x K x x F F        , (2.95) 

 

and using (2.91) in (2.95), the system becomes 

 

   
1 1* E E H A

u r r u u u u u r r u u r r u u u u u r r u u u
M x M K K x x K x K K K x x F F

            
    

 . 
(2.96) 

 

Bringing all terms associated with the restrained DOFs to the right-hand side of (2.96), the equation 

becomes 

 

   
1 1E E H A

u u u u u u u r r u u u u u r r u r r u u u u u r r u u
M x K x M x M K K x K x K K K x F F

 

         , (2.97) 

 

and simplifying the right-hand side of (2.97) results in 
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 
1E E H A

u u u u u u u u u u u r u r r u u
M x K x M K K M x F F


     
 

 . (2.98) 

 

The relation given by (2.98) is the system to be solved for the relative elastic motion of the 

unrestrained DOFS, E

u
x .  Note that the solution to (2.98) requires only the accelerations of the 

restrained DOFs, 
r

x , and not the displacements.  However, 
r

x  is required to compute the 

constraint motion, C

u
x . 

 

2.7.3 Ritz Modes Generalization of Displacement Driven Structures 

As with the free main-body, due to the large number of degrees of freedom typical of sub 

body structures, direct solution of (2.98) within the aerothermoelastic sub-body framework is not 

desirable.  A common approach to reduce the order of such a system is to employ a modal 

transformation in which the structural displacements are expressed as a linear combination of a 

small number of basis vectors that are the free vibration mode shapes of the structure.  However, 

this approach cannot be applied directly for (2.98) as the mode shapes change over time due to 

modification of the stiffness from geometric stiffness and material degradation effects associated 

with temperature changes.  The approach taken in this work follows the approach introduced in 

Falkiewicz and Cesnik.36 It first performs an off-line calculation to select a reduced number of Ritz 

modes based on free vibration modes and load-dependent Ritz vectors evaluated at a reference 

thermal state.  These Ritz modes are then used as the modal basis for solution of the structural 

response throughout the simulation.  This procedure is applicable as the Ritz modes need only to 

satisfy the geometric boundary conditions,161 which will always be the case regardless of the 

stiffness distribution.  The modal matrix containing the structural reference modes,  , is held 
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fixed throughout the simulation, thus preventing the need to solve an eigenvalue problem of the 

full system as time evolves.  Though the reference modes will not be updated throughout the 

simulation, the stiffness matrix will be updated each time the structural dynamic response is 

calculated to account for temperature-dependent material properties and geometric stiffening.  

Updating of the conventional stiffness matrix is performed using the temperature-dependence of 

the material properties of the various materials.  The geometric stiffness matrix is updated by 

solving a static finite element problem based on the thermal loads from temperatures at the current 

time step and the material coefficients of thermal expansion.  As discussed previously, an 

important result of solving only for the elastic response in (2.98) is that the structural basis must 

only contain elastic modes.  Because the remainder of the motion is accounted for in (2.94), the 

structural modal matrix need not contain constraint modes. 

The reduced-order system is obtained by first representing the elastic motion,  
E

u
x t , as a 

linear combination of Ritz modes such that 

 

     
E

u
x t d t   , (2.99) 

 

where d  represents the modal coordinates of the Ritz modes which are stored as columns of the 

modal matrix,  .  Note that since the number of Ritz modes used in the model expansion is much 

less than the number of physical degrees of freedom in the model, the computational cost of the 

solution is reduced.  Once the modified stiffness matrix is known at a given time, the system is 

reduced by substituting (2.99) into (2.98) and pre-multiplying the system by T
  to project the 

system onto the basis, i.e., 
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              
1

,
T T T

u u u u u u u u u r u r r u
M d t K d t M K T K T M x t F t T


         
 

 , (2.100) 

 

where the net force,  ,
u

F t T , is defined as 

 

       ,
H A

u u u
F t T F T F t   . (2.101) 

 

The generalized mass matrix, 
u u

m , generalized stiffness matrix, 
u u

k , and generalized net force 

vector, 
u

f , are then identified from (2.100)  as 

 

  T

u u u u
m M    , (2.102) 

 

     
T

u u u u
k T K T    , (2.103) 

 

     , ,
T

u u
f t T F t T   , (2.104) 

 

and the reduced system in modal form is given as 

 

 
                

1

,
T

u u u u u u u u u u r u r r
m d t k T d t f t T M K T K T M x t


     
 

 . (2.105) 

 

As the mass of the structure is taken to be constant in this work, the reference modes are orthogonal 

with respect to the mass matrix and the generalized mass matrix, 
u u

m , reduces to the identity 
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matrix.  Since the modified stiffness matrix is continuously changing due to transient heating, there 

is no guarantee of orthogonality of the reference modes due to stiffness, and the equations are 

coupled.  As such, the reduced-order system of equations in modal space is integrated numerically 

to calculate  d t  at each aerothermoelastic time step. 

 

2.7.4 Integration Method 

The numerical integration method employed for the sub-bodies is similar to the Newmark-

  method except that the load vector is averaged over three time instants and the stiffness matrix 

is modified such that the dynamic equation of motion reduces to a static solution if no inertial 

effects or damping exist.162  The scheme uses a central finite difference representation for the 

velocity and acceleration at discrete times, given by 

 

 
  

   1 1

2

n n

n

A E

d d
d

t

 





 , (2.106) 

 

 
  

     1 1

2

2
n n n

n

A E

d d d
d

t

 

 



 , (2.107) 

 

where the superscript  n  refers to the time level.  The initial conditions, 
 0

d  and 
 0

d , are used 

to generate the vectors 
 1n

d


, 
 1n

u
f



 , and 
 n

u
f  for the initial time step, 0n  , i.e., 

 

  
     1 0 0

A E
d d d t



    , (2.108) 
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   1 1

u u u
f k d

 

  , (2.109) 

 

  
   0 0

u u u
f k d  . (2.110) 

 

Note that this formulation assumes that the initial acceleration for all points is zero (initial velocity 

is constant).  In order to maintain consistency with the central difference approximation for the 

modal accelerations, the enforced acceleration in (2.105),  r
x t  , is approximated at time level 

 n  using a central difference formula, i.e., 

 

 
  

     1 1

2

2
n n n

r r r

r

A E

x x x
x t

t

 

 



 . (2.111) 

 

Substituting the finite difference approximations of the velocities and accelerations, (2.106), 

(2.107), and (2.111), into the equations of motion, (2.105), and averaging the applied loads over 

three adjacent time instants, the equations of motion are re-written as 

 

  
     1 1

1 2 3 4

n n n

H d H H d H d
 

    , (2.112) 

 

where 
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1 2

1 1

3
u u u u

A E

H m k
t

 


 , (2.113) 

 

 

 

     
 

    

     

1 1

2

1 1
1

2

1

3

2

n n n

u u u

n n n

T r r r

u u u u u r u r

A E

H f f f

x x x
M K T K T M

t

 

 


  

 
   
  

 , (2.114) 

 

 
 

3 2

2 1

3
u u u u

A E

H m k
t

 


 , (2.115) 

 

 
 

4 2

1 1

3
u u u u

A E

H m k
t

  


 . (2.116) 

 

The vector of structural modal coordinates at the end of the time step, 
 1n

d


, is obtained by 

decomposing 
1

H  and applying it to the right-hand side of (2.112).  Once 
 1n

d


 is obtained, the 

total motion of the unconstrained degrees of freedom in physical space is computed via (2.91), 

(2.94), and (2.99) using 

 

  
 

 
   11 1 1n n n

u u u u r r
x K K x d

  

     . (2.117) 

 

2.7.5 Interface Forces 

Once the displacements of the unrestrained DOFs are known at a given time t , the force 

contribution due to the sub body motion, W

r
F , can be calculated at time t  by computing the quantity 
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ru r ru u
M x K x   from the first row of (2.89) and moving it to the right-hand side to treat as a forcing 

function acting on the main body at the interface.  This force contribution is computed using 

 

 
  

           1 1 1 1

2

2
,

3

n n n n n n

W u u u u u u

r ru ru

A E

x x x x x x
F t T M K

t

   

   
  


 , (2.118) 

 

where the accelerations of the unrestrained DOFs, 
u

x , are calculated using central difference and 

the displacements are averaged over three adjacent time instants in order to maintain consistency 

with the numerical integration scheme.  Once  ,
W

r
F t T  is known, it can then be passed to the 

main body equations of motion in order to update the loads.  In order to compute the net external 

force that the sub body exerts relative to the main body, /W B

r
F , the elastic motion of the unrestrained 

sub body DOFs relative to the interface DOFs is utilized.  Therefore, /W B

r
F  is given by 

 

   
/

,

W B E E

r ru u u T
F K x x    , (2.119) 

 

where 
,

E

u T
x  is the elastic deformation caused by thermal loads.  Note that 

,

E

u T
x  must be subtracted 

from E

u
x  because thermal loads are internal to the system and do not result in external forces being 

exerted on the main body. 

 

2.8 Thermoelastic Model 

Even after fixing the Ritz modes to be used throughout the simulation, repeatedly solving 

for the stiffness matrix given some thermal state at every time step is undesirable and may take 
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significant time to complete for each change to the thermal state. Instead, a surrogate model which 

can be solved on the order of a fraction of a second is desirable. Kriging is chosen for this section 

since it does not require a priori assumptions on the form of the full solution and is easily 

implement through the Design and Analysis of Computer Experiments (DACE) toolbox141 in 

Matlab®. This toolbox solves for the optimum tuning coefficient of the kriging surrogate through 

efficient maximum likelihood estimation, and provides several different options for regression 

models and correlation functions. 

Generation of the sample set is done by taking N  Latin hypercube samples of the parameter 

space that characterizes the thermal state of the structure. In this work, the thermal state is 

expressed through the summation of proper orthogonally decomposed (POD) thermal modes 

 ,
P O D

x y  with time-varying coefficients  c t , i.e., 

 

           1 ,1 ,
, , , ,

s P O D N P O D N
T x y t c t x y c t x y     . (2.120) 

 

Thus, the coefficients  c t  provide a parameterization of the thermal state. Bounding of the 

parameter space is accomplished by considering the range of temperatures of interest for the 

thermal model, which are typically taken to be between the minimum freestream temperature and 

maximum stagnation temperature of the flow for the entire flight regime of interest. For each of 

the N  samples, the stiffness of the structure is evaluated by solving a static FEM problem and 

then pre-multiplied by the modal matrix to determine the modal stiffness matrix. After the N  LHS 

samples have been collected and used to create the kriging model, an additional K  LHS samples 

are taken to evaluate the accuracy of the kriging model. If the accuracy in insufficient, the value 
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of N  is increased, the kriging model is recreated, and then reevaluated for accuracy until the some 

accuracy threshold determined by the researcher is met. This process is outlined in Figure 2.10. 

 

 

Figure 2.10: Flowchart of the thermoelastic kriging surrogate training 
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2.9 Propulsion Models 

Propulsion forces on the vehicle are estimated using one of two methods that are capable of 

modeling ramjet or scramjet performance. These methods range from a low-fidelity 1-D area ratio 

model with Rayleigh flow assumptions to a medium-fidelity 2-D method of characteristics model 

with flamelet chemistry. In either model, the flow conditions into the inlet of the propulsion system 

and the fuel-air equivalence ratio are used to determine the forces, moments, pressure field, and 

started condition. 

 

2.9.1 1-D Area Ratios with Heat Addition 

The flow path schematic used for the 1-D area ration model is shown in Figure 2.11 and 

was presented by Bolender and Doman27 and is similar to that used by Chavez and Schmidt.28  The 

conditions given at the engine inlet (station 1) are primarily determined by the Mach number and 

angle of attack at which the aircraft is flying.  These parameters determine, in part, the properties 

of the bow shock and reflected shock.  The flow through the diffuser is assumed isentropic. The 

two control variables that determine the thrust setting are the diffuser area ratio and the equivalence 

ratio.  The fuel-air equivalence ratio,  , effectively determines the change in total temperature 

that results from the combustion process.  Choosing   as a control parameter is the same as 

controlling the fuel flow, because one can calculate how much air is captured by the propulsion 

system.  Controlling 
d

A  allows one to modulate the Mach number and the static pressure of the 

air entering into the combustion chamber.  Ideally, the air remains supersonic to avoid significant 

ram drag penalties.  Because the air entering the combustor is supersonic, the heat release due to 

fuel combustion reduces the Mach number of the airstream that is passing through the engine.  
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Care must be taken to ensure that the amount of heat added does not thermally choke the combustor 

flow. 

 

 

Figure 2.11: Scramjet cross section27 

 

The first stage of the engine is the isentropic diffusor, which is represented by the isentropic mass 

continuity as 
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  , 
(2.121) 

 

where 
1

M  is the pre-diffuser Mach number, 
2

M  is the post-diffuser/pre-combustor Mach number, 

and 
d

A  is the diffuse area ratio.  The combustor is treated as a constant area, frictionless duct with 

heat addition.  The total temperature change in the combustor is governed by 
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(2.122) 

 

where 
2

0
T  and 

3
0

T  are the respective pre- and post-combustor total temperatures, 
p

c  is the specific 

heat capacity of air, 
f

H  is the lower heating value of the fuel, 
c

  is the combustor efficiency, 
s t

f  

is the stoichiometric fuel-to-air mass ratio, and   is fuel equivalence ratio.  Using the total 

temperature change, the post-combustor Mach number 
3

M  of the flow is given by 
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Using the pre- and post-combustor Mach numbers, the post-combustor pressure and temperature 

are determined by the Rayleigh line relations 
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where 
2

p  and 
2

T  are the pressure and temperature before combustion, and 
3

p  and 
3

T  are the 

pressure and temperature after combustion, respectively.  The final stage of the engine is an 
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isentropic supersonic nozzle.  Since it is assumed isentropic, it is also governed by (2.121).  

However 
1

M  is replaced by 
3

M , 
2

M  is replaced by the engine exit Mach number 
e

M , and 
d

A  is 

replaced by the nozzle area ratio, 
n

A .  Using momentum mechanics, the propulsive force 

magnitude, P
F , is determined by 
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 , (2.126) 

 

where 
a

m  is the engine inflow mass flow rate,   is the fuel-air ratio, 
e

u  is the flow’s exit velocity, 

u


 is the vehicle freestream velocity, 
e

p  is the exit pressure, p


 is the freestream air pressure, 
e

A  

is the engine exit area, and 
1

A  is the engine inlet area. 

 

2.9.2 2-D Michigan-AFRL Scramjet in Vehicle (MASIV) 

The MASIV code42 provides an analysis tool for air-breathing hypersonic vehicles.  The 

vehicle must have an approximately two-dimensional inlet and an approximately two-dimensional 

nozzle.  In other words, it is designed for analysis of vehicles with geometry similar to that of an 

X-43.  The primary purpose of MASIV is to analyze the thrust of the combined flow path.  This 

includes the inlet, isolator, combustor, and nozzle.  The code uses a two-dimensional 

implementation of the method of characteristics to determine the wave structure in the inlet and 

nozzle, and is the reason for the limitation of the vehicle geometry. 

The engine analysis is split into four parts: the inlet, the isolator, the combustor, and the 

nozzle.  When MASIV runs in scram mode, the isolator does not play a significant role.  Both the 

inlet and the nozzle rely on a two-dimensional flow analysis tool called Supersonic Aerodynamic 
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Model Using Riemann Interactions (SAMURI).  This mode is essentially a discretized and 

automated method of characteristics in which the fundamental quantities are shock waves, 

expansion waves, vehicle surfaces, and contact discontinuities.  Instead of relying on a grid and 

solving for the flow condition in each cell, SAMURI calculates where waves should occur and 

allows them to intersect.  Whenever two waves come into contact, a Riemann problem is solved, 

which results in two new waves and a contact discontinuity.  This technique is limited to two-

dimensional, supersonic flows, but it can analyze a wide variety of geometries within these 

constraints.  An example flow solution is shown in Figure 2.12. 

 

 

Figure 2.12: Mach 5 flow over two diamond airfoils colored by pressure43 

 

The combustor is analyzed using a quasi-one-dimensional technique that includes a model 

for three-dimensional mixing and uses flamelet chemistry.  This means that the calculation of the 
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state variables, i.e. pressure, temperature, mass fractions, etc., is done using one-dimensional 

ordinary differential equations.  However, the rate change of the mass fractions is calculated 

according to a model that captures the mixing of a fuel jet injected into an air crossflow. 

For brevity, the entire theory behind the MASIV code is not described here.  However, the 

reader is encouraged to read several papers written by the authors of the MASIV model. A detailed 

description of the inlet model is given by Dalle, Fotia, and Driscoll,41 and a similar description of 

the combustor model is given by Torrez et al.163 with a discussion of the ram-mode solver by 

Torrez, Dalle, and Driscoll.164 A paper dedicated to the scramjet nozzle presented by Dalle, Torrez, 

and Driscoll.165 Finally, Dalle et al.40 describes how these components may be integrated into a 

full vehicle model. 

Since the MASIV code analyzes only two-dimensional flow paths, yet the vehicles 

simulated by the UM/HSV code are three-dimensional, a vehicle is sliced leading to trailing edge 

at several span-wise locations as shown in Figure 2.13. 

 

 

Figure 2.13: Sample 2-D flowpath sections highlighted in red40 

 
  

 
  

  

 

 

a) 

AFRL Strike/Cruise Vehicle 

with three flowpath sections 

 
 

b) 

NASA Vision Vehicle 

with five flowpath sections 
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Each slice is used to create a two-dimensional model of the flow path, accounting for 

deformation of the main body, flight angles, and the freestream flow conditions.  The shape of the 

inlet, the cowl, and the nozzle are determined by creating a polygon with nodes at the intersections 

of the vehicle OML mesh edges and the cross section plane as shown in Figure 2.14.  It is important 

to note that the cross section plane is always oriented normal to the y-axis of the body frame.  This 

does not allow for the consideration of sideslip by the propulsion system, however is necessary to 

ensure that the flow paths provided to MASIV are truly two-dimensional. 

If the cross section plane intersects an OML face very close to one of the OML nodes, at 

least two cross section nodes will be generated that are very close together, as shown in Figure 

2.15.  If this happens, each cross section node does not contribute much definition to the flow path 

shape and in the event that the cross section nodes are extremely close, within numerical rounding 

error, a small ridge or step may be produced on the surface.  If the ridge or step is sharp enough, 

the SAMURI flow solver will create a small region of flow separation, with undefined flow 

properties that invalidate the overall force and moment calculations later performed by MASIV.  

To mitigate this computational limitation, cross section nodes that are within 1 millimeter of each 

other are reduced to a single node.  Once the cross section nodes of the inlet, the cowl, and the 

nozzle are determined, they are used to modify the MASIV default inlet and nozzle geometry 

variable structures. 

The isolator section is considered to be of constant area with only deformation along its 

length due to the main body.  The isolator flow path remains otherwise straight and a constant 

fraction of the total flow path length housed within the cowl.  The combustor section is allowed to 

deform in both length and angle of the expansion region so to join flush with the beginning of the 
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nozzle section.  As with the isolator, the combustor flow path otherwise remains straight and is the 

remaining length fraction housed within the cowl that is not occupied by the isolator.  Placement 

of the fuel injectors is left as the default MASIV locations. 

With the inlet, isolator, combustor, and nozzle flow paths determined, the sections are 

stacked end to end to form the overall flow path for a given cross section of the vehicle, as shown 

in Figure 2.16 b.  Note that the upper surfaces of the flow path polygons do not match the contour 

of the vehicle body.  Similarly, the lower surfaces of the cowl do not match the contour of the 

cowl.  This is because these surfaces do not contribute to the internal flow path shape and are 

ignored by MASIV during force and moment calculations.  The flow pattern solutions from 

SAMURI are shown in Figure 2.16 c for the inlet and nozzle sections. 

 

 

Figure 2.14: Generation of propulsion section nodes 
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Figure 2.15: Generation of cross section nodes near an outer mold line node 

 

 

Figure 2.16: Propulsion cross section creation process 
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To avoid double counting some pressure loads on the main body by considering both the 

main body aerodynamics and the propulsion models, two considerations were made.  First, the 

force and moment contributions by the inlet and nozzle are not included in the output of MASIV.  

Only the forces and moments generated by the isolator and combustor sections are taken from 

MASIV’s forces solutions.  Second, on the regions of the main body designated as either the inlet 

or nozzle, the surface pressures from the SAMURI flow solution are applied to the main body 

outer mold line.  Since the SAMURI pressure solutions exist only on the cross section planes used 

to determine the flow path geometries, pressures between the cross sections are interpolated using 

a cubic spline.
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3. CHAPTER III       

Theory Enhancements 

 

Enhancements to the theory are overviewed in this chapter. These include the development of 

a general surrogate modeling technique via singular value decomposition and singular vector 

regression, the addition of nonlinear material thermal property models when considering 

generalized heat transfer equations, model linearization techniques for aerothermoelastic systems, 

and a nonlinear state space model which can be used to quickly simulate highly nonlinear dynamic 

systems. A framework for a ramjet/scramjet propulsion surrogate model is also described along 

with a method of basis reprojection for a change of vehicle models due to stage separation. 

 

3.1 Singular Value Decomposition and Regression 

A method of surrogate model generation through singular value decomposition and function 

regression to right singular vectors is developed based on the work of Lillian, McDaniel, and 

Morton.166 The first step of this method is to produce a set of training samples from a system to be 

considered. These samples may be derived from any source so long as the system inputs and 

outputs are recorded in a consistent manner. It is also advantageous that the samples span the 

design space approximately uniformly for the best overall model accuracy; however, uniform 

sample spacing is not a mathematical requirement of this approach. Once collected, the training 

samples are arranged into a sample matrix S  by 
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where 
i

y  is the ith entry of m of output vector y  when given input vector 
 k

x  of s  samples to be 

considered. The input matrix d  is then formed by concatenating a constant vector of 1’s onto a 

permutation of the input vector entries. The length of the constant 1’s vector should be equal to 

the length of the input vectors. For the work presented in this thesis, permutations of the input 

vectors were limited to complete polynomials of the inputs, i.e., 
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where 
 k

j
x  is the jth entry of the kth input vector. The subscript appended to each of the input 

matrices (3.2) through (3.4) indicate the number of entries in the matrix for s  samples of input 

vectors with length n . Note that higher order polynomial representations of the inputs may be 

considered and follow the same multiplication pattern. Up to 6th-order is considered in this thesis. 

However, these input matrices become unwieldy to typeset and have been omitted for brevity. 

 Using singular value decomposition, sample matrix S  may be expressed as 

 

T
S U V   , (3.5) 

 

where U  is a square matrix whose columns are the left singular vectors of S ,   is a rectangular 

diagonal matrix of the singular values ranked in descending magnitude, and V  is a square matrix 

whose columns are the right singular vectors. Due to the arrangement of the samples in matrix S  

U  may be considered as a set of normalized basis matrices which can be used to construct the 

training samples y , whose magnitudes in each of the samples is given by T
V . Furthermore,   

gives the relative importance of each of the basis matrices in reconstructing the sample matrix. 

Provided the samples adequately populate the state space, then the bases of the sample matrices 
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may also be used to describe the state space as a whole. If there are a large number of states that 

result in a large number of basis matrices, then truncation of the bases may be performed by 

removing the least important bases according to the singular values contained in  . 

 The next step is to relate the right singular vectors of V  to the input vectors contained in 

d . A coefficient matrix 
svd

R  is defined using a least squares approach such that 

 

T

sv d
d R V  , (3.6) 

 

and determined by 

 

 
1

T

svd
R d d d V



  . (3.7) 

 

Now, given any unsampled input vector x  expressed as a vector of d  with a consistent 

permutation scheme as the training inputs d , an approximate sample matrix S  may be estimated 

as 

 

T

svd
S U R d   , (3.8) 

 

which contains the entries of the unsampled output y  corresponding to x . Due to the regression 

process, some information was lost and the training samples generally cannot be perfectly 

reproduced. However, the matrices U ,  , and T

svd
R  remain fixed after model construction and can 

be premultiplied into a single matrix T

sv d
U R . Estimation of any unsampled points may be 
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determined very quickly with a single matrix-vector multiplication by d . This operation is very 

amenable to modern-day graphical processing units (GPUs) and can be computed rapidly with 

vectorized array programing. 

 

3.2 Material Thermal Property Models 

As was noted in the thermal models section of the previous chapter, the thermal capacity 

and conductivity matrices that describe a heat transfer system are in general a function of 

temperature, depending on the material properties and temperature range to be considered. 

However, generalization of the heat transfer equations obfuscate the relationship between the 

thermal matrices and the thermal mode amplitudes. Yet, it is important that a thermal model can 

account for such dependencies. Three methods are considered to account for the temperature 

dependence of generalized material thermal properties. 

 

3.2.1 Least Squares Regression of High-Dimensional Polynomials 

The first method considered is to approximate each entry of the generalized thermal 

matrices using polynomials formed from the thermal mode coordinates, i.e. 

 

 1 1 1 1 2 1 1 1 1 1 2
1 1

T

ls r r r ls
B R c c c c c c c c c c c c c c R c   , (3.9) 

 

where 
ls

R  is a matrix of coefficients for each permutation of thermal mode coordinates 
i

c , where 

i  varies from 1  to r  for each thermal basis, and B  contains the entries of the thermal matrices k  

and m  stored as column vectors 
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The coefficient matrix 
ls

R  is determined by the solution to the least-squares problem: 

 

 
1

T

ls
R c c c B



  , (3.11) 

 

where c  is a matrix whose columns are vectors of the thermal mode coordinates for each snapshot 

expanded to include all powers and combinations of the modal coordinates desired for the 

polynomial to be fit and B  is a matrix whose columns are vectors of the entries of the thermal 

matrices k  and m  corresponding to each set of thermal coordinates. 

 

3.2.2 Kriging of Material Thermal Properties 

The second method considered to capture the variation of the thermal capacity and 

conductivity matrices with respect to the thermal modal coordinates,  m c  and  k c , is kriging.139 

To create the kriging model, a set of training samples of thermal conductivity and capacity matrices 

is produced from a heat-transfer FEM based on coordinates of the thermal modal basis. Selection 

of the modal coordinates is determined by Latin hypercube sampling167,168 (LHS) within thermal 

coordinate bounds determined by the extremes observed in the POD snapshot matrix previously 

described. Upon collection of a number of model training and testing samples, several Kriging 

models may be constructed based on different combinations of regression and correlation 

functions, many of which are available in the Matlab® DACE Toolbox.141 Each model can then be 

tested for accuracy in reproducing the test samples. 
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3.2.3 Application of Singular Value Decomposition and Regression 

For the application of determining the entries of the generalized thermal capacity and 

conductivity matrices, a sampling of the FEM solutions is first required. These can be taken using 

the same LHS as the Kriging ROM generation for direct comparison of the methods. A snapshot 

matrix S  is constructed with the entries of  k c  and  m c  as column vectors at each LHS point 

and may be represented as 
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where  
 ,

k

i j
m c  is the i,jth entry of the generalized heat capacity matrix m  when the temperature 

field is described by the kth temperature coordinates c . The SVD model approach is then applied 

as described in section 3.1. If the space spanned by the sample vectors is large, i.e. each snapshot 

contains a large number of degrees of freedom, the problem may be reduced by removing the 

smallest singular values in   as well as the corresponding columns of U  and V . In this way, 
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dimensions of the snapshots which are least important to the representation of S  may be neglected 

and the order of the eventual model is reduced. 

A correlation matrix 
svd

R  is determined which relates the basis amplitudes in V  to the 

thermal mode coordinates c  as previously described. Then, given any additional set of thermal 

mode coordinates c , not necessarily included in the snapshot matrix, estimated thermal matrices 

m  and k  may be found by 
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3.3 State Space Identification and Estimation 

Identification of the vehicle state space aims to represent the non-linear vehicle’s behavior 

in a linearized form, i.e., 

 

        e e
x t A x t x B u t u     , (3.14) 

 

where  x t  is a column vector of the vehicle’s n states,  u t  is a column vector of the vehicle’s 

p  control inputs, ( )
  denotes the derivative with respect to time, 

e
x  is a column vector of some 
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reference state, 
e

u  is a column vector of some reference control input, A  is the n n  linear time 

invariant state matrix, and B  is the n p  linear time invariant input matrix. Analysis of the 

matrices A  and B  is a common approach to study vehicle stability and is used heavily in the 

design of vehicle control laws. 

To determine the entries of the state matrix, it is first necessary to understand the meaning 

of each entry.  Of the n n  state matrix A , the i,j entry corresponds to the ith state’s derivative in 

response to a perturbation of the jth state away from a reference state.  Thus, each column of the 

state matrix contains the derivatives of all n  states in response to perturbation of the state 

corresponding to that column and is the Jacobian matrix of the equations of motion of the vehicle 

bodies. 

There are three primary methods for determination of such derivatives and are finite 

difference, complex-step, and symbolic differentiation.169  Symbolic differentiation will not be 

considered here due to a lack of tractability that comes from the simulation framework 

implementation architecture described later. 

 

3.3.1 Finite Difference Method 

Finite difference formulas are derived by combining Taylor series expansions.  Using the right 

combinations of these expansions, it is possible to obtain finite difference formulas that estimate 

an arbitrary order derivative with any required order of truncation error. Determination of each 

column of A  begins with the identification of some reference vehicle state vector 
e

x  and reference 

control input vector 
e

u , typically those of some trim state.  A small perturbation h  is then added 

to and subtracted from the jth entry of the reference vector and a central difference scheme is used 

to estimate each state’s sensitivity to the perturbation, yielding 
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where 
j

A  is the jth column vector of the A  matrix and 
j

e  is a column vector of 0 except for a 

value of 1 in the jth entry.  Note that (3.15) provides second-order accuracy with respect to h , but 

higher orders of accuracy are possible with larger expansions. Next, consider the form of the 

function f  as 

 

  ,x f x u  . (3.16) 

 

To determine the vector x , a pseudo-time simulation of the vehicle is performed and the states x  

at two or more instances in time are used in a finite difference scheme to approximate x .  Since 

the UM/HSV framework is intended to include many types of models, backwards integration of 

the governing equations may not be guaranteed.  Therefore a central difference scheme is not 

desirable, and one must use a forward difference, despite it being less accurate than central 

difference for a given number of observations of x .  This loss of accuracy may be mitigated by 

using a high order scheme.  Up to a sixth order scheme is given by 
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3.3.2 Complex Step Method 

The complex-step derivative approximation, like the finite difference formulas, can also be derived 

using a Taylor series expansion.  Rather than using a real perturbation h , a purely imaginary ih  

is used.  If f  is a real function in real variables and is analytic, one can expand it in a Taylor series 

about a real reference vector x  as 
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By taking the imaginary parts of both sides of (3.23) and dividing by h , yields 

 

  
 

2
Im

j

j

f x ih ef
O h

x h

   
 


 . (3.24) 

 

Hence, the complex-step approximation is an  
2

O h  estimate of the derivative.  Like a finite 

difference formula, each evaluation gives one column of the Jacobian, the state matrix A .  

However, because there is no subtraction operation, the only source of numerical error is the 

truncation error.  By decreasing h  to a small enough value, one can ensure that the truncation error 

is of the same order as the numerical precision of the evaluation of f . 

 

3.3.3 Full Nonlinear Model Development Based on Multiple Linearized Samples 

Once a number of samples of A  and B  have been collected, it is possible to quickly 

estimate state space representations of a system. Each sample is combined into a single matrix by 

rearranging the entries A  and B  into columns, which then become the columns of a sample matrix 
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where    
 ,

,
k k

i j
A x u  is the i,j entry of matrix    

 ,
k k

A x u  which is the state matrix A  for the kth 

sample state vector 
 k

x  and input vector 
 k

u  for a total of s samples. Similar for    
 ,

,
k k

i j
B x u  

for n  states and m  inputs. The sample state vectors are also combined into one of the sample point 

matrix permutations, d  from equations (3.2) through (3.4). 

 Determining the state rates x  in (3.14) during integration of the equations of motion is then 

a 2-step process. In step 1, the state matrices are determined from the SVD method, followed by 

step 2, where the state matrices are multiplied by the state vector x . It is also possible to use the 

SVD method to estimate the state rates x  in a 1-step process by replacing the columns of matrix 

S  in (3.25) with the x  vectors corresponding to each sampled state x , i.e., 

 

 
 

 
 

 
 

1 2 s

S x x x x x x 
 

. (3.26) 

 



94 

 

During integration of the equations of motion, the state rates x  are then determined directly from 

the SVD method without the need to consider the state matrices. If the 
lin

d  input matrix is used to 

contain the state vectors, then this approach produces a single linear, time-invariant representation 

equivalent to equation (3.14), which represents a mean behavior of the system. 

 

3.4 Propulsion Surrogate Model 

While the 2-D MASIV propulsion model for ramjet and scramjet simulation is a highly 

effective tool and greatly reduces the computational cost of determining propulsion performance 

over CFD analysis, it lacks the necessary robustness for online simulation. Subtle elastic 

deformation of the inlet or nozzle regions can produce weak waves that in reality would not 

significantly influence the model solution, but can create overlapping wave patterns that do not 

have a unique solution. Furthermore, the method of characteristics used for the flow field in the 

inlet and nozzle sections relies on upstream flow solutions in order to determine downstream 

properties. This severely limits computational parallelization that is key to reducing processing 

time. In response to these limitations, a surrogate model was desired based on MASIV force, 

moment, and pressure field solutions. However, since the surrogate methods considered thus far 

are based on continuous regression and correlation functions, they are ill suited to consider the 

discontinuous nature of scramjet choke, blowout, or unstart in the performance space. Kriging 

could possibly be used, but dense sampling around the started boundaries would be required in 

order to approximate the infinitely steep gradient of the discontinuities and would result in a 

computationally expensive surrogate model. 

To mitigate these shortcomings, a kriging model is proposed with a secondary correlation 

function such that 
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ˆ , , ,

kr ig
y b R b X Z b X Z b X    

 , (3.27) 

 

where 
1

X  is the training set containing all continuous values, i.e., forces, moments, pressure fields, 

which will be represented using correlation function 
1

Z , 
2

X  is the training set containing 

discontinuous propulsion started flags 0 or 1, taken at the same sample points as 
1

X  and will be 

represented using correlation function 
2

Z , and     is the floor function. Each of the functions 

composing the kriging model are fitted using the classical approach where 
k r ig

R  and 
1

Z  are 

considered in tandem, and 
2

Z  is considered as though its partner regression function is a constant 

0. By introducing the floored correlation function that is modeling a binary response surface, a 

sharp started boundary can be represented without additional sample locations. To avoid erroneous 

non-started conditions within the started boundaries, a linear 
2

Z  correlation function is 

recommended. 

 

3.5 Stage Separation Basis Reprojection 

Representing the elastic and thermal DOFs via a pair of corresponding basis sets is an 

effective means of reducing the model order and complexity. However with increased simplicity 

comes a loss of model flexibility. This is especially evident during a staging event in which the 

vehicle geometry may change drastically in an instant and the basis sets are no longer valid. The 

post-stage geometry may have its own basis sets that do not span the mode space defined by the 

pre-stage sets. Thus, a method for transitioning the energy represented in the pre-stage mode 

coordinates is introduced to the post-stage mode space. Consider a pre-stage DOF field described 
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by 
1

x  represented by the pre-stage basis 
1

 . Also, consider the post-stage DOF field 
2

x  to be a 

subset of the DOFs contained in 
1

x  where the maintained DOFs are identified by an index list 
2

  

and also represented by the post-stage basis 
2

 . One can express this as 

 

     1 2 1 1 2 2 2 2
x x         . (3.28) 

 

The pre-stage mode coordinates 
1

  are known. To estimate the post-stage mode coordinates 
2

  

while minimizing energy loss during projection, consider 

 

     
1

2 2 2 2 1 2 1

T T
  



      . (3.29) 

 

Modal rates may be similarly determined by substituting   for  . For the sake of simulation, the 

prospect of multiplying sizable basis matrices and then performing an inversion may not be 

appealing while online. However, since the bases are typically known a priori, the basis projection 

matrix    
1

2 2 2 1 2

T T




     may be pre-computed and stored in memory.
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4. CHAPTER IV       

Numerical Implementation 

 

This chapter describes the implementation of the models described in the previous chapters for 

the University of Michigan High Speed Vehicle (UM/HSV) code. Through coupling and 

integration of various engineering, surrogate, and reduced order models, a supersonic or 

hypersonic vehicle may be evaluated for flight trimming, time simulation in open or closed loop 

control, or stability analysis. 

 

4.1 Architecture Overview 

The following sections overview the architecture and implementation of the key elements of 

the UM/HSV code. The division of the various process models and body models is performed by 

the partitioned solution approach first proposed by Falkiewicz and Cesnik.136 Numerical 

implementation is done using a publish-subscribe framework for flexibility in analysis and code 

development. 

 

4.1.1 Partitioned Solution Approach 

To effectively bring together a wide spectrum of numerical models, each focusing on a 

particular portion of a HSV, the partitioned solution approach has been developed. With this 

approach, the HSV is divided into n components of interfacing models as shown in Figure 4.1. 
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Each model is a self-contained system of equations tailored to capture the relevant related physics. 

Each region’s models are integrated in time and at predefined time increments, information 

between regions is exchanged across interfaces. An example of such physical partitioning is shown 

in Figure 4.2 with more details of the partitioned regions given in following sections. 

 

 

Figure 4.1: Block diagram of the partition solution approach 

 

There are several advantages to the partitioned solution simulation over a single monolithic 

simulation. Firstly, entire regions of the HSV may be exchanged, removed, or isolated without 

affecting the operability of the others. This enables fast trade studies of various component types 

and models of varying fidelity. Different phenomena such as divergence or flutter of a lifting 

surface, shock interaction in the propulsion system, or a multitude of other possible problems can 

Propulsion 

ROM 

 

Aerodynamic ROM Thermoelastic ROM 

 

3D Flight Dynamics Framework 

Fuselage 

Model 

Interface 

Motion 

Partitioned Equilibrium Solver 

Elastic 

BCs 
Structural 

ROM 

Therma

l BCs 
Thermal 

ROM 

Aerothermal ROM 

Unsteady 

Aero ROM 

Offline CFD 

Simulations 

Interface 

Loads 
Time-accurate 

Coefficients / 

GAFs 
Modal 
Coords 

n 

Components 

Trim Solution 

Time-domain Solution 

Stability Analysis 

Thermoelastic 

ROM 
Unsteady 

Aero ROM 
Thermoelastic 

ROM 
Unsteady 

Aero ROM 
Thermoelastic 

ROM 
Aerodynamic 

ROM 

Interface 

Motion 
Interface 

Loads 

Unsteady 

Aero ROM 

Thermoelastic 

ROM 

Fundamental 

Aero 
Surrogate 

Heatflux 

Fundamental 
Heatflux 

Elastic 
Deformation 



99 

 

be analyzed within the same simulation architecture. Secondly, physical processes that are 

unimportant to the dynamics of a particular region need not be modeled, while processes that are 

the primary performance drivers for other regions may be emphasized with higher fidelity models 

or finer discretization. This reduces computational cost while increasing overall HSV model 

fidelity. 

 

Figure 4.2: Graphical layout of sample partitioned HSV regions 

 

4.1.2 Publish-Subscribe Architecture 

The publish-subscribe (PS) code architecture is adopted in this work to implement the 

partitioned solution approach. In PS architecture, each function sends and receives relevant data 

through communication with a global data structure. An individual function does not require 

knowledge of how the information was first published to the data structure, but only that the 
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information is available for subscription. After processing, each function then publishes its results 

back to the data structure for use by other functions. Since no data is specifically sent between 

high-level functions, functions may be added, exchanged, or removed without significant impact 

on the operation of other code processes. This permits one to exchange freely the number and 

arrangement of components and models used during simulation and process a wide variety of 

different HSV geometries and simulation fidelities without rewriting any low-level code. A high 

level overview of the code layout is shown in Figure 4.3. 

Each of the dark process blocks outlined in Figure 4.3 represent a high-level function that 

performs its named task. To initiate any analysis, the user inputs are read by the “Load Inputs” 

process that parses a user provided input file and locates any associated data files. The inputs, data 

file addresses, and analysis requests are then published to the global data structure. Next, the 

“Initialize Fuselage” process sets up the main body by subscribing to the initial conditions and file 

addresses written into the data structure, and loads all data files associated to the main body. These 

files include a mesh geometry, elastic mode shape basis, inertial properties, stiffness properties, 

thermal basis, heat capacity properties, thermal conductivity properties, and any other information 

that may be required for the requested analysis. Similarly, “Initialize Lifting Surfaces” loads the 

files relevant to the sub-bodies, often lifting or control surfaces, and pre-deforms the sub-bodies 

by converging on a static elastic solution. “Assemble Interfaces” then links the constrained 

portions of the sub-bodies to the main body and initializes the variables in the data structure for 

motion and force communication between partitions. 

If requested in the input file, the “Trim Vehicle” process is called to configure the HSV to 

achieve a set of goal states and rates. Further description of the trim process is given in section 4.2. 

The “Identify State Space” process is next if requested in the input file, and estimates the state 
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space representation of an HSV in x A x B u   form using a selection of three methods, i.e. 

forward-difference, complex step, and direct identification for single body HSV models. 

Finally, if requested, the time simulation analysis is performed. This analysis consist of three 

nested convergence loops that manage the aerothermal, aeroelastic, and partition interfaces. The 

inner-most loop, the “Interfaces Loop” contains two processes. The first is “Integrate Fuselage 

Motion” which integrates the equations of motion for the main body, given the external and 

interface forces of the previous loop. The second is “Integrate Lifting Surface Motion” which 

considers the motion at the interfaces imposed by the main body and external forces, integrates the 

sub-bodies’ equations of motion, and returns the forces and moments at the interface. The new 

interface forces are then applied to the main body and “Integrate Fuselage Motion” is repeated. 

New interface motions are determined and the process of integrating the sub-bodies and main body 

is iterated until a convergence criterion is met. Further details can be found in section 4.3.2. 

Once the partition interfacial motions and forces have been brought to an equilibrium, the 

time simulation enters the “Aeroelastic Loop.” At the initiation of any given aeroelastic loop, the 

“Control Inputs” process is called to determine if there are any open-loop or closed-loop control 

inputs to be implemented before the interface loop is called. The “Actuator Dynamics” process 

follows the integration of the main and sub-bodies’ motion in the interface loop, and contains any 

transfer model that might be implemented to represent the difference between a command signal 

and the actual actuation of a control surface due to forces, torques, friction, rate limits, etc. The 

aerodynamic loads and surface flow conditions for any sub-bodies are then determined by “Lifting 

Surface Aerodynamics,” which can use simplified engineering formulations and/or ROMs that 

were trained off-line and loaded as a data file with the other inputs. 
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Figure 4.3: High-level overview of the UM/HSV code architecture 
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The “Propulsion” process is next and models the forces, moments, and modifications to the 

surface pressure distribution on the main body due to any ramjet, scramjet, or rocket propulsion 

system that may be present. “Fuselage Aerodynamics” then determines the flow conditions 

surrounding the main body and “Fuselage Gravity” determines the influence of gravitational 

acceleration. “Write Outputs” records the progress of the simulation and any information that was 

requested in the input file. Since writing to disk can be a slow process, the “Write Outputs” process 

can be super-iterated, meaning that it does not have to be invoked during the aeroelastic loop. 

Provided that the aeroelastic loop convergence residuals are acceptably low, the “Time Step” 

process can be called to shift the time levels of the main and sub-bodies’ states and index the time 

counter. 

The outer-most loop is the “Aerothermal Loop,” which contains the “Integrate Lifting 

Surface Heat Transfer” and “Integrate Fuselage Heat Transfer” processes. As the names suggest, 

the processes integrate the heat transfer equations of the main and sub-bodies. During typical time 

simulations, the heat transfer equations are much less dynamic than the aeroelastic or interface 

matching equations, and therefore do not require as fine of a time increment during integration in 

order to yield accurate results. As such and to save numerical resources, the heat transfer equations 

are integrated on a time step that is an integer multiple of the aeroelastic time step. In the rare event 

that the heat transfer rates are on the order of the aeroelastic state rates, then this integer multiple 

may be 1, but often 10 or 100 is used, depending on the scale of the HSV to be considered. 

 

4.2 Vehicle Trim 

The process used to trim a given vehicle is outlined in Figure 4.4. The process begins with 

an initial guess of the vehicle’s trim state characterized by the angle-of-attack, propulsion system’s 
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fuel equivalence ratio, deflection angles of all control surfaces, and amplitudes of the main body 

structural modes. These trim states are then applied to the vehicle’s data structure. Next, the given 

flight conditions in terms of altitude and Mach number are used to determine the freestream 

conditions surrounding the main and sub bodies. These freestream conditions are then used to 

determine the aerodynamic pressure over each sub-body’s surface. The structural models of each 

sub-body are then invoked to determine the structural response to the surface pressure in terms of 

displacements and velocities over a small time step, typically one order of magnitude less than the 

shortest elastic mode period included in the model. The sub-bodies’ structural velocities are then 

zeroed to damp out any oscillatory motion. A displacement residual 
d isp

r  is computed as the L2,1 

norm of the difference between the 1n   and n   time step solutions, i.e., 

 

     1

2 ,1

n n

d isp u u
r x x



   , (4.1) 

 

where 
u

x  are the unrestrained displacements of the a given sub-body. In this way, the static elastic 

deformation of the sub-bodies are dependent variables of the main body shape and flight 

conditions, thus reducing the number of independent variables that must be considered during trim. 
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Figure 4.4: Flowchart of the vehicle trim process 
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If 
d isp

r  is greater than some tolerance value (typically 10-5 to 10-9 meters or radians, depending on 

degree of freedom), then sub-body surface pressures and structural dynamics are recomputed, 

using the previous displacements solution as the initial condition. If 
d isp

r  is less than the tolerance 

value, then the interface loads are computed and applied to the main body. The propulsion model 

is then considered and the propulsion forces, moments, and nozzle surface pressures applied to the 

main body. The main body aerodynamics is then computed to determine the surface pressures, 

before the main body’s state rates are determined from the equations of motion that are of the form 

 

     x f x g F   , (4.2) 

 

where x  and x  are vectors of the main body states and state rates, respectively, F  is a vector of 

the generalized forces on the main body, and  f  and  g  are some arbitrary functions. A 

vector of the desired state rates is then subtracted from the solution to (4.2), i.e., 

 

  
co st d esired

x x x   , (4.3) 

 

where the subscript cost denotes the state rate vector that will later be used in calculation of the 

trim solution cost and the subscript desired denotes a vector of target state rates specified by the 

user. For many cases, the 
d es ired

x  vector will simply contain zeros, and will thus lead the trim 

solution to be for steady, straight line, (and level if the vehicle is symmetrical) flight. However, 
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for the cases where one desires to trim the vehicle for a turn, loop, roll, acceleration, etc., this 

vector provides an easy method of expressing them in the trim cost function. The cost of the trim 

solution 
tr im

r   is then given by 

 

   
T

tr im co s t co s t
r x I x  , (4.4) 

 

where  I  is the identity matrix of dimension equal to the length of 
co st

x . 

Given the determination of the cost 
tr im

r  of a trim solution, the Nelder-Mead simplex method 

as described by Lagarias et al.170 is used to find the trim state which minimizes 
tr im

r . This method 

is implemented through the fminsearch function of Matlab® and operates as follows: 

 

“If n  is the length of x , a simplex in n -dimensional space is characterized by the 1n   distinct 

vectors that are its vertices. …  At each step of the search, a new point in or near the current 

simplex is generated. The function value at that new point is compared with the function’s 

values at the vertices of the simplex and, usually, one of the vertices is replaced by the new 

point, giving a new simplex. This step is repeated until the diameter of the simplex is less than 

the specified tolerance.”171 

 

Due to the highly nonlinear and often discontinuous nature of hypersonic vehicle flight 

characteristics, after the fminsearch function has reached an exit criteria, 
tr im

r  is compared to a 

specified tolerance (typically 10-9 mixed units) to determine if the minimization has become stuck 

at some local minima. Ideally 
tr im

r  should be driven to zero, however in the event that it is not 
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below the tolerance, all inputs of the trim solution may be multiplied by pseudo-random numbers 

between 0.9 and 1.1, or in the event of a zero value to 0.1, in an attempt to “shake” the solution 

loose from the local minima. The shaken trim inputs are then rerun as the initial guesses of the 

trim solution by the fminsearch function. To prevent this randomization from continually driving 

the solution away from the global minimum, a log of the trim inputs and related costs is kept for 

review. Should one notice that the solution continues to converge on some non-zero 
tr im

r  value, a 

new initial guess is needed. 

 

4.3 Time Simulation 

During a time simulation, the states of an HSV are integrated forward in time for a specified 

period given generalized forces for each DOF. After integration, the generalized forces and HSV 

properties are updated. A series of convergence loops are nested around the integration of the states 

since the states, rates, and forces can be interdependent. 

 

4.3.1 Integration of States 

At the heart of the UM/HSV code is a pair of numerical integration routines that integrate 

the main body EOMs. For most HSV time simulations, the Matlab® function ode45 is used to run 

the Runge-Kutta 4th order with Dormand-Prince 5th order error estimation algorithm.172 In cases 

where the system is stiff, such as when considering a high-frequency mode basis, then the ode15s 

function may be used. 

Within each global time step may be a dozen sub-iterations by the ODE solver and depends 

on aeroelastic time step size and dynamics of the HSV for a given period of time. Periods of high 

rates of change in the EOM states, such as during an aggressive maneuver or stage separation, 
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often require  
1

1 0O  to  
2

1 0O  sub-iterations to achieve the default normalized error tolerance of 

9
1 0

 . However, the ODE solvers are only used to integrate the EOM of the main body. When sub-

bodies are included, the interfacial forces and moments must be considered and they are often a 

function of the motion of the interface, and therefore depend on the integration of the main body 

solution. This creates an interdependency of the main body and sub-bodies’ solutions. 

To account for the interdependence of the main and sub-bodies’ solutions, an inner 

interface-convergence loop is constructed. The aerodynamic and propulsive forces may also be a 

function of the EOM solutions of their parent bodies, and therefore require an aeroelastic-

convergence loop. Finally, an outer aerothermal-loop is used for the aerothermal and heat transfer 

equations, which often do not require the same time resolution as the aeroelastic dynamics, and so 

can be super-iterated to save computational resources. 

 

4.3.2 Interface Loop 

A summary of the algorithm used to bring the main body and a sub-body into equilibrium 

within each aeroelastic time step is given in Table 4.1 and is based on the work of Falkiewicz, 

Frendries, and Cesnik.173  The iteration procedure begins with the determination of the main body 

motion in the sub-body frame at the location of the interface. The transformation matrix from the 

main to sub body frame, 
ro t

T , is combined with the relative rotation of the frames due to the 

deformation of the main body, 
i i

  , where i  is the index of the main body elastic mode. This 

involves use of the skew-symmetric operator, which for a three dimensional problem is given by 
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(4.5) 

 

The velocity of the restrained DOFs,  1n

r
x


, in the sub-body frame due to the deformation,  , and 

rotation, r   , of the main body is then determined and transformed into the sub-body frame with 

matrix C  in step 2. The displacement of the restrained DOFs at the next time level,  1n

r
x


, is 

determined based on the current displacement,  n

r
x , and an average of the velocity between the 

current and next time levels,    
 

1

/ 2
n n

r r
x x



 , and multiplied by the aeroelastic time step, 
A E

t  in 

step 3. Next is to determine 
2

H  of the sub-body equations of motion in step 4 and to find the 

displacements of the sub-body structure in modal space, 
 1n

d


, in step 5. The unrestrained DOFs 

are determined in physical space in step 6, followed by the forces on the root,  ,
W

r
F t T  in step 7. 

The residual, R , of the interface equilibrium is then determined by comparing the unrestrained 

DOFs of the current iteration, 
 1

,1

n

u
x



, to the previous iteration, 
 1

, 0

n

u
x



 in step 8. If R  is less than a 

tolerance value, to l , then the process concludes. If R  is greater than to l , the main body EOMs 

are integrated over the aeroelastic time step, 
A E

t , using the new interface forces from the sub-

body,  ,
W

r
F t T , in the main body frame before step 1 through 9 are repeated until R  is less than 

to l . At which point, the main body and sub-body have been brought into equilibrium. 
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Table 4.1: Iteration scheme used for bringing main and sub-bodies interfaces into equilibrium173 

1.  3 1

m

ro t i ii
C T I S k e w  



  
  

  

2.  
 

1

1

mn

r i ii
x C r  





   
 
  

3.    
   1

1

2

n n

n n r r

r r A E

x x
x x t



 
    

4.      
      

     1 1
1

1 1 * *

2 2

21

3

n n n

n n n T r r r

u u u u u u u u r u r

A E

x x x
H f f f M K T K T M

t

 


         
   

 

5.      
 

1 11

1 2 3 4

n n n

d H H H d H d
 

    

6.  
 

   
1

1 1 1* *

,1

n n n

u u u u r r
x K K x d


  

     

7.  

           1 1 1 1

*

2

2
,

3

n n n n n n

W u u u u u u

r ru ru

A E

x x x x x x
F t T M K

t

   

   
  


 

8.    
 

1 1

,1 ,0

n n

u u
R n o rm x x

 

   

9.    1 1

, 0 ,1

n n

u u
x x

 

  

10. While R to l  

11.          M a in  B o d y  E O M s
A E

t t

t

d t
 

  

12.         Repeat steps 1 through 9 

13. End 

 

4.3.3 Aeroelastic Loop 

Enclosing the interface convergence loop is the aeroelastic convergence loop that considers 

the interdependency of the EOMs and external forces. During the interface convergence loop, the 

structural motions of the main and sub-bodies are brought into equilibrium. However, the motion 

of these bodies affects the aerodynamic and propulsive loads. A summary of the algorithm used to 

update the external loads and bring the system into equilibrium before incrementing the aeroelastic 

time step is given in Table 4.2. 

At the beginning of each aeroelastic loop, the main body states 
 1

,1

n

m b
x



 and unrestrained 

displacements of each sub-body 
 1

,1

n

u
x



 at time-instant 1n   are determined in the interface loop of 
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the previous section. In the case when one or more of the sub-bodies are a control surface, actuation 

i
  is determined by some function  f  given the states, actuation rate, time, temperature, 

pressure load, etc. at the current time in step 2. Step 3 determines the aerodynamic load A
F  on the 

main and sub-bodies; step 4 determines the propulsive load P
F , given there is a propulsion system; 

and step 5 determines the gravitational or other body loads G
F . The full equations for steps 3 

through 5 are found in Chapter II. The residual 
m b

R  is determined as the 2-norm of the difference 

between the main body state vector of the current loop 
 1

,1

n

m b
x



 and of the previous loop 
 1

, 0

n

m b
x



. If 
m b

R  

is less than an error tolerance 
m b

to l  then the aeroelastic loop is complete and time is incremented 

by one aeroelastic time step 
A E

t . If 
m b

R  is greater than 
m b

to l , then steps 1 through 9 are repeated 

with the updated external loads. 

 

Table 4.2: Iteration scheme to converge on aeroelastic solution 

1.  
 

1

,1
M a in  B o d y  E O M s

A E
t t

n

m b
t

x d t
 



  ,  
 

   
1

1 1 1* *

,1

n n n

u u u u r r
x K K x d


  

     

2.  , , , ,
i

f x t T p    

3.  , ,
A

F f x M T   

4.  , , ,
P

F f x M T    

5.  
G

F f x   

6.    
 

1 1

,1 ,0

n n

m b m b m b
R n o rm x x

 

    

7. 
   1 1

, 0 ,1

n n

m b m b
x x

 

   

8. While 
m b m b

R to l  

9.         Repeat steps 1 through 7 

10. End 
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4.3.4 Aerothermal Loop 

The aerothermal loop is the outmost loop of the three. Unlike the interface and aeroelastic 

loops, the aerothermal loop does not seek to reduce a residual below some tolerance. It is 

implemented to permit the super-iteration of the aerothermal and heat transfer equations, whose 

dynamics are typically some orders of magnitude slower than the aeroelastic dynamics. Thus, to 

reduce computational cost, the aerothermal loop is only executed once for every heat transfer time 

step 
H T

t . The heat transfer 
H T

t  time step must be some integer multiple of the aeroelastic time 

step 
A E

t , even if that integer is 1. 
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5. CHAPTER V       

Sample Cases 

 

This chapter describes the two major families of sample cases used in the numeric 

investigations. The first is the Air Force Research Laboratory’s (AFRL) Intelligence, Surveillance, 

and Reconnaissance (ISR) cruiser that is designed for multi-mission, round-trip, long-duration 

flights over contested air spaces. Along with studying the vehicle as a whole, several components-

level studies are presented, including isolated lifting surfaces and the propulsion system. The 

second is the AFRL Initial Concept 3.X (IC3X) vehicle that is designed for strike missions on 

time-sensitive ground targets. Again, the vehicle is studied as a whole, before being broken down 

into sections of interest, including the thermal protection system and mid-body shell. 

 

5.1 Intelligence, Surveillance, and Reconnaissance Cruiser 

The AFRL ISR cruiser is a wedge-type hypersonic vehicle akin to the NASA X-43 and is 

based on a 2D hypersonic cruise vehicle presented by Bolender and Doman,27 augmented with 

lifting surfaces introduced by Falkiewicz and Cesnik.36 The straight leading edge of the vehicle 

maintains an attached oblique shock wave that is deflected under the fuselage. This provides lift 

for the forebody and compresses the flow for intake into the dual-mode ramjet/scramjet propulsion 

system located on the underside of the fuselage. Ingested flow is further compressed by an isolator 

assembly before mixing with hydrogen or kerosene fuel and combusting. The combustion products 
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are exhausted from the propulsion system and onto an expansion ramp comprising the aft body. 

As the combusted flow expands outward into the freestream, it presses against the expansion ramp 

and provides lift for the aft body. Attached to the aft body are a pair of all-movable elevon surfaces 

and a pair of vertical rudders that provide stability and control. 

 

5.1.1 Vehicle Properties 

A summary of the AFRL cruiser vehicle’s dimensions and inertial properties is given in 

Table 5.1 and shown in Figure 5.1. The vehicle is partitioned into a main body that includes the 

fuselage and scramjet propulsion system, and sub-bodies that include four all-movable lifting 

surfaces. While the internal structure of the fuselage code have been modeled with 3-D mode 

shapes, however, for this configuration the fuselage is modeled as a pair of Euler-Bernoulli beams 

joined at the center of the vehicle and used to model the elastic deformation of the structure. Each 

x-axis cross section of the vehicle is maintained rigid during deformation and follows the 

displacement of the local beam section. Mass and rotational inertia is distributed along each beam 

as shown in Figure 5.2 and connections to the sub-body interface locations are considered rigid. 

Three elastic mode shapes are derived from the beam structure model: a torsion, longitudinal bend, 

and lateral bend. These mode shapes are shown in Figure 5.3. 
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Table 5.1: AFRL cruiser selected geometric and structural parameters 

Parameter Description Value 

fo r e
L  Forebody length 15.2 m 

a ft
L  Aftbody length 15.2 m 

fo r e
  Forebody mass / unit length 838 kg/m 

a ft
  Aftbody mass / unit length 1250 kg/m 

x
I  Rotational inertial about the vehicle length / unit length 3280 kg m2/m 

zz
E I  Lateral bending stiffness 1 0

5 .0 6 1 0  Nm2 

y y
E I  Longitudinal bending stiffness 9

6 .3 2 1 0  Nm2 

G J  Torsional stiffness 9
4 .7 4 1 0  Nm2 

 

 

 

Figure 5.1: AFRL cruiser vehicle configuration 
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Figure 5.2: Internal structure of the AFRL cruiser vehicle model 

 

 

 

 

 

Figure 5.3: Main body elastic mode shapes 
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The outer-mold line (OML) is comprised of exclusively triangular panels so that deformation of 

the OML does not produce any nonplanar surfaces. This allows each surface panel to maintain a 

unique outward normal that may be used for aerodynamic and aeroheating calculations. 

 

5.1.2 Control Surfaces 

At the aft of the vehicle are four all-movable surfaces. Two nearly horizontal surfaces are 

used as elevons while two nearly vertical surfaces are used as rudders. The planform is loosely 

based on the F-104 Starfighter wing and is shown in Figure 5.4. The airfoil is a symmetric double-

wedge or diamond with a 4.3% thickness to chord ratio. Twenty-three evenly spaced spars and 

nineteen chord-wise stiffeners of 25.4 mm thick titanium alloy 834, make up the internal 

structure.36 The skin is a three system of an external refractory metal heat shield of Renѐ 41,174 

Min-K® insulation,175 and titanium alloy 834 skin. The skin system is shown in Figure 5.5 with 

material properties in Table 5.2. 
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Figure 5.4: Basic control surface model36 

 

Figure 5.5: Control surface skin system36 
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Table 5.2: Control surface material properties 

(T-dep. = temperature dependent, Neg. = negligible) 

   E    
T

  
T

k  
p

c  
m ax

T  

 [kg/m3] [GPa]  [μm/m/K] [W/m/K] [J/kg/K] [K] 

Renѐ 41 8240 T-dep. 0.31 T-dep. 18 541 1500 

Min-K® 256 Neg. Neg. Neg. 0.052 858 1250 

Ti 834 4550 T-dep. 0.31 11 7 525 837 

 

As with the fuselage, the control surfaces express deformation via a basis of mode shapes. 

These are derived from both free vibration and static loading at a reference tempearture,36 and are 

shown in Figure 5.6. Due to the temperature dependent nature of the material properties, the mode 

shapes do not have unique frequencies. The full process used to select these mode shapes and the 

loading conditions considered are described in Falkiewicz and Cesnik.36 

 

 

Figure 5.6: Control surface elastic basis mode shapes 
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5.1.3 Propulsion System 

Nearly the entire underbelly of the vehicle consists of a dual-mode ramjet/scramjet 

propulsion system with the dimensions shown in Figure 5.7. The double-ramp inlet section 

produces a pair of oblique shock waves that pass just outside or on the lip of the cowl. These shock 

waves provide the initial compression of the flow to ensure efficient combustion and lift for the 

forebody. A short isolator section is used to increase the flow temperature and pressure of the flow 

via a train of shock waves. In ramjet mode, the shock train terminates in a normal shock that brings 

the flow subsonic before entering the combustor section. However, in scramjet mode, the flow 

remains supersonic into the combustor section where hydrogen or kerosene fuel is injected and 

combusts. The exhaust products are then expanded in the nozzle section to provide thrust and lift. 

 

 

Figure 5.7: Ramjet/scramjet propulsion system dimensions 

 

5.2 Initial Concept 3.X Vehicle 

An initial sizing study by the AFRL Munitions Directorate led to the creation of a 

representative configuration.176,177 This vehicle was to be an air-launched, rocket-scramjet 

combined cycle propelled vehicle that performed a three-phase trajectory. Shown in Figure 5.8, 
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the vehicle would first be boosted by rocket propulsion up to a cruising altitude of more than 50 

kft (15.2 km) and Mach number greater than 5. A spent rocket booster would then be jettisoned 

and a scramjet propulsion system engaged to maintain a cruise condition for the majority of the 

overall trajectory. Finally, after exhausting the scramjet fuel supply, the vehicle would enter a 

terminal phase in a hypersonic glide condition to reach a ground target some distance downrange. 

 

 

Figure 5.8: Basic outline of a boost-cruise-terminal mission profile for an air-launched, rocket-

boosted hypersonic vehicle 

 

5.2.1 Vehicle Properties 

The IC3X vehicle configuration was largely established by Witeof and Neergaard177 using 

the Preliminary Aerothermal Structural Simulation (PASS) code suite176 and is shown in Figure 

5.9, Figure 5.10, and Figure 5.11. Basic properties are given in Table 5.3 and component materials 

in Table 5.4. 
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Figure 5.9: Representative vehicle dimensions 

 

Table 5.3: Basic properties 

Property Fully Fueled  Reserve Fuel Only 

Body length (m) 3.56  3.56 

Body diameter (m) 0.36  0.36 

Wingspan (m) 0.82  0.82 

Center of gravity (m) 2.09, 0, 0  2.06, 0, 0 

Mass (kg) 375  307 

Ix (about CG) (kg m2) 9.42  7.37 

Iy (about CG) (kg m2) 345  338 

Iz (about CG) (kg m2) 345  338 

 

The body is axisymmetric with four aft all-movable fins for stability and control. Beginning 

at the nose tip, the OML starts with a 10-mm diameter hemisphere tangent-transitioned to power-

law forebody following the relation: 

 

0 .6
0 .1 2 6r x  , (5.1) 

 

where r  is the radius in meters of the OML x  meters along the axis of symmetry from the nose. 

At 1.78-m from the nose, the body transitions to a 0.36-m constant diameter cylinder, which 

continues until the trailing end, 3.56-m from the nose tip. The fins, shown in Figure 5.10, are 

diamond airfoils with a maximum thickness at 50% chord. The maximum thickness is 5% of the 
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chord, plus a 1 mm TPS layer. Internally, the fins are solid QISOTM triaxial weave carbon-carbon 

composite that is assumed quasi-isotropic. The root chord is 86.4-cm and tapers down to a 30.4-

cm chord at the tip. The leading edge is swept back 67.3° and the trailing edge is unswept. The 

fins are attached to the body by 17.8-cm long, 2.0-cm diameter solid shafts, 51.8 cm from the 

leading edge and formed from the same carbon-carbon composite as the internal fin structure. The 

center of each fin shaft is attached to the body 3.2 m from the nose tip. 

 

 

Figure 5.10: Fin OML dimensions 

 

Shown in Figure 5.11, the internal structure is a titanium alloy monocoque with additional 

stiffeners between a fin root box and trailing end. The purpose of the stiffeners is to support the 

body during the boost phase of flight when a rocket motor mounted to the trailing end is used to 

bring the vehicle to cruising speed. The thickness of the monocoque skin varies between 1.3 mm 

and 3.1 mm according to an optimization performed previously using the PASS code suite.176 
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Covering the monocoque skin is a TPS of ExelisTM Acusil-II178 material. Like the monocoque skin, 

the TPS varies in thickness according to optimization results from the PASS code suite,176 but 

generally is thicker near the nose, thins along the body toward the tail, and thickens again aft of 

the fin root shafts to permit a cooler, stiffer structure near the fin root box. At the nose is a solid, 

tungsten ballast that forms the first 20 cm of the nose that bears the stagnation heat flux during 

hypersonic flight and brings the center of gravity forward. Within the body is also a 90-kg steel 

casing that acts as a thermal sink for temperature sensitive components. During analysis, the steel 

casing is considered only as a thermal sink and its mass is not directly used. Instead, nonstructural 

masses are distributed along the monocoque skin to account for various internal subsystems. 

Although a scramjet propulsion system is assumed to maintain the cruise conditions, no flow path 

geometry is defined. 

 

 

Figure 5.11: IC3X internal structure mid-span cross-section and FEM 

 

Table 5.4: IC3X materials (see Figure 5.11) 

ID Component Material(s) 

1 Nose ballast Tungsten 

2 Thermal protection system Acusil-II 

3 Casing Carbon steel 

4 Monocoque Titanium alloy 

5 Control fins QISO carbon-carbon composite & Acusil-II 
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5.2.2 Material Properties 

It is expected that the operating temperatures will be sufficient to cause significant changes 

to the properties of its constituent materials. Thus, data for material properties over a wide range 

of temperatures are required and given in Table 5.5 and Figure 5.12. The TPS material, Acusil-

II,178 is assumed to not contribute to the structural stiffness and is assigned a Young’s modulus of 

0.01 GPa, so to be low but not cause numerical instability. Material properties were found from a 

variety of sources.178–185 

 

Figure 5.12: Temperature dependent material properties178–185 

0

100

200

300

400

500

0 500 1000 1500 2000 2500

Y
o
u
n
g
's

 M
o
d
u
lu

s 
[G

P
a]

Temperature [K]

-1.E-05

0.E+00

1.E-05

2.E-05

3.E-05

0 1000 2000

T
h
er

m
al

 E
x

p
an

si
o
n

 C
o
ef

fi
ci

en
t 

[1
/K

] 
(×

1
0

-5
)

Temperature [K]

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500

T
h
er

m
al

 C
o
n
d
u
ct

iv
it

y
 [

W
/m

/K
]

Temperature [K]

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

S
p
ec

if
ic

 H
ea

t 
C

ap
ac

it
y
 [

J/
K

/k
g
]

Temperature [K]

Acusil-II

CC-QISO

Carbon Steel

Ti-6Al-4V

Tungsten

3 

2 

1 

0 

-1 



127 

 

Table 5.5: Temperature independent material properties 

 Density [kg/m3] Poisson's Ratio 

Acusil-II 256.3 0.30 

CC-QISO 1650.0 0.21 

Carbon Steel 7900.0 0.30 

Ti-6Al-4V 5199.4 0.31 

Tungsten 19250.0 0.26 

 

5.2.3 Sample Substructure 

To quickly perform representative thermal analyses, a sample FEM was established which 

is representative of a small portion of the IC3X. This substructure is located at the interface of the 

vehicle nose ballast and fore-body, on the Earth-facing side during typical flight conditions, in a 

region that was shown to experience high thermal loads and also contain several different 

materials.3 For simplicity, this substructure is considered to be approximately 2D, despite the 

curvature of the vehicle’s body in this region. The vehicle, sample substructure, and FEM grid are 

shown in Figure 5.13. The FEM consisted of 6478 nodes and 3040 linear hexahedral solid elements 

clustered near regions where high temperature gradients are expected due to external heat flux or 

material interfaces. Three materials are considered: elemental tungsten in the nose ballast, Exelis 

Inc.’s Acusil-II® material in the thermal protection layer covering the fore-body, and titanium alloy 

Ti-6Al-4V that comprised the structural monocoque of the vehicle. For simplicity, neighboring 

materials are considered to be perfectly bonded and no joiner or fastener geometry was included. 

Boundaries of the FEM that are not exposed to the external heat flux are adiabatic. 
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Figure 5.13: Sample substructure with overlaid FEM grid and its location on the vehicle 

 

5.2.4 Cylindrical Shell Model 

It was anticipated that the nose and cylindrical sections of the IC3X might be subjected to 

an aeroelastic instability akin to panel flutter during the terminal phase of flight. An experimental 

configuration previously investigate in literature126,127,130 was considered to characterize the nature 

of this instability and determine if the reduced order model methods developed as part of this study 

are appropriate. A finite element model (FEM) is constructed to match the materials, dimensions, 

and boundary conditions described in literature which consisted of a circular cylindrical shell 

formed from electroplated copper with dimensions shown in Figure 5.14 and whose properties are 

given in Table 5.6. The shell section was welded to copper rings on each end which were held to 

the test mount by 4.763-mm diameter rubber tubing.126 The boundaries of the shell were 

approximately clamped except for axial displacement, which allowed the length of the shell to 

4.0 cm 

2.0 cm 

Tungsten 

Titanium Alloy 

(Ti-6Al-4V) 

Acusil-II 

355.5 cm 

35.6 cm 
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vary under load. Axial flow was passed over the outer surface while stagnant air was held in a 

cavity within the shell. Inner surface pressure and freestream flow conditions are summarized in 

Table 5.7. 

 

 

Figure 5.14: Dimensions of the test cylindrical shell126 

 

 

Table 5.6: Material properties of copper186,187 

Property Symbol Value 

Modulus of elasticity E 115 GPa 

Density ρ 8960
 

kg/m3 

 

 

Table 5.7: Test condition ranges of the cylindrical shell case126 

Flow condition Minimum Maximum 

Freestream Mach number 2.5 3.5 

Freestream total pressure (kPa) 84.7 135.4 

Freestream total temperature (K) 322.0 322.0 

Inner gauge pressure (kPa) -0.3 27.6 

 

 

  

390.5 mm 406.4 mm Ø 0.102 mm 

406.4 mm 
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6. CHAPTER VI       

Numerical Studies 

 

The partitioned approach to hypersonic vehicle simulation is implemented and verified using 

the University of Michigan High Speed Vehicle simulation code. Trim and time simulations of 

monolithic and partitioned aeroelastic models of the Air Force Research Laboratory’s Intelligence, 

Surveillance, and Reconnaissance Hypersonic Vehicle are compared. Stability analysis of an 

aerothermoelastic control surface is also performed to demonstrate the thermal and thermoelastic 

capabilities of the simulation code. Model reduction techniques are then applied to the Initial 

Concept 3.X vehicle. Fundamental shock, expansion, and piston theory aerodynamic models are 

compared to Euler CFD solutions and used along with three degree-of-freedom equations of 

motion to optimize a family of terminal trajectories for maximum final kinetic energy. Outer mold-

line flow conditions are determined along a representative terminal trajectory selected from the 

optimized family, and Eckert’s reference temperature method is used to determine surface heat 

fluxes to a FEM of the vehicle. Integration of the heat transfer equations provides a set of 

temperature snapshots that, once proper orthogonally decomposed, provide a modal basis set with 

which to reduce the heat transfer equations. Free vibration mode shapes are also determined from 

the FEM at a reference temperature distribution and used as a basis to reduce the elastic equations 

of motion. Finally, a kriging surrogate model is trained to capture the thermoelastic effects that 

arise from material property degradation and geometric stiffening due to temperature. 
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Next, it is shown that the assumption of constant material thermal properties when using the 

proper orthogonal decomposition derived thermal basis may result in significantly inaccurate 

temperature solutions. High dimensional polynomials, the kriging method, and a novel method 

based on singular value decomposition (SVD) are compared to capture the variation of generalized 

thermal capacity and conductivity based on thermal basis coordinates. The SVD-based method is 

shown to be superior and the resulting enhanced thermal model system is shown to agree well with 

high-fidelity finite element solutions. 

The SVD-based method is then combined with the complex-step method of state space 

identification to estimate nonlinear state space representations of dynamic systems. A simple 

nonlinear-spring, mass, and damper system is used to investigate the method’s training and 

stability characteristics before being applied to the IC3X vehicle. Time simulation results are 

compared with UM/HSV solutions and shown to be highly accurate while requiring an order of 

magnitude less processing time during integration. 

Finally, terminal trajectory simulations of the IC3X with the UM/HSV code indicated a unique 

form of aeroelastic instability characteristic of cylindrical shells. To determine if the UM/HSV 

code and model reduction techniques are adequate for the prediction of this instability, the 

experimental results of Olson and Fung126 are numerically reproduced using nonlinear FEA to 

model an internally pressurized cylindrical shell section in supersonic flow. Reduced order models 

derived from the FEM are used within the UM/HSV code and shown to capture the unpressurized 

shell stability boundary, but lack the ability to represent a destabilizing effect of moderate internal 

pressure that was observed by Olson and Fung126 and the nonlinear FEA results. 
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6.1 Partitioned Model of the Intelligence, Surveillance, and Reconnaissance Vehicle 

To verify that the partitioned approach to vehicle simulation is valid, trim and time 

simulation results for the AFRL cruiser are compared with its monolithic counterpart. No thermal 

model was developed for the fuselage of the AFRL cruiser, thus the comparison was performed as 

purely aeroelastic. Furthermore, to allow each model to have the same number of elastic degrees 

of freedom, the lifting surfaces are assumed rigid for this comparison. To demonstrate the 

thermodynamic capabilities of the UM/HSV code, an aerothermoelastic stability analysis is 

performed for one of its aft control surfaces. 

 

6.1.1 Vehicle Trim 

Using the Matlab function fminsearch, the following cost function 
tr im

J  can be minimized: 

 

 

tr im y

y

u

v
J I u v q

q




 
  
    

   
    

  

 , (6.1) 

 

where u  and v  are forward and lateral accelerations, respectively, q  is pitch acceleration, 
y

  is 

the longitudinal bending rate, and I  is the identity matrix. To avoid local minima, the solution of 

fminsearch is randomly perturbed by up to 10% for each parameter and reentered as the initial 

guess for another minimization. The two solutions are then compared for agreement.  If the 

maximum residual is less than 1%, the solution is considered to represent a global minimum. The 

trim conditions for both a rigid and flexible AFRL cruisers are considered in the sample simulation 

for steady level flight at Mach 6.0 and altitude of 26 km are given in Table 6.1.  
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Table 6.1: AFRL cruiser steady level flight trimmed conditions, Mach 6, 26 km altitude 

  Rigid Vehicle  Flexible Vehicle 

Symbol Description 

Partitioned 

Solution 

Monolithic 

Solution 
 

Partitioned 

Solution 

Monolithic 

Solution 

  Angle of attack (deg) 0.64 0.61  0.66 0.61 

1
  Lateral bending mode amplitude    0 0 

2
  Longitudinal bending mode amplitude    0.003 0.004 

3
  Torsion mode amplitude    0 0 

e
  Horizontal elevon deflection (deg) 1.49 1.49  2.06 1.61 

  Fuel equivalence ratio 0.126 0.126  0.139 0.122 

       

 Minimized Parameters      

u  Forward acceleration (m/s2) 2.4  10-1 1.6 10-2  2.5 10-1 3.1 10-5 

w  Vertical acceleration (m/s2) 2.4 10-2 1.5 10-3  1.8 10-2 7.5 10-5 

y
  Pitch angular acceleration (deg/s2) 7.2 10-3 4.9 10-4  7.0 10-3 9.2 10-7 

lo n
  Longitudinal bending mode acceleration  

(1/s2) 
- -  9.2 10-3 1.6 10-5 

 

One can see from Table 6.1 that for the rigid vehicle cases, the partitioned and monolithic 

trim solutions match very well with only minor differences in the angle of attack and the 

minimization parameter values. This result supports that in steady cases the partitioned solution 

matches the monolithic solution. The flexible cases do not agree as well as the rigid ones, 

particularly for the elevon deflection angle with a 28% error and 14% error in fuel equivalence 

ratio. However, the error normalization can be misleading as these disagreements are small in 

magnitude, not exceeding 0.45° and 0.017, respectively, and it is the division by small reference 

values that inflate the percentage errors.  It is likely that these differences arose from the fact that 

in the monolithic solution, the all-movable surfaces are deformed slightly by the longitudinal 

bending mode of the fuselage. Since the entire vehicle has been considered as one object, this 

bending mode also applies to the control surfaces; whereas the partitioned solution control surfaces 
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do not deform with the fuselage. A true monolithic model of the AFRL cruiser would have to be 

created independently from the simulation architecture presented here to eliminate these 

differences. 

 

6.1.2 Time Simulation 

By iteratively computing the EOMs, component models, and generalized forces, the simulation is 

marched forward in time. Time simulation results may be viewed as either video, snapshot of it 

exemplified in Figure 6.1, or time history plots as shown in Figure 6.3 through Figure 6.6. The 

partitioned and monolithic solutions are each simulated starting at their respective trim conditions 

outlined in Table 6.1. The flight conditions and simulation parameters are listed in Error! 

Reference source not found.. Note that since the monolithic solution is treated as a main body 

object, the only time step of significance is the aeroelastic time step. The heat transfer time step, 

aerothermal time step, and residual displacement tolerance are only used for the partitioned 

solution. 

 

 

Table 6.2: Sample AFRL cruiser simulation parameters 

Parameter Description Value 

M  Initial flight Mach number 6.0 

h  Initial flight altitude 26.0 km 

A E
t  Aeroelastic time step 0.001 s 

H T
t  Heat transfer time step 0.001 s 

A T
t  Aerothermal time step 0.010 s 

to l
R  Fuselage/control surface residual displacement tolerance 10-5 m 
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Figure 6.1: Sample AFRL cruiser simulation video rendering during a roll maneuver 

 

 

Figure 6.2: Commanded horizontal elevon deflection for the rigid partitioned solution case 
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Figure 6.3: Rigid body position 

 

 

Figure 6.4: Rigid body velocity 

 

Figure 6.5: Rigid body Euler angles 

 

 

Figure 6.6: Rigid body angular rates
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Figure 6.3 through Figure 6.6 show that the partitioned and monolithic solutions generally 

match in form and behavior. Some slight differences can be seen in the pitch angle and rotation 

rate,   and 
y

  respectively. These differences are within what was expected and are likely due to 

the actuation torques at the root of the elevon for the partitioned solution. These actuation torques 

are not captured by the monolithic solution since the OML mesh is directly modified to effect the 

change in elevon deflection. 

The simulations were carried out on an Asus Workstation computer with an 8-core 2.00 

GHz Intel Xeon processor and 32 GB RAM. For 3 seconds of simulation, the partitioned solution 

was completed in ~32 minutes and the monolithic solution in ~14 minutes. The additional time 

required for the partitioned solution was largely due to iteration of the interface convergence loop, 

which requires at least two loops in order to find a residual value to confirm that the interface 

motions and forces have met the specified tolerance. 

 

6.1.3 Control Surface Stability Analysis 

Determining the aeroelastic stability of a vehicle is critical in establishing the flight 

envelope of the vehicle. For the AFRL cruiser model, early time simulations at high Mach numbers 

(approximately Mach 8 or greater) and low altitude (approximately 10 km) showed possible 

control surface flutter. To characterize its dynamic response in flight a linear representation of the 

control surface motion can be established as 

 

    x t A x t  , (6.2) 
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where ( )x t  is the state vector, taken to be the amplitudes of 15 elastic structural Ritz modes and 

their 15 respective time derivatives, and A  is the linear state matrix. The entries of A  are 

approximated from time simulations of the control surface as 

 

  x f x  , (6.3) 

 

 
 

   
:,

2

e x k e x k

x k

f x f x
A k



    
 , (6.4) 

 

where ( :, )A k  denotes the kth column of A , 
e

x  is the trim state such that ( ) 0
e

f x  , and the 

perturbation 
xk

  is of the form 

 

  0 0 0
T

xk xk
   , (6.5) 

 

where 
xk

  is 1% of the kth trim state or a small value if the kth trim state is zero. The function 

( )
e xk

f x    is approximated by a 6th-order forward difference of 7 time steps of the control surface 

simulation. 

The structural properties of the control surface will vary over time due to the exposure to 

the hypersonic flow. Aerodynamic heating will degrade the material stiffness and uneven thermal 

expansion will create both geometric stiffening and thermal loads on the surface. To account for 

these effects, the solutions uses the Eckert reference temperature method and the POD thermal 

ROM to time march the thermal analysis of the control surface starting at the reference state of 
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uniform 293-K structure. Without loss of generality, to decrease the computational burden for this 

study, the control surface is flown at 10-km altitude. This altitude is not typical of most hypersonic 

vehicles, air-breathing or otherwise, due to thermal and scramjet performance issues that would 

arise from passing through the denser lower atmosphere. Altitudes of 20 to 30 km are more typical 

for hypersonic vehicles, however these would result in higher flutter Mach numbers and lower 

aeroheating, requiring longer simulation runtimes to heat the control surface sufficiently for 

thermal effects to make a similar impact. 

 

 

 

 

Figure 6.7: Temperature range of all points of the control surface structure for prolonged cruise at 

an altitude of 10 km 
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 A s s  , (6.6) 

 

where s  are the associated eigenvectors. A mode of the control surface is deemed to be unstable 

when the corresponding root crosses to the positive real half plane. For the case of the control 

surface used as part of the AFRL cruiser, started at a uniform 293 K and instantaneously exposed 

to the hypersonic flow, the behavior of the unstable (first vibration) mode is shown in Figure 6.8 

and Figure 6.9. 

 

Figure 6.8: Root loci for various Mach numbers and flow exposure times for the first free 

vibrational mode, 10 km altitude 
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Figure 6.9: Time history of flutter Mach number, 10 km altitude 

 

Figure 6.8 and Figure 6.9 show that, as the control surface is first exposed to the flow, the 

control surface is relatively rigid and presents a flutter Mach number of 16.1. However, as the 

control surface heats, there is a loss of stiffness, lowering the flutter Mach number. This loss of 

stiffness also lowers the frequency of the modes describing the elastic deformation of the control 

surface, corresponding to the negative slope of the loci by time in flow shown in Figure 6.8. Also 

for lower Mach numbers, 3 though ~5.5, one can see a temporary increase in frequency likely due 

to geometric stiffening from the thermal gradients present in the control surface. As the control 

surface temperatures begin to stabilize after exposure to the flow, the flutter Mach number 

asymptotes to ~3.5, corresponding to a loss of over 78% of the initial flutter margin. 

As a way to verify these stability results, a time simulation of the control surface was 

performed at the initial temperature distribution while flying at 10-km altitude. The Mach number 

was varied and time traces of the modal amplitudes were recorded, as shown for mode 1 in Figure 

6.10. An exponential curve was then fit to the peaks of the amplitude trace by least-squares, to 

estimate the damping ratio of the mode. A fast-Fourier transform was also performed to estimate 

the trace frequency. This was performed for Mach numbers ranging from 10 to 19. The frequencies 
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and damping ratios of modes 1, 2, and 3 are shown in Figure 6.11. As can be seen, the damping 

ratio becomes negative just beyond Mach 16. This result agrees well with the previous result found 

by the finite-difference and eigenvalue approach and serves to verify the solution. 

 

 

 

 

 

Figure 6.10: Mode damping and frequency characterization from time trace 
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Figure 6.11: Damped frequency and damping ratio for control surface elastic modes 1-3 

 

6.2 Model Reduction of the IC3X Vehicle 

Model reduction techniques are applied to the AFRL Initial Concept 3.X (IC3X) vehicle on 

terminal trajectories to capture the aerodynamic, thermodynamic, and structural dynamic system 

evolution and couplings. The General Pseudospectral Optimization Software (GPOPS-II) is used 

to determine a set of terminal trajectories that maximized impact velocity. Shock, Prandtl-Meyer 

expansion, and piston theory were combined to create an approximate flow solution over the outer 

mold line that was then compared to Fully Unstructured Navier-Stokes 3-Dimensional (FUN3D) 

computational fluid dynamics solutions. Proper orthogonal decomposition (POD) of the thermal 

state of the vehicle was conducted leading to 33 thermal degrees of freedom rather than 

approximately 28,000 contained by a representative finite element model (FEM), while sacrificing 

negligible system energy. Free vibration mode shapes are derived and used to generalize the 
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structural dynamics equations of motion reducing the number of structural degrees of freedom to 

8 from the original 130,000. 

 

6.2.1 Finite Element Model 

To provide a reference and training sample source for model reduction, a pair of FEMs were 

created. The first was a structural model for vibration mode analysis and load testing. The second 

was a thermal model for heat transfer analysis. Both models are based on the work of Witeof and 

Neegard,177 however mesh refinement and other adjustments were made to the previous work to 

permit thermal analyses pertaining to both FEMs. A summary of the node count, element count, 

and element types used in each components of the FEM is given in Table 6.3 and Table 6.4. For 

the structural FEM, thick components such as the ballast and body TPS, were modeled with solid 

elements. Thin-walled components, such as the monocoque, steel casing, fin structures, and fin 

TPS were modeled with shell elements. The fin root shafts joining the fins to the body were 

modeled as cubic beam elements. For the thermal FEM, heat transfer between the fins and the 

body was assumed negligible and the fin root shafts were neglected. All components were modeled 

using solid elements so to have a more accurate representation of the through-thickness 

temperature profiles of thin-walled components. For the structural FEM, the mass contribution of 

the steel casing was already accounted for by the distributed non-structural masses added to the 

monocoque skin, thus the casing mesh was unnecessary. Cross sections of both FEMs are shown 

in Figure 6.12. 
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Table 6.3: Structural Abaqus FEM mesh details 

Component Node count Element count Element type Element code 

Ballast 2,177 1,279 quadratic tetrahedral C3D10 

Monocoque 5,509 11,096 linear triangular S3R 

TPS 14,620 7,267 linear hexahedral C3D8 

Fin 1,300 3 cubic beam B33 

  2,371 linear triangular S3R 

 

Table 6.4: Thermal Abaqus FEM mesh details 

Component Node count Element count Element type Element code 

Ballast 2,230 1,315 quadratic tetrahedral DC3D10 

Monocoque 96,224 76,360 linear hexahedral DC3D8 

TPS 14,620 7,267 linear hexahedral DC3D8 

Casing 1,386 660 linear hexahedral DC3D8 

Fin 6,470 9,460 linear wedge DC3D6 

 

 

 

Figure 6.12: Mid-span cross sections of the IC3X vehicle FEMs 

 

 

 

a) Structural FEM 

b) Thermal FEM 
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6.2.2 Cruise Phase 

While analysis of the terminal phase trajectory was the primary goal, the thermal initial 

conditions to the terminal phase are established by the cruise phase. Thus, trimming for steady-

level flight in the cruise was required to determine the flow conditions over the OML required to 

determine the surface heat flux. During the cruise phase, an undescribed propulsion system is 

active to maintain flight. It is assumed that this propulsion system consumes all non-reserve fuel 

linearly over the duration of a 500-nautical-mile cruise phase. This cruise phase is assumed greater 

than Mach 5, and above 50 kft (15.2 km) in altitude. 

 

6.2.2.1 Aerodynamics Model 

The OML was extracted from the structural and thermal FEMs and used to determine the 

surface pressures for flight at Mach 6 .5  and 6 5 , 0 0 0  f t  altitude for various angles of attack. The 

surface pressure distributions were then compared to Euler CFD simulations processed by the 

FUN3D code suite by Dreyer.188 The SEP and CFD solutions for surface pressure are shown in 

Figure 6.13. 

It can be seen that overall the SEP solutions qualitatively match well with the Euler CFD 

solutions for surface pressure. However, there are minor differences including the over-prediction 

of pressure at the nose tip by the SEP model due to the neglect of 3D pressure relief effects for 

conical bodies. In addition, the shock wave interactions between the fins and the body are 

neglected since the SEP model considers panels of the OML individually, with no account for the 

regions of dependence or influence in the supersonic flow. That said, calculation of each SEP 

pressure distribution required ~6 seconds on 1 Intel E5 2.0 GHz core while calculation of each 

Euler CFD solution required ~300 seconds on 128 Intel E5 2.6 GHz cores. 
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Figure 6.13: Comparison of SEP to Euler CFD surface pressures 

 

The pressure solution at the centroid of each panel of the SEP solution is then quantitatively 

compared with the spatially nearest panel of the CFD solution. The normalized root-mean-square 
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where n=21315 is the number of panels comprising the SEP OML, 
,S E P i

p  is the surface pressure 

at the centroid of the ith panel of the SEP OML, and 
,C F D i

p  is the surface pressure at the spatially 

nearest CFD panel to the SEP panel. The NRMSE for each angle of attack is given in Figure 6.14. 

 

 

Figure 6.14: Comparison of the SEP and CFD pressure solutions 
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to cancel the component of the weight along the axis of the vehicle plus the drag in the body frame 

after the aerodynamic model was applied, 

 

 co sT D m g    , (6.8) 

 

where T  is the thrust magnitude, m  is the mass of the vehicle, g  is the acceleration due to gravity, 

  is the angle of attack, and D  is the drag, taken to be the x  component of the net aerodynamic 

forces in the body frame obtained from the SEP aerodynamics model. Note that the SEP 

aerodynamic model used in this work was akin to an Euler solution in that it ignored viscous effects 

and accounted only for pressure drag. To ensure that the neglect of the viscous drag would not 

significantly affect the trim solution, a set of trim solutions including the skin friction coefficients 

derived from the Eckert reference temperature method were considered for a uniform OML 

temperature of 273 K. While the required thrust increased, sometimes by as much as 38%, the 

angle of attack and fin deflection angles varied by less than 4% compared to the inviscid trim 

solution. Since the incident angle of the OML to the freestream flow is the primary driving factor 

for the surface heat flux considered later in this chapter, the inviscid trim solutions were considered 

adequate. The aerodynamic forces in the body frame are found by 
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 , (6.9) 

 

and aerodynamic moments in the body frame are found by 
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 c
M x F


  , (6.10) 

 

where F  is a 3n   matrix of forces on each OML panel, 
i

p  is the pressure on the ith OML panel 

determined from the SEP aerodynamics model, 
i

A  is the surface area of the ith OML panel,  
ˆ

i

x
n , 

 
ˆ

i

y
n ,  

ˆ
i

z
n  are the components of the outward facing unit normal vector of the ith OML panel, M  

is a 3n   matrix of moments about the nose tip, 
c

x  is a 3n   matrix of the body frame locations 

of the OML panel centroids from the nose, and  
x
 is the skew-symmetric matrix operator. Total 

drag D  and lift L  are the sums of the first and third columns of the force matrix F , respectively. 

Total pitching moment is the sum of the second columns of the moment matrix. The net forces and 

moments relevant for steady-level flight, assuming lateral symmetry, are then 
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where 
,i j

F  is the i,jth entry of F , 
,i j

M  is the i,jth entry of M , and 
C G

x  is the distance of the center 

of gravity from the nose tip. Note that eq. (38) is identically 0 under all conditions due to the 



151 

 

definition of the thrust T  in eq. (35). Thus only 
.z n e t

F  and 
,y n e t

M  must be minimized to obtain the 

trim state. Since at this point, the elastic and thermal models were not yet developed and the 

structure was considered perfectly rigid. Shown in Figure 6.15 is a sample lift and drag distribution 

along the body length for the end of the cruise phase at Mach 6 and an altitude of 75 kft (22.9 km). 

Figure 6.16 shows the trim conditions for the beginning and end of the cruise phase at the flight 

conditions described. 

 

Figure 6.15: Sample lift and drag distribution for Mach 6, 75 kft (22.9 km) altitude, end of cruise 

phase 
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Figure 6.16: Cruise phase trim states for a range of Mach numbers and altitudes 

 

6.2.3 Terminal Phase Trajectory Optimization 

The vehicle enters the terminal phase of the trajectory following the cruise phase and 

pitches downward to begin its descent toward the ground. In order to tailor thermal and structural 

modal solutions, a representative terminal trajectory was required. To determine a realistic 

trajectory, an optimization of the vehicle flight dynamics was carried out to maximize the kinetic 

Cruise start Cruise end Change during cruise 
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energy of the vehicle upon reaching the ground. The General Purpose Optimal Control Software 

(GPOPS-II)189 was used with the 3 degree of freedom equations of motion  

 

  s inr v   , (6.14) 
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(6.17) 

 

Here r  is the radius from the center of the Earth to the body center, 
lo n

x  is the longitude in 

the Earth frame, v  is the speed,   is the flight path angle, g  is the acceleration due to gravity, D  

is the drag force, L  is the lift force, and m  is the vehicle mass. The vehicle was considered to be 

on a spherical Earth with gravitational acceleration as a function of altitude, lift and drag 

coefficients derived from the shock, expansion, and piston (SEP) theory aerodynamics model 

previously described, and atmospheric conditions based on the 1976 standard atmospheric 

model.149 Control was effected by varying the angle of attack which varied the drag D and lift L. 
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To integrate equations of motion (6.14) through (6.17), lift and drag polars were required. 

The SEP aerodynamics model was used to vary the angle of attack at Mach 6.5, and record the 

variation of the coefficients of lift and drag.  The results are shown in Figure 6.17. 

 

 

Figure 6.17: Vehicle lift and drag polars for Mach 6.5 

 

A sparse sampling of CFD solutions taken from Dreyer188 are also shown in Figure 6.17 

for comparison to the SEP solutions.  Overall, both solutions match well for both moderate and 

extreme angles of attack. The least-squares method was then used to fit fifth and sixth order 

polynomials to each polar, yielding 
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where 
L

C  is the coefficient of lift, 
D

C  is the coefficient of drag, and M  is the Mach number.  The 

Prandtl-Glauert factor for supersonic flight was then used to approximate 
L

C  and 
D

C  for Mach 

numbers other than 6.5 
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A factor of 1.5 was also applied to 
D

C  to account for additional drag generated by an undescribed 

scramjet inlet.  Given 
L

C , 
D

C , and the equations of motion, the terminal trajectories shown in 

Figure 6.18 for initial Mach numbers 5, 6, 7, 8, 9, and 10 and initial altitudes of 50, 60, 70, 80, 90, 

and 100 kft (15.2, 18.3, 21.3, 24.4, 27.4, and 30.5 km, respectively) were generated by the GPOPS-

II code to maximize final kinetic energy. 

A representative trajectory starting at Mach 6, 75 kft (22.9 km) altitude was selected for 

further analysis.  The trajectory is overlaid and bolded onto Figure 6.18 for comparison to the 

sample set of trajectories. The time histories of the altitude, flight speed, angle of attack, and flight 

path angle of the representative trajectory are shown in Figure 6.19. The total flight time of the 

representative terminal trajectory is 37.5 s, covering a range of 49.1 km.  The final Mach number 

is 2.6, which at sea level is equivalent to 887 m/s. 
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Figure 6.18: Selection of terminal trajectories optimized for maximum final kinetic energy 

 

 

 

Figure 6.19: Representative terminal trajectory (initial Mach 6 and 75 kft altitude) 

 

 

5 10 
5 10 

5 10 
5 10 

5 10 
Mach 5 10 

Stratosphere 

Tropopause 

Troposphere 

Range [km] 

A
lt

it
u
d
e 

[k
m

] 

35 

30 

25 

20 

15 

10 

5 

0 
0 10 20 30 40 50 60 70 80 90 100 

 



157 

 

6.2.4 Heat Transfer Simulation 

To employ the method of snapshots to the thermal state in the terminal trajectory phase, a 

high-fidelity heat-transfer simulation of the structure was required. However, simply simulating 

the terminal phase is insufficient due to the thermal hysteresis. The cruise phase was also simulated 

to determine the initial terminal phase heat transfer conditions. 

 An Abaqus user-defined subroutine (UDS) was written to interface the heat-transfer FEA 

with the SEP aerodynamic model and trim solver. Within the UDS, the Eckert aeroheating model 

was implemented and used to determine the surface heat flux across the aerodynamic boundary 

layer given flow conditions determined a priori and wall temperatures determined during the heat-

transfer FEA. The process flow chart is shown in Figure 6.20. 

 

 

Figure 6.20: Process for coupling aerodynamic model and structure heat-transfer FEA 
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at the centroid of each OML panel. Upon determining the vehicle is trimmed for a given instant in 

the cruise phase, time, spatial coordinates, pressure, outer temperature, and outer Mach number 

for each panel are written to a database. During the heat-transfer FEA, the time and spatial 

coordinates of a node on the FEM are passed by Abaqus to the database searcher and interpolator. 

Since the aerodynamic solutions are considered at the OML panel centroids and the heat-transfer 

simulation temperature solutions are considered at the element nodes, interpolation of the flow 

properties is implemented by averaging the flow solutions of all spatially adjacent panel centroids 

to an element node, i.e., 

 

   
1

1
, , , ,

n

n o d e c e n tro id

i

p T M p T M
n 

   , (6.22) 

 

where n  is dependent on the element type of the associated node. For quadrilateral elements,  

4n  , while for tetrahedral and triangular elements, 6n  . No interpolation was considered 

temporally. Instead, trim and aerodynamic solutions were determined at intervals of 0.1-s and flow 

conditions were taken at the nearest recorded time in the OML flow conditions database. This 

approach was viable since a time interval of 0.1-s was much too fine of an interval to appear in the 

heat-transfer simulation due to the long characteristic times of thermodynamic processes. 

 A Mach 6, 75 kft (22.9 km) altitude cruise heat-transfer simulation was begun with the 

structure at a uniform 238 K. The cruise phase covered 500 nautical miles (926 km) over 

approximately 520 s. Temperature profiles for the OML and bond-line between the monocoque 

skin, fin structure, and TPS are shown in Figure 6.21. Maximum and minimum temperatures of 

each component during simulation are shown in Figure 6.22. To increase the processing rate of 

the heat-transfer simulation, the body and fins were simulated separately. Since the fins have less 
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thermal capacity and a larger relative surface area than the body, they tend to experience rapid 

heating initially, requiring fine time steps, but quickly stabilize and can be integrated with larger 

time steps. On the other hand, the body does not heat as rapidly, allowing for larger time steps than 

the fins initially, but spends a longer time in a transient state, thus not allowing the time steps to 

be lengthened as significantly as with the fins. This separation of the body and fins implies the 

neglect of gap heating at the joint between the fins and body. While gap heating is a significant 

source of heat flux, a model for it has not been developed in this work. 

During the cruise phase, the nose and fore-body experience the greatest heating due to the 

more inclined OML surfaces. This was expected, as the TPS is thicker in these areas than the mid-

body. The ballast bears the greatest heating due to the stagnation point, but heats relatively slowly 

compared to the TPS slightly aft due to its greater thermal capacity. One may see that the mid-

body monocoque bound line is the first to experience the heating effects at approximately 16 s into 

the cruise phase, where the TPS is the thinnest, but ultimately the highest bound line temperature 

was found on the windward fore-body, despite the thicker TPS on the fore-body.  The fin TPS 

heated nearly as quickly as the stagnation point on the ballast, but quickly reached a maximum and 

then began to cool slightly as the fins assumed new angles of attack to trim the vehicle. 

 Following the cruise phase heat-transfer simulation is terminal phase heat-transfer 

simulation with initial thermal states determined by the final states of the cruise phase. Linking 

between the SEP aerodynamics model and the Abaqus FEA was nearly identical to what was done 

for the cruise phase, except that rather than the trajectory being determined by the trim solver, the 

GPOPS-II optimized terminal trajectory states are used. Transition from the trim condition at the 

end of cruise to the condition at the beginning of the terminal phase is considered instantaneous. 
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Figure 6.21: Cruise phase temperature profiles for Mach 6, 75 kft (22.9 km) altitude 
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Figure 6.22: Extreme temperatures in cruise by component 

 

 In reality, the pitch-over maneuver from the cruise to terminal phase would require some 

finite amount of time, but the duration of this maneuver was assumed small compared to the 

characteristic time of the thermal solution. As with the cruise phase, aerodynamic solutions in the 

terminal phase were considered at intervals of 0.1 s and written to the OML flow conditions 

database and the fin and body heat-transfer simulations were run separately. Temperature profiles 

for the OML and bond-line between the monocoque skin, fin structure, and TPS are shown in 

Figure 6.23 and temperature ranges by component are shown in Figure 6.24. 

 The heating effects of the pitch-over maneuver at the initiation of the terminal phase can 

be seen in the inversion of the maximum heating location on the fore-body OML in the first 4 s. 

The OML then continues to heat until about 24 s when the vehicle enters the troposphere and the 

combination of lower Mach number and higher density atmosphere begins to quench its surface. 

The duration of the terminal phase appears to be insufficient to significantly alter the thermal state 

of the monocoque bond line while the fin bound line did experience some cooling near the leading 

and trailing edges due to the locally low heat capacity of the fin structure. Several sharp “kinks” 

200

700

1200

1700

2200

0 260 520

M
ax

im
u
m

 t
em

p
er

at
u
re

 [
K

]

Time [s]

200

700

1200

1700

2200

0 260 520

M
in

im
u
m

 t
em

p
er

at
u
re

 [
K

]

Time [s]

Ballast

TPS

Monocoque

Casing

Fin TPS

Fin Structure



162 

 

in the extreme temperature plots of Figure 6.24 may be seen. These are the result of the extreme 

temperature point changing to a new location in the structure which experienced a different cooling 

rate than the previous location, resulting in a discontinuity in the slope of the plotted results. 

 

 

Figure 6.23: Terminal phase temperature profiles for Mach 6, 75 kft (22.9 km) altitude 

Outer mold line temperature Bond line temperature 

0 s 

1 s 

2 s 

4 s 

8 s 

16 s 

24 s 

28 s 

30 s 

32 s 

37.5 s 

238 K 1200 K 



163 

 

 

Figure 6.24: Extreme temperatures in terminal phase by component 
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6.2.5 Thermal Model Reduction 

With the thermal states known for the terminal phase, the method of snapshots is then 

applied. Since the ultimate goal is to truncate the resulting modal basis to reduce the number of 

thermal degrees of freedom, selecting modes which contain the most system energy is desirable. 

It has been previously shown by Falkiewicz and Cesnik22 that, in some cases, taking more 

snapshots to derive the modal bases can result in a less accurate thermal model due to the spreading 

of energy to higher modes that are then neglected during truncation. Ideally, enough thermal modes 

200

700

1200

1700

2200

0 18.75 37.5M
ax

im
u
m

 t
em

p
er

at
u
re

 [
K

]

Time [s]

200

700

1200

1700

2200

0 18.75 37.5M
in

im
u
m

 t
em

p
er

at
u
re

 [
K

]

Time [s]

Ballast

TPS

Monocoque

Casing

Fin TPS

Fin Structure



164 

 

are retained to achieve machine accuracy or roughly 15 significant figures. To determine the 

accuracy of a truncated mode set, the relative energy loss 
re l

  is used. If it is found that the relative 

energy loss is approximately 15 orders of magnitude less that the total system energy, 1 5
1 0

re l



  

then one could consider the energy loss by truncation of the modal basis to be negligible. Thermal 

snapshots were considered at several time intervals ranging from 10 s to 0.1 s. The relative energy 

loss was then determined for truncation of each modal basis compared to the snapshot matrix used 

to form them. The number of retained modes required to achieve negligible energy loss given the 

number of snapshots taken is shown in Figure 6.25. Once the number of bases retained from each 

snapshot matrix was determined, the relative energy loss was investigated further by projecting 

the 0.1-s time interval snapshot matrix onto the space spanned by the retained bases and 

reevaluating the relative energy loss of each basis set. The results are shown in Figure 6.26. 

 It can be seen from Figure 6.25 that taking more snapshots indeed results in more bases 

required to capture the target system energy, which indicates a spreading of energy to higher 

modes.22 However, this spread of energy appears to asymptote to approximately 30 to 35 modes 

for large numbers of snapshots. From Figure 6.26, one can see that the relative energy loss 

decreased steadily for larger numbers of snapshots, which eventually reached the target of 

1 5
1 0

re l



  for snapshots taken at 0.1-s intervals. Thus, it was determined that the 33 basis modes 

derived from the 376 snapshots taken at 0.1-s intervals provided an adequate representation of the 

thermal solution in the terminal phase. The first 10 thermal basis modes are shown in Figure 6.27 

with the eigenvalue magnitudes of each mode and relative energy loss 
re l

  due to truncation error 

shown in Figure 6.28 and Figure 6.29. 

From the OML column in Figure 6.27, it can be seen that the most dominant thermal basis, 

mode 1, emphasizes the influence of the relative thermal capacities of the structure near the steel 



165 

 

casing, mid-chord of the fins, and TPS near the tail. Mode 2 emphasizes the difference in thermal 

properties between the ballast and TPS as well as stagnation point heating. Mode 4 emphasizes the 

difference in temperatures between the windward and leeward sides while modes 8 and 9 almost 

exclusively focus on fine temperature gradients near the nose stagnation point. From the bond line 

column, it can be seen that the relatively subtle temperature change of the skin during the terminal 

phase leads to basis modes that only emphasize the effect of the steel casing in modes 1 and 2 and 

some slight differences between the windward and leeward sides in modes 3, 4, and 5. 

 

 

 

 

Figure 6.25: Number of bases to achieve 

negligible energy loss 

 

Figure 6.26: Energy loss compared to 0.1-s 

interval snapshot matrix 

 

 

 

 

0

10

20

30

40

0 200 400

N
u
m

b
er

 o
f 

re
ta

in
ed

 b
as

es

Number of snapshots

1.E-15

1.E-10

1.E-05

1.E+00

0 200 400

R
el

at
iv

e 
en

er
g
y
 l

o
ss

 (
ε r

el
)

Number of snapshots

10
0
 

10
-5

 

10
-10

 

10
-15

 



166 

 

 

 

 

Figure 6.27: First 10 thermal basis modes normalized by maximum temperature 

 

 

 

 

Outer mold line normalized 

thermal basis mode 

Bond line normalized 

thermal basis mode 

Mode 1 

Mode 2 

Mode 3 

Mode 4 

Mode 5 

Mode 6 

Mode 7 

Mode 8 

Mode 9 

Mode 10 

0 1 



167 

 

 

 

Figure 6.28: Eigenvalue magnitudes of the first 50 thermal basis modes (0.1-s snapshot sampling) 

 

 

Figure 6.29: Relative truncation error associated with retaining up to the first 50 thermal basis 

modes (0.1-s snapshot sampling) 
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has been lost. Therefore, the snapshot matrix will not project perfectly onto the truncated modal 

space and an error   can be introduced. However, since it has been shown that projection of the 

snapshot matrix A  onto 33 basis modes of   produces relative errors on the order of 10-15, from 

a numerical standpoint it is possible to project the snapshot matrix directly within computer 

accuracy, i.e. 

 

1
c A 


    , (6.23) 

 

where   is approximately 15 orders of magnitude smaller than 1
A


  and may be neglected. The 

coordinates of the first 9 thermal basis modes throughout the terminal phase are shown in Figure 

6.30. Overall, mode 1 dominates throughout much of the terminal phase and begins to yield to 

mode 2 at 28 s following the transit to the troposphere and final quenching of the OML. Mode 3 

appears to vary in response to a combination of angle of attack and atmospheric conditions.  Modes 

4, 5, 6, and 7 are more dynamic than the lower modes and are especially active during the pitch-

over maneuver at the initiation of the terminal phase. Mode 8, which contributes almost 

exclusively to the stagnation point temperature profile, shows the exact time of troposphere transit 

with a sudden change in slope at 26.4 s. 

 



169 

 

 

Figure 6.30: Thermal basis modal amplitude variation in the terminal phase 
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mean temperatures since the final quench of the OML skewed the temporal distribution of 

temperatures toward a lower value that was not representative of the majority of the terminal phase. 

This reference thermal state is shown in Figure 6.31. 

 

 

Figure 6.31: Reference thermal state for structure modal identification 

 

Using the Abaqus30 linear perturbation, frequency analysis with the Lanczos32 solver, 102 mass-
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realistically be acted upon by a hypothetical flight controller and fin actuator. No intermittent 

contact effects where considered between the fins and the body, which allow the fins to intersect 

the body in the cases of the 2nd and 3rd bending as well as the 1st extension modes in case 

deformation becomes large enough. 
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Figure 6.32: Free vibrational modes at the reference thermal state 
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6.2.7 Thermoelastic Coupling 

While the Ritz modes determined in the previous section are orthogonal at the reference 

thermal state, there is no guarantee that these modes will remain orthogonal as the stiffness and 

mass properties vary during flight or along trajectories different from the one selected for this 

study. The loss of orthogonality is acceptable when integrating the structural equations of motion 

so long as the variations of the stiffness and mass matrices are modeled. For the terminal phase of 

the trajectory, it is assumed the propulsion system is inactive and there are no changes to the 

vehicle mass. For the stiffness part, a Kriging model was used for the approximation of the stiffness 

properties, as introduced by Falkiewicz and Cesnik.36 An outline of the Kriging training process 

is given in Figure 6.33 and begins with the selection of thermal modes and thermal mode 

coordinates. The 5 most dominant thermal modes,  x , were selected to achieve a relative 

temperature field error of  
6

1 0O
 . Thermal coordinates, c , were selected by Latin hypercube 

sampling.190 The product of the thermal modes and coordinates yields a temperature field in 

physical coordinates,  T x  which is written into an Abaqus FEA input file that also includes the 

vehicle mesh and material properties. A coupled temperature and displacement analysis is 

performed and the global stiffness matrix,  K T , is extracted. The stiffness matrix is generalized 

by the elastic modes,  x , and the generalized stiffness matrices, k , and corresponding thermal 

coordinates, c , are paired to form a sample set. From this sample set, all but 100 of the samples 

are used to train the Kriging model using the dacefit function of the DACE toolbox.141 The 

remaining samples are then used as testing points to evaluate the error of the model. The error is 

determined by the normalized root-mean-square of (6.7) and L∞ methods. If the error is below 

some tolerance, .E to l , then the model is complete. If not, then further training samples are 

selected and the model training process is iterated. The error for 18 combinations of regression 
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and correlation functions within the Kriging model are show for various training set sizes in Figure 

6.34. 

 

 

Figure 6.33: Thermoelastic Kriging model training 
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Figure 6.34: Thermoelastic Kriging training errors 
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value decomposition approach is shown to be the superior overall reduced-order model to capture 

the variation of thermal properties with temperature when compared to a full-order finite element 

solution. The effects of varying the number of retained thermal modes and thermal property 

eigenvectors on the singular value decomposition model are then considered. It is shown that only 

a few eigenvectors need to be considered to achieve excellent agreement with finite element 

analysis. 

 

6.3.1 Sample Collection 

To create the thermal property ROMs, a number of training and testing samples were required. 

The process used to collect these samples is outlined in Figure 6.35 and begins with considering 

the thermal bases   and thermal mode ranges  m in c  and  m ax c  resulting from a POD of an 

FEA heat transfer simulation of the substructure. Latin hypercube sampling was used to determine 

a uniformly random set of thermal coordinates c  that were then converted to physical temperature 

distributions T  within the FEM. These were then passed to an FEA solver which assembled the 

full thermal property matrices M  and K , which were then exported and generalized according to 

the thermal bases   into m  and k . Each generalized thermal property matrix was then paired 

with its corresponding thermal coordinates c  and sent to each of three ROM training functions to 

be incorporated into a thermal property ROM. 
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Figure 6.35: Training sample collection process 
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and exported for comparison against the other ROM types. The L∞ error metric was selected to 

compare the different ROM variants within a training function since it is the most conservative 

measure of error. A flowchart of this process is shown in Figure 6.36. 

 

 

Figure 6.36: ROM training, testing, and selection for each ROM type 
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Once the flow properties near a node of interest were found, the Eckert reference temperature25 

and black-body radiation methods were used to determine the heat flux 
w

q  to the node. The heat 

flux was imported back to the FEA heat transfer solver as a boundary condition and the solution 

was moved ahead in time. A flowchart of this process is shown in Figure 6.37. The resulting 

temperature profiles of the substructure during the cruise and terminal phases are shown in Figure 

6.38 and Figure 6.39, respectively. 

 

 

Figure 6.37: FEA heat transfer simulation along flight trajectory 
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Figure 6.38: Temperature range in substructure during cruise phase 

 

Figure 6.39: Temperature range in substructure during terminal phase 

 

During the cruise phase, the substructure is initially a uniform 238 K. The outer surface of 

the TPS quickly warms to nearly 1277 K and begins slowly conducting heat inward toward the 

238

1277

0 130 260 390 520

T
em

p
er

at
u
re

 [
K

]

Time in cruise phase [s]

0 s 5 s 20 s 80 s 320 s 

 

238 K 

1277 K 

Minimum 

Maximum 

238

1277

0 37.5

T
em

p
er

at
u
re

 [
K

]

Time in terminal phase [s]

2 s 22 s 32 s 34.5 s 37.5 s 

 

238 K 

1277 K 

Minimum 

Maximum 

660 



180 

 

skin. The ballast meanwhile has a high thermal conductivity and warms almost uniformly. 

Protected by the TPS, the skin is the slowest to warm, however after roughly 320 s the substructure 

became completely thermally soaked, meaning nearly a uniform 1277 K. Upon entering the 

terminal phase, the vehicle switched from a nose-up to a nose-down angle of attack. Thus the 

substructure which was initially on the highly thermal loaded windward side of the vehicle was 

then on the less loaded leeward side which caused as a small initial drop in the outer TPS 

temperature. After about 32 s, the vehicle had sufficiently slowed to allow additional cooling of 

the TPS until the end of the terminal phase at 37.5 s. Throughout the terminal phase the skin 

remained nearly at 1277 K since insufficient time passed to conduct its heat back out through the 

TPS. 

 

6.3.3 Thermal Bases 

After performing a simulation of the sample structure along the cruise and terminal phase 

trajectories, thermal bases were determined using the method of POD for the terminal phase. The 

first 5 bases are shown in Figure 6.40 with the relative eigenvalue magnitudes and basis truncation 

error shown in Figure 6.41. Figure 6.40 reveals that almost the entirety of all modes focus on 

describing the temperature gradient in the TPS of the model due to the low conductivity of the 

Acusil-II® material compared to the tungsten and titanium alloy of the ballast and skin, 

respectively. Some detail is afforded for the titanium alloy skin; however, this is largely to enforce 

the temperature continuity between the skin and TPS. Despite placing almost all focus on the TPS, 

Figure 6.41 shows that the truncation of the bases to the first 5 modes provided a relative error of 

~10-8, which is typically sufficient to accurately represent the thermal state of the structure. Thus, 

one may use these bases to generalize the rank 6478 thermal problem considered by the FEA to a 
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rank 5 problem and be confident that reasonable solution accuracy may still be obtained if similar 

thermal loading is simulated. 

 

 

Figure 6.40: First 5 most prominent POD thermal modes 

 

Figure 6.41: Relative POD eigenvalue magnitude and truncation error 
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6.3.4 Reduced-Order Model Accuracy 

For each ROM type, the number n  of training samples was varied by powers of 2 from 

2n   to 1 0 2 4n  . Each of the resulting models was then tested using the same 1 0 0 0k   samples 

to evaluate each ROMs’ accuracy. The root-mean-squared-error (RMSE) and normalized 

maximum error (Norm L∞) of each ROM type are shown in Figure 6.42 with the most accurate of 

each type compared in Figure 6.43. For all ROM types, the higher order regression and polynomial 

functions resulted in the lowest errors when a sufficient number of training samples were provided. 

However if too few training samples were provided, the higher orders often resulted in higher 

errors than their lower order counterparts, especially for the least squares and SVD models. For 

2 0 0n  , both the least-squares and SVD ROMs did not exhibit a reduction in error given further 

training samples. This was due to the limitation of their maximum cubic polynomial function 

order. The Kriging method produced two distinct groups of models. The first was when the 0th 

order polynomial regression was used. This allowed Kriging models to be constructed using very 

few training samples and is akin to radial basis function type ROMs. However once 8n  , 1st and 

then 2nd order regression polynomials were shown to be superior. For all Kriging ROMs, the 

RSME continued to reduce as additional training samples were added until 1 0 2 4n  , with the 

exception of the 0th order regression and general exponential (expg) formulation which appeared 

to be especially sensitive to the pseudo-random LHS sampling pattern. This is evident by the 

uneven and erratic shape of the maximum RMSE line in Figure 6.42. Kriging was found to be the 

most accurate ROM type of those considered. For all ROM types, a steady decline in the 

normalized L∞ was observed and all ROM types showed approximately the same order of 

normalized L∞ for 1 0 0n  . Some minor noise was observed due to the random nature of the LHS 
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method, but the overall trend that more training samples resulted in lower measures of error was 

clear. For the largest training set size considered, the least-squares cubic model, 25 bases SVD 

model with cubic regression, and kriging model with a quadratic regression and spherical 

correlation were found to be the most accurate of their respective ROM types. 

 

 

Figure 6.42: Error of each ROM type for a given training set sample size 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2 16 128 1024

N
o
rm

 L
∞

n training samples

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

R
M

S
E

2 16 128 1024

n training samples

Least Squares 

0 
1 
2 
3 

SVD 

1 
2 
3 

Regression Order 

Kriging 

C
o
rr

el
at

io
n
 F

u
n
ct

io
n

 

exp 
expg 

gauss 
linear 

sphere 
spline 

0 1 2 

2 16 128 1024

n training samples

10
-4

 

10
-5

 

10
-6

 

10
-7

 

10
-8

 

10
-9

 

10
0
 

10
-1

 

10
-2

 

10
-3

 

10
-4

 

Polynomial Order Polynomial Order 

R
M

S
E

 
N

o
rm

 L
∞
 



184 

 

 

 

Figure 6.43: Effect of training sample size on the accuracy of ROMs generated from three different 

approaches 
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the method of Kriging is able to reproduce the entire training set and thus contains all of the 

information used to train the ROM. The least-squares and SVD approaches did not have the ability 

to reproduce the training set and thus retained only a fraction of the information used to train the 

ROMs which resulted in lower memory requirements for the computer. 

In terms of processing speed, the least-squares and SVD ROMs were roughly two orders 

of magnitude faster than Kriging. The SVD ROM was also slightly faster than the least-squares 

ROM, however at these sub-millisecond scales, the specific implementation of the models and 

state of the computer’s background programs may influence which of these two ROMs would be 

processed more quickly. To reduce random fluctuations in processing speed, each ROM was run 

10 times, timed using the tic and toc functions of Matlab®, and the results averaged. 

 

 

Figure 6.44: Effect of training sample size on the computational cost of ROMs generated from 

three different approaches 
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6.3.6 Comparison to Finite Element Analysis 

As a check of ROM accuracy and efficiency, simulations of the generalized thermal 

problem with constant thermal properties and with each ROM approach were conducted. The 

sample structure was started at a uniform 1260 K similar to the structure temperature at the 

initiation of the terminal phase of the trajectory. A steady outward heat flux was then applied with 

the spatial distribution 

 

 2 0 3 4 1 .7 ex p 1 0 0 4 / 1 0 0 .9
w

q x      
 (6.24) 

 

to simulate a cooling boundary layer with a logarithmic thickness profile. Here x  is the distance 

in meters from the ballast edge furthest from the TPS and 
w

q  is the heat flux in Watts per square 

meter. This is not physical since the boundary layer imposing the heat flux would change with the 

change in the wall boundary conditions. However, the accuracy of the boundary layer heat flux is 

not the focus of this paper and a consistent heat flux profile allowed for direct comparison of the 

methods. The constant thermal properties were taken from the materials at the mean temperature 

distribution observed during the FEA simulation shown in Figure 6.45. 
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Figure 6.45: Mean temperature distribution 

 

All thermal problems were integrated for 37.5 seconds, the duration of the terminal phase 

of the trajectory. The final temperature distributions for the FEA, 5-POD mode generalized system 

with constant thermal properties, and 5-POD mode generalized system with the SVD, least-squares 

fit, and Kriging ROMs varying the thermal properties can be seen in Figure 6.46. An overall 

improvement in the agreement between the FEA and 5-POD mode system solutions is evident 

when using the ROMs to model the thermal properties of the substructure. Processing times and 

final error measurements for each approach are shown in Table 6.5. As expected, Kriging was the 

slowest, increasing the total processing time for the simulation by a factor of 24. SVD and least-

squares were much faster and slowed the simulation by a factor of 2.4. The SVD and least-squares 

approaches provided the lowest final RMSE of the temperature field. However, all of the 

approaches vastly improved the accuracy of the simulation compared to using no thermal property 

model. It is likely that the RMSE of about 2 K arose from generalization of the governing equations 

with the 5 thermal modes rather than the thermal property ROMs. 
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Table 6.5: Simulation performance of each ROM approach 

Thermal Property ROM Processing Time RMSE 

None 2.6 s 167.7 K 

SVD 6.3 s 2.2 K 

Least-Squares 6.3 s 2.2 K 

Kriging 62.5 s 2.8 K 

 

 

Figure 6.46: Significant qualitative improvement when using the thermal property ROMs with the 

5 mode thermal system compared to with constant thermal properties 
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6.3.7 Variation of Singular Value Decomposition Reduced-Order Model Number of 

Thermal Modes 

Since the SVD ROM approach is novel to this type of problem, the effect of varying the 

number of retained thermal modes was also studied. Using the methods previously described, SVD 

ROMs which considered the top 2, 5, and 8 POD thermal modes were trained and used to simulate 

the steady heat-flux case in the previous section. The temperature range of each simulation 

compared to the FEA solution is shown in Figure 6.47 and RMSE in Figure 6.48. It can be seen 

that using only 2 modes provided a reasonable range of temperatures for much of the simulation, 

but was unable to accurately express the initial temperature profile. Further modes first refined the 

initial portion of the solution when 5 modes were included, and later refined the later portion when 

8 modes are included. A final RMSE as low as 0.4 K is shown in Figure 6.48 when 8 modes are 

included. 

 

 

Figure 6.47: Temperature range of SVD ROM simulation converges on FEA solution as the 

number of retained thermal modes is increased 
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Figure 6.48: Convergence of SVD ROM to FEA solution with increasing number of retained 

thermal modes 
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match the temperature ranges of the FEA solution during simulation and have very small errors 

compared to retaining the full, 64 bases set. 

 

 

Figure 6.49: Sorted singular values of the 8 thermal mode snapshot matrix 

 

 

Figure 6.50: Low RMSE compared to FEA when as few as three SVD bases are retained 
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a set of ordered bases that describe the variation of the state matrices and state rates. Surrogate 

functions are fit to the coefficients of these bases to approximate the training samples and predict 

the state matrices outside of the training set. The dynamics of the system may then be rapidly 

simulated, provided the training set sufficiently populates the state space. This approach is first 

applied to a spring-mass-damper system with variable nonlinearity and number of degrees of 

freedom to determine training sample size and surrogate function orders that produce stable and 

accurate time simulations. The IC3X vehicle is then considered to demonstrate the potential of this 

approach for rapid simulation of hypersonic flight. 

 

6.4.1 Reduced-Order Model Training 

The process of collecting state samples, training the SVD ROM, and determining if the 

model is complete is outlined in Figure 6.51. It begins with the definition of states and their 

respective limits. An LHS139 of the states is considered and state space representations of the 

system under the sampled conditions are estimated using the complex-step method192 described 

previously. The s samples are compiled into the sample matrix S  and divided into two groups of 

m and k samples. The first m-samples for training the SVD ROM while the second is k-samples 

for testing the predictive accuracy of the trained ROM. The m-samples enter the ROM training 

function where the decomposition and surrogate fitting are carried out. The resulting ROMs are 

then evaluated for accuracy using normalized root mean square error (NRMSE) and maximum 

error (L∞) metrics for the k-testing samples. If the most accurate SVD ROM presents an error 

below some user defined tolerance, the SVD ROM is completed and ready for use as a surrogate 

for the higher fidelity reference model. If the error tolerance is exceeded, then additional samples 

are selected using LHS and the training process is repeated. 



193 

 

 

 

Figure 6.51: Outline of the SVD ROM training process 
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and/or mass coefficients to be a function of displacement or time. For this study, the masses and 

damping coefficient were held constant while the stiffnesses were polynomial function of 

displacement ranging from 1st to 6th order. These coefficients are given in Table 6.6. 
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Figure 6.52: Nonlinear-spring, mass, damper system 

 

Table 6.6: Nonlinear-spring, mass, damper coefficients (i = 1 ... n) 

Symbol Value 

mi 10.0 

ci 0.1 

ki (xi-xi-1)
p 

x0 0 

n: total number of spring, mass, and damper groups in chain 

i: index of spring, mass, and damper group in chain 

p: order of spring stiffness polynomial 

 

The state space representation of this system is given by 
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and may be used to directly check the accuracy of the SVD ROM’s estimates. 

 

6.4.3 Reduced-Order Model Stability 

To begin to understand the behavior and performance of the SVD ROM approach, the 

number of required samples to represent a system of given order and degrees of freedom was 

investigated using the nonlinear-spring, mass, and damper test case. The chain of masses was 

initially set to an equilibrium state with zero velocity and all masses at zero displacement. The nth 

mass was then displaced by 1, released, and the system dynamics integrated forward in time using 

the MATLAB193 ode45 solver. 

During testing, it was found that if a state exceeded the range of the training set, causing 

the SVD ROM to extrapolate, the states would often diverge toward infinity. This instability would 

frequently prevent numerical integration of the system dynamics. Insufficient range of the training 

set is typically a symptom of too sparse of a sampling of the state space and was remedied by 

increasing the number of training samples. An example of this unstable system dynamics due to 

under-sampling is shown in Figure 6.53. 

To determine the boundary of the SVD ROM stability, the training set size m was varied 

from 2 to 214 by powers of 2 and the maximum number of stable degrees of freedom was 

determined for each case. This was carried out for systems whose spring constants were 2nd, 4th, 

and 6th powers of the elongation of the springs. The results are shown in Figure 6.54. 

It can be seen by fitting power-law curves to the results how the number of stable degrees 

of freedom depend on the training set size and system order. It is apparent that greater the number 

of degrees of freedom and the greater the order of the system, then the greater the number of 
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samples that will be needed to capture the behavior of that system for both the 2-step and 1-step 

SVD ROM approaches. The 1-step approach also requires more samples than the 2-step approach 

for a given number of degrees of freedom and system order. This is due to the fact that in the 1-

step approach, there is no second multiplication by the state vector x  after the SVD ROM is 

exercised. Thus the 1-step approach is only capable of modeling one order less than the 2-step 

approach. The efficiency of the SVD ROM as additional training samples were added can be 

considered as 

 

( 1/ )
E ffic ien cy

n
m


  . (6.26) 

 

In this form, the fewer the number of training samples m required by the SVD ROM to 

capture the behavior of a system with n degrees of freedom, and therefore a sample space of n 

dimensions, then the closer the efficiency value approaches unity.  From Figure 6.55 it can be seen 

that the efficiency of the training set tends to increase as the number of degrees of freedom 

increase. This means that for a system similar to the nonlinear-spring, mass, and damper chain 

posed in this work, where the dynamics of each state are similar, the training sample point density 

in the state space may be reduced as more degrees of freedom are considered. This is a typical 

feature of the LHS used in this work, as each additional sample strives to be far and equidistant 

from all previous samples in all dimensions to maximize the amount of useful information 

obtained.168 
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Figure 6.53: Example of SVD ROM instability due to under-sampled 4th order, 8 degree-of-

freedom nonlinear-spring, mass, and damper case 

 

 

Figure 6.54: Stability boundary of the SVD ROM for various system orders 
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Figure 6.55: Increasing efficiency of training sample set with increasing number of degrees of 

freedom 

 

6.4.4 Application to the IC3X Vehicle 

To test the SVD ROM approach on a more realistic system, the IC3X vehicle dynamics 

were considered. In addition to the 12 rigid body states typical of 6-degree of freedom flight 

simulations and the 4 elastic states required to consider the 2 elastic degrees of freedom, the 

deflection angles of the 4 control fins were also included. The sampling ranges for each of these 

states for the experiments to follow are shown in Table 6.7. A training set of m=270,000 samples 

was collected and a 1-step, 4th order SVD ROM trained with 20 retained bases. This training set 

size was selected by solving the power-curve fit to the data shown in Figure 6.54 for the n=16 

independent degrees of freedom and rounding up. A time simulation using the SVD ROM was 

then compared to the UM/HSV code for a 1 second top-hat pitch-up maneuver in which the fins 
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throughout the 3-second maneuver are shown in Figure 6.57 with the individual longitudinal states 

0.01

0.1

1

2 8 32 128 512 2048 8192

E
ff

ic
ie

n
cy

 o
f 

sa
m

p
le

 s
et

,

m
-1

/n

Training set size, m

2-step 2nd order 2-step 4th order 2-step 6th order

1-step 2nd order 1-step 4th order 1-step 6th order



199 

 

shown in Figure 6.58 and Figure 6.59 along with the normalized error of the SVD ROM according 

to 

 

 

, H S V ,S V D

, H S V

N o rm a lized  e rro r

m ax

i i

i

x x

x


 , (6.27) 

 

where 
i

x  is a column matrix containing the trace of the ith state. For all longitudinal states, the 

SVD ROM solution matches very well with UM/HSV. A maximum error of 25.9% for the 

longitudinal bending rate 
2

   is shown during the initial deflection of the fins but recovers quickly 

to a mean error of 0.5% over the duration of the maneuver. Most profound is the difference in 

processing time. To consider this 3 second maneuver using a computer with an Intel Xeon E5-

2650 2.0 GHz processor and 32 GB of memory, the UM/HSV code required 239.3 seconds while 

the SVD ROM required 17.2 seconds. This is nearly a 14 times increase in simulation speed. 

 

 

 

 

Figure 6.56: Fin deflection input signal 

F
in

s 
an

g
le

 (
d

eg
) 

2 

1 

0 

-1 
0 1 2 3 

Time, t (s) 



200 

 

Table 6.7: State and input sample ranges for the IC3X vehicle SVD ROM training set 

Description Symbol Min. Max. 

Body axial velocity (m/s) u   1744 1770 

Body lateral velocity (m/s) v   -0.01 0.01 

Body vertical velocity (m/s) w   -40 24 

Roll rate (°/s) p   -0.6 0.6 

Pitch rate (°/s) q   -23 29 

Yaw rate (°/s) r   -0.6 0.6 

Earth-body axial displacement (m) x   0 5310 

Earth-body lateral displacement (m) y   -0.1 0.1 

Earth-body vertical displacement (m) z   -6 9 

Earth-body roll angle (°)    -0.6 0.6 

Earth-body pitch angle (°)    -1.2 12 

Earth-body yaw angle (°)    -0.6 0.6 

Lateral bend amplitude 
1

   -0.001 0.001 

Longitudinal bend amplitude 
2

   -0.001 0.001 

Lateral bend rate (1/s) 
1

   -0.1 0.1 

Longitudinal bend rate (1/s) 
2

   -0.1 0.1 

Fin 1 deflection (°) 
1

   0 1 

Fin 2 deflection (°) 
2

   0 1 

Fin 3 deflection (°) 
3

   0 1 

Fin 4 deflection (°) 
4

   0 1 

 

 

Figure 6.57: Comparison of UM/HSV and the 1-step, 4th-order SVD ROM with 20 retained bases 

during a 3-second, 1-degree pitch maneuver 
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Figure 6.58: Comparison of first 4 longitudinal states from UM/HSV and 1-step, 4th-order SVD 

ROM with 20 retained bases 
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Figure 6.59: Comparison of last 4 longitudinal states from UM/HSV and 1-step, 4th-order SVD 

ROM with 20 retained bases 
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6.4.5 Singular Vector Truncation 

As previously discussed, the singular values contained in   offer a means of ranking the 

relative importance of the singular vectors U  in describing the singular space. In order to further 

decrease the processing time of the SVD ROM simulation, it may be possible to reduce the number 

of relevant singular vectors by truncating those corresponding to the lowest singular values. The 

number of dimensions in the singular space would then be reduced, simplifying the integration 

problem, while sacrificing as little accuracy as possible.35 To determine the effect of truncation on 

the solution accuracy, the IC3X 1-step, 4th order SVD ROM was retrained while retaining the 1st 

through 20th most important singular vectors. The root-mean-squared error of all 16 states was 

then determined at the final time step for the 1-degree pitch-up maneuver and is shown in Figure 

6.60. The processing time required to integrate the maneuver’s equations of motion is shown in 

Figure 6.61. 

 

Figure 6.60: Error occurred due to truncation 

of the singular vectors 

 

Figure 6.61: Processing time reduction due to 

truncation of the singular vectors 

 

1.E-01

1.E+02

1.E+05

1.E+08

0 5 10 15 20

10
8
 

10
5
 

10
2
 

10
-1

 

0.95 

Number of retained 

singular vectors 

F
in

al
 R

M
S

E
 

0

5

10

15

20

0 5 10 15 20

105 s 

Number of retained 

singular vectors 

P
ro

ce
ss

in
g
 t

im
e 

[s
] 



204 

 

While retaining 1, 2, or 3 singular vectors appeared to provide a somewhat accurate solution using 

a small amount of processing time, this was largely due to the fact that the solution was numerically 

integratable, as shown in Figure 6.62. Retaining 4 to 15 vectors lead to solutions that increasingly 

matched the UM/HSV solution, but inevitably diverged and were unable to be integrated. The 

divergence of the SVD ROM estimated states from the UM/HSV solution was not unique to any 

single state, but rather would occur in all states simultaneously. This was a result of the SVD ROM 

expressing the states as combinations of singular vectors. As any one singular vector was forced 

to extrapolate because of a combination of states that was outside of the training set, then all state 

estimates would express divergent behavior similar to that observed in Figure 6.53. Retaining 16 

or more vectors, matching the original number of degrees of freedom, resulted in accurate and 

stable solutions. Retaining more singular vectors typically required more processing time, but this 

trend was not closely followed as the ode45 solver attempted to refine the time steps near highly 

dynamic periods. 

 

 

Figure 6.62: Comparison of the SVD ROM and UM/HSV solutions for a 3-second, 1-degree pitch 

maneuver using various numbers of retained singular vectors 
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6.4.6 Coefficient Matrix Compression 

Another approach to reduce the processing time of the SVD ROM is to consider the 

structure of the matrix T
U R  for the 1-step approach as shown in Figure 6.63 for the IC3X 1-step, 

4th-order model. Not all terms of the state polynomial significantly affect the state rates. This 

results in a great number of columns of T
U R  containing only zeros or very small values. 

Neglecting columns whose maximum values are below some tolerance and forming a more 

compact matrix could reduce the number of operations required to integrate the system. By simply 

removing the zero columns, the number of entries can be reduced by more than half, from 28,640 

to 11,264. 

 

 

Figure 6.63: Non-zero entries of T
U R  marked in blue for the IC3X, 1-step, 4th-order SVD 

ROM 

 

Similar to the previous section, the RMSE at the end of the 3-second, 1-degree pitch-up 

maneuver was used to indicate the accuracy of the SVD ROM. A minimum magnitude tolerance 

varying from 10-10 to 10-5 was used to determine which columns of T
U R  would be retained. The 

number of retained columns for a given tolerance, the RMSE after integration, and the processing 

time are shown in Figure 6.64. Using a low tolerance value (below 10-8) reduced processing time 

by 22% without increasing error when removing all unnecessary zeros. Between 10-8 and 3·10-7, 

non-zero containing columns were removed which caused the error to increase slightly, but 

between 3·10-7 and 10-6 solution error curiously decreased below the uncompressed solution. This 
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could be due to removing coefficients that contained some numerical error from the SVD or fitting 

process, but merits further investigation before a conclusion is reached regarding its cause. Beyond 

10-6 the accumulated error during integration grew beyond the sample set range and caused the 

SVD ROM to extrapolate, which caused the solution to not be numerically integratable, as 

previously shown for with the nonlinear-spring, mass, and damper case. 

 

 

Figure 6.64: Performance of compressed SVD ROM 
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third-order piston theory used to model the external and internal surfaces’ unsteady aerodynamic 

pressures. Results are used to drive model improvements of free-flight aero-thermo-elastic 

simulation in order to accurately predict aeroelastic instabilities in a representative supersonic 

vehicle. The stability of a finite-element model when inclined to the flow is also considered to 

inform future work where a cylindrical high-speed vehicle is required to perform maneuvers. 

 

6.5.1 Finite Element Model 

To numerically recreate the results found by Olson and Fung126, a finite element model was 

created in the Dassault Abaqus FEM/CAE software191 and is shown in Figure 6.65. The model 

consists of 20,145 nodes and 39,780 S3-type linear triangle elements. Loads are applied to the 

external and internal surfaces based on user-defined subroutines that estimate the surface pressures 

as described previously, using the displacement and displacement rate fields provided by Abaqus. 

The solution is integrated explicitly in increments no greater than 1 μs with nonlinear geometry 

considered. The shell and internal gas are assumed to be at an adiabatic temperature to the external 

surface flow according to the Eckert’s reference temperature method114 and are determined at the 

onset of each time simulation. The through-thickness temperature distribution is assumed uniform 

due to the high thermal conductivity of copper and thinness of the shell wall. 
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Figure 6.65: Finite element mesh of the cylinder test case 
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Simulating the cylinder deformation with the UM/HSV code requires the mass-normalized 

mode shapes. These were determined using the Lanczos solver194 included in the Abaqus FEM 

software for all modes up to 500 Hz for an unpressurized shell. A selection of mode shapes is 

shown in Figure 6.66. A grouping and pattern can be seen in Figure 6.67 when the mode shapes 

are organized by numbers of circumferential and longitudinal waves that lie within previously 

published results,135 although differences in the boundary conditions prevented an exact match. 

The frequency limit was chosen to include all modes experimentally observed by Olson and 

Fung126 to contribute to flutter, namely up to modes with 25 circumferential waves whose 

frequency was 299 Hz. Adding internal pressure causes the cylinder to inflate and increases the 

membrane stress, stiffening the structure. To account for this in the UM/HSV code, multiple sets 

Flow direction 

Clamped trailing edge 

Leading edge free to 

translate and rotate along z-

axis, otherwise constrained 

y 

z x 

 



209 

 

of mode shapes and frequencies were determined for 0, 1, 2, 3, 4, 5, 6, and 7 kPa of internal gauge 

pressure. The variation of the mode frequencies is shown in Figure 6.68.  

 

 

Figure 6.66: Sample unpressurized mode shapes 

 

 

Figure 6.67: Unpressurized mode frequencies 
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Figure 6.68: Variation of mode frequency due to internal pressure 
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the leading to trailing edge. Interference of these waves and their reflections from the boundaries 

would yield increasingly smaller waves, some of which traveled circumferentially. These small, 

circumferential waves would grow in amplitude until the end of the simulation. 

Displacement traces at the surface location shown in Figure 6.69 were extracted from the 

FEA solutions. The traces are divided into 0.02-s long windows in which the maximum absolute 

displacements were determined. If the maximum displacement in each window grew over time for 

a given case, then that case was considered unstable. The window length was selected such that 

the lowest frequency natural mode determined in section during mode shape selection would 

complete at least one cycle per window. The boundary between stable and unstable pressure 

conditions was then converged upon for several internal pressure cases by varying the freestream 

static pressure for Mach 3 flow with a total temperature of 322 K. The results are shown in Figure 

6.70. 

Overall, the predicted flutter boundary from this study behaves more like the experimental 

results of Olson and Fung126 than the analytical results of Olson and Fung,126 Amabili,133 or FEA 

results of Sabri and Lakis.135 The destabilizing effect of moderate amounts of internal gauge 

pressure between 1 and 4 kPa is captured before recovering above 5 kPa. However, the FEA results 

under predict the experimental result for most cases. 
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Figure 6.69: Sample snapshots and trace of displacement for a simulation exhibiting flutter, 4.8 

kPa freestream pressure, 0.0 kPa-gauge internal pressure, 0° angle of attack, Mach 3 flow 

 

 

Figure 6.70: Experimental flutter boundary of the cylinder at Mach 3, 322 K total temperature, 0° 

angle of attack. Numerical flutter boundary predictions from present and previous studies126,133,135 

are included for comparison 
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From observations of the displacement field, the destabilization and re-stabilization behavior 

appeared to arise from two competing effects: 

1. As the internal gauge pressure was increased, the shell was pushed outward, into the flow. 

Most of the shell expanded uniformly except near the leading and trailing edges where the 

boundary conditions restrained the cross section radius. An incline was created which 

resulted in a region of slightly higher pressure sufficient to initiate oscillations in the shell 

near the leading edge (Figure 6.71). 

2. Increasing the internal pressure also induced a geometric stiffening of the structure by 

placing the shell in tension. If the pressure was sufficiently increased, then this stiffening 

overcame the previous destabilizing effect. 

 

 

Figure 6.71: Example of the development of oscillations near leading edge incline due to internal 

pressurization 
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consisted of all combinations on the use of a linear versus a nonlinear geometric model, and a 

steady versus unsteady internal pressure model. The flutter boundary for each model combination 

was determined as previously described and is shown in Figure 6.72. 

 

 

Figure 6.72: Comparison of FEA model combination effects on cylinder flutter boundary 

 

Two key features can be seen. The first feature is that the slope of the initial destabilization 

appears to be driven by the aerodynamic damping of the internal pressure model. When the 

unsteady internal pressure model was used, the stability boundary gradually reduced from a critical 

freestream pressure of 3 to 4 kPa when the cylinder was unpressurized, down to a minimum of 1.3 

kPa when the internal pressure was 3 kPa-gauge. When the steady internal pressure model was 

used, the boundary reduced sharply and settled to a minimum of 1.3 kPa with only 0.3 kPa-gauge 

internal pressure. The second feature is that the recovery of the stability boundary at high internal 

pressures appears to be due to geometric nonlinearity. Despite which internal pressure model was 

used, if geometric nonlinearity was considered during the FEA, then the inflation of the cylinder 

above 3 kPa-guage began to stiffen the cylinder and increased the critical freestream pressure. 
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6.5.4 Effects of Internal Pressure on the Flutter of the UM/HSV Model 

With an FEA model which captured the destabilizing effects of moderate internal pressure 

with which to compare against, the cylinder model was constructed with the UM/HSV code. 

Aeroelastic simulations were conducted using the modes and frequencies determined previously. 

Snapshots of a simulation which exhibited flutter are shown in Figure 6.73. Despite simulating the 

same flow conditions as used in Figure 6.69, it can be seen from Figure 6.73 that the process of 

flutter onset is somewhat different when considered by the UM/HSV code. Little initial 

displacement is observed and the growth of the oscillations that do appear is more sudden than in 

the FEA case. The modal approach taken in this case also results in the appearance of much more 

ordered displacement patterns on the shell, despite the large number of mode shapes considered. 

Circumferentially travelling waves appear early, without an initial transient period. 

The flutter boundary of the cylinder model in the UM/HSV code was converged upon using 

the same method as with the FEM. The resulting boundary is compared to previous results in 

Figure 6.74. The UM/HSV code was able to predict the correct magnitude of the flutter boundary 

for the unpressurized case but did not capture the destabilizing effect of internal pressure. Instead 

it predicted a monotonic increase in the flutter boundary similar to previous works126,129,132,135 but 

shifted toward the experimental boundary. During early simulations, it was observed that the 

UM/HSV solution was unable to represent the outward inflation of the cylinder due to internal 

pressure since the free-vibration mode shape which would be used to represent this deformation 

was well outside of the 500 Hz limit imposed by the authors for the unpressurized case. To 

overcome this limitation, the mode set was enhanced by including the deformation of a static 

solution of the cylinder subjected to the steady component of the internal pressure considered for 
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each case. A modified Gram-Schmidt algorithm was used to orthogonalize the statically loaded 

shape against the free-vibration derived bases and was appended to the basis set.36 

 

 

 

 

 

 

Figure 6.73: Sample snapshots and trace of displacement for a simulation exhibiting flutter as 

processed by the UM/HSV code, 4.8 kPa freestream pressure, 0.0 kPa-gauge internal pressure, 0° 

angle of attack, Mach 3 flow 
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Figure 6.74: Comparison of Mach 3, 322 K total temperature flutter boundary for the UM/HSV 

model with previous analytical,126,133  numerical,135 and experimental results126 

 

To confirm that a sufficient number of elastic modes were selected in the test case 

formulation to capture the onset of flutter, the number of retained elastic modes was varied from 

2 to 188, ordered by frequency, for the unpressurized cylinder. The critical freestream pressures 

and indices of the critically stable modes were recorded and are shown in Figure 6.75. When fewer 

than 28 modes were retained, the critical freestream pressure was above 10 kPa and not converged 

upon. Between 28 and 128 retained modes, the critical freestream pressure and critical mode 

indices varied as additional modes were included, but for 160 modes or more, a critical pressure 

of 2.4 kPa and critical modes indices 113 and 114 were constant. Additional modes did not 

influence the stability boundary. Thus, it is not sufficient to include additional linear vibration 

modes to capture the destabilizing effect of internal pressure. Some other basis set or nonlinear 

formulation should be used if pressurized structures are to be considered in the UM/HSV 

framework. 
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Figure 6.75: Convergence of number of retained elastic modes, 0.0 kPa-gauge internal pressure 

 

6.5.5 Effects of Angle of Attack on Stability Boundary 

As the eventual goal of this work is to improve the aeroelastic stability predictions of the 

UM/HSV code for a maneuvering high-speed vehicle, it was of interest to study the effect of the 

angle of attack on the stability of a cylindrical shell. To do this, the cylinder FEM was 

incrementally inclined at 1, 2, 4, 8, and 16° to the Mach 3 free stream flow. The limit of 16° was 

selected since, at this angle, the windward surface normal Mach number is approximately 0.8 for 

the undeformed cylinder. This approached the upper limit of the isentropic assumptions of the 

piston theory24 aerodynamic model considered in this work, which does not permit surface normal 

flow to exceed Mach 1, but leaves a margin for unsteady motion. 

Unlike with axial flow, instability of the cases with an angle of attack often resulted in the 

buckling of the cylinder shell on the windward side, similar to the case shown in Figure 6.76. 

Depending on the exact manner in which the shell buckled, the post-buckled shape either could be 

stable or could continue to exhibit low frequency oscillations on the sides of approximately 20 Hz. 

0

1

2

3

4

5

0 50 100 150 200

C
ri

ti
ca

l 
fr

ee
st

re
am

 p
re

ss
u
re

 [
k
P

a]

Number of retained modes

0

20

40

60

80

100

120

140

0 50 100 150 200

C
ri

ti
ca

l 
m

o
d
e 

in
d
ex

Number of retained modes



219 

 

The stability boundary was converged upon as described previously and is shown in Figure 6.77. 

Increased angles of attack lead to a decreased stability boundary as low as 0.42 kPa at 16°. This 

represented a 90% loss in the critical freestream flutter pressure when the cylinder was 

unpressurized. Increasing the internal pressure from 0.125 to 4 kPa-gauge tended to decrease the 

stability boundary at a 0 to 2° angle of attack, as was previously overserved. However, for angles 

of attack above 8°, increased internal pressure resulted in an increased stability boundary. While 

circumferentially traveling waves were dominant at 0° to 2°, above 8° traveling waves which 

initiated on the windward side and terminated on the leeward side, similar to those shown in Figure 

6.78, were dominant. 

 

 

Figure 6.76: Example of buckled cylinder due to inclined flow, 0.69 kPa freestream pressure, 0 

kPa-gauge internal pressure, Mach 3 flow, 10° angle of attack 

 

D
is

p
la

ce
m

en
t 

[m
m

] 

 

60 

0 

Mach 3 flow 

10° 

Mach 3 flow 

10° 

Displacements 

are not magnified 



220 

 

 

Figure 6.77: Stability boundary of the cylinder FEM at an angle of attack, Mach 3 flow 

 

 

Figure 6.78: Comparison of circumferentially and windward to leeward traveling waves 
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7. CHAPTER VII       

Concluding Remarks 

 

To conclude the main body of this dissertation, a summary of each chapter is given followed 

by the key novel contributions to the field made by this research. Then the main conclusions of 

each study are reviewed. Finally, recommendations of future research areas are provided. 

 

7.1 Summary 

Hypersonic vehicles are exposed to a uniquely energetic flight environment that induces 

strong couplings between the fluid, structural, and thermal dynamics governing the vehicle 

performance. Disparity between the scaling terms of these disciplines limits physical testing to 

nearly full-scale models which exceed the capacity of most, if not all, ground testing facilities. 

Numerical simulation is possible, but full- or high-order models are prohibitively computationally 

expensive and lack sufficient robustness for exploratory design studies. Many fundamental models 

exist that can be useful during design, and are outlined in Chapter II, but their simplifying 

assumptions often limit their applicability. In this work, surrogate and reduced-order models are 

developed to distill the dominant underlying trends present in high-order training data, to provide 

numerically efficient models. These models are then coupled within the UM/HSV framework 

introduced in Chapter I and further described in Chapter IV, to perform 6-DOF, aerothermoelastic 

simulations of full vehicles over entire flight trajectories. The framework began as an 
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implementation of the partitioned solution approach137 to vehicle simulation, but has grown to be 

a general tool for vehicle flight, trim, and stability analyses. The focus of this dissertation has been 

on the exploration of the interactions of previously developed ROMs for the UM/HSV framework, 

development and enhancement of thermodynamic models, and the reduction of coupled systems 

as a whole in order to accelerate simulation. 

Enhancements to existing theory are covered in Chapter III, which include the introduction 

of material thermal property models for generalized heat transfer systems and a collection of 

system identification and linearization techniques. To capture the variation of material thermal 

properties due to changes in temperature, high-dimensional polynomials, the method of kriging, 

and a novel singular value decomposition and correlation based method. System identification 

techniques include a finite-difference approach that is up to 6th order accurate, the complex step 

method192 which introduces small imaginary numbers to the vehicle state vector to estimate the 

state space Jacobian matrices, and a direct method which leverages the ordinary differential 

equation format of the equations of motion for non-partitioned vehicle models. Combination of 

the singular value decomposition and correlation method with the complex step method was also 

considered for the rapid estimation of nonlinear state space representations of an aerothermoelastic 

hypersonic vehicle. 

Chapter IV provides additional details to the implementation of the partitioned solution 

approach within the UM/HSV framework and outlines how the vehicle solution is divided on the 

model and physical levels. The use of a publish-subscribe code architecture is described, and 

permits the introduction, exchange, and reconfiguration of the physics model sets without 

compromising code stability. This code architecture also promotes modularity of the model 

functions that eases the future development since each module may be treated as a black box with 
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flexible inputs and outputs. The vehicle trim algorithm is described and uses state rate error 

minimization to determine steady-level, turn, climb, and other trim settings for control surfaces 

and propulsion systems. Time simulation is performed via a set of nested convergence loops which 

maintain partition interface, aeroelastic, and aerothermal error tolerances below user-defined 

maximums. 

Two families of sample cases were considered by this dissertation and are presented in 

Chapter V. The first is based on the AFRL ISR Cruiser with the control surfaces replaced by the 

all-movable surfaces of Falkiewicz and Cesnik.35,173,195 This vehicle model consisted of an 

aeroelastic main body whose elastic behavior was that of a pair of Euler-Bernoulli beams,137 

aerothermoelastic control surfaces based on the F-104 Starfighter wing planform and diamond 

supersonic airfoils,36 and an approximately 2-D ramjet/scramjet flow path. The second family is 

based on the AFRL IC3X, which is a representative strike-type vehicle for reaching time sensitive 

surface targets. The entire vehicle is represented as an aerothermoelastic body whose elastic and 

thermal characteristics are derived from FEA. A small representative thermal FEM is derived from 

a region of the IC3X’s windward side to perform rapid thermal studies and contains material 

thermal properties of the nose ballast, thermal protection system, and monocoque structure. A 

cylindrical shell model is also considered to represent a section of the mid-body for aeroelastic 

study. 

A number of verification studies were performed and are described in Chapter VI. This 

began with comparing the partitioned solution approach to the traditional monolithic approach for 

an aeroelastic model set of the AFRL ISR Cruiser steady-level trim solution and a time simulation 

with prescribed command inputs. The aerothermoelastic lifting surfaces are used to exercise the 

finite difference state space identification method and a root locus plot is produced to determine 
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the aerothermoelastic stability boundary. Time simulations of the isolated all-movable surface are 

used to determine how the system damping ratios vary with Mach number, and reinforce the root 

locus’ results. The thermal and elastic basis identification methods of Falkiewicz and Cesnik35,36 

are applied to the IC3X vehicle along a terminal flight trajectory that was determined by using the 

GPOPS-II60 Gaussian pseudo-spectral optimization code to maximize final kinetic energy of the 

vehicle during an unpowered hypersonic dive from cruising altitude. 

Enhancement of the IC3X thermal model was also considered in Chapter VI, where it was 

shown that the use of a thermal basis when material thermal properties that are function of 

temperature might lead to poor temperature solutions and tracking the evolution of the generalized 

thermal matrices was not intuitive. Three surrogate model techniques were applied to capture the 

variation of the thermal matrices. These were high-dimensional polynomials, kriging, and a 

singular value decomposition (SVD) based method that was shown to be superior. With the success 

of the SVD method at predicting the thermal matrix evolution, it was investigated whether the 

method would be able to quickly estimate state space matrices during integration of a system’s 

equations of motion. Sample set of state spaces were collected using the complex-step192 and direct 

methods to form two variations of the state space model. A sample nonlinear-spring, mass, and 

damper system was considered to characterize the training and numerical stability characteristics 

of the SVD method before being applied to the IC3X vehicle as a whole. Finally, time simulations 

of the IC3X vehicle revealed a potential aeroelastic instability during the high dynamic pressure 

terminal dive that was characteristic of cylindrical shell flutter. It was unclear if the modeling 

methods employed by the UM/HSV code were adequate to predict this type of instability. The 

experimental flutter results of Olson and Fung126,127,130 were considered and numerically 

reproduced using nonlinear FEA. The resulting FEM was then used to determine an elastic basis 
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and the equations of motion for used by the UM/HSV code and comparison to the experimental 

results. 

 

7.2 Key Novel Contributions 

Through the studies described in this dissertation, several key contributions were made to 

the field of aerothermoelastics: 

1. Development of a modular and computationally efficient publish-subscribe 

implementation of the UM/HSV framework for simulation, trim analyses, and system 

linearization for multiple-stage high speed vehicles; 

2. Development and successful demonstration of an all-in-one nonlinear reduced order 

modeling method based on SVD for the rapid simulation of aero-servo-thermo-elastic 

vehicle simulation; 

3. Showing the importance of accounting for material thermal property temperature 

dependence in the HSV aero-thermo-elastic simulation and development of a method to 

effectively and accurately estimate generalized properties for reduced-order heat transfer 

simulations; 

4. Demonstration of the impact of aerodynamic heating on the loss of aeroelastic stability of 

a hypersonic lifting surface; 

5. Providing physical insight into how internal pressurization may reduce the stability of 

cylindrical shells in supersonic flow and numerically quantifying the effects when the shell 

is placed at an angle of attack to the freestream flow. 
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7.3 Principal Conclusions 

Along with the contributions described in the previous section, a number of principle 

conclusions have been made: 

1. The publish-subscribe code architecture for the UM/HSV framework has been shown to 

be effective in considering both monolithic and partitioned model sets of aerothermoelastic 

hypersonic vehicles. The comparison of trim results between the two modeling approaches 

when applied to a representative vehicle showed a maximum error less than 5% when the 

vehicle was rigid. Differences remained small when flexibility was introduced, not 

exceeding 0.5° difference between the elevon deflection angles and 0.02 between the 

scramjet fuel equivalence ratios. Time simulation of the partitioned and monolithic 

approaches also showed good agreement, with a small RSME in pitch angle of 0.14° and 

rotation rate of 0.58°/s during an open-loop pitch up command. These differences were 

attributed to the interface torques that were required to rotate the elevons in the partitioned 

approach. The monolithic approach rotated the elevons by directly modifying the vehicle 

outer mold line mesh, and thus omitted these torques. 

2. A reduced-order model approach based on SVD and correlation has been developed and 

used to simulate quickly the dynamics of nonlinear systems. Two examples were chosen 

to demonstrate the new method: a nonlinear-spring, mass, and damper system and a 

representative hypersonic vehicle. State space and state rate samples were determined 

using the complex-step method for each system given a set of training states selected using 

LHS. Bases vectors where determined using SVD and polynomial functions up to sixth 

order were fit as surrogates to the training samples expressed in the singular space. During 

integration of a system’s equations of motion, the SVD ROM could either be used in a 2-



227 

 

step approach to estimate the state matrices of a system at a given state, thus capturing 

nonlinear effects typically excluded from a state space representation, or in a 1-step 

approach to estimate directly the state rates. While the SVD ROM method performed well 

when interpolating within the range of the training set and provided well behaved, accurate 

solutions during integration of the equations of motion. It was observed that extrapolation 

often resulted in divergent solutions with state values that tended toward infinity. This 

divergent behavior would also result from a too sparsely sampled state space. A nonlinear-

spring, mass, and damper test case was used to determine the number of samples required 

to accurately represent a given number of states and nonlinearity. The dynamics of up to 

116 states were captured with as few as 8192 training samples. The SVD ROM method 

was then applied to the IC3X vehicle with training samples obtained from the UM/HSV 

code. A 3-second pitch-up maneuver was performed by deflecting the control fins by 1 

degree for which the UM/HSV code required 239.3 seconds to simulate. Integration of the 

equations of motion using the SVD ROM required 17.2 seconds in the same computer, a 

nearly 14-fold speedup, with mean normalized error of approximately 0.5%. Truncation of 

the singular vectors for additional simulation acceleration was investigated but did not 

yield improvement without inducing the divergent extrapolation behavior previously 

discussed. Compression of the T
U R  matrix by removing small, maximum-valued 

columns moderately improved simulation speed and reduced the processing time for the 

maneuver down to 13.5 seconds, nearly an 18-fold speedup, without significantly 

increasing the solution error. 

3. Three reduced-order models were applied to the problem of modeling the thermal 

conductivity and capacity variation with respect to temperature for a sample substructure 
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of a hypersonic vehicle. The thermal problem was first reduced through projection of the 

thermal states into bases determined by proper orthogonal decomposition. A relative error 

of order 10-8 was determined when the POD bases were truncated to the top 5 most 

prominent thermal modes. A Latin hypercube sample distribution of the thermal mode 

coordinates was then used to determine a sample set of generalized thermal conductivity 

and capacity matrices for the substructure. Various numbers of these samples were then 

used to create least-squares fit polynomial, Kriging, and singular-value decomposition 

based ROMs. These ROMs were then compared in terms of error compared to FEA 

solutions and numerical efficiency. The SVD ROM was determined to be the superior 

approach. For relatively small training sample sizes of around 200, this ROM provided 

similar accuracy to the least-squares and Kriging methods. However, the SVD ROM also 

required up to approximately 600 times less memory than the Kriging ROM and was 

similar to the least-squares ROM. The SVD ROM was also capable of execution slightly 

faster than the least-squares ROM and roughly 100 times faster than the Kriging ROM. 

Integration of the 5-mode generalized thermal problem was then performed with constant 

thermal properties and thermal properties varied according to the SVD, least-squares, and 

Kriging ROMs. Generalized solutions were compared to a full-order FEA solution with 

empirical thermal properties. Significant qualitative improvements were evident lending to 

the importance and utility of a thermal conductivity and capacity ROM for thermal 

problems spanning wide temperature ranges. Finally, the effect of the number of retained 

thermal modes and number of retained SVD bases on the performance of the SVD ROM 

during simulation was considered. Including more thermal modes improved the quality of 
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the ROM solution, as expected. However, as few as three SVD bases provided excellent 

agreement with the FEA solution with a RMSE between 0.5 and 4.2 K. 

4. A flutter margin analysis was conducted on a representative hypersonic lifting surface 

through system linearization and eigenvalue analysis of the resulting state space 

representations. The flutter Mach number was shown to decrease significantly as 

aeroheating causes a reduction in the lifting surface stiffness. Flutter margin loss of over 

78% was observed, from a critical Mach number of 16.1 to 3.5, over a 100 second flight at 

10-km altitude. This loss was despite initial geometric stiffening of the lifting surface due 

to structural temperature gradients. Results were verified by inspection of short duration 

aerothermoelastic time simulations. 

5. A nonlinear FEM was constructed which was able to capture the destabilizing effects of 

moderate amounts of internal pressure and circumferentially traveling waves on the 

aeroelastic stability of a circular cylindrical shell exposed to axial flow at Mach 3, observed 

experimentally by Evensen, Olson, and Fung.126,127,130 While not an exact match to 

experiment, the results where an improvement over previous modern FEA solutions. Two 

competing effects of internal pressurization were identified. The first was the destabilizing 

effect of shell inflation, which inclined the leading edge of shell and created a region of 

higher dynamic pressure that could initiate traveling waves. The second was the stabilizing 

effect of membrane stress that effectively stiffened the shell by placing the shell in tension. 

The shell was also placed at several angles of attack to a Mach 3 flow. Applying an angle 

of attack was shown to decrease the critical freestream pressure by as much as 90% at 16° 

and often lead to buckling of the shell. The post-buckled shells were then stable with minor 

oscillations until the end of each simulation. For angles of attack below 4°, moderate 
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amounts of internal pressurization from 0.25 to 4 kPa-gauge further decreased the critical 

freestream pressure. However, even small amounts of internal pressure as low as 0.13 kPa-

gauge were shown to stabilize the shell when the angle of attack was greater than or equal 

to 8°. 

 

7.4 Recommendations for Future Research 

Although the development of thermal models and improvement of the heat flux models were 

considered in this thesis, an important source of heat flux was omitted. Gap heating is a localized 

heat flux that occurs when high enthalpy flow enters a confined seam or fissure on in a surface. 

Such seams can be gaps between regions of a thermal protect system or the joints of actuated 

components, such as fins, flaps or other control surfaces. Exposed bonding agents may be 

susceptible to a heightened thermal load and lead to failure of the thermal protection system. 

Articulated structures and related actuation systems may also be especially prone to failure due to 

high heat flux and temperatures. However, the approaches considered in this thesis seek to express 

the heat transfer problem and temperature field as the sum of mode shapes that span the entire 

domain of the structure. Highly localized heat fluxes would require a great number of these mode 

shapes in order to describe a relatively small portion of the structure, and therefore would become 

less effective at reducing the order of the thermal system. 

The implementation of multiple model scales may mitigate the problem of generalizing a 

thermal system with gap heating, as well as pave the way for other types of localized analyses. 

This would be done by using a coarse generalization of the overall structure to provide boundary 

conditions for a much more focused and localized region. Specialized models for the local region 

could then provide higher-fidelity solutions of a region’s behavior. While passing information 



231 

 

from the global-scale to the local-scale is easily implemented, the challenge of passing information 

from the local-scale back to the global-scale remains unsolved as the coarser global-scale 

generalization may not have the appropriate DOFs to receive the local solutions. A component 

mode synthesis approach appears to be the best course of investigation toward solving this 

problem. The introduction of multiple model scales could also be extended to consider the effects 

of localized damage, crack-propagation, detailed simulation of sensor outputs, as well as many 

other analyses. 

The temperature dependence of thermal and mechanical material properties is also 

investigated in this thesis within the domain of single material phases. However, extreme 

temperatures are known to vary material phase, particularly when considering crystalline metals, 

alloys, and some ceramics, to reorder the microstructure and therefore global properties. In some 

cases, a change of phase results in a discontinuous change in material properties that is not often 

considered. This might be exploited for the purposes of increasing structural flexibility and overall 

vehicle agility during critical phases of a mission, or intentionally bringing structural materials to 

an annealing condition to mitigate the nucleation of micro-cracks, extending the service life of a 

multi-flight system. 

A system-level effect of material phase change is the melting, ablation, or other shedding of 

material that results in a change of vehicle shape and has not been considered in this work. 

Accounting of these effects is particularly critical to stagnation regions such as a nose-tip or 

leading edge and can result in aero-thermal-structural instabilities in which the shape change due 

to heating leads to an increase in heat flux that results in further shape change. How to include 

these processes in the generalization techniques described in this thesis remains unseen. 
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It has been shown in other works18,196 that the selection of an optimal basis for a given 

discipline may not be optimal when considering the coupling between disciplines. The use of over-

defined thermal, elastic, and possibly aerodynamic bases within the UM/HSV framework may 

allow for the identification of bases that tend to participate in pairs or larger groups, and whose 

mutual projection could be considered as a more optimal coupled-mode than the individual 

uncoupled-modes. Use of these coupled modes could allow for further reduction of the number of 

DOFs in the coupled system, if the individual discipline solutions are not the focus of a given 

analysis, but instead the interactions between them. 

The processing speed of the UM/HSV framework and implementation opens the possibility 

of many maneuver and trajectory optimization studies, while considering aerothermoelastic 

effects. A number of critical maneuvers were assumed in this work simply to occur without specific 

details on how these maneuvers should be executed. Such maneuvers include the pitch-over of the 

IC3X during transition from the cruise to the terminal phases, separation of a booster body after 

accelerating to a cruising condition, and ignition/re-ignition of a scramjet engine for either the 

AFRL cruiser or IC3X. Furthermore, optimization of the terminal phase of the IC3X was carried 

out using simplified EOMs based on rigid-body dynamics, upon which thermal and elastic models 

were developed. It would be an interesting exercise to use the now developed ROMs as the system 

dynamics for optimization of the same trajectories in order to determine the relative importance of 

each model. Various open- and closed-loop maneuver tests when considering various model 

combinations and fidelities would also provide insight into which disciplines should be 

emphasized and which can be further reduced for aerothermoelastic analyses of the types in the 

UM/HSV framework. 
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Finally, the development of vehicle configuration aware ROMs would greatly accelerate the 

preliminary to mid-stage design optimization of HSVs. It has been shown in literature that the 

vehicle configurations considered in this thesis may not be optimal.51,197 Producing ROMs or 

surrogate models that have structural configuration inputs as well as flight dynamics, temperature, 

or elastic inputs could permit rapid trade studies and overall aerothermoelastic vehicle 

optimization studies to design either mission-tailored, or overall robust designs for multiple 

mission types. 
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