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ABSTRACT 

Teams in different areas are increasingly adopting robots to perform various mission 

operations. The inclusion of robots in teams has drawn consistent attention from scholars 

in relevant fields such as human-computer interaction (HCI) and human-robot interaction 

(HRI). Yet, the current literature has not fully addressed issues regarding teamwork by 

mainly focusing on the collaboration between a single robot and an individual. The limited 

scope of human-robot collaboration in the existing research hinders uncovering the 

mechanism of performance gains in teams that involve multiple robots and people. 

This dissertation research is an effort to address the issue by achieving two goals. First, this 

dissertation examines the impacts of interaction between human teammates alone and 

interaction between humans and robots on outcomes in teams working with robots. 

Second, I provide insight into the development of teams working with robots by examining 

ways to promote a team member’s intention to work with robots. 

In this dissertation, I conducted three studies in an endeavor to accomplish the 

aforementioned goals. The first study, in Chapter 2, turns to theory trust in teams to 

explain outcome gains in teams working with robots. This study reports result from a lab 

experiment, in which two people fulfilled a collaborative task using two robots. The results 

show that trust in robots and trust in teammates can be enhanced by a robot-building 

activity and team identification, respectively. The enhanced trust revealed unique impacts 

on different team outcomes: trust in robots increased only team performance while trust in 
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teammates increased only satisfaction. Theoretical and practical contributions of the 

findings are discussed in the chapter. 

The second study, in Chapter 3, uncovers how team member’s efficacy beliefs interplay 

with team diversity to promote performance in teams working with robots. Results from a 

lab experiment reveal that individual operator’s performance is enhanced by team potency 

perception only when the team is ethnically diverse. This study contributes to theory by 

identifying team diversity as a limiting condition of performance gains for robot operators 

in teams. 

The third study, in Chapter 4, focuses on factors leading to the development of teams 

working with robots. I conducted an online experiment to examine how surface-level and 

deep-level similarity contribute to trust in a robotic partner and the impact of the trust on a 

team member’s intention to work with the robot in varying degrees of danger. This study 

generally shows that the possibility of danger regulates not only the positive link between 

the surface-level similarity and trust in robot and but also the link between intention to 

work with the robot and intention to replace a human teammate with the robot. 

Chapter 5, as a concluding chapter of this dissertation, discusses the theoretical and 

practical implications drawn from the three studies. 
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CHAPTER 1 

INTRODUCTION OF 

DISSERTATION 

 

 

 

1.1 MOTIVATION 

A wide range of technologies have enabled teams in many areas of work to accomplish 

their goals, facilitate collaborations and interactions among team members, and improve 

collaborative experiences (Robert, Dennis, & Ahuja, 2008; Sidorova, Evangelopoulos, 

Valacich, & Ramakrishnan, 2008). These technologies have evolved from electronic 

brainstorming (EBS), group decision support systems (GDSS) and video conferencing 

systems to avatars and crowdsourcing knowledge management tools (Y. Lee, Kozar, & 

Larsen, 2003; Tannenbaum, Mathieu, Salas, & Cohen, 2012). Scholars in the fields of 

information systems (IS) and human-computer interaction (HCI) have long investigated 

how these technologies influence teamwork, how teams adopt and implement these 

technologies, and how interaction among team members is reshaped by these technologies 

(Sidorova et al., 2008). 
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Robots are becoming commonplace, not only in our everyday lives but also in 

collaboration in many areas of work. First-responder teams send remote-control robots and 

unmanned vehicles into dangerous areas to assess situations, save human lives and remove 

threats (Dole, Sirkin, Currano, Murphy, & Nass, 2013). Some construction sites use robots 

for tasks including wall-building and excavation (Feng, Dong, Lundeen, Xiao, & Kamat, 

2015; Feng, Xiao, Willette, McGee, & Kamat, 2015; J. Kim, You, Lee, Kamat, & Robert, 

2015). Moreover, the recent development of robots with artificial intelligence is expected 

to be incorporated into human teams; scholars have envisioned that working with robots 

will become more commonplace with artificial intelligence embedded into the physical 

bodies of these robots (Krämer, Eimler, von der Pütten, & Payr, 2011). Defense Advanced 

Research Projects Agency (DARPA) Robotics Challenge is an excellent example of the 

future of such teamwork, in which humans work with intelligent robots to achieve various 

team objectives that are physically and cognitively challenging (Yanco et al., 2015). 

Despite the increasing incorporation of robots into many teams, research has not paid 

much attention to how robots can reshape teamwork and its potential outcomes. In fact, the 

field of human‒robot interaction (HRI) has studied interaction and collaboration between 

people and robots extensively (Bauer, Wollherr, & Buss, 2008; Thrun, 2004). However, 

most of these studies only focus on the collaboration between individuals and robots 

(Robert & You, 2014, 2015) rather than on team interactions. This leaves many questions 

unanswered, including how a robot can facilitate or hinder interaction among teammates 

and thus, influence team outcomes, as well as how team members interact with such robot. 

These questions can only be answered through investigations of teamwork that incorporate 

robots by acknowledging both the uniqueness of robots from other technologies and the 
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characteristics of teamwork as they differ from one-on-one interactions (Robert & You, 

2014). 

1.2 WHAT IS ROBOT 

We need to discuss what makes robots unique from other technologies in order to set the 

boundary of this dissertation research. This is an important issue in studies that involve 

human interactions with robots. The term ‘robot’ has been used for almost 100 years since 

the term was first introduced to describe a humanoid machine in a play, R.U.R. written by 

a Czech writer, Karel Čapek, in 1920. Robots are defined in general as a machine that is 

programmable and has the capability of performing a complex action automatically 

(Wikipedia, 2017). However, not all robots in our lives are programmable, capable of a 

complex action, or able to behave autonomously. 

Since the word ‘robot’ was coined by the Czech writer, the meaning of the word ‘robot’ 

has been expanded to refer to many different types of technology in research. For instance, 

machines used in manufacturing plants have been called robots (Garg & Kamat, 2013; J. 

D. Lee & See, 2004). These machines often carry out heavy duty and repetitive tasks based 

on a pre-programmed course of action (Trzcielinski & Karwowski, 2012). Drones and 

unmanned aerial vehicles (UAV) are also regarded as types of robotic technology. They 

can be operated by human pilots remotely or an automated aviation program for fulfilling 

various missions (de Visser & Parasuraman, 2011). In addition, construction sites are 

increasingly employing robotic machines for different types of tasks such as masonry and 

excavation (Kamat & Martinez, 2005; J. Kim et al., 2015). As such, despite the increasing 

volume of literature on robots, the definition of the robot is not converging to one that is 
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commonly agreed by scholars across different fields of study (Dautenhahn et al., 2005; 

Thrun, 2004). 

The diverging definition of the robot leads to the importance of conceptualizing the robot 

per study. Rather than try to propose a widely accepted definition of robot across the fields, 

I believe that it is more important to conceptually distinguish robots from other types of 

technology. By doing so, this dissertation research can be based on a narrow but solid 

conceptual foundation of the robot and provide clear implications to theorizing interactions 

regarding the characteristics of robots in teams. This can be done through identifying a 

characteristic that is not present in traditional technologies but commonly present in the 

type of technologies referred to as robots. For instance, the physical embodiment is one 

distinctive characteristic of robots. Most aforementioned technologies that are regarded as 

a robot have a physical body or casing and exist only as a physical object regardless of the 

degree to which they are programmable, capable of complex actions, and able to behave 

cautiously. 

In this dissertation, I view the physical embodiment as the crucial characteristic that 

defines robots uniquely from other technologies (Groom, Nass, et al., 2009). The 

embodiment is understood to mean having a visible or tangible form of idea or quality 

(Dourish, 2001; Ziemke, 2003). The embodiment of technology can either be in the 

physical or virtual form: robots are physically embodied and allow physical interactions, 

while avatars rendered in graphical representations are examples of the virtual 

embodiment. The physical embodiment is a manner in which a robot manifests its form 

and physical actions, as opposed to representing its existence and interactions only through 

on-screen interfaces and verbal communications (K. M. Lee, Jung, Kim, & Kim, 2006; 
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Longo, Schüür, Kammers, Tsakiris, & Haggard, 2008). The physical embodiment can 

invoke strong socio-emotional responses that lead individuals to project identities and 

personalities onto robots and treat them as something more than mere technological pieces 

of apparatus (Groom & Nass, 2007; Wainer, Feil-Seifer, Shell, & Mataric, 2007). Thus, 

human interaction with robots in teamwork is qualitatively different from their interaction 

with other technologies in teamwork and engenders socio-emotional phenomena within 

teams that work with robots. 

1.3 WHY STUDY TEAMS WORKING WITH ROBOTS? 

A team amounts to more than just a sum of individuals (Kozlowski & Klein, 2000). Thus, 

interactions among multiple entities often demonstrate more complexity and dynamism 

and as such these interactions comprise of a unique entity in research (Sarker & Valacich, 

2010). This is because teams consist of people with different backgrounds, personalities, 

knowledge, skills, and attitudes, all of which are combined to produce an emergent process 

that can be exclusively present in a particular team (Kozlowski & Klein, 2000; Robert, 

2013). Therefore, the addition of one more individual to a dyad of two individuals does not 

result in easily predictable outcomes based on our knowledge of interaction between a 

single robot and a single individual. This is why teams working with robots in different 

circumstances should be viewed differently from those using 1:1 human‒robot 

collaboration (Robert & You, 2014). Owing to the fact that research has accumulated 

knowledge on how teams work using different technologies, taking a team perspective 

from the literature can benefit our understanding of how teams working with robots utilize 

robots in order to improve overall team effectiveness. 
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1.4 RESEARCH QUESTIONS 

Despite the HRI research highlighting the uniqueness of robots based on the physical 

embodiment and the well-grounded research on teamwork with technology, little research 

has been done to understand teamwork with robots by encompassing these two areas of 

research. Such research should be aligned with other efforts to expand the current theory of 

teamwork and technology use by embracing new technologies, like robots, which are 

becoming integral parts of more teams (Suh, Kim, & Suh, 2011; Tannenbaum et al., 2012). 

Therefore, for this dissertation, I conducted a series of studies to answer the overarching 

research questions below about the robot’s influence on team outcomes, drawing from both 

the human‒robot interaction and the information systems research. 

RQ1) What are the impacts of interaction between human teammates and 

interaction between humans and robots on outcomes in teams working with robots? 

RQ2) How can we facilitate the development of teams working with robots? Can 

we promote an individual team member’s intention to work with robots? 

1.5 A THEORETICAL FRAMEWORK1  

This dissertation begins to answer the research questions above by proposing a theoretical 

framework for research on teams working with robots. The research framework integrates 

                                                 

1 An earlier version of this section (You and Robert, 2017) appeared as a position paper at Robots in Groups workshop at 

CSCW 2017. The development of the framework was principally conducted by me, but with a considerable amount of 

feedback and intellectual contributions from Lionel P. Robert. 
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the literature on teamwork and human–robot interaction (Figure 1). This framework 

attempts to capture the dynamic, adaptive, and developmental nature of teams working 

with robots. In doing so, this framework incorporates the inputs, mediators, and outputs of 

human–robot teams with an iterative process of feedback loops. 

The framework is based on previous frameworks of teamwork, where inputs, mediators, 

and outputs are identified as key elements in the team’s life cycle (see Mathieu, Maynard, 

Rapp, & Gilson, 2008 for a review). Constructs in the inputs influence emergent states of 

teamwork with robots (i.e. mediators), eventually producing outputs. The model is based 

on IMOI (inputs-mediators-outputs-inputs) framework by (Ilgen, Hollenbeck, Johnson, & 

Jundt, 2005) to represent the cyclic nature of human–robot teams with feedback loops from 

outputs to subsequent inputs and mediators during the teams’ lifecycle. 

I believe that this framework is an initial step toward motivating the theoretical 

development of the subject. This framework also provides a theoretical guide for scholars 

to examine a variety of phenomena in teamwork with robots. Hence, this dissertation is the 

platform for the empirical validation of the framework by examining constructs and their 

relationships during the lifecycle of teams working with robots in the subsequent chapters 

2, 3, and 4. 
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1.5.1 Inputs 

The inputs represent resources and properties available to teams (Kozlowski & Bell, 2003). 

This includes multiple levels from the individual level, including characteristics of 

individual team members and robots, and the team level, including team composition and 

job characteristics. The team-level inputs are influenced by the individual-level inputs and 

are shown by the solid line from the individual level to the team level on the left side of 

Figure 1.  

The framework includes the combination of both robot and human characteristics that can 

manifest unique team compositions and structures in human–robot teamwork. Robots in 

teams can be perceived to possess humanlike attributes such as gender, ethnicity, 

knowledge, ability, and personality (Bernier & Scassellati, 2010; D. Li, Rau, & Li, 2010). 

This is because people often ascribe agency to robots and treat them as social entities 

(Groom & Nass, 2007). For instance, a human–robot team can be considered homogeneous 

when a robot is perceived to have the same ethnic attributes as other team members 

(Makatchev et al., 2013). Therefore, this framework puts the same emphasis on robot 

characteristics as it does on human characteristics when it comes to the makeup of team-

level characteristics. 

Proposition 1: Individual-level characteristics of robots and humans can influence 

team-level characteristics of human–robot teams. 

This framework depicts inputs influencing subsequent mediators and eventually outputs. 

This relationship can occur at both the team and the individual levels. For example, at the 

team level, task interdependence is critical to communication and coordination between 
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humans and robots during teamwork (H. Jones & Hinds, 2002). Task interdependence 

between humans and robots is proved to help achieve better mental models on task and 

team performance (Nikolaidis & Shah, 2013). Also, at the individual level, research 

suggests that individuals positively evaluate robots that are perceived to have similar 

personality and social identities such as ethnicity (Bernier & Scassellati, 2010; F. A. Eyssel 

& Loughnan, 2013). 

Inputs at the team level can influence mediators and outcomes at the individual level. For 

instance, the composition of a human–robot team may determine the level of individual 

motivation and satisfaction of its team members. In teams that involve multiple human 

team members, individual effectiveness may be a function of both team-level inputs and 

individual-level inputs (Ilgen et al., 2005; You & Robert, 2016). 

Proposition 2: Inputs influence mediators and subsequent outputs in human–robot 

teams. 

Proposition 3: The influence of team-level inputs can occur at the individual and 

team levels. 

1.5.2 Mediators 

Mediators are emergent processes or states through which the effects of inputs are 

manifested. For individuals, mediators are often attitudes and beliefs. For teams and 

groups, they are typically processes that result from the interactions necessary for 

combining different inputs (McGrath, 1984). Mediators can also be viewed as an output of 

the team’s input. 



11 

 

Mediators of human–robot teams can be present between humans alone, and between 

humans and robots. For example, shared mental models are important cognitive mediators. 

Accurate mental models usually promote team performance and reduce cognitive load 

(Robert et al., 2008). Shared mental models can exist between humans and robots 

(Nikolaidis & Shah, 2013), as well as between humans alone (Robert et al., 2008). In first-

responder teams, team members are often scattered across locations (Burke, Murphy, 

Coovert, & Riddle, 2004; H. Jones & Hinds, 2002). Communication among humans and 

robots is required to maintain accurate shared mental models of the situation at hand 

(Burke et al., 2004).  

Emotional attachment is a mediator, defined as an affective reaction toward robots or other 

humans (Carpenter, 2014). When team members are emotionally attached to their robots, 

they are likely to be more motivated to perform tasks with the robots and often perceive the 

work with the robots to be more rewarding (Carpenter, 2014; Robert & You, 2015). 

However, emotional attachment can also deter teams from deploying robots in risky 

situations (Carpenter, 2014). As behavioral mediators,  it is shown that effective 

communication and coordination are important to improve team outcomes with (Breazeal, 

Hoffman, & Lockerd, 2004) and without robots (Kozlowski & Bell, 2003). 

Proposition 4: Cognitive, affective, and behavioral mediators influence outputs. 

Team-level mediators can also influence individual-level outputs. Team trust can influence 

the relationship between individual trust and individual performance (Jarvenpaa et al., 

2004). It is also possible that mediators such as team cohesion and communication can 

influence team members’ decision on whether or not to remain on the team. 
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Proposition 5: The influence of team-level mediators can occur at the individual 

and team levels. 

1.5.3 Outputs 

Outputs have three categories: taskwork, teamwork, and perceptual outcomes. In human–

robot teams, taskwork can include the task time, solution quality, and error rate, while 

teamwork can include communication efficiency and effectiveness, awareness, and 

coordination. Perceptual outcomes are the attitudinal and emotional reactions, such as 

satisfaction. 

The framework attempts to capture the role of time. The original IPO (input-process-

output) model has been criticized for focusing only on a linear path, from inputs through 

outcomes. However, most teams undergo developmental processes and feedback loops as 

they mature (Mathieu et al., 2008). This means that mediators and outputs can influence 

subsequent inputs and mediators through feedback loops (shown by solid lines on the right 

side of Figure 1). In other words, time matters, and we should expect past interactions to 

play a key role in the future interactions of human–robot teams. 

As an example, time matters in the role of task knowledge and skill. For instance, a 

human–robot team could have little task knowledge (inputs), which could influence its 

shared mental models (mediators) and ultimately its initial performance (outputs). When a 

human–robot team repeats the task, the team becomes better, which influences mediators 

and the outputs of future tasks. However, the influence of previous outputs can be more 

influential than the feedback from previous mediators. Mediators are often subject to 
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change based on a team’s previous performances and experiences. Inputs, including 

specifications of robots and individual traits, tend to be static and less dynamic. 

Proposition 6: There are feedback loops, in which mediators and outputs influence 

subsequent mediators and inputs in a cyclic manner. 

Last, the organizational context influences inputs, mediators, and outputs associated with 

human–robot teams. Teams are often embedded in a larger organizational context. 

Organizations help determine both the operation and management of human–robot teams. 

Organizations provide the resources to facilitate teamwork. For instance, organizations can 

provide training and support to human–robot teams (Kozlowski & Bell, 2003). Consistent 

training and support from the organization can be critical, particularly for human–robot 

teams (You & Robert, 2016). Team members are likely to build strong social relationships 

with their robots through prolonged interactions throughout the team’s life cycle. 

Proposition 7: Organizational contexts of human–robot teams can influence their 

inputs, mediators, and outputs by providing positive conditions. 

1.5.4 Discussion for the Framework 

There are three advantages of this framework. First, it acknowledges different 

compositions of human–robot teams beyond one robot and one human. Given that many 

human–robot teams consist of multiple robots and their operators, both human–human and 

human–robot collaboration should be examined to better understand how these teams 

achieve their goals in synergistic ways. The framework not only incorporates the different 

individual and robot characteristics but also various compositions among the 
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characteristics of robots and humans. This includes collaboration, as a joint action between 

and among humans and robots, to jointly accomplish a shared goal (Breazeal et al., 2004).  

Second, the framework suggests individual, team-level, and multilevel relationships. Most 

research focuses on the individual level — often ignoring the team context. This 

framework describes how team characteristics influence individual mediators and outputs. 

A multilevel approach is essential to investigate impacts of the team level on the individual 

level (Robert & You, 2013; Srinivasan, Maruping, & Robert, 2012). 

Third, this framework considers the role of time by including feedback loops. It is possible 

to investigate how different team compositions convert to outputs through mediators. 

Many researchers have treated variables such as attraction and attachment toward a robot 

as an end-point of human–robot interaction, mainly for predicting individual adoption of 

social robots. However, human–robot teams often repeat similar tasks and interact with 

robots assigned to them during the team’s life cycle. In this case, previous performance can 

alter a team’s perception toward its robots and the ways mediators influence interactions. 

Lastly, I believe this framework will be a starting point towards building a theory of 

teamwork with robots. The framework enumerates potential theoretical links that deserve 

empirical validation. Some of the links have been examined through three studies 

conducted for this dissertation, but more research should be directed to test other 

phenomena in the framework specifically in team contexts where multiple robots and 

people are involved. Therefore, the framework should be updated by empirical evidence, 

and this process should incorporate iterative and collaborative effort with other scholars in 

the research community in the relevant fields. 
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1.6 OVERVIEW OF CHAPTERS 

This dissertation includes three separate studies, all of which address how robots can alter 

interactions among team members and result in various outcomes in the teams working 

with robots. Based on the theoretical framework introduced in the section above, the three 

studies are designed to identify key elements of processes in teams working with robots 

and ways to promote the effectiveness of such teams. Specifically, I designed the three 

studies to address affective, motivational, and cognitive aspects of teams working in 

collaboration with technologies. These three team dimensions — affective, motivational, 

and cognitive — have been integral to explaining social behaviors and attitudes (Cannon-

Bowers & Bowers, 2011; Forgas, Scholar, Baumeister, & Tice, 2011; Kozlowski & Bell, 

2003).  

In addition, the three studies fall into two phases of teamwork — team functioning and 

team development (Cannon-Bowers & Bowers, 2011). Team functioning is a process that 

individual team members undergo to accomplish team objectives by utilizing available 

resources and implementing technologies (Cannon-Bowers & Bowers, 2011; Kozlowski & 

Bell, 2003). This stage involves team processes, in which perceptions of other team 

members and individuals’ motivations to perform team tasks are enacted in a given 

circumstance. Therefore, studies in this phase are expected to tap into socio-emotional 

relationships between robots and team members, as well as among team members 

themselves. The trust study in Chapter 2, which examines trust in teams working with 

robots, and the team potency study in Chapter 3, which examines effects of self-efficacy in 

diverse teams on performance of individual team members, can be included in the team 

functioning phase. 
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Team development is related to processes that take place prior to team functioning and 

include a team’s compositional characteristics and formation of initial attitudes toward 

team members and technologies (Cannon-Bowers & Bowers, 2011). In this teamwork 

phase, variables regarding team composition, such as individual attributes, are examined to 

predict better teamwork and outcomes. The third study falls into the team development 

phase of teams working with robots, and thus this study serves to identify what motivates 

individuals to have the willingness to work with a robot in teams. The mapping of the three 

studies is illustrated in Table 1. 

Table 1 Research Framework for Teamwork with Robots 

The first study is described in Chapter 2. The first study (the trust study, hereafter) 

examines the effects of trust as an affective process of teams working with robots. The type 

of trust examined in this study is affective-based trust. Affective trust is based on the 

Chapter Chapter 2 Chapter 3 Chapter 4 

Phase Team Functioning Team Development 

Dimension Affective Motivational Cognitive 

Key 

Construct 
Trust Potency Similarity 

Research 

Question 

Will team members 

trust robots? What are 

the effects of trust in 

enhancing team 

outcomes? 

What promotes 

performance of 

individual robot 

operators in teams 

working with robots? 

What leads to 

teamwork with robots? 

Will similarity help 

people to work with 

robots? 

Outcome 

Variables 

Team performance 

and viability 

Individual robot 

operator performance 

Trust in a robot, 

intention to work with 

robot, intention to 

replace a human with a 

robot 
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emotional bonds between individuals and leads people to make emotional investments and 

exert more care and motivation in relationships (McAllister, 1995). This is in contrast to 

cognitive trust, which is established through cognitive reasoning based on good evidence 

and knowledge to make a trust decision (McAllister, 1995). Affective trust can be 

important to predicting the initial performance of teams working with robots. The first 

study is designed to investigate the effects of robot-building and team identification on 

promoting affective trust and its subsequent influence on team performance. In this study, 

teams consisting of two individuals and two robots perform a collaborative task of moving 

objects from one place to another. The study is designed to uncover ways to promote a 

team member’s trust in another team member and in a partnering robot. The study also 

examined what role the different trusting relationships play in enhancing team 

performance. 

The second study is described in Chapter 3. The second study (the team potency study, 

hereafter) explores a motivational process by which outcomes of individual robot operators 

can be explained through their efficacy beliefs. Efficacy beliefs are associated with one’s 

motivation to perform well based on confidence in a given task (Gist & Mitchell, 1992; 

Marks, Mathieu, & Zaccaro, 2001). Among the efficacy beliefs, team potency, which is 

defined as a team belief of ability in general, is the main interest of the second study 

(Gully, Incalcaterra, Joshi, & Beaubien, 2002). The second study addresses aspects of 

confidence and motivation in diverse teams working with robots. This study design posits 

an interplay among team potency, individuals’ self-efficacy of using robots, and the team’s 

demographic composition (e.g., ethnicity, gender, and nationality) in predicting individual 

performance and perception of team viability. Similar to the first study, teams consisting of 

two individuals and two robots perform a collaborative task of moving objects. The study 
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is designed with a multi-level approach to capturing performance and viability perceptions 

of individual robot operators nested in teams of two people and two robots. 

Chapter 4 describes the third study. The final study (the similarity study, hereafter) taps 

into the development of teams working with robots. The goal is to understand what 

motivates individuals to be willing to work with robots as a team and to choose to work 

with a robot instead of a human teammate. The final study seeks to understand the 

cognitive link between similarities with a robot and trust in the robot and its subsequent 

impacts on intention to work with the robot. This study proposes risk of danger as a trigger 

of a deliberate cognitive assessment of trustworthiness of a robot in the cognitive 

mechanism. I believe that understanding the cognitive mechanism regarding development 

of teams working with robots is important and timely. Robots are being placed in teams as 

a result of managerial and strategic decisions by leadership. However, individual workers’ 

willingness to work with robots is not always guaranteed and such willingness cannot be 

assumed, while it is critical to team functioning. Thus, the third study investigates how and 

why individuals decide to work with robots. The study is grounded in theories of similarity 

and trust in teams, which explains how similarity helps the formation of trust in a robot and 

attitudes toward working with the robotic teammate (Bernier & Scassellati, 2010). 

Conclusively, Chapter 5 revisits the research questions proposed in this section by 

highlighting key findings from each of the three studies. Findings from the three studies 

are discussed based on the theoretical framework in Chapter 1. This chapter also discusses 

the limitations and practical implications of this dissertation research. 
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CHAPTER 2 

AFFECTIVE PROCESS: TRUST2 

 

 

 

2.1 INTRODUCTION 

Many teams are transformed to human‒robot teams when robots are incorporated in their 

work. Human‒robot teams can be characterized as the inclusion of both humans and robots 

in teamwork and collaboration with the robots to accomplish team goals (Groom & Nass, 

2007). Robots in such teams often enable and aid teams in fulfilling various tasks that are 

dangerous and arduous for humans. For instance, success of missions and safety of 

individuals in bomb disposal teams rely on remote-control robots deployed to dangerous 

areas as proxies for humans (Carpenter, 2013). Some medical teams employ robots to 

perform microscopic and fine surgical operations that were not possible before the advent 

                                                 

2 The work presented in this chapter was mainly conducted by me, but significantly benefited from Lionel P. Robert’s 

contributions. An earlier version of this chapter appeared at the SIGCORE workshop at ICIS 2016. This work has not 

been published at a peer-reviewed outlet yet. 
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of these robots (Randell et al., 2014). Given that robots are often employed in high-stakes 

situations such as military and medical tasks, controlling and interacting with robots are 

critical for human‒robot teams to achieve team goals successfully and secure human safety 

at the same time. However, despite the widespread use of robots in teams, we do not know 

much about how individuals in human‒robot teams interact with their robots and in what 

circumstances these teams perform better. 

Researchers have examined ways to improve quality of interaction between an individual 

and a robot; however, this research does not inform how to improve overall team 

effectiveness in teams working with robots. This is in part because there is a gap between 

the two bodies of literature that are independently relevant to teamwork in human‒robot 

teams: human‒robot interaction (HRI), and teamwork. In the first, research on human‒

robot interaction, scholars are mainly interested in interactions between a single individual 

and a single robot. This research has failed to examine human‒robot teams that involve 

more than one individual and robot. The second body of research, on teamwork, focuses on 

teams consisting of only humans. This research could provide rich insights to better 

understand various types of teams, but it has not examined teams working with robots. 

Therefore, in order to better understand teamwork in human‒robot teams, it is essential to 

approach human‒robot teamwork by taking perspectives from both human‒robot 

interaction research and traditional research on teamwork. 

This leads to several interesting questions regarding the relationships between human and 

their robots. For example, is the relationship between humans and their robots just as 
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important to team outcomes like performance and satisfaction as the relationship between 

human teammates? If so, what approaches can be used to promote better relationships 

between humans and their robots? Should we also be concerned with promoting better 

relationships between humans on these teams? For example, maybe the relationship 

between human teammates is unimportant and only the relationship with their robot 

matters. We can also envision a scenario where the opposite might be true. Maybe the 

relationship between humans and robots is relatively unimportant to team performance and 

only the relationship between humans is important.  

To answer these questions, I turn to theories of trust. Trust is one construct that has 

consistently shown to be relevant across many settings involving both human-to-human 

relationships and human-to-technology relationships (Groom & Nass, 2007; Robert, Denis, 

& Hung, 2009). Trust -- the belief that another will follow through on your behalf – is an 

important construct in both the literature on teamwork and technology use (Mayer, Davis, 

& Schoorman, 1995; Mcknight, Carter, Thatcher, & Clay, 2011). In teams, trust among 

teammates often predicts various team outcomes, including team performance and job 

satisfaction (De Jong & Elfring, 2010; Morris, Marshall, & Rainer Jr, 2002; Robert & You, 

2013). Trust toward a technology has also shown to be an important predictor of use with 

that technology (Lankton, McKnight, & Thatcher, 2014; Wu, Zhao, Zhu, Tan, & Zheng, 

2011). In particular, McKnight et al. (2011) found that one’s trusting beliefs in a specific 

technology led to a greater intention to explore and use more features of the technology.  

Trust has also been found to be an important element in human‒robot teams. The 

importance of trust is emphasized particularly in teams using robots in high-risk situations 
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(Groom & Nass, 2007; J. D. Lee & See, 2004). This is because trust toward robots is 

required for individuals to follow suggestions and accept information from robots when 

fulfilling missions using the robots (Freedy, DeVisser, Weltman, & Coeyman, 2007). 

However, there is still much to learn about antecedents and consequences of trust on 

outcomes of teamwork between humans and robots (Groom & Nass, 2007; Shah, Wiken, 

Williams, & Breazeal, 2011). Current research on trust in human‒robot teams is limited to 

teamwork between one individual and one robot. Research still lacks evidence of the 

effects of trust in human‒robot teams because researchers have not examined trust both 

between individuals and robots and between teammates at the same time. This gap in our 

current understanding of trust in human‒robot teams leaves many questions unanswered. 

For example, is trust between humans and robots just as important to performance of 

human‒robot teams as it is between people in human-only teams? If so, what approaches 

can be used to promote trust in human‒robot teams? Human‒robot teams are often 

composed of multiple individuals and multiple robots beyond a dyadic pair of one human 

and one robot (Desai et al., 2012; Hancock et al., 2011). Therefore, there is a need to 

understand outcomes in these teams, and this necessitates an examination of the 

relationships between humans and their robots as well as among human teammates. It is 

impossible to understand human‒robot teams without examining both types of 

relationships. Therefore, this study has two goals:  

1) To examine the impact of team trust in robots and team trust in humans on team 

performance and satisfaction in teams working with robots 
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2) To examine ways to promote team trust in robots and team trust in humans in 

teams working with robots.  

To accomplish this, I conducted an experiment examining 55 teams working with robots. 

The teams consisted of two humans and two robots performing a time task in an 

experimental laboratory setting. This study employed two manipulations to promote team 

trust in both robots and humans: robot-building and team identification. The robot-building 

was done by having team members assemble their robots before performing the team’s 

task. For team identification, team members and their robots were given identical t-shirts 

and a team name to promote the perception of team identity. This study also examined 

whether team trust in robots and team trust in humans facilitated better team performance 

and higher satisfaction. In doing so, this study goes beyond prior research by not only 

examining these two distinct trusting relationships but also by linking them to important 

team outcomes such as team performance and satisfaction. Results offer new insights into 

teamwork with robots. 

2.2 THEORETICAL BACKGROUND 

In this section, I review several bodies of literature that both inform and motivate our 

research. First, I provide a brief introduction of the trust literature in teamwork. I 

particularly highlight the benefits of trust in humans for teamwork. Then, I discuss and 

present a review of the current IS literature on trust in technology. This includes a 

discussion of the importance of trust in the technology acceptance literature. Finally, I 
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highlight the research on trust in robots. To accomplish this, I draw from the literature on 

human-robot interaction. 

2.2.1 Trust in Teamwork 

Trust is widely defined as the willingness to be vulnerable to another’s actions (Costa, 

2003; Mayer et al., 1995; Zaheer, McEvily, & Perrone, 1998). Mayer et al. (1995) further 

conceptualized trust as “an expectation that the other will perform a particular action 

important to oneself, irrespective of the ability to monitor or control that party” (p. 712). 

Therefore, trust has been viewed as a property of interpersonal relationships emerging 

across wide range of settings of collaboration between individuals, between teams, and 

even between organizations (Zaheer et al., 1998). 

Trust is one of the most crucial predictors of success in teams (Costa, 2003; Zaheer et al., 

1998).Research shows evidence that trust is positively associated with individual and team 

performance in many settings (Korsgaard, Schweiger, & Sapienza, 1995; Wieselquist, 

Rusbult, Foster, & Agnew, 1999). For instance, collocated work teams are reported to 

benefit from trusting relationships among employees to increase performance and 

satisfaction (Costa, Bijlsma-Frankema, & de Jong, 2009; De Jong & Elfring, 2010; Dirks, 

1999). For example, De Jong and Elfring (2010) found that inter-team trust among 

employees in a multinational consultancy firm increased team performance. The positive 

effects of trust have also been found in virtual teams (Altschuller & Benbunan-Fich, 2010). 

For instance, telemedicine operational teams were reported to perform better when 

individuals in the teams perceived higher levels of interpersonal trust (Paul & McDaniel 
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Jr., 2004). Moreover, Robert (2016) found that trust in virtual teams increased team 

performance; this positive relationship was reduced, however, monitoring of individual 

behaviors. 

Researchers argue that there are benefits of trust in teams because trust promotes 

collaboration through increased cooperation among individuals (G. R. Jones & George, 

1998). Trust is often understood to help individuals deal with the complexity and 

uncertainty associated with collaborative work (J. D. Lee & See, 2004; Zaheer et al., 

1998). In particular, trusting relationships require less effort to coordinate workload and 

ensure that others are complying with expectations (De Jong & Elfring, 2010). As the 

effort needed to coordinate decreases, team members become more willing to engage in 

cooperative behaviors altogether (Teasley, Covi, Krishnan, & Olson, 2000). Trust among 

team members leads them to put aside personal interests and focus instead on team goals 

(Y.-T. Hung, Dennis, & Robert, 2004; Wieselquist et al., 1999). For example, trust has 

been a strong contributor to team cohesion (Jarvenpaa, Shaw, & Staples, 2004; Powell, 

Piccoli, & Ives, 2004). Individuals in cohesive teams tend to put more effort to achieve 

team objectives together, which results in better team performance and satisfaction(Beal, 

Cohen, Burke, & McLendon, 2003; Powell et al., 2004).The fact that trust promotes 

collaboration in part explains why trust is linked to positive team outcomes. 

2.2.2 Trust in Technology 

The concept of trust has been examined for understanding relationships and interactions 

with various information technology (IT) artifacts (Hoffman et al., 2009; X. Li, Hess, & 
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Valacich, 2008). In this research, trust in technology was conceptually distinguished from 

the conventional notion of trust in prior studies, which mostly focus on interpersonal trust-

capturing relationships between people and organizations (Vance, Elie-Dit-Cosaque, & 

Straub, 2008). For instance, McKnight, Carter, Thatcher, and Clay (2011) conceptualized 

trust in a specific technology as one’s belief of functionality, helpfulness, and reliability in 

the specific technology. Their conceptualization of trust in a specific technology was 

adapted from aspects of interpersonal trust in teams and organizations, including 

competence, benevolence, and integrity, derived from the literature of interpersonal trust 

such as Mayer et al. (1995) and McKnight, Cummings, and Chervany (1998). Furthermore, 

they reported that trust in a specific technology positively predicted an individual’s 

intention to explore and engage in deep-structure use of the technology (Mcknight et al., 

2011).  

Indeed, many scholars have looked at the role of trust in technology in predicting adoption 

of particular information systems and their use (Wu et al., 2011). This was mostly to 

extend the technology acceptance model (TAM) and to better explain how individuals 

intend to use a particular technology, by incorporating trust in technology as an important 

predictor of constructs in the model (Wu et al., 2011). For example, Wu et al. (2011) in a 

meta-analysis of 136 TAM studies showed that trust in using different technologies such as 

e-commerce and Internet banking systems positively influenced all constructs in TAM, 

including perceived usefulness, perceived ease of use, general attitude toward the 

technology, and behavioral intention to use the technology. Additionally, Lankton, 

McKnight, and Thatcher (2014) demonstrated that trust in a database system was 
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positively associated with satisfaction with the system and intention to use it. X. Li et al. 

(2008) examined antecedents of initial trust in new technology. They reported that one’s 

initial trust in an information system was influenced by reputation, cost/benefit calculation, 

and situational normality of the system and influenced their intention to trust the system in 

the future. These studies provide empirical evidence that trust in technology should be 

differentiated from interpersonal trust between people in order to better understand their 

technology use (Hoffman, Johnson, Bradshaw, & Underbrink, 2013). 

However, despite the empirical evidence of trust in technology as a distinctive concept for 

understanding technology use, there seems to be a gap in the current literature of trust in 

technology. First, researchers have not examined trust in emerging information systems 

like robots. Most studies examining trust in technology were conducted in contexts of 

traditional information systems including spreadsheet applications (Mcknight et al., 2011), 

e-commerce sites (Wu et al., 2011), and database systems (Lankton et al., 2014). It was 

Lankton et al. (2014) who compared human-like trust in technology (i.e. integrity) and 

system-like trust in technology (i.e. reliability). To my best knowledge, no study describes 

trust in robotic systems by employing the concept of trust in technology derived from 

interpersonal trust (Lankton et al., 2014; Mcknight et al., 2011). Therefore, investigating 

trusting beliefs in robotic systems will contribute to the current literature of trust in 

technology. 

In addition, research is mostly limited to examining trust in technology by individuals and 

predicting their intentions to use. Thus, the current literature cannot provide evidence of 
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roles of trust in technology at the team-level and its consequences for team outcomes. This 

is a significant gap in our understanding of teamwork using technologies and trust because 

interpersonal trust is generally known to increase various team outcomes such as 

performance (Altschuller & Benbunan-Fich, 2010; Robert, 2016).Just like interpersonal 

trust in teams, it is likely that trust in technology would facilitate interactions and 

relationships with the technology and thus improve team performance. If this is true, this 

study has the potential to provide empirical evidence by showing positive effects of trust in 

robots on outcomes in teams working with robots. 

2.2.3 Trust in Human‒Robot Interaction 

The concept of trust has been adapted to robotic systems (Hoff & Bashir, 2013; J. D. Lee 

& See, 2004). Many HRI scholars have argued that because individuals often project 

human-like traits onto robots, trust in robots should be viewed as a type of interpersonal 

trust (Bruemmer et al., 2004; Groom & Nass, 2007). Recent research has confirmed that 

the social interactions between humans and robots can lead many humans to develop 

interpersonal trust in robots in much the same they do with other humans (Hancock et al., 

2011; Krämer, von der Pütten, & Eimler, 2012). The evidence of interpersonal trust in 

robots have been observed in interactions with various types of robots in varying degrees 

of its characteristics, such as intelligence and autonomy (Kruijff, 2013) and appearance 

(Hancock et al., 2011; Schaefer, Sanders, Yordon, Billings, & Hancock, 2012). 

Interpersonal trust is the expectation that someone will act in your best interest (Robert et 

al., 2009). This is somewhat different from trust based on reliability and functional 
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dependability, which is often used to represent trust between humans and technology 

(Desai et al., 2012; Yagoda & Gillan, 2012).  

The literature on trust in robots has several relatively unexplored areas. One, the literature 

has focused on the role of trust in facilitating interaction with social robots by promoting 

engagement and enjoyable interactions between an individual and their robot. From this 

literature, it is clear that humans are much more engaged with and build a stronger 

relationship with their robot when they trust their robot (Gaudiello, Zibetti, Lefort, 

Chetouani, & Ivaldi, 2016; Graaf, 2015; Kidd, 2003). Scholars investigating the social 

robots have ignored the potential impacts of trust on the performance of teams working 

with robots. Yet, in many cases teams working with robots are assembled to accomplish 

tasks as effectively and as efficiently as possible (Carpenter, 2013; H. Jones & Hinds, 

2002). Therefore, understanding the impact on trust on team performance has the potential 

to contribute to our understanding of teamwork with robots. 

Two, these studies have only examined the impact on trust between one human and one 

robot. This is problematic in at least two ways. First, teams working with robots can be 

composed of multiple humans and robots (Groom & Nass, 2007; Yanco & Drury, 2004). 

This means that the trust between multiple humans and multiple robots should be 

considered to better understand teamwork in teams working with robots. Second, in the 

context of teamwork with robots, trust between humans should also be examined alongside 

human’s trust in robots. Investigating the impact of only trust in robots or trust in humans 

at best presents an incomplete view and at worst presents an inaccurate view on potential 
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impacts of trust in teams working with robots in predicting team outcomes. Therefore, by 

examining both the impact of trust in humans and the impact of trust in robots on 

performance and satisfaction, this study can provide new insights to the literature of teams 

working with robots. 

Taken together, two trends emerge throughout the literature on trust between humans and 

robots. One, this research has focused on developing trust between an individual and a 

robot (Hancock et al., 2011). Yet, no researchers appear to have examined whether trust is 

actually important to the performance of human‒robot teams. Two, these studies have not 

included the impact of both trust between humans and robots, and trust between humans. 

However, human‒robot teams can be composed of multiple humans and robots (Groom & 

Nass, 2007; Hancock et al., 2011). Therefore, by examining trust between humans in 

human‒robot teams, this study can provide new insights. 

2.3 THEORY AND HYPOTHESIS DEVELOPMENT 

I propose two ways to increase trust perception toward robots: robot-building and team 

identification. These ways are analogous to strategies to promote interpersonal trust in all-

human teams. This section elaborates on how these mechanisms would work for human‒

robot teams. 

In the research model for this paper, I posit that robot-building and team identification will 

increase interpersonal trust toward robots and toward human teammates. I also propose in 

this model that the interpersonal trust will result in increases in team performance and 
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satisfaction with teamwork. The following section elaborates on these arguments, which 

are summarized in Figure 2. 

 

Figure 2 Proposed research model 

I posit that robot-building will increase trust between humans and robots. This works in 

three ways: 1) by aiding in understanding of how robots work, 2) by altering attitudes 

toward the robots, and 3) by establishing trust between human builders. First, building 

robots can lead to better mental models about how they work (Nikolaidis & Shah, 2013; E. 

Phillips, Ososky, Grove, & Jentsch, 2011). Mental models are generally defined as 

structures of knowledge in one’s environment and its components (Wilson & Rutherford, 

1989). These knowledge structures help individuals to have a better understanding of 

interactions with the world around them by enabling them to describe, explain, and predict 

events (Rouse & Morris, 1986). Specifically, mental models have been reported to be 
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critical to understanding and using technological systems (e.g., Krauskopf, Zahn, Hesse, & 

Pea, 2014; Merrill, 2000). Individuals with a clear mental model can understand the 

current state of their system and make predictions of its future behaviors. This ability to 

make predictions is associated with the important property of trust. In the theoretical 

background section of this chapter, trust was conceptualized as one’s confidence that 

another will behave as expected. Similarly, a mental model helps individuals to make 

plausible predictions about their robots and expect the robots to work as they predicted(E. 

Phillips et al., 2011). By building robots by themselves, people can have a better 

understanding of how the robot works and what it is capable of. This knowledge results in 

higher trust toward robots because individuals can make more accurate predictions and 

base their expectations on their robot’s current state (Powers & Kiesler, 2006). This might 

be why the STEM (Science, Technology, Engineering, and Mathematics) education 

programs use robot-building activities to teach students how robots work (Klassner & 

Anderson, 2003) — people are more inclined to trust a robot once they understand how it 

works (S. Kiesler & Goetz, 2002).  

Second, robot-building will increase trust between humans and robots because building 

robots can positively alter attitudes and behaviors toward the robots when people see 

themselves through the robots they build (Groom, Takayama, Ochi, & Nass, 2009; T. 

Kiesler & Kiesler, 2004; Mugge, Schoormans, & Schifferstein, 2009). Building creates a 

personal bond and a sense of ownership between builders and their artifacts (Groom, 

Takayama, et al., 2009; T. Kiesler & Kiesler, 2004). Such personal bonds and ownership 

have been known to facilitate trust (Hogg, 2007; Zhang & Huxham, 2009). Additionally, 
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the building activity itself increases interaction with robots compared to using robots that 

are already built and assigned. Trust is typically associated with the amount of interaction 

(Hancock et al., 2011; Wieselquist et al., 1999). For example, researchers have found that 

people who interact more with their robot through cross-training tasks trust the robot more 

than people who interact with their robots without cross-training (Nikolaidis & Shah, 

2013). 

Finally, I suggest that robot-building can increase trust between humans. The robot-

building exercise represents a collaborative and shared experience between team members. 

Research on teams has demonstrated that such activities are often used as the basis for trust 

in teams (Jarvenpaa, Knoll, & Leidner, 1998; Meyerson, Weick, & Kramer, 1996). In 

addition, the robot-building exercise can induce a perception of shared investment in the 

team (Korsgaard et al., 1995). The fact that both team members are contributing to the 

team by building robots can promote a perception that both members are committed to the 

team and its success (Mayer et al., 1995). The belief that one’s teammate is committed to 

the team is positively associated with trust in teams (Jarvenpaa et al., 2004; Wieselquist et 

al., 1999).Therefore, I hypothesize that: 

Chapter 2-H1) Human‒robot teams in the robot-building treatment condition have 

higher interpersonal trust toward their a) robots and b) human teammate than 

teams not in the robot-building condition. 
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Team identification should increase trust in human‒robot teams. Team identification is 

defined as the degree to which team members are psychologically identified with their 

team (Scott, 1997). Research on human teams generally confirms the positive effects of 

team identification on team inter-relationships and performance (Abrams & Hogg, 1990; 

Hinds & Mortensen, 2005). Team members are more likely to behave in ways to promote 

the team’s interest rather than their own when individuals identify with the team (Robert, 

2013).  

Team identification increases trust by minimizing the perceived differences between 

teammates and maximizing the perceptions of similarities between them (Abrams & Hogg, 

1990; Hogg, 2007). The similarities become the basis for a shared social identity between 

teammates (Hogg, 2007; Ljungblad, Kotrbova, Jacobsson, Cramer, & Niechwiadowicz, 

2012; Rae, Takayama, & Mutlu, 2012). Social categorization and attraction theories tell us 

that people tend to trust others who are perceived to be similar to them (Hogg & Turner, 

1985; Jarvenpaa et al., 2004). This explains the strong positive relationship between team 

identification and team trust in all-human teams (Han & Harms, 2010). Given that humans 

tend to project personality and social characteristics onto non-human objects like robots, it 

is likely that they would trust robots more if they believe they share the same social 

identity (Ljungblad et al., 2012; Rae et al., 2012; Reeves & Nass, 1996). Indirect evidence 

of this type of team attachment between humans and robots has been found in humans 

participating in RoboCup Soccer. Therefore, I hypothesized the positive impact of team 

identification on trust toward both robots and humans on a team:  
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Chapter 2-H2) Human‒robot teams in the team identification treatment condition 

will have higher interpersonal trust toward their a) robots and b) human 

teammates than teams not in the team identification treatment condition. 

Additionally, I propose that the combination of robot-building and team identification 

should lead to higher levels of trust in human‒robot teams. When human‒robot teams are 

exposed to both robot-building and team identification, they should have significantly 

higher levels of trust toward both robots and their human teammates than when exposed to 

either treatment alone. Robot-building and team identification serve for increasing trust in 

separate ways. Robot-building is a behavior that helps individuals have better mental 

models and establish stronger bonds, and it provides individuals opportunities to make 

meaningful commitment to their team. On the other hand, team identification enhances the 

sense of team membership, which operates at the perceptual level. Therefore, the 

combination of these two ways can result in a kind of double-dose impact in terms of 

facilitating overall trust within human‒robot teams. This is because both are likely to 

reinforce and add to the effects of the other. This should lead to an additive interaction 

effect. Therefore, I hypothesize that: 

Chapter 2-H3) There is an additive interaction effect between robot-building and 

team identification, such that trust toward a) robots and b) human teammates is 

highest in teams exposed to both treatment conditions. 
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In addition, trust toward robots and human teammates should increase team performance. 

The positive impact of trust on performance has been found in all-human teams (Jarvenpaa 

et al., 2004; McAllister, 1995). The positive relationship between trust and team 

performance is often explained by the heightened engagement and motivation associated 

with increases in confidence along with the reduction of worry, concern, and monitoring 

associated with low-trust collaboration (De Jong & Elfring, 2010; Jarvenpaa et al., 2004). 

Countless studies have linked trust toward one’s teammates to better team performance 

(Avolio, Jung, Murry, & Sivasbramaniam, 1996; De Jong & Elfring, 2010; Zaheer et al., 

1998). However, I could only find indirect support linking trust toward a robot to 

individual performance. Researchers have demonstrated that trust toward a robot is 

positively associated with motivation to use and interact with a robot (Schaefer et al., 

2012; Shah et al., 2011). Although Shah et al. (2011) suggested that human‒robot 

performance could be improved by reducing the effort to monitor one’s robot, this 

relationship has not been empirically verified. Taken together, prior research seems to 

suggest: 

Chapter 2-H4) Trust toward a) robots and b) human teammates increases 

performance of human‒robot teams. 

Furthermore, team satisfaction can be seen as a measure of team members’ positive 

feelings about their team experience (Briggs, de Vreede, & Reinig, 2003). Team trust in all 

human teams is positively related to satisfaction (Jarvenpaa et al., 2004). Similarly, 
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individuals in human‒robot teams are likely to feel higher satisfaction with their team as 

their level of trust increases in either robots or their teammates. Therefore, I hypothesize 

that: 

Chapter 2-H5) Trust toward a) robots and b) human teammates increases 

satisfaction inhuman‒robot teams. 

2.4 METHOD 

To investigate the effects of robot-building and team identification on trust and team 

effectiveness, I conducted a 2 (robot-building: building vs. no-building) × 2 (team 

identification: team identification vs. no team identification) between-subjects experiment 

in a controlled lab environment. Participants were invited to a lab to perform a 

collaborative task with two robots and another participant. The goal of the collaborative 

task was to deliver five small water bottles from one point to another point as quickly as 

possible using remote-control robots. 

2.4.1 Participants 

There were 110 participants in 55 teams working with robots recruited from a large online 

subject pool at a mid-western university in the United States. The mean age was 24 and 54 

were males. Each team working with robots consisted of 2 humans who operated 2 robots. 

Individuals were randomly assigned to a team and each team was randomly assigned to 

one of four treatments: robot-building only, team identification only, robot-building × team 
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identification, or the control group. There were 13 teams in the robot-building only 

treatment, 15 teams in the team identification only treatment, 14 teams in the robot-

building and team identification treatment, and 13 teams in the control group. 

2.4.2 Robots 

I used robots made of Lego® Mindstorms® EV3 (see Figure 3). The robots were designed 

to be able to grab small objects. Infrared remote controllers were used to control the robots. 

The robots spoke (e.g., “Okay”) when loading and unloading the water bottles. The robot 

indicated directions of movement on its display located on its back. Both robots used for 

the experiment were identical in forms and technological specifications. 

 

Figure 3 The robot with a water bottle and a uniform 

2.4.3 Manipulations of Independent Variables 

2.4.3.1 Robot-building 
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The independent variable robot-building had two levels: robot-building and no robot-

building. Manipulation of robot-building was to elicit the perception of self-extension by 

assembling their own robot. In the robot-building condition, participants were asked to 

assemble their robot. Each participant assembled their own robot, but did so in the same 

room. The identical bricks and instructions were given to both participants in the team. The 

instructions included images of each assembling process along with texts. Participants 

were told that the assembling portion of the study was not a test. They were allowed to 

take as long as they wanted to complete the assembly task. All participants completed the 

assembly process. 

2.4.3.2 Team Identification 

The manipulation of team identification was done with uniforms and team names. 

Basketball jerseys with the university’s name printed on the front were worn by human 

teammates, whereas six-month infant clothes which also had the university’s name printed 

on the front were used as uniforms for the robots. Participants wore the uniforms while 

performing the experimental task and put the uniforms on their robots themselves. Along 

with the uniforms, participants were asked to come up with a unique team name for the 

team. 

2.4.4 Experimental task 

The objective of the task was to deliver five plastic water bottles (236 ml) from point A to 

point C. I created the task area with cardboards (0.44 meters × 2.91 meters) (see Figure 4).  
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Figure 4 Experimental Task Setting 

The first team member used their robot to deliver water bottles from Point A to Point B. 

The second team member used their robot to deliver the water bottles from Point B to 

Point C (Final Destination). The task was designed to be interdependent. The first team 

member was not allowed to deliver water bottles beyond Point B. The second team 

member could not use their robots to pick up any bottles than were not already at point B. 

This ensured that one team member could not complete the task without the help and 

cooperation of the other team member. The task was completed once five water bottles had 

been delivered from point A to point C. Four cones taped to the cardboard area were used 

as obstacles.  

Each team was informed that they were competing with all the other teams for the best 

time. They were also informed that there would be an additional monetary award for the 

three best-performing teams in the entire study. The team with the fastest time would 
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receive $100 and the second and third place teams would receive an additional $40 and 

$20, respectively. This was in addition to the $20 participation fee given to all participants.  

The participants were also informed of the 3 rules of the completion. One, only robots 

were allowed to touch and move water bottles. Human participants were required to stay 

outside the work area when operating the remote-controlled robots. Two, robots had to stay 

inside their designated work area. For example, the first robot was only allowed to move 

between points A and point B, while the second robot was only allowed to move between 

point B and C. Three, participants could not swap out robots.  

2.4.4 Procedure 

The experiment took place in two separate rooms: a treatment room and a task room. The 

treatment room was used for greeting, briefing, answering questionnaires, and 

experimental manipulations. The task room was only used for the experimental task. 

The experimental procedure began by welcoming participants and providing them with a 

brief introduction of the study. Participants were then given consent forms. If they 

consented, they were asked to fill out a short pre-questionnaire on their demographic 

information. Participants were then provided with both instructions on the experimental 

task along with instructions about how to operate the remote-controlled robot. Next, a 

video was shown which went over the same instructions but also provided visual images of 

the instructions.  
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After the video, participants who were assigned to the robot-building condition were given 

the building instructions and asked to build their robot. Participants who were assigned to 

team identification treatment were asked to select a uniform and team name. In the robot-

building and team identification treatment, participants went through the building activity 

first and then the team identification treatment. In the control group, team members went 

directly to the next step below.  

The experimenter guided participants to the task room. Participants were asked to turn the 

robots on. Next, participants engaged in two different types of training. First, they were 

allowed to operate their robots freely for 2 to 3 minutes outside of the work area. Second, 

they practiced moving 5 water bottles as a team from point A to point C. They were 

allowed 2 complete trial runs to simulate the actual timed task. Afterward, the timed task 

was conducted. A stopwatch was used to record the time it took participants to deliver the 

fifth water bottle to Point C. Once the time tasked was completed, participants were given 

their time. Typically, the entire task from initial training to the timed run took between 25 

and 30 minutes. 

When participants were finished with the task, they were guided to the treatment room to 

complete a post-questionnaire. The experimenter then debriefed, thanked, paid, and 

dismissed the participants. 

2.4.5 Measures 

2.4.5.1 Self-extension 



43 

 

The manipulation check for the independent variable robot-building will be done by testing 

the participants’ level of self-extension. Self-extension measures the degree to which 

participants believe the robot is an extension of themselves (Schifferstein & Zwartkruis-

Pelgrim, 2008). Self-extension was measured with 7 items using 5-point Likert scale (‘1’ 

strongly disagree to ‘5’ strongly agree) adopted from (Schifferstein & Zwartkruis-Pelgrim, 

2008). One example item is “If I never worked with this robot, I would feel like I had lost a 

little bit of myself”. The scale reliability was 0.86. 

2.4.5.2 Perceived team identification 

The manipulation check for team identification was done by testing the extent to which 

participants identify themselves with their team. The scale consisted of 6 items including 

“I had a sense of belonging toward the team” adapted from (Brown, Condor, Mathews, 

Wade, & Williams, 1986). The scale was measured using a 5-point Likert scale. The scale 

reliability was 0.94.  

2.3.5.3 Interpersonal trust toward robots and human teammates 

Interpersonal trust was measured as a network construct. Both team members rated their 

level of trust in both robots and their human teammate. The items they used to rate their 

teammate and the two robots were taken from (Jarvenpaa et al., 2004; Mayer et al., 1995). 

An example item was “I really wish I had a good way to oversee the work of this team 

member on the task”. The scale was measured using a 5-point Likert and was reliable, 

0.87.  
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To calculate the team trust in robots, each team member’s rating of both robots were 

averaged. Next, both team members’ scores were averaged together to create a team level 

measure of trust in robots. The procedure to calculate the measure of team trust in human 

teammates was similar. The two individual ratings toward each other were averaged to 

create the team trust in human teammates. In order to aggregate the individual 

measurement to the team level, I calculated intra-class correlation coefficient (ICC(1)). 

According to Bliese (2000), values greater than 0.1 justifies aggregation. ICC(1) for trust 

in robots were 0.26 and 0.29 for trust in teammate, both of which justifies aggregation to 

the team level. 

2.4.5.4 Team performance 

Task duration measured in seconds was used as team performance. The task was 

completed once the fifth water bottle was delivered to Point C. 

2.3.5.5 Satisfaction with teamwork 

Team satisfaction was measured using 3 items adapted from (Briggs et al., 2003) based on 

5-point Likert scale. Items included “Looking back I was pleased with how we complete 

the team task”. The scale reliability was 0.93. ICC(1) for satisfaction with teamwork was 

0.8. 

2.4.5.6 Disposition to trust 

Disposition to trust was included as a control variable. Prior studies have found that 

individuals different significantly when it comes to their propensity to trust (Robert et al., 
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2009; Sanders, Oleson, Billings, Chen, & Hancock, 2011). Disposition to trust was 

measured with 6 items that measured an individual’s general predisposition to trust (Mayer 

et al., 1995; Robert et al., 2009). The items were adopted from (Schoorman, Mayer, & 

Davis, 1996) and measured using a 5-point Likert scale. Items included “Many people are 

honest in describing their experience and abilities”. The scale reliability was 0.74. ICC(1) 

for disposition to trust was 0.25. 

2.5 RESULTS 

All analyses in the following section included disposition to trust as a control variable. In 

addition, I also tested Negative Attitudes Toward Robots (NARS) scale (Nomura, Kanda, 

& Suzuki, 2006), participants’ gender, age, and previous knowledge on computer, robotics, 

and Mindstorms as covariates in the analysis based on prior studies (Takayama, Groom, & 

Nass, 2009). None of these variables had significant effects on the results, and were 

excluded in the results. 

2.5.1 Manipulation Checks 

There were two manipulation checks. Self-extension was used as the manipulation check 

for robot-building. Self-extension was higher in teams that built robots, M = 3.08, SD = 

0.52, than teams that did not, M = 2.76, SD = 0.62, t(53) = 2.08, p < 0.05. Perceived team 

identification was used as the manipulation check for the team identification treatment. 

Teams exposed to the team identification treatment had significantly higher levels of 
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perceived team identification, M = 4.28, SD = 0.49, than teams who did not, M = 3.98, SD 

= 0.51, t(53) = 2.26, p < 0.05. 

2.5.2 Trust in Robots and Human Teammate 

H1, posited the main effects of robot-building on trust, was tested by using ANCOVA. The 

result showed that trust in robot was significantly higher in teams that built their robots, M 

= 2.76, SE = 0.13, than teams who did not, M = 2.42, SE = 0.13, F(1, 51) = 4.07, p < 0.05, 

ηp2 = 0.07. There was no main effect of disposition to trust, F(1, 51) = 0.91, p = 0.34, ηp2 

= 0.02. Therefore, H1a was supported.  

However, trust in humans was not significantly different between the teams in the robot-

building condition, M = 3.81, SE = 0.11, and those that were not, M = 3.79, SE = 0.11, F(1, 

51) = 0.13, p = 0.72, ηp2 = 0.002. Disposition to trust, F(1, 51) = 1.5, p = 0.23, ηp2 = 0.03, 

was not statistically significant. H1b was not supported (see Figure 5). 

H2 proposed the main effects of team identification on trust. H2a posited that team 

identification will increase team trust in robots. The results of ANCOVA revealed that 

there was no significant difference in team trust in robots between teams in the team 

identification treatment, M = 2.68, SE = 0.12, and those that were not, M = 2.49, SE = 0.13, 

F(1,51) = 1.12, p = 0.29. No main effect of disposition to trust was found, F(1, 51) = 0.91, 

p = 0.34, ηp2 = 0.02. H2a was not supported. 
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H2b posited that team identification will increase trust in humans. Teams in the team 

identification treatment had a significantly higher level of trust in humans, M = 3.98, SE = 

0.11, than those teams that were not, M = 3.61, SE = 0.11, F(1, 51) = 5.64, p < 0.05, ηp2 = 

0.10. There was no main effect of disposition to trust, F(1, 51) = 1.5, p = 0.23, ηp2 = 0.03. 

H2b was supported (see Figure 6).  

 

Figure 5 Main effects of robot-building on trust in robots and human teammate (H1a & H1b) 

 

Figure 6 Main effects of team identification on trust in robots and human teammate (H2a & H2b) 
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H3 proposed that there will be an interaction effect between robot-building and team 

identification on trust in robots and in humans. More specifically, H3a, that there would be 

an interaction effect on team trust in robots, was supported. An ANCOVA revealed that a 

statistically significant interaction effect between robot-building and team identification, 

F(1, 50) = 5.06, p < 0.05, ηp2 = 0.09, on team trust in robots. No main effect of disposition 

to trust as a covariate was found, F(1, 50) = 0.24, p = 0.63, ηp2 = 0.01. A post-hoc analysis 

using Student’s t showed that trust in robots were highest in teams, p < 0.05, with both 

robot-building and team identification. All other comparisons were not significant (see 

Figure 7).  

H3b, the interaction effect on team trust in humans, was also tested. The interaction 

between robot-building and team identification was not statistically significant, F(1, 50) = 

0.54, p = 0.47, ηp2 = 0.01. No main effect of disposition to trust was found, F(1, 50) = 

1.82, p = 0.18, ηp2 = 0.03. Therefore, H3b was not supported.  

 

Figure 7 Interaction between robot-building and team identification on trust in robots (H3a) 
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2.5.3 Trust on Performance and Satisfaction 

H4 and H5 were tested using regression controlling for disposition to trust. More 

specifically, H4a, which stated that team trust in robots would increase performance, was 

supported. Team trust in robots was a significant predictor of performance, β = -0.27, p < 

0.05. Disposition to trust was not a significant predictor, β = -0.039, p = 0.78. However, 

H4b, which stated that team trust in humans would increase performance, was not 

supported, β = -0.23, p > 0.11. Disposition to trust, β = -0.02, p = 0.90, had no effect. 

Therefore, H4b was not supported. 

H5 generally proposed that team trust in robots and in humans would increase satisfaction. 

H5a, which posited that team trust in robots would be significantly related to satisfaction, β 

= 0.20, p = 0.15, was not supported. There was no effect of disposition to trust, β = 0.211, 

p = 0.12. H5b, which stated that team trust in humans would increase satisfaction, β = 0.34, 

p < 0.05, was supported. Disposition to trust had no effect on satisfaction, β = 0.173, p = 

0.18. The model fit was r2 = 0.16. The summary of the results of the hypotheses is listed 

above (see Table 2). 

Hypothesis Result 

H1a Robot-building  Team Trust in Robots Yes 

H1b Robot-building  Team Trust in humans No 

H2a Team Identification  Team Trust in Robots No 

H2b Team Identification  Team Trust in humans Yes 
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H3a Interaction effect  Team Trust in Robots Yes 

H3b Interaction effect  Team Trust in humans No 

H4a Team Trust in Robots  Performance Yes 

H4b Team Trust in humans  Performance No 

H5a Team Trust in Robots  Satisfaction No 

H5b Team Trust in humans  Satisfaction Yes 

Table 2 Summary of hypothesis testing 

2.6 DISCUSSION 

The objective of this study was to better understand how to promote team trust in robots 

and in humans as well as to examine their implications team performance and satisfaction. 

Results indicated that team trust in robots was important for better team performance while 

team trust in humans was not. Team trust in human teammates was important for team 

satisfaction while team trust in robots was not. Taken together, this study suggests that to 

better understand teams working with robots, one should consider both the relationships 

between humans and the relationship between humans and their robots. 

2.6.1 Implications for Research 

First, this study is one of the first to examine effects of trust in both human‒human 

relationship and human‒robot relationship at the same time. Research of trust in human‒

robot teams is heavily focused on trust between a single individual and a single robot 

(Groom & Nass, 2007; Schaefer et al., 2012). By examining trust toward a team member 
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as well as toward a robot in a human‒robot team, this study can enhance our understanding 

of the influence of trust on human‒robot team outcomes by distinguishing different effects 

of trust between team members and between individuals and their robots.  

Second, this study extends ways to foster trust toward robots and team members in human‒

robot teams. Researchers have identified various antecedents of trust toward robots but 

have failed to incorporate ways to improve trust toward teammates in human‒robot teams 

with multiple individuals (Groom, Takayama, et al., 2009; Oleson, Billings, Kocsis, Chen, 

& Hancock, 2011). By examining the influence of robot-building and team identification, 

this study shed light on ways to facilitate trust in human‒robot relationship as well as 

human‒human relationship within a team. Taken together, this study confirms that trust is 

important to the success of human‒robot teams and that understanding of trust in human‒

robot teams should be approached in a new way by differentiating trust between human 

team members and robots. 

2.6.2 Implications for Theory 

This study has several theoretical implications. First, results indicated that team trust in 

robots increased performance but not team trust in humans. There are several ways to 

interpret this finding. One way is to conclude that team trust in robots is more important to 

team performance than team trust in humans. However, I caution against over-generalizing 

from one study. Another way to view the results is that trust in robots maybe at least as 

important as trust in teammates to explaining team performance. This implies that trust in 

robots is an essential element to facilitating performance in teams working with robots (de 
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Visser & Parasuraman, 2011). However, the impact of trust in robots and human 

teammates may vary by the context and task (Hancock et al., 2011; J. D. Lee & See, 2004). 

For example, in high-risk work environments like military and rescue operations, trust 

between teammates may be more important to the performance of teams working with 

robots (Groom & Nass, 2007). Future studies should be conducted to identify potential 

moderators of the relationship between trust in robots, trust in teammates, and team 

performance.  

It should also be noted that I examined a specific type of trust: interpersonal trust between 

humans and robots. I found meaningful impacts of interpersonal trust in robots on 

performance of teams working with robots. In doing so, this study supports Groom and 

Nass (2007), who proposed that humans can view robots more like teammates rather than 

automated systems and that this relationship can be leveraged to improve teamwork. 

However, it should be noted that trust in robots defined as reliability and functional 

dependability may not have the same effect on team performance. Future studies should 

examine and compare different dimensions of interpersonal trust in robots as well as 

technology-specific trust dimensions to understand which type of trust better predicts team 

outcomes. 

Second, results of this study show that only trust in one’s teammate increased satisfaction 

with the team. Trust in robots did not lead to a more a satisfying team experience. This 

seems to imply that participants could clearly differentiate between the two trusting 

relationships. One leads to the better performance and the other leads to the better team 
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experience. This could be explained by the fact that unlike robots, their human teammates 

could reciprocate feelings of trust back when fulfilling team task involving robots. This 

reciprocation may explain why trust in humans can increase satisfaction while trust in 

robots did not. If so, it would be important to conduct future studies with robots that had 

the ability to at least simulate reciprocal feelings of trust back to their operators. 

Lastly, this study discovered that different mechanisms may be needed to facilitate team 

trust in humans and trust between humans and their robots. For example, in this study, 

robot-building increased trust in robots but not trust between teammates. Team 

identification alone increased trust between teammates but not toward robots. Team 

identification only increased trust in robots only when combined with robot-building. 

When you consider the potential time and cost associated with employing multiple 

mechanisms to promote each one separately, identifying strong mechanisms that promote 

both is likely to save money and time. Although I found some overlap between the factors 

that facilitate trust in robots and trust in teammates, more research is needed to fully 

identify factors that can achieve both. Taken together, this study asserts that trust is 

important to the success of teams working with robots and that promoting trust in such 

teams should be approached by distinguishing when trying to promote team trust in robots 

versus team trust in humans. 

2.6.3 Practical Contributions 

In terms of potential implications for design, the findings in this study suggest that team 

members should be more involved in developing and manufacturing their robots. The 
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greater involvement can lead to higher levels of trust toward their robots and ultimately 

better performance. The potential is growing for people to become more involved in the 

design and assembly of robots. New ways of manufacturing are emerging —including 

rapid prototyping and the use of 3-D printing — that provide more opportunities for team 

members to be involved. Furthermore, the literature on maker cultures and practice offers 

rich insights into the benefits of democratizing design and manufacturing processes 

(Tanenbaum, Williams, Desjardins, & Tanenbaum, 2013). 

In addition, the results from this study indicate that designers should consider designing 

robots that can visually fit in with the entire team to facilitate team identification among 

their operators. Visual aspects of robots such as exterior casing and logos have the 

potential to promote trust along with satisfaction in the humans who use those robots. As a 

result, robot designers might have to work closely with designers of human uniforms, 

which are often tied to safety requirements. For instance, safety uniforms of humans can be 

designed by incorporating logos and color schemes of robot design. 

2.6.4 Limitations 

The present study has several limitations. First, I examined only one type of robot. These 

robots were not autonomous but instead controlled by their human operators. However, 

there are robots in varying degrees of autonomy and intelligence, which have been used in 

teams in different areas. As such, more research is needed to understand if the results can 

be generalized to other types of robots. Second, I examined one particular type of task. 

There are many other types of task more or less interdependent and more or less complex 
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than others. Both the level of task interdependency and complexity could have important 

implications for the results of this study. Finally, like all experimental studies this study 

was conducted in a controlled laboratory setting and lasted for an hour. The results of this 

study could be complemented with additional field studies that are normally conducted 

over a longer period. 

2.7 CONCLUSION OF CHAPTER 2 

Results of the study in this chapter suggest that team trust in robots and team trust in 

humans were promoted by different antecedents and had impacts on different outcomes. 

Robot-building enhanced team trust in robots and but not team trust in humans. Team 

identification led to more team trust in humans but not team trust in robots. Team trust in 

robots increased team performance, while team trust in humans increased satisfaction. 

Results of the study in this chapter demonstrate that we can enhance team performance in 

teams working with robots by promoting team trust in robots and enhance satisfaction by 

promoting team trust in humans.
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CHAPTER 3 

MOTIVATIONAL PROCESS: 

TEAM POTENCY3 

 

 

 

3.1 INTRODUCTION 

Teamwork with technology has become more prevalent throughout society. Technology-

supported teams — teams that rely primarily on technology to perform their work — have 

now become the norm in many organizations (Robert, 2013). In fact, it is often difficult to 

imagine teamwork without the use of any type of technology. In many cases, such work 

requires individuals within teams to employ a technology to accomplish their work on 

behalf of the team (Fuller, Hardin, & Davison, 2006). The success of these teams is often 

predicated on the performance of their team members (Alnuaimi, Robert, & Maruping, 

2010). Examining the factors that promote individual performance in these teams is critical 

                                                 

3 The work presented in this chapter was mainly conducted by me, but benefited from significant contributions from 

Lionel P. Robert and Teng Ye. This work has not been published at a peer-reviewed outlet yet. 
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to comprehending the factors that facilitate team performance (Robert, 2013). Therefore, in 

this paper, I focus on individual rather than team performance.   

Team potency has long been recognized as a critical facilitator of the performance of 

technology-supported teams (Fuller et al., 2006), yet many questions regarding its impact 

remain unresolved. Guzzo, Yost, Campbell, and Shea (1993) were among the first authors 

to coin the term “team potency.” Team potency is the belief that individuals have in their 

team’s ability to generally be successful (Guzzo et al., 1993). Despite the importance of 

team potency, much remains to be learned about the nature and impact it has on the 

conditions under which it might be beneficial or problematic (Monteiro & Vieira, 2016). 

The literature on team diversity suggests that the degree of diversity within the team might 

be one such condition to examine. Team diversity — the differences among team members 

on a particular attribute — is often vital to understanding the performance of individuals 

within teams (Van Dick, Van Knippenberg, Hägele, Guillaume, & Brodbeck, 2008). 

Nevertheless, I found no studies examining the potential moderating role of team diversity 

on the impact of team potency on team members’ individual performance.  

Our lack of knowledge on this topic is problematic for several reasons. First, theoretically 

it is not altogether clear whether team potency always enhances performance in teams. For 

example, research on social loafing has shown that individuals tend to put forth less effort 

when they believe their team as a whole can still perform well in spite of their effort 

reduction (Alnuaimi et al., 2010). Second, team diversity can also decrease individual 

performance within technology-supported teams by undermining the effort individuals put 

forth on behalf of their team (Giambatista & Bhappu, 2010; Hütter & Diehl, 2011). Given 

this, the importance of team potency on individual performance likely depends on team 
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diversity. Therefore, I argue that team diversity has the potential to be an important 

moderator of the impact of team potency on individual performance in teams.  

To determine whether team diversity influences the impact of team potency, in this study, I 

examine teams employing robots. Robots are fast becoming a widely used technology 

within teams (Robert & You, 2014). In most cases, robots are not fully autonomous but are 

instead operated by humans (Shah et al., 2011; Zawieska & Duffy, 2014). In these teams, 

each individual participant uses a remote-control robot to perform individual team tasks. 

From a practical standpoint, robot operators offer a distinct context to examine the 

relationship between team potency and team diversity. A plethora of research has looked at 

the link between individual factors and the performance of robot operators (Robert & You, 

2014). Yet, the role of team factors like team potency and team diversity remain largely 

ignored. From an academic standpoint, the study of individuals employing technology 

within teams is a major inquiry for both information science and information systems 

scholars. Yet, the study of robots and the individuals who employ them remains relatively 

unexamined in both research communities. This is disappointing because not only are 

robots expected to be involved in 30‒45% of all work in the United States by 2025 (Sirkin, 

Zinser, & Rose, 2015), scholars in both areas have the potential to provide theoretical 

insights on the topic.  

Given these gaps in the literature and the importance of team potency, I seek to understand 

whether team ethnic diversity moderates the impact of team potency on the individual 

performance and perceptions of viability. Viability is defined as an individual’s 

willingness to remain a member of the team and is an important predictor of future 

performance (Bell & Marentette, 2011). To empirically test this research model, I 
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conducted an experimental study with 60 individuals in 30 teams using robots, each team 

consisting of two robots and two humans. Individual robot operators performed a task by 

using their remote-control robot. To manipulate team potency, I gave 15 teams and 30 

robot operators team training while giving the others only individual training. In this study, 

I found that team ethnic diversity moderated the impact of team potency on robot operator 

performance. Team potency increased the individual performance of robot operators in 

ethnically diverse teams but had no effect on their performance in ethnically homogeneous 

teams. Team potency was associated with increases in viability in ethnically homogeneous 

teams but was actually associated with decreases in viability in ethnically diverse teams. 

This study contributes to theory in several ways. One, I extend the current thinking on the 

impacts of team potency on the performance of individuals working in technology-

supported teams. I accomplish this by identifying and examining an important contingency 

variable: team diversity. I provide new insights into when team potency is likely to 

facilitate or not facilitate the performance of individuals working in technology-supported 

teams. In doing so, I complement the current research on team potency in technology-

supported teams — research that has paid little or no attention to the link between team 

potency and the performance of team members in technology-supported teams (Fuller et 

al., 2006; Hardin, Fuller, & Davison, 2007; Lira, Ripoll, Peiró, & González, 2007; Lira, 

Ripoll, Peiró, & Zornoza, 2013). Yet, understanding individual members’ performance 

often leads to new insights regarding team performance (Alnuaimi et al., 2010; Hütter & 

Diehl, 2011).  

Two, this study demonstrates the potential negative effects of team potency on the viability 

of ethnically diverse technology-supported teams. Over the years, scholars have amassed 
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an impressive body of research documenting the positive effects of team potency across 

many different teams and tasks (Fuller et al., 2006; Hardin et al., 2007; Lira et al., 2013). 

Much less attention has been paid to understanding when these benefits are not likely to 

materialize, or when they are likely to have negative outcomes (Monteiro & Vieira, 2016). 

One exception, Lira et al. (2013), found that team potency had a stronger relationship with 

satisfaction and team identification in teams that relied on communication technology than 

in face-to-face teams. This study goes further by showing when team potency can actually 

harm teams. Third, this study extends the literature on team potency in technology-

supported teams to include the use of robots. Whereas prior studies on team potency in 

technology-supported teams have focused exclusively on communication technologies 

(Fuller et al., 2006; Hardin et al., 2007; Lira et al., 2007, 2013), the current research 

complements those studies by extending this research to robots. 

3.2 BACKGROUND AND RESEARCH MODEL 

3.2.1 Team Potency 

Team potency refers to team member’s collective belief about their team’s general 

capability (Guzzo et al., 1993). The concept of team potency extends from Bandura’s self-

efficacy concept (Bandura, 1986), which refers to one’s belief of their capability to 

perform well in a particular task. Team potency and team efficacy, as a collective belief of 

efficacy of one’s team, had been used interchangeably (Jung & Sosik, 2003). However, 

team potency is theoretically different from team efficacy, in that team potency refers to 

team’s capability in general no matter the task, while team efficacy and self-efficacy are 

task- and domain-specific (Collins & Parker, 2010). Since team potency is a confidence 

regardless of a particular task, the concept is viewed as a prospective evaluation of team 
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capability in the future, rather than a retrospective based on the previous experience 

(Akgün, Keskin, Byrne, & Imamoglu, 2007). 

The shared belief includes confidence that the team will successfully accomplish team 

goals and motivation to perform well in tasks (Pearce, Gallagher, & Ensley, 2002). Team 

potency, as the shared belief of capabilities of their members, is a basis of better teamwork 

among team members such as trust and communication (Howell & Shea, 2006; 

Schaubroeck, Lam, & Peng, 2011). Team potency, thus, often relates to better 

effectiveness in teams (Gully et al., 2002; Hu & Liden, 2011). Research in general shows 

that team potency is a predictor of productivity and satisfaction of team members in 

various settings (Campion, Papper, & Medsker, 1996; Gully et al., 2002). Team potency of 

software development teams was reported to increase the success of their product and 

shorten the duration of the development (Akgün et al., 2007). In addition, team potency 

has been found to increase the performance of virtual teams (Hardin, Fuller, & Valacich, 

2006). 

3.2.2 Team Ethnic Diversity 

Team ethnic diversity can be defined as the extent to which team members vary in their 

ethnic background. Ethnic diversity in teams can both increase and decrease team 

performance (Robert, 2013; Windeler, Maruping, Robert, & Riemenschneider, 2015). 

Ethnic diversity provides teams with unique information that facilitates more creative 

solutions and leads to better decisions (Giambatista & Bhappu, 2010; Shin, Kim, Lee, & 

Bian, 2012). However, ethnically diverse teams often have weaker social‒emotional bonds 

(Newell, Maruping, Riemenschneider, & Robert, 2008; Robert, 2013), have more 
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conflicts(Jehn & Bezrukova, 2010; C. Lee & Farh, 2004), and are less motivated to work 

together (Gully et al., 2002), all of which explain why ethnic diversity can sometimes lead 

to lower performance and lower satisfaction (Harrison, Price, Gavin, & Florey, 2002; 

Robert, 2013). 

This study looked at ethnic diversity for several reasons. First, ethnic diversity has been 

identified as an important predictor of performance in many types of teams across many 

settings (Jackson & Joshi, 2011 for review). Second, ethnic diversity has been used to 

explain performance in teams enabled by technology (Giambatista & Bhappu, 2010; 

Robert, 2013). Third, ethnic diversity is one of the most common types of diversity across 

many societies (Ely, Padavic, & Thomas, 2012). Finally, it is becoming more common for 

teams using robots to be ethnically diverse (Makatchev, Simmons, Sakr, & Ziadee, 2013; 

Robert & You, 2014).  

In this study, I propose a research model, in which team ethnic diversity should moderate 

the impact of team potency on individual robot-operator performance (Figure 8). 

Ethnically diverse teams often have weaker social‒emotional bonds (Newell et al., 2008; 

Robert, 2013) and are less motivated to work together (Gully et al., 2002), all of which 

explains why ethnic diversity can sometimes lead to lower performance and lower 

satisfaction (Harrison et al., 2002; Robert, 2013). However, homogeneous teams can 

develop unwarranted high levels of team confidence and believe that they are far more 

capable of accomplishing objectives than they really are (Kellett, Humphrey, & Sleeth, 

2000). Individuals tend to project positive attributes like competency onto others like them 

because it reinforces the positive perceptions they have about themselves (Whyte, 1998). 
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On the other hand, team potency is likely to lead to better performance in ethnically 

diverse teams. Members of diverse teams often believe their teammates are not as capable 

as themselves because they are different. This often results in team members believing 

their team is not capable. This in turn leads these team members to put forth less effort in 

their team activities (Choi & Kim, 1999). Consequently, performance in diverse teams falls 

short because of a lack of confidence (Ely et al., 2012). However, if diverse teams can find 

a way to overcome such issues, they should perform as well as or better than more 

homogeneous teams (Harrison et al., 2002). As such, it is very likely that when confidence 

is instilled in individuals in ethnically diverse teams they should be willing to exert more 

rather than less effort to accomplish their team objectives. Effort is a strong predictor of 

individual performance in teams (De Jong & Elfring, 2010; Fuller et al., 2006). Therefore, 

team potency should be associated with an increase in performance among individuals in 

ethnically diverse teams. Thus, I hypothesized that: 

Chapter 3-H1) When ethnic diversity is high, team potency increases individual 

performance; however, when ethnic diversity is low, team potency decreases 

individual performance. 

Team viability is both an important and relevant concept in understanding teamwork 

(Balkundi & Harrison, 2006). Team viability represents an individual’s general intention to 

either remain a member of the team or consider re-joining the team in the future (Bell & 

Marentette, 2011). Team viability is often associated with an individual’s intention to 

continue to perform well on behalf of the team (Balkundi, Barsness, & Michael, 2009). 

Therefore, team viability can be viewed as both an indication of team members’ 
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assessment of their past experience with their team and their potential performance with 

the team in the future.  

Team potency has been associated with increases in a team’s socio-emotional outcomes 

like cohesiveness and with decreases in anxiety and stress (Gil, Rico, Alcover & Barrasa, 

2005). This is because when members are more confident in their team’s ability to succeed 

they often have a more positive experience with their team members (Gibson & Earley, 

2007). Positive team experiences should increase the likelihood that individuals want to 

remain a member of the team. Therefore, team potency should be positively related to team 

viability.  

The impact of team potency on team viability should be stronger because ethnically 

diverse teams have more challenges to overcome. In general, demographic diversity among 

team members has been shown to decrease socio-emotional outcomes like team viability 

(Webber & Donahue, 2001). This is often explained by the difficulty team members in 

diverse teams have bonding with their teammates (Newell et al., 2008; Robert, 2013). 

Individuals tend to have a much more positive attitude toward teammates who are similar 

rather than dissimilar to them (Van Dick et al., 2008). This positive attitude can lead to 

team members enjoying their interactions more with others who are like them (Harrison et 

al., 2002). Team potency should be needed more in diverse teams to help individuals in 

these teams overcome their challenge. Therefore, team potency should be more important 

to helping diverse teams overcome these negative effects. When this occurs, the impact of 

team potency on team viability should be stronger. Therefore, I hypothesized that: 
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Chapter 3-H2) When ethnic diversity is high, team potency has a stronger impact 

on viability than when ethnic diversity is low. 

Taken together, it is likely that ethnic diversity plays a moderating role in technology-

supported teams by altering the impact of team potency on the performance of team 

members and viability. A theoretical research model illustrates the cross-level moderation 

effects of team ethnic diversity on outcomes of teams (Figure 8).  

 

Figure 8 Research Model 

3.3 METHOD 

3.3.1 Participants and teams 

I recruited 60 participants from a Midwestern university in the United States. A team 

consisted of two participants, each employing their own robot to accomplish a team task. 
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Participants were randomly assigned to a team to avoid creating teams with members who 

knew each other prior to the experiment. Nonetheless, to ensure this, I asked participants 

after the study whether they knew their assigned teammate. One team among the 30 teams 

indicated that teammates had known each other before the experimental session. I excluded 

this team in the analysis, which resulted in 58 individuals in 29 teams.  

The mean age was 23 years (standard deviation [SD] = 4.33 years) and 22 were male 

(37.9%). The sample consisted of 35 Asian (60.3%), 17 White (29.3%), five Black or 

African American (8.6%), and one American Indian/Alaska Native (1.7%). Among the 29 

teams in total, seventeen teams (58.6%) were ethnically diverse.  

3.3.2 Robots 

Each team member employed a LEGO Mindstorms EV3 to accomplish their part in the 

team task. These robots were modified (See Figure 9) and programmed to grasp small 

objects and were controlled with an infrared remote controller. The robots were capable of 

moving forward, backward, and side-to-side. The robots said “okay” when grasping and 

releasing objects. The robots were identical. 
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Figure 9 A Robot Used in the Experiment 

3.3.3. Experimental Manipulation 

Team training was employed as a method of manipulating team potency into two levels: 

high team potency condition and low team potency condition. Several studies have found 

that team training fosters team potency (Gibson, 2001; Gully et al., 2002). Training 

together promotes team potency by instilling a sense of confidence as a team improves 

(Wolf, Way, & Stewart, 2010). To manipulate team potency, teams in the high-team-

potency condition had team training in which both individuals practiced how to control 

their robot together in the same room. In this condition, two participants went through a 

two-minute free training for controlling the robots and two practice runs of the 

experimental task without recording their performance in the same room. By doing so, 

team members were able to see how others were performing in the practice runs and have a 

better sense of how well their teammate would perform in the main task. However, for 

teams in the low-team-potency condition, two individuals in a team were sent to two 

separate rooms to practice how to control their robot separately, without seeing the other’s 
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performance. The two team members went through the practice runs without recording 

performance separately in the separate rooms. The separation prevented them from seeing 

each other’s performance during the practice, so that they did not have the visibility and 

knowledge team member’s ability in the main task. 

3.3.4 Experimental Task 

The experimental task required team members to employ their robots to move five small 

water bottles from point A to point C as quickly as possible (see Figure 10 for the task 

course layout). The team task consisted of two parts that were sequentially connected. Part 

one required the first robot operator to move his or her water bottle from point A to point 

B. Part two required the second robot operator to move the water bottle at point B to point 

C. Both operators sequentially collaborated with each other to move five water bottles 

from point A to point C, through point B. 

 

Figure 10 Experimental Setting 
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The task was taken from prior literature (Robert Jr & You, 2015; You & Robert Jr, 2016) 

and allowed us to achieve several objectives. First, I designed the task to represent the 

typical use of robots in the context of teamwork. In many cases, operators employ robots to 

move physical objects from one point to another. Construction teams employ remote-

control robots to take down and put up structures. Second, the task was designed to be a 

collaborative, interdependent team task. Individual operators were only allowed to move 

water bottles using their robot and were not allowed to touch or move water bottles 

themselves. Therefore, one team member could not complete the task alone.  

Teams were informed that the task was a team-based competition and that team 

performance would be determined by the time it took to move all five water bottles from 

point A to point C. They were also informed that the three best-performing teams would 

receive prize money: $100 for the team with the fastest delivery time, $40 for the second-

place team, and $20 for the third-place team. Regardless of performance, all operators 

received $20 for participation. 

3.3.5 Experimental Procedure 

Participants signed up for a session using an online anonymous sign-up sheet. Participants 

did not know their teammate in advance of coming to the behavioral laboratory. 

Participants were randomly assigned to a team, and teams were randomly assigned to one 

of two conditions: individual training or team training. Participants were also unaware of 

which treatment condition they were assigned.  

Upon arrival, participants were greeted and asked to fill out a consent form. Next, they 

took a pre-questionnaire using a laptop. The pre-questionnaire included questions 
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regarding their gender, nationality, and ethnicity. Then, participants were provided with 

written instructions about the experimental procedure and task. After reading the task 

instructions, the participants watched a 3-minute video that provided a step-by-step visual 

tutorial on the experimental task. Then, they were provided with instructions on how to 

employ their robot using their remote control. After reading the instructions, they watched 

a 2-minute video tutorial on how to use the remote control.  

Next, participants were guided to another room to practice the experimental task. 

Participants assigned to the low team potency condition trained alone in separate rooms 

and were allowed to freely play with their robot individually for two minutes. Individuals 

assigned to the high team potency condition were allowed to have the two-minute training 

and practice together in the same room. Once participants finished their training based on 

their treatment condition, they were guided to another room, where they filled out the 

second questionnaire, which included questions on team potency. 

After participants finished the second questionnaire, they were guided to another room to 

perform the task. I used stopwatches to measure the performance of each individual robot 

operator. Team member 1’s performance was determined by averaging the time it took to 

move each water bottle from point A to point B. Similarly, the performance of team 

member 2 was determined by averaging the time it took to move each water bottle from 

point B to point C. the “Individual performance” portion of the “Measures” section 

provides additional details regarding the measurement of individual performance. After the 

team completed the task, participants were guided to another room to fill out the final 

questionnaire, which included questions related to team viability. After participants 

completed the final questionnaire, they were debriefed, paid, and dismissed. 
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3.3.6 Measures 

3.3.6.1 Control Variables 

3.3.6.1.1 Demographic Diversity 

I measured gender and nationality of individual operators along with their age. This was 

done because ethnic diversity is the construct of interest in this study and it was necessary 

to control for impacts of other diversity dimensions. Team gender diversity and team 

national diversity were calculated with Blau’s heterogeneity index (Blau, 1977). Blau’s H 

index has been used in research of teamwork to capture heterogeneity of teams in different 

dimensions including ethnicity (Robert, 2013).  

Blau’s index H is described as: 

𝐻 = 1 − ∑𝑝𝑖
2 

where pi is the proportion of group members in each of the I categories. Based on the 

index, the values for diversity were either “0” when two team members were in the same 

category or “0.5” when they were in different categories.  

3.3.6.1.2 Individual Robot-specific Self-efficacy 

I included additional control variables. First, I measured individual-level robot self-

efficacy to capture the degree to which individual participants believed in their ability to 

complete the task using the robot. Individual self-efficacy contributes to one’s motivation 

and performance and often influences individual performance in teamwork (Monteiro & 

Vieira, 2016). Research also shows that individual’s ability and the belief in the ability are 
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associated with individual and team performance (Gully et al., 2002). Therefore, it is 

important to control for the impacts of individual team members’ belief in their specific 

ability of using robots on their performance. The scale of individual robot self-efficacy 

consisted of seven items adapted from Compeau, Higgins, and Huff (1999) that were 

measured using a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree). One 

example of the items was “I can complete this task using this robot even if I have never 

used a robot like this before.” Another example in the index was “I can complete this task 

using this robot even if there was no one around to tell me what to do as I go.”  The 

reliability of the scale (Cronbach’s α) was 0.88. 

3.3.6.1.3 Knowledge on Relevant Technologies 

In addition, I measured each participant’s general knowledge of technology to rule out 

alternative explanations of individual skills and experience of relevant technologies and 

LEGO products. This construct was captured by summing up three self-report questions 

about relevant technology fields to robots — computer programming, robotics, and 

artificial intelligence, all measured based on a 5-point Likert scale (1 = none to 5 = 

professional). Finally, I measured each participant’s experience with LEGO products. This 

construct was measured by the sum of two items — LEGO products in general and 

Mindstorms — based on a 5-point Likert scale (1 = never to 5 = all of the time). 

3.3.6.2 Team Ethnic Diversity 

In this experiment, I defined ethnicity as the racial category participants self-reported. 

Team ethnic diversity was calculated using Blau’s heterogeneity index (Blau, 1977). This 
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is consistent with the literature on work groups in which ethnicity was used to represent 

physical differences (Giambatista & Bhappu, 2010; Harrison et al., 2002).  

3.3.6.3 Team Potency 

I measured team potency to capture the degree to which participants believed in the team’s 

general ability to perform well. The scale of general team potency consisted of seven items 

that were derived from Guzzo et al. (1993). They were measured using a 5-point Likert 

scale (1 = strongly disagree to 5 = strongly agree). The example items included “We 

believe we can succeed at most any endeavor to which we set our mind”, “Even when 

things are tough, we will perform quite well”, and “We are confident that we can perform 

effectively on many different tasks.” The reliability of the scale (Cronbach’s α) was 0.85. 

Team potency was a team-level construct obtained through individual participants by 

averaging scores of the two participants on each team. The intra-class coefficient (ICC) 

score was used to justify this aggregation. Typically scores over 0.1 provide justification 

for aggregation (Bliese, 2000). The ICC score for team potency in this study was 0.49, 

justifying the aggregation.  

3.3.6.4 Individual Performance 

I measured performance of individual operators separately by calculating the average time 

per trip for an individual robot operator to finish delivering all five of his or her water 

bottles. The performance of robot operator 1 was the average duration of his or her five 

round trips of grabbing a water bottle at point A, dropping it at point B, and returning to 

point A. Similarly, the performance of robot operator 2 was the time it took to travel the 

path B-C-B. 
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I took several additional measures to avoid spillover effects between robot operators. 

Spillover effects are the additional wait time that the second robot operator incurs from 

waiting on the first robot operator to deliver a water bottle to point B. In order to remove 

this idle time from robot operator 2’s performance, I used separate stopwatches for each 

operator. The stopwatch for the second robot operator was stopped when the robot returned 

to point B and restarted when another bottle arrived to be moved to point C.  

3.3.6.5 Viability 

Viability captures individuals’ belief in the degree to which they are willing to remain and 

to continue to perform on the team (Bell & Marentette, 2011). The scale consisted of three 

items adapted from Balkundi and Harrison (Balkundi & Harrison, 2006) and measured 

using a 6-point Likert scale (1 = strongly disagree to 6 = strongly agree). The items 

included, for example, “This team including the robots would perform well together in the 

future” and “If we were assigned to another project, I am confident that this team including 

the robots would work well together.” The reliability of the scale (Cronbach’s α) was 0.95. 

The ICC score for team viability in this study was 0.43, justifying the aggregation. 

3.4 RESULTS 

3.4.1 Manipulation Check 

Results of a t-test showed that team potency was higher in the teams that underwent team 

training (i.e. high team potency condition, M = 4.01, SD = 0.35) than the teams that did not 

(i.e. low team potency condition of individual training, M = 3.69, SD = 0.36). The 

manipulation of team potency was successful in terms of making a significant difference in 

the perception of team potency between the conditions (t(27) = 2.41, p < 0.05). 



75 

 

3.4.2 Measurement Validity 

Convergent and discriminant validity of constructs included in the research model were 

evaluated by a factor analysis. There were no cross-loadings above 0.4 between two 

constructs (Table 3). Most items loaded at the level of 0.7 or above on their construct; the 

fifth item of individual robot self-efficacy did not. This item loaded at .68 and was 

included because of the face validity of the construct. In addition, I examined correlations 

among model constructs (Table 4). All constructs’ average variance extracted (AVE) were 

above 0.50, which demonstrates convergent validity of constructs (Fornell & Larcker, 

1981). The correlations among constructs were smaller than the square root of the AVEs of 

each construct (Table 4), demonstrating discriminant validity.  

Because the model consisted of team-level and individual-level constructs, I performed a 

multilevel analysis. This multilevel analysis was conducted using the SPSS 22 mixed 

model. Model 1 is the main effect model of team potency and team ethnic diversity. Model 

2 indicates the moderation between team potency and team ethnic diversity on the 

performance of robot operators (Table 5) and viability (Table 6). 

 
Team 

Potency 

(TP) 

Individual 

Robot-

specific 

Self-efficacy 

(IRSE) 

General 

Knowledge 

of 

Technology 

(GKT) 

Previous 

LEGO 

Experience 

(PLE) 

Viability 

(VI) 

TP 1 0.77 0.10 0.15 0.02 0.01 

TP 2 0.80 0.02 0.08 0.02 0.03 

TP 3 0.81 0.01 0.11 0.27 0.07 

TP 4 0.86 0.00 0.04 0.01 0.07 

TP 5 0.90 0.03 0.03 0.06 0.21 

TP 6 0.79 0.10 0.11 0.07 0.16 
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TP 7 0.86 0.06 0.01 0.03 0.32 

IRSE 1 0.05 0.87 0.22 0.01 0.05 

IRSE 2 0.01 0.78 0.13 0.12 0.06 

IRSE 3 0.04 0.84 0.20 0.05 0.01 

IRSE 4 0.00 0.75 0.02 0.27 0.11 

IRSE 5 0.09 0.68 0.40 0.04 0.23 

IRSE 6 0.04 0.81 0.05 0.14 0.00 

IRSE 7 0.15 0.77 0.04 0.08 0.15 

GKT 1 0.00 0.12 0.88 0.11 0.01 

GKT 1 0.14 0.23 0.90 0.11 0.00 

GKT 1 0.16 0.18 0.88 0.04 0.00 

PLE 1 0.05 0.17 0.16 0.76 0.14 

PLE 2 0.03 0.01 0.17 0.84 0.21 

VI 1 0.13 0.03 0.04 0.10 0.89 

VI 2 0.12 0.04 0.00 0.13 0.92 

VI 3 0.14 0.06 0.05 0.17 0.86 

Note: Values in bold indicate items loading at the 0.7 or above on each of their 

constructs. 

Extraction method was Principal Component Analysis using Varimax with Kaiser 

Normalization as a rotation method. 

Table 3 Factor Loadings 

 Mean SD TP IRSE GKT PLE VI IP 

Team Potency (TP) 3.86 0.38 0.83      

Individual Robot-specific 

Self-efficacy (IRSE) 
3.96 0.70 -0.09 0.79     

General Knowledge of 

Technology (GKT) 
7.14 2.94 -0.23 0.35** 0.89    

Previous LEGO Experience 

(PLE) 
3.67 1.10 0.02 -0.13 0.03 0.80   

Team Viability (VI) 4.66 0.81 0.06 0.02 -0.01 -0.07 0.89  

Individual Performance (IP) 50.19 12.11 -0.04 -0.06 -0.12 -0.25 0.18 NA 

**p < 0.01; N = 59; Values on the diagonals represent the square root of the AVE for each 

factor.  

Table 4 Descriptive Statistics and Correlations among Constructs 
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3.4.3 Test of Hypotheses 

Hypothesis 1, which posited that team ethnic diversity moderates the impact of team 

potency on the performance of individual robot operators, was supported (β = -5.84, p < 

0.05). Results of Model 2 in Table 5 explained 76.42% of the individual performance of 

robot operators. As seen in Figure 11, team potency increases individual performance of 

robot operators when teams are ethnically diverse but makes no difference in individual 

performance when teams are ethnically homogeneous. The performance in this study was 

measured by recording time to complete the task; shorter time indicates better 

performance. 

Independent Variable 
Individual Robot Operator Performance 

Model 1  Model 2  Model 3 

 

Control Variables 

Age -0.05  -0.04  0.00 

Team Gender Diversity -1.36  -2.26  -2.10 

Team Nationality Diversity 1.23  1.41  3.32 

Individual Robot-specific Self-

efficacy 
-1.26  -1.15  -0.83 

General Knowledge of 

Technology 
-0.46  -0.50  -0.60 

Previous LEGO Experience -1.36  -1.31  -1.45 

      

Main Effects 

Team Potency   -2.11  -6.64* 

Team Ethnic Diversity   -0.39  -0.07 

      

Interaction Effect 

Team Potency × Team Ethnic 

Diversity 
    -5.84* 

 
-2 Restricted Log Likelihood 411.97  404.11  396.74 

df Change 6  2  1 
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R1
2 11.11  11.56  76.42 

Change in R1
2   0.45  64.86 

*: p < 0.05; Team Gender Diversity, Team National Diversity, Team Potency, and Team 

Ethnic Diversity are standardized. 

Table 5 Results of Multilevel Analysis for Performance of Individual Robot Operators 

 

Figure 11 The Moderation Effect Between Team Potency and Ethnic Diversity on Performance of Individual 

Robot Operators 

Hypothesis 2 posited that team ethnic diversity moderates the impact of team potency on 

viability. Team viability was measured at the team level, which required the use of 

ordinary least squares regression analysis at the team level, including control variables 

based on the model. The results provided evidence of a moderation effect (β = -0.29, p = 

0.05) but in the opposite direction of the hypothesis (Table 6). That is, team potency 

decreased rather than increased viability in ethnically diverse teams. 
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Independent Variable 
Viability 

Model 1 Model 2 Model 3 

 

Control Variables 

Team Age 0.00 0.00 0.02 

Team Gender Diversity -0.03 -0.01 -0.02 

Team Nationality Diversity -0.18 -0.17 -0.15 

Team Robot-specific Self-efficacy 0.10 0.09 0.06 

Team Knowledge of Technology -0.05 -0.05 -0.10 

Team Previous LEGO Experience -0.11 -0.13 -0.12 

    

Main Effects 

Team Potency  0.04 -0.20 

Team Ethnic Diversity  -0.04 -0.06 

    

Interaction Effect 

Team Potency × Team Ethnic 

Diversity 
  -0.29 

 
R2 0.14 0.14 0.30 

Change in R2  0.01 0.12 

F 0.57 0.67 4.35 

*: p < 0.05; Team Gender Diversity, Team National Diversity, Team Potency, and Team 

Ethnic Diversity are standardized. 

Table 6 Results for Viability 

3.5 DISCUSSION 

In this research, I sought to understand whether team ethnic diversity can moderate the 

impact of team potency on the performance and perceptions of viability team members. 

Results from the laboratory experiment provide two overarching findings. One, team 

potency increased individual performance in ethnically diverse teams but had no effect on 

the performance of individuals in ethnically homogeneous teams. Team potency decreased 
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robot operators’ perceptions of viability in ethnically diverse teams but increased it in 

ethnically homogeneous teams. Below, I discuss the implications of these findings. 

3.5.1 Implications for Research 

This study has several implications for research. First, this study contributes to theory on 

team potency by specifically identifying and examining team diversity as an important 

contingency variable. Incorporating team diversity in the nomological network of team 

potency is an important contribution because, as the results show, the effect of team 

potency on individual performance varies greatly by the level of team diversity. Team 

potency facilitated the performance of individuals in ethnically diverse teams but had little 

impact on the performance of individuals in homogeneous teams. This may imply that the 

effects of team potency on individual performance are directly tied to the diversity of the 

team.  

I should also note that I did not find that team potency led to negative effects in ethnically 

homogeneous teams. One explanation is that homogeneous teams did not need to believe 

in their team to perform well. Their performance may have been driven by the need to 

maintain a distinctive team identity with their similar teammate. The need to maintain a 

distinctive team identity can be a source of motivation itself that encourages individuals to 

put forth greater effort on behalf of their team (Robert, 2013). As such, team potency 

would have little effect on performance in these teams. Future research is needed to further 

explore the potential relationship between factors like distinctive team identity and team 

potency. 
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Two, contrary to the exceptions team potency was associated with decreases in the 

perceptions of viability and not increases. Individuals in ethnically diverse teams were less 

likely to want to remain a member of their team when team potency was high. This finding 

is contrary to what I expected and much of the prior literature. Several studies have found 

that team potency was positively related to satisfaction a similar outcome (Lester, Meglino, 

& Korsgaard, 2002; Lira et al., 2007).  

From a theoretical perspective, the very same contingency variable — team diversity — 

that enhances individual performance also seems responsible for creating the conditions 

that lead to the negative effects of team potency on viability. From a practical perspective, 

there may be tradeoffs between facilitating more viability versus promoting performance. 

Team potency may come at a cost to the relationships between diverse others. This 

becomes apparent when individuals in ethnically diverse teams with low team potency had 

the highest level of viability (see Figure 12). These represent the individuals in the 

ethnically diverse teams who did not have the training. Apparently, the interaction needed 

to promote team potency during team training may have led to decreases in viability. 

 

Figure 12 The moderation effect between team potency and ethnic diversity on viability 
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Finally, this study contributes to the literature on technology-supported teams by 

examining the employment of robots. Unlike previous studies that focus on 

communication technology, I focused instead on the use of robots because there are many 

situations where robot operators work in team settings (H. Jones & Hinds, 2002; Yanco & 

Drury, 2004). Therefore, it is vital for researchers to consider the use of robots as a new 

team technology when identifying new theoretical mechanisms that explain the 

performance of technology support teams. To that end, I believe information science and 

information systems scholars can contribute to this pursuit. I hope this study can help both 

sets of scholars to begin to engage in this endeavor. 

3.5.2 Implications for Practice 

This study has implications for practice. Teams and their managers should understand that 

promoting team potency does not always lead to better performance. The results show that 

although team potency increased individual performance in ethnically diverse teams, it had 

no positive effects on performance in ethnically homogeneous teams. This informs 

managers of teams using robots to be aware of any hubris or overconfidence, especially 

when operators are from different backgrounds. In such cases, teams using robots in 

dangerous situations with high stakes might be wary of heightening team potency (Groom 

& Nass, 2007). For instance, many teams using robots are using robots in extreme 

situations, such as special weapons and tactics (SWAT) teams and explosive ordnance 

disposal (EOD) teams (Carpenter, 2013; Dole et al., 2013; H. Jones & Hinds, 2002). 

Because individual performance can be directly related to human life and safety, 

overconfidence through heightened team potency should be avoided to maintain high 

performance of individual operators. 
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3.5.3 Limitations and Future Research 

This study has several limitations. First, I employed an experimental study in a controlled 

environment. Although the goal was to increase the internal validity of the study, I 

acknowledge the limitations with external validity. Future research can be conducted in a 

field environment to complement the research. Second, teams in this study consisted of 

two people and two robots. Teams using robots in reality vary in size. Future research 

should examine the relationship between team potency and performance of operators in 

teams of different sizes. Third, this study looked at one type of diversity — ethnicity. 

However, there are different types of diversity such as gender, age, and education level. 

The moderating impacts of diversity may differ by the type of diversity. Future research 

can be conducted to examine this issue by varying the type of team diversity.  

3.6 CONCLUSION OF CHAPTER 3 

Although team potency has been shown to be a strong predictor of teamwork, we know 

very little about the contingency variables that influence its impact. This chapter reports 

that team diversity is such a variable. The study in this chapter was conducted with 

individuals working with robots. Given the growing number of teams using robots, results 

of this study are important for both research and practice.
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CHAPTER 4 

COGNITIVE PROCESS: 

SIMILARITY4 

 

 

 

4.1 INTRODUCTION 

Robots are increasingly deployed in workplaces where they are used to collaborate with 

humans in many areas. NASA has developed a humanoid robot that is capable of fulfilling 

space missions autonomously in collaboration with human astronauts (Nichols, 2016). 

Logistics and manufacturing fields have pioneered ways to employ intelligent robots in 

their assembly lines, fulfillment of logistics, and product inspections (Knight, 2015). These 

robots are designed to perform mundane tasks involved in human jobs and are often treated 

as colleagues working in proximity with human workers. Despite the rapid increase in the 

                                                 

4 The work presented in this chapter was mainly conducted by me, but significantly benefited from Lionel P. Robert’s 

contributions. This work has not been published at a peer-reviewed outlet yet. 
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numbers of robots working with humans, little is known about what contributes to the 

development of human-robot teams and what leads people to work with robots willingly.  

Understanding what leads teams to work with robots is important, but not simple. On the 

one hand, as robots are being deployed to many areas to work with humans, people have 

begun to welcome robots into their workplace and to take advantage of robotic teammates 

(Dautenhahn et al., 2005). This is because robots are often more efficient and capable of 

enduring more physically demanding and repetitive tasks than humans. On the other hand, 

there is also a growing concern that robots are taking jobs away from people (Takayama, 

Ju, & Nass, 2008). This concern has already started to prevail among blue collar workers 

whose jobs involve physical labor (Miller, 2016). The fear of robots as job-killers may 

engender negative attitudes toward robots, which worsen the interaction and performance 

of teams working with robots (Nomura et al., 2006). 

To understand attitudes toward robots, I turn to the similarity between an individual and a 

robot. The degree of similarity has been a significant predictor of quality and outcomes in 

interpersonal relationships (Byrne, 1961; Singh et al., 2015). The similarity between 

individuals and their team members often determines how people perceive others, and thus 

has been a good predictor of work outcomes in dyads and other teams (Goldberg, 2005; 

Harrison & Klein, 2007). Based on self-categorization theory, individuals tend to feel more 

attracted to and have more positive attitudes toward people whom they perceive to be 

similar to themselves (Haslam, Powell, & Turner, 2000; Van Dick et al., 2008). In 

addition, research on teamwork and diversity has found that similarity among individuals 

can result in positive collaboration outcomes and attitudes toward one another (Ely et al., 

2012). For instance, similarity has been known to predict individuals’ trusting intentions 
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and trusting behaviors not only toward other team members but also toward technologies, 

including e-commerce websites (Gefen, 2000; Luhmann, 2000; McKnight, Choudhury, & 

Kacmar, 2002; Singh et al., 2015). 

The effects of similarity have also been used to explain individuals’ interaction with robots 

(Andrist, Mutlu, & Tapus, 2015). Research shows that individuals report higher levels of 

liking and emotional attachment toward service robots and domestic robotic pets that 

manifest a similar personality to theirs (K. M. Lee, Peng, Jin, & Yan, 2006; Woods et al., 

2007). However, these findings cannot inform teams that use and work with robots for 

collaboration. Specifically, there is a lack of evidence regarding what dimensions of 

similarity might be at play, as well as their subsequent effects on team outcomes in 

collaboration between a robot and an individual. Moreover, examining one dimension of 

similarity, such as robots’ personality, can hardly inform how similarity influences 

teamwork with robots when there are variations in more than one characteristic (Tsui, 

Egan, & O’Reilly III, 1992). Therefore, more attention should be paid to how various 

dimensions of similarity are associated with an individual’s perception of a robot and 

attitude toward working with the robot. 

In this study, I investigate two dimensions of similarity between a robot and an individual: 

surface-level similarity and deep-level similarity. Surface-level similarity refers to 

characteristics that are explicitly noticeable and visibly identifiable, such as gender, age, 

and ethnicity (Fisher, Bell, Dierdorff, & Belohlav, 2012). Most robots deployed in our 

everyday lives are physically embodied and thus manifest some human attributes (K. M. 

Lee, Jung, et al., 2006). The physical embodiment of the robot leads people to perceive 

similarity in terms of several attributes (Rae, Takayama, & Mutlu, 2013). For instance, 
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gender, as one aspect at the surface level, is one of the most salient and robust 

characteristics that yield a perception of similarity (Tay, Jung, & Park, 2014; Van 

Knippenberg, De Dreu, & Homan, 2004). 

On the other hand, deep-level similarity is related to similarity characteristics that are not 

often visible and take time and interaction to notice, such as personality, value, knowledge, 

and attitudes (Harrison et al., 2002). Research shows that people can perceive personality 

and attitudes in robots based even on simple conversational cues and behaviors (K. M. Lee, 

Peng, et al., 2006; Woods et al., 2007). Because robots are becoming more intelligent and 

more capable of communicating with people in natural ways, it will become commonplace 

for people to tend to believe that robots can manifest values, opinions, and personality 

traits (Takayama et al., 2008). This warrants an investigation of the impacts of deep-level 

similarity as well as surface-level similarity. Specifically, this study employs a situation 

where a robot has the same or a different opinion as a person in a collaborative context, a 

type of deep-level similarity. 

However, the effects of similarity do not always result in expected outcomes, and rather 

vary by circumstance and characteristics of tasks (Van Knippenberg et al., 2004). Research 

has shown that the effects of similarity are moderated by task characteristics such as team 

process and interdependence among team members (Mohammed & Angell, 2004; 

Schippers, Den Hartog, Koopman, & Wienk, 2003). Task characteristics also moderate 

whether individual attributes such as gender influence attitudes toward robots (Mutlu, 

Osman, Forlizzi, Hodgins, & Kiesler, 2006). These findings suggest that although 

similarity is assumed to yield positive perceptions of robots, the effects may be altered 

based on circumstances where teamwork with a robot takes place. Because robots are 
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deployed to work with humans on many different types of tasks, it is becoming more 

important to identify boundary conditions that influence the impacts of similarity with 

robots on attitudinal and behavioral outcomes toward robots. Therefore, the goal of this 

study is to examine a moderator of the relationship between similarity and the relationship 

with a robot in the context of working with that robot. 

One potential moderator is a risk of danger. Tasks where robots are deployed to work with 

humans often involve physical labor and danger (De Santis, Siciliano, De Luca, & Bicchi, 

2008; J. Kim et al., 2015). Perceptions of risk alter cognitive processes and perceptions of 

people and technology (Colquitt, Scott, & LePine, 2007; Gefen, 2000). Specifically, it is 

possible that favorable perceptions of a robot based on similarity are linked to attitudes 

toward that robot only in low-stakes situations. Given that robots are adopted in a wide 

range of teamwork, from service to life-saving missions, it is important to understand when 

teams can benefit from similarity to improve teamwork. 

As a result, I seek to understand how surface-level similarity and deep-level similarity 

influence individuals’ perceptions of a robot and subsequent attitudes toward working with 

that robot. I also investigate how the impacts of surface-level and deep-level similarity are 

altered by a situational moderator: risk of danger in a human-robot collaborative task. 

To accomplish this, I conducted an online experiment using Amazon Mechanical Turk. 

The experiment was a 2 (surface-level similarity: same gender vs. different gender) x 2 

(deep-level similarity: same work style vs. different work style) x 2 (risk of danger: high 

vs. low) between-subjects design. In this experiment, individual participants were 

randomly assigned to one of eight conditions and presented with a scenario in which they 
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were asked to imagine performing a collaborative task with an intelligent robot. This study 

contributes to the literature by showing that impacts of different dimensions of similarity 

on trust in and acceptance of robots can be contingent upon the risk of danger in human-

robot collaboration. Results provide theoretical and practical implications for interaction 

and formation of human-robot teams. 

4.2 THEORETICAL BACKGROUND 

4.2.1 Similarity and Diversity in Work Teams 

Teams consist of people from different backgrounds and characteristics. Similarity with 

others is one of the robust social cues that help shape attraction and attitudes toward other 

team members and spark motivation to engage in teamwork (Montoya, Horton, & 

Kirchner, 2008). Thus, whether team members are similar to one another often determines 

the quality of their interaction and thus the outcomes of teamwork (Harrison, Price, & Bell, 

1998; Van Knippenberg et al., 2004). Therefore, similarity (and diversity) among team 

members has been viewed as an important construct in explaining how teams work (Tsui 

& O’Reilly, 1989; Van der Vegt & Van de Vliert, 2005). 

Individuals in teams make judgments regarding the degree to which they are different from 

or similar to other team members. Diversity in teams thus refers to differences among 

individuals on any attributes including age, gender, ethnicity, educational background, and 

knowledge (Dahlin, Weingart, & Hinds, 2005; Van Knippenberg et al., 2004). In this 

sense, diversity can be conceptualized as the distribution of similarity or difference among 

team members regarding team members’ attributes (Harrison & Klein, 2007; Kearney, 

Gebert, & Voelpel, 2009).  
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Among the almost infinite number of diversity dimensions, scholars have focused on the 

most visible and observable attributes, including age, gender, and ethnicity. These 

dimensions constitute surface-level diversity (Harrison et al., 2002). Characteristics of 

surface-level diversity are typically associated with physical appearance, biologically 

immutable, and immediately observable and measurable, so that they serve as the most 

salient dimensions and are agreed upon across team members (Harrison et al., 1998). These 

dimensions are also referred to as social category dimensions (Van Knippenberg et al., 

2004).  

Social categorization theory accounts for the general positive links between similarity in 

surface-level dimensions and attitudes and perceptions of others (Chatman & Spataro, 

2005). Specifically, individuals assume that the referent other would have similar beliefs 

and characteristics based on observable attributes, and thus expect smoother and more 

comfortable interactions with similar others than with others who do not share the same 

attributes (Hogg & Terry, 2000; Turner, Hogg, Oakes, Reicher, & Wetherell, 1987). For 

instance, age difference is negatively related to mutual liking between superiors and 

subordinates (Tsui & O'Reilly, 1989). Timmerman (2000) showed that both age and racial 

diversity were negatively associated with team performance.  

Similarity in demographic characteristics leads to better liking (Goldberg, 2005), greater 

trust (Jarvenpaa et al., 2004; Spector & Jones, 2004; Williams, 2001), stronger group 

cohesion (C. Lee & Farh, 2004; Webber & Donahue, 2001), and fewer conflicts (Jehn, 

Northcraft, & Neale, 1999; J. Li & Hambrick, 2005; Pelled, Eisenhardt, & Xin, 1999). In 

addition to its effects on perceptions of other team members, demographic similarity has 

been found to increase the frequency of communication and contact among team members 
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(Tsui & O'Reilly, 1989). Research also demonstrates powerful effects of similarity on team 

performance (Horwitz & Horwitz, 2007; Horwitz, 2005; Pelled et al., 1999). 

On the other hand, diversity can appear in invisible or less observable attributes. As 

opposed to surface-level diversity, deep-level diversity dimensions include differences 

among individual team members’ attitudes, beliefs, and values (Harrison et al., 1998). 

Some scholars add skills, organizational commitment, opinions, and knowledge (Jackson 

& Joshi, 2011). The deep-level diversity dimensions are distinct from the surface-level 

dimensions because they are “subject to construal and more mutable” (Jackson, May, & 

Whitney, 1995, p. 217) and thus often require time and interaction to detect (Bell, 2007). 

Deep-level similarity is found to be positive in interpersonal relationships. For instance, in 

superior-subordinate relationships, research consistently shows that attitudinal and value 

similarity predict higher ratings of subordinate performance (Harrison et al., 1998; Tepper, 

Moss, & Duffy, 2011). Also, attitudinal similarity predicts attraction and friendship 

(McGrath, 1984). In general, deep-level similarity demonstrates similar benefits to surface-

level similarity on communication frequency and reduction of conflict (Harrison et al., 

1998, 2002). 

Research has also shown that teams can benefit from deep-level diversity rather than 

similarity. For instance, De Dreu and West (2001) found that diverse teams can make 

better decisions and innovate despite encountering a few conflicts in the process. In 

addition, Shin et al. (2012) reported that deep-level diversity increases individual team 

members’ creativity when their creative self-efficacy is high. Further, van Knippenberg 
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and colleagues (2004) argue that teams with diverse attitudes and skills can be exposed to 

diverging and innovative perspectives, which can lead to creative and novel solutions. 

Despite the positive effects of similarity in teams, research has demonstrated that the 

implications of diversity are not always uniform; rather they are conflicting — mere 

difference or similarity per se does not explain benefits or harms to team functioning 

(Wegge, Roth, Neubach, Schmidt, & Kanfer, 2008). This is because individual perceptions 

of similarity or difference to the referent other are based on different dimensions of 

similarity in different circumstances (Harrison et al., 1998).  

Acknowledging the complex contingency of diversity in teams, scholars have emphasized 

the importance of moderating variables in examining the effects of surface- and deep-level 

diversity on team outcomes (Kearney et al., 2009; Van Dick et al., 2008). For instance, 

time can reduce the significance of effects of surface-level diversity and increase the 

importance of deep-level diversity for team cohesion (Harrison et al., 1998) and 

performance (Harrison et al., 2002). Mohammed and Angell (2004) reported a moderation 

effect of team orientation, such that the negative link between surface-level diversity and 

conflict was reduced with high levels of team orientation in teams. Also, Kearney et al. 

(2009) found that high levels of a team need for cognition provided a circumstance in 

which both surface- and deep-level diversity increased team identification and 

performance. 

4.2.2 Similarity in Technologies and Robots 

The implications of similarity have been examined in interactions with technologies. 

Specifically, studies in this stream demonstrate that principles regarding similarity, such as 



93 

 

similarity leading to attraction, can hold true in interactions between technologies and 

humans (Reeves & Nass, 1996). For example, matching personality with a computer-

synthesized voice increased attraction toward the computer and social presence (K. M. Lee 

& Nass, 2003; Nass & Lee, 2001). Also, introverted individuals performed better and 

completed a task faster when using computer software that conveyed an introvert 

personality (Richter & Salvendy, 1995). 

Scholars who focused on avatars have demonstrated the effects of surface-level similarity. 

For instance, van der Land, Schouten, Feldberg, Huysman, and van den Hooff (2015) 

recently showed that similarity between team members and their avatars increased team 

performance of virtual teams that used avatars as a communication medium. This finding 

is consistent with previous studies on avatar-user similarity, which demonstrated that 

similar-looking avatars promote more positive virtual experiences (You & Sundar, 2013), 

higher levels of engagement and task involvement (Van der Land, Schouten, van den 

Hooff, & Feldberg, 2011), more confidence (Bailenson, Blascovich, & Guadagno, 2008), 

and greater emotional attachment and intention to use them (Suh et al., 2011).  

Although studies on avatar-user similarity have found positive effects in teams using 

avatars, the implications cannot be applied to teams using different technologies such as 

robots. Most of these studies viewed an avatar as a user’s vicarious representation for 

communicating with other team members (You & Sundar, 2013). This suggests that 

findings from these studies do not necessarily hold true in teams working with robots, 

which often manifest physical actions and agency without representing their user’s 

identity. 
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Similarity has also been central to understanding interaction with robots (F. Eyssel & 

Kuchenbrandt, 2011, 2012). Several studies have shown evidence of group membership in 

relationships between an individual and a robot based on similarity with robots 

(Kuchenbrandt, Eyssel, Bobinger, & Neufeld, 2013). For instance, Eyssel and 

Kuchenbrandt (2012) found that people rated robots manufactured in their home country 

more positively and as more humanlike. Another study by Eyssel and Loughnan (2013) 

showed that in-group bias could be strengthened by similarity with a robot’s projected 

gender and ethnicity. 

Scholars in human-robot interaction have also emphasized deep-level similarity (Nakajima 

et al., 2003). For instance, Bernier and Scassellati (2010) demonstrated that robots that 

express the same preference as their operators are rated as friendlier. Personality is another 

construct that has received attention from scholars. For instance, Woods, Dautenhahn, 

Kaouri, Boekhorst, and Koay (2005) showed that individuals tended to perceive more 

similarity in personality on the extroversion-introversion dimension compared to other 

dimensions such as neuroticism and agreeableness. Also, Andrist et al. (2015) found that 

users whose assistive robots had personalities matched to theirs reported a higher level of 

motivation to perform a repetitive task. Tapus, Ţăpuş, and Matarić (2008) also found that 

user-robot personality match led users to spend more time and engage longer with the 

robot. However, Lee et al. (2006) reported complementary effects between the user and 

robot personality, with introvert users preferring extrovert robots to introvert robots. 

Through the literature review, I identified several trends. First, no study has examined both 

the surface- and the deep-level similarity dimensions. Robots have bodies and manifest 

different attributes at the same time. The physical embodiment of robots manifests more 
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than physical and visible humanlike attributes; for example, the appearance and voice of a 

robot elicit gender perceptions (Wainer et al., 2007). Robots’ behaviors and intelligence 

are also known to lead people to perceive personality and values in the robot (Tapus, 

Ţăpuş, & Matarić, 2008). Thus, examining only one aspect of similarity can limit our 

understanding of how similarity influences perceptions of robots. It is important to 

investigate both surface- and deep-level similarity at the same time.  

The second trend is that research has rarely focused on situations where humans and robots 

collaborate with each other as a team. Most studies view similarity with robots as a 

facilitator of interaction with a service robot or a domestic robotic pet (F. Eyssel, 

Kuchenbrandt, Hegel, & De Ruiter, 2012; K. M. Lee, Peng, et al., 2006; Woods et al., 

2005). The ultimate goals of these studies were to establish stronger emotional 

relationships and to prolong the use of robots (Koay, Syrdal, Walters, & Dautenhahn, 

2007), rather than to improve work processes and to lead to the development of teamwork 

with robots. Therefore, it is necessary to examine the effects of similarity with robots in a 

team context where humans work with robots. 

Finally, moderators are hardly identified. Previous research on similarity in teams suggests 

that moderators are essential to understanding the effects of similarity by addressing 

different team contingencies (Kearney et al., 2009; Mohammed & Angell, 2004). 

However, almost no study has examined how similarity effects can be altered by the 

specific circumstances of teams working with robots. Because robots are being deployed to 

different team tasks and environments, examination of the interplay among multiple 

similarity dimensions with the presence of a moderator is needed to form better 

relationships with robots in teams. 
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4.3 RESEARCH MODEL AND HYPOTHESES 

Based on the literature review, I propose a research model in which the surface-level and 

deep-level similarity between a robot and an individual increase trust in the robot, intention 

to work with the robot, and intention to replace a human teammate with the robot. The 

research model also illustrates that the links among trust, work intention, and replacement 

intention are moderated by the risk of danger in the collaborative task (Figure 13). The 

research model is designed to enhance our understanding of the effects of similarity as a 

leading factor in promoting individuals’ willingness to work with robots in a team. 

 

Figure 13 Proposed research model 

The first hypothesis proposes that higher levels of similarity between an individual and a 

robot will foster trust in the robot. Trust is defined as one’s volitional intention to be 

vulnerable to others’ behaviors (Mayer et al., 1995). Trust has been considered essential to 

understanding interpersonal relationships and interaction with technologies (Benbasat & 
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Wang, 2005; Lankton et al., 2014; Robert et al., 2009) because trust provides assurance of 

good qualities in interaction between a person and a technology. For instance, trust in a 

person is a composite of beliefs regarding the benevolence, ability, and integrity of the 

person (Mayer et al., 1995), while trust in technology is understood as a composite of 

utility, functionality, and reliability (Mcknight et al., 2011). Trust in robots has been 

viewed to include both interpersonal and technological trust due to robots’ physical 

embodiment, which often manifests human attributes (Groom & Nass, 2007; Hancock et 

al., 2011). Indeed, Gaudiello and colleagues (2016) recently found in an experiment with a 

social humanoid robot that individuals considered both the functional and the social 

aspects of the robot when determining whether to trust and accept it. In light of this, this 

study employs a conceptualization of trust in a robot that involves both interpersonal and 

technological aspects of trust: an individual’s willingness to be vulnerable to and 

dependent on a robot’s behavior. 

The idea that similarity can increase trust in a robot is based on the cognitive process of 

developing trust. Trust is essentially an outcome of cognitive judgment in which an 

individual rationally believes that another person possesses a quality to be relied on 

(Robert et al., 2009; Webber, 2008). Information such as gender, personality, other’s 

endorsement, and prior experience can provide a basis for that judgment (Mayer et al., 

1995; Schoorman, Mayer, & Davis, 2007). 

Self-categorization theory can offer an explanation for how information about shared 

characteristics leads to higher levels of trust (Chatman & Spataro, 2005). According to this 

theory, individuals determine their social identity by categorizing themselves and 

identifying similarities and dissimilarities with others based on social cues (Tajfel & 
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Turner, 2004). Individuals tend to ascribe positive qualities to others who belong to the 

same group (Hogg & Terry, 2000). This means that when there are similar characteristics 

in both the truster and the trusted, the truster can perceive less uncertainty and risk and 

higher levels of familiarity with the trusted (Scissors, Gill, Geraghty, & Gergle, 2009). 

Therefore, similarity can result in the formation of trust.  

Categorizations can be made according to both surface-level and deep-level cues. Gender 

is one of the most salient surface-level cues for categorization (Sacco, Scheu, Ryan, & 

Schmitt, 2003). Surface-level similarity based on visible cues triggers a quick judgment of 

trustworthiness by assigning positive aspects to others of the same gender (Meyerson et al., 

1996). Research shows that similarity in surface-level cues such as gender and ethnicity 

contributes to the development of trust in the initial stage of interaction between team 

members (McKnight et al., 1998; Robert et al., 2009).  

Deep-level similarity also positively influences trust development (K. W. Phillips, 

Northcraft, & Neale, 2006). Many invisible characteristics, including personality, culture, 

and attitudes, elicit a sense of belonging (Aquino, Townsend, & Scott, 2001; van Emmerik 

& Brenninkmeijer, 2009). For instance, work style is known to promote perceptions of 

similarity among team members (Montoya et al., 2008; Zellmer-Bruhn, Maloney, Bhappu, 

& Salvador, 2008). Deep-level similarity serves as a basis for cognitive judgments about 

trustworthiness. 

The positive effects of surface-level and deep-level similarity manifest in much the same 

way in teams working with robots. Research shows evidence of the positive impacts of 

similarity. For instance, Eyssel et al. (2012) reported that gender matching between a robot 
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and an individual resulted in more positive feelings and psychological closeness. Similar 

results were reported by Andrist et al. (2015), who found that matching a user’s and a 

robot’s personality led to more positive evaluation of the robot. Also, Tapus and colleagues 

(2008) found that in rehabilitation therapy introvert users preferred robots that provided 

nurturing praise rather than challenging the user, while extrovert users preferred robots that 

challenged them. Although these findings do not directly address the issue of increasing 

trust in a robot, they suggest that similarity between an individual and a robot can promote 

the perception of various positive attributes in the robot. Trust in the robot can result from 

positive perceptions based on similarity at both the surface and the deep level. As such, I 

hypothesize that: 

Chapter 4-H1a) Surface-level similarity with a robot will increase trust in the 

robot. 

Chapter 4-H1b) Deep-level similarity with a robot will increase trust in the robot. 

I posit that risk of danger is conducive to moderating the positive effects of similarity on 

trust in the robot. The risk of danger is a situational moderator, which is related to the 

nature of the tasks that a human and a robot work together to complete (J. Kim et al., 2015; 

Takayama et al., 2008). The argument is that different levels of risk in a task can prompt 

different cognitive processes, through which similarity between an individual and a robot 

influence trust in the robot.  

The phenomenon can be explained by dual-process theory (Evans, 2008; Kahneman, 

2011). The main account of the theory is that an individual’s cognitive process can occur 



100 

 

through two different paths: System 1 (or the peripheral route) and System 2 (or the central 

route) (Petty & Cacioppo, 1986; Stanovich & West, 2000). System 1 refers to a ‘fast’ 

cognitive process that is unconscious, implicit, and automatic, and requires low effort, 

whereas system 2 is a ‘slow’ cognitive process that is conscious, explicit, and deliberate, 

and is governed by greater cognitive effort (Chaiken & Trope, 1999; Kahneman, 2011). 

The dual-process theory has been useful in accounting for phenomena in social psychology 

and behavioral economics such as activation of stereotypical perception, formation of 

interpersonal trust, choice under risky situations (Duckitt, 2001; C. Hung, Dennis, & 

Robert, 2012; Y.-T. Hung et al., 2004; Robert et al., 2009; Yaari, 1987). Research 

demonstrates that situational risk is a trigger that leads an individual to engage in the more 

deliberate and conscious cognitive process of decision-making (i.e., system 2) (Mukherjee, 

2010). 

When the risk of danger is low, similarity demonstrates a stronger impact on trust in the 

robot. In low-risk situations, individuals will engage in the automatic cognitive process, 

through which available similarity cues take bigger roles in producing trust in the robot. 

When there is low risk, individuals are more vulnerable to the similarity that they share 

with the robot and do not deliberately assess other qualifiers of trust. This is in part the 

reason why social robots used in low-risk situations, such as robotic pets and rehabilitation 

robots, are preferred when they demonstrate similarities in appearance and personality with 

their users rather than sophisticated technical features and computational power (Friedman, 

Kahn Jr, & Hagman, 2003; K. M. Lee, Peng, et al., 2006; Woods et al., 2007). 

On the other hand, when perceived risk is high, the positive link between similarity and 

trust in the robot will be weakened. Based on the dual-process theory, the automatic 
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cognitive process of trust judgment can be inhibited when people perceive a higher risk of 

danger. Individuals will engage in the more thorough cognitive process of assessing the 

quality of the robot and will be more analytical and slower in determining whether the 

robot’s similarity qualifies it to be trusted. For instance, aspects other than similarities, 

such as the robot’s technical specifications and intelligence, will also come into play in 

determining trust in the robot. In this respect, Groom and Nass (2007) argued that trust in a 

robotic teammate should not simply be a function of liking of the robot and that various 

factors should be considered to ensure safety and trust in high-stakes situations like space 

missions and military operations. As such, I hypothesize that: 

Chapter 4-H2) The risk of danger will moderate the effects of (a) surface-level 

similarity and (b) deep-level similarity on trust in a robot, such that the positive 

effects of (a) surface-level similarity and (b) deep-level similarity will be stronger 

when the risk is low and will be weaker or absent when the risk is high. 

The research model also proposes that heightened trust in the robot leads to greater 

intention to work with the robot as a team. This is in part because trust in the robot creates 

positive attitudes toward the robot. Positive attitudes toward the robot include, for 

example, reduced fear of failure of the robot’s functionality and reduced concern that 

working with the robot will require consistent effortful monitoring. According to the 

theory of reasoned action (TRA) and the theory of planned behavior (TPB), one’s intention 

to perform a behavior is susceptive to positive attitudes and experiences associated with 

the target (Ajzen, 1991; Fishbein, 1979; Montano & Kasprzyk, 2015). This principle has 

been applied to predicting intention to use technology according to trust of the target 

technology (Gefen, Karahanna, & Straub, 2003; Wu et al., 2011). Likewise, in teams 
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working with robots, trust in the robot constitutes a meaningful and salient behavioral basis 

that results in greater intention to work with the robot. Moreover, trust in the robot reduces 

uncertainty about the robot’s behavior and helps enhance a feeling of control over 

interactions with the robot. The sense of control is also an element of positive attitudes that 

result in greater behavioral intention (Das & Teng, 1998; Robert & Sykes, 2017). In sum, 

trust in a robot promotes positive attitudes and a sense of control by reducing uncertainty 

and generating expectations of positive experiences, which result in intention to work with 

the robot. 

Chapter 4-H3) Trust in the robot will increase intention to work with the robot as a 

team. 

However, the positive link between trust in a robot and intention to work with the robot 

may not be uniform in all circumstances. I believe that the risk of danger regulates the 

impact of trust in the robot on intention to work with the robot. Specifically, when the risk 

of danger is present, trust in a robot will demonstrate a stronger impact on intention to 

work with the robot. As stated above, the risk of danger alters an individual’s cognitive 

process and dictates what cognitive resources influence intention to work with a robot 

(Groom & Nass, 2007; Mukherjee, 2010). When there is a higher risk of danger, 

individuals will perceive greater uncertainty in the task and seek ways to regain the 

perception of control. In this case, the role of trust in a robot becomes more salient as a 

cognitive basis for reducing uncertainty and maintaining control. Therefore, the effect of 

trust in a robot on intention to work with the robot is stronger in high-risk situations. 
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Chapter 4-H5) The risk of danger will moderate the relationship between trust in a 

robot and intention to work with the robot, such that the effect is stronger when the 

risk is high than when the risk is low. 

Finally, the research model examines whether the intention to work with the robot will 

promote an intention to replace a human teammate with that robot. According to the theory 

of reasoned action, it seems natural to speculate that the greater the intention to work with 

the robot is, the more likely it is that an individual will reveal a stronger preference for 

robots. A strong preference for robots is an indicator that an individual may choose a robot 

over a human teammate. This leads to the hypothesis below: 

Chapter 4-H6) Greater intention to work with a robot will increase intention to 

replace a human teammate with the robot. 

The last hypothesis is regarding the moderating effect of the risk of danger on the positive 

association between intention to work with a robot and intention to replace a human 

teammate with the robot. The risk of danger can provide a context where an individual 

judges the potential benefit of working with the robot to be greater than the benefit of 

working with a human teammate. 

I believe that the positive association between the two intentions will exist only when the 

risk is high. The risk of danger triggers the deliberate and conscious cognitive process 

when judging whether to work with a robot or with a human teammate. In this case, 

individuals may conclude that it is better to deploy robots to a risky and dangerous 

situation than to risk precious human lives. Based on this judgment, individuals will 
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perceive that working with the robot is more beneficial than risking human safety. On the 

other hand, when the risk is low, the positive impact of intention to work with the robot on 

the intention to replace a human teammate may be weaker, or not present. Low-risk 

situations will not make individuals engage in careful reasoning (i.e., system 2) when 

choosing between working with a human and working with a robot. When the risk is low, 

there may be no potential benefit to working with a robot because no teammates have to 

risk their lives. As such, I hypothesize that: 

Chapter 4-H6) The risk of danger will moderate the relationship between intention 

to work with a robot and intention to replace a human teammate with the robot, 

such that the relationship is stronger when the risk is high than when the risk is 

low. 

4.4 METHOD 

To investigate the effects of similarity between an individual and a robot on willingness to 

work with the robot, I conducted a 2 (surface-level similarity: the same gender vs. different 

gender) x 2 (deep-level similarity: human‒robot agreement vs. disagreement) x 2 (risk of 

danger: high vs. low) between-subjects online experiment. In the online experiment, 

participants were randomly assigned to one of the eight conditions and viewed a video 

about a hypothetical scenario in which collaboration between a human and a robot would 

be essential. 
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4.4.1 Participants 

A total of 200 participants were recruited using Amazon Mechanical Turk (MTurk), a 

crowdsourcing platform allowing workers to earn a small amount of money for engaging 

in a brief online task. Individual participants completed a short self-report questionnaire 

individually and were paid at the completion of an experimental session. The sample 

consisted of people of diverse education levels, ages, genders, and ethnicities. The sample 

included MTurk workers in the United States with good performance histories (having 

95% or more of their previous online tasks marked as high quality by requesters). This was 

to ensure the quality of the online survey by minimizing missing data and invalid data with 

arbitrary numbers. 

I strategically chose MTurk for several reasons. First, although workers in MTurk are 

younger and lower-income than average Internet users, samples from MTurk are more 

demographically representative and culturally diverse compared to common samples 

drawn from college students (Downs, Holbrook, Sheng, & Cranor, 2010; Paolacci, 

Chandler, & Ipeirotis, 2010). Second, studies conducted on MTurk produce good-quality 

data and minimize experimental biases (Paolacci & Chandler, 2014). This is because in 

MTurk duplicated responses from the same person are not possible, and uncontrolled 

exposure to stimuli is ruled out. Moreover, data from MTurk have been found to 

successfully replicate results from traditional behavioral studies in real settings (Casler, 

Bickel, & Hackett, 2013). 

In the sample, there were 77 male participants and 123 female participants. The age of 

participants ranged from 18 to 68 years old (M = 36.5 and SD = 10.77). The sample turns 
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out to have been ethnically diverse: 64% white, 10% Asian, 8% Black and African 

American, 6% Hispanic and Latino, with the rest including Native American or Alaskan 

Native and Native Hawaiian. 

4.4.2 The Robot 

A PR2 robot developed by Willow Garage was used for the videos (Figure 14). The robot 

was chosen based on several criteria. First, the robot was gender-neutral in its appearance. 

This is because the robot’s gender was going to be manipulated only through its voice and 

name, ruling out any visual aspects of robots that might influence individuals’ gender 

perception. The images of robots for the pilot study were adopted from previous research 

on robot appearance, such as studies by Mathur and Reichling (2016) and Kuchenbrandt et 

al. (2013). Second, the form of the robot should imply some degree of motor abilities such 

as navigating and moving objects from one place to another location. The hypothetical 

scenario in the online experiment involved physical tasks, so it was important to use robots 

that could complete such tasks to provide believable portrayals of a robot and an individual 

working together. The identical robot was used for all participants across the different 

experimental conditions. 
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Figure 14 PR2 robot used in the experiment 

4.4.3 Experimental Manipulations 

Surface- and deep-level similarity were manipulated using videos that contained 

information about basic descriptions and technical specifications of the robot. In the video, 

the robot introduced itself by stating its model number and a name, and explained its 

functional capabilities while performing tasks. The length of the video, 38 seconds, and the 

content were identical regardless of the similarity manipulations throughout the sample in 

the experiment. 

Surface-level similarity had two conditions: same gender vs. different gender between an 

individual and the robot. Robot gender was manipulated using a synthesized computer 

voice and a name suggesting a typical gender attribution. Specifically, the female robot had 

a female voice produced by the Mac OS X speech interface and had the model name “RX-

01 Jessica,” whereas the male robot had a male voice produced by the same system and 

was named “RX-01 David.” Throughout the study, the robot’s model name was shown 

along with the image of the robot. The online questionnaire was programmed to randomly 
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assign participants to either the same or the different gender condition. All videos had 

subtitles. Below, a few screenshots from the videos are shown (Figure 5). 

 

Figure 15 Screenshots from videos for the surface-level similarity manipulation 

Deep-level similarity also had two levels: the same work style vs. a different work style. 

Individual participants were given a series of questions regarding different work styles 

generated for this study based on work style dimensions identified in Zellmer-Bruhn et al. 

(2008). The questions had no one correct answer and were intended to make participants 

choose a stance or opinion on matters regarding beliefs about and habits of work. The 

questions and dimensions are listed in Table 7. 
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Work Style 

Dimension 

Items (Participants will be asked to choose only one of these two 

options) 

Work Ethic 

It is okay to be 20 minutes late for a 

meeting because sometimes we cannot 

control unexpected events – traffic 

jams, medical conditions, etc. 

It is NOT okay to be 20 minutes 

late for a meeting because other 

team members’ time will be 

wasted due to the delay. 

In order to maintain a good team, 

performance is the most important 

thing. 

In order to maintain a good team, 

the relationship among team 

members is the most important 

thing. 

The ends justify the means. 

How we do things is more 

important than how well we do 

them. 

Efficiency is more important than 

effectiveness. 

Effectiveness is more important 

than efficiency. 

Work Habits 

I am a morning person and perform 

better during the day. I get the most 

work done in the morning. 

I am a night owl and perform 

better at night. I get most the 

work done in the evening. 

Communication 

Style 

Face-to-face communication is better 

and easier than mediated 

communication like telephone or 

Skype because it allows people to see 

one another’s face and read richer 

social cues. 

Mediated communication like 

telephone or Skype is better and 

easier because technologies allow 

people to communicate from a 

distance and in different time 

zones. 

Interaction Style 

I prefer a top-down process, in which I 

only solve problems that are given to 

me. 

I prefer a bottom-up process, in 

which I find my own problems 

and solve them. 

A good leader can make a team 

succeed. 

Leadership should be shared 

evenly among team members. 

Personality 
I like math and physics more than 

history and literature. 

I like history and literature more 

than math and physics. 

Table 7 Questions for manipulation of the deep-level similarity 

In the same work style condition, a robot chose the same answer as the participant after the 

participant made his or her choice, and showed the sentence, “I also chose the same 

statement. Your answer was [It is not okay to be 20 minutes late for a meeting because 

others team members’ time will be wasted due to the delay]. My answer was [It is not okay 

to be 20 minutes late for a meeting because others team members’ time will be wasted due 

to the delay].” 
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On the other hand, in the different work style condition, a robot chose the other answer and 

stated, “I chose the different statement. Your answer was [It is okay to be 20 minutes late 

for a meeting because sometimes we cannot control unexpected events — traffic jams, 

medical conditions, etc.]. My answer was [It is NOT okay to be 20 minutes late for a 

meeting because other team members’ time will be wasted due to the delay].” 

All participants were asked to choose an answer for each of the nine questions, rather than 

one question among those. This was because participants may not all have similarly strong 

opinions, and they may value each of the questions differently. That is, there may be a case 

when a participant is asked to choose an answer, and if the participant does not think the 

question is important or that it matters, then answer similarity between the robot and the 

individual may not successfully reflect deep-level similarity. Therefore, to maximize the 

salience of the deep-level similarity, participants were asked to answer all nine questions 

and interact with a robot that consistently exhibited the same answers or the opposite 

answers based on the assigned condition. As a result, participants who were assigned to the 

similar work style condition were exposed to nine answers from the robot that were the 

same as their own, whereas those who were assigned to the different work style condition 

were exposed to the nine answers from the robot that were the opposite. 

The risk of danger in the task was manipulated to have two levels: high risk and low risk. 

Participants were given a scenario that depicted the process involved in a logistics task in 

robot-enabled warehouses. In the high-risk condition, participants read a scenario in which 

they had to collaborate with the robot to clear an area by loading highly toxic and 

hazardous containers onto a truck for disposal. In the low-risk condition, participants were 

given a similar scenario, but with ordinary wooden boxes to load onto the truck for home 
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delivery. Both scenarios highlighted that participants should rely on the robot when 

coordinating paths and designating specific points where the containers should be 

unloaded. Written scenarios were given along with images of the robot and the containers 

(Figure 16). 

 

Figure 16 Images for the containers with high risk (left) and low risk (right) 

4.4.4 Procedure  

All experimental procedures took place online. Participants were greeted and asked to fill 

out a consent form. Participants then were given brief instructions about the experimental 

process and task. Next, they completed a pre-task questionnaire. The pre-task questionnaire 

included questions regarding demographic information including gender, age, and 

ethnicity. The questionnaire also included items to measure their individual characteristics 

and control variables such as their general attitude toward robots and the need for 

cognition. 
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Then, participants were randomly assigned to either the same-gender condition or 

different-gender condition. In the same-gender condition, the gender of a robot and a 

participant were matched (i.e., the video of the male robot for male participants and the 

video of the female robot for female participants) based on the gender information 

indicated in the pre-task questionnaire. On the other hand, in the different-gender 

condition, participants were given the video of the robot that had a different gender from 

theirs. Once participants finished watching the video of the robot based on their assigned 

condition, a manipulation check question was given to participants to determine their 

perception of the robot’s gender. 

Next, they were asked to choose responses to the nine questions about work styles. 

Immediately after the participant chose a response to a question, the robot’s choice was 

shown on the following screen next to the participant’s choice, according to the condition 

they were assigned. In the same work style condition, the choice of the participant and the 

robot were the same, while they were different in the different work style condition. 

Participants were asked to enter their choice and the robot’s choice. This was to ensure that 

participants did not rush through the procedure and that the similarity or dissimilarity of 

each choice was well recognized. Therefore, in the similarity condition, the participant’s 

and the robot’s answers were the same, while they were different in the different condition. 

The total of nine questions on work style were shown individually in the same order to all 

participants across all conditions. Once all the questions were shown, a summary table that 

compared the robot’s and the participant’s answers to all questions was given to the 

participants. This summary table was followed by a set of questions to capture perceived 

risk. 
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Participants were asked to read a scenario about collaboration with the robot and view 

accompanying illustrative images. Participants who were randomly assigned to the high-

risk condition were given a scenario about moving dangerous and hazardous objects in a 

nuclear waste disposal facility, whereas participants in the low-risk condition were given a 

scenario about moving wooden boxes in a cargo facility. It was expected to take 5‒10 

minutes for participants to read the scenarios, but they were allowed to take as long as they 

wanted before proceeding to the next page of the online survey. 

Finally, participants were asked to fill out a post-task questionnaire, which included 

dependent measures such as trust in the robot, intention to work with the robot as a team, 

and intention to replace human teammates with the robot. After participants had completed 

the final questionnaire, they were debriefed and dismissed. Payment was completed 

through the Amazon MTurk process when they verified that they had completed the online 

experiment by entering a randomly generated code on the Amazon MTurk website. 

4.4.5 Measures 

4.4.5.1 Manipulation checks  

To ensure that the experimental manipulations were effective, the experiment included 

manipulation check questions in the online survey. Surface-level similarity was 

manipulated by showing a video with gender-inducing names and voices. A single 

question was asked to capture which gender participants thought the robot was after the 

video was shown. The question was “What do you think the gender of the robot was?” 
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Manipulation for deep-level similarity was checked by a series of questions regarding 

perceived similarity in work style. Perceived work style similarity was an index of five 

items measured based on a 5-point Likert scale (1 = strongly disagree to 5 = strongly 

agree). The items were adopted from Zellmer-Bruhn et al. (2008). Example items include 

“The robot has similar work habits with me,” and “The robot has similar interaction styles 

with me.” The scale was reliable (Cronbach’s α = 0.98). 

As a manipulation check for risk of danger, perceived risk of danger was measured to 

capture the degree to which an individual assessed potential risk and danger in the 

experimental task scenario. The scale was an index of four items adapted from Kim and 

McGill (2011) and Jermier, Gaines, and McIntosh (1989) based on a 5-point Likert scale 

(1 = strongly disagree to 5 = strongly agree). Examples include “I will encounter 

personally hazardous situations during the task when I work with the robot” and “The task 

seems to be risky.” The scale was reliable (Cronbach’s α = 0.91). 

4.4.5.2 Control variables 

Age, gender, and ethnicity of participants were collected. Also, need for cognition was 

measured as a control variable. Need for cognition is a personality trait defined as a 

tendency to engage in and enjoy cognitive processes (Cacioppo & Petty, 1982). Research 

shows that an individual’s need for cognition determines the cognitive process and 

influences the relationships between diversity among team members and perception of 

team membership and the team (Kearney et al., 2009). As such findings suggest, an 

individual’s need for cognition may influence the cognitive process that demonstrates the 

link between similarity and attitudes toward robots. 



115 

 

Participants’ dispositional need for cognition consisted of an index of 14 items adopted 

from Cacioppo et al. (1996). The scale captures the degree to which an individual 

participant is likely to engage in cognitive processes in general. The scale was measured 

based on a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree). Sample items 

include “I really enjoy a task that involves coming up with new solutions to problem,” and 

“The notion of thinking abstractly is appealing to me.” The scale was reliable (Cronbach’s 

α = 0.96). 

4.4.5.3 Dependent measures 

Trust in the robot was measured to capture the degree to which an individual believed the 

robot was dependable and trustworthy. The scale consisted of eight items adapted from 

Jian et al. (2000) and was measured using a 5-point Likert scale (1 = strongly disagree to 5 

= strongly agree). The questions included items such as “I am able to trust the robot,” and 

“The robot is reliable.” The scale was reliable (Cronbach’s α = 0.92). 

Intention to work with the robot was measured to capture an individual’s willingness to 

admit the robot as a team member and work together as a team. An index of five items was 

adapted from Venkatesh and Davis (2000). The scale was measured based on a 5-point 

Likert scale (1 = strongly disagree to 5 = strongly agree). The questions included 

“Assuming I had another project similar to this one and access to this robot, I am willing to 

work with this robot as team,” and “This robot and I will likely make a good team.” The 

scale was reliable (Cronbach’s α = 0.95). 

Finally, intention to replace human teammates with the robot was measured to capture the 

degree to which an individual wanted to work with the robot instead of a human teammate. 
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An index of three items was developed and measured based on a 5-point Likert scale (1 = 

strongly disagree to 5 = strongly agree). The three items included “For this job, I would 

prefer to work with the robot instead of a human,” “For this job, I would rather replace a 

human with the robot,” and “For this job, I would rather team up with the robot than a 

human." The scale was reliable (Cronbach’s α = 0.83). 

4.5 RESULTS 

4.5.1 Manipulation Checks 

Manipulation checks of the independent variables were done using the measurement items 

described in the method section. For surface-level similarity, all participants answered the 

robot’s gender correctly according to the gender in the video, which indicates that the 

manipulation of robot gender was successful. For deep-level similarity, a t-test was 

conducted to compare means between the two conditions. Results showed that perceived 

similarity in work style was significantly higher in the same work style condition (M = 

4.29, SD = 0.83) than in the different work style condition (M = 1.69, SD = 0.77) (t(198) = 

22.99, p < 0.001). The manipulation check for risk of danger was also done through a t-

test. Results showed that perceived risk of danger was significantly higher in the high-risk 

condition (M = 4.58, SD = 0.50) than in the low-risk condition (M = 3.42, SD = 0.76) 

(t(198) = 12.71, p < 0.001). Thus, manipulations for all the independent variables were 

successful. 
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4.5.2 Analysis 

All analyses in the following section were conducted by following the partial least squares 

(PLS) approach using SmartPLS 3.2. There were two reasons why the partial least squares 

structural equation modeling (SEM) technique was used for this study. First, compared to 

traditional analytical approaches, including the analysis of variance (ANOVA), PLS-SEM 

provides an integrative estimation of the relationships among variables by allowing a 

nomological network of variables (Streukens, Wetzels, Daryanto, & De Ruyter, 2010). 

Second, unlike the covariance-based structural equation modeling (CBSEM) technique, 

PLS-SEM requires no normality assumptions in the data and allows smaller sample sizes 

(Marcoulides & Saunders, 2006). In addition, PLS-SEM allows for testing of experimental 

data with a complex design, such as in the current study, which employs a 2 × 2 × 2 

factorial design (Gupta, 2014). The report of the results of the analysis in this dissertation 

follows guidelines provided by Gefen, Straub, and Rigdon (2011). 

4.5.3 Measurement Validity 

PLS-SEM provides both a measurement model and a structural model as an outcome of the 

analysis. All latent variables, including trust in the robot, intention to work with the robot, 

intention to replace a human teammate with the robot, and the need for cognition, were 

modeled as reflective constructs. 

Discriminant validity of the measures was assessed based on a factor analysis. As Table 8 

shows, all items loaded at 0.70 or above on each of their constructs and indicated no cross-

loadings above 0.4. The results of the factor analysis indicate discriminant and convergent 

validity of the measurable latent variables in the model (Fornell & Larcker, 1981). 
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The discriminant and convergent validity of the variables in the model were assessed by 

testing correlations among them (Table 9). Average Variance Extracted (AVE) provides 

evidence for the convergent validity of a construct when the value is greater than 0.50 

(Fornell & Larcker, 1981). In this case, the variance explained by the construct is larger 

than the variance explained by measurement error. The AVE values of all latent variables 

in the model were above 0.50 (0.64 for the need for cognition, 0.63 for trust in the robot, 

0.85 for intention to work with the robot, and 0.75 for intention to replace a human 

teammate with the robot).  

Furthermore, the square roots of AVE values of the variables were compared with the 

correlations of all variables to assess discriminant validity. The correlation matrix, shown 

in Table 9, indicates that correlations among all constructs were well below the square 

roots of the AVEs. Finally, the internal consistency of the variables was assessed by 

calculating internal composite reliability (ICR). All variables indicated values well above 

0.70, which is evidence of internal consistency. 
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Table 8 Factor loadings of measurement items in the PLS model 

NCOG TR IWR IRHR

Need for Cognition 1 0.83

Need for Cognition 2 0.88

Need for Cognition 3 0.86

Need for Cognition 4 0.85

Need for Cognition 5 0.71

Need for Cognition 6 0.85

Need for Cognition 7 0.80

Need for Cognition 8 0.77

Need for Cognition 9 0.82

Need for Cognition 10 0.76

Need for Cognition 11 0.73

Need for Cognition 12 0.73

Need for Cognition 13 0.73

Need for Cognition 14 0.87

Trust in Robot 1 0.77

Trust in Robot 2 0.79

Trust in Robot 3 0.84

Trust in Robot 4 0.78

Trust in Robot 5 0.73

Trust in Robot 6 0.72

Trust in Robot 7 0.74

Trust in Robot 8 0.81

Intention to Work with the Robot (IWR) 1 0.85

Intention to Work with the Robot (IWR) 2 0.72

Intention to Work with the Robot (IWR) 3 0.88

Intention to Work with the Robot (IWR) 4 0.89

Intention to Work with the Robot (IWR) 5 0.87

Intention to Replace a Human with the Robot (IRHR) 1 0.76

Intention to Replace a Human with the Robot (IRHR) 2 0.81

Intention to Replace a Human with the Robot (IRHR) 3 0.77

Note: Values in bold indicate items loading at the 0.7 or above on each of their constructs. Factor 

loadings smaller than 0.40 were excluded for better readability.

Extraction method was Principal Component Analysis using Varimax with Kaiser Normalization 

as a rotation method. 

Component
Items
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Table 9 Descriptive statistics, correlations among constructs, internal composite reliability (ICR), and average 

variance extracted (AVE) 

4.5.4 Hypothesis Testing 

The hypotheses were tested by assessing the significance of the paths in the structural 

model. In this study, the model was analyzed with the standard bootstrapping procedure by 

resampling 1,000 subsamples using SmartPLS 3.2. The analysis produced variance 

inflation factors (VIF), which indicate the likelihood of multicollinearity influencing 

results of the model testing. The highest VIF value in the model was 1.10, which was well 

below the commonly recommended threshold of 10. Therefore, there is less likelihood of 

multicollinearity in the model. The model included the need for cognition and participants’ 

gender as control variables. Other control variables mentioned above in the measurement 

section, such as age and ethnicity, were not included in the model because of 

insignificance.  

Variable Mean SD 1 2 3 4 5 6 7 8

1. Gender 0.39 0.49 NA

2. Need for Cognition (NCOG) 3.50 0.91 -0.21** 0.80 (0.96)

3. Surface-level Similarity (SLS) 0.45 0.50 -0.26 0.06 NA

4. Deep-level Similarity (DLS) 0.51 0.50 0.23 0.04 -0.4 NA

5. Risk of Physical Danger (RPD) 0.49 0.50 0.67 0.05 0.03 0.07 NA

6. Trust in Robot (TR) 3.71 0.76 0.11 0.12 -0.03 0.38** -0.15* 0.79 (0.94)

7. Intention to Work with the Robot 

(IWR)
4.23 0.80 0.11 0.16* -0.01 0.24** -0.03 0.56** 0.92 (0.96)

8. Intention to Replace a Human with the 

Robot (IRHR)
3.50 1.00 0.14* 0.06 0.05 0.19** 0.14* 0.33** 0.52** 0.86 (0.90)

Note: N  = 200; SD = standard deviation. Values on the diagonals represent the square root of the AVE for each factor. ICR is indicated in parantheses 

on the diagonals. * p < .05, ** p < .01. "Gender" was coded binary (0 = male, 1 = female). Experimental conditions, "Surface-level Similarity" and 

"Deep-level similarity" were coded using 0 and 1 (0 = different and 1 = same between a robot and a participant). 



121 

 

H1 posited that a) surface-level and b) deep-level similarity would increase trust in the 

robot, respectively. Results of the model testing showed that surface-level similarity did 

not increase trust in the robot (ß = -0.01, p = 0.87). Thus, H1a was not supported. 

However, there was a significant positive impact of deep-level similarity on trust in the 

robot (ß = 0.39, p < 0.001), which indicates that H1b was supported.  

H2a and H2b posited moderation effects of the risk of danger for the relationships between 

surface-level and deep-level similarity and trust in robots, respectively. Results of the 

model testing showed that there was a significant interaction effect between surface-level 

similarity and the risk of danger in predicting trust in the robot (ß = -0.17, p < 0.01). In 

addition to assessing the path coefficients, a test of H2a and H2b involved plotting the 

relationships. As hypothesized in H2a, the risk of danger moderated the impact of surface-

level similarity on trust in the robot, such that the positive impact of surface-level 

similarity was found only in the low-risk condition (Figure 17). However, an interaction 

effect was not found between deep-level similarity and trust in the robot (ß = 0.05, p = 

0.48). Thus, only H2a was supported. 

 

Figure 17 Moderation effect of risk of danger for the relationship between the surface-level similarity and trust in 

robot 
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H3 hypothesized that trust in the robot would increase an individual’s intention to work 

with the robot as a team. H3 was fully supported based on the significant path coefficient 

(ß = 0.58, p < 0.001). H4 posited a moderation effect of risk of danger for the relationship 

between trust in the robot and intention to work with the robot, such that the positive 

impact of trust in the robot will be stronger in the high-risk condition. H4 was not 

supported (ß = -0.08, p = 0.22). 

H5 posited the positive impact of intention to work with the robot on the individual’s 

intention to replace a human teammate with the robot. H5 was fully supported (ß = 0.55, p 

< 0.001). Finally, H6 posited a moderation effect of risk of danger for the relationship 

between the intention to work with the robot and the intention to replace a human 

teammate. Specifically, I speculated that the positive impact of an intention to work with 

the robot would be strengthened in the high-risk condition, whereas the impact would not 

be present or would be weakened in the low-risk condition. The model demonstrated a 

marginally significant interaction effect (ß = 0.09, p < 0.1). As an additional analysis, the 

interaction effect was tested by a separate analysis employing a linear regression. A plot 

based on the results of the regression analysis showed that intention to work with the robot 

increased intention to replace a human teammate only in the high-risk condition (ß = 0.32, 

p < 0.05) (Figure 18). Thus, H6 was partially supported. 
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Figure 18 Moderation effect of risk of danger for the relationship between intention to work with the robot and 

intention to replace a human teammate 

Based on the hypothesis testing, the final model was derived from the research model 

(Figure 19). The model illustrates the results of the model testing, where R2 indicates the 

variance explained and ß indicates the standardized path coefficients of each path in the 

structural model. R2 indicates that trust in the robot was explained by 26%. Intention to 

work with the robot and intention to replace a human teammate with the robot were 

explained by 37% and 36%, respectively. 



124 

 

 

Figure 19 Results of PLS analysis 

Hypotheses Results 

H1a The surface-level similarity increases trust in the robot. Not Supported 

H1b The deep-level similarity increases trust in the robot. Supported 

H2a 
The risk of danger moderates the impact of the surface-

level similarity on trust in the robot. 
Supported 

H2b 
The risk of danger moderates the impact of the deep-level 

similarity on trust in the robot. 
Not Supported 

H3 Trust in robot increases intention to work with the robot. Supported 

H4 
The risk of danger moderates the impact of trust in the 

robot on intention to work with the robot. 
Not Supported 

H5 
Intention to work with the robot increases intention to 

replace a human teammate with the robot. 
Supported 

Surface-

level 

Similarity

Deep-level 

Similarity

Trust in 

Robot

(R2 = 0.26)

Intention to 

Work with 

Robot

(R2 = 0.37)

Intention to 

Replace 

Human

(R2 = 0.36)

Risk of 

Danger

-0.01

0.39***

-0.17**

0.05

0.58***

-0.08

0.55***

0.09†

Need for 

Cognition
Gender

0.17* 0.11

-0.01 0.14*

0.06

0.10†

Note: N= 200, Solid lines indicate significant paths. Dashed lines are non-significant paths.
† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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H6 

The risk of danger moderates the impact of intention to 

work with the robot on intention to replace a human 

teammate with the robot. 

Marginally 

Supported 

Table 10 Summary of hypothesis testing 

4.6 DISCUSSION 

The objective of this study was to examine the impacts of similarity between an individual 

and a robot on the development of teams working with robots. In doing so, this study 

examined how the risk of danger in a task moderates the impacts of similarity on trust in a 

robot and attitudes toward the robot. Results from an online experiment showed that 

surface-level similarity increased trust in a robot only when the risk was low, while deep-

level similarity increased trust in the robot regardless of the risk. Trust in the robot was 

found to increase intention to work with the robot and subsequently intention to replace a 

human teammate with the robot. The risk of danger also marginally moderated the 

relationship between intention to work with the robot and intention to replace a human 

with the robot. Taken together, these findings highlight the importance of considering both 

surface-level and deep-level similarity for creating greater trust and better attitudes toward 

a robot in conjunction with the risk of danger. 

4.6.1 Contributions 

This study contributes to research on the development of teams working with robots and 

prediction of workers’ willingness to work with robots as a team. The first contribution to 

the research is that this study looked at both surface-level and deep-level similarity to 

predict positive perceptions toward a robot in one study. Although previous research 

generally showed positive impacts of similarity with a robot on forming positive 
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perceptions of robots, the findings were limited due to examining only one aspect of 

similarity at a time (Bernier & Scassellati, 2010). It is important to examine both surface-

level and deep-level similarity at the same time. The physical embodiment of robots 

inherently elicits the perception of similarity, not only in its appearance (e.g., gender and 

ethnicity), but also in its behaviors and intelligence (e.g., personality, ability, skills, and 

preferences) (Rae et al., 2013; Robert & You, 2014). As robots are becoming more 

humanlike in different aspects, workers’ perceptions of and intentions toward robots 

should be examined by considering both levels of similarity. 

Second, this study unpacks the cognitive path by which similarity with a robot leads to 

higher levels of trust and intention to work with it by identifying a boundary condition for 

the relationship between two constructs. Specifically, this study showed that risk of danger 

regulates the cognitive paths from surface-level and deep-level similarity to trust in a robot. 

Research has shown that the perception of similarity is automatic and universally found in 

using different technologies that manifest some humanlike attributes (Nass & Lee, 2001; 

Reeves & Nass, 1996). Similarity effects have been applied to robots to enhance positive 

perceptions of social robots (Bernier & Scassellati, 2010). Despite previous endeavors to 

examine the impacts of similarity in interacting with robots, it is largely unknown how and 

when similarity becomes effective in promoting positive perceptions of robots.  

Identifying the boundary condition for the relationship between similarity and perceptions 

of robots, such as trust, is especially vital for teams working with robots. Unlike social 

robots, which are mostly deployed to safe environments like homes, robots used in 

teamwork may be required to fulfill dangerous tasks with a higher risk of physical danger. 

It is not guaranteed that the previous findings of similarity effects in social robot contexts 
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can be applied to teams working with robots. The risk of danger may be one of the most 

common situational moderators in the context of teamwork with robots. Future research 

should identify other factors that alter the impacts of similarity, such as task 

interdependence, task duration, and competitive structure of the task. For instance, do 

similarity effects on trust in a robot change over time after a few initial interactions with 

the robot? Research shows that category-based trust is formed swiftly, but team members 

engage with a deeper cognitive assessment of trust after a few interactions (Meyerson et 

al., 1996; Robert et al., 2009). Also, similarity with a robot may yield a negative perception 

of the robot when someone is competing with the robot rather than cooperating (Mutlu et 

al., 2006). 

Lastly, this study examined intention to replace a human teammate with a robot. Although 

there have been several studies of adoption and intention to use a robot in different 

contexts (Barbash, Friedman, Glied, & Steiner, 2014; Heerink, Ben, Evers, & Wielinga, 

2008; Sung, Grinter, Christensen, & Guo, 2008), the research still lacks evidence about 

what leads people to prefer robots over human teammates. This study showed that the 

intention to replace a human teammate is a function of intention to work with the robot, but 

this relationship is also dependent upon the risk of danger. This study opens a new area of 

research, in which scholars should investigate in what circumstance and why an individual 

chooses to work with a robot, and what the psychological and performance consequences 

of the choice may be in teams working with robots. For instance, will people still choose to 

work with a robot when their existing human teammates are replaced? Will subgroups be 

formed between team members who are more willing to work with robots and those who 

do not welcome robots on the same team? As there are many unanswered questions in this 
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area, understanding what leads to a preference for robots over humans will be vital to 

promoting teamwork between humans and robots. 

4.6.2 Implications for Theory 

This study has several implications for theory. First, the results of this study highlight that 

the impacts of similarity are not always present and that they are dependent upon the type 

of similarity and the presence of a risk of danger. Results from the experiment 

demonstrated that deep-level similarity increased trust in a robot, whereas the impacts of 

surface-level similarity were present only when the risk is low. These findings imply 

several theoretical issues. One, the automatic and swift cognitive processing (i.e., system 

1) of surface-level similarity is susceptive to the risk of danger in the collaborative task. 

Surface-level similarity can be immediate and more salient despite sensitivity to a 

situational factor. Second, deep-level similarity predicting trust in a robot is not influenced 

by the risk of danger. One possible explanation is that processing deep-level similarity may 

have already involved a deliberate cognitive process (i.e., system 2), so risk does not add 

any layer of cognitive judgment of the trustworthiness of a robot. This suggests that deep-

level similarity may be a stronger factor in enhancing trust in a robot regardless of a 

situational risk. Given the different mechanisms of surface-level and deep-level similarity 

in predicting trust in a robot, examining both levels of similarity is vital to enhancing our 

theory of similarity and diversity in teams working with robots. 

In this study, dual-process theory was a useful theoretical lens to explain the moderation 

effects of the risk of danger. According to the results, the risk of danger turns out to trigger 

the more thoughtful and deliberate cognitive process, in which automatic judgment about 
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surface-level similarity was inhibited. I believe that the dual-process approach can provide 

an explanation of other phenomena in teams working with robots. 

Second, trust in a robot was found to be a strong predictor of intention to work with the 

robot and subsequent intention to replace a human teammate with the robot. These findings 

confirm those of previous studies that examined impacts of trust on acceptance of social 

robots (Heerink, Kröse, Evers, & Wielinga, 2006). However, the findings of this study 

imply that trust in a robot increases the intention to adopt a robot for use in a collaborative 

context. This is aligned with previous findings in teamwork research, in which 

interpersonal trust is a major factor in developing better teamwork (Costa, 2003; Robert et 

al., 2009).  

Third, this study calls for more theorizing on intention to work with a robot in teams. Most 

research on robot adoption has employed existing technology adoption models, such as the 

technology acceptance model (TAM) and the unified theory of acceptance and use of 

technology (UTAUT) (Davis, 1986; Heerink et al., 2006; Venkatesh, Morris, Davis, & 

Davis, 2003). These studies have provided insights into adoption intention by individual 

users of social robots (Broadbent, Stafford, & MacDonald, 2009; Gaudiello et al., 2016; 

Graaf, 2015). However, the existing literature’s views on adoption of robots seem 

unidimensional and only address the issue of whether or not an individual is willing to 

interact with the robot (Heerink et al., 2008). This is in part because these studies did not 

recognize the pervasive fear that robots will replace human labor and that a team member 

may be in the situation of having to choose between a robot and a human as a teammate. 
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This study went beyond the simplistic view of intention to work with a robot and examined 

intention to replace a human teammate with a robot. Results showed that the more an 

individual is willing to cooperate with a robot, the more likely it is that the individual will 

choose a robot over a human teammate to perform a collaborative task. Moreover, the 

results demonstrated that this phenomenon could be regulated by the risk of danger 

involved in a task. The phenomenon is governed by a thoughtful cognitive process 

triggered by risk. These results suggest that intention to replace a human teammate with a 

robot should conceptually be distinguished from intention to adopt a robot. Unlike an 

intention to work with a robot that is determined solely by a robot’s characteristics, 

intention to replace a human teammate with a robot may address the comparative benefit of 

working with a robot. This may include the social desirability of choosing a robot over a 

person, the risk of harming another person by choosing to work with him or her, and the 

expectation of competitively better motor skills in a robot. In this study, the intention to 

replace was predicted by intention to work with the robot only when risk was high. This 

finding can be interpreted as indicating that people may consider the possibility that a 

human teammate could be in a dangerous situation, which results in preferring to risk a 

non-human teammate. This phenomenon opens a new area of theoretical investigation to 

delve into, identifying other factors influencing the choice of robotic teammates over 

humans. 

4.6.3 Implications for Practice 

Several implications for practice can be derived from the findings of this study. First, 

robots deployed to work with humans should be designed to display similarity with the 

humans to ensure higher levels of trust and intention to work with the robots. The 
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similarity can be either at the surface level or at the deep level, or both. Similar gender and 

work styles were found to be effective in eliciting the perception of similarity and 

promoting trust in a robot. In addition to these two aspects, designers of robots can employ 

other aspects as long as they induce a feeling of similarity. For instance, highlighting an 

ad-hoc membership through wearing the same uniform can be effective. Similar voice 

tones and speech styles can also be useful ways to elicit the perception of similarity at the 

deep level. 

Second, managers and leaders of teams working with robots should be wary of the level of 

risk in a workplace where a robot and an individual collaborate with each other. In many 

cases, decisions about adopting a robot in a work environment are made at an executive 

level and may not reflect individual workers’ intention to work with them. Because usually 

robots are given to rather than selected by workers, managers should devise ways to 

minimize workers’ negative opinions and foster positive attitudes toward working with the 

robots. According to the results of this study, they should be knowledgeable about the level 

of risk in the task where a robot will be deployed. Particularly when robots replace human 

laborers and become part of human-robot teams, managers of such teams should be aware 

that merely highlighting some similarity with their employee will not necessarily result in 

greater intention to choose to work with a robot instead of a human teammate. 

4.6.4 Limitations 

There are several limitations in this study. First, this study was conducted through an 

online experiment that involved interacting with a robot by watching a pre-recorded video. 

The findings in this study may appear in different directions or magnitude if an individual 
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interacts with a robot and performs a collaborative task instead of viewing a scenario. 

Second, the context of this study involved only one robot and one person per team. Teams 

working with robots are becoming bigger and more diverse, and the relationships between 

robots and individuals are more dynamic in such cases (Yanco & Drury, 2004). Third, this 

study examined only one aspect of surface-level and deep-level diversity, respectively. 

Perceptions of similarity can be elicited by many different factors other than gender and 

work style, such as place of origin, ad-hoc membership, abilities, and knowledge (Robert, 

2013; Van der Vegt & Van de Vliert, 2005). Lastly, this study employed risk of danger in a 

human-robot collaborative task to regulate the impacts of similarity. However, research 

shows that the impacts of similarity can be regulated by other factors, such as task 

interdependence and mode of communication via telecommunication systems (Scissors et 

al., 2009; Zellmer-Bruhn et al., 2008). Future research should identify other moderators to 

determine the boundary conditions for the impacts of similarity in teams working with 

robots. 

4.7 CONCLUSION OF CHAPTER 4 

Although adoption of robots into teams that fulfill different tasks is increasing swiftly, 

workers’ willingness to work with a robot as a team is not always guaranteed. This is in 

part because robots are often regarded as job-killers for people. This means that it is vital 

for teams working with robots to attain positive attitudes regarding the robots and working 

with them in order to succeed. In light of this, this study examined the impacts of similarity 

between an individual and a robot on fostering trust in the robot and intention to work with 

the robot on tasks of different levels of risk of danger. Results showed that the positive 

impacts of similarity are contingent upon the degree of risk of danger in a task. Results 
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also demonstrated that trust in a robot positively predicts subsequent intention to work with 

the robot and intention to replace a human teammate with the robot. Overall, this study 

contributes to research and practice regarding the development of teams working with 

robots.
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CHAPTER 5 

CONCLUSION OF DISSERTATION 

 

 

 

5.1 REVISITATION 

Robots are increasingly being adopted into many teams. The increasing adoption of robots 

has led to more challenges but also brought opportunities for teams to improve interaction 

among team members and produce better outcomes. As teams continue to incorporate 

robots, these teams’ success will depend on how they leverage the benefits of having 

robots, from team development stages to functioning stages. This concluding chapter 

revisits the research questions and the theoretical framework in Chapter 1 to gain an 

overarching insight from the three empirical studies. 

5.1.1 Research Questions 

Acknowledging the importance of teamwork involving robots, this dissertation research 

attempts to answer research questions regarding how to improve teamwork with robots in 

functioning and development stages. I recall each of the research questions and answer 

below with a summary of the studies conducted for this dissertation. 



135 

 

RQ1) What are the impacts of interaction between human teammates and 

interaction between humans and robots on outcomes in teams working with robots? 

The trust study and the team potency study can both provide answers to this research 

question. These two studies were designed to investigate how interactions within teams 

working with robots affect various outcomes of the teams, such as performance, 

satisfaction, and viability. The trust study examined affective trust in robots and in 

teammates and its performance benefits. Robot-building by team members and strong team 

identification increased trust in robots and trust in team members, respectively. Moreover, 

trust in robots increased team performance, whereas trust in teammates increased 

satisfaction with the teamwork. These findings provide evidence that interactions with 

robots and teammates yield unique effects on different team outcomes and thus warrant a 

unique approach to promoting trust in robots and team members separately. 

The team potency study also enhances our understanding on the impacts of interaction 

within teams working with robots on the performance of individual members of the team. 

The results showed that team potency improved task performance of individual team 

members only when the team is ethnically diverse. These findings suggest that the 

mechanism of performance enhancement should be considered with team diversity. This 

study answers the research question above by highlighting that interaction among team 

members who are from different backgrounds result in a more positive impact of team 

potency on their performance.  

Overall, the first research question is answered by conducting the first two studies. I 

believe these studies can tackle the team phenomena in the research question by involving 
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teams that consist of two robots and two people. Based on the nature of the studies that 

involve two people in the teams, the studies employed the team-level and the multi-level 

approach to designing the interventions in the experiments, collecting data, and analyzing 

the results. The execution of these studies also emphasizes the importance of research 

methods beyond the individual-level interactions and require unique strategies such as the 

team-level and the multi-level approaches. 

RQ2) How can we facilitate the development of teams working with robots? Can 

we promote an individual team member’s intention to work with robots? 

The second research question is answered based on the results of the similarity study. To 

address issues in the team development stage, the similarity study turns to theories of 

similarity and trust between an individual and a robot by examining the moderation effects 

of a situational factor that influences an individual’s cognitive process of judging attitudes 

toward robots. In Chapter 4, I reported results from an online experiment, which 

demonstrated that similarity between an individual and a robot promoted trust in a robot 

and intention to work with the robot as well as intention to replace a human teammate with 

the robot. Risk of danger is found to moderate the impacts of surface-level similarity on 

trust in a robot and the impacts of the work intention on the replace intention. Specifically, 

risk of danger activates a thoughtful cognitive process to assess trustworthiness and 

potential cost and benefit of working with a robot instead of a human teammate, which 

reduces the strength of the link between similarity and trust in the robot and intention to 

replace a human for the robot. As such, the similarity study illustrates the cognitive 

mechanism of the link between similarity and trust, which is regulated by risk of danger. 
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The three studies in this dissertation have great potential to make significant contributions 

to research on teams working with robots. First, the findings from the three studies provide 

evidence for the importance of a unique approach to research on teams working with 

robots. The literature of human-robot teamwork has mainly focused on collaboration 

between a single robot and an individual and still lacks empirical evidence for teamwork 

that involves multiple robots and people at the same time (Robert & You, 2014). Also, the 

existing literature of technology-supported teamwork has not been addressing issues 

related to robots (Tannenbaum et al., 2012; You & Robert Jr, 2016). It is generally 

assumed that our prior knowledge on interaction with robots and technology in the existing 

literature can be transferred to the context of interaction among multiple robots and people. 

However, the results from studies in this dissertation show that research on teamwork 

involving robots requires unique approaches to examining constructs and resources 

specifically applicable to team contexts. As such, research on teams working with robots 

has been in need of empirical studies that tackle interactions and mechanisms for the 

performance gains in teams involving multiple robots and people. My dissertation is one of 

the first studies that address this issue by conducting three empirical studies in the context 

of teams working with robots. 

Second, another intellectual merit of this dissertation is that the three studies can be the 

first steps towards building a theory of teamwork with robots. Although scholars have 

attempted to tackle many team phenomena in using and collaborating with robots, a 

theoretical framework that incorporates different aspects of teamwork has been lacking in 

the available literature. The absence of a theoretical framework limits our understanding of 

teams working with robots by hindering the formation of a nomological network on this 

subject. The importance of this topic suggests the need to develop a theoretical framework 
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directed at better understanding of teamwork with robots. A theoretical framework can 

help identify factors that enable or hinder the effectiveness of teams working with robots. 

The identification of such factors is crucial for two reasons: (1) to achieve theoretical 

progress in the field of teamwork with robots and (2) to gain a practical understanding of 

promoting outcomes in such teams. Therefore, I propose a research framework in a hope 

that this will guide future research. The framework will be discussed in detail in the 

following section of this chapter. 

5.1.2 The Framework 

The three studies also provide an empirical validation for the theoretical framework that 

was introduced in Chapter 1. As such, this section discusses theoretical contributions of the 

empirical studies to the proposed framework. The framework contains various constructs 

and resources regarding collaboration involving robots and seeks to delineate diverse 

phenomena in teams working with robots. The hope is that the framework and findings 

from the three empirical studies will interest more scholars and help advance the theory of 

human-robot teamwork. 

The model depicts that the life cycle of teams working with robots can begin from inputs 

and continue to enact different properties and interactions among humans and robots (i.e., 

mediators) to produce a team outcome (i.e., outputs). In the framework, I view that the 

inputs incorporate both the individual level, such as characteristics of individual team 

members and robots, and the team level, which include the composition of characteristics 

of humans and robots in the team. When an individual and a robot are similar on the 
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surface-level and/or the deep-level attributes, the human-robot team is homogeneous at the 

team-level. 

The framework asserts that the inputs, mediators, and outputs influence subsequent stages 

of the team’s life cycle and engender different teamwork phenomena and outcomes. For 

instance, the combination of different properties of humans and robots influence 

interactions among them and determines attitudinal and behavioral outcomes in the team. 

In this light, the similarity study in Chapter 4 showcases the impacts of composition of 

characteristics of a human and a robot in teamwork. Specifically, the similarity shows that 

homogeneity between an individual and a robot can predict trust in the robot and the 

individual’s attitudes towards the robot – intentions to work with the robot and to replace a 

human teammate with the robot.  

As illustrated in the theoretical framework, the mediators manifest team phenomena in 

three dimensions: cognitive, affective and motivational, and behavioral. Each of the three 

studies in this dissertation addresses team phenomena regarding the cognitive, affective, 

and motivational processes of teamwork with robots. For instance, the trust study in 

Chapter 2 examines affective trust in teams working with robots, while the team potency 

study in Chapter 3 explains the motivational mechanism where team potency as a 

motivational force can lead to better performance by behavioral enactments such as better 

cooperation and more effort in teamwork. The similarity study in Chapter 4 unpacks how 

trust in a robot as a cognitive mediator influences individuals’ intention to work with the 

robot. 
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The studies conducted for this dissertation provide evidence for the assertion on the link 

among inputs, mediators, and outputs. The team potency study in Chapter 3, for example, 

shows that ethnic composition of individual robot operators (i.e., inputs) influences their 

performance (i.e., outputs). Further support can also be found in the similarity study in 

Chapter 4, where homogeneity between an individual and a robot (i.e., inputs) predicted 

trust in the robot (i.e., mediators) and intention to work with the robot (i.e., outputs). 

This dissertation is only the beginning of the effort in providing an empirical evidence to 

the theoretical framework and enhancing our knowledge on how teams working with 

robots operate. I believe the theoretical framework bears many opportunities for scholars to 

pursue future research. 

One area that needs attention is the impacts of different compositions of teams working 

with robots. I examined teams with two humans and two robots, but there can be many 

different compositions possible. It is worth investigating, the impacts of the imbalanced 

number between humans and robots on interactions and outcomes. When team members 

share a robot for a collaborative task, varying degrees of perceptions, such as trust and 

emotional attachment toward the robot, may influence team outcomes. 

Another area for future research can be the examination of the organizational-level 

influence on the teamwork with robots. This dissertation research examined mostly, the 

interactions within a team, but leaves the organizational level phenomena for future 

research. Technical support from the organization can lead to more positive perceptions 

toward robots and working with them and better outcomes. Incentive structures of working 
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with robots in a team may be influential on employees’ intention to work with robots and 

thus, is worth examining from a managerial perspective. 

Lastly, future research should investigate the iterative process of teams working with 

robots. The framework asserts that various team outcomes in the outputs can feed back to 

the subsequent inputs and mediators. The framework views that teams working with robots 

are dynamic and learn over time. Longitudinal studies can better describe the process of 

teams working with robots in more than one life cycle, which was beyond the scope of the 

current dissertation. 

5.2 LIMITATIONS 

There are limitations in the studies conducted for this dissertation. First, all the studies 

were conducted through an experiment in a controlled environment. The trust and team 

potency studies from Chapter 2 and 3, respectively, were done in a lab with college 

students as participants. The similarity study, in Chapter 4, was done through a pre-

programmed online experiment using Amazon Mechanical Turk. There are, in fact, some 

advantages of using the controlled experiment. Causality can be claimed based on the 

experimental design. I was also able to utilize the buildable feature of Lego robots for the 

robot-building manipulation. The online experiment did not involve any actual risk in 

interaction with the robot. Despite these advantages, interactions in a controlled 

environment can be qualitatively different from what happens in reality. In teams, in 

reality, interactions among team members and robots are often not structured, but more 

dynamic and unpredictable. It is also possible that the results of the similarity study can 
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manifest in different magnitudes when the individuals are faced with real risk and have 

their lives at stake. 

Second, this dissertation did not capture the qualitative aspects of the phenomena in teams 

working with robots. The experiments in this dissertation employ quantitative 

measurements and involve interactions based on a protocol that was designed beforehand. 

The quantitative method used in this dissertation allows for measuring perceptions and 

attitudes as well as for building a nomological network based on statistical analysis. 

However, interactions may also be measured from qualitative methods, such as interpreting 

conversations among team members and directly observing their behaviors. Qualitative 

methods, including observation and interview, can be exploratory and thus, useful for 

uncovering new phenomena and understanding team members’ underlying motivations and 

opinions in depth. Future research can benefit from the qualitative methods for discovering 

and examining various phenomena in teams that work with robots. 

5.3 GUIDE FOR PRACTICE 

Besides the theoretical merit of this dissertation research, findings across the three studies 

are potentially poised to provide insights for the design of robots in teams working with 

robots and management of such teams. First, one immediate implication for robot 

designers is that functionality and technical capability of robots may not be the most 

important requirement for robots in teams. Technical advancement is, of course, essential 

to developing a robot for teams that perform various types of missions. However, technical 

specification of the robots used in this dissertation was constant across various conditions 

in the experiments. On the other hand, the constructs associated with the team made a 
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difference in the interaction among team members and possible outcomes. For instance, the 

team potency study showcased that performance of individual robot operators can be 

harnessed by the team’s ethnic composition. The similarity study asserts that sharing 

similar quality can alter a team member’s attitude toward the robot more positively. 

Second, designers of the robot should acknowledge that robots used in teams should be 

designed particularly for that team. In other words, robots used in teams are designed to 

facilitate the team interaction and support team functioning. The results from the trust 

study demonstrate that team identification and the collective robot-building activity 

promoted trust in the robots and teammates. This finding suggests that robots for teams 

should be equipped with customizability and visual indication to reinforce team 

membership. The similarity study also provides more evidence for the assertion by 

emphasizing the congruence between an individual and a robot result in more positive 

perception toward the robot. These benefits cannot be obtained when teams simply adopt a 

robot that is designed for individual interactions. In this sense, I believe this dissertation as 

a whole provides a valuable insight for designers of robots for teams. 

Third, team leaders and managers should keep in mind that adoption of robots may 

engender new team phenomena and they should be prepared for potential alteration in 

interaction within the team. My dissertation research is an effort to weave knowledge from 

a few different bodies of literature: the traditional teamwork research, the human-robot 

interaction, and the information systems. By incorporating insights from these individual 

bodies of research, I can prove that teams working with robots require a new approach to 

understanding how such teams work in order to improve outcomes. The team potency 

study implies that teams working with robots can benefit from a managerial intervention to 



144 

 

make the team more diverse. The similarity study provides a lesson for organizations that 

are considering adopting a robotic partner for their employees: robots will be welcomed to 

replace a human teammate only when there is a high risk of danger in the collaborative 

task. 
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