
Retrospective Cost Methods for
Combined State and Parameter Estimation

by

Ming-Jui Yu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2017

Doctoral Committee:

Professor Dennis S. Bernstein, Chair
Professor Ilya V. Kolmanovsky
Professor Henry A. Sodano
Professor Jeffrey Stein



A fanatic is one who can’t change his mind and won’t change the subject.

– Winston Churchill



Ming-Jui Yu

mingray@umich.edu

ORCID iD: 0000-0002-0080-1532

©Ming-Jui Yu

2017



To Mom and Dad, for making my dreams a reality

To my wife, for bringing joy to every aspect of my life

To my advisor, whose guidance made this journey possible

ii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Combined State and Parameter Estimation . . . . . . . . . . . . . . . . . 1
1.2 Identifiability of State-Space Realizations . . . . . . . . . . . . . . . . . 1
1.3 Parameter Estimation without Full-State Measurements . . . . . . . . . . 3
1.4 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Global Identifiability of State-Space Realizations . . . . . . . . . . . . . . . . 7

2.1 Combined State and Parameter Estimation Problem . . . . . . . . . . . . 7
2.2 Definition of Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Generic Results on Global Identifiability . . . . . . . . . . . . . . . . . . 9
2.4 Specialized Results on Global Identifiability . . . . . . . . . . . . . . . . 17

3 Classical Approaches to CSPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Combined State and Parameter Estimation . . . . . . . . . . . . . . . . . 31
3.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Example 1: n = 2 and Two Unknown Entries in a Single Row . . 32
3.3 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Example 2: Example 1 Revisited . . . . . . . . . . . . . . . . . 34
3.4 Unscented Kalman Filter with State-Dependent Coefficients . . . . . . . 36

3.4.1 Example 3: Example 1 Revisited . . . . . . . . . . . . . . . . . 36
3.4.2 Example 4: n = 3 and One Unknown Entry . . . . . . . . . . . . 38
3.4.3 Example 5: n = 3 and Three Unknown Entries in a Single Row . 40
3.4.4 Example 6: Application to Linearized Longitudinal Aircraft Dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Retrospective Cost Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 44

4.1 Subsystem Estimation Framework . . . . . . . . . . . . . . . . . . . . . 44
4.2 Retrospective Cost Parameter Estimation . . . . . . . . . . . . . . . . . . 48

4.2.1 Subsystem Model . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



4.2.2 Retrospective Performance Variable . . . . . . . . . . . . . . . . 48
4.2.3 Retrospective Cost Function . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Online Update of Gf . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Data-window Reiteration . . . . . . . . . . . . . . . . . . . . . . 51

4.3 RCPE with Known Initial State and No Excitation . . . . . . . . . . . . . 52
4.3.1 Example 7: n = 3 and Three Unknown Entries in a Single Row . 52
4.3.2 Example 8: n = 8 and Eight Unknown Entries in a Single Row . 53

4.4 RCPE with Unknown Initial State and Strong Excitation . . . . . . . . . 55
4.4.1 Example 9: n = 3 and Three Unknown Entries in a Single Row . 55
4.4.2 Example 10: n = 3 and Eight Unknown Entries in a Single Row . 56

4.5 RCPE with Unknown Initial State and Weak Excitation . . . . . . . . . . 57
4.5.1 Example 11: n = 2, Two Unknown Entries in a Single Row,

Unknown Initial Condition . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 Example 12: n = 2, Two Unknown Entries in a Single Row,

Unknown Initial Condition . . . . . . . . . . . . . . . . . . . . . 59
4.6 RCPE vs Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.1 Advantages of RCPE . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.2 Deficiencies of RCPE . . . . . . . . . . . . . . . . . . . . . . . 60

5 Retrospective Cost Parameter Estimation and Smoothing . . . . . . . . . . . . 61

5.1 RCPE Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.1 Augmented Subsystem Estimation Framework . . . . . . . . . . 61
5.1.2 Data Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 RCPES with Unknown Initial State and No Excitation . . . . . . . . . . . 64
5.2.1 Example 13: n = 2 and Two Unknown Entries in a Single Row . 64
5.2.2 Example 14: n = 3 and Three Unknown Entries in a Single Row 64
5.2.3 Example 15: Application to Linearized Longitudinal Aircraft

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 RCPES vs Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Advantages of RCPES . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Deficiencies of RCPES . . . . . . . . . . . . . . . . . . . . . . . 67

6 An Alternative Formulation of RCPES . . . . . . . . . . . . . . . . . . . . . . 68

6.1 RCPE Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.1 Modified Retrospective Performance Variable . . . . . . . . . . . 68
6.1.2 Revised Retrospective Cost Function . . . . . . . . . . . . . . . 69
6.1.3 Θ̂ Update Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.4 Data-window Reiteration . . . . . . . . . . . . . . . . . . . . . . 70

6.2 RCPES with Unknown Initial State and No Excitation . . . . . . . . . . . 71
6.2.1 Example 16: n = 2 and Two Unknown Entries in a Single Row . 71
6.2.2 Example 17: n = 2 and Three Unknown Entries in a Single Row 72

6.3 RCPES vs Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.1 Advantages of RCPES . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.2 Deficiencies of RCPES . . . . . . . . . . . . . . . . . . . . . . . 73

7 Retrospective Cost Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



7.1 State Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 RCKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.1 State Estimation as Static Subsystem Estimation . . . . . . . . . 75
7.2.2 Choice of Gf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 RCKF with Unknown Noise Covariances . . . . . . . . . . . . . . . . . 76
7.3.1 Example 18: n = 2 and D1, D2 are Uncertain . . . . . . . . . . . 77

7.4 RCKF with Nonzero-Mean Noise Distribution . . . . . . . . . . . . . . . 79
7.4.1 Example 19: n = 2 and v1, v2 are not Zero-Mean . . . . . . . . . 79

7.5 RCKF vs Kalman Predictor . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.1 Advantages of RCKF . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.2 Deficiencies of RCKF . . . . . . . . . . . . . . . . . . . . . . . 80

8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

v



LIST OF FIGURES

2.1 Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable. . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable. . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable. . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Cases in the green region are identifiable, whereas cases in the red region are
not identifiable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable. . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable. . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Application of EKF to Example 1. EKF is applied with 10000 randomly gen-
erated initial estimates (x̂2(0), â11(0), â12(0)) using the measurements y0(k) =
x1(k) over the interval k ∈ [0, 1000]. Trials where EKF estimates both com-
ponents of a within 10% relative error at step k = 1000 are labeled with cyan;
trials where EKF estimates exactly one component of a within 10% relative
error at step k = 1000 are labeled with black; and trials where EKF estimates
neither of the components of a within 10% relative error at step k = 1000 are
labeled with red. 100% of the trials are red. Note: In all subsequent examples,
cyan, black, and red indicate, respectively, trials where all, at least one, and
none of the components of a satisfy the accuracy specification. . . . . . . . . . 35

3.2 Application of UKF with (3.16) to Example 2. UKF with (3.16) is applied
with 10000 randomly generated initial estimates (x̂2(0), â11(0), â12(0)) using
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ABSTRACT

This dissertation is principally concerned with the combined state and parameter

estimation problem, where the goal is to estimate the state of a discrete-time, linear

time-invariant system with structured uncertainty in the system dynamics. First,

we prove necessary and sufficient conditions for the identifiability of unknown

parameters within a state-space realization. Next, we evaluate the performance

of classical techniques for solving the combined state and parameter estimation

problem. We then formulate and test the retrospective cost parameter estimation

algorithm under the assumption that the initial states are known. Two variants

of the retrospective cost parameter estimation and smoothing algorithm are for-

mulated and tested in the case where the initial states are unknown. Finally, the

retrospective cost Kalman filter algorithm is formulated and tested for state esti-

mation despite uncertain noise covariances and potentially nonzero-mean sensor

and process noise.
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CHAPTER 1

Introduction

1.1 Combined State and Parameter Estimation

It is often the case in practice that state estimation is required for a linear time-invariant

state-space system with unknown entries in the dynamics matrix A. This combined state

and parameter estimation (CSPE) problem is nonlinear due to products of the unknown

parameters and unmeasured states.

This dissertation is concerned solely with solving the CSPE problem. Our approach is

to first identify the unknown parameters in the dynamics matrix using available measure-

ments, and then perform state estimation using the identified dynamics matrix.

1.2 Identifiability of State-Space Realizations

Since the CSPE problem involves products of unmeasured states and unknown param-

eters, it is impossible in some cases to uniquely determine these variables. Consequently,

we seek to determine conditions under which the CSPE problem is solvable. In particu-

lar, we consider the case where all components of C are known, the uncertainty in A is

structured in the sense that each entry of A is specified as either known or unknown, and

the unknown entries of A are independent in the sense that no assumption is made about

the relationship among them. We say that the CSPE problem is solvable if the unmeasured

states and unknown entries of A are uniquely determined by the measurements.
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The fact that certain CSPE problems are not solvable may not be immediately evident.

As a counter-argument, one may point to the use of subspace identification methods [1, 2],

which can be used to estimate all of the entries of A and C along with the states. However,

the resulting state space model is represented in an arbitrary basis, which obscures the

meaning of the state components and does not distinguish between the known and unknown

entries of A.

Another possibility is to use the least squares algorithm to identify a time-series repre-

sentation of the system, express the time-series in a canonical realization, and then perform

a similarity transform to the desired basis. However, it is not possible to obtain the change-

of-basis matrix due to the uncertainty in A.

A convenient way to determine whether or not a specific CSPE problem is solvable is

to assume that the input to the system is an impulse, in which case the output of the system

is the impulse response of a state space model. The solvability of the CSPE problem is thus

equivalent to determining the identifiability of a state space realization.

Identifiability of state-space realizations has been widely studied. Local identifiability

and global identifiability are defined in [3, 4]. For continuous-time systems, necessary and

sufficient conditions for testing local identifiability are provided in [5–7]. For discrete-

time systems, necessary and sufficient conditions for local identifiability are provided in

[8, 9]. Necessary and sufficient conditions for testing global identifiability of continuous-

time systems are provided in [10]. This result is based on Ritt’s algorithm [11], which is

computationally intensive and thus is suitable only for simple cases, as shown in [12, 13].

Sufficient conditions for global identifiability of discrete-time systems are given in [14].

The first main contribution of this dissertation is the development of necessary and

sufficient conditions for global identifiability of second-, third-, and fourth-order discrete-

time systems. The tests derived in this dissertation are analytical and thus do not require

any computation as in the case of Ritt’s algorithm. The approach of the present paper is

suggested in [15], but explicit results are not presented. Consequently, the results shown in
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the present dissertation is the first to provide global, necessary and sufficient, and explicit

conditions for the identifiability of discrete-time systems with structured uncertainty in

the dynamics matrix. These conditions reveal the solvability of the corresponding CSPE

problem.

1.3 Parameter Estimation without Full-State Measurements

For CSPE problems that are identifiable, the classical approach is to apply the extended

Kalman filter [16]. Alternatively, the unscented Kalman filter (UKF) [17] can be used and

applied to CSPE in [18]. Yet another approach to CSPE is based on the polynomial chaos

series expansion [19, 20].

In this dissertation, we focus on the retrospective cost parameter estimation (RCPE)

[21, 22] algorithm. The idea behind RCPE is to view the uncertain entries of the dynamics

matrix as an uncertain subsystem connected in feedback. A performance metric based on

the difference between the outputs of the true system and the model is then recursively

optimized in order to update the estimates of the unknown parameters.

Note that if the state x(k) is known for all k ≥ 0, then it is straightforward to estimate

the uncertain entries of A using variations of the least squares algorithm. Likewise, if all of

the entries of A are known, then the Kalman filter can be used to estimate the state. Since

RCPE can be used for parameter estimation without measurements of the state x, it can be

viewed as an approach to solving CSPE.

Variants of RCPE have been applied to parameter estimation within the ionosphere-

thermosphere [21–23], estimation of aeroelastic structural health [24], estimation of battery

health [25–27], and online estimation of aircraft parameters [28, 29].

The key step in RCPE is the use of retrospective cost optimization, where the cost func-

tion is expressed as the sum of the measurement error and the filtered difference between

prior estimates and retrospectively fitted estimates. While prior formulations of RCPE uti-

3



lize finite-impulse-response filters constructed from the Markov parameters of the system

model, the RCPE algorithm presented in this dissertation utilizes a time-varying, infinite-

impulse-response filter, which is continuously updated with prior estimates of the unknown

parameters. This modification is motivated by the work in [30], where an interpretation of

the filter as a target model is presented.

The second main contribution of this dissertation is thus the formulation of RCPE which

uses the aforementioned time-varying filter. It is shown that this formulation provides

accurate estimates of the unknown parameters under the assumption that the initial state

of the system is known. Although this assumption is usually unrealistic in practice, the

accuracy of the estimates is notable since knowledge of the initial state does not improve the

performance of either EKF or UKF. This assumption leads to the development of the RCPE

smoother (RCPES), which estimates both the unknown entries of the dynamics matrix and

the unknown components of the initial state. Two variations of RCPES are given and

assessed. Consequently, the third main contribution of the present paper is the development

and assessment of RCPES.

1.4 State Estimation

The classical approach to state estimation is the Kalman Filter, which is the optimal

state estimator for linear systems under zero-mean process and sensor noise with finite

second moments. The optimality of the Kalman filter depends on knowledge of the system

dynamics and noise covariances. When these estimates are unavailable or inaccurate, the

performance of the Kalman filter degrades.

In this dissertation, we develop the retrospective cost Kalman filter (RCKF) algorithm,

which is an alternative approach to state estimation which neither requires the process and

sensor noise to be zero-mean and finite second moments nor requires knowledge of noise

covariances. With RCKF, we view the innovations term K(y0 − Ex̂) in the Kalman filter

4



as a static subsystem connected in feedback with a system model which is perturbed by

a measured input. Using the same principles as RCPE, we estimate the parameters of the

static subsystem in order to minimize the difference between the output of the true system

and the model. The fourth main contribution of the present paper is thus the development

and assessment of RCKF.

1.5 Dissertation Outline

In Chapter 2, we state and derive necessary and sufficient conditions for the global

identifiability of second-, third-, and fourth-order discrete-time state-space systems. First,

we state the CSPE problem and define identifiability. Next, we derive generic conditions

for identifiability of second-, third-, and fourth-order systems where the measurement is an

arbitrary scalar signal. Finally, we derive generic and non-generic conditions for identifia-

bility of third- and fourth-order systems where the measurement is a vector of components

of x.

In Chapter 3, we test classical methods for CSPE in order to establish a benchmark for

the algorithms introduced in later chapters. First, we apply EKF to the second-order prob-

lem. Next, we constructed an augmented system and apply UKF to the same second-order

problem. We then construct an augmented system using state-dependent coefficients and

apply UKF to second- and third-order problems. Since one can construct infinitely many

augmented systems using state-dependent coefficients, we test a range of these construc-

tions and compare their performance.

In Chapter 4, we formulate and test the RCPE algorithm. First, we present the sub-

system estimation framework. Next, we define a cost function based on the retrospective

performance variable and then obtain minimizer. We then analyze the retrospective perfor-

mance variable in order to arrive at an iterative update method for parameter estimation.

To establish a comparison with classical methods for CSPE, we apply RCPE to the same

5



problems in Chapter 3. We first apply RCPE assuming the initial state is known. Then, we

apply RCPE assuming there is a sufficiently large, measured excitation signal. Finally, we

apply RCPE without excitation and assume the initial state is unknown. This motivates the

need for an alternative formulation of RCPE.

In Chapter 5, we formulate and test the first variation of the RCPES algorithm. We start

by presenting an augmented version of the subsystem estimation framework introduced in

Chapter 4 in order to achieve concurrent estimation of the unknown parameters and the

unmeasured components of the initial state. Then, to compare with classical approaches to

CSPE, we apply RCPES to the same problems in Chapter 3 without excitation and assume

that the initial state is unknown.

In Chapter 6, we formulate and test the second variation of RCPES. We start by pre-

senting an alternate way to define the retrospective performance variable, which results in

a polynomial cost function. We then present a convex approximation to this new cost func-

tion and obtain the solution. Once again, we apply RCPES to the same problems in Chapter

3 for comparison.

In Chapter 7, we formulate and test the RCKF algorithm. To start, we derive RCKF by

showing that it is a form of static subsystem estimation. Then, assuming that the system is

known and in the presence of process and sensor noise, we apply RCKF for state estimation

without using knowledge of the noise covariance. The performance of RCKF is compared

with the Kalman filter using inaccurate estimates of the noise covariance. We also compare

the performance of RCKF with the Kalman filter for cases where the process and sensor

noise are not zero-mean.

Finally, in Chapter 8, we summarize the contributions of this dissertation and discuss

future work in identifiability, RCPE, RCPES, and RCKF.
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CHAPTER 2

Global Identifiability of State-Space Realizations

2.1 Combined State and Parameter Estimation Problem

Consider the linear time-invariant system

x(k + 1) = Ax(k), (2.1)

x(0) = x0, (2.2)

y0(k) = Ex(k), (2.3)

where n ≥ 2,

x(k) =


x1(k)

...

xn(k)

 ∈ Rn, A =


a11 · · · a1n

... . . . ...

an1 · · · ann

 ∈ Rn×n, (2.4)

y0(k) ∈ R is the measurement, and

E = [ e1 e2 · · · en ] ∈ R1×n. (2.5)

We assume that E is known but A is structured in the sense that some entries of A are

assumed to be known and others are assumed to be unknown. The objective is to use

the measurements y0(k), where k ≥ 0, to estimate the unknown entries of A and the
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unmeasured components x1(k), x2(k), . . . , xn(k) of the state x(k).

2.2 Definition of Identifiability

To provide an equivalent formulation of (2.1) – (2.3), let δ(k) be the unit impulse signal,

let

B = [ b1 · · · bn ]T ∈ Rn, (2.6)

and consider the single-input, single-output system

x̃(k + 1) = Ax̃(k) +Bδ(k), (2.7)

x̃(0) = 0, (2.8)

ỹ0(k) = Ex̃(k), (2.9)

where E is given by (2.5). We assume that B = x0, where x0 is the initial condition in

(7.2). It thus follows that (2.1) – (2.3) and (2.7) – (2.9) are equivalent in the sense that the

outputs y0(k) and ỹ0(k) are equal for all k ≥ 0. This output is the free response of (3.1) –

(3.3) as well as the impulse response of the transfer function corresponding to (A,B,E).

Therefore, for (2.1) – (2.3), the feasibility of estimating the unmeasured states and unknown

entries of A is equivalent to determining whether or not the unknown entries of A and B

are identifiable, that is, uniquely specified given the transfer function corresponding to

(A,B,E). The equivalence of (2.1) – (2.3) and (2.7) – (2.9) thus determines the feasibility

of the combined state and parameter estimation problem in terms of the identifiability of

the unknown entries of (A,B).

Now consider the transfer function

G(z) =
βn−1z

n−1 + · · ·+ β1z + β0

zn + · · ·+ α1z + α0

, (2.10)
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whose numerator and denominator are coprime. Let q ≤ n2 +n be the number of unknown

entries of (A,B). We define S ⊂ Rq to be the set of vectors of unknown entries of A and

B such that (A,B,E) is a minimal realization of (2.10). If S contains exactly one element,

then (A,B) is identifiable.

2.3 Generic Results on Global Identifiability

We now state necessary and sufficient conditions under which (A,B) is generically

identifiable. For the remainder of this chapter, the notation ā indicates that a is a known

parameter.

Theorem 2.3.1: Let n = 2, let q ≤ 6 denote the number of unknown entries of (A,B),

and assume that (A,B,E) is controllable and observable, where

A =

 a11 a12

a21 a22

 , B =

 b1

b2

 , E =

[
ē1 ē2

]
. (2.11)

Then the conditions under which (A,B) is generically identifiable are given in Figure 2.1.

Figure 2.1: Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable.

Region I contains the cases where both of the unknown entries ofA are in either a single

row or a single column. Region II contains the cases where both of the unknown entries of

A are on either the diagonal or the anti-diagonal.
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Proof: Set

[ ē1 ē2 ](zI2 − A)−1B =
β1z + β0

z2 + α1z + α0

, (2.12)

where I2 is the 2× 2 identity matrix. It follows that

ē1b1 + ē2b2 = β1, (2.13)

ē1b2a12 + ē2a21b1 − ē1b1a22 − ē2b2a11 = β0, (2.14)

a11 + a22 = −α1, (2.15)

a11a22 − a12a21 = α0. (2.16)

Consider the case where q = 3. Let a11 be unknown. We write (2.13) – (2.16) as

M


a11

b1

b2

 =



−α1 − ā22

α0+ā12ā21
ā22

β1

β0


, (2.17)

where

M
4
=



1 0 0

ā22 0 0

0 ē1 ē2

0 ē2ā21 − ē1ā22 ē1ā12 − ē2a11


. (2.18)

Except for the case where

 ē1 ē2

ē2ā21 − ē1ā22 ē1ā12 − ē2a11

 (2.19)
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is singular, M has full column rank, and thus (2.17) has a unique solution generically.

Hence, S has exactly one element generically. In the case where a22 is unknown, a similar

argument shows that S has exactly one element generically.

Next, let a12 be unknown. Then (2.15) constrains only known parameters and thus can

be disregarded. Hence, (2.13) – (2.16) have the form

ē1b1 + ē2b2 = β1, (2.20)

ē1b2a12 + ē2ā21b1 − ē1b1ā22 − ē2b2ā11 = β0, (2.21)

ā11ā22 − a12ā21 = α0. (2.22)

Except for the case where either ā21 = 0, ē1 = 0, or ē2
1a12− ē1ē2ā11 + ē1ē2ā22− ē2

2ā21 = 0,

(2.20) – (2.22) imply

a12 =
ā11ā22 − α0

ā21

, b1 =
β1 − ē2b2

ē1

b2 =
ē1β0 + ē1ā22β1 − ē2ā21β1

ē2
1a12 − ē1ē2ā11 + ē1ē2ā22 − ē2

2ā21

, (2.23)

and thus S has exactly one element generically. In the case where a21 is unknown, a similar

argument shows that S has exactly one element generically.

Now consider the case where q ≥ 5. Since either five or six unknown parameters satisfy

(2.13) – (2.16), S has infinitely many elements.

Next, consider the case where q = 4. Let a11 and a12 be unknown. Then (2.13) – (2.16)

have the form

ē1b1 + ē2b2 = β1, (2.24)

ē1b2a12 + ē2ā21b1 − ē1b1ā22 − ē2b2a11 = β0, (2.25)

a11 + ā22 = −α1, (2.26)

a11ā22 − a12ā21 = α0. (2.27)
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Except for the cases where ā21 = 0, (2.26) – (2.27) imply

a11 = −α1 − ā22, a12 =
a11ā22 − α1

ā21

, (2.28)

Furthermore, except for the cases where

 ē1 ē2

ē2ā21 − ē1ā22 ē1a12 − ē2a11

 (2.29)

is singular, (2.24) – (2.25) imply

 b1

b2

 =

 ē1 ē2

ē2ā21 − ē1ā22 ē1a12 − ē2a11


−1  β1

β0

 , (2.30)

and thus S has exactly one element generically. In the cases where a12 and a22 are unknown,

a11 and a21 are unknown, or a21 and a22 are unknown , a similar argument shows that S has

exactly one element generically.

Let a11 and a22 be unknown. Then (2.13) – (2.16) have the form

ē1b1 + ē2b2 = β1, (2.31)

ē1b2ā12 + ē2ā21b1 − ē1b1a22 − ē2b2a11 = β0, (2.32)

a11 + a22 = −α1, (2.33)

a11a22 − ā12ā21 = α0. (2.34)

(2.33) – (2.34) imply

a11 = a22 =
−α1 ±

√
α2

1 − 4(α0 + ā12ā21)

2
, (2.35)
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and except for the cases where

 ē1 ē2

ē2ā21 − ē1ā22 ē1a12 − ē2a11

 (2.36)

is singular, (2.31) – (2.32) imply

 b1

b2

 =

 ē1 ē2

ē2ā21 − ē1ā22 ē1a12 − ē2a11


−1  β1

β0

 . (2.37)

Thus, except for the case where α2
1 − 4(α0 + ā12ā21) = 0, S has exactly two elements

generically. Note that both alternatives in (2.35) are real since A has real entries.

Let a12 and a21 be unknown. Note that (2.15) constrains only known parameters and

thus can be disregarded. Hence, (2.13) – (2.16) have the form

ē1b1 + ē2b2 = β1, (2.38)

ē1b2a12 + ē2a21b1 − ē1b1ā22 − ē2b2ā11 = β0, (2.39)

ā11ā22 − a12a21 = α0. (2.40)

Since four unknown parameters satisfy three equations, S has infinitely many elements. �

Example 1 Consider (2.7)-(2.9), where the diagonal entries of A are uncertain. Note

that the uncertainty in A corresponds to the case q = 3 and falls in Region II in Figure 1. In

order to explicitly demonstrate why the case of uncertain diagonal entries is not identifiable,

letA1 andA2 denote special cases ofA, and letG1 andG2 be the transfer functions defined

by the realizations

G1 ∼

 A1 B

E 0

 , G2 ∼

 A2 B

E 0

 , (2.41)
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where

A1 =

 a11 a12

a21 a22

 , A2 =

 a22 a12

a21 a11

 , B =

 0

1

 , E =

[
1 0

]
. (2.42)

Note that A1 and A2 are identical except that their diagonal entries are swapped, which is

consistent with the assumed uncertainty structure. The corresponding discrete-time transfer

function of both systems is given by

G1(z) = G2(z) =
a12

z2 − (a11 + a22)z + (a12a21 − a11a22)
. (2.43)

Since G1 and G2 are the same transfer function, it is impossible to distinguish between

the two systems using only input and output data. Hence, the uncertain system is not

identifiable. The lack of identifiability can be seen more directly by noting that A1 =

SA2S
−1, B = SB, and E = ES−1, where

S = −S−1 =

 1 0

a22−a11
a12

1

 , (2.44)

which also shows that G1 = G2.

Theorem 2.3.2: Let n = 3, let q ≤ 12 be the number of unknown entries of (A,B),

and assume that (A,B,E) is controllable and observable, where

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =


b1

b2

b3

 , E =

[
ē1 ē2 ē3

]
. (2.45)

Then the conditions under which (A,B) is generically identifiable are given in Figure 2.2.

Region I contains the cases where at least one entry on the diagonal of A is unknown.

Region II contains the cases where all of the entries on the diagonal of A are known and
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Figure 2.2: Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable.

all of the unknown entries of A are in either a single row or a single column. Region III

contains the cases where exactly one entry on the diagonal of A is unknown and all of the

remaining unknown entries of A are in a single row or a single column.

The proof of Theorem 2.3.2 is similar to the proof of Theorem 2.3.1 and thus is omitted.

Theorem 2.3.3: Let n = 4, let q ≤ 20 be the number of unknown entries of (A,B),

and assume that (A,B,E) is controllable and observable, where

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


, B =



b1

b2

b3

b4


, E =

[
ē1 ē2 ē3 ē4

]
. (2.46)

Then the conditions under which (A,B) is generically identifiable are given in Figure 2.3.

Figure 2.3: Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable.
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Region I contains the cases where all of the following conditions are satisfied: i) exactly

two unknown entries on the diagonal of A are unknown; ii) exactly two unknown entries

of A are in a single row; and iii) exactly two unknown entries of A are in a single column.

Region II contains the cases where exactly one unknown entry on the diagonal of A is

unknown. Region III contains the cases where all of the entries on the diagonal of A are

known and all of the unknown entries are in either a single row or a single column. Region

IV contains the cases where exactly one entry on the diagonal of A is unknown and all of

the remaining unknown entries are in a single row or a single column.

The proof of Theorem 2.3.3 is similar to the proof of Theorem 2.3.1 and thus is omitted.

Extrapolating from Theorem 2.3.1–2.3.3 yields the following conjecture regarding the

identifiability of (A,B) for arbitrary n.

Conjecture 2.3.4: Let n > 2, let q ≥ n2 + n be the number of unknown entries of

(A,B), and assume that (A,B,E) is observable and controllable, where

A =


a11 · · · a1n

... . . . ...

an1 · · · ann

 , B =


b1

...

bn

 , E =

[
ē1 · · · ēn

]
. (2.47)

Then the following statements hold:

1. If q ≤ 2n− 2, then (A,B) is generically identifiable.

2. If q = 2n − 1, all of the entries on the diagonal of A are known, and all of the un-

known entries of A are in a single row or a single column, then (A,B) is generically

identifiable.

3. If q = 2n, exactly one entry on the diagonal ofA is unknown, and all of the remaining

unknown entries are in a single row or a single column, then (A,B) is generically

identifiable.

4. If q ≥ 2n+ 1, then (A,B) is generically not identifiable.
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2.4 Specialized Results on Global Identifiability

In this section, we assume that E has a specific structure and derive further conditions

on identifiability. Some of the identifiability conditions derived in this section include both

generic and non-generic cases.

Theorem 2.4.1: Let n = 3,

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =


b1

b2

b3

 , E =

[
1 0 0

]
, (2.48)

and assume that (A,B,E) is a minimal realization of

G(z) =
β2z

2 + β1z + β0

z3 + α2z2 + α1z + α0

, (2.49)

whose numerator and denominator are coprime. Then (A,B) is not identifiable if and only

if at least one of the following statements holds:

1.

 a12 a13

a13a32 − a12a33 a12a33 − a13a22

 is singular.

2. q = 3, aij is unknown, aji = 0, and akkaji − ajkaki = 0, where i 6= j 6= k ≤ n.

3. q = 4, aii and ajj are unknown, and ajkakj = aikaki, where i 6= j 6= k ≤ n.

4. Generically, q = 4, aij and akl are unknown, where i 6= k, j 6= l, i 6= j, and k 6= l.

5. q = 4, aii and ajk are unknown, akj = 0, and akjall − aklalj = 0, where either

i = j 6= k 6= l ≤ n or i = k 6= l 6= l ≤ n.

6. q = 4, aii and ajk are unknown, akj = 0, and akj(α2−ajj−akk)+aijaki = 0, where

i 6= j 6= k ≤ n.
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7. q = 4, aij and alm are unknown, and −aji −aml

ajiakk − ajkaki amlaoo − amoaol

 is singular, where i = l 6= j 6= m ≤ n or

j = m 6= i 6= l ≤ n, i 6= j 6= k ≤ n, and l 6= m 6= o ≤ n.

8. q = 5, aii, ajj , and akk are known, where i 6= j 6= k ≤ n.

9. Generically, q = 5 and aii and ajj are unknown, where i 6= j ≤ n.

10. Generically, q = 5, aii, ajk, and alm are unknown, where i ≤ n, j 6= l ≤ n, and

k 6= m ≤ n.

11. q = 5, aii, ajk, and amo are unknown, and −akj −aom

akjall − aklalj aomapp − aopapm

 is singular, where i ≤ n, j = m 6= k 6= o ≤

n or k = o 6= j 6= m ≤ n, j 6= k 6= l ≤ n, and m 6= o 6= p ≤ n.

12. q ≥ 6.

Proof. Set

G(z) =

[
1 0 0

]
(zI3 − A)−1B. (2.50)
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It thus follows that

b1 = β2, (2.51)

b2a12 + b3a13 − b1a22 − b1a33 = β1, (2.52)

b1a22a33 − b1a23a32 + b2a13a32

−b2a12a33 + b3a12a33 − b3a13a22 = β0, (2.53)

a11 + a22 + a33 = −α2, (2.54)

a11a22 − a12a21 + a11a33

−a13a31 + a22a33 − a23a32 = α1, (2.55)

a13a22a31 − a13a21a32 − a12a23a31

+a12a21a33 + a11a23a32 − a11a22a33 = α0. (2.56)

Since (2.51) constrains only known parameters, it can be disregarded.

Sufficiency:

1) We write (2.52) and (2.53) in matrix form and obtain

M

 b2

b3

 =

 β1 + b1(a22 + a33)

β2 + b1(a23a32 − a22a33)

 , (2.57)

where

M
4
=

 a12 a13

a13a32 − a12a33 a12a33 − a13a22

 . (2.58)

Since b2 and b3 do not appear in any other equation andM is singular, S has infinitely many

elements.

2) Consider the case where a12 is unknown. (2.54) constrains only known parameters
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and thus can be disregarded. We write (2.55) and (2.56) in matrix form and obtain

Ma12 =

 ξ1

ξ0

 , (2.59)

where ξ1 and ξ0 are complex expressions of known parameters, and

M
4
=

 −ā21

ā21ā33 − ā23ā31

 . (2.60)

Since ā21 = 0 and ā21ā33 − ā23ā31 = 0, M is not left invertible, thus S has infinitely many

elements. In the case where exactly one of a21, a13, a31, a23, or a32 is unknown, a similar

argument shows that S has infinitely many element.

3) Consider the case where a11 and a22 are unknown. (2.54) – (2.56) have the form

a11 + a22 = −α2 − ā33, (2.61)

a11a22 = α1 − ā33a11 − ā33a22

+ ā12ā21 + ā13ā31 + ā23ā32, (2.62)

−ā33a11a22 = α0 − ā23ā32a11 − ā13ā31a22

+ ā13ā21ā32 + ā12ā23ā31 − ā12ā21ā33. (2.63)

Substituting (2.62) into (2.63) and writing the remaining equations in matrix form, we

obtain

M

 a11

a22

 =

 ξ2

ξ0

 , (2.64)
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where ξ2 is a complex expression of known parameters, and

M
4
=

 1 1

ā2
33 + ā23ā32 ā2

33 + ā13ā31

 . (2.65)

Since ā23ā32 = ā13ā31, M is singular, thus S has infinitely many elements. In the case

where either a11 and a33 are unknown or a22 and a33 are unknown, a similar argument

shows that S has infinitely many elements.

4) Consider the case where a12 and a21 are unknown. (2.54) constrains only known

parameters and thus can be disregarded. (2.55) and (2.56) have the form

−a12a21 = α1 − ā11ā22 − ā11ā33

+ ā13ā31 − ā22ā33 + ā23ā32, (2.66)

ā33a12a21 = α0 + ā23ā31a12 + ā13ā32a21

− ā23ā32ā11 − ā13ā31ā22 + ā33ā11ā22. (2.67)

Substituting (2.66) into (2.68) reduces (2.51) – (2.56) to three equations with four unknown

parameters, thus S has infinitely many elements. In the case where either a13 and a31 are

unknown and a23 and a32 are unknown, a similar argument shows that S has infinitely many

elements.

Consider the case where a12 and a23 are unknown. (2.54) constrains only known pa-

rameters and thus can be disregarded. (2.55) and (2.56) have the form

−ā21a12 − ā32a23 = α1 − ā11ā22

− ā11ā33 + ā13ā31 − ā22ā33, (2.68)

−ā31a12a23 + ā33ā21a12 + ā32ā11a23 = α0

+ ā13ā32a21 − ā13ā31ā22 + ā33ā11ā22. (2.69)
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Using (2.68), (2.69) is quadratic in either a12 or a23, and thus S has exactly two elements

generically. In the case where a12 and a31, a13 and a21, a13 and a32, a21 and a32, or a23 and

a31 are unknown, a similar argument shows that S has exactly two elements generically.

5) Consider the case where a11 and a12 are unknown. (2.54) – (2.56) have the form

a11 = −α2 − ā22 − ā33, (2.70)

(ā22 + ā33)a11 − ā21a12 = α1

+ ā13ā31 − a22ā33 + ā23ā32, (2.71)

(ā23ā32 − ā33ā22)a11 + (ā21ā33 − ā23ā31)a12

= α0 − ā13ā31a22 + ā13ā21ā32. (2.72)

Substituting (2.70) into (2.71) and (2.72) and writing the result in matrix form yield

Ma12 =

 ξ1

ξ0

 , (2.73)

where

M
4
=

 −ā21

ā21ā33 − ā23ā31

 . (2.74)

Since ā21 = 0 and ā21ā33 − ā23ā31 = 0, M is not left invertible, thus S has infinitely many

elements. In all other cases where aii and ajk are unknown, akj = 0, and akjall−aklalj = 0,

where either i = j 6= k 6= l ≤ n or i = k 6= l 6= l ≤ n, a similar argument shows that S has

infinitely many elements.

6) A similar argument as the proof for 5) is used to prove this condition. The detailed

formulation is omitted.

7) Consider the case where a12 and a13 are unknown. (2.54) constrains only known
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parameters and thus can be disregarded. We write (2.55) and (2.56) in matrix form and

obtain

M

 a12

a13

 =

 ξ1

ξ0

 , (2.75)

where

M
4
=

 −ā21 −ā31

ā21ā33 − ā23ā31 ā22ā31 − ā21ā32

 . (2.76)

Since M is singular, S has infinitely many elements. In every other case where aij and alm

are unknown, and −aji −aml

ajiakk − ajkaki amlaoo − amoaol

 is singular, where i = l 6= j 6= m ≤ n or j = m 6=

i 6= l ≤ n, i 6= j 6= k ≤ n, and l 6= m 6= o ≤ n, a similar argument shows that S has

infinitely many elements.

8) Note that (2.54) constrains only known parameters and thus can be disregarded.

Since five unknown parameters satisfy four equations, S has infinitely many elements.

9) Consider the case where a11, a22, and a33 are unknown. (2.54) – (2.56) have the form

a11 + a22 + a33 = −α2, (2.77)

a11a22 + a11a33 + a22a33 = α1

+ ā21ā12 + ā13ā31 + ā23ā32, (2.78)

−a11a22a33 + ā23ā32a11 + ā13ā31a22

+ ā21ā12a33 = α0 + ā13ā21ā32 + ā12ā23ā31. (2.79)

Using (2.77) and (2.78), (2.79) may be two different cubic equations, thus S has exactly six

elements generically.
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Consider the case where a11, a12, and a22 are unknown. (2.54) – (2.56) have the form

a11 + a22 = −α2 − ā33, (2.80)

a11a22 = α1 + ā21a12 − ā33a11

− ā33a22 + ā13ā31 + ā23ā32, (2.81)

−ā33a11a22 = α0 − ā23ā32a11 − ā13ā31a22

− ā21ā33a12 + ā13ā21ā32 + ā12ā23ā31. (2.82)

Substituting (2.81) into (2.82) reduces (2.51) – (2.56) to four equations with five unknown

parameters, thus S has infinitely many elements. In every other case where q = 5 and aii

and ajj are unknown, where i 6= j ≤ n, a similar argument shows that S has infinitely

many elements.

10) A similar argument as the proof for 9) is used to prove this condition. The detailed

formulation is omitted.

11) A similar argument as the proof for 7) is used to prove this condition. The detailed

formulation is omitted.

12) Since more than five unknown parameters satisfy five equations, S has infinitely

many elements.

Necessity: Let

K
4
=

 a12 a13

a13a32 − a12a33 a12a33 − a13a22

 . (2.83)

To establish necessity, we show that S has exactly one element in the case where one of the

following mutually exclusive statements holds:

i) K is nonsingular, q = 3, aii is unknown, where i ≤ n.

ii) K is nonsingular, q = 3, aij is unknown, and aji 6= 0 or akkaji − ajkaki 6= 0, where
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i 6= j 6= k ≤ n.

iii) K is nonsingular, q = 4, aii and ajj are unknown, and ajkakj 6= aikaki, where

i 6= j 6= k ≤ n.

iv) K is nonsingular, q = 4, aii and ajk are unknown, and akj 6= 0 or akjall−aklalj 6= 0,

where either i = j 6= k 6= l ≤ n or i = k 6= l 6= l ≤ n.

v) K is nonsingular, q = 4, aii and ajk are unknown, and akj 6= 0 or akj(α2 − ajj −

akk) + aijaki 6= 0, where i 6= j 6= k ≤ n.

vi) K is nonsingular, q = 4, aij and alm are unknown, and −aji −aml

ajiakk − ajkaki amlaoo − amoaol

 is nonsingular, where i = l 6= j 6= m ≤ n

or j = m 6= i 6= l ≤ n, i 6= j 6= k ≤ n, and l 6= m 6= o ≤ n.

vii) K is nonsingular, q = 5, aii, ajk, and amo are unknown, and −akj −aom

akjall − aklalj aomapp − aopapm

 is nonsingular, where i ≤ n, j = m 6= k 6=

o ≤ n or k = o 6= j 6= m ≤ n, j 6= k 6= l ≤ n, and m 6= o 6= p ≤ n.

In Figure 2.4, Eκ denotes condition κ) in Theorem 2.4.1. Note that 1) – 12) together

correspond to the red region in Figure 2.4, and i) – vi) together correspond to the green

region in Figure 2.4. Therefore, 1) – 12) and i) – vi) together cover all possible cases.

Figure 2.4: Cases in the green region are identifiable, whereas cases in the red region are
not identifiable.
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i) Consider the case where a11 is unknown. We write (2.54) – (2.56) in matrix form and

obtain

Ma11 =


ξ2

ξ1

ξ0

 , (2.84)

where

M
4
=


1

ā22 + ā33

ā23ā32 − ā22ā33

 . (2.85)

Since M is left invertible, S has exactly one element. In the case where either a22 or a33 is

unknown, a similar argument shows that S has exactly one element.

ii) Since ā21 6= 0 or ā21ā33 − ā23ā31 6= 0, the matrix M in (2.60) is left invertible, thus

S has exactly one element. In the case where exactly one of a21, a13, a31, a23, or a32 is

unknown, a similar argument shows that S has exactly one element.

iii) Since ā23ā32 6= ā13ā31, the matrix M in (2.65) is nonsingular, thus S has exactly one

element. In the case where either a11 and a33 are unknown or a22 and a33 are unknown, a

similar argument shows that S has exactly one element.

iv) Since ā21 6= 0 or ā21ā33 − ā23ā31 6= 0, the matrix M in (2.74) is left invertible, thus

S has exactly one element. In all other cases where aii and ajk are unknown, akj 6= 0 or

akjall − aklalj 6= 0, where either i = j 6= k 6= l ≤ n or i = k 6= l 6= l ≤ n, a similar

argument shows that S has exactly one element.

v) The detailed proof is omitted.

vi) Since the matrix M in (2.76) is nonsingular, S has exactly one element. In every

other case where aij and alm are unknown, and
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 −aji −aml

ajiakk − ajkaki amlaoo − amoaol

 is nonsingular, where i = l 6= j 6= m ≤ n or

j = m 6= i 6= l ≤ n, i 6= j 6= k ≤ n, and l 6= m 6= o ≤ n, a similar argument shows that S

has exactly one element.

vii) The detailed proof is omitted.

Theorem 2.4.2: Let n = 3,

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =


b1

b2

b3

 , E =

 1 0 0

0 1 0

 , (2.86)

q ≤ n2 + 1 be the number of unknown entries in (A,B), and assume that (A,B,E) is a

minimal realization of

G(z) =

 β21z2+β11z+β01
z3+α2z2+α1z+α0

β22z2+β12z+β02
z3+α2z2+α1z+α0

 , (2.87)

whose numerator and denominator are coprime. Then the conditions under which (A,B)

is identifiable is summarized in Figure 2.5.

Figure 2.5: Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable.

Region A contains the cases where the diagonal contains exactly one unknown param-
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eter. Region B contains the following cases:

1. a11, a22, and a12 are unknown.

2. a11, a22, and a21 are unknown.

3. a11, a33, and a31 are unknown.

4. a22, a33, and a32 are unknown.

5. a12, a13, and a23 are unknown.

6. a12, a13, and a31 are unknown.

7. a12, a13, and a32 are unknown.

8. a12, a23, and a31 are unknown.

9. a12, a31, and a32 are unknown.

10. a13, a23, and a31 are unknown.

11. a13, a31, and a32 are unknown.

12. a21, a23, and a31 are unknown.

13. a21, a23, and a32 are unknown.

14. a21, a31, and a32 are unknown.

Region C contains the cases where the diagonal contains exactly one unknown parameter,

either a21 is known or a12 and a13 are known, and none of the following statements are true:

1. a12 and a32 are unknown.

2. a12 and a23 are unknown.

3. a23 and a31 are unknown.
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4. a13 and a21 are unknown.

The proof of Theorem 2.4.2 is similar to the proof of Theorem 2.4.1 and thus is omitted.

Theorem 2.4.3: Let n = 4,

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


, B =



b1

b2

b3

b4


, E =

 1 0 0 0

0 1 0 0

 , (2.88)

q ≤ n2 + 2 be the number of unknown entries in (A,B), and assume that (A,B,E) is a

minimal realization of

G(z) =

 β31z3+β21z2+β11z+β01
z4+α3z3+α2z2+α1z+α0

β32z3+β22z2+β12z+β02
z4+α3z3+α2z2+α1z+α0

 , (2.89)

whose numerator and denominator are coprime. Then the conditions under which (A,B)

is identifiable is summarized in Figure 2.6.

Figure 2.6: Cases in the green region are generically identifiable, whereas cases in the red
region are generically not identifiable.

Region A contains the cases where the diagonal contains exactly two unknown pa-

rameters, and the remaining unknown parameter is in the same rows or columns as both

unknown parameters on the diagonal. Region B contains the cases where the diagonal con-
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tains exactly one unknown parameter. Region C contains the cases where every parameter

on the diagonal are unknown, and all unknown parameters are in the same rows or columns.

Region D contains the cases where all the following conditions are satisfied:

1. Two unknown parameters are in the same row or column as the third unknown pa-

rameter.

2. None of the unknown parameters are a13, a14, a23, or a24.

3. At least two of the unknown parameters are a31, a32, a41, or a42.

Region E contains the cases where the diagonal contains exactly one unknown parameter,

and all other unknown parameters are in the same rows or columns. Region F contains the

cases where all of the following conditions are satisfied:

1. The diagonal contains exactly one unknown parameter.

2. Apart from the unknown parameter on the diagonal, two unknown parameters are in

the same row or column as the third unknown parameter.

3. None of the unknown parameters are a13, a14, a23, or a24.

4. At least two of the unknown parameters are a31, a32, a41, or a42.

Region G contains the case where the unknown parameters are a31, a32, a41, and a42. Re-

gion H contains the cases where the diagonal contains exactly one unknown parameter, and

the remaining unknown parameters are a31, a32, a41, and a42.

The proof of Theorem 2.4.3 is similar to the proof of Theorem 2.4.1 and thus is omitted.
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CHAPTER 3

Classical Approaches to CSPE

3.1 Combined State and Parameter Estimation

Consider a variation of the CSPE problem presented in Section 2.1 given by

x(k + 1) = Ax(k) +Dw(k), (3.1)

x(0) = x0, (3.2)

y0(k) = Ex(k), (3.3)

where

D =


d1

...

dn

 ∈ Rn, (3.4)

and w(k) ∈ R is the measured excitation signal. We assume that E and D are known but

A has structured uncertainty in the sense that some entries of A are known and others are

unknown. Note that the assumption that E and D are known effectively fixes the basis in

whichA and the structure of its uncertainty are represented. Also, the fact that some entries

in A are unknown makes it impossible to transform A into a canonical form. The objective

is to use the measurement y0(k), where k ≥ 0, to estimate the unknown entries of A and
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the components x1(k), . . . , xn(k) of the state x(k). This is the combined parameter and

state estimation (CSPE) problem.

If the state x(k) is known for all k ≥ 0, then it is straightforward to estimate the uncer-

tain entries of A. Likewise, if all of the entries of A are known, then standard techniques

can be used to estimate the state. The difficulty of the CSPE problem stems from the fact

that both states and parameters are unknown. Note that this problem formulation does not

include either process noise or sensor noise, and thus the problem is deterministic.

3.2 Extended Kalman Filter

To provide a baseline for later developments, in this section we apply EKF to the CSPE

problem.

3.2.1 Example 1: n = 2 and Two Unknown Entries in a Single Row

Consider (3.1)–(3.3) with

A =

 0.27 1.17

−0.8 0.2

 , x0 =

 −23

17

 , E =

[
1 0

]
, (3.5)

assume that the entries a11 = 0.27 and a12 = 1.17 of A are unknown, and let w(k) = 0.

To apply EKF, we first augment the dynamics (3.1) with additional equations that represent

the fact that the unknown parameters are constant. The augmented system has the form

X(k + 1) = ÃX(k), (3.6)

X(0) = X0, (3.7)

y0(k) = ẼX(k), (3.8)
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where

Ã
4
=



a11 a12 0 0

−0.8 0.2 0 0

0 0 1 0

0 0 0 1


, Ẽ

4
=

[
E 01×2

]
, X(k)

4
=



x1(k)

x2(k)

a11

a12


. (3.9)

Forming the Jacobian matrix of (3.6) yields the augmented estimator system

X̂(k + 1) = ˆ̃A(k)X̂(k), (3.10)

X̂(0) = X̂0, (3.11)

ŷ0(k) = ẼX̂(k), (3.12)

where

ˆ̃A(k)
4
=



â11(k) â12(k) x̂1(k) x̂2(k)

−0.8 0.2 0 0

0 0 1 0

0 0 0 1


, X̂(k)

4
=



x̂1(k)

x̂2(k)

â11(k)

â12(k)


, (3.13)

x̂1(k), x̂2(k) denote estimates of x1(k), x2(k) and â11(k), â12(k) denote estimates of a11,

a12. The Kalman filter is then applied to (3.10)–(3.12).

To evaluate the accuracy of EKF, we define the relative initial estimation errors

ξx
4
=
||x̂2(0)− x2(0)||
||x2(0)||

, ξa
4
=
||â(0)− a||
||a||

, (3.14)
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where the true parameter vector a and its estimate â are defined as

a
4
=

 a11

a12

 , â
4
=

 â11

â12

 . (3.15)

Note that ξx = 0 if and only if x̂2(0) = x2(0), and ξa = 0 if and only if â11(0) = a11 and

â12(0) = a12.

In order to assess the performance of EKF, we consider 10000 randomly generated

initial estimates of the unmeasured state and the uncertain entries of A. Since x1 is mea-

sured, we set x̂1(0) = x1(0), and we choose initial estimates (x̂2(0), â11(0), â12(0)) such

that ξx, ξa ∈ (0, 2). Using the notation of [16], we set the initial covariance matrix to be

P (0) = 10000I4 and choose the tuning parameters Q = 10−2I2lx and R = 0. Figure 3.1

shows that, for all 10000 initial estimates, none of the estimates â(1000) are within 10% of

the true parameters a.

3.3 Unscented Kalman Filter

3.3.1 Example 2: Example 1 Revisited

In Example 1, the first row of the Jacobian matrix (3.10) gives an erroneous factor of 2

as compared to Ã, which is consistent with the resulting poor performance. Therefore, we

revisit Example 1 by defining

Ã(k)
4
=



â11(k) â12(k) 0 0

−0.8 0.2 0 0

0 0 1 0

0 0 0 1


(3.16)
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Figure 3.1: Application of EKF to Example 1. EKF is applied with 10000 randomly gen-
erated initial estimates (x̂2(0), â11(0), â12(0)) using the measurements y0(k) = x1(k) over
the interval k ∈ [0, 1000]. Trials where EKF estimates both components of a within 10%
relative error at step k = 1000 are labeled with cyan; trials where EKF estimates exactly
one component of a within 10% relative error at step k = 1000 are labeled with black;
and trials where EKF estimates neither of the components of a within 10% relative error
at step k = 1000 are labeled with red. 100% of the trials are red. Note: In all subsequent
examples, cyan, black, and red indicate, respectively, trials where all, at least one, and none
of the components of a satisfy the accuracy specification.

for (3.10)–(3.12) and applying the unscented Kalman filter to the augmented system. In

order to assess the performance of UKF with (3.16), we consider 10000 randomly gener-

ated initial estimates of the unmeasured state and the uncertain entries of A. Since x1 is

measured, we set x̂1(0) = x1(0), and we choose initial estimates (x̂2(0), â11(0), â12(0))

such that ξx, ξa ∈ (0, 2). Using the notation of [17], we set the initial covariance matrix to

be P (0) = 10000I4 and choose the tuning parameters α = 1, κ = 0, β = 2, Q = 10−2I2lx ,

and R = 0. Figure 3.2 shows that, for all 10000 initial estimates, none of the estimates

â(1000) are within 10% of the true parameters a.
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Figure 3.2: Application of UKF with (3.16) to Example 2. UKF with (3.16) is applied with
10000 randomly generated initial estimates (x̂2(0), â11(0), â12(0)) using the measurements
y0(k) = x1(k) over the interval k ∈ [0, 1000]. 100% of the trials are red.

3.4 Unscented Kalman Filter with State-Dependent Coef-

ficients

3.4.1 Example 3: Example 1 Revisited

We revisit Example 1 by defining the state-dependent matrix

Ã(k)
4
=



α1â11(k) α2â12(k) (1− α1)x̂1(k) (1− α2)x̂2(k)

−0.8 0.2 0 0

0 0 1 0

0 0 0 1


(3.17)

for (3.10)–(3.12), where α ∈ R, and applying UKF with (3.17). Note that (3.16) corre-

sponds to setting α1 = α2 = 1. In order to assess the performance of UKF with (3.17),

we reconsider the 10000 randomly generated initial estimates, initial covariance, and tun-

ing parameters as in Example 2. Setting α1 = α2 = 0.5, Figure 3.3 shows that, for all

10000 initial estimates, all of the estimates â(1000) are within 10% of the true parameters
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a. In most of the trials where estimation of the unknown entries is successful, the estimates

converge within approximately 500 time steps.

Figure 3.3: Application of UKF with (3.17) to Example 3. UKF with (3.17) is applied with
10000 randomly generated initial estimates (x̂2(0), â11(0), â12(0)) using the measurements
y0(k) = x1(k) over the interval k ∈ [0, 1000]. 100% of the trials are cyan.

To test the effect of α1 and α2, we consider 11 linearly spaced values of α1 ∈ [−3, 3]

and 11 linearly spaced values of α2 ∈ [−3, 3]. For each choice of α1, α2, we record the

number of 10000 trials for which UKF with (3.17) estimates a within 10% relative error.

Figure 3.4 shows that, generally, if α1 < 1 and α2 < 1, all of the estimates â(1000) are

within 10% of the true parameters a. Otherwise, none of the estimates â(1000) are within

10% of the true parameters a. This example shows that, compared to Example 2, the state-

dependent coefficient can significantly improve the performance of UKF depending on the

choice of α1 and α2.

In all subsequent UKF examples, we set α1 = · · · = αp = 0.5, where p is the number

of unknown entries in A.
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Figure 3.4: Application of UKF with (3.17) to Example 4. α1 and α2 is varied from -3
to 3 in increments of 0.6. For each pair of values (α1, α2) and 10000 randomly generated
initial estimates (x̂2(0), â11(0), â12(0)), UKF with (3.17) is applied using the measurements
y0(k) = x1(k) over the interval k ∈ [0, 1000].A cyan dot indicates that UKF estimates both
components of a within 10% relative error at step k = 1000 in 100% of the trials, and a red
dot indicates that UKF estimates neither of the components of a within 10% relative error
in 100% of the trials. All of the trials are either cyan or red.

3.4.2 Example 4: n = 3 and One Unknown Entry

Consider (3.1)–(3.3) with

A =


0.51 −0.285 0.05

−0.012 0.34 1

0.03 −0.88 0.34

 , x0 =


−23

67

−31

 , E =

[
1 0 0

]
, (3.18)

assume that one entry in the first row of A is unknown, and let w(k) = 0. To apply UKF,

we define the augmented system (3.10)–(3.12) with Ã constructed as in (3.17) and X, Ẽ

constructed as in (3.13). Let x̂1(k), x̂2(k), x̂3(k) be estimates of x1(k), x2(k), x3(k), and,

for i ∈ {1, 2, 3}, let â1i(k) be an estimate of a1i. Define

ξx
4
=
||x̂u(0)− xu(0)||
||xu(0)||

, ξa
4
=
||â1i(0)− a1i||
||a1i||

, (3.19)
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where the unmeasured states and their estimates are defined by

xu
4
=

 x2

x3

 , x̂u
4
=

 x̂2

x̂3

 . (3.20)

Using the same UKF tuning parameters as in Example 3, we consider 10000 randomly

generated initial estimates (x̂2(0), x̂3(0), â1i(0)) of initial estimates such that ξx, ξa ∈ (0, 2).

Figure 3.5(a) shows that 72.53% of the estimates â11(1000) are within 10% of the true

parameter a11. In contrast, Figure 3.5(b) and Figure 3.5(c) show that 4.68% and 6.09% of

the estimates â12(1000) and â13(1000) are within 10% of the true parameters a12 and a13,

respectively. In most of the trials where estimation of the unknown entries is successful,

the estimates converge within approximately 500 time steps.

Figure 3.5: Application of UKF with (3.17) to Example 4. In (a), UKF with
(3.17) is applied with 10000 randomly generated initial estimates (x̂2(0), x̂3(0), â11(0)).
In (b), UKF with (3.17) is applied with 10000 randomly generated initial estimates
(x̂2(0), x̂3(0), â12(0)). In (c), UKF with (3.17) is applied with 10000 random initial es-
timates (x̂2(0), x̂3(0), â13(0)). In all three cases, KF with (3.17) uses the measurements
y0(k) = x1(k) over the interval k ∈ [0, 1000]. 72.53%, 4.68%, and 6.09% of the trials in
(a), (b), and (c), respectively, are cyan.

Note that both Example 3 and Example 4 involve a total of three unknown quantities in

A and x0. It is thus reasonable to expect that the performance of UKF would be similar for

both examples. However, Example 3 involves two unknown constants and one unmeasured

state, whereas Example 4 involves one unknown constant and two unmeasured states. This
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distinction is consistent with the fact that UKF performs worse for Example 4 than for

Example 3.

3.4.3 Example 5: n = 3 and Three Unknown Entries in a Single Row

We revisit Example 4 by assuming that all of the entries in the first row of A are jointly

unknown. To apply UKF, we define the augmented system (3.10)–(3.12) with Ã con-

structed as in (3.17) and X, Ẽ constructed as in (3.13). Let x̂1(k), x̂2(k), x̂3(k) denote

estimates of x1(k), x2(k), x3(k), and let â11(k), â12(k), â13(k) denote estimates of a11, a12,

a13. Define the true parameter vector a, its estimate â, the unmeasured states xu, and its

estimates x̂u, as

xu
4
=

 x2

x3

 , x̂u
4
=

 x̂2

x̂3

 , a
4
=


a11

a12

a13

 , â
4
=


â11

â12

â13

 . (3.21)

As in the case of Example 4 and using the same tuning parameters for UKF with (3.17), we

consider 10000 randomly generated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13(0))

such that ξx, ξa ∈ (0, 2).

Figure 3.6 shows that UKF with (3.17) estimates at least one component of a within

10% error in 0.20% of the trials and none of the components of a within 10% error in

99.80% of the trials. Note that, while Example 4 and Example 5 concern the same unknown

entries, the three entries in Example 5 are estimated concurrently, whereas the three entries

in Example 4 are estimated separately assuming the remaining entries are known. This

distinction is consistent with the fact that UKF with (3.17) performs worse for Example 5

than for Example 4.
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Figure 3.6: Application of UKF with (3.17) to Example 5. KF with (3.17) is applied with
10000 randomly generated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13(0)) using the
measurements y0(k) = x1(k) over the interval k ∈ [0, 1000]. 0.20% of the trials are black
and 99.80% of the trials are red.

3.4.4 Example 6: Application to Linearized Longitudinal Aircraft Dy-

namics

We now consider the CSPE problem for linearized longitudinal aircraft dynamics. Con-

sider the continuous-time linearized longitudinal aircraft dynamics matrix

Ac =



−0.0505 −9.49 −0.0127 −32.2

−0.00236 −2.45 0.962 0

0.0179 −42.0 −3.44 0

0 0 1 0


. (3.22)
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Discretizing the dynamics with the time step Ts = 0.01 s yields the discrete-time linearized

longitudinal aircraft dynamics matrix

A =



0.999 −0.0934 −0.00216 −0.322

−1.49× 10−6 0.974 0.00933 2.86× 10−7

0.000176 −0.408 0.964 −2.85× 10−5

8.86× 10−7 −0.00206 0.00982 1


. (3.23)

Consider (3.1)–(3.3) with

x0 =



−50

30

−10

95


, E =

[
1 0 0 0

]
, (3.24)

assume that the entries a11 = 0.999 and a12 = −0.0934 of A are unknown, and let w(k) =

0. To apply UKF, we define the augmented system (3.10)–(3.12) with Ã constructed as in

(3.17) and X, Ẽ constructed as in (3.13). Furthermore, define the true parameter vector a,

its estimate â, the unmeasured states xu, and its estimates x̂u, as

xu
4
=


x2

x3

x4

 , x̂u
4
=


x̂2

x̂3

x̂4

 , a
4
=

 a11

a12

 , â
4
=

 â11

â12

 . (3.25)

We consider 10000 randomly generated initial estimates (x̂2(0), x̂3(0), x̂4(0), â11(0), â12)

with UKF such that ξx, ξa ∈ (0, 2). Using the notation of [17], we set the initial covariance

matrix to be P (0) = 10−4I4 and choose the tuning parameters α = 1, κ = 0, β = 2,

Q = 10−2I2lx , and R = 0. Figure 3.7 shows that 0.04% of the estimates â are within 10%

of both components of the true parameters a, 2.76% of â are within 10% of at least one

component of a, and 97.20% of â are within 10% of none of the components of a. In most
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of the trials where estimation of the unknown entries is successful, the estimates converge

within approximately 500 time steps, that is, 5 s.

Figure 3.7: Application of KF with (3.17) to Example 11. KF with (3.17) is applied with
10000 randomly generated initial estimates (x̂2(0), x̂3(0), x̂4(0), â11(0), â12(0)) using the
measurements y0(k) = x1(k) over the interval k ∈ [0, 1000]. 0.04% of the trials are cyan,
2.76% of the trials are black, and 97.20% of the trials are red.

Examples 3–6 suggest that, while UKF with (3.17) can achieve reasonably accurate

parameter estimation for CSPE with n = 2, the performance deteriorates drastically for

CSPE with n ≥ 3. This motivates the need to develop parameter estimation algorithms that

are more effective for CSPE problems with n ≥ 3.
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CHAPTER 4

Retrospective Cost Parameter Estimation

4.1 Subsystem Estimation Framework

Consider the main system G shown in Figure 4.1 with the realization

x(k + 1) = A0x(k) +Bu(k) +Dw(k), (4.1)

y(k) = Cx(k), (4.2)

y0(k) = Ex(k), (4.3)

where x(k) ∈ Rlx is the main system state, y(k) ∈ Rly is the main system output, u(k) ∈

Rlu is the main system input, w(k) ∈ Rlw is the known excitation signal, and y0(k) ∈ Rlz

is the main system measurement. The matrixA0 is the nominal dynamics matrix. The main

system (4.1)–(4.3) is interconnected with the unknown subsystem Gs modeled by

xs(k + 1) = Asxs(k) +Bsy(k), (4.4)

u(k) = Csxs(k) +Dsy(k), (4.5)

where xs(k) ∈ Rlxs is the unknown subsystem state. Together, (4.1)–(4.5) represent the

true system.
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Next, the main system model Ĝ has the realization

x̂(k + 1) = A0x̂(k) +Bû(k) +Dw(k), (4.6)

ŷ(k) = Cx̂(k), (4.7)

ŷ0(k) = Ex̂(k), (4.8)

where x̂(k) ∈ Rlx is the main system model state, ŷ(k) ∈ Rly is the main system model

output, û(k) ∈ Rlu is the main system model input, and ŷ0(k) ∈ Rlz is the main system

model measurement. The main system model is interconnected with the subsystem model

û(k) = Ĝs(q)ŷ(k), (4.9)

where q is the forward shift operator. Equations (4.6)–(4.9) represent the modeled system.

The subsystem estimation problem is represented by the block diagram in Figure 4.1, where

the goal is to estimate the subsystem model Ĝs by minimizing a cost function based on the

performance variable

z(k)
4
= ŷ0(k)− y0(k) ∈ Rlz . (4.10)

For the subsystem estimation problem, we assume that the unknown subsystem input y

and the unknown subsystem output u are not measured, and thus Gs is inaccessible. The

input ŷ of the subsystem model Ĝs is computed, and the input û of the main system model

Ĝ is estimated. Then, û and ŷ are used to construct Ĝs, which is an estimate of Gs.

For parameter estimation, we assume that Gs = Ds is static, and thus (4.4), (4.5) be-

come

u(k) = Dsy(k). (4.11)
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Figure 4.1: Subsystem estimation framework for RCPE.

In this case, x satisfies

x(k + 1) = Ax(k) +Dw(k), (4.12)

where the dynamics matrix of the true system is given by

A = A0 +BDsC. (4.13)

Note that the decomposition (4.13) represents the matrixA in Examples 1–5, where the un-

certain entries of A are the entries of Ds and the corresponding entries of A0 are set to zero.

However, (4.13) can be used to model uncertain entries in A with nonzero nominal values,

in which case each entry of Ds represents an offset from the nominal value. Consequently,

the nominal values of the uncertain entries of A, which are given by the corresponding

entries of A0, can be viewed as estimates of the uncertain entries of A that correspond to

Ds = 0. Finally, if w = 0, then (4.1)–(4.5) is equivalent to the CSPE problem (3.1)–(3.3).

Let p be the number of uncertain entries inA, let q be the number of rows of A in which
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they appear, and let r be the number of columns of A in which they appear. The expression

(4.13) can be used to represent uncertain entries in A if and only if p = qr. This condition

is equivalent to saying that, by reordering the rows and columns of A, the uncertain entries

of A form a square or rectangular block of A. For example, uncertainty in a11 and a13 for

a third-order system, which corresponds to p = 2, q = 1, and r = 2, can be represented

using

B =


1

0

0

 , C =

 1 0 0

0 0 1

 , Ds ∈ R1×2, (4.14)

whereas uncertainty in a11 and a23, which corresponds, to p = 2, q = 2, and r = 2, cannot

be represented by (4.13). In the case where p 6= qr, (4.13) can be replaced by

A = A0 +

[
B1 · · · Bl

]
Ds,1 · · · 0

... . . . ...

0 · · · Ds,l



C1

...

Cl

 = A0 + B̃DsC̃, (4.15)

where l ≥ 2. Note that, Ds in (4.15) has a block-diagonal structure, thus estimation of

Ds entails estimation of both Ds,1, . . . , Ds,l and the zeros. In this case, we treat the block-

diagonal matrix as fully populated, and we ignore the estimates of the off-block-diagonal

entries, which are known to be zero.
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4.2 Retrospective Cost Parameter Estimation

4.2.1 Subsystem Model

For static parameter estimation, the subsystem model is given by

û(k) = D̂s(k)ŷ(k). (4.16)

We rewrite (4.16) as

û(k) = Φ(k)θ̂(k), (4.17)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
= ŷ(k)T ⊗ Ilu ∈ Rlu×lθ (4.18)

and the unknown entries of A are written as

θ̂(k)
4
= vec(D̂s(k)) ∈ Rlθ , (4.19)

where lθ
4
= luly, “⊗” is the Kronecker product, and “vec” is the column-stacking operator.

4.2.2 Retrospective Performance Variable

We define the retrospective input

ũ(k − 1) = Φ(k − 1)θ̂ (4.20)
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and the corresponding retrospective performance variable

ẑ(k)
4
= z(k) + Φf(k − 1)θ̂ − ûf(k − 1), (4.21)

where θ̂ ∈ Rlθ is determined by optimization below, and Φf(k−1) ∈ Rlz×lθ and ûf(k−1) ∈

Rlz are filtered versions of Φ(k − 1) and û(k − 1), respectively, defined by

Φf(k − 1)
4
= Gf(q)Φ(k − 1), ûf(k − 1)

4
= Gf(q)û(k − 1). (4.22)

The filter Gf has the form

Gf(q)
4
= D−1

f (q)Nf(q), (4.23)

where Df and Nf are polynomial matrices and Df is monic. The choice of these filters is

discussed below.

4.2.3 Retrospective Cost Function

Using the retrospective performance variable ẑ(k), we define the retrospective cost

function

J(k, θ̂)
4
=

k∑
i=1

ẑT(i)Rz ẑ(i) + (θ̂ − θ(0))TRθ(θ̂ − θ(0)), (4.24)

where Rz and Rθ are positive definite. The following result is a restatement of standard

recursive least squares optimization.

Proposition: Let P (0) = R−1
θ . Then, for all k ≥ 1, the retrospective cost function
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(4.24) has a unique global minimizer θ(k), which is given by

θ̂(k) = θ̂(k − 1)− P (k − 1)ΦT
f (k − 1)Γ−1(k − 1)[Φf(k − 1)θ̂(k − 1) + zf(k)− uf(k − 1)],

(4.25)

P (k) = P (k − 1)− P (k − 1)ΦT
f (k − 1)Γ−1(k − 1)Φf(k − 1)P (k − 1), (4.26)

where

Γ(k − 1)
4
= R−1

z + Φf(k − 1)P (k − 1)ΦT
f−1(k − 1). (4.27)

4.2.4 Online Update of Gf

Note that the retrospective performance variable (4.21) can be rewritten as

ẑ(k) = z(k)−Gf(q)µ̂(k − 1), (4.28)

where

µ̂(k − 1)
4
= û(k − 1)− ũ(k − 1). (4.29)

The signal µ̂ can be viewed as a virtual exogenous input, as shown in Figure 4.2.

It can be seen from (4.28) that ẑ is the residual of the fit between z and the output of Gf

with input µ̂. However, the actual transfer function from µ̂ to z is given by

G̃ŷ0µ̂(q) ∼

 A0 +BD̂sC B

E 0

 . (4.30)

Consequently, minimizing ẑ produces the value of θ̂ and thus the value of D̂s that optimally
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Figure 4.2: Subsystem estimation framework showing the virtual exogenous input µ̂.

fits G̃ŷ0µ̂ to Gf . Therefore, a desirable choice of Gf is

G̃∗(q) ∼

 A0 +BDsC B

E 0

 . (4.31)

Since Ds is unknown, however, (4.31) cannot be implemented in practice. Thus, in all

subsequent applications of RCPE, we use the time-varying filter

Gf(q, D̂s(k − 1)) ∼

 A0 +BD̂s(k − 1)C B

E 0

 . (4.32)

Note that, if D̂s(k − 1) = Ds, then Gf(q, Ds) = G̃∗(q).

4.2.5 Data-window Reiteration

In order to enhance the accuracy of the estimates D̂s(k) ofDs, RCPE is applied multiple

times to a given data set consisting of kf data points. In the first iteration, we apply RCPE
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with Gf(q, D̂s(k − 1)) given by (4.32) initialized with D̂s(0) = 0. In addition, the entries

of the nominal dynamics matrix A0 in both (4.32) and the model (4.6) are set to the initial

estimates of the unknown parameters. In subsequent iterations, we apply RCPE to the same

data set with D̂s(0) given by D̂s(kf) from the previous iteration and with A0 replaced by

A0 +BD̂s(kf)C.

4.3 RCPE with Known Initial State and No Excitation

In this section, we apply RCPE to the CSPE problem assuming the initial state is known

and w(k) = 0.

4.3.1 Example 7: n = 3 and Three Unknown Entries in a Single Row

We revisit Example 5 with RCPE assuming that the initial state is known. We thus set

x̂(0) = x0, which implies ξx = 0, and we choose 100 initial estimates (â11(0), â12(0), â13(0))

such that ξa ∈ (0, 2). For all trials, we use the tuning parameters Rθ = Ilθ , kf = 100, and

nu = 4. Figure 4.3 shows that, in all trials, the RCPE estimates of both components of a are

within 10% error. Note that, since kf = 100, in all trials where estimation of the unknown

entries is successful, the estimates converge within 100 time steps.
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Figure 4.3: Application of RCPE to Example 7 assuming the initial state is unknown.
RCPE is applied with 100 random initial estimates (â11(0), â12(0)), â13(0)) using the mea-
surements y0(k) = x1(k) over the interval k ∈ [0, 100] and setting x̂(0) = x0. 100% of the
trials are cyan.

4.3.2 Example 8: n = 8 and Eight Unknown Entries in a Single Row

Consider (3.1)–(3.3) with

A =



0.29 0.43 0.26 1.6 0.22 −1.02 −0.35 −1.31

0.04 0.57 0.56 0.92 −0.81 −0.12 0.13 −0.9

0.14 0.49 1.43 0.55 −0.22 −0.71 −0.53 −1.05

−0.33 −0.12 −0.31 −1.18 0.77 0.34 0.72 1.3

−0.59 0.51 0.32 0.97 0.31 −0.06 −0.45 −0.89

0.49 −0.48 −1.19 −2.08 0.55 1.36 0.43 1.88

0.16 −0.48 −1.39 −1.68 0.58 0.8 1.12 1.98

0 0.6 0.2 0.27 −0.21 −0.27 −0.83 0.27



, x0 =



−23

67

−31

5

44

−81

41

−17



,

(4.33)

E =

[
1 0 0 0 0 0 0 0

]
,
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assume that the entries a11 = 0.29, a12 = 0.43, a13 = 0.26, a14 = 1.6, a15 = 0.22,

a16 = −1.02, a17 = −0.35, and a18 = −1.31 of A are unknown, and let w(k) = 0. Define

xu
4
=


x2

...

x8

 , x̂u
4
=


x̂2

...

x̂8

 , a
4
=


a11

...

a18

 , â
4
=


â11

...

â18

 . (4.34)

Assuming the initial state is known, we set x̂(0) = x0, which implies ξx = 0, and choose

100 initial estimates (â11(0), â12(0), â13(0), â14(0), â15(0), â16(0), â17(0), â18(0)) such that

ξa ∈ (0, 2). For all trials, we use the tuning parameters Rθ = 10000Ilθ , kf = 25, and

nu = 80. Figure 4.4 shows that, in 97% of the trials, the RCPE estimates of all of the

components of a are within 10% error. Since kf = 25, in all trials where estimation of the

unknown entries is successful, the estimates converge within 25 time steps.

Figure 4.4: Application of RCPE to Example 8 assuming the initial state is known. RCPE
is applied with 100 randomly generated initial estimates using the measurements y0(k) =
x1(k) over the interval k ∈ [0, 25] and setting x̂(0) = x0. 97% of the trials are cyan.
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4.4 RCPE with Unknown Initial State and Strong Excita-

tion

In this section, we apply RCPE to the CSPE problem assuming the initial state is un-

known and w(k) 6= 0. Let y0(k) = yx(k) + yw(k), where yx and yw are the main system

outputs due to nonzero values of x0 and w, respectively. We pick w such that, on average,

|yw(k)| is significantly greater than |yx(k)|.

4.4.1 Example 9: n = 3 and Three Unknown Entries in a Single Row

We revisit Example 7 with RCPE assuming that the initial state is unknown, w is mea-

sured Gaussian white noise with standard deviation of 104, and

D =


0.3

−0.5

0.45

 (4.35)

is known. Since x1 is measured, we set x̂1(0) = x1(0) and choose 10000 randomly gen-

erated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13) such that ξx, ξa ∈ (0, 2). For all

trials, we use the tuning parameters Rθ = 108Ilθ , kf = 100, and nu = 4.

Figure 4.5 shows that 93.71% of the estimates â are within 10% of all three components

of the true parameters a, 6.23% of â are within 10% of at least one component of a, and

0.06% of â are within 10% of none of the components of a. Since kf = 100, in all trials

where estimation of the unknown entries is successful, the estimates converge within 100

time steps.
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Figure 4.5: Application of RCPE to Example 9. RCPE is applied with 10000 randomly gen-
erated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13) using the measurements y0(k) =
x1(k) over the interval k ∈ [0, 100]. 93.71%, 6.23%, and 0.06% of the trials are cyan,
black, and red, respectively.

4.4.2 Example 10: n = 3 and Eight Unknown Entries in a Single Row

We revisit Example 8 with RCPE assuming that the initial state is unknown, w is mea-

sured Gaussian white noise with standard deviation of 104, and

D =



0.3

−0.5

0.45

0.1

0.15

−0.3

0.6

−0.1



(4.36)

is known. Since x1 is measured, we set x̂1(0) = x1(0) and choose 10000 randomly gen-

erated initial estimates (x̂2(0), x̂3(0), x̂4(0), x̂5(0), x̂6(0), x̂7(0), x̂8(0), â11(0), â12(0), â13,

56



â14, â15, â16, â17, â18) such that ξx, ξa ∈ (0, 2). For all trials, we use the tuning parame-

ters Rθ = 108Ilθ , kf = 25, and nu = 40.

Figure 4.6 shows that 73.29% of the estimates â are within 10% of all three components

of the true parameters a, 12.92% of â are within 10% of at least one component of a, and

13.79% of â are within 10% of none of the components of a. Since kf = 25, in all trials

where estimation of the unknown entries is successful, the estimates converge within 25

time steps.

Figure 4.6: Application of RCPE to Example 10. RCPE is applied with 10000 randomly
generated initial estimates using the measurements y0(k) = x1(k) over the interval k ∈
[0, 25]. 73.29%, 12.92%, and 13.79% of the trials are cyan, black, and red, respectively.

4.5 RCPE with Unknown Initial State and Weak Excita-

tion

In this section, we apply RCPE to the CSPE problem assuming the initial state is un-

known. We pick w such that, on average, |yw(k)| is not significantly greater than |yx(k)|.
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4.5.1 Example 11: n = 2, Two Unknown Entries in a Single Row,

Unknown Initial Condition

We revisit Example 1 with RCPE assuming that the initial state is unknown, w is mea-

sured Gaussian white noise with standard deviation of 10, and

D =

 0.3

−0.2

 (4.37)

is known. Since x1 is measured, we set x̂1(0) = x1(0) and choose 10000 randomly gener-

ated initial estimates (x̂2(0), â11(0), â12(0)) such that ξx, ξa ∈ (0, 2). For all trials, we use

the tuning parameters Rθ = 108Ilθ , kf = 100, and nu = 4.

Figure 4.7 shows that 40.29% of the estimates â are within 10% of both components of

the true parameters a, 29.54% of â are within 10% of one component of a, and 30.17% of

â are within 10% of neither components of a. Since kf = 100, in all trials where estimation

of the unknown entries is successful, the estimates converge within 100 time steps.

Figure 4.7: Application of RCPE to Example 9. RCPE is applied with 10000 randomly gen-
erated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13) using the measurements y0(k) =
x1(k) over the interval k ∈ [0, 100]. 40.29%, 29.54%, and 30.17% of the trials are cyan,
black, and red, respectively.
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4.5.2 Example 12: n = 2, Two Unknown Entries in a Single Row,

Unknown Initial Condition

We revisit Example 1 with RCPE assuming the initial conditions are unknown and

w(k) = 0. Since x1 is measured, we set x̂1(0) = x1(0) and choose 10000 randomly

generated initial estimates (x̂2(0), â11(0), â12(0)) such that ξx, ξa ∈ (0, 2). For all trials, we

use the tuning parameters Rθ = Ilθ , kf = 100, and nu = 4. Figure 4.8 shows that, as ξx

increases, the performance of RCPE degrades. In addition, 31.75% of the estimates â are

within 10% of both components of the true parameters a, 36.42% are within 10% of exactly

one component of a, and 31.83% are within 10% of none of the components of a. Since

kf = 100, in all trials where estimation of the unknown entries is successful, the estimates

converge within 100 time steps.

Figure 4.8: Application of RCPE to Example 12. RCPE is applied with 10000 randomly
generated initial estimates (x̂2(0), â11(0), â12(0)) using the measurements y0(k) = x1(k)
over the interval k ∈ [0, 100]. 31.75%, 36.42%, and 31.83% of the trials are cyan, black,
and red, respectively.
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4.6 RCPE vs Classical Methods

4.6.1 Advantages of RCPE

Figure 3.6 suggests that UKF is not improved using knowledge of the initial conditions.

In contrast, Examples 7–8 show that, if x0 is known and we set x̂(0) = x0, then RCPE

performs well. Furthermore, Examples 9–10 shows that, if x0 is unknown and, on average,

|yw| is significantly greater than |yx|, then RCPE performs similarly well. Under these

assumptions, not only is RCPE able to reliably estimate the unknown parameters of n ≥ 3

systems, it is able to do so using significantly less data than UKF.

4.6.2 Deficiencies of RCPE

Example 11–12 shows that, in the case where x0 is unknown and |yw| is not significantly

greater than |yx| on average, the accuracy of RCPE degrades.

This can be explained by revisiting Section 2.2. Since a nonzero x0 can be viewed

as an impulse input, the fact that x0 is unknown and w(k) = 0 implies the existence of

an unmeasured impulse input. Extending this rationale, one can view yx as the portion of

the output due to an unmeasured impulse disturbance while yw is the portion of the output

due to a measured input. In the case where |yw| is not significantly greater than |yx|, the

effects of the unmeasured disturbance is non-negligible, and thus the performance of RCPE

degrades.

Note that this is a consequence of estimating the unknown entries in A without estimat-

ing x0. Thus, it motivates the development of a variation of RCPE that estimates both the

unknown initial state and the unknown parameters.
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CHAPTER 5

Retrospective Cost Parameter Estimation and

Smoothing

5.1 RCPE Smoother

It was shown in the previous section that the RCPE estimates are reasonably accurate

in the case where the initial state is known. In order to take advantage of this observation,

we now formulate the RCPE smoother (RCPES) algorithm for concurrent parameter and

initial state estimation.

5.1.1 Augmented Subsystem Estimation Framework

Let δ(k) be the unit impulse function and define δ0(k)
4
= δ(k + 1),

A
4
=

 A x0

01×lx 0

 , D 4
=

 0lx×1

1

 , E 4= [ E 0

]
, X

4
=

 x

δ0

 . (5.1)

Then, for all k ≥ −2, (3.1)–(3.3) can be rewritten as the augmented system

X(k + 1) = AX(k) + Dδ0(k + 2), (5.2)

X(−2) = 0, (5.3)

y0(k) = EX(k). (5.4)
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Now, assume that the mth component of E is 1 and all other components of E are zero, let

x̂0 be the nominal initial state, and define

A0
4
=

 A0 x̂0

01×lx 0

 , B 4
=

 B B0

01×lu 01×(n−1)

 , C 4=
 C 0ly×1

01×lx 1

 , (5.5)

where B0 is In with the mth column deleted. Then, (5.2)–(5.4) can be written in the form

of (4.1)–(4.3) as

X(k + 1) = A0X(k) + Bu(k) + Dδ(k + 2), (5.6)

y(k) = CX(k), (5.7)

y0(k) = EX(k), (5.8)

with known initial state X(−2) = 0. Using (4.11), it follows that the augmented dynamics

matrix of the true system is given by

A = A0 + BDsC. (5.9)

Note that (5.6)–(5.8) has known, zero initial state and the augmented dynamics matrix

A contains the unknown initial state x0. This is a smoother problem since the goal is to

estimateDs, which contains the unknown entries ofA along with the unknown components

of x0.

To construct an estimator based on (5.6)–(5.8), we define

X̂
4
=

 x̂

δ0

 (5.10)
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and rewrite (4.6)–(4.8) as

X̂(k + 1) = A0X̂(k) + Bû(k) + Dδ(k + 2), (5.11)

ŷ(k) = CX̂(k), (5.12)

ŷ0(k) = EX̂(k), (5.13)

where the initial state X̂(−2) = 0. For example, consider the case where n = 2, a11 is

unknown, and y(k) = x1(k), and thus x2(0) is unknown. Let the (1, 1) entry of A0 be zero

and set x̂2(0) = 0. Then,

B =

 1

0

 , C =

[
1 0

]
, B0 =

 0

1

 , D̂s =

 θ̂1 0

0 θ̂2

 , (5.14)

where θ̂1 and θ̂2 are estimates of a11 and x2(0), respectively. Note that, for this smoother

problem, D̂s has the block-diagonal structure shown in (4.15).

5.1.2 Data Update

For concurrent parameter and initial state estimation, we apply RCPE to (5.11)–(5.13).

At each step k, RCPE produces D̂s, which contains estimates of the unknown components

of A and x0. Next, ŷ(k) and ŷ0(k) are computed using

ŷ(k) = C(A0 + BD̂s(k)C)k+1D, ŷ0(k) = E(A0 + BD̂s(k)C)k+1D. (5.15)

Since the values of ŷ and ŷ0 at previous steps are computed from prior estimates of Â and

x̂(0), there may be a mismatch between P (k − 1) and Φf(k − 1) in (4.26). To rectify this,

at each step k, we use constant values of θ = θ(k − 1) to recompute ŷ, ŷ0, û, and Φf from

steps -2 to k−1. Then, we rerun (4.25)–(4.26) from steps -2 to k with these updated values

to obtain θ(k) and P (k).
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5.2 RCPES with Unknown Initial State and No Excitation

In this section, we apply RCPES to the CSPE problem for the case where the initial

state is unknown and w(k) = 0.

5.2.1 Example 13: n = 2 and Two Unknown Entries in a Single Row

We revisit Example 1 with RCPES. Recall that in this case, the true parameter vector a

is constructed only from the unknown entries of A while the unmeasured state vector xu is

constructed only from the unmeasured components of x. Since the uncertain entries in A

cannot be represented by (4.13), we use (4.15). In this case, lθ = 6, where two components

of θ are estimates of unknown parameters, one component is an estimate of the unknown

component of the initial state, and three components are estimates of the known value zero

and thus are ignored. For all trials, we use the tuning parameters kf = 50 and nu = 10, and

we chooseRθ to be a diagonal matrix with diagonal entries 1, 1, 108, 108, 108, and 1, where

the large entries correspond to the components of θ that are known to be zero. Figure 5.1

shows that, in all trials, RCPES estimates both components of a within 10% error. Since

kf = 50, in all trials where estimation of the unknown entries is successful, the estimates

converge within 50 time steps.

5.2.2 Example 14: n = 3 and Three Unknown Entries in a Single Row

We revisit Example 5 with RCPES. Once again, the uncertain entries in A must be

represented with (4.15). In this case, lθ = 12, where three components of θ are estimates

of unknown parameters, two components are estimates of the unknown components of the

initial state, and seven components are estimates of the known value zero and thus are

ignored. For all trials, we use the tuning parameters kf = 50, nu = 10, and set Rθ equal

to a diagonal matrix with diagonal entries of 100, 100, 100, 108, 108, 108, 108, 10−4, 108,

108, 108, and 10−4. As in Example 13, the largest diagonal entries of Rθ correspond to the
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Figure 5.1: Application of RCPES to Example 13. RCPES is applied with 10000 randomly
generated initial estimates (x̂2(0), â11(0), â12(0)) using the measurements y0(k) = x1(k)
over the interval k ∈ [0, 50]. 100% of the trials are cyan.

components of θ that are zero. Figure 5.2 shows that 70.92% of the estimates â are within

10% of all three components of the true parameters a, 11.62% of â are within 10% of at

least one component of a, and 17.46% of â are within 10% of none of the components of

a. Since kf = 50, in all trials where estimation of the unknown entries is successful, the

estimates converge within 50 time steps.

5.2.3 Example 15: Application to Linearized Longitudinal Aircraft

Dynamics

We revisit Example 6 with RCSES. Once again, the uncertain entries in A must be

represented with (4.15). In this case, lθ = 12, two components of θ are estimates of the

unknown parameter, three components are estimates of the unknown components of the

initial state, and seven components are estimates of the known value zero and thus are

ignored. For all trials, we use the tuning parameters kf = 25, nu = 20, and set Rθ equal

to a diagonal matrix with diagonal entries of 0.1, 0.1, 108, 108, 108, 0.1, 108, 108, 0.1, 108,

108, and 0.1, where the largest entries correspond to components of θ that are zero. Figure
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Figure 5.2: Application of RCPES to Example 14. RCPES is applied with 10000 ran-
domly generated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13(0)) using the measure-
ments y0(k) = x1(k) over the interval k ∈ [0, 50]. 70.92% of the trials are cyan, 11.62% of
the trials are black, and 17.46% of the trials are red.

5.3 shows that, 2.23% of the estimates â are within 10% of both components of the true

parameters a, 58.79% of â are within 10% of at least one component of a, and 38.98% of â

are within 10% of none of the components of a. Since kf = 25, in all trials where estimation

of the unknown entries is successful, the estimates converge within 25 time steps.

5.3 RCPES vs Classical Methods

5.3.1 Advantages of RCPES

Example 13 shows that RCPES performs as well as UKF with (3.17) in the case where

n = 2 and one row of A is unknown. Example 14 shows that RCPES performs better

than UKF with (3.17) for the case where n = 3 and one row of A is unknown. Examples

15 shows that RCPES performs better than UKF for the case where two entries in the

dynamics matrix of a linearized longitudinal aircraft model are unknown. In all trials that

are successful, RCPES is able to estimate the unknown parameters using significantly less

data than UKF.
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Figure 5.3: Application of RCSES to Example 12. RCSES is applied with 10000 ran-
domly generated initial estimates (x̂2(0), x̂3(0), x̂4(0), â11(0), â12(0)) using the measure-
ments y0(k) = x1(k) over the interval k ∈ [0, 25]. 2.23% of the trials are cyan, 58.79% of
the trials are black, and 38.98% of the trials are red.

5.3.2 Deficiencies of RCPES

While RCPES performs better than UKF in all cases, it often requires more computa-

tional power to execute. This is due to the data update method outlined in Section 5.1.2.
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CHAPTER 6

An Alternative Formulation of RCPES

6.1 RCPE Smoother

In the previous chapter, we formulated a version of the RCPES algorithm based on an

augmented main system model. In this chapter, we present an alternative formulation of

RCPES based on a modified retrospective cost function.

6.1.1 Modified Retrospective Performance Variable

In the case where x0 is unknown or inaccurate, we redefine the retrospective perfor-

mance variable to account for the error between x0 and x̂0. Let ∆x̂0 be the estimate of

∆x0 = x̂0 − x0. We then rewrite (4.21) as

ẑ(k) = z(k) + E(A0 +BD̂sC)k−1∆x̂0 +Gf(q)(Φ(k)θ̂ − û(k)), (6.1)

where

Φ(k) = (y(k) + C(A0 +BD̂sC)k−1∆x̂0)T ⊗ Ilu

and

Gf ∼

 A0 +BD̂sC B

E 0

 . (6.2)
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Note that, with this new definition of (6.1), the cost function (4.24) is a polynomial function

of D̂s.

Optimization of a polynomial cost function is an open research problem and is outside

the scope of this dissertation. Therefore, we simplify (6.1) by removing the term BD̂sC

from both (6.1) and Φ(k). This yields the modified retrospective performance variable

ẑ′(k)
4
= z(k) + Φ̃f(k)Θ̂− ûf(k)), (6.3)

where

Θ̂ =

 ∆x̂0

θ̂

 , Φ̃f(k) =

[
EAk−1

0 Φ̄f(k)

]
, (6.4)

Φ̄f(k) = Gf(q)((y(k)+CAk−1
0 ∆x̂0(k−1))T⊗Ilu). Gf is implemented as the time-varying

filter described in 4.2.4.

6.1.2 Revised Retrospective Cost Function

The new retrospective cost function is given by

J ′(k, Θ̂)
4
=

k∑
i=1

(ẑ′(i))TRz(ẑ
′(i)) + (Θ̂− Θ̂(0))TRΘ(Θ̂− Θ̂(0)), (6.5)

which is quadratic in Θ̂. J ′ therefore has unique global minimizer given by

Θ̄(k) = Θ̂(k − 1)− P (k − 1)Φ̃T
f (k)Γ−1(k) · [Φ̃f(k)Θ̂(k − 1) + zf(k)− uf(k)], (6.6)

P (k) = P (k − 1)− P (k − 1)Φ̃T
f (k)Γ−1(k)Φ̃f(k)P (k − 1), (6.7)
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where

Γ(k)
4
= R−1

z + Φ̃f(k)P (k − 1)Φ̃T
f (k).

6.1.3 Θ̂ Update Logic

Define

J̄(k,∆x̂0, θ̂) = J̄(k, Θ̂)
4
=

1

k

k∑
i=1

E1(A+Bθ̂C)i−1(x̂0 + ∆x̂0)− y0(i). (6.8)

For all steps k > 1, we compute J̄(k, Θ̄(k)) and then implement the logic

Θ̂(k) =


Θ̄(k), J̄(k, Θ̄(k)) < J̄(k − 1, Θ̄(k − 1))

Θ̂(k − 1), J̄(k, Θ̄(k)) ≥ J̄(k − 1, Θ̄(k − 1))

(6.9)

to obtain Θ̂(k). We then compute (4.17), where θ̂(k) is given by the last lθ components of

Θ̂(k).

6.1.4 Data-window Reiteration

Like with RCPE, we enhance the accuracy of the estimates Θ̂(k) by applying RCPES

multiple times to a given data set consisting of kf data points. In the first iteration, we apply

RCPE with Gf(q, D̂s(k − 1)) given by (4.32) initialized with D̂s(0) = 0. In addition, the

entries of the nominal dynamics matrix A0 in both (4.32) and the model (4.6) are set to

the initial estimates of the unknown parameters. In subsequent iterations, we apply RCPE

to the same data set with D̂s(0) given by D̂s(kf) from the previous iteration, A0 replaced

by A0 + BD̂s(kf)C, and x̂0 replaced by x̂0 + ∆x̂0, where ∆x̂0 is given by the first lx

components of Θ̂(k).
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6.2 RCPES with Unknown Initial State and No Excitation

In this section, we apply the alternative formulation of RCPES to the CSPE problem

for the case where the initial state is unknown and w(k) = 0.

6.2.1 Example 16: n = 2 and Two Unknown Entries in a Single Row

We revisit Example 1 with RCPES. Since x1 is measured, we set x̂1(0) = x1(0) and

choose 10000 randomly generated initial estimates (x̂2(0), â11(0), â12(0)) such that ξx, ξa ∈

(0, 2). For all trials, we use the tuning parameters Rθ = 104Ilθ , kf = 100, and nu = 4.

Figure 6.1 shows that 44.86% of the estimates â are within 10% of both components of

the true parameters a, 4.70% of â are within 10% of one component of a, and 50.44% of â

are within 10% of neither components of a. Since kf = 100, in all trials where estimation

of the unknown entries is successful, the estimates converge within 100 time steps.

Figure 6.1: Application of RCPE to Example 16. RCPE is applied with 10000 randomly
generated initial estimates (x̂2(0), â11(0), â12(0)) using the measurements y0(k) = x1(k)
over the interval k ∈ [0, 100]. 44.86%, 4.70%, and 50.44% of the trials are cyan, black, and
red, respectively.
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6.2.2 Example 17: n = 2 and Three Unknown Entries in a Single Row

We revisit Example 5 with RCPES. Since x1 is measured, we set x̂1(0) = x1(0) and

choose 10000 randomly generated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13(0)) such

that ξx, ξa ∈ (0, 2). For all trials, we use the tuning parameters Rθ = 104Ilθ , kf = 100, and

nu = 4.

Figure 6.2 shows that 20.09% of the estimates â are within 10% of all three components

of the true parameters a, 32.12% of â are within 10% of at least one component of a, and

47.79% of â are within 10% of none of the components of a. Since kf = 100, in all trials

where estimation of the unknown entries is successful, the estimates converge within 100

time steps.

Figure 6.2: Application of RCPE to Example 17. RCPE is applied with 10000 ran-
domly generated initial estimates (x̂2(0), x̂3(0), â11(0), â12(0), â13) using the measure-
ments y0(k) = x1(k) over the interval k ∈ [0, 100]. 20.09%, 32.12%, and 47.79% of
the trials are cyan, black, and red, respectively.
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6.3 RCPES vs Classical Methods

6.3.1 Advantages of RCPES

Example 17 shows that RCPES performs better than UKF with (3.17) for the case

where n = 3 and one row of A is unknown. In all trials that are successful, RCPES is able

to estimate the unknown parameters using significantly less data than UKF.

6.3.2 Deficiencies of RCPES

Example 16 shows that RCPES performs worse than UKF with (3.17) in the case where

n = 2 and one row of A is unknown. Overall, this variant of RCPES performs worse than

the first variant, although it requires less computational power to use.
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CHAPTER 7

Retrospective Cost Kalman Filter

7.1 State Estimation Problem

Consider a variation of the equations presented in 2.1 given by

x(k + 1) = Ax(k) +D1v1(k), (7.1)

x(0) = x0, (7.2)

y0(k) = Ex(k) +D2v2(k), (7.3)

where

D1 =


d1

...

dn

 ∈ Rn, D2 ∈ R, (7.4)

and v1(k), v2(k) ∈ R are the unmeasured process and sensor noise, respectively. We as-

sume that A,E are known, D1 and D2 are unknown, and the goal is to estimate x.

74



7.2 RCKF

In this section, we formulate the RCKF algorithm for state estimation, assuming that

the dynamics matrix A is known.

7.2.1 State Estimation as Static Subsystem Estimation

To start, consider the classical Kalman predictor, given by

K(k) = −AP (k − 1)ET(EP (k − 1)ET +R)−1, (7.5)

x̂(k) = Ax̂(k − 1) +K(k)(Ex̂(k − 1)− y0(k)), (7.6)

P (k) = (Ilx +K(k)E)(AP (k − 1)AT +Q), (7.7)

where x̂ is the estimate of x, K is the Kalman gain, and Q,R contain the estimates of

the noise covariances. Linear-quadratic estimation theory states that, assuming A is known

and the sensor and process noises are zero-mean and have finite second moment, (7.5) will

converge to x(k) exponentially.

Let

û(k) = K(k)ŷ0(k), (7.8)

ŷ0(k) = Ex̂(k). (7.9)

Then (7.6) can be represented as

x̂(k) = Ax̂(k − 1) + Ilxû(k)−K(k)y0(k), (7.10)

ŷ0(k) = Ex̂(k), (7.11)

û(k) = K(k)ŷ(k). (7.12)

In other words, the Kalman gain K can be viewed as a static parameter in feedback with a
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model. Estimation of K can thus be viewed as a static parameter estimation problem with

an unknown input matrix which is constrained to be equal to the unknown parameters.

Thus, we define

ŷ(k) = Ex̂(k), (7.13)

apply RCPE with (4.6)–(4.8) replaced by (7.10)–(7.13), and use x̂ as an estimate of x. This

is the RCKF algorithm.

7.2.2 Choice of Gf

Similar to the derivation in Section 4.2.4, the optimal choice of Gf is given by

Gf(q) ∼

 A+KE Ilx

E 0

 , (7.14)

where K is the Kalman gain for some sensor and process noise. However, we found that it

suffices to use

Gf(q) ∼

 A+ K̄E Ilx

E 0

 , (7.15)

where K̄ is any nonzero matrix that stabilizes A + K̄E. Note that our choice of Gf is

constant. Furthermore, we do not use the data-window reiteration technique described in

Section 4.2.5.

7.3 RCKF with Unknown Noise Covariances

In this section, we compare the performance of RCKF with the classical Kalman pre-

dictor, under the assumption that A is known and D1, D2 are uncertain.
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7.3.1 Example 18: n = 2 and D1, D2 are Uncertain

Consider (7.1)–(7.3) with

A =

 0.27 1.17

−0.8 0.2

 , x0 =

 −23

17

 , E =

[
1 0

]
, D1 =

 0.3

−0.5

 , (7.16)

D2 = 0.4, and v1, v2 are Gaussian white noise with standard deviation of 1. The second

component of x0 is unmeasured. To apply RCKF, we use the tuning parameter Rθ = Ilθ

and set

K̄ =

 10

0.1

 . (7.17)

To apply the Kalman predictor, we use the tuning parameter P (0) = 104Ilx and set

Q = D̂1D̂
T
1 , R = D̂2D̂

T
2 , (7.18)

where D̂1, D̂2 are estimates of D1, D2, respectively.

In both RCKF and the Kalman predictor, we set the initial estimate of the second com-

ponent of x0 to be the arbitrary value of 5.

To evaluate the accuracy of D̂1, D̂2, we define the relative initial estimation errors

ξD1

4
=
||D̂1 −D1||
||D1||

, ξD2

4
=
||D̂2 −D2||
||D2||

. (7.19)

Note that ξD1 = 0 if and only if D̂1 = D1, and ξD2 = 0 if and only if D̂2 = D2.

To compare the performance of RCKF and the Kalman predictor, we consider 10000

randomly generated initial estimates D̂1, D̂2 such that ξD1 , ξD2 ∈ (0, 1000). For all trials,
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we evaluate the normalized relative state estimation error

||x̂(kf)− x(kf)||
||x(kf)||

(7.20)

for both RCKF and the Kalman predictor. Figure 7.1 shows that, in 37.65% of all trials,

RCKF produces more accurate estimates than the Kalman predictor while the reverse is

true in 62.35% of all trials. In the case where RCKF performs better, it produces 18.5%

lower relative error on average; in the case where the Kalman predictor performs better, it

produces 6.88% lower relative error on average. Furthermore, we observe that, in the case

where ξD2

ξD1
is large, RCKF produces more accurate estimates of x.

Figure 7.1: Comparison of RCKF and the Kalman predictor in Example 18. The Kalman
predictor are applied with 10000 randomly generated initial estimates D̂1, D̂2 using the
measurements y0(k) = x1(k) over the interval k ∈ [0, 500]. Trials where RCKF produces
more accurate estimates of x at step k = 500 are labeled with cyan and trials where the
Kalman predictor produces more accurate estimates of x at step k = 500 are labeled with
red. 37.65% of the trials are cyan and 62.35% of the trials are red. RCKF tends to produce
more accurate estimates of x in trials where ξD2

ξD1
is large.
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7.4 RCKF with Nonzero-Mean Noise Distribution

In this section, we compare the performance of RCKF with the classical Kalman pre-

dictor, under the assumption that A is known and v1, v2 are not zero-mean.

7.4.1 Example 19: n = 2 and v1, v2 are not Zero-Mean

We revisit Example 18 assuming that D1, D2 are known and v1, v2 are given by the

function

v1 = ξs + ξwv̄1, (7.21)

v2 = ξs + ξwv̄2, (7.22)

where v̄1, v̄2 are gaussian white noise signals and ξs, ξw ∈ R.

To compare the performance of RCKF and the Kalman predictor under nonzero-mean

white noise, we consider 10000 linearly spaced values of ξs, ξw ∈ (0, 2). Using the same

tunings as in Example 18 for all trials, we evaluate the normalized relative state estimation

error

||x̂(kf)− x(kf)||
||x(kf)||

(7.23)

for both RCKF and the Kalman predictor. Figure 7.2 shows that, in 17.47% of all trials,

RCKF produces more accurate estimates than the Kalman predictor while the reverse is

true in 82.53% of all trials. In the case where RCKF performs better, it produces 4.68%

lower relative error on average; in the case where the Kalman predictor performs better, it

produces 10.2% lower relative error on average.
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Figure 7.2: Comparison of RCKF and the Kalman predictor in Example 19. The Kalman
predictor are applied with 10000 linearly-spaced values ξs, ξw using the measurements
y0(k) = x1(k) over the interval k ∈ [0, 500]. Trials where RCKF produces more accurate
estimates of x at step k = 500 are labeled with cyan and trials where the Kalman predictor
produces more accurate estimates of x at step k = 500 are labeled with red. 17.47% of the
trials are cyan and 82.53% of the trials are red.

7.5 RCKF vs Kalman Predictor

7.5.1 Advantages of RCKF

Example 18 shows that, in the case where the noise covariances are unknown, RCKF is

able to perform better than the Kalman predictor in 37.65% of the trials. In the trials where

the sensor noise is greater than the process noise, RCKF typically performs better than

the Kalman predictor. This suggests that RCKF is more suitable for applications where

sensors are poor while actuators are accurate. We observe that, in trials where the Kalman

predictor performs better, RCKF is able to deliver similar performance, whereas in trials

where RCKF performs better, it is able to significantly out-perform the Kalman predictor.

7.5.2 Deficiencies of RCKF

Example 19 shows that, in the case where the sensor and process noises are not zero-

mean, the Kalman predictor tends to perform better than RCKF. This suggests that RCKF
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is less suitable for applications where the sensor and process noises are not zero-mean.
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CHAPTER 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we are principally concerned with the CSPE problem. In Chapter 2,

we state and prove necessary and sufficient conditions for testing the feasibility of the CSPE

problem. To do this, we relate the feasibility of the CSPE problem to the identifiability of

state-space realizations. We derived generic conditions for arbitrary second-, third-, and

fourth-order discrete-time, linear time-invariant state-space systems with scalar measure-

ments. In addition, we derived generic conditions for third- and fourth-order discrete-time,

linear time-invariant state-space systems with multiple measurements of the components

of the state.

In Chapter 3, we test classical approaches to the CSPE problem, namely, EKF, UKF

with augmented dynamics, and UKF with state-dependent coefficients. These algorithms

are applied to second-, third-, and fourth-order systems, including application to a lin-

earized longitudinal aircraft model. We found that both EKF and UKF with augmented

dynamics are ineffective for second-order systems, while UKF with state-dependent coef-

ficients are applicable to second- and third-order systems. We test multiple setups of UKF

with state-dependent coefficients to determine the conditions under which they provide ac-

curate estimates for the CSPE problem. The main drawbacks of these classical approaches

is that their performance deteriorates drastically as the order of the system and the number
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of unknown parameters increases. Furthermore, these algorithms typically require approx-

imately 500 data points to converge onto the true values even without sensor and process

noise. These results serve as a benchmark for future chapters.

In Chapter 4, we formulate and test the RCPE algorithm for parameter estimation with-

out measurements of the state. This algorithm is applied to third- and eighth-order systems.

We found that, under the assumption that the initial state is known, RCPE is highly effec-

tive for the CSPE problem. RCPE is similarly effective for the case where the initial state

is unknown and the system is driven by a sufficiently large, measured excitation signal.

Furthermore, RCPE typically requires approximately 100 data points to converge to the

true values; on occasion, RCPE requires as little as 25 data points to converge to the true

values. The main drawback of RCPE is that it is unreliable for cases where the initial state

is unknown and the system is not driven by a sufficiently large excitation signal.

In Chapters 5 and 6, we formulate and test two variations of the RCPES algorithm,

which performs concurrent parameter and initial state estimation without measurements

of the state. These algorithms are applied to second-, third-, and fourth-order systems,

including application to a linearized longitudinal aircraft model. The first variant of the

RCPES algorithm performs better than the classical approaches in all cases. Furthermore,

it typically requires approximately 100 data points to converge, requiring as little as 25

data points on occasion. The second variant of the RCPES algorithm performs worse than

the classical approaches for second-order cases, but performs better for higher order cases.

Once again, this algorithm requires approximately 100 data points to converge to the true

values.

In Chapter 7, we formulate and test the RCKF algorithm, which performs state esti-

mation without using knowledge of the noise covariances and does not require the sensor

and process noise to be zero-mean and finite second moment. This algorithm is applied

to second- and third- order systems, and the results are compared to the Kalman predic-

tor. In the case where the error covariances are not known, if the sensor noise is greater
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than the process noise, RCKF typically performs better than the Kalman predictor. In the

case where the sensor and process noise is not zero-mean, RCKF performs better than the

Kalman predictor on occasion.

8.2 Future Work

The main contributions of this dissertation is proving conditions on identifiability and

the formulation of estimation algorithms based on the retrospective-cost, namely, RCPE,

two variants of RCPES, and RCKF. We briefly outline the potential next steps for these

research topics.

While the present dissertation derives necessary and sufficient conditions for identifi-

ability for only second-, third-, and fourth-order cases with scalar measurements, the ulti-

mate goal is to derive similar conditions for a system of arbitrary order. We believe that

a viable approach for this is to apply proof by induction. First, establish the second-order

identifiability conditions, which are given in this dissertation. Next, we need to show that a

certain set of nth-order conditions imply that the same conditions are true for n+ 1th-order

systems. To obtain the nth-order conditions, one may need to derive identifiability condi-

tions for fifth- and sixth-order systems before a pattern can be observed. These derivations,

while tedious, are not particularly difficult; one simply needs to utilize the same techniques

outlined in this dissertation.

The RCPE results shown in this dissertation are predicated on the Gf update method

outlined in Sections 4.2.4 and 4.2.5. While these results are already quite reliable, working

well for arbitrary eighth-order systems, we believe that they can be further improved by

applying a more sophisticated Gf update method.

The RCPES results shown in this dissertation, on the other hand, are less reliable. For

the first RCPES variant, we believe the main difficulty stems from the fact that modifying

x̂0 in A0 after the first step does not affect ŷ0. This leads to development of the data
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update method introduced in Section 5.1.2, which is arguably ad hoc. A potential area of

improvement is to introduce a different matrix augmentation method that does not suffer

from similar difficulties.

For the second RCPES variant, we believe the main difficulty comes from the fact that

the proposed method approximates a polynomial cost function with a convex cost func-

tion. Currently, this approximation is based on experimental testing and not mathematical

insight. Deeper analysis into the mathematical properties of the original polynomial cost

function may yield an alternative approximation method that produces more reliable re-

sults.

In this dissertation, it was shown that RCKF can be viewed as static parameter esti-

mation algorithm. Since RCPE is also a static parameter estimation algorithm, it might

be fruitful to combine the two algorithms for concurrent parameter and state estimation.

Perhaps this will yield the most reliable approach to solving the CSPE problem.
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