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ABSTRACT

The nosocomial  pathogen  Clostridium difficile causes  an  antibiotic-associated

diarrheal  disease,  and largest single cause of  hospital-acquired infection as well  as

gastroenteritis-associated  death  in  the  United  States.  The  connection  with  prior

antibiotic  therapy  is  due  to  the  collateral  damage  induced  by  these  drugs  on  the

community  of  indigenous  bacteria  that  reside  along  the  gastrointestinal  tract.  In  its

healthy state, the gut microbiota prevents the establishment of  C. difficile in the gut

through  the  intrinsic  property  known  as  colonization  resistance.  Following  a

perturbation,  like  exposure  to  antibiotics,  this  community  becomes  susceptible  to

colonization by the pathogen and subsequent  disease.  Most  antibiotic  classes have

been associated with  C. difficile infection (CDI) susceptibility; many leading to distinct

community structures with unique metabolic profiles stemming from variation in bacterial

targets of action. Additionally, a subset of these antibiotics are more closely associated

with recurrent or persistent infection. In this thesis I demonstrate that certain susceptible

gut communities are more permissive of long-term C. difficile colonization, and that the

pathogen has a disproportionate effect on the metabolic activity of communities where

persistence occurs. Taxonomic analyses of altered gene expression revealed that this

effect consistently impact minority bacterial genera of the community across infection

groups.  In  order  to  measure  the  adaptive  capacity  of  C.  difficile to  these  diverse

environments, I also generated a genomic/transcriptomic-enabled metabolic modeling
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platform to assess the differences in nutrient preference of  C. difficile across different

community contexts. This revealed the pathogen inhabited distinct nutrient niche spaces

across susceptible gut environments. My dissertation work has strong implications in

future  research  of  targeted  pre-  and  probiotic  therapies  that  mitigate  primary  or

established C. difficile colonization from the gastrointestinal tract.
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CHAPTER ONE

Introduction

The Gut Microbiota and Impacts on Health

Humans are inhabited by trillions of indigenous microorganisms, in a complex

ecosystem known as the microbiome. These communities of microbes are composed of

diverse representatives from across the tree of life including bacteria, archaea, fungi,

and viruses. Collections of these organisms have colonized every exterior surface of the

body, but by far the most dense populations are found within the lower gastrointestinal

tract. A recent estimate stated that there are most likely a nearly identical number of

microbial cells living associated with humans as there are human cells in the entire body

(1). Species surveys of this environment have revealed that more than 1,000 unique

taxonomic groups can potentially be found here (2). Additionally, the largest percentage

of this biomass has also been shown to be represented by bacteria. One study also

found that there are approximately 10 trillion bacteria per gram of content in the distal

colon (3).  The species diversity of this consortia is only eclipsed by its own genetic

diversity, in that it has been estimated that the gut microbiota is in possession of 150-

fold more genes than are in the human genome (4).  This extreme genetic diversity

lends itself to an equally large metabolic capacity not present in human cells. Among

these  are  examples  of  complex  polysaccharide  and  mucin  degradation  (5),
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methanogenesis  (6),  sulfate-reduction  (7),  and  multiple  forms  of  distinct  anaerobic

fermentation (8) to highlight a subset of functions.

These  organisms  have  been  present  within  us  throughout  evolution  of  both

groups and as a result, each has developed processes that are interdependent (9). As

early  as  the  mid-1800’s,  the  famed  microbiologist  Theodor  Escherich  began  to

recognize the possible importance of our resident microbes in our well-being (10). Only

recently have we begun to appreciate mechanistic impacts that the microbiome plays in

both health and disease. In terms of positive effects on the host, a number of groups

have characterized instances of vitamin biosynthesis (11), enhanced nutrient acquisition

(12),  education of  immunity  (13),  and resistance to  colonization  by pathogens (14).

Disruption of  normal  community  structure and function,  or  dysbiosis,  has also been

strongly linked to multiple disease states thus far. The most common of these effects

has  been  connections  to  chronic  inflammatory  states  which  have  been  shown  to

exacerbate the progression of conditions like colorectal cancer (15) and inflammatory

bowel disease (16). Connections have also been made to neurodevelopment (17) and

degeneration (18), which could dramatically impact host cognition and behavior. Also,

further connections to metabolic disorders like Type-2 diabetes and obesity (19, 20)

have  been  made.  There  is  still  an  incredible  number  of  unanswered  questions

concerning  the  interactions  of  these  communities  of  organisms  and  how  this

interspecies metabolic communication contributes to host physiology.

For the purpose of discussion throughout the subsequent chapters I would like to

establish definitions for several terms I use frequently, at least in the context of this
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thesis. First, microbiome refers to the complete collection of biotic and abiotic factors

contained in the microenvironment of interest, this case the mammalian gut. The root of

this  word is  biome,  referring to  the community  of  organisms and the environmental

factors that drive their assembly in a habitat (21), modified to specify the micro- scale.

Next,  microbiota  refers  strictly  the  microscopic  organisms  that  inhabit  a  given

microbiome, biota being the root word which defines the member organisms of a biome.

Within the microbiota, the metagenome is the pooled gene content of all organisms in

the  community.  The  operator  here  genome,  is  the  full  genetic  content  of  a  single

organism, and the modifier meta- abstracts this to concept to beyond one genome into

all of the genetic material present in the microbiota. Similarly, metatranscriptome is total

active transcription of this assemblage under certain conditions at a given time, and is

intrinsically  dependent  on  the  metagenome.  Both  genome  and  transcriptome  have

specific  definitions  at  the  individual  organism  scale,  and  are  simply  expanded  to

encompass  more  organisms  simultaneously  when  applied  to  the  larger  microbiota.

Finally,  metabolome  describes  all  distinct  organic  and  inorganic  metabolites  in  the

environment of a microbiome at a particular time. As there has been debate at length to

the proper  definition of  some of  these terms,  it  is  critical  to  the presentation of  my

dissertation work to understand the distinctions I make when describing my findings

involving  multiple layers of community-level biology at the same time. 
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Clostridium difficile Infection and Experimental Models

The etiological  agent  of  Clostridium difficile infection,  or  CDI,  is  the  bacterial

pathogen  Clostridium difficile.  Susceptibility  to  colonization  by  C.  difficile has  been

closely linked with previous antibiotic exposure. This trait is primarily mediated by the

gut  microbiota  which  will  be  discussed  more  at  length  in  later  chapters.  CDI

susceptibility has been associated with most antibiotics in the clinic with clindamycin,

cephalosporins, fluoroquinolones being associated with increased reports of persistent

infection (22). C. difficile produces two main toxins encoded by the genes tcdA and tcdB

which are the mediators of disease. Briefly, these toxins enter the cytosol of host cells

and glycosylates small GTP-binding proteins (Rho, Rac, and Cdc42), inactivating them.

The consequence of this actin condensation, leading to cell-rounding, and ultimately cell

death (23). Certain strains have also been found to be in possession of a binary toxin

which  causes  actin  depolymerization  through  ADP-ribosylation,  and  has  been

associated with increased CDI mortality (24). Through the actions of these toxins, CDI

has been associated with a range of symptoms beginning with mild diarrhea, moving

into  severe  inflammatory  diarrhea,  or  even  into  the  most  severe  symptoms  of

pseudomembranous colitis and toxic megacolon (25). In addition to toxin production, C.

difficile has a complex bacterial life-cycle and possesses a spore phase that is thought

to be the transmissive form of the pathogen (26). These endospores can persist for

extended periods in the environment, and are highly aerotolerant, chemically tolerant,

and UV resistant making them extremely difficult to remove from hospital surfaces (27).

Life-cycle switches as well as control of virulence expression in C. difficile are the result
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of signals integrated from the availability of certain metabolites in the environment it is

colonizing (28). These differences in nutrient accessibility and the changes they induce

in C. difficile physiology have implications in the overall microbial ecology of CDI in the

gut and will be discussed in following chapters.

C. difficile itself is a Gram-positive, motile anaerobe that was first isolated by Hall

and Toole in 1935 from healthy infant stool and was then known as Bacillus difficilus for

it’s fastidious in vitro growth (29). In spite of colonizing the infants asymptomatically, the

authors were surprised to find that this species was highly pathogenic in both guinea

pigs and rabbits mediated through production of a toxin. Complications associated with

C. difficile infections became prevalent shortly after the inception of antibiotic use in the

clinic  in  the  1950’s.  Physician’s  noted  patients  with  increased  incidence  of

pseudomembranous colitis following treatment with several classes of antibiotics which

was at the time assumed to be due to  Staphylococcus aureus infection (30). It  was

concluded later that a separate infectious agent must be responsible when clindamycin

treated  patients  began  to  exhibit  diarrhea  and  pseudomembranous  colitis,  with  no

culturable S. aureus (31). The first clinical recognition of infection by C. difficile came in

1977, when Bartlett  et al. replicated the clindamycin-associated diarrhea in a mouse

model  and  reisolated  outgrown  C.  difficile from these  animals  (32).  Over  the  next

several decades, incidence of CDI world-wide has grown exponentially with outbreaks

occurring on multiple continents, disproportionately impacting the elderly (33). Today,

the prevalence of CDI in the United States has increased to nearly epidemic levels with

an estimated half of a million infections, with ~29,000 leading to death of the patient
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(34). The threat of CDI is compounded by the concomitant rise in the overall virulence of

clinical isolates, potentially leading to more individuals reporting symptoms but with the

same number  of  total  infected (35).  The  situation  is  made  even worse by  growing

detection  rates  of  antibiotic  resistant  strains  (36).  These  factors  resulted  in

approximately $4.8 billion in acute health care costs in the US alone for 2015 (34). The

urgency of this healthcare crisis necessitates the research of novel treatment options to

stem the tide of infection and disease caused by C. difficile

As mentioned earlier, several animal models of CDI have been developed over

the  past  several  decades  and  have  proven  to  be  invaluable  research  tools  for

understanding the role of the gut microbiota in limiting this infection. The first  in vivo

experimental model of CDI was the Syrian hamster, which was easily colonized by C.

difficile following pretreatment with clindamycin (37). Early reports failed to recognize C.

difficile as the cause of the lethal diarrheal disease experienced by these animals, only

later was the agent identified (38).  This system proved invaluable for assessing the

damage to host epithelia induced by the toxins (39), however the lethality of this model

was not reflective of the disease course in humans. Gnotobiotic mice also provided a

useful research platform (40), but were inherently susceptible to the infection and did

not  provide  a  realistic  model  of  human infection.  In  2008,  a  method  of  sensitizing

conventionally-reared  mice  to  C.  difficile colonization  was  discovered.  This  model

included  pretreatment  with  5  antibiotics  in  the  drinking  water,  followed  by  an

intraperitoneal injection of clindamycin prior to infection (41). This discovery was a boon

for  C. difficile researchers as the course of disease in mice more closely resembled
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what was seen in humans. This model allowed for not only pathogenesis in a milder

disease phenotype, but for studies of the normal murine microbiota in the context of

CDI. Subsequent studies identified singly administered antibiotics that were sufficient to

allow for  C. difficile colonization and disease in a mouse model, providing additional

tractability for studying differentially perturbed yet equally susceptible gut microbiomes

(42–44). During experimentation for my thesis work I employed three separate antibiotic

pretreatment  regimes  in  conventional  C57BL/6J  mice,  previously  defined  by  these

groups.

Colonization Resistance to C. difficile and Niche Theory

Colonization resistance refers to the intrinsic ability of the gut microbiota to inhibit

the  colonization  and  growth  of  invasive  species,  namely  pathogens  (45).  The  first

description of antibiotic-associated infections, eventually linked to the microbiota, was

made in 1943 but was incorrectly attributed to a delayed toxicity of penicillin (46). The

general  concept  of  protection  via  resident  microbes  was  originally  described

experimentally in 1955 by Rolf Freter in reference to the ability of the gut microbes to

prevent lethal Cholera infection in a guinea pig model (47). In the following year Freter

made the significant finding that not only did pretreatment with streptomycin sensitize

mice  and  guinea  pigs  to  infection  by  Shigella,  but  that  feeding  these  animals  a

streptomycin-resistant  non-toxigenic  strain  of  Escherichia  coli  prevent  subsequent

Shigella colonization (48).  In  1962,  it  began to  be referred to  as  “antibiotic-induced

susceptibility” when it was found that pretreatment with streptomycin also reduced the
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infectious dose of  Salmonella enterica typhimurium in a mouse model by over 10,000

fold (49). The term Colonization Resistance itself came in 1971 when another group

noted that antibiotic pretreatment not only increased susceptibility to immediate infection

by E. coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, but that the resistant

state of the gut microbiota returned over a period of approximately two weeks following

cessation of antibiotics (50). Freter’s group later also characterized this phenomena in a

gnotobiotic  mouse  model  were  pre-colonized  by  intestinal  microbiota  from

conventionally-reared mice for C. difficile infection (51). Then in 1988, it was shown that

colonization resistance, at least to certain pathogens including C. difficile, was mediated

by competition for growth nutrients through continuous flow reactor experiments, where

sterilized intestinal content from resistant mice would not grow the pathogen without

supplementation with glucose (52).

As a pioneer in this field, Freter defined what would later be referred to as the

nutrient-niche  hypothesis  which  offered  an  explanation  as  to  how  the  healthy  gut

microbiota  mediated  the  exclusion  of  pathogenic  bacterial  species  (53).  The  basic

ecological framework was based on a series of three assumptions: 1. There are a finite

number of niches in the gut, 2. A species must be better than all other competitors at

acquiring at least a single nutrient source, and 3. That a species must reproduce faster

that  the  washout  rate  of  the  intestine  (54).  Over  the  years,  this  concept  has  been

supported by additional work in competitive exclusion of carbohydrate-based nutrient

niches  in vivo by a non-pathogenic strain of  E. coli  against pathogenic strains of the

bacterium (55, 56). Additionally, it was later shown that this same non-pathogenic E. coli
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outcompetes S. typhimurium for iron, and eliminates the infection from the gut of mice

(57). These data provide support that in the case of colonization resistance to at least

certain  species  which  include  C.  difficile,  competition  for  nutrients  was  an  effective

means of exclusion. As a side note, further mechanisms for colonization resistance to

other  bacterial  pathogens  have  been  demonstrated  including  bacteriocin/microcin-

based  antagonism  (58),  modulation  of  host  immunity  (59),  or  indirect  antagonism

through bioconversion of specific metabolites (60) among factors that may determine

resistance to various infections.

Subsequent studies of  C. difficile colonization resistance specifically have been

met  with  more  mixed results  in  attempts  to  identify  specific  competitors  in  the  gut.

Moreover, it has also been shown that separate classes of antibiotics that cause CDI

susceptibility  in  a  mouse model,  each lead to  distinct  gut  metabolomes with  highly

divergent nutrient profiles available in each (61–63). The fact that C. difficile colonizes

each of these environments effectively promotes the hypothesis that it is a metabolic

generalist,  as  the  pathogen  possesses  many  traits  that  define  these  organisms.  In

microbial ecology, an ecological generalist is a species that can colonize a wide variety

of habitats, a trait which also necessitates a large enough spectrum of nutrient utilization

capabilities to support this behavior (64).  C. difficile has been found to infect a large

variety of animal species including numerous small and large mammals as well as birds

(65).  C. difficile has also been demonstrated to utilize a large range of substrates for

growth including simple sugars, complex polysaccharides, amino acids and peptides

(66). This ability is likely due to its large and variable genomic capacity (67), which is
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another  trait  of  many  bacterial  generalists  that  are  able  to  adapt  to  diverse  and

fluctuating environments (68). These features are not congruent with the nutrient-niche

hypothesis in which species that persistently colonize require discrete specialization. As

such, although this theory has been largely explanatory of competition for nutrients by

members of the gut microbiota against specialized pathogenic species, it appears to

require revision in the case of a pathogen with a large possible nutrient niche space.

Furthermore, Freter’s hypothesis relies on an additional assumption of even mixing of

species and nutrients through the gut environment. This is not the reality as specific

biogeographic habitats in the gut and stochastic processes drive an unequal distribution

of  competitors  and  their  respective  niche  spaces  across  most  of  the  intestinal

environment (69). I propose a more expanded theory of the nutrient niche landscape in

the  gut  that  is  more  reminiscent  of  current  niche  theory  from macroecology,  and  I

explore this in Chapters 2 and 3.

The concept of organismal niches as single, discrete units is more in line with the

first  widely  accepted  definition  of  a  niche  from Joseph  Grinnell  in  1917  (70).  This

description  strictly  included  the  behaviors  and  habitat  requirements  that  allowed  a

species to persist in the environment for which they are adapted. This theory allowed for

competitive  exclusion  as  well  as  “empty”  niches,  and  was  famously  supported  by

George  Gause  in  the  formation  of  Gause’s  Law  which  stated  that  two  species

competing for the same limited resource cannot coexist (71). This concept is the best

analogy for the existing nutrient-niche hypothesis framework for the gut. However, the

definition of a niche was then broadened in 1927 by Charles Elton to now encompass
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the  ability  of  an  organism to  change  behavior  to  actively  adapt  to  it’s  habitat  and

manipulate elements of it in order to maintain colonization, thus allowing for more than

one species at least partially inhabiting the same niche (72). Elton’s theory brought forth

the foundation for the concepts of an organism’s fundamental versus its realized niche.

Fundamental niche refers to all aspects of an environment that an organism is able to

colonize in the absence of all competitors, while realized niche are the subset of these

components that are actually utilized when in actual competition with other organisms.

This concept is reflective of findings discussed on Chapter 3. Finally in 1957 George

Hutchinson proposed an additional evolution to the concept of a niche, which brought it

to our modern understanding of the distribution and interaction of realized niches in

nature (73). His description now included an n-dimensional hypervolume representing

the total “space” that organisms can inhabit in a boundaried habitat (or biotope) where

each axis is a distinct resource or environment condition. Along each axis is the full

spectrum within which that condition or resource can vary. In this framework, separate

organisms  inhabit  a  segregated  portion  of  mutli-dimensional  space  based  on  their

capabilities and current  behavior  within  the overall  niche space.  This  definition of  a

niche is far more explanatory of species co-existence with niche overlaps as competing

species can partially  segregate from each other within their  respective areas of the

hypervolume  (74).  One  could  imagine  the  scenario  of  antibiotic  treatment  to  this

community diminishing the volume of some species and their niche space in the gut

environment biotope. Remaining species with previous segregation, but shared niche

qualities would then reorient to inhabit various portions of vacated space. One could

11



then imagine an additional species, or pathogen, that is introduced and now able to

colonize the restructured biotope. Hypervolumes would be vacated differentially across

distinct  antibiotic treatments,  necessitating generalism to colonize successfully,  as is

case with C. difficile.

Direction of Thesis Work

The  focus  of  my  thesis  has  been  on  analyzing  metabolic  properties  of  the

microbes that resides in the gastrointestinal tract, specifically the bacterial component of

this  community  in  the  setting  of  infection  by  C.  difficile.  My  research  has  revolved

around the central hypothesis that distinct antibiotic classes result in microbiomes with

divergent metabolic challenges that C. difficile must adapt to or manipulate in order to

succeed  across  conditions.  By  leveraging  the  mouse  model  of  infection  previously

described,  I  utilized  distinct  classes  of  antibiotic  pretreatments  to  characterize  the

behavior of the gut microbiome, including C. difficile, during infection when compared to

uninfected  mice.  In  the  subsequent  chapters  I  discuss  two  sides  of  this  interplay;

changes at the community level in response to infection, and metabolic adaptation of C.

difficile to varied susceptible gut microbiome. More specifically, in Chapter 2 I address

shifts in both the metatranscriptomes and metabolomes of infected mice as a product of

C. difficile colonization and the potential  ramifications of these changes in long-term

colonization. Then in Chapter 3 I cover the metabolic adaptations of C. difficile to each

distinct microbiome and how that may relate to disease, using genome-scale metabolic

modeling techniques integrated with transcriptomic analysis. Together, these research
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directions have implications for the ecology of infection in the mammalian gut which I

discuss in the final  chapter as well  as future directions which may ultimately reveal

novel treatment approaches to C. difficile infection.

References

1. Sender,  R.,  S.  Fuchs,  R.  Milo.  2016.  Revised  estimates  for  the  number  of
human and bacteria cells in the body. PLOS Biology 14:036103.

2. Lozupone, C. A., J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight.
2012.  Diversity,  stability  and  resilience  of  the  human  gut  microbiota.  Nature
489:220–230.

3. Savage,  D.  C. 1977.  Microbial  Ecology  of  the  Gastrointestinal  Tract.  Annual
Review of Microbiology 31:107–133.

4. Qin, J., R. Li, J. Raes, M. Arumugam, S. Burgdorf, C. Manichanh, T. Nielsen,
N. Pons, T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H.
Liang,  H.  Zheng,  Y.  Xie,  J.  Tap,  P.  Lepage,  M.  Bertalan,  J.-m.  Batto,  T.
Hansen, D. L. Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, Y.
Zhou, Y. Li, X. Zhang, S. Li, N. Qin, and H. Yang. 2010. A human gut microbial
gene catalog established by metagenomic sequencing. Nature 464:59–65.

5. Flint, H. J., K. P. Scott, S. H. Duncan, P. Louis, and E. Forano. 2012. Microbial
degradation of complex carbohydrates in the gut. 3:289–306.

6. Gaci, N., G. Borrel, W. Tottey, P. W. O’Toole, and J. F. Brugère. 2014. Archaea
and the human gut: New beginning of an old story 20:16062–16078.

7. Rey, F. E.,  M. D. Gonzalez,  J. Cheng,  M. Wu,  P. P. Ahern, and J. I. Gordon.
2013.  Metabolic  niche  of  a  prominent  sulfate-reducing  human gut  bacterium.
Proceedings of the National Academy of Sciences 110:13582–13587.

8. Bernalier-Donadille,  A. 2010.  Fermentative  metabolism  by  the  human  gut
microbiota. Gastroenterologie Clinique et Biologique 34:S16–S22.

9. Schnorr, S. L.,  K. Sankaranarayanan,  C. M. Lewis, and  C. Warinner. 2016.
Insights into human evolution from ancient and contemporary microbiome studies
41:14–26.

13



10.Escherich,  T.  H. 1989.  The intestinal  bacteria  of  the neonate  and breast-fed
infant. Reviews of Infectious Diseases 11:352–356.

11. Magnúsdóttir,  S.,  D.  Ravcheev,  V.  De  Crécy-Lagard,  and  I.  Thiele.  2015.
Systematic genome assessment of B-vitamin biosynthesis suggests cooperation
among gut microbes. Frontiers in Genetics 6.

12.Bäckhed,  F.,  H.  Ding,  T.  Wang,  L.  V.  Hooper,  G.  Y.  Koh,  A.  Nagy,  C.  F.
Semenkovich, and J. I. Gordon. 2004. The gut microbiota as an environmental
factor  that  regulates  fat  storage.  Proceedings  of  the  National  Academy  of
Sciences of the United States of America 101:15718–23.

13.Wu, H.-J., and E. Wu. 2012. The role of gut microbiota in immune homeostasis
and autoimmunity. Gut Microbes 3:4–14.

14.Buffie,  C.  G.,  and  E.  G.  Pamer.  2013.  Microbiota-mediated  colonization
resistance against  intestinal  pathogens.  Nature Reviews Immunology  13:790–
801.

15.Zackular, J. P., N. T. Baxter, K. D. Iverson, W. D. Sadler, J. F. Petrosino, G. Y.
Chen,  and  P.  D.  Schloss.  2013.  The  gut  microbiome  modulates  colon
tumorigenesis. mBio 4.

16.Sartor, R. B., and S. K. Mazmanian. 2012. Intestinal Microbes in Inflammatory
Bowel Diseases. The American Journal of Gastroenterology Supplements 1:15–
21.

17.Hsiao, E. Y., S. W. McBride, S. Hsien, G. Sharon, E. R. Hyde, T. McCue, J. A.
Codelli,  J. Chow,  S. E. Reisman,  J. F. Petrosino,  P. H. Patterson, and S. K.
Mazmanian.  2013.  Microbiota  modulate  behavioral  and  physiological
abnormalities  associated  with  neurodevelopmental  disorders.  Cell  155:1451–
1463.

18.Sampson, T. R.,  J. W. Debelius,  T. Thron,  S. Janssen,  G. G. Shastri,  Z. E.
Ilhan, C. Challis, C. E. Schretter, S. Rocha, V. Gradinaru, M. F. Chesselet, A.
Keshavarzian,  K. M. Shannon,  R. Krajmalnik-Brown,  P. Wittung-Stafshede,
R. Knight, and S. K. Mazmanian. 2016. Gut Microbiota Regulate Motor Deficits
and  Neuroinflammation  in  a  Model  of  Parkinson’s  Disease.  Cell  167:1469–
1480.e12.

19.Devaraj,  S.,  P.  Hemarajata,  and  J.  Versalovic.  2013.  The  human  gut
microbiome and body metabolism: Implications for obesity and diabetes 59:617–
628.

14



20.Sanz, Y.,  M. Olivares,  Á. Moya-Pérez, and C. Agostoni. 2015. Understanding
the role of gut microbiome in metabolic disease risk. Pediatric Research 77:236–
244.

21.Whittaker,  R.  H. 1975.  Communities  and  ecosystems.  Communities  and
ecosystems.

22.Gerding,  D. 2004.  Clindamycin,  Cephalosporins,  Fluoroquinolones,  and
Clostridium  difficile–Associated  Diarrhea:  This  Is  an  Antimicrobial  Resistance
Problem. Clin Infect Dis 38:646–648.

23.Voth, D. E., and  J. D. Ballard. 2005.  Clostridium difficile toxins: Mechanism of
action and role in disease 18:247–263.

24.Gerding, D. N.,  S. Johnson,  M. Rupnik, and  K. Aktories. 2014.  Clostridium
difficile binary  toxin  CDT:  mechanism,  epidemiology,  and  potential  clinical
importance 5:15–27.

25.Bartlett, J. G., and D. N. Gerding. 2008. Clinical Recognition and Diagnosis of
Clostridium difficile Infection. Clinical Infectious Diseases 46:S12–S18.

26.Deakin, L. J., S. Clare, R. P. Fagan, L. F. Dawson, D. J. Pickard, M. R. West,
B.  W.  Wren,  N.  F.  Fairweather,  G.  Dougan,  and  T.  D.  Lawley.  2012.  The
Clostridium  difficile spo0A  gene  is  a  persistence  and  transmission  factor.
Infection and Immunity 80:2704–2711.

27.Lawley, T. D.,  S. Clare,  L. J. Deakin,  D. Goulding,  J. L. Yen,  C. Raisen,  C.
Brandt, J. Lovell, F. Cooke, T. G. Clark, and G. Dougan. 2010. Use of purified
Clostridium  difficile spores  to  facilitate  evaluation  of  health  care  disinfection
regimens. Applied and Environmental Microbiology 76:6895–6900.

28.Bouillaut, L., T. Dubois, A. L. Sonenshein, and B. Dupuy. 2015. Integration of
metabolism  and  virulence  in  Clostridium  difficile.  Research  in  Microbiology
166:375–383.

29.Hall,  I.,  and  E.  O’Toole.  1935.  Intestinal  flora  in  new-born  infants:  With  a
description of a new pathogenic anaerobe, Bacillus difficilis. American Journal of
Diseases of Children 49:390–402.

30.Altemeier,  W.,  R.  Hummel,  and  E.  Hill.  1963.  Staphylococcal  Enterocolitis
Following Antibiotic Therapy. Annals of Surgery 157:847–857.

31.Tedesco, F., R. Barton, and D. Alpers. 1974. Clindamycin-Associated Colitis. A
Prospective Study. Annals of Internal Medicine 81:429–433.

15



32.Bartlett,  J.  G.,  a B.  Onderdonk,  R. L.  Cisneros,  and  D. L.  Kasper.  1977.
Clindamycin-associated colitis due to a toxin-producing species of Clostridium in
hamsters. The Journal of infectious diseases 136:701–705.

33.Depestel, D. D., and D. M. Aronoff. 2013. Epidemiology of  Clostridium difficile
infection. Journal of pharmacy practice 26:464–75.

34.Lessa, F. C.,  Y. Mu,  W. M. Bamberg,  Z. G. Beldavs,  G. K. Dumyati,  J. R.
Dunn, M. M. Farley, S. M. Holzbauer, J. I. Meek, E. C. Phipps, L. E. Wilson, L.
G. Winston, J. A. Cohen, B. M. Limbago, S. K. Fridkin, D. N. Gerding, and L.
C. McDonald. 2015. Burden of Clostridium difficile Infection in the United States.
New England Journal of Medicine 372:825–834.

35.Quesada-Gomez,  C.,  D.  Lopez-Urena,  L.  Acuna-Amador,  M.  Villalobos-
Zuniga, T. Du, R. Freire, C. Guzman-Verri, M. D. M. Gamboa-Coronado, T. D.
Lawley, E. Moreno, M. R.Mulvey, G. A. D. C. Brito, E. Rodriguez-Cavallini, C.
Rodriguez,  and  E.  Chaves-Olartea.  2015.  Emergence  of  an  outbreak-
associated  Clostridium  difficile variant  with  increased  virulence.  Journal  of
Clinical Microbiology 53:1216–1226.

36.CDC.  2013.  Antibiotic  Resistance  Threats  in  the  United  States,  2013  |
Antibiotic/Antimicrobial Resistance | CDC.

37.Small, J. 1968. Fatal enterocolitis in hamsters given lincomycin hydrochloride.
Lab Anim Care 18:411–420.

38.Bartlett, J. G., N. Moon, T. W. Chang, N. Taylor, and A. B. Onderdonk. 1978.
Role of  Clostridium difficile in antibiotic-associated pseudomembranous colitis.
Gastroenterology 75:778–782.

39.Price,  a  B.,  H. E.  Larson,  and  J.  Crow.  1979.  Morphology of  experimental
antibiotic-associated  enterocolitis  in  the  hamster:  a  model  for  human
pseudomembranous colitis and antibiotic-associated diarrhoea. Gut 20:467–475.

40.Wilson, K. H., J. N. Sheagren, R. Freter, L. Weatherbee, and D. Lyerly. 1986.
Gnotobiotic Models for Study of the Microbial Ecology of Clostridium difficile and
Escherichia coli. Journal of Infectious Diseases 153:547–551.

41.Chen, X.,  K. Katchar,  J. D. Goldsmith,  N. Nanthakumar,  A. Cheknis,  D. N.
Gerding,  and  C.  P.  Kelly.  2008.  A  Mouse  Model  of  Clostridium  difficile-
Associated Disease. Gastroenterology 135:1984–1992.

16



42.Theriot, C. M.,  C. C. Koumpouras,  P. E. Carlson,  I. I. Bergin,  D. M. Aronoff,
and V. B. Young. 2011. Cefoperazone-treated mice as an experimental platform
to  assess  differential  virulence  of  Clostridium  difficile strains.  Gut  microbes
2:326–334.

43.Lawley, T. D., S. Clare, A. W. Walker, D. Goulding, R. A. Stabler, N. Croucher,
P. Mastroeni, P. Scott, C. Raisen, L. Mottram, N. F. Fairweather, B. W. Wren,
J. Parkhill,  and  G. Dougan.  2009.  Antibiotic  treatment of  Clostridium difficile
carrier  mice  triggers  a supershedder  state,  spore-mediated transmission,  and
severe disease in immunocompromised hosts. Infection and Immunity 77:3661–
3669.

44.Schubert,  A.  M.,  H.  Sinani,  and  P.  D.  Schloss.  2015.  Antibiotic-induced
alterations of the murine gut microbiota and subsequent effects on colonization
resistance against Clostridium difficile. mBio 6.

45.Lawley,  T.  D.,  and  A.  W.  Walker.  2013.  Intestinal  colonization  resistance.
Immunology 138:1–11.

46.Hamre,  D. 1943.  The  toxicity  of  penicillin  as  prepared  for  clinical  use.  The
American journal of the medical sciences 206:642.

47.Rolf  Freter.  1955.  The  Fatal  Enteric  Cholera  Infection  in  the  Guinea  Pig,
Achieved  by  Inhibition  of  Normal  Enteric  Flora.  The  Journal  of  Infectious
Diseases 97:57–65.

48.Freter, R. 1956. Experimental enteric Shigella and Vibrio infections in mice and
guinea pigs. The Journal of experimental medicine 104:411–418.

49.Bohnhoff,  M.,  and  C.  P.  Miller.  1962.  Enhanced susceptibility  to  salmonella
infection in streptomycin-treated mice. Journal of Infectious Diseases  111:117–
127.

50.Waaij, D. van der,  J. M. Berghuis-de Vries, and J. E. C. Lekkerkerk-van der
Wees. 1971. Colonization resistance of the digestive tract in conventional and
antibiotic-treated mice. The Journal of hygiene 69:405–11.

51.Wilson, K. H., J. N. Sheagren, R. Freter, L. Weatherbee, and D. Lyerly. 1986.
Gnotobiotic Models for Study of the Microbial Ecology of Clostridium difficile and
Escherichia coli. Journal of Infectious Diseases 153:547–551.

52.Wilson,  K.  H.,  and  F.  Perini.  1988.  Role  of  competition  for  nutrients  in
suppression  of  Clostridium  difficile by  the  colonic  microflora.  Infection  and
Immunity 56:2610–2614.

17



53.Freter, R.,  H. Brickner,  J. Fekete,  M. M. Vickerman, and  K. E. Carey. 1983.
Survival and implantation of Escherichia coli in the intestinal tract. Infection and
Immunity 39:686–703.

54.Freter,  R.,  H.  Brickner,  M.  Botney,  D.  Cleven,  and  A.  Aranki.  1983.
Mechanisms  That  Control  Bacterial  Populations  in  Continuous-Flow  Culture
Models of Mouse Large Intestinal Flora. Infection and Immunity 39:676–685.

55.Chang, D.-E., D. J. Smalley, D. L. Tucker, M. P. Leatham, W. E. Norris, S. J.
Stevenson,  A. B. Anderson,  J. E. Grissom,  D. C. Laux,  P. S. Cohen, and T.
Conway.  2004.  Carbon  nutrition  of  Escherichia  coli  in  the  mouse  intestine.
Proceedings of the National Academy of Sciences 101:7427–7432.

56.Maltby, R.,  M. P. Leatham-Jensen,  T. Gibson,  P. S. Cohen, and  T. Conway.
2013.  Nutritional  Basis  for  Colonization  Resistance  by  Human  Commensal
Escherichia  coli  Strains  HS and  Nissle  1917  against  E.  coli  O157:H7  in  the
Mouse Intestine. PLoS ONE 8.

57.Deriu, E., J. Z. Liu, M. Pezeshki, R. A. Edwards, R. J. Ochoa, H. Contreras, S.
J.  Libby,  F.  C.  Fang,  and  M.  Raffatellu.  2013.  Probiotic  bacteria  reduce
salmonella typhimurium intestinal colonization by competing for iron. Cell Host
and Microbe 14:26–37.

58.Sassone-Corsi,  M.,  S.-P.  Nuccio,  H.  Liu,  D.  Hernandez,  C.  T.  Vu,  A.  A.
Takahashi,  R.  A.  Edwards,  and  M.  Raffatellu.  2016.  Microcins  mediate
competition among Enterobacteriaceae in the inflamed gut. Nature 540:280–283.

59. Inagaki,  H.,  T.  Suzuki,  K.  Nomoto,  and  Y.  Yoshikai.  1996.  Increased
susceptibility to primary infection with Listeria monocytogenes in germfree mice
may be due to lack of accumulation of L- selectin+ CD44+ T cells in sites of
inflammation. Infection and Immunity 64:3280–3287.

60.Buffie, C. G., V. Bucci, R. R. Stein, P. T. McKenney, L. Ling, A. Gobourne, D.
No, H. Liu, M. Kinnebrew, A. Viale, E. Littmann, M. R. M. van den Brink, R. R.
Jenq, Y. Taur, C. Sander, J. R. Cross, N. C. Toussaint, J. B. Xavier, and E. G.
Pamer.  2014. Precision microbiome reconstitution restores bile acid mediated
resistance to Clostridium difficile. Nature 517:205–208.

61.Antunes, L. C. M., J. Han, R. B. R. Ferreira, P. Lolić, C. H. Borchers, and B.
B.  Finlay.  2011.  Effect  of  antibiotic  treatment  on  the  intestinal  metabolome.
Antimicrobial Agents and Chemotherapy 55:1494–1503.

18



62.Jump, R. L. P.,  A. Polinkovsky,  K. Hurless,  B. Sitzlar,  K. Eckart,  M. Tomas,
A.  Deshpande,  M.  M.  Nerandzic,  and  C.  J.  Donskey.  2014.  Metabolomics
analysis  identifies  intestinal  microbiota-derived  biomarkers  of  colonization
resistance in clindamycin-treated mice. PLoS ONE 9.

63.Theriot,  C.  M.,  M.  J.  Koenigsknecht,  P.  E.  Carlson,  G.  E.  Hatton,  A.  M.
Nelson,  B. Li,  G. B. Huffnagle,  J. Z.  Li,  and  V. B. Young.  2014. Antibiotic-
induced  shifts  in  the  mouse  gut  microbiome  and  metabolome  increase
susceptibility to Clostridium difficile infection. Nature Communications 5:3114.

64.Monard, C., S. Gantner, S. Bertilsson, S. Hallin, and J. Stenlid. 2016. Habitat
generalists  and  specialists  in  microbial  communities  across  a  terrestrial-
freshwater gradient. Scientific Reports 6:37719.

65.Keessen, E. C.,  W. Gaastra,  and  L. J. A. Lipman.  2011.  Clostridium difficile
infection in humans and animals, differences and similarities 153:205–217.

66.Scaria, J., J. W. Chen, N. Useh, H. He, S. P. McDonough, C. Mao, B. Sobral,
and  Y.  F.  Chang.  2014.  Comparative  nutritional  and  chemical  phenome  of
Clostridium  difficile isolates  determined  using  phenotype  microarrays.
International Journal of Infectious Diseases 27:20–25.

67.Sebaihia,  M.,  B.  W.  Wren,  P.  Mullany,  N.  F.  Fairweather,  N.  Minton,  R.
Stabler, N. R. Thomson, A. P. Roberts, A. M. Cerdeño-Tárraga, H. Wang, M.
T.  Holden,  A.  Wright,  C.  Churcher,  M.  A.  Quail,  S.  Baker,  N.  Bason,  K.
Brooks, T. Chillingworth, A. Cronin, P. Davis, L. Dowd, A. Fraser, T. Feltwell,
Z.  Hance,  S.  Holroyd,  K.  Jagels,  S.  Moule,  K.  Mungall,  C.  Price,  E.
Rabbinowitsch, S. Sharp, M. Simmonds, K. Stevens, L. Unwin, S. Whithead,
B. Dupuy, G. Dougan, B. Barrell, and J. Parkhill. 2006. The multidrug-resistant
human  pathogen  Clostridium  difficile has  a  highly  mobile,  mosaic  genome.
Nature Genetics 38:779–786.

68.Bentkowski, P.,  C. Van Oosterhout, and  T. Mock. 2015. A model of genome
size evolution for prokaryotes in stable and fluctuating environments. Genome
Biology and Evolution 7:2344–2351.

69.Pereira, F. C., and D. Berry. 2017. Microbial nutrient niches in the gut 19:1366–
1378.

70.Grinnell, J. 1917. The Niche-Relationships of the California Thrasher. The Auk
34:427–433.

71.Gause, G. F. 1932. Experimental studies on the struggle for existence. Journal of
Experimental Biology 9:389–402.

19



72.Elton, C. 1927. Animal Ecology. Animal Ecology 207.

73.Hutchinson, G. E. 1957. Concluding Remarks. Cold Spring Harbor Symposia on
Quantitative Biology 22:415–427.

74.Colwell, R. K., and T. F. Rangel. 2009. Hutchinson’s duality: The once and future
niche. Proceedings of the National Academy of Sciences 106:19651–19658.

20



CHAPTER TWO

CLOSTRIDIUM DIFFICILE INFECTION DIFFERENTIALLY ALTERS THE
STRUCTURE AND METABOLIC ACTIVITY OF DISTINCT INTESTINAL

MICROBIOMES TO PROMOTE SUSTAINED COLONIZATION

Summary

Clostridium difficile has grown to be the most common cause of hospital-acquired

infection over the last decade in the United States. A problematic feature of this infection

is that initial susceptibility to colonization by the pathogen is closely linked to previous

antibiotic  therapy.  This  connection is  due to  the impact  that  antibiotics have on the

indigenous bacterial community in the gastrointestinal tract which, in a healthy state,

possesses colonization resistance to  C. difficile. However, perturbed communities are

susceptible to colonization where the pathogen can subsequently multiply and produce

toxin,  leading  to  inflammatory  diarrheal  disease.  Furthermore,  certain  patients  are

unable  to  clear  the  pathogen  and  remain  persistently  colonized.  In  this  study,  we

explored the effect of  C. difficile colonization on community-level gene expresion and

metabolism  using  a  murine  model  of  antibiotic  treatment  and  infection.  We

characterized  multiple  susceptible  communities  utilizing  metagenome-enable

metatranscriptomics  supplemented  by  untargeted  metabolomic  mass-spectrometry

across  multiple  classes  of  antibiotic  treatment  to  begin  to  understand  the  depth  of

metabolic crosstalk and effect that C. difficile has on infected communities of bacteria.

Our results demonstrate that the metabolic activity of microbiomes that  C. difficile is
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more likely to colonize for longer periods of time are differentially impacted 18 hours

post-infection. These changes in activity are reflected in the metabolic environment of

the cecum and indicate a restructured nutrient-niche landscape particularly for those

involving  Stickland  fermentation  substrates  and  certain  carbohydrates.  This  work

underscores potential mechanisms by which the pathogen alters the ecology of the GI

tract to promote persistence.

Introduction

One of the many beneficial functions provided by the indigenous gut bacterial

community  is its  ability  to prevent  infection by pathogens (1).  This  attribute,  termed

colonization  resistance,  is  one  of  the  main  mechanisms  of  protection  from  the

gastrointestinal pathogen Clostridium difficile (2–4). Clostridium difficile is the etiological

agent of Clostridium difficile infection (CDI), a toxin-mediated diarrheal disease that has

dramatically increased in prevalence over the last 10 years and results in an estimated

453,000 infections with 29,000 deaths in the US annually (5). Antibiotics are a major risk

factor for CDI and are thought to increase susceptibility to CDI as they disrupt the gut

bacterial  community  structure,  but  it  is  still  unclear  what  specific  changes  to  the

microbiota contribute to this sensitivity (6,  7).  Associations between the membership

and functional capacity of the microbiota as measured by the metabolic output suggest

that antibiotics increase susceptibility by altering the nutrient milieu in the gut to one that

favors C. difficile metabolism (8–10). An ongoing theory is that  C. difficile colonization

resistance  is  driven  by  competition  for  growth  nutrients  by  an  intact  community  of
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metabolic specialists and has been born out through animal model experimentation of

the past several decades (11–13). This line of reasoning has been carried through to the

downstream restoration of colonization resistance in that, although community structure

may not return to its precise original state, the functional/metabolic capacity rebounds

and may be able to outcompete C. difficile for resources and clear the infection (10, 14).

While most classes of antibiotics have been associated with initial susceptibility to CDI,

fluoroquinolones, clindamycin, and cephalosporins in particular are linked to increased

risk of recurrent or persistent C. difficile infection (15–17). This raises questions about

the groups differentially impacted both directly or indirectly by certain treatments and

what this ultimately means for these environments during infection by permitting long-

term colonization.

Leveraging distinct antibiotic treatment regimes in a murine model of CDI (18),

we and others previously shown that C. difficile adapts it's catabolism to distinct cecal

microbiomes that resulted from separate classes of antibiotics (19). This is supported by

the  hypothesis  that  each  differentially  sensitized  gut  environment  possesses  an

alternative  nutrient  niche landscape and  C. difficile is  able  to  adjust  its  metabolism

accordingly.  Although it  is  well  established that  C. difficile is  able  to  colonize  these

communities  effectively,  it  is  yet  to  be  determined whether  these differences in  the

metabolic  capacity  of  communities  following  antibiotic  treatment  correlate  with

prolonged  C.  difficile colonization.  Defining  the  functional  status  of  the  resident

microbiota for any disease has been difficult and has led to a limited understanding of

specific species interactions that occur with C. difficile during infection. To address this
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fundamental question we employed a conventionally-reared murine model of CDI in the

context of treatment by distinct antibiotic classes and assessed the effect of CDI on the

microbiome utilizing paired metagenomic-enabled metatransciptomics and untargeted

metabolomics. This approach allowed us to not only characterize the metabolic output

of the community, but also which subgroups of bacteria were differentially active under

these  conditions.  Our  data  supports  that  C.  difficile colonization  indeed  alters

community-level gene expression, and that this degree of change was reflected in the

metabolome of these communities. Furthermore, in spite of shifts in species abundance,

the  metatrascriptome  and  metabolome  changed  very  little  in  treatment  groups  that

cleared the infection. This work highlights that a better appreciation of the effects of CDI

on the gut microbiota may be needed to develop more successful targeted therapies

that eliminate C. difficile after persistent colonization.

Experimental Procedures

Animal care and antibiotic administration

For a more detailed description of the procedure, refer to (19). In short, an equal

number of male and female conventionally-reared six-to-eight week-old C57BL/6 mice

in each experimental group were administered one of three antibiotics; cefoperazone,

streptomycin, or clindamycin (As described in Table 2.1) before oral C. difficile infection.

All animal protocols were approved by the University Committee on Use and Care of

Animals at the University of Michigan and carried out in accordance with the approved

guidelines.
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Antibiotic Class Target Activity Administration Dosage

Cefoperazone Cephalosporin 
(3rd generation)

Primarily Gram-
positive bacteria, 
with increased 
activity against 
Gram-negative 
bacteria

Irreversibly 
crosslink bacterial
transpeptidases 
to peptidoglycan 
and prevents cell 
wall synthesis

Drinking water Ad 
libitum for 5 days,
2 days untreated 
drinking water prior 
to infection

0.5 mg/ml drinking
water

Streptomycin Aminoglycoside Active against 
most Gram-
negative aerobic 
and facultative 
anaerobic bacilli

Protein synthesis 
inhibitor through 
binding the 30S 
portion of the 70S
ribosomal subunit

Drinking water Ad 
libitum for 5 days, 
2 days untreated 
drinking water prior 
to infection

5.0 mg/ml drinking
water

Clindamycin Lincosamide Primarily active 
against Gram-
positive bacteria, 
most anaerobic 
bacteria, and 
some 
mycoplasma

Protein synthesis 
inhibition through 
binding to the 23s
portion of the 50S
ribosomal subunit

Intraperitoneal 
injection 24 hours 
prior to infection

10 mg/kg body 
weight

Table 2.1 | Antibiotics used during C. difficile infection models.
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C. difficile infection and necropsy

For a more detailed description of the procedure, refer to (19). On the day of

challenge,  ~1×103 C. difficile strain  630 spores were  administered to  mice  via  oral

gavage in phosphate-buffered saline (PBS) vehicle. Mock-infected animals were given

an oral gavage of 100 μl PBS at the same time as those mice administered C. difficile

spores. 18 hours following infection, mice were euthanized by CO2 asphyxiation and

necropsied to obtain the cecal contents. Aliquots were immediately flash frozen for later

DNA extraction and toxin titer analysis. A third aliquot was transferred to an anaerobic

chamber for quantification of C. difficile abundance. The remaining content in the ceca

was mixed in a stainless steel  mortar housed in a dry ice and ethanol  bath.  Cecal

contents from all mice within each treatment group were pooled into the mortar prior to

grinding to a fine powder. The ground content was then stored at -80° C for subsequent

RNA extraction. For 10-day colonization studies, fresh stool was collected from infected

mice each day beginning on the day of infection. Mice were monitored for overt signs of

disease and were euthanized after the final stool collection.

C. difficile cultivation and quantification

For  a more  detailed description of  the  procedure,  refer  to  (19).  Briefly,  cecal

samples were weighed and serially diluted under anaerobic conditions with anaerobic

PBS.  Differential  plating  was  performed  to  quantify  both  C.  difficile spores  and

vegetative  cells  by  plating  diluted  samples  on  CCFAE  plates  (fructose  agar  plus

cycloserine,  cefoxitin,  and  erythromycin)  at  37°  C  for  24  hours  under  anaerobic
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conditions (42). In parallel, undiluted samples were heated at 60° C for 30 minutes to

eliminate  vegetative  cells  and leave only  spores  (29).  These samples  were  serially

diluted  under  anaerobic  conditions  in  anaerobic  PBS  and  plated  on  CCFAE  with

taurocholate at 37° C for 24 hours. Plating was simultaneously done for heated samples

on CCFAE to ensure all vegetative cells had been eliminated. CFU quantification for 10-

day colonization experiments was performed from stoll using TCCFAE to measure total

C. difficile load in these animals over time.

C. difficile toxin titer assay

To  quantify  the  titer  of  toxin  in  the  cecum  a  Vero  cell  rounding  assay  was

performed as described elsewhere (19, 43). Briefly, filtered-sterilized cecal content was

serially diluted in PBS and added to Vero cells in a 96-well plate. Plates were viewed

after 24 hour incubation for cell rounding.

DNA/RNA extraction and sequencing library preparation

DNA for downstream shotgun metagenomic and 16S rRNA gene sequencing was

extracted  from  approximately  50  mg  of  cecal  content  from  each  mouse  using  the

PowerSoil-htp 96 Well Soil DNA isolation kit (MO BIO Laboratories) and an epMotion

5075 automated pipetting system (Eppendorf). The V4 region of the bacterial 16S rRNA

gene was amplified using custom barcoded primers (44). Equal molar rations of raw

isolated DNA within each treatment group were then pooled and ~2.5 ng of material was

used to generate shotgun libraries with a modified 10-cycle Nextera XT genomic library
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construction protocol (Illumina). This was done to mimic the pooling strategy necessary

for metatranscriptomic library preparation. Final libraries were pooled at equal molar

ratios and stored at  -20° C.  For RNA extraction, a more detailed description of the

procedure can be found in (19). Briefly, immediately before RNA extraction, 3 ml of lysis

buffer (2% SDS, 16 mM EDTA and 200 mM NaCl) contained in a 50 ml polypropylene

conical tube was heated for 5 minutes in a boiling water bath (45). The hot lysis buffer

was added to the frozen and ground cecal content. The mixture was boiled with periodic

vortexing  for  another  5  minutes.  After  boiling,  an  equal  volume  of  37°  C  acid

phenol/chloroform was added to the cecal content lysate and incubated at 37° C for 10

minutes with periodic vortexing. The mixture was the centrifuged at 2,500 x g at 4° C for

15 minutes. The aqueous phase was then transferred to a sterile tube and an equal

volume  of  acid  phenol/chloroform  was  added.  This  mixture  was  vortexed  and

centrifuged at 2,500 x g at 4° for 5 minutes. The process was repeated until aqueous

phase was clear. The last extraction was performed with chloroform/isoamyl alcohol to

remove acid phenol.  An equal  volume of  isopropanol  was added and the extracted

nucleic  acid  was incubated overnight  at  -20° C.  The following day the  sample was

centrifuged at 12000 x g at 4° C for 45 minutes. The pellet was washed with 0° C 100%

ethanol and resuspended in 200 μl of RNase-free water. Following the manufacturer's

protocol, samples were then treated with 2 μl of Turbo DNase for 30 minutes at 37° C.

RNA samples  were  retrieved  using  the  Zymo  Quick-RNA MiniPrep  according  the

manufacturer's protocol. The Ribo-Zero Gold, immediately before RNA extraction, 3 ml

of  lysis  buffer  (2%  SDS,  16  mM EDTA and  200  mM  NaCl)  contained  in  a  50  ml
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polypropylene conical tube was heated for 5 minRNA Removal Kit Epidemiology was

then used to deplete prokaryotic and eukaryotic rRNA from the samples according the

manufacturer's protocol. Stranded RNA-Seq libraries were made constructed with the

TruSeq Total RNA Library Preparation Kit v2, both using the manufacturer's protocol.

Average length of amplicon libraries for both DNA and cDNA sequencing was performed

using  an  Agilent  BioAnalyzer  with  High  Sensativity  DNA Analysis  kits.  Completed

libraries were pooled in equal molar ratios within their respective groups and stored at

-20° C until time of sequencing.

High-throughput sequencing and raw read curation. Sequencing of  16S rRNA

gene amplicon libraries was performed using an Illumina MiSeq sequencer as described

previously  (44).  The  16S  rRNA gene  sequences  were  curated  using  the  mothur

software package (v1.36) as described in (19). Shotgun metagenomic sequencing was

performed in 2 phases. Libraries from mock-infected communities, that were also to be

utilized for contig assembly, were sequenced using an Illumina HiSeq 2500 on 2x250

paired-end settings and was repeated across 2 lanes to normalize for inter-run variation.

C. difficile-infected metagenomic libraries were sequenced with an Illumina NextSeq

300 with 2x150 settings across 2 runs to also normalize for inter-run variation. These

efforts  resulted  in  an  average  of  280  million  paired  raw  reads  per  sample.

Metatranscriptomic sequencing was performed on an Illumina HiSeq 2500 with 2x50

settings and was repeated across 4 lanes for normalization and to obtain necessary

coverage  (46).  This  gave  an  average  of  380  million  raw  cDNA per  library.  Both

metagenomic and metatranscriptomic sequencing was performed at the University of
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Michigan Sequencing Core. Raw sequencing read curation for both metagenomic and

metatranscriptomic datasets was performed in a two step process. Residual 5’ and 3’

Illumina adapter sequences were trimmed using CutAdapt (47) on a per library basis.

Reads were quality trimmed using Sickle (48) with a quality cutoff of Q30. This resulted

in  approximately  270  million  reads  per  library  (both  paired  and  orphaned)  for  both

metagenomic  and  metatranscriptomic  sequencing.  Actual  read  abundances  for

individual  metagenomic  and  metatranscriptomic  sequencing  efforts  can  be  found  in

Table 2.2.
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Table 2.2 | High-throughput sequencing read counts and metagenomic assembly
quality.  Raw  and  curated  read  abundances  for  both  metagenomic  and
metatranscriptomic  sequencing  efforts.  Raw  read  curation  steps  are  outlined  in
Materials  &  Methods.  Metagenomic  contig  summary  statistics  reflect  the  quality  of
assembly for each group.
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Metatranscriptome

307082142 253185782 (82.45%)
Streptomycin – mock infected 270291248 226737019 (83.89%)

376175754 322153373 (85.64%)
Cefoperazone – mock infected 342590768 289481340 (84.5%)

265973934 223661860 (84.09%)
Clindamycin – mock infected 261472804 216933273 (82.97%)
No Antibiotics – mock infected 397936700 329411775 (82.78%)

Superscipts:
1=Total individual reads directly from sequencer – all paired
2= Read totals following adapter, quality trimming, and residual in silico rRNA removal - paired and orphaned
3=Reads totals that mapped to metagenomic assembly after optical and PCR duplicate removal

Metagenome

407440672 378758657 (92.96%)
395429292 394499193 (99.77%)

392694214 364820685 (92.9%)
178456950 178133857 (99.82%)

348426748 317183590 (91.03%)

118787094 118502295 (99.76%)
116784668 116560872 (99.81%)

Superscipts:
1=Total individual reads directly from sequencer – all paired
2= Read totals following adapter, quality trimming, and residual in silico rRNA removal - paired and orphaned
3=Reads totals that mapped to metagenomic assembly after optical and PCR duplicate removal
4= Sequenced with HiSeq 2500 – 2 x 250
5=Sequenced with NextSeq – 2 x 150

Assembly Total contigs N50 Sequences > 1 kb
Streptomycin – mock infected 1317910 255 2479
Cefoperazone – mock infected 2539357 598 158781
Clindamycin – mock infected 811592 400 3913
No Antibiotics – mock infected 496917 1434 83535

Raw reads pairs1 Quality trimmed (% remaining)2

Streptomycin – C. difficile infected

Cefoperazone – C. difficile infected

Clindamycin – C. difficile infected

Raw reads pairs1 Quality trimmed (% remaining)2

Streptomycin – C. difficile infected5

Streptomycin – mock infected4

Cefoperazone – C. difficile infected5

Cefoperazone – mock infected4

Clindamycin – C. difficile infected5

Clindamycin – mock infected4

No Antibiotics – mock infected4



Metagenomic contig assembly and gene annotation

Metagenomic  contigs  were  assembled  using  Megahit  (49)  with  the  following

settings; minimum kmer size of 87, maximum kmer size of 127, and a kmer step size of

10. Prodigal was utilized to to identify putative gene sequences, and were screened for

a minimum length of 250 nucleotides. These sequences were translated to amino acids

and peptides were annotated against the KEGG protein database (50) using Diamond

implementation of BLASTp (51). Peptide-level gene annotations were assigned to the

corresponding nucleotide sequence, and genes failing to find a match in KEGG were

preserved as unannotated genes. Final nucleotide fasta files with KEGG annotations

were  then  utilized  in  the  construction  of  Bowtie2  (52)  mapping  databases  from

downstream analyses.

DNA/cDNA read mapping and normalization

Mapping was accomplished using Bowtie2 (52) and the default stringent settings.

Optical  and  PCR  duplicates  were  then  removed  using  Picard  MarkDuplicates

(http://roadinstitute.github.io/picard/).  The  remaining  mappings  were  converted  to

idxstats  format  using  Samtools  (53)  and the  read counts  per  gene were  tabulated.

Discordant pair  mappings were discarded and counts were then normalized to read

length and gene length to give a per base report of gene coverage. Unless indicated

otherwise, each collection of reads was then 1000-fold iteratively subsampled to 90% of

the lowest sequence total within each analysis, and a median expression value for each

gene was calculated.
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Quantification of in vivo metabolite relative concentrations

For a more detailed description of the procedure,  refer to  (19).  Metabolomic

analysis performed by Metabolon (Durham, NC), a brief description of their methods is

as  follows.  All  methods  utilized  a  Waters  ACQUITY  ultra-performance  liquid

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate

mass spectrometer interfaced with a heated electrospray ionization (HESI-II)  source

and  Orbitrap  mass  analyzer  at  35,000  mass  resolution.  Samples  were  dried  then

reconstituted in solvents compatible to each of the four methods. The first,  in acidic

positive conditions using a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm)

using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1%

formic  acid  (FA).  The  second  method  was  identical  to  the  first  but  was

chromatographically optimized for more hydrophobic compounds. The third approach

utilized  a  basic  negative  ion  optimized  conditions  using  a  separate  dedicated  C18

column. Basic extracts were gradient eluted from the column using methanol and water,

however with 6.5mM Ammonium Bicarbonate at pH 8. Samples were then analyzed via

negative  ionization  following  elution  from  a  hydrophilic  interaction  chromatography

column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of

water  and  acetonitrile  with  10mM  Ammonium  Formate,  pH  10.8.  The  MS analysis

alternated between MS and data-dependent MS n scans using dynamic exclusion. The

scan range varied slighted between methods but covered 70-1000 m/z. Library matches

for each compound were checked for each sample and corrected if necessary. Peaks

were quantified using area under the curve.
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Statistical methods

All statistical analyses were performed using R (v.3.2.0). Significant differences

between community  structure of treatment groups from 16S rRNA gene sequencing

were determined with AMOVA in the mothur software package. Significant differences of

Inv. Simpson diversity, cfu, toxin titer, and metabolite concentrations were determined by

Wilcoxon  signed-rank  test  with  Benjamini-Hochberg  correction.  Undetectable  points

used half the limit of detection for cfu and toxin statistical calculations. LEfSe analysis

with OTU data was performed with a cutoff that each OTU must appear in all samples

from their respective groups to be considered true signal (n = 9). Random forest was

performed using the implementation in R (54), with the informative threshold of MDAs

greater than the absolute value of the lowest MDA defined by (55). Distances of outlier

points from center line during metatranscriptomic comparisons was accomplished using

2-dimensional linear geometry.

Results

Distinct antibiotic treatments are associated with different patterns of clearance

following  primary  infection.  Conventionally-reared  specific  pathogen  free  mice  were

treated  with  one of  three  different  antibiotics  to  sensitize  the  animals  to  C.  difficile

colonization.  The  selected  antibiotics  were  streptomycin,  cefoperazone,  and

clindamycin (Table 2.1 & Fig. 2.1). Each drug was chosen not only due to its ability to

reduce  C. difficile colonization resistance in  a  mouse model  (18),  but  also for  their

distinct and significant impacts on the structure and diversity of the cecal microbiota (all
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p < 0.001; Fig. 2.4A) as well as differences in ability of the community to recover and

clear infection (Fig. 2.2B). Selection of this toxigenic C. difficile strain was based on its

moderate clinical severity in mouse models (20), previous studies of in vitro metabolism

(21), and well-annotated genome (22). Briefly, mice were treated with the respective

antibiotic and were subsequently orally gavaged ~1×103 C. difficile str. 630 spores (Fig.

2.2A). We then monitored for disease over the following 10 days and cultured C. difficile

from stool  to  quantify  colony forming units  (cfu)  per  gram over  time.  The day after

infection  in  each  antibiotic  treatment  model,  we  observed  equal  high  C.  difficile

colonization, however over the following 8 days only clindamycin treated mice cleared

the infection (Fig. 2.2B).
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Figure 2.1 | Experimental timelines for mouse model pretreatments and C. difficile
infection.  9 wild-type C57BL/6 mice across 3 cages were included in each treatment
group. (A) Streptomycin or (B) cefoperazone administered ad libitum in drinking water
for 5 days with 2 days recovery with untreated drinking water before infection,  (C)  a
single clindamycin intraperitoneal injection one day prior to infection, or (D) no antibiotic
pretreatment (for both SPF control and GF mice). If no antibiotics were administered in
the drinking water,  mice were given untreated drinking water for the duration of the
experiment  beginning  7  days  prior  to  infection.  At  the  time  of  infection,  mice  were
challenged with 1×103 C. difficile str. 630 spores. Euthanization and necropsy was done
18 hours post-challenge and cecal content was then collected.
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Figure 2.2 |  Experimental models of  C. difficile infection and distinct  virulence
patterns.  (A) Experimental  timelines  of  antibiotic  treatment  and  infection  mouse
models.  (B) C.  difficile 630  CFU in  stool  of  infected  mice  following  each  antibiotic
treatment regime over 10 days of infection. Median and interquartile range are shown
for each time point. The dotted line represents the limit of detection. (C) Quantification
of C. difficile cfu and toxin titer in cecal content across antibiotic treatment models alter
18  hours  of  infection.  Black  lines  indicate  median  values.  Gray  asterisks  indicate
significant  difference from no antibiotic  controls  by Wilcoxon rank-sum test  with  the
Benjamini-Hochberg correction (all p < 0.001).
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C.  difficile differentially  expresses  virulence  factors  across  separate  antibiotic

treatments.  With  the  differential  clearance  results  between  antibiotic  treatments,  we

hypothesized  that  each  community  presented  separate  metabolic  challenges  to  C.

difficile which could explain the clearance trends. It had been previously demonstrated

that C. difficile virulence factor expression is regulated by availability of certain nutrients

in the environment (21), so we first sought to measure sporulation and toxin production.

Continuing with the same pretreatment and primary infection protocols used in the 10-

day colonization experiments, we chose to focus our analysis on 18-hours post-infection

to assess behavior of  C. difficile directly prior to the beginning of clearance. This end

point corresponded with a previous study where  C. difficile reached maximum cecal

vegetative cell density with few detectable spores (23). Moreover, we also elected to

take all further measurements from cecal content because it is more likely to be a site of

active bacterial  metabolism compared to stool.  This also allowed for  assessment of

functional  differences in  the microbiota were apparent  between antibiotic  treatments

early during infection and would correlate with the downstream clearance phenotypes.

At  18  hours  after  infection,  there  were  no  significant  differences  in  the  number  of

vegetative  cells  between  any  antibiotic-treatment  tested.  All  susceptible  mice  were

colonized to ~1×108 vegetative cfu per gram of cecal  content,  while untreated mice

maintained  C.  difficile colonization  resistance  (Fig.  2.2C).  We  also  measured  both

sporulation  and  toxin  activity  as  activation  of  both  processes  has  been  linked  to

environmental concentrations of specific growth nutrients (21). Despite having similar

amounts of vegetative  C. difficile cells, varying levels of both spore cfu and toxin titer
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were observed across each of the antibiotic treatments. These results showed that C.

difficile colonized different antibiotic-treated mice to consistently high levels, and the

distinct  treatments  corresponded with  moderate  differences in  the  expression  of  C.

difficile virulence factors. 

It  has  not  yet  been  established  whether  C.  difficile colonization  impacts  the

structure of the gut microbiota during infection in susceptible mice. In order to evaluate

changes in bacterial population abundances in response to perturbation and C. difficile

colonization, we sequenced the V4 region of the 16S rRNA gene from the cecal content

of both mock and C. difficile-infected mice across antibiotic treatment models. To focus

out analysis specifically on the surrounding bacterial  communities, we ignored all  C.

difficile rRNA gene sequences. We confirmed that each antibiotic treatment significantly

impacted both cecal community structure (Bray-Curtis distances) and diversity (inverse-

Simpson) compared to untreated control mice (all p < 0.001, Fig. 2.4A & 2.3B). We then

confirmed  that  each  antibiotic  treatment  induced  distinct  shifts  in  the  community

structure which were significantly different (all p < 0.001, Fig. 2.4C). The composition of

streptomycin-treated communities was more variable between cages, but was generally

enriched  for  members  of  phylum  Bacteroidetes  (Fig.  2.3A).  Cefoperazone  and

clindamycin-treated  cecal  communities  were  consistently  dominated  by  the  families

Lactobacillaceae and Enterobacteriaceae respectively (Fig. 2.3A). Despite variation in

the  community  structures  generated  by  streptomycin  treatment,  those  communities

were colonized evenly (Fig. 2.2B, 2.2C, & 2.3). Initial C. difficile colonization levels were

consistent in spite of significantly different community structures. 
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Figure  2.3  |  Impact  of  C.  difficile colonization  on  other  bacterial  populations
abundances in the gut microbiota. (A) Relative abundance of family-level taxonomic
classification for OTUs in each treatment group. (B-D) Discriminating OTUs with LEfSe
analysis  between  Mock  and  C.  difficile-infected  communities  within  each  treatment
group, p-values from LEfSe are shown on the left with taxonomic information (all  p <
0.05).  Relative  abundance  of  the  respective  OTUs  from  each  mouse  along  with
medians are shown for each treatment group.

40



Figure  2.4  |  Impact  of  antibiotic  treatment  and  C.  difficile infection  on  cecal
community  structure.  (A)  Inverse-Simpson diversity  of  cecal  communities  from all
treatment groups. Gray stars indicate significant difference from no antibiotic controls
(all p < 0.001). Black stars denote within treatment group significant difference between
mock and C. difficile-infected communities. Differences were calculated using Wilcoxon
rank-sum test  with  Benjamini-Hochberg  correction.  NMDS ordinations of  Bray-Curtis
distances comparing the groups labeled in the bottom left  of each plotting area.  (B)
Antibiotic-treated compared to  Untreated controls  and  (C)  comparison between only
antibiotic treatment groups. (D-F) Within antibiotic treatment comparisons for the effect
of C. difficile colonization on community structure. Significant differences and correlation
coefficients for ordination analyses were found using ANOVA.
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Next,  we  measured  the  effect  that  C.  difficile colonization  had  on  overall

community structure and composition for each of the antibiotic groups. We found that

the structure of both streptomycin and clindamycin-treated infected communities were

significantly  different  from their  corresponding  uninfected  controls  (streptomycin  p =

0.014, Fig. 2.4D; clindamycin p = 0.003, Fig. 2.4F). Cefoperazone-treated communities

did not significantly differ from their control group (Fig. 2.4E). We then sought to identify

specific OTUs that significantly differed in abundance between mock and  C. difficile-

infected communities within each treatment group. Utilizing LEfSe differential abundant

feature detection (24), we identified 16 OTUs that discriminated between infected and

uninfected communities in  at  least  one antibiotic  treatment (Fig.  2.3B-2D);  however,

these  OTUs  were  generally  near  the  limit  of  detection  and  had  an  inconsistent

abundance profile across pretreatment groups.

Distinct antibiotic classes lead to alternative markers of  C. difficile colonization

susceptibility. Several groups have demonstrated that treatment with antibiotics not only

alters the structure of the resident microbiota, but also has a dramatic impact of the

intestinal metabolome (8–10). To test the metabolic features of the altered communities,

we  performed  untargeted  metabolomic  analysis  on  separate  aliquots  of  the  cecal

contents that were also utilized in the 16S rRNA gene sequencing. A total of 727 distinct

metabolites were identified through a combination of several liquid chromatography and

mass  spectrometry  techniques.  First,  we characterized  the  differences  between  the

metabolomes of  the mock-infected communities  to  measure  the impact  of  antibiotic

treatment that generated C. difficile-susceptible conditions (Fig. 2.5). All of the antibiotic
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treatments  significantly  altered  the  cecal  metabolome  compared  to  untreated,  C.

difficile-resistant mice as quantified by Bray-Curtis dissimilarity (p < 0.001; Fig. 2.5a).

When metabolites were mapped to KEGG pathways, it was clear that the differences

between  resistant  and  susceptible  metabolomes  were  the  result  of  widespread

physiological  effects  (Fig.  2.6).  Similar  to  the  differences  between  resistant  and

susceptible  states,  the  patterns  of  specific  metabolite  concentrations  diverged

depending on the antibiotic treatment (Fig. 2.6). These results demonstrated that each

antibiotic treatment lead to distinct susceptible metabolomic structures.
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Figure 2.5 | Metabolite markers of C. difficile infection susceptibility.
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Figure 2.5 | Metabolite markers of C. difficile infection susceptibility. Results from
UPLC/MS  metabolomic  analysis  of  cecal  content  from  mice  also  used  in  previous
analyses. Only mock-infected metabolomic results were included this analysis to identify
markers of susceptibility.  (A-B) NMDS ordinations of Bray-Curtis distances comparing
the cecal metabolome dissimilarity of mice receiving no treatment or one of the three
distinct  classes  of  antibiotics.  (A)  Metabolomes  of  resistant  mice  are  significantly
different from antibiotic treated animals (p < 0.001). (B) Antibiotic treated metabolomes
and also significantly distinct from one another (p < 0.001). Significant differences for
NMDS analyses were calculated with AMOVA.  (C-D) Scaled intensities of metabolites
with highest mean decrease in accuracy (MDA) from random forest feature selection
discriminating groups from (A-B). MDA is labeled in brackets beside each metabolite
name and out-of-bag error from internal cross-validation is labeling along the bottom
axis. Asterisks along the right axis indicate significant difference by Wilcoxon rank-sum
test. (C) Relative concentrations of metabolites that distinguish cecal content from mice
resistant  to  C.  difficile colonization  from  susceptible  animals.  (D)  Metabolites
concentrations  for  those molecules  that  are  able  to  differentiate  antibiotic  treatment
groups.  Multiple  comparisons  were  accounted  for  using  the  Benjamini-Hochberg
correction (*** < 0.001, ** <= 0.01, * <= 0.05).
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Figure 2.6 |  Gene-level  expression for  each community  compared to the level
expressed in resistant mice for each gene. 
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Figure 2.6 |  Gene-level  expression for  each community  compared to the level
expressed  in  resistant  mice  for  each  gene.  Murine  cecal  metatransctipromic
sequencing results. Both reads and genes attributed to C. difficile were removed prior to
analysis to focus on the changes in the community caused by infection. Shown are
genes  in  each  groups  with  the  largest  disparity  from  a  metatranscriptome  from  a
community  resistant  to  C.  difficile colonization.  Panels  are  displayed  as  follows;
Streptomycin  treatment:  (A) mock  infection,  (B) C.  difficile infection.  Cefoperazone
treatment: (C) mock infection, (D) C. difficile infection. Clindamycin treatment: (E) mock
infection, (F) C. difficile infection.
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We were then interested in identifying those metabolites with the highest degree

of change between resistant and susceptible groups groups. Due to the large number of

individual  metabolites  with  significant  differences  in  relative  concentration  between

groups, we employed a machine learning approach using random forest (25) to highlight

those metabolites that most easily differentiated the antibiotic groups. In order to further

limit the analysis to only the most informative metabolite, we ranked metabolites in order

of  highest  Mean Decrease Accuracy (the  amount  in  which  their  removal  negatively

impacts correct  sample classification)  and reported the top 7 in  each analysis  (Fig.

2.5C).  These  lists  primarily  included  precursors  or  intermediates  of  carbohydrate

fermentation  such  as  chiro−inositol,  malonate,  erythritol,  4−guanidinobutanoate,  and

soyasaponin  II,  the  majority  of  which  were  increased  in  susceptible  conditions.

Decreases  in  these  metabolites  in  vivo have  previously  been  associated  with  a

reduction  in  the  normal  levels  of  polysaccharide  fermentation  present  in  the  intact

microbiota (9). Furthermore, N−methylpipecolate was the only metabolite we identified

that  consistently  decrease during antibiotic  treatment.  This  molecule is  byproduct  of

amino acid catabolism and is typically recycled under normal conditions (26). These

data support  that  amino acid  catabolism is  disrupted at a community-level  following

antibiotic  treatment  and  may  suggest  open  nutrient  niches  for  C.  difficile,  a  known

fermenter  of  peptides  (27),  to  colonize.  We  then  applied  this  technique  to  identify

metabolites  that  distinguish  antibiotic  treatment  groups  from  each  other(Fig.  2.5d).

Interestingly, several additional carbohydrate or amino acid catabolism byproducts were

highlighted  by  these  means  including  hydroxyisocaproate,  methylvalerate,
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glutamylmethionine,  and  N−carbamoylaspartate  (9).  These  data  suggested  that  the

populations responsible for normal chains of fermentation may be differentially effected

by distinct classes of antibiotics. It also supported that the distinct antibiotics allowed for

different forms of nutrient catabolism to survive the treatment and potentially implied

alternative  profiles  of  metabolic  competition  for  C.  difficile to  cope  with  upon

colonization. Additionally, sucrose is a  C. difficile growth substrate (28) which further

promoted  the  hypothesis  of  differentially  vacated  nutrient  niches  due  to  antibiotic

treatment  that  are  now  accessible  to  C.  difficile.  After  following  this  unsupervised

approach for identification of susceptibility markers, we also measured differences in

relative  concentration  of  metabolites  previously  connected  to  potential  C.  difficile

colonization susceptibility (10). In this way, we assessed differences in bile acids, deeply

connected to the life cycle of C. difficile (29) and whose bioconversion by the microbiota

has been implicated as a driver of colonization resistance (30). We found that there was

no persistently increased bile acid across the chosen antibiotic treatments (Fig. 2.7A). A

similar trend was also seen in amino acids (Fig.  2.7B).  This suggested that despite

varying efficiencies, the fact that C. difficile can recognize a subset of these molecules

in  any  of  the  observed  contexts  appears  to  be  sufficient  to  allow  for  sufficient

germination  and  outgrowth  to  occur.  For  carbohydrates  (Fig.  2.7B),  we  found  that

several  were  significantly  increased  across  all  antibiotic  groups  which  included

arabitol/xylitol,  ribitol,  and  sucrose.  Together,  our  results  supported  that  each

susceptible environment was distinguishable from other groups with its own subset of

enriched  C.  difficile growth  substrates.  This  could  be  an  indication  that  particular
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competitors were eliminated during antibiotic treatment, or those community members

normally  responsible  for  the  consumption  of  these  metabolites  have  altered  their

metabolic program to exploit alternative nutrient sources.
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Figure 2.7 | Relative concentrations of select metabolite groups in each group.
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Figure 2.7 | Relative concentrations of select metabolite groups in each group.
Metabolites included in this analysis were chosen based on their previously published
links to  C. difficile physiology or susceptibility to infection. Groups are as follows;  (A)
Bile  acids,  (B) Carbohydrates,  and  (C) Amino  Acids.  Significant  differences  were
determined by Wilcoxon rank-sum test with Benjamini-Hochberg correction.
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Figure 2.8 | Effect of infection on the cecal metabolome across treatment groups.
Pooled analysis of antibiotic treated animals only.  (A) NMDS ordination of Bray-Curtis
distances differentiating mock and  C. difficile-infected metabolomes (p = 0.075).  (B)
Random forest classification results for metabolites that effectively distinguish infected
and uninfected conditions. Shown are relative concentrations of the top 10 metabolites
with the highest mean decrease in accuracy from internal cross-validation. Shown in the
top right corner of each panel are the metabolite names and mean decrease accuracy
of each. Significant differences in concentration between mock and C. difficile-infected
groups  were  determined  by  Wilcoxon  rank-sum  test  with  Benjamini-Hochberg
correction.
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C. difficile colonization alters each susceptible cecal metabolome distinctly.

Following  the  changes  to  the  cecal  metabolome  in  response  to  antibiotic

treatment, we assessed the degree to which  C. difficile colonization altered the cecal

metabolome of susceptible animals.  We hypothesized that the introduction of a new

competitor,  C. difficile,  would impact the metabolome either through signatures of its

own metabolism or  by  causing  a  shift  in  the  metabolism of  other  members  in  the

surrounding community. First, in a similar approach to identifying susceptibility markers,

we observed the  Bray-Curtis  dissimilarities  of  mock-infected and  C. difficile-infected

metabolomes within each antibiotic treatment group separately. First we performed this

analysis  at  a  global  level  and  compared  cecal  metabolomes  from  all  mice  across

treatment groups, and were unable to detect a consistent difference between groups in

this way (p = 0.075; Fig. 2.8A). We moved on to individual antibiotic groups and found

that both streptomycin (p = 0.039) and cefoperazone (p = 0.016) treated metabolomes

deviated  significantly  from that  of  mock  infection  (Fig.  2.9A -  Fig.  2.9B).  However,

clindamycin treated cecal metabolomes were not significantly altered by the presence of

the pathogen (p = 0.127; Fig. 2.9C). These results diverged from what was seen in the

paired  OTU  relative  abundance  results  where  instead  the  community  structure  of

cefoperazone was unchanged and clindamycin was significantly different (p = 0.003;

Fig.  2.6F,  &  Fig.  2.10C).  Interestingly,  streptomycin-treated  microbiomes  were

significantly altered by C. difficile infection at both the OTU and metabolomic levels (Fig.

2.9A). These data indicated that large shifts of populations in the cecal microbiota was

not implicitly associated with concordant shifts in the metabolome. This supported the
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hypothesis  that  divergent  community  structures  can  ultimately  share  a  convergent

metabolic output despite changes to community structure and membership.

55



Figure 2.9 | C. difficile infection has differential effects on the cecal metabolome.
(a-c) NMDS ordinations of Bray-Curtis distances comparing infection groups within each
antibiotic  treatment;  (A) Streptomycin,  (B) Cefoperazone,  and  (C) Clindamycin.
Significant differences were determined by AMOVA.  (D-F) Relative concentrations of
metabolites with highest Mean Decrease Accuracy (MDA) from Random Forest feature
selection to discriminate between Mock and C. difficile-infected conditions within each
antibiotic  treatment.  Respective MDA is labeled in brackets next  to each metabolite
name and out of bag error from internal cross-validation of each model is labeled under
the  plotting  area.  (d)  Streptomycin  treatment,  (e)  Cefoperazone  treatment,  and  (f)
Clindamycin treatment. Significant differences are labeled along the right axis and were
calculated with Wilcoxon rank-sum test with Benjamini-Hochberg correction (*** < 0.001,
** <= 0.01, * <= 0.05).
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Figure 2.10 | C. difficile infection alters community-level select pathway and gene
expression of the gut microbiota across perturbed communities.
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Figure 2.10 | C. difficile infection alters community-level select pathway and gene
expression  of  the  gut  microbiota  across  perturbed  communities.
Metatranscriptomic  (cDNA)  read  abundances  associated  with  each  gene  were
normalized to their associated metaganomic (DNA) coverage, resulting in values that
reflect upregulation. (A) Differences in read abundance for top 5 KEGG pathways with
the largest amount of change between Mock and C. difficile-infected states within each
antibiotic  treatment.  Values  above  the  center  line  were  expressed  more  during  C.
difficile infection,  and  those  below  the  line  were  expressed  more  in  Mock-infected
animals. Dotted lines indicate average expression of pathways associated with each
condition. (B-D) cDNA read abundances of the top 10 genes with the largest differences
in  expression  within  each  indicated  antibiotic  treatment  group.  Shown  are  the
expression levels for the genes displayed on the left during Mock (white) or C. difficile
(black) infection. Gene names and member pathways indicated by letter codes along
the left axis (pathway legend below).
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We  then  sought  to  identify  changes  those  metabolites  that  were  potential

markers of  C. difficile infection. To accomplish this task, we applied the same random

forest that was used earlier to differentiate infected and uninfected metabolomes overall

and  within  each  treatment  group  separately.  We  were  able  to  distinguish  those

microbiomes infected with  C. difficile from those that were not,  and reported the 10

metabolites with the greatest MDA (Fig. 2.8B). The strongest single predictor and only

metabolite among the top 10 that was increased during infection was 5-aminovalerate.

This amino acid analog is a known byproduct of D-proline fermentation in  C. difficile

(31).  C. difficile is able to catabolize proline along with glycine through a set of paired

biochemical  reactions  known  as  Stickland  fermentation  (32).  Additional  prominent

signatures of infection across our metabolomic datasets were the significant decreases

to the concentration of  4 individual  proline-containing amino acids which were each

highly abundant in the absence of infection (all  p < 0.001).  These combined results

demonstrated that  while  distinct  metabolic challenges may exist  in each susceptible

metabolome, Stickland fermentation could perhaps be a preferred energy acquisition

pathway for C. difficile in vivo. In agreement with the ordination analysis, random forest

was  only  able  to  reliably  classify  infected  mice  in  streptomycin  and  cefoperazone

treatment  while  clindamycin  maintained  a  high  out-of-bag  error  (OOB  =  44.44%).

Metabolites that distinguished infection conditions within each treatment group had a

high  level  of  variation  with  only  a  few  shared  metabolites  including  acetylarginine,

dimethylguanine, and adenine however none were in top 5 of all  groups. Despite a

moderate  amount  of  conserved  metabolic  signatures  across  infections  these  data
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support  our  hypothesis  that  not  only  does each antibiotic  treatment  create  different

microbiota community structures with different metabolic potentials, but also that the

metabolism  of  these  distinct  communities  responds  to  C.  difficile colonization  in  a

unique manner. However, it is not possible from these data to distinguish changes to the

metabolome  that  were  a  result  of  altered  community  metabolism,  altered  host

metabolism, or from C. difficile directly.

C.  difficile colonization  induced  shifts  in  the  expression  of  several  catabolic

pathways  and  nutrient  acquisition  systems  across  susceptible  communities.  Our

combined  16S  rRNA gene  sequencing  and  metabolomic  results  demonstrated  that

antibiotic treatments resulted in distinct  bacterial  communities which likely led to the

altered metabolite profiles in each; however, it does not preclude the possibility that the

host or  C. difficile itself  (only during infection) were responsible for the metabolomic

differences. We hypothesized that the altered metabolic function of the microbiota as a

product of antibiotic perturbation drove the changes seen in the metabolomes of the

respective antibiotic treatment groups. To gain a more specific understanding how the

microbiota is shaping the metabolic environemtn in each treatment group, we employed

a metagenomic-enabled metatranscriptomic shotgun sequencing approach with paired

DNA and  RNA samples  collected  from  the  cecal  content  of  the  mice  used  in  the

previous analyses.  Metagenomic  reads from mock-infected cecal  communities  were

assembled  into  contigs  and  putative  genes  were  identified  resulting  in  234,124

(streptomycin),  83,096  (cefoperazone),  and  35,977  (clindamycin)  potential  genes  in

each  metagenome.  Streptomycin  treatment  resulted  in  a  significantly  more  diverse
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community  (Fig.  2.4A)  than  other  groups,  so  a  larger  detectable  metagenome was

expected. Putative genes were then annotated according to KEGG and the subset of

genes the were successfully annotated with function were utilized for the next analysis.

DNA and cDNA reads from both infected and uninfected conditions were then mapped

to the gene catalog that corresponded to their antibiotic treatment group of origin. The

resulting abundances were normalized to both sequencing read length and target gene

length  to  yield  a  per  base  mapping  abundance.  Finally,  after  equal  subsampling,

metatranscriptomic read abundances for each gene were divided by their corresponding

metagenomic coverage in order to normalize for overrepresented genes and species.

Therefore,  final  expression values represent the level  of  expression upregulation for

each gene outside of those from which transcript is abundant but is only expressed at

low levels from genes which are highly abundant.

Utilizing  the  fully  normalized  metatranscriptomes,  we first  focused on differences  in

gene expression in broadly defined pathways and gene categories for each antibiotic

treatment with and without  C. difficile-infection. Based on the metabolomic results, we

hypothesized that pathways with the greatest differences would include those involved

in the metabolism of carbohydrates and amino acids. We then calculated the difference

in  cDNA abundance  for  each  pathway  between  infected  and  uninfected  conditions,

represented as delta-cDNA abundance. To highlight the largest dfferences, we limited

the analysis to the top 5 KEGG pathways with the most change between mock and C.

difficile-infected  conditions  within  each  treatment  (Fig.  2.10A).  In  streptomycin  and

clindamycin treatments, greater expression of KEGG pathways was observed in the C.
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difficile-infected  metatranscriptomes.  Both  groups displayed large  changes in  amino

sugar  metabolism and  ABC transporters,  however  other  distinct  carbon  metabolism

pathways  were  upregulated  in  each.  Glycolysis  and  oxidative  phosphorylation  were

overrepresented in streptomycin treated mice while starch/sucrose metabolism and PTS

systems were more abundant associated with clindamycin treated mice. Together these

shifts  suggest  that  communities  differentially  adapt  carbon  metabolism pathways  in

response  to  colonization  of  C.  difficile.  Conversely,  the  largest  differences  seen  in

cefoperazone treated mice were over-expressed in the absence of C. difficile infection.

These pathways included three separate pathways for the replication or manipulation of

genetic  material  (RNA Processing,  tRNA Sythesis,  &  Homologous  Recombination).

Instead,  many  genes  involved  in  anaerobic  glucose  metabolism  and  select  ABC-

transporters  were  upregulated.  These  results  indicate  that  the  cecal  microbiota  of

infected mice shifts its metabolism toward catabolizing simple carbohydrates. We then

moved  on  to  perform a  more  fine-scale  analysis  of  changes  at  the  gene  level,  by

selecting  the  genes  in  each  antibiotic  treatment  group  with  the  largest  disparity  in

normalized cDNA abundance between mock and C. difficile-infected groups (Fig. 2.10B

- D). In agreement with pathway-level differences in expression, the majority of genes

with the greatest difference between mock and infected mice belonged to pathways

highlighted  in  Fig.  2.10A  with  three  additional  pathways  relating  to  amino  acid

metabolism (I: Glutathione metabolism, J: Valine/Leucine/Isoleucine metabolism, & K:

Glycine/Serine/Threonine  metabolism).  Numerous  genes  for  transport  of  simple

carbohydrates  and glycolysis  were  also differentially  overrepresented under  infected
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conditions  across  treatment  groups when compared to  mock infection  of  untreated,

resistant communities (Fig. 2.10). These data expand on our interpretation of pathway-

level analysis and support our hypothesis that C. difficile colonization leads to changes

in community-level expression of genes for nutrient acquisition and catabolism.

C. difficile colonization corresponds with large-scale changes in expression of

genes  from  specific  bacterial  taxa.  Because  not  all  bacterial  taxa  share  identical

metabolic  capabilities,  we  hypothesized  that  specific  subsets  of  bacteria  were

differentially affected by the presence or metabolic activity of  C. difficile. We sought to

delineate  the  transcriptomic  contributions  of  separate  bacterial  taxa  within  each

metatranscriptomic dataset. To accomplish this we utilized the genus level taxonomic

information  associated  with  each  KEGG  annotation  to  identify  which  group  likely

contributed a given gene to the metagenome. Many genes in the KEGG database are

annotated as hypothetical or uncharacterized but still possess a taxonomic annotation.

This resulted in substantially more genes from the total being conserved for analysis in

each group. With these data, we narrowed the focus onto transcription for genera that

represented  >0.01%  of  genes  receiving  taxonomic  annotations  in  any  of  the

metagenomic  assemblies.  We  then  directly  compared  the  normalized  cDNA

abundances for each gene between infected and uninfected states for each antibiotic

treatment (Fig. 2.5A-2.5C). Coordinates were determined by the relative expression of

each gene in mock and C. difficile infection for x and y axes respectively. This causes

genes  with  equal  transcription  in  both  conditions  being  compared  to  be  strongly

correlated and positioned proximal  to the central  diagonal  line. As such, we applied

63



linear correlation and a squared residual cutoff  to define those genes that are most

strongly upregulated in  either  condition,  and finally  calculated the mean distance of

outliers in each group from the center line (represented in arbitrary units or AU). This

resulted  in  2473  outliers  at  an  average  distance  of  2.545  AU  associated  with

streptomycin, 2930 outliers at an average distance 3.854 AU with cefoperazone, and

only 727 outliers at an average distance of 2.414 AU in clindamycin treatment. Overall,

the clindamycin treatment was associated with the fewest gene expression outliers.
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Figure 2.11 | C. difficile colonization alters gene expression of taxonomic groups
differentially between antibiotic treatments.  Each point represents a unique gene
from the respective metagenomic assembly. Coordinates were determined by the log2-
transformed  expression  level  of  each  gene  between  C.  difficile-infected  and  mock-
infected  conditions.  Metatranscriptomic  read  abundances  were  normalized  to  their
associated metagenomic coverage. Colored indicate genus of origin, and gray areas
denote genes with consistent expression between conditions and outliers to this region
were determined by least squares regression analysis with a minimum residual value of
2. Antibiotic treatments;  (A) Streptomycin-treated,  (B) Cefoperazone-treated, and  (C)
Clindamycin-treated.
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Incorporation  of  the  genes-level  taxonomic  information  for  each  transcript

revealed  that  outlier  genes  were  contributed  by  underrepresented  genera.  First,  in

streptomycin-treated mice, the most prominent differences were in 937 genes belonging

to Lactobacillus that were upregulated with  C. difficile infection (Fig. 2.11A). Next, in

cefoperazone  treatment  2290  genes  belonging  to  Bacteroides  were  upregulated  in

mock infected mice (Fig. 2.11B). A consistent trend in streptomycin and cefoperazone

treatments was an overrepresentation of highly expressed genes from genera belonging

to Bacteroidetes during mock infection.  The metatransciptomes within  both of  these

treatment conditions poorly correlated between mock and infected conditions, indicating

a high degree of change induced by  C. difficile colonization (r = 0.0334 & r = 0.031).

Finally, in clindamycin treated mice the largest difference in transcription was for 510

Lactobacillus  genes  during  C.  difficile infected  mice  (Fig.  2.11C).  Infected  and

uninfected  metatranscriptomes  associated  with  this  antibiotic  correlated  the  more

strongly  than  either  other  treatment  (r  =  0.862),  further  supporting  that  C.  difficile

colonization  had a  low impact  on  transcription  of  the  cecal  microbiota.  These  data

support that  C. difficile may differentially modify the transcriptional activity of separate

microbial  taxa based on the context of the community in which it is colonizing. This

could have implications in altering the ecosystem of the gut to promote persistence and

ultimately negatively affect the ability of the community to clear infection.
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Discussion

Our  results  demonstrate  that  distinct  intestinal  ecosystems  are  impacted

differently by C. difficile colonization and that these changes to community metabolism

could have implications for the ability of the pathogen to persist in those environments.

Furthermore, discordant modifications to OTU abundances, transcriptional activity of the

microbiota,  and  cecal  metabolome  shortly  after  infection  suggest  that  C.  difficile

manipulates the niche landscape of the intestinal tract in order to better maintain long-

term colonization. This hypothesis is best supported by the disparity of community-level

phenotypes  between  clindamycin  and  cefoperazone/streptomycin  treatment  models.

Only in the clindamyin treatment model were animals able to go on to clear detectable

C. difficile colonization within 18 hours. Unlike the other conditions, clindamycin-treated

communities  were  significantly  altered  in  community  structure  following  C.  difficile

colonization,  but  not  at  the  metabolomic  level  (Fig.  2.4F).  This  disconnect  between

community structure differences and overall metabolic output was explained by the low

levels of change in the metatranscriptomes of these communities when compared to the

other treatment groups in response to infection (Fig. 2.9D). Collectively these results

advance the idea that in order for C. difficile to maintain colonization for longer periods

of time, it must partition desired niche spaces in the context of a given microbiome, and

that  the  activities  of  certain  subsets  may  be  more  readily  reshaped  than  others.

Instances  of  active  nutrient  niche  restructuring  in  the  gut  have  been  documented

previously for prominent symbiotic bacterial species in gnotobiotic mice (33), but never

67



before in a model of infection with a conventional community of microbes. Interestingly,

taxonomic  groups  most  highly  represented  as  outliers  in  the  normalized

metatranscriptomes of each antibiotic treatments were non-dominant species of each

respective  cecal  community  by  16S  rRNA gene  sequencing  (on  average  <5%  of

community; Fig. 2.3A). These data give the impression that C. difficile may "attack the

loser", meaning those populations more targeted by the antibiotic treatment and in the

midst  of  recovery,  in  order  to  have  the  highest  probability  of  success  in  the  gut

environment it is currently colonizing. Previous studies have found that rare taxonomic

groups, even those at a low abundance as a result of a spontaneous perturbation, may

have disproportion effects on the metabolic environment of the community at large (34).

For example, this strategy has been observed in temperate lakes where conditionally

rare microbes were found to be far more metabolically active than highly abundant taxa

(35),  and  this  concept  would  likely  apply  to  bacterial  groups  recovering  population

density following cessation of antibiotic treatment. As such, C. difficile may preferentially

seek to compete with these organisms to ultimately affect greater change to the entire

ecosystem and open a long-lasting nutrient niche. While this hypothesis requires further

exploration  to  adequately  support,  it  provides  an  ecological  framework  for  future

research  questions  concerning  the  interactions  of  C.  difficile with  susceptible

communities in the gut.

This study is one of the first in vivo observations of a medically relevant bacterial

pathogen  altering  metabolic  activity  of  a  host-associated  community  to  potentially

promote  colonization.  Another  group  had  previously  identified  potential  metabolite
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markers  of  C.  difficile infection  in  patient  feces  (36),  but  were  not  able  to  make

connections to changes to community metabolism that were afforded to us by paired

untargeted  metabolomic  analyasis  and  metatranscriptomic  sequencing.  In  a  recent

study, one group found that a tick-vectored bacterial pathogen alters the ability of the

resident  microbiota  of  the  tick  by  interrupting  proper  biofilm  formation  and  allowing

lasting colonization (37). In both cases the pathogen modifies aspects of the microbiota

it  is  colonizing,  however  in  the  case of  C.  difficile the  interaction  appears  to  more

centered on access to nutrients than a persistent spatial niche. While we acknowledge

that  this  study  may  not  elucidate  the  specific  mechanism by  which  this  interaction

occurs, the combined systems analysis strengthens each individual level of observation

and  only  when  employed  together  does  a  clearer  definition  of  C.  difficile-related

microbial  ecology in the gut emerge. This research lays the groundwork for a more

rationale consideration of the metabolic functionalities of bacterial taxa to consider when

attempting to rebuild  C. difficile colonization resistance across differentially perturbed

gut environments.

In spite of consistent signals across multiple levels of -omics datasets, possible

shortcomings to  our  interpretation  of  the  presented  data  do  exist.  First,  as  with  all

transcriptomic studies, the relative level of mRNA detected for a given gene does not

necessarily  reflect  the  amount  of  functional  protein  made  by  a  cell.  This  topic  is

discussed in greater depth in Chapter 3. Furthermore, interpretation of timing may also

be an issue since a large influx of transcript for a specific product may signal an initial

upregulation  before  subsequent  translation  has been able to  occur.  This  also omits
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consideration  of  any  post-translational  modifications  that  are  required  for  ultimately

functional enzymes. In terms of metabolomics, alternative possible interpretations of the

data  also  exist.  For  example,  I  considered  metabolites  that  did  not  change  in

concentration between uninfected and infected conditions as unimpacted by changes in

bacterial  metabolism induced by  C. difficile colonization.  However,  this  may instead

indicate that the metabolism of C. difficile itself may simply replace the level present in

the uninfected community. Such instances would not be detectable through untargeted

mass spectrometry alone, however the combination of methods utilized here present a

much more unified description of the system than any of the component techniques

alone.

Several  groups  have  attempted  to  identify  single  bacterial  species  or  limited

strain  consortia  that  are  able  to  replicate  this  effect,  but  each  has  been  met  with

incomplete  restoration  of  colonization  resistance or  function  through yet  unexplored

means (30, 38–40). The effect we observed of  C. difficile colonization on community

metabolic activity could also be linked to pathogen strain and may offer explanation to

the propensity of some strains to persist over others where toxin activity could play a

role (41). Moreover, the current work contributes to the existing concept that the healthy

gut  microbiota  maintains  colonization  resistance  to  C.  difficile by  outcompeting  the

pathogen for preferred nutrient niche space. Ultimately, our results suggest that each

susceptible and subsequently infected microbiome may be unique and require specific

microbes or functionalities to restore colonization resistance to C. difficile in that specific

context.  Conversely,  colonization resistance against  C. difficile may be the result  of
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contributions by distinct subcommunities of bacteria across each unique resistant gut

community.  As the microbiome is  so intimately  connected to  colonization resistance

against the bacterium, it has become imperative to understand what factors allow some

gut environments to be persistently colonized while others are not. This research lays

the groundwork for future studies to assess context dependent restoration of C. difficile

colonization  resistance  and  what  factors  are  able  to  interfere  with  the  ability  of  C.

difficile to modify gut ecology in order to promote clearance.
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CHAPTER THREE

CLOSTRIDIUM DIFFICILE COLONIZES ALTERNATIVE NUTRIENT NICHES DURING
INFECTION ACROSS DISTINCT MURINE GUT MICROBIOMES

Summary

Clostridium difficile is the largest single cause of hospital-acquired infection in the

United States. A major risk factor for Clostridium difficile infection (CDI) is prior exposure

to antibiotics, as they disrupt the gut bacterial community which protects from C. difficile

colonization. Multiple antibiotic classes have been associated with CDI susceptibility;

many  leading  to  distinct  community  structures  stemming  from variation  in  bacterial

targets  of  action.  These  microbiomes  present  separate  metabolic  challenges  to  C.

difficile, therefore we hypothesized that the pathogen adapts its physiology to available

nutrients  within  different  gut  environments.  Utilizing  an  in  vivo CDI  model,  we

demonstrated  C. difficile highly  colonized ceca of mice pretreated with any of  three

antibiotics from distinct classes. Levels of  C. difficile spore formation and toxin activity

varied  between  animals  based  on  the  antibiotic  administered.  These  physiologic

processes in C. difficile are partially regulated by environmental nutrient concentrations.

To  investigate  metabolic  responses  of  the  bacterium  in  vivo,  we  performed

transcriptomic analysis of  C. difficile from ceca of infected mice across pretreatments.

This revealed heterogeneous expression in numerous catabolic pathways for diverse

growth substrates. To assess which resources  C. difficile exploited, we developed a
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genome-scale  metabolic  model  with  a  transcriptomic-enabled  metabolite  scoring

algorithm integrating network architecture. This platform identified nutrients  C. difficile

used preferentially between infections, which were validated through untargeted mass

spectrometry of each microbiome. These data supported the hypothesis that C. difficile

inhabits alternative nutrient niches across cecal microbiomes with increased preference

for nitrogen-containing carbon sources,  particularly  Stickland fermentation substrates

and host-derived glycans. Our metabolite score calculation also provides a platform to

study nutrient requirements of pathogens during the context of infection. Our results

suggest  that  C.  difficile colonization  resistance  is  mediated  by  multiple  groups  of

bacteria  competing  for  several  subsets  of  nutrients,  and  could  explain  why  total

reintroduction  of  competitors  through fecal  microbial  transplant  is  the most  effective

treatment to date. This work could ultimately contribute to the identification of targeted,

context-dependent measures that prevent or reduce  C. difficile colonization including

pre- and probiotic therapies.

Introduction

Infection by the Gram-positive, spore-forming bacterium Clostridium difficile has

increased in both prevalence and severity across numerous countries during the last

decade (1). In the United States,  C. difficile was estimated to have caused >500,000

infections and resulted in ~$4.8 billion worth of acute care costs in 2014 (2). C. difficile

infection (CDI) causes an array of toxin-mediated symptoms ranging from abdominal

pain and diarrhea to the more severe conditions pseudomembraneous colitis and toxic
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megacolon. Prior treatment with antibiotics is the most common risk factor associated

with  development  of  CDI  (3).  Antibiotics  likely  contribute  to  susceptibility  to  CDI  by

disrupting  the  gut  microbiota  (4).  In  mouse  models,  multiple  antibiotics  can  induce

susceptibility to C. difficile colonization (5–7). Notably, each antibiotic resulted in unique

gut bacterial communities that were receptive to high levels of  C. difficile colonization.

Others  have  also  shown  that  antibiotics  from  multiple  classes  also  alter  the  gut

metabolome, increasing the concentrations of some C. difficile growth substrates (6, 8–

10). The ability of an unaltered murine gut community to exclude C. difficile colonization

supports the nutrient-niche hypothesis, which states that an organism must be able to

utilize  a  subset  of  available  resources  better  than  all  competitors  to  colonize  the

intestine (11, 12). Taken together these results are a strong indication that the healthy

gut  microbiota  inhibits  the  growth  of  C.  difficile by  limiting  the  availability  of  the

substrates it needs to grow.

Based on genomic and in vitro growth characteristics, C. difficile appears able to

adapt to a variety nutrient niches (13).  C. difficile has a relatively large and mosaic

genome, it can utilize a variety of growth substrates, and possesses a diverse array

host range (6, 14–16). These qualities are hallmarks of ecological generalists (17).  C.

difficile has  also  been  shown  to  integrate  signals  from  multiple  forms  of  carbon

metabolism to regulate its pathogenesis. in vitro transcriptomic analyses suggests that

high concentrations of easily metabolized carbon sources, such as glucose or amino

acids,  inhibit  toxin  gene  expression  and  sporulation  (18,  19).  Other  studies  have

indicated  that  other  aspects  of  C.  difficile metabolism  may  be  influenced  through
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environmental nutrient concentration-sensitive global transcriptional regulators such as

CodY and CcpA (20, 21). These previous analyses have mainly focused on  in  vitro

growth (22, 23) or colonization of germfree mice (14, 21). Although these analyses are

informative, they are either primarily directed toward the expression of pathogenicity

factors or lack the context of the gut microbiota which C. difficile must compete against

for substrates. Metabolomic investigations have also been used to assay changes in

bacterial  metabolism  as  they  relate  to  CDI  and  have  characterized  the  levels  of

germinants and growth substrate availability (6, 10); however, metabolomic approaches

are unable to attribute a metabolite to specific organisms in the gut community. Thus

metabolomics more closely represents the echoes of total community metabolism, not

the currently active processes of any one population. It has thus far not been possible to

study C. difficile’s metabolism in vivo.

To overcome these limitations, we implemented transcriptomic and untargeted

metabolomic  analyses  of  C.  difficile and  the  surrounding  environemnt  to  better

understand the active metabolic pathways in a model of infection. Based on the ability

of C. difficile to grow on a diverse array of carbon sources and its ability to colonize a

variety of communities, we hypothesized that C. difficile adapts its metabolism to fit the

context  of  the  environment  it  is  attempting  colonize.  To  test  this  hypothesis,  we

employed a mouse model of infection to compare the response of C. difficile to the gut

environment caused by three antibiotics from distinct  classes.  By characterizing the

transcriptome of  C. difficile in these different communities and the metabolome of the
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respective environments using paired samples from the same groups of mice, we were

able to generate a systems model to directly test the nutrient-niche hypothesis.

Experimental Procedures

Animal care and antibiotic administration

Six-to-eight week-old GF C57BL/6 mice were obtained from a single breeding

colony maintained at the University of Michigan and fed Laboratory Rodent Diet 5001

from LabDiet for all experiments. All animal protocols were approved by the University

Committee on Use and Care of Animals at the University of Michigan and carried out in

accordance with the approved guidelines. Specified SPF animals were administered

one  of  three  antibiotics;  cefoperazone,  streptomycin,  or  clindamycin  (Table  2.1).

Cefoperazone (0.5 mg/ml) and streptomycin (5.0 mg/ml) were administered in distilled

drinking water ad libitum for 5 days with 2 days recovery with untreated distilled drinking

water prior to infection. Clindamycin (10 mg/kg) was given via intraperitoneal injection

24 hours before time of infection. Adapted from a previously described model (24).

C. difficile infection and necropsy

All  C. difficile strain 630 spores were prepared from a single large batch whose

concentration  was determined a  week prior  to  challenge.  On the  day of  challenge,

1×103  C. difficile spores  were  administered  to  mice  via  oral  gavage  in  phosphate-

buffered saline (PBS) vehicle. Subsequent quantitative plating to enumerate the spores

was performed to ensure correct dosage. Mock-infected animals were given an oral
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gavage of 100 μl PBS at the same time as those mice administered C. difficile spores.

18 hours following infection, mice were euthanized by carbon dioxide asphyxiation and

necropsied to obtain the cecal contents. Two 100 μl aliquots were immediately flash

frozen for later DNA extraction and toxin titer analysis, respectively. A third 100 μl aliquot

was  quickly  transferred  to  an  anaerobic  chamber  for  quantification  of  C.  difficile

abundance. The remaining content in the ceca (approximately 1 mL) was mixed with 1

mL of sterile PBS in a stainless steel mortar housed in a dry ice and ethanol bath. The

cecal  contents  of  9  mice  from 3  cages  was  pooled  into  the  mortar.  Pooling  cecal

contents  was necessary so that  there  would be a sufficient  quantity  of  high quality

rRNA-free RNA for deep sequencing. The pooled content was then finely ground and

stored at -80° C for subsequent RNA extraction.

C. difficile cultivation and quantification

Cecal samples were weighed and serially diluted under anaerobic conditions (6%

H,  20% CO2,  74% N2)  with  anaerobic  PBS.  Differential  plating  was  performed  to

quantify  both  C.  difficile spores  and  vegetative  cells  by  plating  diluted  samples  on

CCFAE  plates  (fructose  agar  plus  cycloserine  (0.5%),  cefoxitin  (0.5%),  and

erythromycin  (0.2%))  at  37°  C  for  24  hours  under  anaerobic  conditions  (42).  It  is

important to note that the germination agent taurocholate was omitted from these plates

to quantify only vegetative cells. In parallel, undiluted samples were heated at 60° C for

30 minutes to eliminate vegetative cells and leave only spores (43). These samples

were  serially  diluted  under  anaerobic  conditions  in  anaerobic  PBS  and  plated  on
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CCFAE with taurocholate (10%) at 37° C for 24 hours. Plating was simultaneously done

for heated samples on CCFAE to ensure all vegetative cells had been eliminated.

C. difficile toxin titer assay

To  quantify  the  titer  of  toxin  in  the  cecum  a  Vero  cell  rounding  assay  was

performed as in (44). Briefly, filtered-sterilized cecal content was serially diluted in PBS

and added to Vero cells in a 96-well plate. Plates were blinded and viewed after 24 hour

incubation  for  cell  rounding.  A  more  detailed  protocol  with  product  information:

https://github.com/SchlossLab/Jenior_Modeling_mSystems_2017/blob/master/protocols

/toxin_assay/Verocell_ToxinActivity_Assay.Rmd

16S rRNA gene sequencing and read curation

DNA was extracted from approximately 50 mg of cecal content from each mouse

using the PowerSoil-htp 96 Well Soil DNA isolation kit (MO BIO Laboratories) and an

epMotion 5075 automated pipetting system (Eppendorf). The V4 region of the bacterial

16S  rRNA gene  was  amplified  using  custom  barcoded  primers  and  sequenced  as

described previously  using  an Illumina MiSeq sequencer  (45).  All  63 samples were

sequenced on a single sequencing run. The 16S rRNA gene sequences were curated

using  the  mothur  software  package  (v1.36),  as  described  previously  (45).  In  short,

paired-end reads were merged into contigs, screened for quality, aligned to SILVA 16S

rRNA sequence database, and screened for chimeras. Sequences were classified using

a naive Bayesian classifier trained against a 16S rRNA gene training set provided by the
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Ribosomal  Database  Project  (RDP)  (46).  Curated  sequences  were  clustered  into

operational  taxonomic  units  (OTUs)  using  a  97% similarity  cutoff  with  the  average

neighbor clustering algorithm. The number of sequences in each sample was rarefied to

2,500 per sample to minimize the effects of uneven sampling.

RNA extraction, shotgun library preparation, and sequencing

Pooled, flash-frozen samples were ground with a sterile pestle to a fine powder

and scraped into a sterile 50 ml polypropylene conical tube. Samples were stored at

-80° C until  the time of extraction. Immediately before RNA extraction, 3 ml of  lysis

buffer (2% SDS, 16 mM EDTA and 200 mM NaCl) contained in a 50 ml polypropylene

conical tube was first heated for 5 minutes in a boiling water bath (47). The hot lysis

buffer was added to the frozen and ground cecal content. The mixture was boiled with

periodic vortexing for another 5 minutes. After boiling, an equal volume of 37° C acid

phenol/chloroform was added to the cecal content lysate and incubated at 37° C for 10

minutes with periodic vortexing. The mixture was the centrifuged at 2,500 x g at 4° C for

15 minutes. The aqueous phase was then transferred to a sterile tube and an equal

volume  of  acid  phenol/chloroform  was  added.  This  mixture  was  vortexed  and

centrifuged at 2,500 x g at 4° for 5 minutes. The process was repeated until aqueous

phase was clear. The last extraction was performed with chloroform/isoamyl alcohol to

remove the acid phenol. An equal volume of isopropanol was added and the extracted

nucleic  acid  was incubated overnight  at  -20° C.  The following day the  sample was

centrifuged at 12000 x g at 4° C for 45 minutes. The pellet was washed with 0° C 100%
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ethanol and resuspended in 200 μl of RNase-free water. Samples were then treated

with 2 μl of Turbo DNase for 30 minutes at 37° C. RNA samples were retrieved using

the Zymo Quick-RNA MiniPrep. Completion of the DNase reaction was assessed using

PCR for the V4 region of the 16S rRNA gene for 30 cycles (Kozich, 2013). Quality and

integrity of RNA was measured using the Agilent RNA 6000 Nano kit for total prokaryotic

RNA. The Ribo-Zero Gold rRNA Removal Kit Epidemiology was then used to deplete

16S and 18S rRNA from the samples. Prior to library construction, quality and integrity

as measured again using the Agilent RNA 6000 Pico Kit. Stranded RNA-Seq libraries

were  made constructed with  the  TruSeq Total  RNA Library  Preparation  Kit  v2.  The

Agilent DNA High Sensitivity Kit was used to measure concentration and fragment size

distribution  before  sequencing.  High-throughput  sequencing  was  performed  by  the

University of Michigan Sequencing Core in Ann Arbor, MI. For all groups, sequencing

was repeated across 4 lanes of an Illumina HiSeq 2500 using the 2x50 bp chemistry.

cDNA read curation, mapping, and normalization

Raw read curation was performed in a two step process. First, residual 5’ and 3’

Illumina adapter sequences were removed using CutAdapt (48) on a per library basis.

Reads were then quality trimmed using Sickle (Joshi, 2011) on the default settings. An

average of ~261,000,000 total reads (both paired and orphaned) remained after quality

trimming.  Mapping  was  accomplished  using  Bowtie2  (49)  and  the  default  stringent

settings  allowing  for  0  mismatches  again  target  reference  genes.  An  average  of

~6,880,000 reads in sample each mapped to the annotated nucleotide gene sequences
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of  Clostridioides  difficile  630  from  the  KEGG:  Kyoto  Encyclopedia  of  Genes  and

Genomes  (50).  Optical  and  PCR  duplicates  were  then  removed  using  Picard

MarkDuplicates (http://broadinstitute.github.io/picard/), leaving an average of ~167,000

reads per sample for final analysis. The remaining mappings were converted to idxstats

format using Samtools (51) and the read counts per gene were tabulated. Discordant

pair mappings were discarded and counts were then normalized to read length and

gene length to give a per base report of gene coverage. Each collection of reads was

then subsampled to 90% of the lowest sequence total across the libraries resulting in

even  quantities  of  normalized  read  abundances  in  each  group  to  be  utilized  in

downstream  analysis.  This  method  was  chosen  as  normalization  to  housekeeping

genes  would  artificially  remove  their  contributions  to  metabolic  flux  and  reduce  the

information provided by our metabolite score calculations within our metabolic modeling

approach.

Reaction Annotation & Bipartite Network Construction

The metabolism of  C. difficile stain 630 was represented as a directed bipartite

graph  with  both  enzymes  and  metabolites  as  nodes.  Briefly,  models  were  semi-

automatically constructed using KEGG (2016 edition) ortholog (KO) gene annotations to

which transcripts had been mapped. Reactions that each KEGG ortholog mediate were

extracted  from ko_reaction.list  located  in  /kegg/genes/ko/.  KOs that  do  not  mediate

simple  biochemical  reactions  (e.g.  mediate  interactions  of  macromolecules)  were

omitted.  Metabolites  linked  to  each  reaction  were  retrieved  from
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reaction_mapformula.lst  file located in /kegg/ligand/reaction/ from the KEGG release.

Those reactions that did not have annotations for the chemical compounds the interact

with  are  discarded.  Metabolites  were  then  associated  with  each  enzyme  and  the

directionality  and  reversibility  of  each  biochemical  conversion  was also  saved.  This

process was repeated for all enzymes in the given bacterial genome, with each enzyme

and  metabolite  node  only  appearing  once.  The  resulting  data  structure  was  an

associative  array  of  enzymes associated  with  lists  of  both  categories  of  substrates

(input and output), which could then be represented as a bipartite network. The final

metabolic network of  C. difficile strain 630 contained a total of 1205 individual nodes

(447 enzymes and 758 substrates) with 2135 directed edges. Transcriptomic mapping

data  was  then  re-associated  with  the  respective  enzyme  nodes  prior  to  scoring

calculations. Betweenness-centrality and overall closeness centralization indices were

calculated using the igraph R package found at http://igraph.org/r/.

Metabolite Score Calculation

The substrate  scoring  algorithm (Fig.  3.6A)  favors  metabolites  that  are  more

likely acquired from the environment (not produced within the network), and will award

them a higher score (Fig. 3.6B & 3.4A). The presumption of our approach was that

enzymes that were more highly transcribed were more likely to utilize the substrates

they act on due to coupled bacterial transcription and translation. If a compound was

more likely to be produced, the more negative the resulting score would be. To calculate

the score of a given metabolite (m), we used rarefied transcript abundances mapped to
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respective enzyme nodes. This was represented by to and ti to designate if an enzyme

created or utilized m. The first step was to calculate the average expression of enzymes

for reactions that either created a given metabolite (i) or consumed that metabolite (ii).

For each direction, the sum of transcripts for enzymes connecting to a metabolite were

divided by the number of contributing edges (eo or ei) to normalize for highly connected

metabolite  nodes.  Next  the  raw metabolite  score  was calculated  by  subtracting  the

creation  value  from the  consumption  value  to  weight  for  metabolites  that  are  likely

acquired exogenously. The difference was log2 transformed for comparability between

scores  of  individual  metabolites.  This  resulted  in  a  final  value  that  reflected  the

likelihood a metabolite was acquired from the environment. Untransformed scores that

already  equaled  to  0  were  ignored  and  negative  values  were  accounted  for  by

transformation of the absolute value then multiplied by -1. These methods have been

written  into  a  single  python  workflow,  along  with  supporting  reference  files,  and  is

presented as bigSMALL v1.0 (BacterIal Genome-Scale Metabolic models for AppLied

reverse  ecoLogy)  available  in  a  public  Github  repository  at

https://github.com/mjenior/bigsmall.

Transcriptome Randomization and Probability Distribution Comparison

As sequencing replicates of in vivo transcriptomes was not feasible, we applied a

Monte Carlo style simulation to distinguish calculated metabolite scores due to distinct

transcriptional patterns for the environment measured from those metabolites that were

constitutively  scored  at  the  extremes  of  the  scale.  We  employed  a  10,000-fold
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bootstrapping  approach  of  randomly  reassigning  transcript  abundance  for  enzyme

nodes and recalculating metabolite scores. This approach was chosen over fitting a

simulated transcriptome to a negative binomial distribution because it created a more

relevant  standard  of  comparison  for  lower  coverage  sequencing  efforts.  Using  this

method,  each  substrate  node  accumulated  a  random  probability  distribution  of

metabolite scores which were then used to calculate the median and confidence interval

to generate a probability for each metabolite score to be the result of more than chance.

This was a superior approach to switch randomization since the connections of the

network  itself  was created through natural  selection  and any large-scale  alterations

would yield biologically uninformative comparisons (52).

Anaerobic in vitro C. difficile growth curves

The  carbon-free  variation  of  C.  difficile Basal  Defined  Medium (NCMM)  was

prepared as previously described (6). Individual carbohydrate sources were added at a

final concentration of 5 mg/mL and pair-wise carbohydrate combinations were added at

2.5 mg/mL each (5 mg/mL total).  A solution of the required amino acids was made

separately and added when noted at identical concentrations to the same study. 245 μl

of final media mixes were added to a 96-well sterile clear-bottom plate. A rich media

growth control  was also included, consisting of liquid Brain-Heart  Infusion with 0.5%

cysteine. All culturing and growth measurement were performed anaerobically in a Coy

Type B Vinyl Anaerobic Chamber (3.0% H, 5.0% CO2, 92.0% N, 0.0% O2). C. difficile str.

630 was grown for 14 hours at 37° C in 3 mL BHI with 0.5% cysteine. Cultures were
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then centrifuged at 2000 rpm for 5 minutes and resulting pellets were washed twice with

sterile, anaerobic phosphate-buffered saline (PBS). Washed pellets were resuspended

in 3 mL more PBS and 5 μl of prepped culture was added the each growth well of the

plate containing media. The plate was then placed in a Tecan Sunrise plate reader.

Plates were incubated for 24 hours at 37° C with automatic optical density readings at

600 nm taken every 30 minutes. OD600 values were normalized to readings from wells

containing sterile media of the same type at equal time of incubation. Growth rates and

other curve metrics were determined by differentiation analysis of the measured OD600

over time in R to obtain the slope at each time point.

Quantification of in vivo metabolite relative concentrations

Metabolomic analysis performed by Metabolon (Durham, NC), a brief description

of  their  methods  is  as  follows.  All  methods  utilized  a  Waters  ACQUITY  ultra-

performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization

(HESI-II) source and Orbitrap mass analyzer at 35,000 mass resolution. Samples were

dried then reconstituted in solvents compatible to each of the four methods. The first, in

acidic positive conditions using a C18 column (Waters UPLC BEH C18-2.1x100 mm,

1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA)

and  0.1% formic  acid  (FA).  The  second  method  was  identical  to  the  first  but  was

chromatographically optimized for more hydrophobic compounds. The third approach

utilized  a  basic  negative  ion  optimized  conditions  using  a  separate  dedicated  C18
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column. Basic extracts were gradient eluted from the column using methanol and water,

however with 6.5mM Ammonium Bicarbonate at pH 8. Samples were then analyzed via

negative  ionization  following  elution  from  a  hydrophilic  interaction  chromatography

column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of

water  and  acetonitrile  with  10mM  Ammonium  Formate,  pH  10.8.  The  MS analysis

alternated between MS and data-dependent MS n scans using dynamic exclusion. The

scan range varied slighted between methods but covered 70-1000 m/z. Library matches

for each compound were checked for each sample and corrected if necessary. Peaks

were quantified using area under the curve.

Statistical methods

All statistical analyses were performed using R (v.3.2.0). Significant differences

between community  structure of treatment groups from 16S rRNA gene sequencing

were determined with AMOVA in the mothur software package. Significant differences of

Inv. Simpson diversity, cfu, toxin titer, and metabolite concentrations were determined by

Wilcoxon  signed-rank  test  with  Benjamini-Hochberg  correction.  Undetectable  points

used half the limit of detection for all statistical calculations. Significant differences for

growth curves compared to no carbohydrate control (+ amino acids) were calculated

using 1-way ANOVA with Benjamini-Hochberg correction.
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Results

Levels of C. difficile sporulation and toxin activity vary among different 

microbiomes

Conventionally-reared  SPF  mice  were  treated  with  either  streptomycin,

cefoperazone, or clindamycin (Table 2.1 and Fig. 2.1). These antibiotics were selected

because they each have distinct and significant impacts on the structure of the cecal

microbiome  (Fig.  3.1A and  3.1B).  We  challenged  the  antibiotic  treated  mice  and

germfree  (ex-GF)  mice  with  C.  difficile stain  630  to  understand  the  pathogen's

physiology with and without other microbiota. This toxigenic strain of  C. difficile was

chosen  for  its  moderate  clinical  severity  in  mouse  models  (24)  and  well-annotated

genome (25). After infection, we measured sporulation and toxin production at 18 hours

post inoculation. That time point corresponded with when another laboratory strain of C.

difficile reached  its  maximum  vegetative  cell  density  in  the  cecum  with  limited

sporulation (26). There was not a significant difference in the number of vegetative C.

difficile cells in the ceca of mice pretreated with any of the three antibiotics (Fig. 3.2A).

All  antibiotic treated and ex-GF mice were colonized to ~1×108 colony forming units

(cfu) per gram of cecal content, while untreated mice maintained colonization resistance

to C. difficile (Fig. 3.2A). Despite having the same number of vegetative C. difficile cells,

more spores were detected in ex-GF mice than in the antibiotic pretreated mice (p =

0.003, 0.004, and 0.003; Fig. 3.2B). There was also a significantly higher toxin titer in

ex-GF animals  than any other  colonized group (all  p < 0.001),  with  slight  variation
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between  antibiotic  pretreatment  groups  (Fig.  3.2C).  These  results  showed  that  C.

difficile colonized  different  communities  to  consistently  high  levels,  but  had  subtle

variation  in  sporulation  and  toxin  activity  between  distinct  antibiotic-pretreated

environments.  As activation  of  both  traits  has  been  linked to  recognition  of  distinct

nutrient source concentrations in the environment, we hypothesized that C. difficile was

utilizing  different  growth  substrates  across  the  conditions  tested.  To  investigate  the

physiology  of  C.  difficile when  colonizing  distinct  susceptible  gut  environments,  we

performed whole transcriptome analysis  of  C. difficile from the  cecal  content  of  the

same mice used in cfu and toxin titer analyses.
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Figure 3.1 | Analysis of bacterial community structure resulting from antibiotic
treatment. Results  from  16S  rRNA  gene  amplicon  sequencing  from  bacterial
communities of cecal content in both mock-infected and C. difficile 630-infected animals
18 hours post-infection across pretreatment models.  (A) Non-metric multidimensional
scaling (NMDS) ordination based on ThetaYC distances for the gut microbiome of all
SPF mice used in these experiments (n = 36). All  treatment groups are significantly
different from each other groups by AMOVA (p < 0.001). (B) Inverse Simpson diversity
for  each  cecal  community  from the  mice  in  (A).  Cecal  communities  from mice  not
treated with any antibiotics are significantly more diverse than any antibiotic-pretreated
condition (p < 0.001).  (C) Representation of  16S amplicon reads contributed by  C.
difficile in each sequenced condition compared to the total  bacterial  community. The
percents  listed  at  the  top  of  each  group  is  the  proportion  of  the  total  community
represented by C. difficile. Significantly less were for C. difficile were detected in each
condition (p < 0.001).
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Figure  3.2  |  Gut  environment  context  affects  C. difficile sporulation and toxin
activity. Quantification of spore cfu and toxin titer from cecal content of infected mice (n
= 9 per group). (A) Vegetative C. difficile cfu per gram of cecal content (p = n.s.). (B) C.
difficile spore cfu per gram of cecal content. (C) Toxin titer from cecal content measured
by activity in Vero cell rounding assay. Dotted lines denote limits of detection (LOD).
Values  for  undetectable  points  were  imputed  as  half  the  LOD  for  calculation  of
significant  differences.  Significance  (p  < 0.05),  denoted  by  single  asterisk,  was
determined with Wilcoxon signed-rank test with Benjamini–Hochberg correction.
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C. difficile alters its gene expression pathways when colonizing distinct 

antibiotic-pretreated environments

Utilizing aliquots from the same mice in the previous assays, we attempted to

measure differential  expression of  specific  genes associated with  in  vivo phenotype

changes reported in previous studies. Microarray-based gene expression measurement

was not a viable alternative to sequencing as the amount of background orthologous

transcription  from  other  bacterial  species  would  contribute  greatly  to  non-specific

binding and bias the true C. difficile signal, therefore we employed an RNA-Seq based

approach to quantify transcription. As C. difficile represented a small percentage of the

community in each colonized environment (Fig. 3.1C), making it impossible to sequence

the transcriptome of individual mice due to the depth required to sufficiently sample the

transcripts  of  C. difficile.  This  required  the  generation  of  a  single  transcriptome per

condition using pooled mRNA from all mice within each pretreatment group. Following

sequencing, read curation, and stringent mapping to C. difficile str. 630 genes (Materials

&  Methods)  we  implemented  two  steps  of  abundance  normalization  to  compare

expression  between  groups.  Transcript  abundances  for  each  target  gene  were  first

corrected to both read length and target gene length, which resulted in an average per-

base expression level for each. Adjusted values were then down-sampled to the same

total read abundance for each mapping effort, allowing for even comparison between

the conditions. Additionally, before proceeding with the analysis we did and assessed

variation in expression of select bacterial housekeeping genes across treatment groups

(Fig. 3.3A). Due to the heterogeneity of C. difficile reference genes across strains (27),
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DNA gyrase subunit A (GyrA),  threonyl-tRNA synthetase (ThrS), and ATP-dependent

Clp protease (ClpP) were chosen because of their conservation across bacterial phyla

and  have  been  commonly  utilized  as  standards  of  comparison  for  numerous

transcriptional studies (14, 28, 29). Consistent expression for each of the housekeeping

genes was observed across treatments, which supported that our results were more

likely to be a true reflection of C. difficile expression in vivo.
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Figure 3.3 | Levels of within-group variation across datasets generated for this
study.  (A) Normalized  transcript  abundance  of  select  housekeeping  and  central
metabolism genes. (I)  Housekeeping genes; DNA gyrase subunit A (GyrA), threonyl-
tRNA synthetase (ThrS), and ATP-dependent Clp protease (ClpP).(II) Genes in separate
metabolic pathways that contribute to input substrate score; enolase, glycine reductase
(GrdA), and D-proline reductase (PrdA). (B) Median sample variance for vegetative C.
difficile cfu from each colonized condition.  (C) Median and interquartile range of the
sample  variance  of  OTU  abundances  from  16S  rRNA gene  sequencing,  sample
variances  for  each  OTU  were  calculated  individually  prior  to  summary  statistic
calculations.  (D) Median  and  interquartile  range  of  the  sample  variance  of  Scaled
intensities from untargeted metabolomic analysis, sample variances for each metabolite
were in the same fashion as with OTU abundances. Data (other than transcriptomic
results) was collected from the same nine animals per group were (n = 9).
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Our initial transcriptomic analysis focused on genes involved in sporulation, toxin

production, quorum sensing, and metabolite-regulated sigma factors (Fig. 3.4). Despite

large-scale  differences  between  pretreatment  groups,  no  clear  trends  were  evident

between gene expression and colonization, sporulation, or toxin production. This further

indicated that C. difficile adapted its metabolism to the environment that it colonized. As

such, we next focused on specific groups of genes known to contribute to  C. difficile

metabolism (Fig. 3.6A). Genes involved in amino acid catabolism, including those that

encoded enzymes involved in Stickland fermentation and general peptidases, had the

highest level of expression. Stickland fermentation refers to the coupled fermentation of

amino acid pairs in which one is deaminated and the other is reduced to ultimately

generate ATP (30).  This  suggested that  C. difficile catabolized environmental  amino

acids  during  infection,  regardless  of  the  structure  of  the  surrounding  community.

Although there were gene categories that were equally expressed across conditions in

spite of the community differences, there were patterns of expression for certain gene

families and specific genes that were distinct to each antibiotic pretreatment. In mice

pretreated with cefoperazone,  C. difficile tended to have more expression of genes in

the ABC sugar transporter and sugar alcohol catabolism (e.g. mannitol) families and

fewer genes in the PTS transporter family than the other pretreatment groups. In mice

pretreated with clindamycin, C. difficile tended to have higher expression of genes from

disaccharide  catabolism  (e.g.  beta-galactosidases  and  trehalose/maltose/cellibiose

hydrolases), fermentation product metabolism (including consumption or production of

acetate,  lactate,  butyrate,  succinate,  ethanol,  and  butanol),  and  PTS  transporter
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families. Genes from the sugar alcohol catabolism and ABC sugar transporter families

were  not  highly  expressed  in  the  clindamycin-pretreated  mice.  Finally,  in  mice

pretreated with streptomycin, C. difficile had higher levels of expression of genes from

the sugar alcohol catabolism (e.g. sorbitol) and PTS transporter families. Combined,

these  results  suggested  that  while  catabolism  of  amino  acids  and  specific

carbohydrates  are  core  components  of  the  C.  difficile nutritional  strategy  during

infection, C. difficile adapted its metabolism across different susceptible environments.
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Figure 3.4 | Select  C. difficile gene set expression compared between treatment
group. Relative abundances of C. difficile transcript for specific genes of interest.
(A) Transcription  for  select  genes from the  C. difficile sporulation  pathway with  the
greatest variation in expression between the conditions tested. (B) Relative abundances
of transcript for genes that encode effector proteins from the  C. difficile pathogenicity
locus.  (C)  Transcript  abundances  for  genes  associated  with  quorum sensing  in  C.
difficile.  (D) Transcript relative abundance of select sigma factors which expression or
activity is influenced by environmental metabolite concentrations. Asterisks (*) indicate
genes from which transcript was undetectable.
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Figure 3.5 |  C. difficile alters expression metabolic pathways between antibiotic
pretreatment models. Each point in the ternary plot represents a unique gene from the
annotated genome of  C. difficile str. 630. Position reflects the ratio of median rarefied
transcript abundance for that gene between the three colonized antibiotic pretreatment
models.  Genes  from  specific  metabolic  pathways  of  interest  are  labeled  and
transcription from all other genes are shown in gray.  (A) Size of highlighted points is
relative to the largest transcript abundance among the antibiotic pretreatments for each
gene. Categories of metabolism are displayed separately in (B-I).
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Genome-scale metabolic model structure underscores known C. difficile 

physiology

To  further  investigate  which  metabolites  were  differentially  utilized  between

conditions,  we  created  a  generalizeable  tool  to  generate  de  novo genome-enabled

directed,  bipartite  metabolic  models  of  bacterial  species  using  KEGG  gene  and

biochemical reaction annotations. We implemented this for C. difficile str. 630 shown in

Fig.  3.6A,  with  enzymes  and  metabolites  were  represented  by  nodes,  and  their

interactions by directed connecting edges. The C. difficile str. 630 network we created

contained a total of 447 enzymes and 758 metabolites, with 2135 directed edges. To

validate  our  metabolic  network,  we  analyzed  network  topology  by  calculating  two

metrics  of  centrality,  betweenness  centrality  (BC)  and  closeness  centrality  (CC),  to

determine which nodes are critical to the structure of the metabolic network and if these

patterns reflect known biology. Both metrics utilize shortest paths, which refer to fewest

possible number of network connections that lie between two given nodes. The BC of

each node is the fraction of shortest paths that pass through that node and connect all

other potential pairs of nodes. In biological terms, this refers to the amount of influence

a given hub has on the overall flow of metabolism (31). Similarly, CC is the reciprocal

sum  of  the  lengths  of  shortest  paths  included  in  each  node's  BC.  This  value

demonstrates how essential a given node is to the overall structure of the metabolic

network (32). Metabolic network structural studies of Escherichia coli have found that

metabolites  with  the  highest  centrality  calculations  are  involved  in  fundamental

processes in metabolism, namely glycolysis and the citrate acid cycle pathway (33). As
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such, these metrics allow for assessment of the degree to which a metabolic network

accurately depicts established principles of bacterial metabolism.

Following application of both methods, we found 5 enzymes that were shared

between  the  top  10  enzymes  from  BC  and  CC  calculations  (2-dehydro-3-

deoxyphosphogluconate  aldolase,  aspartate  aminotransferase,  pyruvate-flavodoxin

oxidoreductase,  formate  C-acetyltransferase,  and  1-deoxy-D-xylulose-5-phosphate

synthase). These enzymes primarily participate in core processes including glycolysis,

the pentose phosphate pathway, or the citric acid cycle. Upon analysis of the other 15

high-scoring enzymes combined from BC and CC analyses,  the  majority  were  also

components  of  the  previously  mentioned  pathways,  as  well  as  several  for  the

metabolism of amino acids. Similarly, the intersection of those substrates with high both

BC and CC values revealed 6 metabolites as central nodes to the metabolism of  C.

difficile (pyruvate,  acetyl-CoA,  2-oxoglutarate,  D-4-hydroxy-2-oxoglutarate,  D-

glyceraldehyde  3-phosphate,  and  L-glutamate).  Not  only  are  these  members  of

glycolysis and the citric acid cycle, but pyruvate, acetyl-CoA, and L-glutamate contribute

to  numerous  intracellular  pathways  as  forms  of  biological  "currency"  (33).  Notably

absent from the most well-connected metabolites were molecules like ATP or NADH.

Their exclusion is likely a byproduct of the KEGG LIGAND reference used for network

construction, which excludes cofactors from most biochemical reactions. While this may

be a limitation of certain analyses, our study was not affected as the primary interest

was in  those substrates acquired from the environment.  These results  reflected the
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defined biological patterns of  C. difficile and was therefore a viable platform to study

metabolism of the pathogen.
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Figure  3.6  |  C.  difficile str.  630  genome-enabled  bipartite  metabolic  network
architecture and transcriptomic-enabled metabolite score calculation.
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Figure  3.6  |  C.  difficile str.  630  genome-enabled  bipartite  metabolic  network
architecture and transcriptomic-enabled metabolite score calculation. (A) Largest
component from the bipartite GEM of C. difficile str. 630. Enzyme node sizes reflect the
levels of detectable transcript from each gene. Metabolite score algorithm components:
(I) average transcription of reactions consuming a metabolite, (II) average transcription
of reactions producing a metabolite, and (III) difference of consumption and production.
(B) The expanded window displays a partial example of D-fructose score calculation.
Values in the red nodes represent normalized transcript reads mapping to enzymes. (C)
Example  10000-fold  Mont-Carlo  simulation  results  corresponding  to  a  significant
metabolite score for m.
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Metabolite score algorithm reveals adaptive nutritional strategies of C. difficile 

during infection of distinct environments

We next sought to include the transcriptomic results into the metabolic model to

infer  which  metabolites  C. difficile most  likely  utilized from a  given environment.  To

accomplish this we mapped normalized transcript abundances to the enzyme nodes in

the network. Similar approaches have been previously successful in demonstrating that

transcript abundance data can be utilized through the lense of genome-scale metabolic

networks  to  accurately  predict  microbial  metabolic  responses  to  environmental

pertubation and identify reporter metabolites of changes (34). In our system, the score

of  each  metabolite  was  measured  as  the  log2-transformed  difference  in  average

transcript  levels  of  enzymes that  use the  metabolite  as  a  substrate  and those that

generate the metabolite as a product (Fig. 3.6B). A metabolite with a high score was

more  likely  obtained  from  the  environment  because  the  expression  of  genes  for

enzymes  that  produce  the  metabolite  were  low.  It  is  important  to  note  here  that

molecules that are more likely produced in our model are not necessarily likely to be

released  to  the  environment.  Our  models  do  not  include  the  synthesis  of  large

macromolecules (ie. long polypeptides or cytoskeleton) and should therefore only be

utilized to consider input metabolites to a network. Due to the previously mentioned

limited  technical  replication  of  sequencing  efforts,  we  adopted  a  Monte  Carlo-style

simulation for iterative random transcriptome comparison to provide statistical validation

of our network-based findings. This process generated random score distributions for

each metabolite node in the network, which made it possible to calculate a confidence
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interval that represented random noise for each metabolite. This ultimately allowed for

assessment of the probability that a given metabolite was excluded from the associated

null distribution (Fig. 3.6C).

To identify the core metabolites that were most essential for  C. difficile growth,

regardless of the environment, we cross-referenced the 40 highest scoring metabolites

from each treatment group (Fig. 3.7A). Aminoglycan N-acetylglucosamine (GlcNAc) was

found to the have the highest median score of all shared metabolites, which has been

shown to be a readily available source of carbon and nitrogen which can be limiting in

the  gut  (21).  We went  on  to  confirm that  our  strain  of  C. difficile could  metabolize

GlcNAc  for  growth  (Fig.  3.7B)  in  C.  difficile minimal  media  (35).  The  Stickland

fermentation acceptor proline was also found to be scored highly in all conditions tested

(36). C. difficile is auxotrophic for not only proline, but also cysteine, leucine, isoleucine,

tryptophan, and valine, which prevented testing for in vitro growth changes on proline

despite providing for modest growth in the no carbohydrate control. Previous analysis of

C.  difficile colonizing  GF  mice  under  mono-associated  conditions  indicated  that  C.

difficile uses both sets of metabolites (21); however, use of these metabolites in the

context  of  a  complex  community  of  potential  competitors  has  not  been  observed

previously.  This  analysis  indicated  that  these  metabolites  might  be  an  integral

component of the nutrient niche for C. difficile.
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Figure  3.7  |  Metabolic  network  analysis  reveals  differential  carbon  source
utilization by C. difficile across infections. 
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Figure  3.7  |  Metabolic  network  analysis  reveals  differential  carbon  source
utilization  by  C.  difficile across  infections.  Reported  metabolite  scores  were
calculated to have <2.5% probability to be included in the associated random score
distribution. Analysis was performed using the 40 highest scoring metabolites from each
condition. (A) Shared metabolite score represents the median score of metabolites that
were consistently scored highly  among all  infected conditions.  Below the conserved
patterns, are shown the distinct metabolites for each group's subset. (B) 18 hour  C.
difficile str. 630 in vitro growth validating substrates from network analysis. All statistical
comparison  was  performed  relative  to  no  carbohydrate  control  (all  p  < 0.001).
Significance  was  determined  with  one-way  ANOVA  with  Benjamini–Hochberg
correction.
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In vivo metabolomic analysis supports that C. difficile consumes metabolites 

indicated by metabolic modeling

To further validate the results of our metabolic model, we tested the effect of C.

difficile on the metabolite pool in additional aliquots of cecal content from the antibiotic-

treated and GF mice used in all previous analyses. We employed non-targeted ultra-

performance liquid chromatography and mass spectrometry (UPLC-MS) to measure the

relative in vivo concentrations of metabolites in the conditions investigated, with special

attention  to  those  highlighted  by  large  metabolite  scores.  We  tested  whether  the

susceptible communities had significantly different concentrations of each metabolite

relative to untreated SPF mice and whether the presence of  C. difficile affected the

metabolite composition.

First,  we compared the  relative  concentration  of  highly  scored metabolites  in

untreated SPF mice and antibiotic pretreated mice in the absence of CDI (Fig. 3.8). We

found that the relative concentration of GlcNAc was actually significantly lower in all

susceptible conditions (Fig. 3.8A; all  p < 0.001). The Stickland fermentation acceptors

proline (all  p < 0.05) and hydroxyproline (all  p < 0.05) were significantly higher in all

susceptible  environments  tested (Fig.  3.8B &  Fig.  2.9 B).  Conversely,  the  Stickland

donor alanine was significantly lower across all susceptible conditions (Fig. 3.9D; all p <

0.05). Succinyl-CoA was score most highly in clindamycin pretreatment, which is the

direct precursor to succinate by succinyl-CoA transferases (37). Succinate has been

shown to support  C. difficile growth in vivo through a synergistic relationship with at

least  one  other  bacterial  species  (9).  As  succinyl-CoA was  not  measured  in  our
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metabolimic assay, we instead found that succinate was indeed significantly higher in

clindamycin  pretreated  mice  (Fig.  3.9E;  all  p  < 0.05).  Among  the  cefoperazone-

pretreated  SPF  and  GF  mice,  we  also  found  that  mannitol/sorbitol  (Fig.  3.9C),  N-

acetylneuraminate  (Fig.  3.9F),  and  glycine  (Fig.  3.3A)  were  significantly  higher  in

cefoperazone-treated SPF and GF mice (all  p < 0.05).  These results  supported the

assertion that antibiotic treatment opened potential nutrient niches that  C. difficile was

able to exploit for its growth.

Second, we compared relative concentrations of high scoring metabolites during

CDI  and  mock-infection  within  each  pretreatment  group  (Fig.  3.8 &  Fig.  2.9).  Both

groups of host-derived glycans, GlcNAc/GalNAc (Fig. 3.9A) and Neu5Ac (Fig. 3.9F),

were significantly lower when in the presence of C. difficile in ex-GF mice (p < 0.05 and

0.01). In agreement with the previous results, we found that the Stickland acceptors

proline (Fig. 3.9B) and hydroxyproline (Fig. 3.3C) were significantly lower in every  C.

difficile colonized  environment  (all  p  < 0.05).  Glycine,  another  preferred  Stickland

acceptor,  was  lower  in  each  condition  following  infection  with  significant  change  in

cefoperazone-pretreated mice (Fig. 3.3D; p < 0.05). The Stickland donors leucine and

isoleucine  were  significantly  lower  in  all  infected  conditions  except  streptomycin-

pretreated mice (Fig. 3.3A-B; all p < 0.05). Concentrations of alanine were also lower in

all infected conditions compared to mock infection, however none of the changes met

our  threshold  for  significance  (Fig.  3.9D).  These  results  strongly  supported  the

hypothesis that amino acids are a primary energy source of C. difficile during infection.

A significant difference was seen for mannitol/sorbitol in ex-GF mice (p < 0.01), but not
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in  cefoperazone-pretreated  mice  (Fig.  3.9C).  Although  a  lower  the  concentration  of

succinate in both streptomycin and clindamycin pretreated mice was observed, neither

was found to be significant.  Overall,  metabolomic analysis supported our metabolite

score  algorithm for  predicting  the  metabolites  utilized  by  C.  difficile during  different

infection  conditions.  Results  from  metabolic  modeling  combined  with  untargeted

metabolomic  analysis  also  suggested  a  possible  hierarchy  of  preferred  growth

substrates.
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Figure 3.8 | Untargeted in vivo metabolomics support network-based metabolite
scores and suggest nutrient preference hierarchy.
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Figure 3.8 | Untargeted in vivo metabolomics support network-based metabolite
scores  and  suggest  nutrient  preference  hierarchy. Paired  metabolites  were
quantified simultaneously as the only differ by chirality making differentiation impossible.
CDI status and C. difficile metabolite scores during infection are indicated below each
panel.  NAs denote metabolites that were not included in our metabolic model of  C.
difficile str.  630.  Black  asterisks  inside  the  panels  represent  significant  differences
between mock and C. difficile-infected groups within separate treatment groups (all p <
0.05). Gray asterisks along the top margin of each panel indicate significant difference
from untreated SPF mice (all  p < 0.05).  Significance was determined with Wilcoxon
signed-rank test with Benjamini–Hochberg correction.
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Figure 3.9 | Change in in vivo concentrations of additional Stickland fermentation
substrates.  Comparison of concentrations for other Stickland fermentation substrates
from  C.  difficile-infected  and  mock-infected  mouse  cecal  content  18  hours  post-
infection. Labels in the top left corner of each panel indicate whether the amino acid is a
Stickland  donor  or  acceptor.  Black  asterisks  inside  the  panels  denote  significant
differences between mock and  C. difficile-infected groups within  separate  treatment
groups  (all  p  < 0.05).  Gray  asterisks  along  the  top  margin  of  each  panel  indicate
significant difference from untreated SPF mice (all p < 0.05).
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Discussion

Our results expand upon previous understanding of C. difficile metabolism during

infection by showing that not only does the pathogen adapt its metabolism to life inside

of a host (14, 21), but also to the context of the specific gut environment in which it finds

itself.  Previous  transcriptomic  efforts  to  measure  the  response  of  C.  difficile have

demonstrated in vivo changes in metabolism following colonization of GF mice. In this

study,  we utilized a conventionally-reared mouse model  of  infection to  compare the

response  of  C.  difficile to  colonization  in  the  context  of  varied  gut  communities

generated by pretreatment with representatives from distinct classes of antibiotics. With

these models, we identified subtle differences in sporulation and toxin activity between

each  antibiotic-pretreated  condition.  Transcriptomic  sequencing  of  C.  difficile across

colonized environments indicated complex expression patterns of genes in catabolic

pathways for a variety of carbon sources. Through integration of transcriptomic data

with  genome-scale metabolic  modeling,  we were able to deconvolute these signals.

This allowed us to observe that  C. difficile likely genenrated energy by metabolizing

specific alternative carbohydrates, carboxylic acids, and host-derived glycans across

colonized  conditions.  We  also  found  that  Stickland  fermentation  substrates  and

products,  as  well  another  host-derived  amino  glycan  N-acetylglucosamine,  were

consistently among the highest scoring shared metabolites which indicated that these

metabolites were central to the in vivo nutritional strategy of C. difficile. To confirm our

modeling-based results we employed untargeted mass spectrometry that demonstrated
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greater availability of many metabolites highlighted by our algorithm in susceptible gut

environs. Metabolomic analysis further revealed differential reduction of highly scored

metabolites during CDI, which suggested a hierarchy for the utilization of certain growth

nutrients.

An  explanation  for  the  differences  seen  in  metabolite  score  and  substrate

availability  could  be  the  concomitant  lower  population  density  of  one  or  more

competitors for certain resources. Ex-GF mice, where no other microbial competitors

are  present,  provided  a  partially  controlled  system  of  resource  competition.  In  this

condition, Neu5Ac was found to be the highest scored substrate and concentrations

Neu5Ac were significantly higher in susceptible mice. The concentrations of Neu5Ac

were concordantly  lower in  infected mice  relative  to  mock-infected mice.  The same

trend was also present in cefoperazone-pretreatment, which suggested that C. difficile

may be less competitive for this host-derived aminoglycan and may only have access

when certain competitors are no longer present. In the presence of a microbiota,  C.

difficile population-level  nutrient  utilization patterns differed across each environment

tested. For example, past studies have concluded that specific PTS and ABC transport

systems  are  upregulated  in  vivo (14,  21),  but  our  results  indicate  more  complex

regulation  with  inverse  expression  of  the  respective  systems  between  antibiotic

pretreatments (Fig. 3.5). In agreement with earlier research we found that  C. difficile

likely  fermented  amino  acids  for  energy  during  infection  of  GF  mice  in  addition  to

aminoglycan catabolism. Our results go on to support that this metabolic strategy was

conserved  across  all  infection  conditions  tested.  Several  Stickland  substrates  had
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consistently  higher  metabolite  scores  including  alanine,  leucine,  and  proline  indeed

dropped concentration during infection (Fig. 3.9A, and S5). Fermentation of amino acids

provides not only carbon and energy, but are also a source of nitrogen which is a limited

resource  in  the  mammalian  lower  gastrointestinal  tract  (38).  This  makes  Stickland

fermentation a valuable metabolic strategy, and it stands to reason that C. difficile would

use this strategy across all  environments it  colonizes. This same principle may also

extend to host mucus layer derived glycans as they are another source of carbon and

nitrogen which, despite augmented release by members of the microbiota (39), would

be  present  at  some  basal  concentration  regardless  of  other  species'  intercession.

Finally, we did find disagreement in some metabolite scores and the difference in in vivo

concentration  of  previously  suggested  C.  difficile growth  substrates  between  mock

infected and infected mice. This may indicate a nutrient preference hierarchy during

infection. Based on our results, we propose that amino acids are prized above all other

substrates, followed by host glycans, then carbohydrates, sugar alcohols, or carboxylic

acids depending on their availability in the environment. Since the latter provide carbon

and energy,  but  not  nitrogen,  it  appears that  C. difficile metabolism strongly values

nitrogen-containing  carbon  sources  that  fulfill  a  larger  proportion  of  its  biological

requirements but this requires additional investigation to confirm.

Our systems approach to studying C. difficile metabolism during the infection of

susceptible communities combines multiple levels of biological data to identify metabolic

trends that would not be apparent by a single method. Only through integrative multi-

omic  analysis  of  C.  difficile infection  employing  genomics,  transcriptomics,  and
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metabolomics were we able to uncover a much clearer image of  C. difficile's nutrient

niche space during infection in the context of complex microbial communities. By the

nature of our algorithm's reliance on network topology, the signal contributed by those

metabolites on the periphery of the network, which are more likely to be imported from

the environment, was amplified. This approach could be especially useful for identifying

edges  of  competition  for  nutrients  between  colonizing  pathogens  and  indigenous

communties of bacteria, as is the case with C. difficile. Our modeling platform may also

allow for the identification of emergent properties for the metabolism of C. difficile during

infection.  One  example  could  be  the  appearance  of  CO2  and  formate,  apparent

metabolic end products, in the list of shared metabolites which scored highly across

conditions. Although this may be a shortcoming of the genome or database annotation,

one  group  has  posited  that  C.  difficile may  actually  be  autotrophic  under  certain

conditions and require both of these substrates to undergo this process (40). These

findings highlight that our method not only identifies growth substrates, but reports all

metabolites that are being utilized for other processes.

Several  factors limited our ability to generate and interpret transcriptomic and

metabolomic  data.  Most  prominently,  we were  forced  to  pool  the  cecal  contents  of

multiple animals to generate a sufficient quantity of high quality RNA that would permit

us to sample the transcriptome of a rare member of the microbiome. Due to possible

biological  variation  between  samples  that  could  be  masked  by  this  approach,  we

quantified  within-group  sample  variation  for  vegetative  CFU,  16S  rRNA  gene

abundance, and untargeted mass-spectrometry (Fig. 3.3C-D). This revealed extremely
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low variablity in each treatment group at multiple levels of biology, and since these data

were  collected  using  matched  cecal  samples,  we  were  more  confident  that  our

transcriptomic results reflected reality. Metabolomic comparisons were also complicated

by the fact that multiple organisms contribute to the metabolite pool.  The metabolic

patterns  of  the  other  species  in  each  system (host  and  microbe)  could  instead  be

altered by pathogen colonization. As the concentrations of metabolites in our untargeted

assay were reported in relative terms, it was difficult to discern whether the available

biomass of C. difficile reaches a level to create these differences on its own. Possible

limitations of our modeling approach also existed, despite much of our results being

consistent  with  previously  published  work  and  our  own  untargeted  metabolomic

analysis.  Ultimately,  the  metabolite  score  calculation  is  dependent  on  correct  and

existing gene annotation. In this regard it has been shown that the pathway annotations

in  KEGG  are  robust  to  missing  elements  (41),  however  this  does  not  completely

eliminate  the possibility  for  this  type of  error.  Due to  the topology of  the metabolic

network, we were also unable to integrate stoichiometry for each reaction which may

effect rates of consumption or production. Reaction reversibility also varies depending

on versions of  enzymes possessed by each species.  Since our  algorithm favorably

weights  those  metabolites  closer  to  the  network  periphery,  incorrect  directionality

annotations  may  lead  to  mislabeling  reactants  or  products  and  potentially  lead  to

incorrect metabolite score calculations. With additional manual curation of the C. difficile

metabolic network, more species specific discoveries can eventually be made. Even

with this possibility, the application of multiple methods to study the altered physiology
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of  C. difficile in  mock-infected and infected communities  allowed us  to  validate  our

results based on known elements of C. difficile biology and to internally cross validate

the novel results from our experiments. Ultimately, these results combine to underscore

predictions of nutrient niche plasticity.

Our combined genomic, transcriptomic, and metabolomic analysis showed that

when  infecting  diverse  host-associated  gut  environments,  C.  difficile optimized  its

nutrient  utilization profile  to  each gut  environment  and effectively  colonize  the  host.

Focusing on previously established metabolic capabilities of the pathogen, we identify

that these forms of metabolism are differentially important to C. difficile when colonizing

distinct environments. These results have implications for the development of targeted

measures to prevent  C. difficile colonization through pre- or probiotic therapy. In the

future,  this  systems-level  approach  could  be  easily  expanded  to  study  the  niche

landscape of entire communities of  bacteria in response to antibiotic perturbation or

pathogen colonization.
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CHAPTER FOUR

Discussion

The perturbed gut ecosystem following cessation of antibiotic treatment has a

diminished capacity to prevent the colonization of the bacterial pathogen  Clostridium

difficile. This has been demonstrated to be primarily mediated through the intercession

of the gut microbiota. Healthy communities of bacteria in the gastrointestinal tract are

able to prevent C. difficile colonization. This process is thought to be mediated through

a  number  of  proposed  mechanisms  including  exclusion  from  spatial  niches,  direct

antagonism through products like bacteriocins, indirect effects through cross-talk with

the host's immune system, and competition for desired subsets of growth nutrients (1).

Several studies have supported the hypothesis that the elimination of preferred nutrient

niches by a resistant microbiota may be the strongest explanation of this relationship

(2–4). With the reduction in competitor populations due to the antibiotic, C. difficile gains

access to those nutrients that would otherwise be inaccessible, allowing the bacterium

to  colonize,  outgrow,  and  ultimately  cause  it’s  hallmark  disease.  Additionally,  each

susceptible  environment presents slightly  varying nutrient  milieus that  the colonizing

pathogen must be equipped to exploit and be able to adapt its metabolism accordingly.

Following colonization across these varied microbiomes, we also detected variation in

the  metabolic  impact  infection  has  on  each  community  and  that  these  differences
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correlate with downstream clearance.  Collectively,  my results  support  the theoretical

framework that  C. difficile is in possession of reasonable metabolic plasticity, despite

certain  conserved  aspects  across  environments.  This  plasticity  allows  it  to  colonize

highly varied community structures and can alter the ecosystem in ways that allow for

long-term colonization of the host.

The Ecosystem of the Gut is Altered as a Consequence of C. difficile Colonization

In Chapter 2, I presented and discussed my findings that upon colonization of

distinct  gut  environments,  C.  difficile differentially  altered  the  ecosystem  of  the

gastrointestinal  tract  across  antibiotic  pretreatment  models.  The  degree  to  which

community-level  transcriptional  activity  and  metabolic  output  are  changed  positively

correlates  with  the  duration  of  C. difficile colonization.  Furthermore,  we observed a

disparity in the amount that community structure is modified by C. difficile infection and

changes in the metatranscriptome and subsequently the metabolome. These alterations

to the microbiome may ultimately play into the ability of the pathogen to persist in some

communities  over  others.  The implication  of  these results  is  that  there  are  multiple

subcategories of  C. difficile susceptibility. While a community may not be resistant to

initial colonization it may still be able to eliminate pathogen colonization over a shorter

time period. This “secondary” colonization resistance is characterized by recalcitrance

to shifting overall metabolism to accommodate that of C. difficile. The specific factors or

taxa that drive this newly identified process are yet to be mechanistically tested and

present an exciting future research opportunity. Generally speaking, the data outlined in
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Chapter 2 illustrates that the importance of function in the gut microbiota outweighs that

of structure for the clearance of C. difficile colonization.

C.  difficile Differentially  Adapts  Metabolism  to  Distinct  Environments  and  the

Ramifications of this for Disease

In Chapter 3, I focused my analysis more acutely on the metabolism of C. difficile

and how the pathogen shifts nutrient utilization to succeed across different perturbed

communities. By implementing a transcriptome-based metabolic modeling approach for

assessing  differences  in  environmentally-acquired  resources,  I  was able  to  uncover

signatures  of  C. difficile inhabiting  distinct  nutrient  niche  spaces  across  susceptible

environments. As discussed in Chapter 1,  C. difficile should be considered a bacterial

generalist. Each of the antibiotic pretreated environments present separate challenges

to C. difficile, not the least of which being the acquisition of growth nutrients which are

equally likely be divergent between host species. Previous research from our group has

demonstrated that  C. difficile is  capable of colonizing numerous distinct,  but equally

susceptible  gut  environments  (5).  Furthermore,  the  untargeted  metabolic  data

presented  in  Chapter  2  reconfirmed  that  these  pretreatment  conditions  resulted  in

significantly different metabolite profiles also in agreement with previous studies (4, 6,

7). Congruent with the principle that C. difficile can colonize large nutrient niche space,

another group has demonstrated that it is able to utilize a large range of substrates for

growth including simple sugars, complex polysaccharides, amino acids and peptides

(8). The capability of C. difficile to respond to different environments appropriately stems
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from  a  reasonably  large  and  variable  genomic  capacity  (9).  This  study  revealed

numerous metabolic  capacities to  adapt  to  the diversity  of  available nutrients within

each susceptible gut environment. These patterns were ultimately reflected in results

from the metabolic modeling approach I designed and implemented.

Numerous  other  groups  have  made  mechanistic  connections  between  the

expression of virulence traits and the composition of the nutrient milieu C. difficile has

colonized (6, 10, 11), which are at least partially observed in my work in Chapter 3.

Aside from growth nutrients, C. difficile also requires particular metabolites to be present

in the environment before it is able to proceed through its life-cycle and even commence

the process of colonization. C. difficile, like many other subgroups of Clostridia, is able

to  form  environmentally-resistant,  dormant  endospore  which  is  thought  to  be  the

transmissive form of the pathogen (12). Prior to colonization, C. difficile must germinate

from this spore phase into the metabolically-active vegetative phase of the life-cycle.

This switch requires multiple environmental factors to signal an appropriate environment

for  C. difficile to colonize. Among these necessary metabolites are specific bile acids

(primary  germinants)  and  amino  acids  (secondary  co-germinants).  Conjugated  bile

acids (ie. taurocholate) have been shown to be the most potent germination signals.

The  deconjugated  forms,  while  still  being  potent  germination  signals,  are  lethal  to

vegetative C. difficile at physiologic concentrations (13). We observed that the bile acid

profiles between the antibiotic classes I chose for these studies were inconsistent with

one another (Chapter 2), and suggests that many different combinations of bile acids

may be sufficient to strictly inform C. difficile spores that they are in the GI tract of a
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potential host. I hypothesize that the recognition by spores of co-germinants (ie. proline

and glyine (14)) is actually a mechanism by which C. difficile  guages the availability to

nutrients  niches  in  the  gut  as  these  amino  acids  are  also  substrates  for  Stickland

fermentation. Together, this work supports the prediction that competition for nutrients

may extend beyond active metabolism, and low levels of potential metabolic competition

may recognized by C. difficile even before it leaves the spore.

Potential Mechanism of the Metabolic Interaction

In  the  previous  chapters  I  commented  that  C.  difficile may  subvert  host  or

community biology to better enable sustained colonization. This would not be the first

instance to be reported of a bacterial pathogen hijacking the environment of the gut to

promote  its  own metabolism.  Studies  of  Salmonella  enterica serotype  Typhimurium

infection found that the pathogen induces inflammation in the murine epithelial layer to

induce the release of reactive-oxygen species into the lumen of the GI tract (15). As

Salmonella is  resistant  to  the  bactericidal  properties of  these molecules,  this  action

provides  a  terminal  electron  acceptor  for  the  pathogen  to  utilize  during  aerobic

respiration while simultaneously subverting host immunity to kill bacterial competitors for

growth nutrients. In our dataset we identified a consistent trend across antibiotic class

pretreatments for the significant increase of 5-aminovalerate in cecal content following

infection  by  C.  difficile (Fig.  4.1).  This  molecule  is  the  byproduct  of  Stickland

fermentation  in  C.  difficile (16)  and  lysine  degradation  in  many  species  (17).

Concordantly,  the 5-aminovalerate concentrations in  the metabolomes we measured
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are a nearly perfect inverse correlation with D-proline concentrations (Chapter 2), which

strongly indicated that the increase was most likely due to the contribution of C. difficile

metabolism. This molecule is especially interesting in the context of  CDI for several

reasons. Firstly, 5-aminovalerate has a combinatorial bactericidal effect when combined

with certain reactive oxygen species (18). Due to the inflammatory effect of toxin on the

host, it is highly likely that these additional molecules would be introduced to the gut

lumen  during  infection.  This  may  be  a  mechanism  by  which  C.  difficile actively

antagonizes  potential  competitors.  It  should  also  be  noted  that  toxin  production  is

repressed  by  increased  environmental  nutrient  concentrations  (10),  and  decreased

expression  may  indicate  environments  that  C.  difficile indirectly  recognizes  as  the

absence of competition for those substrates. Secondly, C. difficile possesses a version

of  proline reductase that  may be capable of  converting 5-aminovalerate back to  D-

proline when combined with lipoate in an energetically unfavorable reaction (19, 20).

This action could not only detoxify the bactericidal effect but also allow for substrate

recycling through Stickland fermentation. Finally, 5-aminovalerate has been shown to

have direct effects on host physiology. It has been demonstrated that 5-aminovalerate is

a  GABA antagonist  in  both  rat  brains  and guinea pig  intestine  (21).  The functional

effects of  this receptor  differ  likely  along the biogeography of the GI tract  and their

antagonism has been shown to increase gut motility (22), potentially promoting further

increased dissemination following sporulation. Another possible host-interaction is that

this  molecule  has  also  been  shown  to  have  anticoagulant  activity  (23)  and  could

contribute to the “leaky gut” phenotype induced by C. difficile toxin, which in turn could
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allow for  increased access to nutrients entering the lumen from the bloodstream or

increased bacterial antigen leaving the gastrointestinal tract. These combined factors

lead to the hypothesis that C. difficile creates this molecule to subvert the inflammation

caused by toxin production and other host processes to obtain a competitive advantage

over specific community members. This is may not be the exclusive means by which C.

difficile instigates  change  to  allow  persistence,  however  it  should  be  noted  that

clindamycin pretreatment was the only group that did not see a significant increase in 5-

aminovalerate following infection (Fig. 4.1). Likewise, whether or not this mechanism

contributes  to  long-term  colonization  and  is  not  solely  active  shortly  after  primary

infection is also yet to be determined.
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Figure  4.1  |  Relative  concentrations  of  5-aminovalerate  in  each  of  the
pretreatment and infections groups.  Black asterisks denote significant differences
between  infected  and  uninfected  groups  within  each  susceptible  condition.  Gray
asterisks along the top axis indicate significant difference from untreated mouse cecal
metabolome. Significant differences were calculated using Wilcoxon rank-sum test with
Benjamini-Hochberg correction (p < 0.05).
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Both  symptomatic  and  asymptomatic  persistent  colonization  of  C.  difficile in

patients  presents  difficulties  for  mitigating  illness  and  spread  of  the  pathogen  in

healthcare facilities (24). As antibiotic therapy has been shown to frequently lead to a

cycle  of  recurrent  infection  (25)  and antibiotic  resistance in  C.  difficile is  becoming

increasingly  prevalent  (26),  alternative approaches to  eliminate  persistent  C. difficile

colonization  are  desperately  needed.  Along  these  lines,  fecal  microbial  transplant

(FMT),  has  been  identified  as  the  most  effective  treatment  to  ongoing  C.  difficile

colonization that we have identified thus far with >90% reported efficacy (27). A possible

mechanism  by  which  this  clearance  is  mediated  during  this  treatment  is  through

immediate re-installation competitors for nutrients from a healthy community that are

more adept than the generalist C. difficile for nutrient niche space in the gut. However, it

has also been shown that the organisms that are constituents of the initial transferred

sample, these members do not maintain colonization (28, 29).  In the context of  the

research  presented  in  the  previous  chapters,  it  is  plausible  that  this  process  may

instead  temporarily  re-introduce  taxa  that  are  able  to  metabolize  the  antagonistic

molecules produced by  C. difficile, temporarily eliminating this advantage. It is at this

point that more specialized groups for given resources can outcompete C. difficile, and

without this access to growth nutrients it can longer compete with the intestinal washout

rate and is removed from the system. This is likely one of many contributing methods by

which the gut microbiome resists colonization by C. difficile, and through an increased

understanding  of  these  interactions  we  could  one  day  designed  target  biological
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therapies to eliminate C. difficile infection or prevent colonization without the continued

involvement of antibiotic therapy.

Future Research Avenues

In addition to following the line of questioning stemming from the 5-aminovalerate

findings,  there  also  remains  large  portions  of  planned  research  I  was  unable  to

complete. The multi-omic data that I have generated to characterize these experimental

systems as well as the bioinformatic tools I have generated to integrate these datasets

have led to a number of potential future research projects. The most prominent of these

directions would be expansion of the metabolic modeling algorithms to the community-

scale integrating both metagenomic and metatranscriptomic data. The first step in the

approach that would likely have the high accuracy for modeling metabolism of individual

bacterial groups in the cecum would be to assemble discrete genomic units on which to

map transcript as opposed to the entire pool of genetic diversity. This task could be

accomplished utilizing tools such as CONCOCT which cluster assembled contigs into

groups of sequences that are similar in both metagenomic read coverage and kmer

composition (30). The logic being that sequences that share kmer frequencies, a well

established  signature  of  individual  species  (31),  and  have  similar  number  of  reads

mapping to them, are more likely to share an origin of a single species or one of its

close relatives. I had completed this for each of the distinct metagenomes from mock-

infected animals (to avoid assembling and mapping cDNA to  C. difficile genes), and

annotated the genes in each cluster according to the KEGG protein database. I added
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an additional binning step where I collapsed clusters with >50% of annotated genes

originating from the same genus level classification. This was done to compensate for

possible  error  in  clustering  sequences  that  actually  belonged  together  as  well  as

eliminate  very  small  clusters  of  genes  that  in  reality  may  be  constituents  of  larger

groups.  Final  gene  clusters  were  then  assembled  into  Contig-Enabled  Models  (or

CEMs),  exactly  analogous to  what  was  performed for  C. difficile in  chapter  3,  and

multiple metrics of network centrality were calculated for each. Models with extremely

low average connectivity were pruned away as it was unlikely that those gene collection

were a true reflection of the metabolism of that organism or group. Metatranscriptomic

reads were then mapped to gene nodes in each of the networks across the respective

communities,  and using  the  previously  described algorithm in  chapter  3,  metabolite

importance scores for all community members was calculated. An additional algorithm

was devised to gauge the putative metabolic competition or synergy between individual

groups  and  at  a  community-level,  but  with  normalizing  for  species  abundance  and

without  assessing  for  population  density  effects.  A depiction  of  the  basic  algorithm

structure as well as one calculated interaction between C. difficile and a Lactobacillus

CEM and then an assessment of most consumed or produced metabolites across all

the CEMs in the cefoperazone pretreated community is shown in Fig. 4.2. The resulting

scores could then be correlated with changes in the metabolome between infected and

uninfected conditions.  While  this  approach appeared to  find  an amount  of  tractable

signal for competition between certain species and  C. difficile, it also amplified some

signals contributed by potential annotation artifacts. This was due to the nature of the
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metabolite  importance  algorithm  disproportionately  weighting  metabolites  on  the

periphery  of  the  network.  As  stated  in  chapter  3,  this  more  readily  identified  input

metabolites  to  the  networks,  however  if  reactions  were  annotated  as  reversible  or

functioned differently in the organism of interest compared to the KEGG database entry,

metabolic  output  could  easily  be  labeled  as  inputs  during  unsupervised  network

construction.  The only  solution  to  this  would  be that  prior  to  metabolite  importance

calculations, manual curation of reactions included in each network is necessary. Future

studies of inter-species competition for nutrients in complex communities of bacteria

could greatly benefit by utilizing the computational platform I have developed following

its  completion to  identify  indicator  metabolites as edges of  strongest  competition or

synergy that may affect community assemblages.
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Figure  4.2  |  Community-level  modeling  approach  and  example  of  metabolic
interactions.
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Figure  4.2  |  Community-level  modeling  approach  and  example  of  metabolic
interactions. (A)  Schematic  of  interaction  calculations  between  individual  contig-
enabled models (CEMs). Color of arrow corresponds to the individual metabolite scores
for  each  CEM for  metabolites  I  or  II.  An  interaction  score  reflects  the  sum of  the
component log2 metabolite scores from each CEM for all metabolites they share a score
for,  since not all  metabolites are in the network of all  organisms. (B) Schematic for
calculating cumulative metabolite  scores across the cecal  microbiota.  The score  for
each individual metabolite from each CEM in the community was cumulatively added to
yield  final  demand  or  consumption  probabilities.  The  following  examples  utilized
normalized metagenomic and metatranscriptomic read abundances from cefoperazone-
pretreated,  infected mice.  The presented scores were part  of  the 90th percentile  of
highest  or  lowest  scores  scores  for  all  organisms  included  in  the  calculations.  (C)
Putative interaction of C. difficile and Lactobacillus CEMs in the infected community. In
instances when both scores were positive it implied competition and scores on both
sides  indicate  possible  cooperation.  (D)  Community-level  metabolic  crosstalk
calculations of all CEMs in the community. Values above the central line are more likely
to be consumed by the community, and those below may be produced overall.

143



Concluding Remarks

C. difficile is a pathogen of opportunity that exploits the susceptibilities of gut microbial

communities  to  propagate  and  cause  disease.  Little  is  known  about  the  specific

interactions that C. difficile has with members of the gut microbiota. These likely include

those  that  prevent  C.  difficile  colonization  in  healthy  communities,  or  those  in  the

perturbed  ecosystems  that  determine  whether  C.  difficile colonizes  long-term  or  is

eliminated. In past studies, parsing the metabolic contribution of discrete groups in a

community of organisms to the overall ecology has been difficult. With the advent of

high-throughput sequencing, improved mass-spectrometry techniques, and methods for

integrating multiple levels of high-dimensional biological data it is becoming easier to

decipher these interactions. With continued research, we will one day understand the

complex interplay and develop effective strategies for limiting C. difficile colonization in

humans without risk of recurrent disease or acquired antibiotic resistances.
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