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ABSTRACT

Research on computational modeling and multi-scale design of materials has been

garnering a lot of interest due to the demand for high performance materials in elec-

tronics, energy and structural applications. The primary goal of the present study is

to develop a new computational approach for microstructure design for achieving a

set of material properties within a designated level of uncertainty. This thesis com-

bines the methods of uncertainty quantification (UQ) and materials design, using a

unique linearization approach that is well-suited for metallic materials modeled using

probabilistic descriptors such as the orientation distribution function. An analytical

UQ formulation is proposed to model the uncertainties in microstructural features

from experimental (electron diffraction) data as well as for inverse modeling the un-

certainties in optimal microstructural features from property data. Compared to the

widely preferred computational UQ algorithms the analytical model reduces the re-

quired computational time significantly as well as capturing the effect of stochasticity

in microstructure design accurately. The optimal processing route, which produces

materials with optimized texture and/or properties, is identified by developing re-

duced order models to represent the texture evolution. Examples presented include

the performance improvement of Titanium aircraft panels for thermal buckling, and

optimization of Fe-Ga alloys for vibration response and identification of optimal pro-

cessing route for Fe-Ga alloy microstructures.
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CHAPTER 1

Introduction

Material selection has been traditionally used by engineers for engineering de-

sign, as exemplified by property cross-plots (popularized by Ashby [1]), a graphical

representation of material–property–performance relationships. For example, density

versus strength plot of different materials can be used by an aircraft engineer to find

that for the same strength requirement, a titanium alloy weighs much less than a steel

alloy. However, even within the selected alloy system, it is common knowledge that

microstructural variability leads to a large range of material properties. Microstruc-

ture has a substantial effect on the performance of critical components in numerous

aerospace applications. Example applications that benefit from microstructure design

include high temperature panels in airframes, turbine disks and active materials for

vibration sensing. We are currently moving towards a new paradigm of Integrated

Computational Materials Engineering (ICME), where microstructure optimization

will become an integral part of engineering design.

Microstructure–sensitive design of polycrystalline alloys can be performed by tai-

loring the distribution of various crystal orientations (‘the orientation distribution

function (ODF)’) in the microstructure. In general, engineering properties attain ex-

tremal properties along different crystallographic directions. For example, in rolled

sheets of magnetoelastic alloy Galfenol (Fe100−xGax), the highest yield strength oc-
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curs in the (111)[110] orientation, highest elastic modulus occurs in the (110)[111] ori-

entation while both magnetization and magnetostriction are highest in the (100)[001]

orientation. Sensors or actuators in the form of compliant beams of Galfenol give the

highest energy density if magnetostriction and strength are maximized while minimiz-

ing the elastic modulus. Thus, to optimize a composite measure of these properties,

one may need to design a polycrystal with different volume fractions of critical crystal

orientations.

This task is challenging due to the high dimensionality of the space of all possi-

ble crystal orientation distributions. Very few published works in literature discuss

such design problems. Significant contributions in this area include [2] where the

authors design an ODF that maximizes the deflection of a beam without plastically

deforming it. In [3], the authors design a plate with a circular hole subjected to

an in-plane tensile load so as to maximize the load carrying capacity while avoiding

plastic deformation. These analyses employ a reduced spectral series representation

of the texture that significantly reduces the dimensionality of the search space. Spec-

tral representations are global approximations of the ODF and are not optimal for

capturing sharp features (e.g. single crystals). In this thesis, we employ a reduced

order model (ROM) representation based on finite element (FE) discretization of the

orientation space, that is able to capture sharp features due to the use of a local basis.

The ROM representations are integrated to an optimizer, and the numerical frame-

work is capable of identifying the optimum ODFs which satisfy the design criteria for

engineering properties.

Traditional optimization techniques such as gradient methods lead to a unique

or a small set of microstructural solutions rather than the complete space of op-

timal microstructures. Multiple solutions are favored in the sense that traditional

low–cost manufacturing processes such as forming and heat treatment can only gen-

erate a limited set of microstructures, and the identified optimal microstructure(s)
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may not be economically feasible to manufacture. In this study, a novel computa-

tional methodology is developed that better addresses the issues of non–uniqueness

of microstructure–property relationships.

Robust engineering designs take into account property variability that naturally

occurs due to microstructural stochasticity and processing–related uncertainties. An-

other aspect of this study is to investigate the effect of microstructural uncertainties

on uncertainty in material properties by using an uncertainty quantification (UQ)

framework. An analytical formulation of multivariate probability distributions is de-

veloped for modeling the quantification and propagation of microstructural uncertain-

ties on the microstructure-sensitive properties. Moreover, a stochastic optimization

algorithm is implemented that addresses the inverse UQ problem of computing mi-

crostructural uncertainties if the property objectives are given in the form of a mean

value and a distribution. Such a model can be readily commercialized for the material

processing industry.

In summary, this study has contributed to the multi-scale modeling and design of

materials literature in the following aspects:

• Development of microstructure–property models using ODF representation for

Titanium alloys.

• A multi-scale design methodology to optimize microstructures and enhance the

engineering material properties and system performance.

• Identification of multiple optimum microstructure solutions using null space of

a linear solver.

• Identification of optimal processing route(s) to manufacture materials with de-

sired texture and/or properties through the implementation of a reduced order

modeling scheme.
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• Quantification of microstructural uncertainties and modeling their propagation

to the material properties.

• Multi-scale design optimization of materials under uncertainties.

The organization of the present study is as follows: Chapter 2 discusses the model-

ing of microstructures using the probabilistic descriptor based approach to identify the

slip system parameters of Ti-Al alloys using the available experimental data. Chap-

ter 3 addresses a multi-scale design optimization methodology for microstructures to

enhance the macro engineering material properties. The experimental uncertainties

are quantified, and their propagation to the microstructure design and material prop-

erties is modeled with an analytical UQ algorithm in Chapter 4. This analytical UQ

algorithm is implemented to the multi-scale design optimization framework to iden-

tify the optimum microstructure designs under the effect of uncertainties in Chapter

5. Chapter 6 focuses on the identification of optimal processing route to manufacture

materials with desired texture and/or properties. The future directions on multi-scale

design of materials are discussed in Chapter 7. The multi-scale modeling approach of

this study is based on a one-point probability descriptor, ODF. Future work in this

area should focus on modeling of microstructures and process design with higher order

probabilistic descriptors, such as Nearest Neighbor Orientation Correlation Function

(NNOCF), that additionally captures grain neighborhood information, as discussed

in Chapter 7.

1.1 Multi-scale design and optimization of materials and de-

formation processes

Recent developments in materials-by-design have allowed a more advanced sys-

tems approach that integrates processing, structure and property through multi-scale

computational material models [4]. In the area of composites, techniques that enable

4



tailoring of microstructure topology have allowed design of structures with interest-

ing extremal properties such as negative thermal expansion [5] and negative Poisson’s

ratio [6]. In contrast to composites, techniques that allow tailoring of properties of

polycrystalline alloys involve tailoring of preferred orientation of crystals manifested

as the crystallographic texture. During forming processes, mechanisms such as crys-

tallographic slip and lattice rotation drive the formation of texture and variability in

property distributions in such materials. A useful method for designing materials is

through control of deformation processes leading to the formation of textures that

yield desired property distributions.

The microstructure modeling of the present work is based on the quantification

of the microstructure using the ODF. The ODF represents the volume fractions of

the crystals of different orientations in the microstructure. The ODF is defined based

on a parameterization of the crystal lattice rotation. Popular representations include

Euler-angles [7, 8] and classes of angle-axis representations, with the most popular

being the Rodrigues parameterization [9]. Conversion of continuous orientation space

to finite degrees of freedom for material property optimization requires discretization

techniques. Discretization schemes either focus on a global basis (e.g. Fourier space

or spherical harmonics [10, 11]) or a local basis using an FE discretized Rodrigues

space with polynomial shape functions defined locally over each element [12, 13]. Step

one of microstructure optimization problem involves computation of the discretized

ODF values that satisfy a given set of desired properties. Liu et. al [14] achieved

this by directly sampling the ODF space using a data mining methodology. How-

ever, the space of all possible ODFs is high dimensional and sampling in the property

space is favorable since the number of design variables is significantly lesser. Ka-

lidindi and coworkers [10, 11, 15] employ sampling within the property hull similar

to this work, but employ a Fourier basis for discretizing the ODF. As explained be-

fore, Fourier/spectral methods cannot represent sharp textures due to the use of a
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global basis. Chapter 2 introduces the ODF based methodology using a local basis

[16], and focuses on an inverse problem for crystal plasticity modeling of Ti-Al al-

loys (Ti-0wt%Al (Ti-0Al) and Ti-7wt%Al (Ti-7Al)) using the technique. The single

crystal constitutive model presented by Anand and Kothari [17] is used to model

the crystal plasticity of the microstructure, and the ODF evolution is modeled using

a conservation equation. The crystal plasticity parameters are computed using an

inverse problem. The objective of this design problem is to match the global tensile

and compression stress-strain curve behavior, which is known through experiments

and the model is validated by comparing against experimentally measured ODFs

after compression. Chapter 3 addresses different engineering design problems with

various design objectives and constraints. The fundamental goal of this chapter is

to identify the best microstructure design, represented by the ODF, to optimize a

macro engineering material property. The material properties are computed using

the volume averaged equations, which are defined in terms of the ODF values. The

optimum ODF solution corresponds to the solution of an optimization problem in a

very high-dimensional design space. To increase computational time efficiency the

solution space is reduced to a new space, property closure, which is the space of the

important material properties of the design problem. The optimization problem can

be solved in the property closure since it includes all possible microstructure designs.

The optimization problems, which are discussed in Chapter 3, are solved in the prop-

erty closures to maximize the critical buckling temperature of a Titanium aircraft

panel, and maximize the yield stress of a Galfenol (Fe-Ga alloy) cantilever beam

while satisfying the design constraints defined for vibration tuning through the first

bending and torsion natural frequencies of the beam. After identifying the optimum

microstructure design a direct linear solution scheme is also implemented to find the

infinite solution directions and multiple optimum designs. The optimization method-

ology is first applied to the aircraft thermal buckling problem, where the optimum

6



design corresponds to a unique solution. The multiple optimum designs are identified

for the Galfenol beam vibration tuning application. The motivation of Chapter 6 is

to find out which of the multiple ODFs identified in Chapter 3 can be manufactured

using a deformation process or a set of sequential deformation processes. Li et. al [18]

addressed this problem by representing processing paths as streamline functions in

the space of spectral coefficients. This allows inversion of processing paths by track-

ing streamlines connecting the initial and optimal textures. The complexity of the

model depends on the number of spectral coefficients used to represent the texture.

Since a large number of spectral terms are needed to capture sharp textural features,

complexity of the models used to describe processing paths increases accordingly. In

this work, textures from a given process are represented by using basis functions that

are derived using Proper Orthogonal Decomposition (POD) [19, 20]. The multiple

optimum ODFs from step one are projected onto the basis functions of various defor-

mation processes and the optimal process is identified as the one that minimizes the

distance between any one of the optimal ODFs and the ODF that can be achieved

from a process. A second approach where the optimal property values are projected

onto the process basis is also presented.

1.2 Quantification of microstructural uncertainties and stochas-

tic design optimization of materials

The microstructure problems, which are discussed in Chapter 2, Chapter 3 and

Chapter 6, model the ODFs as deterministic variables. However, the microstructures

are inherently stochastic and therefore it is important to model the effect of uncertain-

ties to the microstructure design and material properties. One of the pillars of ICME

(Allison et al. [21]) is UQ, and it involves the development of mathematical tools to

quantify the effect of microstructural stochasticity on the predicted engineering prop-
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erties. Various sources of the uncertainties in ICME are observed as: variabilities

due to processing, operating conditions, randomness of the microstructure, incom-

plete knowledge of model parameters, inaccurate data, insufficient knowledge about

physical process such as process-structure or structure-property relations [22]. In the

present study, the aleatoric uncertainties, which stem from the stochastic nature of

the microstructures, are quantified using the available experimental data. The mi-

crostructural uncertainties arise from imperfections in the manufacturing processes,

such as variations in the stress or temperature gradients during forming processes,

which are used to make aircraft components such as turbine disks. These imperfec-

tions lead to stochasticity both point–to–point within a specimen as well as across

multiple specimens that originate from the same manufacturing process. In the UQ

parlance, these uncertainties are classified as aleatoric. Electron backscatter diffrac-

tion (EBSD) and pole figure (PF) representations are important experimental meth-

ods to quantify such microstructural variations. The PF data and multiple EBSD

scans on alloy specimens made from the same manufacturing process are employed

to sample the various microstructures. The goal in Chapter 4 is to model the propa-

gation of these uncertainties to engineering properties using an analytical approach.

The UQ studies in literature in the area of multi-scale structural modeling are sparse

[23]. Current state of the art to model the uncertainties in materials involves the

use of expensive numerical simulations such as Monte Carlo simulation (MCS), col-

location and spectral decomposition methods. Creuziger et. al [24] examined the

uncertainties in the ODF values of a microstructure due to the variations in the PF

values by using MCS. Juan et. al [25] used MCS to study effects of sampling strat-

egy on the determination of various characteristic microstructure parameters such as

grain size distribution and grain topology distribution. Hiriyur et. al [26] studied an

extended FE approach, XFEM, coupled with an MCS approach to quantify the uncer-

tainties in the homogenized effective elastic properties of multiphase materials. Saves

8



and Stefanou [27] modeled the microstructural uncertainties as random variations

using the MCS technique. These uncertainties were then linked to the macro-scale

parameters through a stochastic FE approach. Kouchmeshky and Zabaras [28] pre-

sented propagation of initial texture and deformation process uncertainties on the final

product properties using a stochastic collocation approach. The authors addressed

an uncertainty problem for a multi-scale closed-die forging deformation process using

Karhunen-Loeve expansion and Bezier splines to represent the variations in the initial

geometry and texture [29]. Madrid et. al [30] examined the variability and sensitivity

of in-plane Young’s modulus of thin nickel polycrystalline films due to uncertainties

in microstructure geometry, crystallographic texture, and numerical values of single

crystal elastic constants by using a numerical spectral technique. Niezgoda et. al

[31] computed the variances of the microstructure properties by defining a stochas-

tic process to represent the microstructure. Cai and Mahadevan [32] analyzed the

uncertainties in manufacturing processes and their propagation to the microstruc-

ture using a Gaussian process surrogate model. Some authors have also focused

on the computational techniques to study the uncertainties on microstructural ho-

mogenization approaches. Huyse and Maes [33] studied the effect of microstructural

uncertainties on homogenized parameters by using random windows from the real mi-

crostructure, and performed MCS to identify the stochasticity in material parameters

such as Young’s modulus and Poisson’s ratio. Sakata et. al [34] also showed the varia-

tions in Young’s modulus and Poisson’s ratio due to microscopic uncertainties. They

validated the results of their perturbation-based homogenization method with MCS.

In another paper, Sakata et. al [35] implemented a Kriging approach to calculate

the probability density functions of the material properties, and used MCS to study

the uncertainties in geometry and material properties of a microstructure through

the same perturbation-based homogenization method. A computational stochastic

modeling approach for random microstructure geometry was presented by Clement

9



et. al [36, 37]. The authors presented a high dimensional problem due to the high

number of stochastic variables to represent the microstructure geometry. This high

dimensionality was reduced with the implementation of Polynomial Chaos Expansion

(PCE). These computational methods presented in literature involve using a numeri-

cal algorithm for quantification and propagation of uncertainties. They represent the

joint probability distributions of random variables either using interpolation functions

or sampling for random points. These techniques are not computationally efficient as

the problem complexity or the number of variables increases the number of interpo-

lation terms or sampling points has to increase to maintain the accuracy level. This

is especially true for the ODFs, which are discretized using the FE nodes or spectral

basis, and contain large number of free parameters whose joint distribution needs to

be sampled. Another drawback is the difficulty of satisfying design constraints (such

as volume fraction normalization) when using numerical approaches. All these disad-

vantages imply the necessity of developing analytical solutions as a first step in UQ.

Recently, the Gaussian characteristic functions are employed to stochastically model

the PF inversion [38]. The approach is fully analytical and significantly faster than

the numerical approaches. However, the PF inversion is non-unique, and it leads to

the ‘epistemic’ uncertainty, which stems from the modeling errors or inaccuracies,

due to lack of an exact solution. Chapter 4 focuses on the PF to ODF and EBSD

to ODF conversions, which are one–to–one maps only constrained by the level of

discretization of the ODF, and thus, aleatoric uncertainties can be better quantified.

The Gaussian model is employed and the uncertainties in the ODF are analytically

propagated to the linear and non-linear properties derived from the ODF. Chapter 5

aims to investigate the effect of aleatoric uncertainties in microstructure modeling and

inverse design of stochastic microstructural features to achieve a prescribed statistical

range of engineering properties. Current state of the art only addresses the direct UQ

problem (effect of uncertain microstructures on properties) and the stochastic inverse
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problem has only been addressed in a previous paper of the author [39]. In Chap-

ter 5, the same analytical formulation based on the Gaussian distribution approach

presented in Chapter 4 is used to represent the variations of the random parameters.

The vibration tuning problem of the Galfenol beam introduced in Chapter 3 is ex-

ercised. The variations of in-plane Young’s modulus (E1) and shear modulus (G12)

parameters are assumed to be provided by the manufacturer, and consistent with the

Gaussian distribution. Then the probability distributions of the ODFs are computed

by solving an inverse problem. The variations in the compliance parameters, S11

and S66, are found first with the transformation of random variables rule using the

input variations in E1 and G12. The compliance parameters are calculated first since

they can be represented with linear equations in terms of the ODFs. The probability

distributions of the compliance parameters are also assumed to be modeled with a

Gaussian approach despite their nonlinear relation to E1 and G12 since the input un-

certainties are very small. Then the inverse problem to find the statistical properties

of the ODFs is defined as an LP problem. A global stochastic optimization approach

is implemented to this analytical solution framework to maximize the yield stress

under vibration tuning constraints defined for the first bending and torsion natural

frequencies of the cantilever beam. The optimization variables are defined as the in-

plane Young’s modulus (E1) and shear modulus (G12) of the Galfenol material, and

each design sample is assumed to have the same level of uncertainty. To the best of

the author’s knowledge this is the first analytical effort in literature for quantification

of microstructural stochasticity given the desired statistical range in properties, in

effect, a stochastic inverse problem for microstructure design [39, 40]. The optimiza-

tion results are also compared to the results of the computational technique, which

employs MCS to quantify the uncertainties. The analytical algorithm is able to com-

pute the same optimum values of the variables and a very close objective function

value to the MCS solution. It can also decrease the computational time by almost
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two orders of magnitude. Once the optimum ODFs are achieved, then the multiple

solution directions are identified using the direct linear solver, which is presented in

Chapter 3. The effect of uncertainties on the design objective is also discussed at the

end by comparing the optimum results with the deterministic solution for maximum

yield stress objective.
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CHAPTER 2

Microstructure Modeling with Orientation

Distribution Function

A multi-scale modeling approach which can link the microstructural features to

the macro-scale engineering properties is addressed through the use of a one-point

probability descriptor, ODF. Using the ODF model the averaged material properties

are computed with a volume averaging approach which implements the linearized

equations of the property matrices derived from the single crystal solutions, and the

corresponding ODF values. The ODF model is used in this chapter for property

prediction of the Titanium-Aluminum (Ti-Al) alloys, Ti-0 weight (wt)%Al (Ti-0Al)

and Ti-7wt%Al (Ti-7Al), which are in demand for many aerospace applications. The

property studied is the tension and compression response of the materials using crys-

tal plasticity. A rate-independent single-crystal plasticity model developed in Anand

and Kothari [17] is used to compute the effect of macroscopic strain on the polycrys-

tal. The optimization problem is defined for calibrating the slip system parameters

using the available tension and compression experimental data. Compared to the

other alloys, such as Ti-6Al-4V [41, 42, 43], the parameters of Ti-7Al are not studied

extensively in literature. Therefore the optimization results for the crystal plastic-

ity model realization produce unique data, which will be beneficial to future studies

in the field. The sensitivities of the optimum variables to the design objectives are

13



also investigated to identify the most critical slip system parameters. The crystal

plasticity simulations input a randomly oriented initial texture. Using the optimum

design parameters the microstructural textures during the compression test are pre-

dicted by the crystal plasticity finite element (CPFE) simulations, and compared to

the available experimental texture and digital image correlation (DIC) data.

The organization of Chapter 2 is as follows: Section 2.1 introduces the ODF

approach, and presents the crystal plasticity modeling, which implements the ODF

approach and rate-independent single crystal constitutive model. The optimization

problem defined for the slip system parameters identification of Ti-0Al and Ti-7Al,

and the optimum results are discussed in Section 2.2. A sensitivity analysis is per-

formed to analyze the optimum design variables. The results of this sensitivity study

is also presented in Section 2.2. Next, the optimum parameters are used to predict

the microstructural texture during the compression test, and the additional CPFE

and DIC comparison is performed with the optimum design parameters of Ti-7Al. A

summary of the chapter is given in Section 2.3.

2.1 Multi-scale modeling of microstructures

One important aspect in modeling is to determine which slip systems are active

during tension and compression tests. The number of the slip systems also determines

the design variables here since the optimization is performed for the parameters of all

active slip systems. Metals having a hexagonal close-packed (HCP) crystal structure,

such as Titanium, are expected to display easy < a > slip, either on the prismatic

or basal plane [44]. The observed slip systems in pure HCP Titanium are the three

equivalent basal 0001 < 112̄0 >, three equivalent prismatic 101̄0 < 112̄0 > and six

equivalent pyramidal 101̄1 < 112̄0 > slip systems [45]. All these three slip systems

share a common slip direction, < 112̄0 >, or, < a >. The slip on these basal, prismatic

and pyramidal slip systems is denoted as < a >-slip. In order to accommodate a
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strain that is parallel to the c-axis of the hexagonal system other slip or twinning

deformation modes are required. One of these additional modes slips on pyramidal

planes with < 112̄3 >, or < c + a > slip directions [45]. In addition, twinning is

commonly observed in Ti and other metals with an HCP crystal structure, and it has

a strong effect on the overall behavior of a polycrystal material [45].

The deformation behavior of HCP-Ti and Ti alloys has been studied in literature

extensively [44, 45, 46, 47, 48, 49, 50, 51]. These studies revealed that the Ti alloys

have complex slip and twinning modes. These complexities are mostly because of

the crystallographic nature of the alpha (α) phase and addition of alloying elements

such as Aluminum (Al) [46]. The effect of Al is not fully understood yet since there

is still an ongoing debate in literature about the effect of Al to twinning [46, 47,

48, 49, 50, 51]. Some references claim that Al addition is effective in suppressing

twinning [46, 47, 48]. Williams et. al [46] observed that the frequency of twinning

rapidly decreases when the Al content increases to 5 % and 6.6 % from 1.4 % and

2.9 % respectively. They found the compression twins to be very difficult to nucleate

in Ti-Al single crystals when the Al content is more than 5wt%. Paton et al. [49]

discuss that the Ti-Al alloy with 6wt% Al does not twin even at temperatures as

low as 100 K. On the other hand, some references [44, 50, 51] claim that Al addition

has an increasing effect up to a peak level and then after this point the further Al

addition suppresses the twinning effect. Fitzner et. al [51] performed a detailed

experimental study to investigate the effect of Al addition to twinning activity in

Ti-Al alloys, and they found that at around 7 atomic (at)%Al there is a turning

point in twinning activity and a further increase in Al reduced the twinning activity

because of short range ordering and signs of Ti3Al formation in case of the highest

Al content they observed (13at%). They discussed the 101̄2 < 1̄011 > tensile twin,

and concluded that it provides a near 90 degrees rotation of the c-axis from a tensile

to a compressive stress condition, and increases the intensity of basal texture during
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compression loading. The authors also analyzed the EBSD data and observed an

increasing fraction of 101̄2 < 1̄011 > twins until 7 at%Al, which then drops suddenly

with further Al addition. As a secondary twinning mode 4% of 112̄2 < 112̄3̄ >

compression twins were observed only in Ti-0Al case. Due to the small effect of the

secondary twinning mode, only the 101̄2 < 1̄011 > twin mechanism is considered in

this study when modeling the Ti-Al alloys.

This section discusses the crystal plasticity modeling framework which is based

on the ODF approach. The details of the ODF model, and probability update are

given in Section 2.1.1 and Section 2.1.2. The rate-independent single crystal plasticity

model is explained in Section 2.1.3.

2.1.1 Introduction to the ODF approach

Crystal plasticity modeling with the ODF approach is an efficient alternative

to computationally expensive FE methods. The ODF, denoted by A(r), is a one-

point probability measure, which quantifies the volume fractions of the crystals in

the orientation space, r. The ODF is defined based on a parameterization of the

crystal lattice rotation. In this study, an FE technique was implemented to discretize

the ODFs over the Rodrigues space. This is based on the unique association of

an orientation with a rotation axis, and an angle of rotation about the axis. The

Rodrigues parameterization is created by scaling the axis of rotation, n, as r =

ntan( θ
2
), where θ is the rotation angle. A proper rotation, R, relates the lattice

orientation to a reference orientation. Given the Rodrigues parameterization, r, the

rotation, R, can be obtained as:

R =
1

1 + r.r
(I(1− r.r) + 2(r ⊗ r + I × r)) (2.1)
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The complete orientation space of a polycrystal can be reduced to a smaller subset,

called the fundamental region (Fig. 2.1), as a consequence of crystal symmetries.

Within the fundamental region, each crystal orientation is represented uniquely by

a coordinate, r, the parameterization for the rotation (e.g. Euler angles, Rodrigues

vector, etc.). The fundamental region, which is shown in Fig. 2.1, is discretized into

N independent nodes with Nelem FEs (and Nint integration points per element).

Figure 2.1: ODF representation in the Rodrigues fundamental region for hexagonal
crystal symmetry showing the location of the k=50 independent nodes of the ODF
in red color

The ODF is normalized to unity over the fundamental region as:

∫
R
Adv =

Nelem∑
n=1

Nint∑
m=1

A(rm)wm|Jn|
1

(1 + rm · rm)2
= 1 (2.2)

where A(rm) is the value of the ODF at the mth integration point with global coordi-

nate rm of the nth element, |Jn| is the Jacobian determinant of the nth element and wm

is the integration weight associated with the mth integration point. This is equivalent

to the linear constraint: qint
T
Aint = 1, where qinti = wi|Ji| 1

(1+ri·ri)2 and Ainti = A(ri),

where i = 1, . . . , Nint × Nelem. Here, dv =
√
detg dr1dr2dr3. Since the orientation
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space is non-Euclidean, the volume element is scaled by the term
√
detg = cos4(θ/2)

where g is the metric for the space. If the orientation-dependent property for single

crystals, χ(r), is known, any polycrystal property can be expressed as an expected

value, or average, over the ODF as follows:

< χ >=

∫
χ(r)A(r)dv (2.3)

This equation can be expressed in a linear form using an FE discretization as

follows:

< χ >=

∫
R
χ(r)A(r)dv =

nel∑
n=1

nint∑
m=1

χ(rm)A(rm)wm|Jn|
1

(1 + rm · rm)2
(2.4)

This is again equivalent to an equation linear in the ODF: < χ >= pint
T
Aint, where

pinti = χ(ri)wi|Ji| 1
(1+ri·ri)2 and Ainti = A(ri), i = 1, . . . , Nint ×Nelem.

Using reduced integration with one integration point per element at local coordi-

nate of (0.25, 0.25, 0.25) and an integration weight of w = 1
6
, the simplified property

matrix pint corresponding to polycrystal average properties [< χ1 >, . . . , < χnp >]

and the normalization constraint vector (qint) are given as:

pint =



1
6
χ1(r1)|J1| 1

(1+r1·r1)2 . . . 1
6
χnp(r1)|J1| 1

(1+r1·r1)2

1
6
χ1(r2)|J2| 1

(1+r2·r2)2 . . . 1
6
χnp(r2)|J2| 1

(1+r2·r2)2

. . .

1
6
χ1(rNel

)|JNel
| 1
(1+rNel

·rNel
)2

. . . 1
6
χnp(rNel

)|JNel
| 1
(1+rNel

·rNel
)2


(2.5)
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qint =



1
6
|J1| 1

(1+r1·r1)2

1
6
|J2| 1

(1+r2·r2)2

. . .

1
6
|JNel
| 1
(1+rNel

·rNel
)2


(2.6)

The H matrix can be defined from the equation Ainte = 0.25
∑4

i=1A
i
e where Ainte

is the integration point ODF value at element e and Aie, i = 1, . . . , 4 refers to the

ODF values at the four nodes of the tetrahedral element e. The p matrix is formed

as p = HTpint so that any property d can be represented as the scalar product pTA

with the ODF values (A) at the independent nodal points.

2.1.2 Probability update

When deformed, the ODF changes due to reorienting of grains. The probabilities

are evolved from time t = 0 corresponding an initial ODF, which is defined to repre-

sent a random texture (all the ODF values are equal to each other) in this chapter.

The initial orientation ro of a crystal reorients during deformation and maps to a new

orientation rt at time t. It is assumed that the mapping from ro to rt is invertible.

The ODF, A(rt), represents the volume density of crystals with orientation rt at time

t. The evolution of the ODF is given by the conservation equation (Eq. 2.7) as:

∫
A(ro, t = 0)dro =

∫
A(rt)drt = 1 (2.7)

where dro represents the volume element in the undeformed (initial) ODF mesh,

which becomes volume element drt at time t. A Jacobian J(ro, t) = det(G) gives the

ratio of elemental volumes, where G is the reorientation gradient given as G(ro, t) =

∂rt

∂ro
. Using the Jacobian, a map of the current mesh (at time t) to the reference mesh
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(at t = 0) can be made:

∫
(A(ro, t = 0)− Â(ro, t)J(ro, t))dro = 0 (2.8)

The quantity written as Â(ro, t) is the volume density A(rt) plotted over the

corresponding orientation (ro) in the initial mesh. Thus, Â(ro, t) gives the Lagrangian

representation of the current ODF in the initial mesh. If the integrand is continuous,

a localized relationship of the following form can be used to update the ODF at any

time t:

Â(ro, t)J(ro, t) = A(ro, t = 0) (2.9)

For computing rt, a reorientation velocity (it is computed from the constitutive

model presented in Section 2.1.3.), v = ∂rt

∂t
= 1

2
(ω + (ω · r)r+ω× r) is used. The

reorientation velocity is computed at each nodal point in the mesh and the change

in orientation ∆r
′

= r
′
t − r

′
o is then stored at the nodal points in the fundamental

region. Here, the Jacobian is simply the ratio of element lengths, i.e. current length

divided by the initial length. If the element length decreases over time, the probability

density has to increase based on Eq. 2.2 to maintain normalization of the ODF. The

integrand in Eq. 2.8 needs to be continuous for the localization relationship to be

valid. Thus, it is implied that J(ro, t) needs to be continuous and consequently, v

needs to be continuously differentiable (at least piecewise) in the fundamental region.

The latter is rather a restriction on the constitutive model and macro-micro linking

assumption that is used to compute v. The differentiability of v also ensures the

invertibility of the map from ro to rt.
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2.1.3 Constitutive model

In this work, a rate-independent single-crystal plasticity model developed in Anand

and Kothari [17] is used to compute the effect of macroscopic strain on the polycrys-

tal. For a material with α = 1, . . . , N slip systems defined by ortho-normal vector

pairs (mα,nα) denoting the slip direction and slip plane normal respectively, the

constitutive equations relate the following basic fields: the deformation gradient F

which can be decomposed into elastic and plastic parts as F = F eF p , the Cauchy

stress T and the slip resistances sα > 0. In the constitutive equations (intended to

characterize small elastic strains) to be defined below, the Green elastic strain mea-

sure Ē
e

= 1
2

(
F eTF e − I

)
defined on the relaxed configuration (plastically deformed,

unstressed configuration) is utilized. The conjugate stress measure is then defined as

T̄ = detF e(F e)−1T (F e)−T where T is the Cauchy stress for the crystal.

The constitutive relation, for stress, is given by T̄ = Le
[
Ē
e]

, where Le is the

fourth-order anisotropic elasticity tensor. It is assumed that deformation takes place

through dislocation glide, and the evolution of the plastic flow is given by:

Lp = Ḟ p(F p)−1 =
∑
α

γ̇αSα0 sign(τα) (2.10)

where Sα0 = mα ⊗ nα is the Schmid tensor and γ̇α is the plastic shearing

rate on the αth slip system. The resolved stress on the αth slip system is given by

τα = T̄ · Sα0 . The resolved shear stress τα attains a critical value sα on the systems

where slip occurs (γ̇α > 0). Further, the resolved shear stress does not exceed sα on

the inactive systems with γ̇α = 0. The hardening law for the slip resistance sα is

taken as:

ṡα(t) =
∑
β

hαβγ̇β, sα(0) = sα0 (2.11)
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The slip system hardening model used in the calibration study is given below:

hαβ = [q + (1− q)δαβ]hβ (no sum on β) (2.12)

where hβ is a single slip hardening rate, q is the latent-hardening ratio and δαβ is

the Kronecker delta function. The parameter q is taken to be 1.0 for coplanar slip

systems and 1.4 for non-coplanar slip systems. For the single-slip hardening rate, the

following specific form is adopted:

hβ = ho(1−
sβ

ss
)a (2.13)

where ho, a, and ss are slip hardening parameters. The ODF model is examined

for tensile and compression stress-strain behavior of Ti-0Al and Ti-7Al alloys. Basal

< a >, prismatic < a >, pyramidal < a > and pyramidal < c+ a > slip systems are

modeled as well as the 101̄2 < 1̄011 > twinning mechanism. The elastic parameters

are taken as [52]: C11 = C12 = 175 GPa, C12 = 88.7 GPa, C13 = C23 = 62.3 GPa,

C44 = C55 = 62.2 GPa, and C66 = (C11 − C12)/2.

2.2 Optimization for slip system parameters identification of

Ti-Al alloys

The fundamental goal of this chapter is to identify the slip system parameters

of Ti-Al alloys, Ti-0Al and Ti-7Al, using the crystal plasticity modeling with the

ODF approach. For this study, a genetic algorithm, Non-Dominated Sorting Genetic

Algorithm (NSGA-II) [53], is implemented with a global sampling method, Incre-

mental Space Filler (ISF) [54], to calibrate the computational model according to

the available experimental data. The optimization is performed to identify 20 de-

sign variables which are 4 slip system parameters (s0, h0, ss and a) of 5 different

22



slip systems taken into consideration. These slip systems are basal < a >, prismatic

< a >, pyramidal < a > and pyramidal < c + a > as well as the 101̄2 < 1̄011 >

twinning mechanism. The optimization problem is defined similarly for both alloys,

and the objective functions are determined to minimize the L2 norm errors between

the true stress-true strain curves of the experimental data and ODF simulation for

both tension and compression tests. The slip system parameters, which are obtained

by Salem et. al [55] for basal < a >, prismatic < a >, pyramidal < a >, pyramidal

< c + a > slip systems and twinning, are used to define the lower bounds of the op-

timization variables. The initial texturing of the material is assumed to be random.

The mathematical formulation of the multi-objective optimization problem is given

below:

min εt, min εc (2.14)

s = (s0, h0, ss, a) (2.15)

In Eq. 2.14, εt and εc show the L2 norm errors between true stress points of the

experimental data and ODF simulation for tension (denoted by t) and compression

(denoted by c) tests. The experimental data is available up to 15% strain, therefore

the ODF simulations are performed for the same strain level. The strain rate is defined

as 2.5×10−4, and a quadratic interpolation is implemented to match the experimental

and computational strain points. In Eq. 2.15, s shows the vector representation of

20 optimization variables for 5 slip systems.

2.2.1 Optimization of slip system parameters for Ti-0Al

The optimization problem defined in Eq. 2.14 and 2.15 is solved using NSGA-II as

the optimization algorithm, and ISF as the global sampling algorithm in Modefrontier

software. The optimum slip system parameters of Ti-0Al are shown in Table 2.1. The
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only information in literature [44], to the best of the author’s knowledge, discusses

that the s0 value of the pyramidal < c + a > slip system should be 3-5 times higher

than the s0 value of the prismatic < a > slip system. This statement in Ref. [44]

is supported by the optimization results reported in Table 2.1. The true stress-true

strain curves, which are predicted using the optimum design parameters in the ODF

based crystal plasticity model, are compared to the experimental data in Fig. 2.2 for

tension and compression respectively. Another experimentally available comparison

metric is the < 002 > and < 100 > PFs measured at 9% strain in compression

test, which is presented by Fitzner [50]. The texture is also predicted by the ODF

based crystal plasticity simulation using the optimum slip system parameters, and

compared to the experimental data in Fig. 2.3.

Table 2.1: Optimum slip system parameters of Ti-0Al

Slip System s0 h0 ss a
Basal < a > 88.11 MPa 215.58 MPa 1175.9 MPa 0.25

Prismatic < a > 89.49 MPa 215.58 MPa 1175.9 MPa 0.25
Pyramidal < a > 161.13 MPa 215.58 MPa 1175.9 MPa 0.25

Pyramidal < c+ a > 355.17 MPa 215.58 MPa 1175.9 MPa 0.25
Twinning 507.63 MPa 200.11 MPa 1175.9 MPa 0.25
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Figure 2.2: True strain-true stress curve comparison of experimental data and opti-
mum design for Ti-0Al
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<002>               <100> 

Figure 2.3: < 002 > and < 100 > PFs at 9% compressive strain (Experimental data
is given by Fitzner [50])

As shown by the true stress-true strain curve results in Fig. 2.2, the optimum

slip system parameters generate an accurate computational model according to the

available tension and compression test data for Ti-0Al. The difference between the

experimental and computational stresses during the small strain levels is because of

the initial texture uncertainties. The crystal plasticity simulations are performed with

the random texture assumption to model the initial texture. However, in reality, the

experimental texture slightly varies from the random texture, and corresponds to a

weakly basal texture. The important point here is that it is still possible to identify

the optimum parameters under the effect of initial texture uncertainties since they

are more effective when the strain is small, and then the computational model tends

to converge to the experimental data when the strain is higher. The uncertainties

also cause small differences in PFs as shown in Fig. 2.3.

The sensitivities of the optimum parameters to the tension and compression de-

sign objectives (min εt and min εc respectively) are investigated using sample points
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generated with Latin Hypercube Sampling (LHS) [56]. 10 sample points per each

variable, and therefore 200 sample points in total are generated. Each parameter is

assumed to vary up to ±10 % around its optimum value with a Gaussian distribution,

and the others remain constant at their optimum values. The sensitivities are repre-

sented as a percent bar graph in Fig. 2.4 which shows the average % change in the

design objective given up to 10% changes around the optimum values of the variables.

The sensitivity analysis is performed for both tension and compression tests.
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Figure 2.4: Sensitivity analysis results for optimum design parameters of Ti-0Al

According to the sensitivity results shown in Fig. 2.4, the most critical slip systems

are determined as the basal and prismatic slip systems. The objective function values

are also more sensitive to the changes in s0 and h0 parameters rather than the changes

in ss and a in both tension and compression. The tension test is sensitive to both

basal and prismatic slip systems, however, in compression, the prismatic slip system is

determined to be more effective. The remaining slip systems do not play a dominant

role in tension and it can be assumed that they have negligible effects; however,

twinning and pyramidal < c+a > becomes more effective in compression compared to

their negligible sensitivities in tension. This is an expected results since the twinning
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was assumed to be active during compression.

2.2.2 Optimization of slip system parameters for Ti-7Al

The same optimization problem, which is defined in Eq. 2.14 and 2.15, is solved

for Ti-7Al using NSGA-II as the optimization algorithm, and ISF as the global sam-

pling method. The optimum slip system parameters of Ti-7Al are shown in Table

2.2. These parameters are also compared to the available information in literature

regarding the critical resolved shear stress (CRSS) values of different slip systems of

Ti-7Al in Table 2.3. The optimum CRSS results match with the information provided

in literature as can be seen in Table 2.3. However, there is no information regarding

the CRSS values of twinning and pyramidal < a > slip system. The optimization

problem in this study is unique in this sense since it is the first time all the CRSS and

hardening parameters are identified. The tension and compression curves obtained

through the ODF simulation using the optimum design parameters is compared to

the experimental data in Fig. 2.5. The microstructural texture at 20% compressive

strain is predicted by using the optimum design parameters, and compared to the ex-

perimental data in Fig. 2.6. Another texture comparison is made through comparing

the < 001 >, < 100 > and < 101 > PFs at 20% compressive strain as shown in Fig.

2.7.

Table 2.2: Optimum slip system parameters of Ti-7Al

Slip System s0 h0 ss a
Basal < a > 215.51 MPa 216.18 MPa 1534.20 MPa 1.38

Prismatic < a > 250.00 MPa 216.18 MPa 1534.20 MPa 1.38
Pyramidal < a > 991.40 MPa 216.18 MPa 1534.20 MPa 1.38

Pyramidal < c+ a > 999.30 MPa 216.18 MPa 1534.20 MPa 1.38
Twinning 783.37 MPa 1049.70 MPa 1534.20 MPa 3.96

Similarly, the true stress-true strain curve results in Fig. 2.5 indicate an accurate

computational representation to the available tension and compression experimental
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Table 2.3: CRSS values of different slip systems in Ti-7Al

Reference sbasal0 sprism0 spyr0 (< c+ a >) spyr0 (< a >) stwin0

Nervo et. al [44] - - 3− 5× sprism0 - -

Williams et. al [46] ≈ sprism0 ≈ sbasal0 - - -
Lutjering and Williams [48] ∼ 200 MPa ∼ 200 MPa ∼ 800 MPa - -

Shahba and Ghosh [57] 230 MPa 205 MPa 610 MPa 1 - -
Present study 215.51 MPa 250.00 MPa 999.30 MPa 991.40 MPa 783.37 MPa
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Figure 2.5: True strain-true stress curve comparison of experimental data and opti-
mum design for Ti-7Al

     Experiment                      Optimum Design 

Figure 2.6: Comparison of Ti-7Al microstructures at 20% compressive strain

data. The initial texture uncertainties affect the computational result as the difference

between the computational and experimental stresses is larger when the strain has

smaller values. However, the effect of initial texture uncertainties is not important

when the strain has higher values as shown in Fig. 2.5. The uncertainties in

1The CRSS value is different in this study [57] since the authors modeled two pyramidal < c+a >
slip systems (1st and 2nd order)

28



  <001>                              <100>                               <101> 

Experiment 

0.8 1 1.2 1.4 1.6 1.8 21 1.1 1.2 1.3 1.4 1.5 1.6 1.71 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Optimum Design 

Figure 2.7: < 001 >, < 100 > and < 101 > PFs at 20% compressive strain

experimental texture can also be observed in Fig. 2.6 and Fig. 2.7.

A similar sensitivity study, which implements LHS for sampling, is performed to

analyze the effect of optimum variables to design objectives using 10 samples per

variable, 200 samples in total. The sensitivities are represented as a percent bar

graph in Fig. 2.8 which shows the average % change in the design objective given up

to 10% changes around the optimum values of the variables. The sensitivity analysis

is performed for both tension and compression tests.

According to the sensitivity results shown in Fig. 2.8, the most critical slip sys-

tems are determined as the basal and prismatic slip systems. The objective function

values are also more sensitive to the changes in s0 and h0 parameters rather than the

changes in ss and a in both tension and compression. The tension test is sensitive

to both basal and prismatic slip systems, however, in compression, the prismatic slip

system is determined to be more effective. Twinning was expected to be active during

compression, and as the sensitivity results indicate it becomes more effective in the
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Figure 2.8: Sensitivity analysis results for optimum design parameters of Ti-7Al

compression test. After basal and prismatic slip systems, the third most dominant

slip system is found to be pyramidal < c + a > in tension, and it is followed by

pyramidal < a > and finally by twinning. However, the third most dominant sys-

tem is twinning in compression. This also clearly indicates the necessity of including

twinning in crystal plasticity modeling of Ti-Al alloys.

2.2.3 CPFE analysis for Ti-7Al

The optimum slip system parameters of Ti-7Al are used to perform a CPFE

analysis, and the strain field results are compared to the available experimental DIC

data. The simulation is performed using 10000 elements and the strain fields (exx,

eyy and exy strains) are computed. The DIC data is available at 13.5% tensile strain,

it is compared to the CPFE results in Fig. 2.9, Fig. 2.10 and Fig. 2.11 for exx, eyy

and exy strain fields respectively.

The CPFE results inputting the optimum slip system parameters are sufficiently

accurate compared to the available DIC data. This result is important since the DIC

data provides the actual strain fields, and it is a more accurate experimental measure
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DIC                                                              CPFEM 

Figure 2.9: CPFE simulation and DIC data comparison for exx strain field

DIC                                                                CPFEM 

Figure 2.10: CPFE simulation and DIC data comparison for eyy strain field

compared to the global stress-strain curves.

The crystal plasticity modeling based on the ODF approach is used to compute the

property matrices (pT ) using the single crystal designs. The example single crystal

properties (stiffness, thermal expansion and yield stress) of the α-Ti material is shown

in Fig. 2.12.
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DIC                                                               CPFEM 

Figure 2.11: CPFE simulation and DIC data comparison for exy strain field

2.3 Conclusion

An optimization study is performed to identify the slip system parameters of Ti-Al

alloys (Ti-0Al and Ti-7Al) using the available tension and compression experimental

data showing the true stress-true strain curves of the alloys. The optimum results pro-

vide an accurate computational representation in comparison with the experimental

data. Additional experimental data, which illustrates the microstructural texture at

9% and 20% strains in compression test, is used as an another metric for verification

of the optimum design. The predicted microstructures using the optimum variables

show similarities to the experimental data. The differences, which are seen in the

stress-strain curves and microstructural texture, stem from the uncertainties in the

measurements and initial texture. The computational model inputs a random initial

texture, however, the experiments were performed with a texture, which was slightly

different than the random texture, a weakly basal texture. Not only the stress-strain

curves but also the microstructural texture comparisons show a good agreement. A

CPFE simulation is performed to compute the strain fields of Ti-7Al in different di-

rections, and the results are compared to the available experimental data at 13.5%

tensile strain. The crystal plasticity system realization for Ti-0Al and Ti-7Al is sig-
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Figure 2.12: Single crystal properties for stiffness, thermal expansion and yield stress
of α-Ti

nificant since these slip system parameters are not studied extensively in literature.

There are studies to identify the slip system parameters of other Ti-Al alloys, such as

Ti-6Al-4V, however, there has not been published any study focusing on the param-

eter identification for modeling Ti-7Al alloy to the best of the author’s knowledge.

The present work is the first attempt to identify all the slip system parameters of the

Ti-Al alloys of interest.
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CHAPTER 3

Multi-Scale Design and Optimization of

Microstructures

The objective of this chapter is to identify the optimum microstructure design

which maximizes/minimizes the value of a macro-scale material property. The mi-

crostructure is represented using the ODF values, and the optimum values of the

ODFs are computed for different engineering applications. Since the ODF solution is

high-dimensional, the design space is reduced to a new space, called property closure.

The property closure is the space of the important material properties of an engi-

neering problem, and it includes all possible microstructure designs. When a lower or

upper bound homogenization approach is employed, the property closure is simply a

convex hull with the vertices represented by single crystal properties. The optimiza-

tion problem is solved in this new space to find the optimum microstructure design.

In materials design problems, another important aspect is the possibility of having

multiple microstructure designs which provide the same optimum material proper-

ties. The existence of independent solution directions and multiple microstructure

designs is checked with the implementation of a direct linear solver, which uses the

first optimum solution as well as the volume averaging equations required to com-

pute the material properties in terms of the ODF values. The proposed flowchart for

multi-scale design optimization of materials is also illustrated in Fig. 3.1.
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Figure 3.1: Flowchart for multi-scale design optimization of materials

The materials design optimization methodology is applied to two different engi-

neering problems. The first problem is a thermal buckling application for a Ti aircraft

panel. The design objective of the first application problem is to find the optimum

microstructure design which withstands the maximum temperature change without

buckling or yielding occurs. The second example is a vibration tuning problem for a

cantilever beam which is made of Galfenol (Fe-Ga alloy). The design objective of the

second problem is to identify the optimum microstructure design which maximizes

the yield stress of the beam while satisfying design constraints which are defined for

the first bending and torsion natural frequencies for vibration tuning. This applica-

tion leads to multiple optimum polycrystal solutions, and these designs are computed

using the direct linear solution algorithm. The organization of Chapter 3 is as follows:

Section 3.1 discusses the multi-scale design optimization methodology. The applica-

tions are introduced and the results are reported in Section 3.2. A final discussion

about the numerical scheme and optimization results is given in Section 3.3.
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3.1 Multi-scale design optimization methodology

The multi-scale design starts from microstructural scale modeling by using the

ODF approach. The ODF quantifies the volume fractions of different orientations in

a microstructure. The material properties are calculated using the volume averaging

equations which are linear in terms of the ODFs. The fundamental goal of the multi-

scale design optimization framework is to find the optimum microstructure design

to maximize/minimize a macro engineering material property. The proposed design

approach is applied to two engineering problems. The definition of the optimization

problems can vary depending on the application; however, there are some mathemat-

ical design constraints which are required to be satisfied when solving material design

problems with the ODF approach. The generic definition of the optimization prob-

lem is discussed in Section 3.1.1. The optimization problem is solved in a reduced

space, known as property closure, since the ODF solution space is high-dimensional.

The generation of property closures is explained in Section 3.1.2. After identification

of the first optimum solution the multiple optimum microstructure designs are also

calculated by implementing a direct linear solution algorithm to find the independent

solution directions. This direct linear solution scheme is described in Section 3.1.3.

3.1.1 Design optimization problem

The optimization problem enforces three separate constraints on the ODF that is

desired: symmetry, normalization, and positiveness. The procedure for optimization

is described here.

1. Symmetry

Firstly, the symmetry of the HCP crystal structure is enforced by using only

the ”independent nodes” in the ODF mesh. Independent nodal points are the

reduced set of nodes obtained by accounting for symmetry conditions at the
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boundaries of the ODF mesh. Let H be the matrix converting the independent

nodal values Anode to the integration point values Aint through the shape

functions, then Aint = HAnode. The vector containing the values of the ODF

at independent nodal points Anode is sufficient to describe the ODF and is

hereafter referred to as A.

Remark : Properties are specified using the modified pT = pintTH as:

< χ >= pTA. For calculating more than one property, p is written in a matrix

form. Using reduced integration with one integration point per element at local

coordinates of (0.25, 0.25, 0.25) and an integration weight of w = 1
6
, the H

matrix can be defined from the equation Ainte = 0.25
4∑
i=1

Aie where Ainte is the

integration point ODF value at element e and Aie, i = 1, ..., 4 refers to the ODF

values at the four nodes of the tetrahedral element e.

2. Normalization

The constraint that the volume fractions sum to one is given by the following

relationship:

∫
R

Adv =

Nelem∑
n=1

Nint∑
m=1

A(rm)wm|Jn|
1

(1 + rm · rm)2
= 1 (3.1)

This is equivalent to the linear constraint: qintTAint = 1 where qinti = wi|Ji| 1
(1+ri·ri)2

and Ainti = A(ri), where each i corresponds to a combination of (n,m), i =

1, ..., Nint × Nelem. This can also be written in terms of independent nodes as

qT = qintTH as qTA = 1.

3. Positiveness

The positivity of the ODF is enforced by the constraintA ≥ 0, (i.e. the volume

fractions are positive).
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The general mathematical representation of the design optimization problem is

given below:

min f (3.2)

subject to qTA = 1 , A ≥ 0 (3.3)

where f shows the objective function of the design optimization problem.

3.1.2 Generation of property closure

The optimization problem is solved in property closure, a reduced space of impor-

tant material properties of the design problem, instead of the ODF space. Property

closures represent complete range of properties obtainable from the space of ODFs.

These are approximated by the space between upper and lower bounds of the given

property. Upper bound closure of material properties represents the range of prop-

erties obtainable by the upper bound homogenization relation in Eq. 3.5. The hull

in Fig. 3.4, for example, maps the full range of upper bound values of a combination

of material properties. The extremal textures always correspond to single crystal de-

signs. A simple technique for constructing property closures (for the homogenization

relations considered here) is by establishing the smallest convex region enveloping

single crystal property points. The LP approach is although more rigorous, and more

intuitive for construction of property closures, since closures are obtained as a result of

property maximization or minimization. Connecting faces on the closure may contain

polycrystals that are explicitly identified by the LP approach. This approach is also

well-suited for other problems, such as identification of textures with desired prop-

erty combinations where several properties are optimized simultaneously. Let v1, v2

be the set of properties for which the closure is required. The closure for property v1

is first found by obtaining the extremal values (v1max, v1min). Then, property v1 is dis-
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cretized into m values vi1, i = 1, ..,m between v1max and v1min. The property closure

of the combined set of properties (v1, v2) is found by executing a similar extremum LP

problem at each point vi1 with the additional constraint that pT1A = vi1. In general,

the closure for a combined set of n properties (v1, v2, ..., vn) is a n-dimensional volume

found by executing an LP problem minimizing/maximizing vn at a set of discrete

points (vi1, v
j
2, .., v

l
n−1) in the closure area of (v1, v2, .., vn−1). The corresponding LP

problem for minimizing vn is written below:

minA vn = pTnA satisfying the constraints

qTA = 1

A ≥ 0

pT1A = vi1

pT2A = vj2

...

pTn−1A = vln−1 (3.4)

To maximize vn another similar problem is executed where the objective is changed

as minA vn = −pTnA. The closure represents the range of properties obtainable

when using the homogenization methodology.

The domain boundaries can be computed using both upper bound and lower bound

approaches. Upper bound approach, which is based on constant strain assumption

through plate thickness, computes the properties in p space (corresponds to upper

bound averaging). However, the lower bound approach, which is based on constant

stress assumption through plate thickness, computes the properties in p−1. The

example computation of an averaged orientation-dependent material property, < χ >,

in terms of the ODF values is given in Eq. 3.5:
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< χ >=

∫
R

χ(r)A(r)dv = pTA (3.5)

Eq. 3.5 corresponds to a linear relation when the integral equation is discretized

using FE technique with tetrahedral elements. Thus an LP approach provides exact

solutions to the problem of identifying ODFs that lead to a given property.

3.1.3 Utilization of a direct linear solver to identify infinite solutions

The optimization is performed in a solution space that is reduced to the space of

important material properties from the complete ODF solution space. This reduction

saves a great amount of computational time for any design problem since the com-

plete ODF space is higher dimensional compared to the property closure. After the

generation of the property closure the optimization can be performed inside the clo-

sure using LP, gradient based optimization or an advanced optimization methodology

which requires global sampling depending on the nature of the design problem. The

optimum material properties can be identified in the closure, and the corresponding

ODF solution is solved using LP. Another important challenge when solving design

problems is to find if there is another design which can provide the same optimum

material property values. A direct linear solver has been developed to identify these

multiple optimum designs. The solver uses the initial (first) optimum solution iden-

tified in property closure and the coefficient matrix which links the optimum ODF

values to the optimum material properties through volume averaging equations. It

is capable of finding the multiple/infinite solutions since it uses null space of this

coefficient matrix to find the directions of the solutions. The infinite solutions are

defined as the sum of the initial optimum solution and solution directions represented

by null space vectors. The infinite solutions can mathematically be represented as

shown below:

40



Ai = A1 + λVi, where i = 1, 2, 3, 4, ..., n (3.6)

Vi = Null(C(:, i)) , (3.7)

where Eq. 3.6 defines the infinite ODF solutions, Ai, using one solution (the

initial optimum solution), A1, and null space vectors, Vi. n is the number of null

space vectors. Even though the number of null space vectors is finite, the number of

solutions can be infinite since λ can be any number that satisfies the ODF positiveness

constraint (A ≥ 0). Since the optimization problem is solved in the property closure,

which is generated by the ODF values through averaging equations, any point inside

this solution domain corresponds to a known set of ODF values. Therefore there is

always at least one optimum ODF solution inside this domain. The solution strategy

aims to find this optimum solution not only when it is unique but also when it is

multiple.

3.2 Applications

3.2.1 Thermal buckling of Titanium aircraft panels

Many aerospace applications utilize materials that operate at high temperatures

(Fig. 3.2). For example, Titanium panels in high speed vehicles are exposed to ele-

vated temperatures. The microstructure of such alloys has an important effect on the

performance under high thermal stresses. Thus, the optimization of the microstruc-

ture is expected to significantly improve the performance. Response of plate panels in

compression, due to thermal loading and edge restraints, is a classical plate buckling

problem. The stability analysis of isotropic metal plates is a general problem and

can be found in textbooks [58]. However, the isotropy assumption is not justified

when including microstructural effects and is in direct conflict with the trends in new
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materials development, where one of the major goals is to enhance the properties of

the material in certain directions while sacrificing the properties in other directions

where they are not as important (e.g. development of laminated composite systems).

Likewise, techniques that allow tailoring of properties of polycrystalline alloys (e.g.

Ti, Al used in structural panels) involve tailoring of preferred orientations of various

crystals constituting the polycrystalline alloy. This application problem concentrates

on optimization of the polycrystalline HCP α-Ti material to maximize the tempera-

ture difference that the material can withstand for an aircraft panel thermal buckling

problem.

Figure 3.2: Microstructure of high temperature materials

Classical solutions of plate buckling are typically used in engineering calculations

for composite plates [59]. Airframe panels made of Ti alloys can be modeled as

thin, rectangular, anisotropic plates. The analytical solution, which was previously

presented in [16], is available for an orthotropic plate by Lekhnitskii [60]. In this

example, a fully anisotropic thermal expansion tensor is included. The analytical

solution, which is presented by Lekhnitskii [60], is available for the simply supported

plates with orthotropic stiffness coefficients. To implement this analytical solution

the stiffness matrix of HCP α-Ti is assumed to be orthotropic since the calculated
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anisotropic terms are orders of magnitude smaller than the orthotropic stiffness terms.

The principal directions are taken to be parallel to the sides and the material is

compressed by uniformly distributed axial load Nx (Fig. 3.3).

y 

x 0 

Nx 

a 

b 

Figure 3.3: Representation of the analytical buckling problem

The deflection equation of the orthotropic plate has the form:

D11
∂4w

∂x4
+ 2D33

∂4w

∂x2∂y2
+D22

∂4w

∂y4
+Nx

∂2w

∂x2
+Ny

∂2w

∂y2
= 0 , (3.8)

where D values are the flexural rigidities that are computed using the stiffness

tensor components (Cij):

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 =
h3

12
×(

 C11 C12 C16

C21 C22 C26

C61 C62 C66

−
 C13 C14 C15

C23 C24 C25

C63 C64 C65

×(

 C33 C34 C35

C43 C44 C45

C53 C54 C55

)−1×

 C31 C32 C36

C41 C42 C46

C51 C52 C56

)

(3.9)

where h is the thickness of the plate. The solution series for the plate deflection

in the z-direction are given below:

w = Amnsin(
mπx

a
)sin(

nπy

b
) , (3.10)
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where Amn are constants, m and n are integers. This case employs a simply

supported orthotropic plate with the given boundary conditions:

w = 0,
∂w2

∂x2
+ νy

∂w2

∂y2
= 0 at x = 0, a

w = 0,
∂w2

∂y2
+ νx

∂w2

∂x2
= 0 at y = 0, b (3.11)

where νx and νy are the Poisson’s ratios. By requiring that Eq. 3.10 be a solution

of Eq. 3.8, the relation can be obtained:

Nx(
m

a
)4 +Ny(

n

b
)4 = π2[D11

m

a
+ 2D33

mn

ab
+D22

n

b
] (3.12)

This formulation here will be given for a general case where forces Nx and Ny may

vary, but must maintain a constant ratio, β. However, the problem of interest in this

study only has Nx as the axial force (Fig. 3.3), ie, β = 0.

Nx = λ, Ny = λβ (3.13)

The critical value of λ is found from the formula:

λ =
π2
√
D11D22

b2
·

√
D11

D22
(m
c

)2 + 2D33√
D11D22

n2 +
√

D22

D11
( c
m

)2n4

1 + β( c
m

)2n2
(3.14)

where c is the ratio between the lengths of the sides of the plate (c = a
b
). The

problem then consists of seeking the values of m and n which give the smallest λ and

hence the critical distributed buckling load, λcr. Based on the solution of the critical

distributed buckling load, the expression for the critical increase in temperature is

obtained using the coefficient of thermal expansion tensor (α):
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∆Tcr =
λ

12
h2

(D11 · αx +D12 · αy +D13 · αxy)
(3.15)

The material properties C and α are the stiffness and thermal expansion tensors

respectively which are computed from the volume averaging equations. The objective

of the design problem is to find the optimum values of the ODFs which maximize

the critical temperature, ∆Tcr. Instead of solving this problem in the ODF space,

it is solved in the property closure, which is generated for the important stiffness

coefficients, C11, C12 and C22, which are the most sensitive to the design objective.

Due to the nonlinear relation between the property closure variables, C11, C12 and C22,

and design objective, ∆Tcr, the optimum material properties are identified with the

implementation of a global sampling strategy, LHS, using 10,000 design samples, and

the corresponding ODF values are solved with LP. For the sample plate dimensions

of 0.25 m× 0.25 m× 0.005 m, the optimum material properties are identified in the

property closures. The property closure is computed using both upper bound (called

as C space) and lower bound (called as C−1 space) averaging equations for C11, C12

and C22, and the optimum solution is identified in both spaces respectively in Fig.

3.4.

After the identification of the optimum material properties in property closures

the next step is to find the corresponding ODF solutions. Two different FE meshes are

used to discretize the volume averaging equations to find the optimum ODF values.

The first mesh uses 50 independent nodes, corresponding to 50 ODFs (called as Mesh-

1) while the second one is a finer mesh with 388 ODF values (called as Mesh-2). It is

observed that the problem has a unique solution, and this solution corresponds to a

single crystal design. Both meshes identify the same optimum texture (single crystal

optimum) for the given optimum material property values (shown in Fig. 3.5).

The optimum result provides a 23.0% increase for Mesh-1 and 28.3% increase for

Mesh-2 in critical buckling temperature of the plate compared to a randomly oriented
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Figure 3.4: Property closures of HCP α-Ti thermal buckling problem

46



(a) Optimum ODF values (Mesh-1) (b) Optimum ODF values (Mesh-2)

Figure 3.5: Optimum ODF representation for the thermal buckling problem

design. The optimization results are shown and compared to the randomly oriented

designs in Table 3.1.

Table 3.1: Results for a simply supported rectangular HCP α-Ti plate

Method Critical temperature, ∆Tcr, value
average ∆Tcr (Mesh-1) 82.5 K
average ∆Tcr (Mesh-2) 82.0 K

max ∆Tcr (Mesh-1) 101.5 K
max ∆Tcr (Mesh-2) 105.2 K

The computational efficiency of the proposed optimization technique is tested

with a global optimization methodology which performs a global sampling in the

ODF solution space, and utilizes a genetic algorithm due to the nonlinear nature of

the design problem. The genetic algorithm uses the sampling points as initial design

points to start the optimization iterations. 10,000 design samples are generated with

LHS, and implemented to NSGA-II. NSGA-II is selected as the optimization method

since it is known as a fast and elitist genetic algorithm and it always converges to the

global solution [53]. The biggest drawback of gradient based optimization algorithms

is the possibility of converging to one of the local solutions instead of the global

solution. Therefore they are also strictly dependent on the initialization values of the

input variables. The thermal buckling design problem can potentially have many local
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solutions (either single crystal solutions or combinations of polycrystal solutions) due

to the highly nonlinear relation between the design criteria and variables. However,

the final solution of interest should be the global optimum solution which provides

the maximum ∆Tcr value. In order to avoid any local optimum solution, a gradient

based optimization algorithm is not chosen. NSGA-II can be used for single and

multi-objective optimization problems since it has the capability of finding global

optimum solutions not only in single objective problems but also in multi-objective

problems [61]. Thus, the same optimization framework can also be used to solve

different design problems with multiple objectives. The global optimization approach

identified the same single crystal optimum solution using both Mesh-1 and Mesh-2

to discretize the volume averaging relations. However, it is observed that the linear

solution approach is much more efficient in terms of the computation time compared

to the global approach. The computational time spent on the same platform for linear

solver and global approaches are compared in Table 3.2.

Table 3.2: Computational time comparison for linear solver and global optimization
approaches

Method Mesh Computational Time
Linear Solver Mesh-1 ∼ 27 minutes
Linear Solver Mesh-2 ∼ 1.5 hours

Global Optimization Mesh-1 ∼ 9.5 hours
Global Optimization Mesh-2 ∼ 11 hours

3.2.2 Vibration tuning for Galfenol beam

The linear solution methodology presented in the previous section is extended to

the plastic properties to explore the microstructure design of a cantilevered Galfenol

beam for a vibration tuning problem with yielding objective (Fig. 3.6). It is well

known that thermomechanical processes (such as rolling and extrusion) may provide

means to develop polycrystalline Galfenol with properties comparable to expensive
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single crystals [62]. However, it has proved difficult to predict (and thus, control) the

large changes in properties such as the yield strength that occurs during thermome-

chanical processing. For example, warm rolled and annealed specimens retain high

magnetostriction but are quite brittle; whereas, cold rolled specimens have high yield

strength but lose their magnetostriction [63, 64]. Consequently, it is critical to de-

velop predictive models that can be used to optimize thermomechanical processes and

control properties in the final product. Properties of Galfenol can be tailored by con-

trolling the evolution of features of underlying polycrystalline microstructure through

controlled plastic deformation. Simulation of microstructure evolution in polycrys-

tals has been well studied in the past. The success of such approaches has allowed

efficient computation of the effect of macroscopic parameters on the microstructural

response. Microstructure-sensitive design methods can then employ these techniques

to address inverse/optimization problems such as computation of optimal crystal ori-

entation distributions that lead to desired elasto-plastic properties [64]. In order to

control properties during processing, it is important to study the effect of mesoscale

features (such as texture) on the response of these alloys.

Figure 3.6: Geometric representation of Galfenol beam vibration problem

Introduction of the yielding objective to the problem provides multiple solutions,

however, the vibration tuning restricts these solutions to have infinite number of

directions in the solution space. The modeling of the microstructure involves the same

computational operations with the previous application since the stiffness parameters
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and yield stress are calculated with the volume averaging equations. The property

matrix to compute the yield stress is obtained through running crystal plasticity

simulations with different single crystal designs. In this problem, the number of

independent ODF values is 76 at this time since Galfenol has a body centered cubic

(BCC) structure. The design objective is to maximize the yield stress while the

first bending and torsional natural frequencies are constrained for vibration tuning.

Plastic deformation due to crystallographic slip is assumed to occur in the < 111 >

direction, and the possible slip planes are of the 110, 112, and 123 type. Slip hardening

parameters taken to be identical for all slip systems, with values h0 = 500 MPa,

ss = 350 MPa and a = 2.25 for BCC Galfenol single crystals [65, 66].

The main goal of the problem is to find the optimum microstructure design which

maximizes the yield stress of the beam and satisfies the given vibration constraints

for the natural frequencies. According to the coordinate system introduced in Fig.

3.6, the analytical equations of the first torsional and bending natural frequencies for

an orthotropic material can be shown respectively as below:

ω1t =
π

2L

√
G12J

ρIp
(3.16)

ω1b = (αL)2
√
E1I1
mL4

and αL = 1.87510 (3.17)

where G12 = 1/S66, E1 = 1/S11 and S being the compliance elements (S = C−1).

In these formulations, J is torsion constant, ρ is density, Ip is polar inertia moment,

m is unit mass, L is length of the beam and I1 is moment of inertia along axis-1. The

computation of the yield stress using upper and lower bound approaches are given in

Eq. 3.18 and Eq. 3.19 respectively. The upper bound averaging is used to compute

the yield stress values of the cantilever beam.

< σy >=

∫
σAdV (3.18)
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< σ−1y >=

∫
σ−1AdV (3.19)

The mathematical formulation of the optimization problem is given below:

max σy (3.20)

subject to

∫
AdV = 1 (3.21)

subject to 21.5 Hz ≤ ω1t ≤ 23.5 Hz (3.22)

subject to 100 Hz ≤ ω1b ≤ 114 Hz (3.23)

A ≥ 0 (3.24)

The optimization problem includes the unit volume constraint by definition as

well as the constraints for the first natural frequencies to tune the beam vibration.

To solve the problem, the length of the beam is taken as L = 0.45 m and the beam

is considered to have a rectangular cross-section with dimensions a = 20 mm and

b = 3 mm. The steps taken to optimize the microstructure are summarized below:

• The solution space is firstly reduced to a property closure which is defined for

important microstructure dependent properties. The limits for microstructure

dependent properties are computed using lower or upper bound approaches. In

this problem, the microstructure dependent properties are E1, G12 and σy.

• One solution of the problem should be computed to start the algorithm. The

solution technique depends on either the problem is linear or not. For a linear

problem, ”one solution” can be computed solving an LP problem. However,

sampling can be performed to find one solution of a nonlinear problem. The

values of the microstructure dependent input parameters will be the same in all

solutions if multiple solutions exist.
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• As providing the same microstructure dependent property values, independent

solution directions are computed using the null space approach of the linear

solver. For a single solution problem, there is no existing solution direction

since the single solution defines a point in the solution space.

• In case of having multiple solutions, these solutions are computed using ”one

solution” of the problem and the independent solution directions (Eq. 3.6).

The optimization problem defined for the Galfenol beam has a linear design objec-

tive but nonlinear constraints. Therefore, the one optimum solution to the problem

can be found by performing a global sampling. The multiple solutions of this problem

correspond to the designs having the same values for microstructure dependent input

parameters (E1 and G12). The problem has 73 solution directions (76 optimization

variables, 3 equations - 2 of them are for computation of E1 and G12, and 1 of them

is for unit volume fraction constraint) and these solutions are polycrystal designs.

The property closure graph for E1 and G12 variables (E −G space) is given in Fig.

3.7. The parameters of the multiple optimum solution are given in Table 3.3. This

design application is a highly constrained problem and thus neither the single crystal

designs nor the random texture design can satisfy the vibration tuning design con-

straints. Some of the optimum microstructure designs are shown in Fig. 3.8. Since

the linear solver is able to compute the independent solution directions of the Galfenol

beam optimization problem, each design in Fig. 3.8 is different than the others, and

has different ODF values. However, they are still providing an identical maximum

yield stress value and satisfying the design constraints.

3.3 Conclusion

This chapter addresses an optimization methodology for structural problems with

various macro design objectives. Optimization is performed in a reduced space, called
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Figure 3.7: Property closure for E1 and G12

Table 3.3: Optimization results of vibration tuning problem for the Galfenol beam

Parameters Optimum design
σy 308.4456 MPa
E1 188.8229 GPa
G12 93.6282 GPa

property closure, which is composed of the important material properties of the prob-

lem, and includes all possible microstructure designs. The optimum values of the

material properties are identified inside the closure, and the optimum ODF values

are solved with an LP solver using volume averaging equations. The multiple opti-

mum designs are also computed with the implementation of a direct linear solver to

calculate the infinite solution directions. The proposed optimization methodology is

applied to two engineering design problems. The first example is a thermal buck-

ling problem for an HCP α-Ti aircraft panel. The objective of the optimization is

to maximize the critical buckling temperature. The optimization problem is solved
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ODF Density 

Figure 3.8: Some of the multiple optimum designs for the vibration tuning problem

in property closure which is generated for the most sensitive stiffness parameters to

the objective function of the application. The optimum ODF solution is found using

the LP approach, and it is observed that the thermal buckling problem has a unique

solution, which is a single crystal design. The optimization is performed with two

different meshes corresponding to different numbers of independent ODF variables.

However, both cases provide the same optimum design. When compared to an HCP

Ti plate with a randomly oriented microstructure, the optimum ODF provides a sig-

nificant 23.0% and 28.3% increases with analytical solution. The numerical efficiency

of the LP solution scheme is tested with a global methodology that utilizes a genetic

algorithm together with a global sampling in the ODF space. The global solution is

able to identify the same optimization result for both meshes, however, it is an order

of magnitude slower in terms of the computational time. For the next application, the

methodology is extended to plastic properties to explore design of structural problems
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with a yielding objective. For this purpose, a vibration tuning problem subjected to

maximum yield stress objective is optimized. Imposing a controlled vibration re-

sponse to the problem leads to multiple solutions, and these solutions are computed

by implementing the direct linear solution scheme in property closure. It is shown

that multiple solutions can be obtained by augmenting the solutions with the null

space. From among these solutions, the microstructure that can be manufactured

with the most economical processing route can be identified.
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CHAPTER 4

Uncertainty Quantification for Microstructural

Variations

Chapter 4 focuses on quantification of experimental uncertainties and their prop-

agation to the microstructural parameters and material properties. To this end, a set

of analytical formulae that can be rapidly used to quantify uncertainties in the ODF

and elastic properties is developed. The uncertainty of the X-ray PF and EBSD mea-

surement is captured by using Ti-7Al samples, which are taken from different regions

of the original ingot (the center and two sides). The probability distributions of the

PFs and EBSD data are computed using the variations in the experimental samples

and are found to be roughly Gaussian in nature.

The uncertainties are generally classified as aleatoric and epistemic uncertainties.

The aleatoric uncertainties are irreducible variations naturally present in the system

such as the uncertainties in the material properties [67]. The focus of modeling PF

uncertainties is to model the aleatoric uncertainties through a probabilistic modeling

approach. The uncertainties arising from the assumptions in the mathematical model

are classified as epistemic uncertainty [67]. In this study, the propagation of uncer-

tainties on the ODFs are computed using an analytical formulation taking advantage

of a linear PF to ODF transformation. However, the PF inversion is non-unique and

leads to ‘epistemic’ uncertainty due to lack of an exact solution. Therefore the un-
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certainties that are introduced to the model due to the pseudo-inverse approach are

not studied in this work. The microstructural variations are also modeled using the

EBSD samples as a different input for uncertainties. The EBSD to ODF conversion

is a one–to–one map only constrained by the level of discretization of the ODF, and

thus, aleatoric uncertainties can be better quantified. The Gaussian analytical UQ

model is used to compute the uncertainties in linear material properties such as the

compliance parameters. An approach to identify the probability distributions of the

nonlinear material properties, such as Young’s modulus and shear modulus, is also

proposed using the random variable transformation method. The approach is fully

analytical and significantly faster than numerical approaches. The organization of the

chapter is as follows. Section 4.1 addresses the experimental uncertainties quantified

using the PF and EBSD samples. The mathematical formulation for the analytical

UQ model is presented in Section 4.2. The results for the quantification of experimen-

tal uncertainties, and their propagation to the microstructural features and material

properties are shown in Section 4.3. The summary of the chapter is given in Section

4.4.

4.1 Quantification of experimental uncertainties

The analytical UQ algorithm is first implemented to quantify the uncertainties in

the experimental data using the PF and EBSD samples taken from different parts

of the same Ti-7Al material during an upset-forging process. These experimental

uncertainties are found to be consistent to be represented by a Gaussian distribution.

The variations in the microstructure features and material properties due to the ex-

perimental uncertainties are identified by implementing the analytical UQ algorithm.
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4.1.1 Uncertainties in PF data

This section discusses quantification of uncertainties introduced to the PFs due to

the variations in the experimental samples. Three different samples of Ti-7Al alloy

were taken from different regions of a beta forged ingot, which created variability in

the resulting microstructure due to the inhomogeneity of the forging process. These

samples were subject to the same thermomechanical process. All three samples were

compressed to 20% height reduction at room temperature, and annealed for 72 hours

at 1073K. The compression direction was also the longitudinal direction of the forging.

The microstructures were fully recrystallized at these conditions. Scans were taken

from different regions of the processed samples. A total of hundred PFs (h = < 001 >,

< 100 > and < 101 >) were generated from these scans for statistical analysis.

Representative samples for the PFs are illustrated in Fig. 4.1, and indicate a weakly

basal texture. We consider m = 221 pole densities for each PF. Since three PFs were

sampled, a total of 663 pole density values in total were used in the UQ model. The

HCP fundamental region discretized with 50 independent nodes, as shown previously

in Fig. 2.1, is used to model the ODF.

The variability in the pole density function P (h, yi) at each point yi for these three

PFs are computed from 100 different samples drawn from the specimen (generated

from the input samples). The histograms of these variations are plotted and it is found

that the variability in P (h, yi) can be modeled using Gaussian features as shown in

Fig. 4.2. Since the experimental samples show that the variations in the PFs are

consistent with Gaussian distribution, the solution approach depends on two steps.

The first being to prove that the variations in the ODFs are also consistent with

Gaussian distribution. The second step is to compute the mean value and standard

deviation of the joint multivariate distributions for the ODFs. Once the distribution

type and statistical quantities are determined the variation in the output variables

can be identified.
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< 001 > < 100 > < 101 >

Figure 4.1: Representative < 001 >, < 100 > and < 101 > PF samples
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Figure 4.2: Probability histograms of a few representative pole density values
(P (h, yi)). The labels for PF1, PF2 and PF3 indicate the PFs h =< 001 >,< 010 >
and < 101 > respectively from which these densities are obtained.

To show the statistical features, the mean values and coefficient of variations (ratio

of standard deviation to the mean value) of the PFs are depicted in Fig. 4.3 and Fig.

4.4 respectively.

< 001 > < 100 > < 101 >

Figure 4.3: Mean values of the PFs

The experimentally obtained PF for a particular diffraction plane unit normal h

contains the pole density function P (h, yi) measured at locations y1, y2, ..., yq on a

unit sphere. The value of P (h, yi) at location yi can be computed from the ODF (A)
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< 001 > < 100 > < 101 >

Figure 4.4: Coefficient of variations for the PFs

using a single linear equation based on the algorithm of Barton et al. [68]:

P (h, yi) =
k∑
j=1

MijAj (4.1)

where Mij are the values from a known system matrix M . One such equation can be

written for each of the m points in a PF. This set of equations can be combined with

a similar set of equations for n other PFs with different diffraction normals h. This

leads to a global system of equations P = MA. Here, P is a column vector of size

m× n, M is a matrix of size (mn)× (k) and the ODF, A, is a column vector of size

k containing the volume densities of k independent nodes. In order to account for

the normalization constraint
∑k

i=1 qiAi = 1, the overall system P = MA is adjusted

such that Mij = Mij − Mikqj
qk

for j = 1, .., k − 1 and Pi = Pi − Mik

qk
.

The system of equations is over–determined (i.e. more PF data as compared to

the unknown ODF values) and direct inversion is not possible. Instead of following

Barton et al. [68], the ODF is retrieved from the experimental PFs using least squares

minimization as follows:

A = CP (4.2)

where the coefficient matrix, C = (MTM)−1MT , is the pseudo–inverse. The PF

inversion equation is not unique. This equation defines an over-determined system

and therefore multiple ODF solutions are possible. The fundamental idea that is
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implemented here is to compute a set of ODFs, which can provide a PF data as

close as to the experimental PF input. A popular way in the material community to

compute these ODFs is to apply the least squares method, which is the same with

the pseudo-inverse approach in this study. The least squares approach for computing

the ODFs from the PF data was presented in more details by Barton et. al [68].

4.1.2 Uncertainties in EBSD data

In this work, the experimental EBSD scans for a Ti-7Al alloy are also considered

to determine the uncertainties in ODF values and material properties. The variabil-

ities in the ODFs are computed from 150 different EBSD samples drawn from the

specimen. Some of the example EBSD samples are shown in Fig. 4.5. The ODFs

are calculated from the EBSD data by binning the values at integration points. The

ODF values at the independent nodal points are then obtained using the linear re-

lation between nodal point and integration point ODFs. Readers are referred to Eq.

2.5 and Eq. 2.6 in Section 2.1.1 for computation of independent nodal point ODFs

from the integration point ODFs.

The orientations from the EBSD data are binned pixel–by–pixel to the element

containing the orientation, specifically to the integration point in the element. After

binning is complete, the ODF value (Ainti ) at the integration point in an element

i contains the total number of pixels in the EBSD image that have orientations

lying within the element. The data is then normalized by qintTAint. Let matrix

T convert the integration point values Aint to the independent nodal values Anode,

i.e.,Anode = TAint. Using one integration point, this matrix is defined as Tij = δij/f

where δij is one if node i (or its symmetric equivalent) is a vertex of element j and

zero otherwise. The factor f is the number of elements with node i (or symmetric

equivalent) as one of its vertices. This matrix is always positive and thus, Anode ≥ 0.

Vector containing the values of the ODF at k−1 independent nodal points is hereafter
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referred to as A. In order to account for the normalization constraint, the property

vector p is adjusted such that pi = pi − pkqi
qk

for i = 1, .., k − 1 and the property is

rewritten as < χ >=
∑k−1

i=1 piAi + pk
qk

= pTA + r. Other properties may be derived

from < χ >. For example, the elastic modulus can be written as E = 1
<S11>

where

< S11 > is a component of the compliance matrix (S) computed from the lower bound

relation < S >=
∫
R
S(r)A(r)dv.

The histograms of the experimental variations are plotted and it is found that

the variability in the ODFs can be modeled with a bell–shaped distribution - e.g.

of the Gaussian type as shown in Fig. 4.6 for some of the integration point ODFs.

The skewness of the integration point probability distributions are also calculated,

and shown in Fig. 4.7 that they vary around zero, which is the skewness value of

the Gaussian distribution. In Fig. 4.7, most of the skewness values are very close to

zero, and the maximum absolute difference with the Gaussian skewness value is only

around 0.15. This result also proves that the ODFs can be modeled with a Gaussian

distribution since it shows that the probability distributions of the integration point

ODFs have more of a symmetric characteristic rather than demonstrating a dominant

positively or negatively skewed feature. The selection of the Gaussian distribution

to model the integration point ODFs is finally checked with probability-probability

(P-P) and quantile-quantile (Q-Q) plots [69]. The P-P plot depicts two cumulative

distribution function (CDF) against each other, it is also being used as another mea-

sure to compare the skewness of different distributions. Here, the P-P plot is shown

in Fig. 4.8 to compare the CDFs of the experimental samples and the analytical as-

sumption with Gaussian distribution. The Q-Q plot, on the other hand, is a graphical

technique to compare the probability distributions by plotting their quantiles against

each other. Fig. 4.8 shows the P-P and Q-Q plots of the experimental samples and

the Gaussian assumption for some of the example integration point ODFs (The other

ODF distributions also represent very similar features). All the tests illustrated in
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Fig. 4.6, 4.7 and 4.8 show that the variations of the integration point ODFs in the

experimental samples agree well with a Gaussian distribution assumption.

The Gaussian approximation allows for development of analytical expressions

while considering correlations between the various ODF values. The solution includes

two basic steps: The first step is to find the statistical features of linear material

properties, and the second step is to find the probability distributions of non-linear

material properties using transformation of random variables. The solution procedure

is also illustrated in Fig. 4.9.

Figure 4.5: Some example EBSD samples
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Figure 4.6: The ODFs at the integration points agree with the Gaussian distribution
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Figure 4.7: The skewness of the integration point ODF variations.

4.2 Analytical modeling for UQ

An analytical UQ technique is developed to capture the uncertainties in the ODF

values, and linear and nonlinear material properties. Since the experimental data is

represented with a Gaussian distribution the linear transformation feature of the dis-

tribution is implemented to calculate the probability distributions of the nodal point
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Figure 4.8: The P-P and Q-Q plots of the experimental samples and Gaussian as-
sumption
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Figure 4.9: The solution procedure for UQ using EBSD sample data
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ODFs due to the linear relations between the PF data and nodal point ODFs (when

modeling PF uncertainties), and integration point ODFs and nodal point ODFs (when

modeling EBSD uncertainties). The modeling of uncertainties in linear material prop-

erties has the same feature since these properties can be calculated with volume aver-

aging equations which are linear in terms of the nodal point ODF values. The UQ of

nonlinear material properties implements another analytical technique, transforma-

tion of random variables, to compute the probability density function (PDF) of the

output variables when the PDF of input variables is given.

4.2.1 General features of Gaussian distributed correlated random vari-

ables

Assume a d-dimensional multivariate normal distribution: X ∼ Nd(µ,Σ),

where vector of mean values µ = (µ1, ..., µd)
T = E[X] and covariance matrix Σjk =

cov(Xj, Xk) = E[(Xj − µj)(Xk − µk)], j, k = 1, ..., d are known. The characteristic

function for the Gaussian distributed variable, X, is given by [70]:

ψX(t) = E[exp(itTX)] = exp(itTµX−
1

2
tTΣXt) = exp(i

d∑
j=1

tjµj−
1

2

d∑
j=1

d∑
k=1

tjtkΣjk)

(4.3)

For a one-dimensional Gaussian variable, Y ∼ N1(µy, σy
2):

ψY (t) = exp(itTµy −
1

2
t2σy

2) (4.4)

Now define a new random variable,

Z = aTX =
d∑
j=1

ajXj (4.5)

where a is a constant column vector. The characteristic function for Z is given
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by:

ψZ(t) = E[exp(itZ)] = E[exp(itaTX)] = ψX(ta) (4.6)

ψZ(t) = exp(it
d∑
j=1

ajµj −
1

2
t2

d∑
j=1

d∑
k=1

ajakΣjk) (4.7)

The comparison of this new characteristic function, ψZ(t), with the character-

istic function for the one-dimensional variable, ψY (t), shows that they are almost

equivalent, except µy is replaced by µz =
∑d

j=1 ajµj = aTµX , and σy
2 is replaced

by σz
2 =

∑d
j=1

∑d
k=1 ajakΣjk = aTΣXa. Since the characteristic function of Z is

equivalent to the characteristic function of Y , the distributions must also be equal.

Therefore, Z is also Gaussian distributed. The above derivation can be generalized

to a matrix–vector product, Z = AX. The characteristic function for vector Z is

given by:

ψZ(t) = E[exp(itTZ)] = E[exp(itTAX)] = ψX(AT t) (4.8)

ψZ(t) = exp(itTAµX −
1

2
tTAΣXA

T t) (4.9)

Here, the mean and covariance of vector Z is given by:

µZ = AµX (4.10)

ΣZ = AΣXA
T (4.11)

4.2.2 UQ in ODF values using Gaussian distributed correlated variables

The statistical parameters of the ODFs can be identified using the features of

Gaussian distribution with the PF uncertainties. From Eq. 4.2, the ODF is retrieved
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from the equation A = CP . From the known mean vector (µP ) and covariance

matrix (ΣP ) of the pole density vector P obtained from experiments, the mean and

covariance matrix of the ODF A can be computed using Eq. 4.10 and Eq. 4.11

as µA = CµP and ΣA = CΣPC
T . These expressions give the mean values and

covariance matrix of the first k − 1 independent ODF values. The PDF of the kth

ODF value is then computed using the normalization constraint. Knowing the volume

density of the first k − 1 nodes, the volume density of the kth node can be found as:

Ak =
k−1∑
i=1

ciAi +
1

qk
, where ci = − qi

qk
(4.12)

This is similar to the linear equation (Eq. 4.5) with an added constant, and mean

and variances can be obtained as µk = cTµA + 1
qk

and σk
2 = cTΣAc respectively.

Remark: The full covariance matrix Σ∗A of k independent nodes of the ODF can

also be computed as a postprocessing step, but is not required for property analysis.

The covariance matrix of the first k−1 independent ODF values ΣA is a (k−1)×(k−1)

square matrix. The full covariance matrix is a k × k square matrix given by:

Σ∗A =

 ΣA S

ST σk
2


where, S is a column vector whose values are given by:

Si = − 1

qk

k−1∑
j=1

qj(ΣA)ij (4.13)

The Gaussian approach, which can model all k correlated ODF nodal variables, is

also used to represent the uncertainties in EBSD data. The Gaussian approach pre-

sented here can be modified accordingly to represent the variations in the nodal point

ODFs since the variations in the integration point ODFs can directly be identified

through the EBSD samples.
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µA = T ∗µAint (4.14)

ΣA = T ∗ΣAintT ∗T (4.15)

where µA and ΣA are the mean and covariance of the ODF at k− 1 independent

nodal points, T ∗ is matrix T with the first k − 1 rows/columns included. µAint

and ΣAint are the mean and covariance of the ODFs at the integration points. The

mean and variance of the kth independent node may be computed from the mean and

covariance of the k − 1 nodes using the same methodology as discussed for the PF

uncertainties.

4.2.3 UQ in linear properties using Gaussian distributed correlated vari-

ables

The next step is to identify the probability distributions of the material properties.

Elements of the compliance matrix can be computed using an averaged linear relation

in terms of the ODFs: < S11 >=
∫
S11AdV which can also be written in the form

S11 = pTA+ r (r term comes due to contribution of the kth ODF). Since the ODFs

are already identified as Gaussian distributed, these linear relations imply that the

probability distributions of compliance components, such as < S11 > and < S66 >,

are also Gaussian, and their mean values and standard deviations can be computed

as µS11 = pTµA + r, and σS11
2 = pTΣAp using Eq. 4.7.

4.2.4 UQ in nonlinear properties using transformation of random vari-

ables

When the representation of a property is not linear in the ODF, the PDF can still

be computed using transformation of random variables. Given the input parameter,
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x, and the output parameter, y, it is assumed that the relation between x and y can

be identified using y = h(x), and can be inverted as x = u(y). This method computes

a Jacobian value, J , based on this explicit relation (where J = du/dy), and finds the

PDF of the output variable as a product of input PDF and the Jacobian. Eq. 4.16

shows the computation of output PDF:

fy(y) = fx[u(y)]× |J | (4.16)

where fx and fy are the PDFs of input and output variables respectively. Since

the input PDF, fx, and inverted function, u(y) are already known, the output PDF,

fy, can be computed using this method. Then, the expected value, E[y], and vari-

ance, V ar(y), of the output parameter can be calculated using Eq. 4.17 and 4.18

respectively [71]:

E[y] =

∫ ymax

ymin

yfy(y)dy (4.17)

V ar(y) = E[(y − E[y])2] (4.18)

where ymin and ymax are the minimum and maximum values of the output variable,

y, can take. These values can be computed since the explicit relation, y = h(x), is

known. The approach is first demonstrated in the next section for computing the PDF

of the homogenized elastic modulus E1 = 1/S11 and shear modulus G12 = 1/S66. The

same method is then used to compute the PDFs of the first torsion and bending

natural frequencies of a cantilever beam. The cantilever beam problem is the same

as the problem in Chapter 3 and Chapter 6. However, this time the beam material is

a Ti-7Al alloy instead of Galfenol. The same geometrical properties of the beam are

considered for the analysis.
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4.3 UQ in microstructural parameters and material proper-

ties

This section discusses the UQ results for ODF parameters and material properties

given the input experimental uncertainties quantified with the PF and EBSD samples.

4.3.1 Quantification and propagation of experimental uncertainties using

PF data

Using method of characteristic functions, the mean values and standard deviations

of the ODFs are identified. The probability distributions of the 49 ODF values

are solved first, and then the probability distribution of the last ODF, ODF50, is

computed by using the normalization constraint. The histograms for some of the

ODFs, including the last ODF (ODF50) are shown in Fig. 4.10. ODF50, in particular,

has a low standard deviation due to the strict normalization constraint. The statistical

properties of the ODF distributions (mean values, standard deviations and coefficient

of variations of the ODFs) are plotted on the mesh in Fig. 4.11. It is observed that

some of the ODF values with high mean values also have higher standard deviations.

Thus, the coefficient of variation (ratio of standard deviation to mean) of the ODFs

is more uniform than the mean or standard deviations as indicated by Fig. 4.11.

The uncertainties in the ODFs and material properties are also quantified using

MCS to verify the proposed analytical model. In this approach, the aforementioned

100 experimental PF sets are used and the ODFs are directly computed from each

set (using Eq. 4.2 and the normalization constraint). Then, 100 sets of material

properties (S11, E1, etc.) are computed from these ODFs using the homogenization

relations. Histograms of these ODFs and properties are directly compared to the

Gaussian analytical solution. The analytical solution is much faster, the solution

times are 7 seconds for analytical model and 15 minutes for MCS on the same com-
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putational platform. However, MCS provides exact solutions since no Gaussian PDF

approximations are made, and they use the exact experimental data samples. The

MCS results for the probability distributions of ODF50, S11, S66, E1 and G12 are

shown together with the analytical model results in Fig. 4.10, 4.12 and 4.13.

Figure 4.10: Probability histograms of the ODFs
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Figure 4.11: Statistical features of the ODF probability distributions

Knowing the uncertainty in the ODF, the uncertainties in the homogenized prop-

erties are quantified. The compliance elements, S11 and S66, are computed using the

lower bound approximation. The elastic constants of the single crystals are consid-

ered for 750 oC [72], and the values are taken as: C11 = 125.3 GPa, C12 = 99.4

GPa, C13 = 68.8 GPa, C33 = 154.5 GPa and C55 = 31.6 GPa. The mean values and

variances are computed using method of characteristic functions due to the linear

relations of compliance elements with the ODFs. The probability distributions of S11

and S66 are shown in Fig. 4.12.

The next step computes the PDFs of the in-plane Young’s Modulus, E1, and shear

modulus, G12. Even though the probability distributions of S11 and S66 are identified

as Gaussian, the probability distributions of E1 and G12 are not Gaussian due to
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Figure 4.12: Probability histograms of S11 and S66

their inverse relations (E1 = 1/S11 and G12 = 1/S66). The PDFs of E1 and G12 are

determined using transformation of random variables (Eq. 4.16) in Section 4.2.4. To

compute these PDFs, the transformation function can be identified as u(y) = 1/y

according to relations between E1 and S11, and G12 and S66. Then the expected

values and the variances are calculated using Eq. 4.17 and 4.18. The probability

distributions of E1 and G12 are shown in Fig. 4.13.

Figure 4.13: Probability histograms of E1 and G12
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The MCS and analytical model results shown in Fig. 4.10, Fig. 4.12 and Fig. 4.13

indicate that the UQ with the analytical approach provides an accurate representation

for microstructural variations and property uncertainties. However, the variances in

the MCS results are higher compared to the results with the analytical algorithm.

This is because the first k − 1 ODFs are modeled as uncorrelated variables in this

section. The variance values are expected to converge to the MCS results when all

the ODFs are modeled as correlated variables as presented in Section 4.3.2.

4.3.2 Quantification and propagation of experimental uncertainties using

EBSD data

A total of 150 small scans are generated from the EBSD experimental data to

represent the statistical features of the ODFs sufficiently. Using the experimental

EBSD scans the ODFs are obtained by binning to the elements. Using multiple scan

data, a histogram of ODF values at the integration points is obtained. The histograms

are found to be consistent with a Gaussian distribution. The mean and covariance

of the ODFs at the 49 independent nodes are then computed applying the Gaussian

approach. The probability distribution of the last ODF, ODF50, is computed by using

the volume fraction normalization constraint. The histograms for some of the ODFs,

including the last ODF (ODF50) are shown in Fig. 4.14. ODF50, in particular, has

again a lower standard deviation due to the normalization constraint. The statistical

properties of the ODF distributions (mean values, standard deviations and coefficient

of variations of the ODFs) are plotted on the mesh in Fig. 4.15. It is found that some

of the ODF values with high mean values also have higher standard deviations but

still there are some other ODFs with high standard deviations and relatively lower

mean values because of the larger experimental variations for those nodes. Thus,

the coefficient of variation (ratio of standard deviation to mean) of the ODFs is not

entirely uniform since the higher density areas indicate the ODFs with relatively
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higher standard deviations compared to their mean values.
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Figure 4.14: Probability histograms of the ODFs

The uncertainties in the ODFs and material properties are quantified using MCS

and a Gaussian distribution model to compare the results of the analytical model.

In the MCS approach, the aforementioned 150 experimental samples are used to

directly compute the ODFs from each set. Then, 150 sets of material properties

(S11, E1, etc.) are computed from these ODFs using the homogenization relation.

Histograms of these ODFs and properties are directly compared to the Gaussian

analytical solution. The analytical solution is again much faster even though all the

ODFs are modeled as correlated variables. The solution times are around 7 seconds

for analytical models and 20 minutes for MCS on the same computational platform.

However, MCS provides exact solutions since no Gaussian PDF approximation is

made. Since the Gaussian analytical solution models all the ODF values as correlated

variables a full covariance matrix is used to represent the variations of the ODFs.

The MCS results for the probability distributions of S11, S66, E1, G12, ω1t and ω1b are
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Figure 4.15: Statistical features of the ODF probability distributions

shown together with the analytical model results in Fig. 4.16. Similarly, the PDFs of

the first torsion and bending natural frequencies are computed using a transformation

function u(y) = a
√
y, where a is a constant, due to the relations between G12 and

ω1t, and E1 and ω1b.

From the presented MCS analysis, it is seen that the probability distributions

computed with MCS are in very good agreement with the distributions of the ana-

lytical model for the ODF and properties in Fig. 4.14 and Fig. 4.16. However, the

variances represented by MCS are slightly larger than those from the analytical so-

lution due to the differences between the actual EBSD histograms and the Gaussian
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Figure 4.16: Probability histograms of S11, S66, E1, G12, ω1t and ω1b

approximation as seen in Fig. 4.14. However, analytical methods are much faster,

which is important when stochastic ODFs are employed in multi-scale formulations

of thermomechanical processes [73].

4.4 Conclusion

An analytical model is developed for quantification of experimental uncertain-

ties and their propagations on microstructural features and material properties using

volume averaged homogenization relationships. The uncertainties in experimental

PF and EBSD scans are identified using Ti-7Al alloy specimens that were obtained

identically through the same process. The uncertainties in the PFs are quantified

using 100 equally sized diffraction samples while the EBSD data is analyzed with 150

equally sized samples, and they are fitted to a Gaussian distribution. The probability
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distribution of the last ODF parameter is computed using volume fraction normal-

ization constraint. The probability distributions of the linear properties, including

the last ODF and the compliance parameters, are calculated using the linear ho-

mogenization equations. The mathematical model for the probability distributions of

nonlinear properties is identified using transformation of random variables. Using this

approach, the uncertainty bounds for the Young’s modulus, shear modulus, the first

torsion and bending natural frequencies of the Ti-Al alloy specimen are calculated.

These derivations are important for development of an ICME toolbox for computing

the uncertainty in multi-scale homogenization models due to input uncertainties. The

overall analysis is fully analytical when using the Gaussian distribution. However, a

drawback of Gaussian distribution is that it allows for negative variables. All the

variables considered here, i.e. ODFs, EBSD, PFs, and the properties are all positive.

PDFs with positive variables can instead be considered. Examples of such PDFs

include log–normal, exponential, gamma, Weibull and Rayleigh distributions. Exact

analytical treatment of linear system of equations of correlated random variables (e.g.

Eq. 4.2) is not available in literature. Some analytical approximations are available

for independent random variables [74]. However, it is important to note that the

pole density functions are highly correlated, as modeled here, and cannot be assumed

to be independent. This can be seen from the fact that all pole density functions

are derived from the same underlying ODF. The only useful analytical result that

could be found in literature was the case of correlated sum of Gamma distribution

variables with a constant size parameter [75]. Extension of the approach for a linear

system of equations of correlated gamma variables could be pursued in the future.

Even so, a gamma distribution has an infinite support. In contrast, the properties

have a finite support and are constrained within the extremal values of single crystals

[76]. Although a point in the fundamental region can take any value in the positive

real axis (0,∞), numerically the ODF is also modeled to have compact support when
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the fundamental region is discretized. That is, the values of Ai range from (0, 1/qi).

Thus, even with the positive PDFs, there have been issues with exceeding the sup-

port space of the modeled variables - similar to the case of a Gaussian distribution.

Thus, going beyond Gaussian distributions, one needs to also pursue numerical meth-

ods such as MCS and collocation techniques for exact UQ. However, the analytical

methods provide a considerable reduction in computational times compared to the

available numerical techniques. Thus, it is recommended that the Gaussian approach

presented here to be used as a first step to verify more advanced UQ models. Fu-

ture effort in this direction includes development of (i) improved methods for building

ODFs from crystal aggregate data (using microdiffraction), (ii) methods for modeling

linear systems of correlated PDFs with positive support space and (iii) methods for

finding PDFs for highly nonlinear homogenization relationships. Another interesting

UQ problem is the inverse (or materials design) problem of finding the ODF and its

uncertainty bounds in order to achieve a set of desired property PDFs, as discussed

in Chapter 5.
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CHAPTER 5

Stochastic Design Optimization of Microstructures

Microstructural uncertainties arise from variations in manufacturing process con-

ditions and can affect the performance of metallic materials in aerospace components.

This is an aleatoric uncertainty, which is unavoidable and naturally present in metal-

lic systems. Chapter 5 focuses on the effect of aleatoric uncertainties in microstruc-

ture modeling and inverse design of stochastic microstructural features to achieve a

prescribed statistical range of engineering properties. Current state of the art only

addresses the direct UQ problem (effect of uncertain microstructures on properties)

and the stochastic inverse problem has not been addressed to the best of author’s

knowledge. The direct problem has been generally addressed using computational

techniques such as MCS, collocation and spectral decomposition methods. In Chap-

ter 5, the analytical formulation based on a Gaussian distribution approach to repre-

sent the variations of the random parameters is employed to solve a stochastic design

optimization problem for the Galfenol beam vibration tuning application. Some of

the details about the optimization results presented in this chapter can also be found

in [39]. The variations of in-plane Young’s modulus (E1) and shear modulus (G12)

are assumed to be provided by the manufacturer, and consistent with the Gaussian

distribution. Then the probability distributions of the ODFs are computed by solving

an inverse problem. The variations in the compliance parameters, S11 and S66, are
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found first with transformation of random variables rule using input variations in E1

and G12. The compliance parameters are calculated first since they can be repre-

sented with linear equations in terms of the ODFs. The probability distributions of

the compliance parameters are also assumed to be modeled with a Gaussian approach

despite their nonlinear relation to E1 and G12 since the input uncertainties are very

small. Then the inverse problem to find the statistical properties of the ODFs is

defined as an LP problem. A global stochastic optimization approach is implemented

to this analytical solution framework to maximize the yield stress under vibration

tuning constraints defined for the first bending and torsion natural frequencies of the

cantilever beam. The optimization variables are defined as the in-plane Young’s mod-

ulus (E1) and shear modulus (G12) of the Galfenol material, and each design sample

is assumed to have the same level of uncertainty. The stochastic design optimization

framework is also illustrated in Fig. 5.1.
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Figure 5.1: The stochastic optimization scheme for the Galfenol beam vibration tun-
ing problem
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The LP problem approach has been studied before to find the optimal processing

route to produce an optimum microstructure design for the same vibration tuning

problem [40]. However, this LP approach was employed to find the ODF solution

of a deterministic system [38, 40, 77]. In this chapter, the LP solution methodology

is extended to identify the statistical parameters of the ODFs in case of uncertain-

ties in material properties. To the best of the author’s knowledge this is the first

analytical effort in literature for quantification of microstructural stochasticity given

the desired statistical range in properties, in effect, a stochastic inverse problem for

microstructure design [39]. The same analytical UQ algorithm is used to solve the

stochastic optimization problem. However, since the inverse LP problem requires the

solution of the statistical parameters of the joint probability distribution of the ODFs,

the ODF values are first assumed to be independent variables for simplicity. Then

the inverse analytical approach is extended to solve the statistical parameters when

the ODFs are fully correlated. The optimization results are also compared to the

results of computational methods which employ MCS to quantify the uncertainties.

The analytical algorithm is able to compute the same optimum variables and a very

close objective function value to the MCS solution, and decrease the computational

time by almost two orders of magnitude. Once the optimum ODFs are achieved,

then the multiple solution directions are identified using the direct linear solver. The

effect of uncertainties on the design objective is discussed at the end by comparing

the optimum results with the deterministic solution for maximum yield stress. The

organization of the chapter is as follows: Section 5.1 discusses the development and

results of the stochastic optimization problem for the Galfenol beam when the ODFs

are modeled as uncorrelated variables in the LP approach. The analytical LP solution

methodology is extended in Section 5.2 to model the ODFs as correlated variables.

The stochastic optimization problem is also defined accordingly when the ODFs are

correlated in Section 5.2. A summary of the chapter with potential future applications
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is presented in Section 5.3.

5.1 Stochastic design optimization for the Galfenol beam

with uncorrelated ODFs

This section addresses the inverse LP approach to determine the statistical pa-

rameters of the ODFs given the probability distributions of the material properties.

The inverse LP problem first models the ODFs as uncorrelated variables (the first

k − 1 ODFs are independent and the kth ODF is dependent due to the volume frac-

tion normalization constraint) to reduce the number of unknowns in the problem for

simplicity. The same vibration tuning problem for the Galfenol beam is considered.

However, the numerical values defined in the design constraints for the first bending

and torsion natural frequencies are different in this case since the introduction of

the stochasticity violates the feasibility of the deterministic constraints in Chapter 3

and Chapter 6. Therefore the deterministic optimum results presented at the end of

Section 5.1 are different than the results in Chapter 3.

5.1.1 LP approach for inverse design

The statistical properties of the ODF values are identified by solving the inverse

design problem as an LP problem. The first assumption of the stochastic optimization

scheme is that the probability distributions of E1 and G12 are provided, and these

distributions are Gaussian with a ±5 % of variation around the mean values. It

is also assumed that the variation is always ±5 % even though the mean values

change (The mean values can change since they are global design variables of the

stochastic optimization problem.). The PDFs of S11 and S66 can be computed using

the transformation of random variables rule given in Eq. 4.17 and Eq. 4.18. The

variations in these parameters can be assumed to agree with the Gaussian distribution
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due to small variations in the input parameters, E1 and G12. With this assumption

the ODF values can be determined by solving an LP problem. A general formulation

of an LP problem is given as follows:

min fTx

such that Aeqx = beq

Ax ≤ b

lb ≤ x ≤ ub

The unknown vector, x, of this LP problem includes the mean values and variances

of the first k − 1 ODF values: µA and σA
2. The mean and variance terms related

to the kth ODF value can then be obtained using the definitions for µA and σA
2 in

the volume fraction normalization constraint equation. The equality constraints are

derived by using the homogenized linear equations for the mean values (Eq. 5.1 and

Eq. 5.2) and variances (Eq. 5.3 and Eq. 5.4):

pT1µA = µS11 (5.1)

pT6µA = µS66 (5.2)

p1ΣAp
T
1 = σS11

2 (5.3)

p6ΣAp
T
6 = σS66

2 (5.4)

In these equations, p1 and p6 are the vectors of length k including single crystal

coefficient values for S11 and S66 respectively, µS11 and µS66 are the mean values,

and σS11
2 and σS66

2 are variances of S11 and S66. Accounting for the normalization
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constraint, only the first k− 1 ODF values are solved. The augmented system of the

equality constraints for the first k − 1 ODF values can be derived as:



[p1
T − p1(k)

qk
qT ]

(1×k−1)
0(1×k−1)

[p6
T − p6(k)

qk
qT ]](1×k−1) 0(1×k−1)

0(1×k−1) P ∗1 (1×k−1)

0(1×k−1) P ∗6 (1×k−1)


 µA(k−1)×1

σA
2
(k−1)×1

 =



µS11 −
p1(k)
qk

µS66 −
p6(k)
qk

σS11
2

σS66
2


where 01×(k−1) is a row vector of zeros with a length of k− 1. The elements of the

row vectors, P ∗1 and P ∗6 , can be calculated as below by using Eq. 5.3 and Eq. 5.4

with the definition for ΣA (i = 1, 2, ..., k − 1):

P ∗1 (i) = [p21(i) + (p1(k) + 1)(p1(i)c(i)) + (p21(k)c2(i))] (5.5)

P ∗6 (i) = [p26(i) + (p6(k) + 1)(p6(i)c(i)) + (p26(k)c2(i))] (5.6)

where c(i) = − q(i)
q(k)

(i = 1, 2, .., k − 1).

The first inequality equation is derived for the lower boundary of the kth ODF value

such that the first k−1 ODFs should satisfy the constraint, qTµA ≤ 1, to guarantee

that the unit volume normalization constraint is satisfied with a non-negative kth

ODF value (q > 0 and qk > 0). Since the compliance parameters are assumed

to agree with the Gaussian approach the ODF values have the same distribution

because of their linear relation. The following inequalities are used to ensure that the

probability distributions of the ODFs always satisfy the non-negativity condition:

−µA + zσA
2 ≤ 0 and −µAk

+ zσAk

2 ≤ 0 where z is a constant to be determined.

In these inequality equations the standard deviation parameter is approximated by

the variance since the variances are the unknowns in the LP problem definition. The
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standard deviation can be replaced with the variance since the standard deviation and

variance values of the compliances are in the same order, and the ODFs are assumed

to follow the same trend. However, the variances are controlled with the constant

parameter, z, rather than directly considering the traditional 3.5σ assumption for

Gaussian distribution. The inequality equation for the variation of the kth ODF can

be manipulated further by using the definitions for µAk
and σAk

2. The final form of

the inequality equations is given in Eq. 5.7, 5.8 and 5.9:

qTµA ≤ 1 (5.7)

− µA + zσA
2 ≤ 0 (5.8)

− 1

qk
qTµA + zC∗σA

2 ≤ 1

qk
(5.9)

where q is a vector containing the first k − 1 values of normalization vector and

the elements of the C∗ vector are: C∗(i) = c(i)2. Using Eq. 5.7, 5.8 and 5.9 the

augmented system for the inequality constraints can be derived as below:


qT (1×k−1) 0(1×k−1)

−[I](k−1×k−1) z[I](k−1×k−1)

1
qk
qT (1×k−1) zC∗(1×k−1)


 µA(k−1×1)

σA
2
(k−1×1)

 ≤


1

0(k−1×1)

1
qk


where [I] is the identity matrix, and q vector includes the volume fraction values

for the first k − 1 ODFs.

The objective of the stochastic optimization problem is to maximize the mean

yield stress value of the beam. Since the standard LP problem defines the objective

function for minimization instead of maximization the negative of the yield stress

value, −σy, is minimized. This objective function is also linear in the ODFs such
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that: −σy = (−yT + (yk
qk

)qT )µA− yk
qk

where y is the vector of yield stress coefficients

for the first k− 1 single crystals and yk is the same coefficient value for the kth single

crystal. The objective function, f is defined as: f = (−yT +(yk
qk

)qT )µA and therefore:

−σy = f− yk
qk

. The objective function of the LP problem for min fTx, can be written

as:

f = [y∗T 1×(k−1)01×(k−1)]
T (5.10)

where y∗T is defined as: y∗T = −yT + (yk
qk

)qT . In the final step, the lower and

upper bounds are determined considering the non-negativity conditions for the ODFs.

The unknowns of the LP problem, the mean values and on-diagonal variance terms

of the ODF parameters, have a zero value lower bound. An ODF, Ai, can have

the value of 1/qi as an upper bound. This is also true for the mean values, µAi
.

However, the variances are known to be lower than the mean values in this problem.

Therefore defining the same upper bound values for the corresponding variance terms

is mathematically possible. The lower and upper bound vectors for this problem are

then defined as: lb = [01×2(k−1)] and ub = [1/qi 1/qi], where i = 1, 2, .., k − 1.

5.1.2 Definition of the stochastic optimization problem

The optimization starts with the global sampling for the input variables, µE1 and

µG12 , which are the mean values of E1 and G12. In the next step, the statistical

properties of compliances, S11 and S66, and natural frequencies, ω1t and ω1b, are cal-

culated using the random variables transformation rule. The ODF solution satisfying

the calculated statistical properties of the compliances and maximizing the mean

yield stress value is identified by implementing the LP problem of Section 5.1.1 to the

optimization algorithm. The mathematical formulation of the optimization problem

is given below:
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max µσy (5.11)

subject to P (20.25 Hz ≤ ω1t ≤ 24.25 Hz) = 1 (5.12)

subject to P (132.75 Hz ≤ ω1b ≤ 139.75 Hz) = 1 (5.13)

s = (µE1 , µG12), (5.14)

where the optimization variables are µE1 and µG12 in the global problem, and

the means and variances of the first k − 1 ODFs in the LP problem definition. Eq.

5.11 shows the objective function, which is determined as maximization of the mean

yield stress value. The output variables have probability distributions based on their

statistical properties. The constraint parameters are expected to satisfy the strict

vibration tuning constraints in every point of their probability distribution. Therefore

the probability of satisfying the design constraints is expected to be 1 as shown in

Eq. 5.12 and Eq. 5.13. In the last row, s shows the vector of global optimization

variables. The corresponding ODF solution to the optimum values of the global

variables provides the optimum microstructure design of the problem. The non-

negativity condition of the ODFs is considered as a lower bound in the LP problem.

The volume normalization constraint is also considered through the definition of the

kth ODF and the inequality constraint in Eq. 5.7.

5.1.3 Results

The stochastic optimization is performed using ISF as the global sampling method

for the input parameters, and NSGA-II as the optimization algorithm in Modefrontier

software. However, the limits of the design constraints are different in this problem

than the limits presented in Chapter 3 and Chapter 6 since the introduction of the

stochasticity violates the deterministic constraints. In order to compare the effect of
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uncertainty to the final design and material properties a deterministic optimization

is also performed for the same problem. The constant parameter, z, of the analytical

LP approach is considered as z = 3.5. In addition, another stochastic optimization,

which uses MCS method to model the uncertainties, is performed. In this MCS tech-

nique, 10000 samples are used to generate the probability distributions for one set of

global ISF sample points. The compliance values, S11 and S66, are calculated using

the exact equations in terms of the input parameters. Then the ODF solutions are

identified by solving for 10000 separate LP problems per one global sample. These

deterministic LP problems are simplified forms of the presented LP methodology since

they do not consider the inequality constraints defined for the variations (Eq. 5.8 and

Eq. 5.9). The MCS method, despite the use of the LP approach to solve the ODFs, is

a computational burden compared to the required computational time to run the an-

alytical solution. The optimum design parameters of stochastic optimization studies

are given in Table 5.1. In all cases, the optimum parameters correspond to multi-

ple optimum polycrystal designs with the implementation of the direct linear solver.

The optimum deterministic parameters are also shown as the deterministic case (with

no uncertainties) in Table 5.1 to indicate the significant impact of the uncertainties

to the design objective. The significant difference between the computational times

spent on the stochastic optimization studies is also pointed in the last row of Table

5.1.

Table 5.1: Stochastic optimization results for vibration tuning of the Galfenol beam

Deterministic Stochastic (Analytical) Stochastic (MCS)
σy = 367.9385 MPa µσy = 340.1034 MPa µσy = 340.2584 MPa
ω1t = 22.7038 Hz µω1t = 22.8272 Hz µω1t = 22.7408 Hz
ω1b = 134.3167 Hz µω1b

= 136.4554 Hz µω1b
= 136.2892 Hz

E1 = 262.5002 GPa µE1 = 270.3112 GPa µE1 = 270.3112 GPa
G12 = 87.5001 GPa µG12 = 87.8067 GPa µG12 = 87.8067 GPa

t = 5 mins t = 20 mins t = 44 hours 35 mins
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The difference between the optimum objective function values of the determinis-

tic case and stochastic optimization (Table 5.1) implies the substantial impact of the

input uncertainties to the engineering properties. One critical feature of the results is

that both stochastic optimization applications are able to identify the same solution

for the global input parameters, µE1 and µG12 . However, the optimum design criteria

and objective function values are slightly different due to the different solution ap-

proaches in the analytical model such as random variables transformation rule and

extended LP problem implementation by consideration of the ODF variances in con-

trast to the exact solution formulas being used by the MCS method. The variations

of the yield stress and vibration frequencies of the stochastic optimum designs are

shown in Fig. 5.2. According to the results in Fig. 5.2 the analytical model is able

to capture the mean values and variances of the optimum material properties.
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Figure 5.2: The variations of yield stress and vibration frequencies of the stochastic
optimum designs

After identifying the optimum solutions to the stochastic problems the multiple

polycrystal designs are also computed using the direct linear solution methodology

with null space approach. Some of the multiple optimum solutions to the ODF
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mean values obtained by the analytical model and MCS are shown in Fig. 5.3. The

first microstructure design of both solutions is the optimum initial design identified

with the global optimization. The other microstructures are obtained using the same

independent null space vectors in the direct linear solver for both analytical and MCS

solutions.

Figure 5.3: Examples for multiple optimum microstructures of the stochastic opti-
mization problem

The small differences between the analytical model and MCS results in the final

material properties shown in Fig. 5.2 and multiple optimum ODF solutions shown

in Fig. 5.3 can be explained with two features of the analytical approach. First, the

analytical solution assumes that the first k− 1 ODFs are independent, and identifies

only the on-diagonal variances for these ODFs. The system of equations in the LP

problem already imply an underdetermined system, and the consideration of the

non-diagonal terms can yield to infeasible or multiple solutions. However, the MCS

method automatically considers the dependencies of the ODFs since it uses the exact

solutions with direct sampling. The other reason is predicted to be the effect of the

adjustable constant parameter, z, of the analytical solution, which represents the

ODF variations. The condition, z = 3.5, is used in the results reported in Fig. 5.2

and Fig. 5.3. The effect of this parameter is further investigated by computing the
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yield stress values of the optimum microstructure using different z values. The same

analysis is not performed for the natural frequency parameters since they are directly

related to the global variables, not to the LP problem, so the change in z parameter

does not affect them. The yield stress distributions of the optimum microstructure

design with varying z values in the analytical solution are shown in Fig. 5.4.
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Figure 5.4: Yield stress distributions of the optimum microstructure design with
varying z values in the analytical solution

Fig. 5.4 implies that the variations in the optimum yield stress parameter are

smaller when z is smaller. This is an expected result since z represents the variations

in the ODFs. Compared to the MCS samples the best matching analytical result is

provided by z = 3.5 condition, which was also used in the stochastic optimization.

5.2 Stochastic design optimization with correlated ODFs

The analytical inverse LP formulation is advanced to compute the statistical pa-

rameters of the ODFs when all the ODFs are correlated. However, the number of
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variables in the LP formulation greatly increases due to inclusion of the off-diagonal

terms in the ODF covariance matrix. The Galfenol beam problem is a single-objective

problem with two engineering design constraints. Even though the additional design

criteria, such as the unit volume fraction normalization, increase the number of equa-

tions in the LP formulation the system of equations still implies a highly underdeter-

mined system. Enforcing a solution to represent all the statistical quantities of the

ODFs is not mathematically possible since some certain statistical parameters are

required to satisfy the non-negativity condition as well. Therefore instead of solving

the previous Galfenol problem the analytical modeling for representing the joint prob-

ability distribution of the correlated ODF variables is exercised in a new application

problem. In this application problem it is assumed that the input uncertainties of 9

orthotropic stiffness parameters of the Galfenol material is provided. The problem

has the same objective with the previous applications since the goal is to maximize

the mean value of the yield stress. However, solving this problem for 76 indepen-

dent ODF values still implies an underdetermined system. Therefore instead of using

the previous mesh with 76 independent ODF values a coarser mesh with 10 ODFs

is preferred to solve the stochastic optimization problem by modeling the ODFs as

correlated variables.

5.2.1 LP problem derivation

The stochastic design optimization problem of this section assumes that all the

ODF parameters are dependent. In this case the LP problem solves both diagonal and

off-diagonal entries in the covariance matrix of the Gaussian joint probability distri-

bution. Consideration of a full covariance matrix is expected to improve the accuracy

in representing the uncertainties, however, it increases the problem dimensionality.

Therefore a coarser mesh in Rodrigues domain is preferred. For this application it

is assumed that the Gaussian joint probability distributions (mean values and full
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covariance matrix) of 9 stiffness parameters of the Galfenol material with random

texture are provided. The problem aims to find the ODF solutions which maximize

the mean yield stress. The LP problem solves for mean values of these k ODF pa-

rameters and their full (k × k) symmetric covariance matrix, n number of unknowns

totally. The equality constraints of the LP problem are derived using the homoge-

nized equations for all stiffness parameters (C11, C12, C13, C22, C23, C33, C44, C55 and

C66) considered in this application:

pT11µA = µC11 (5.15)

PΣAP
T = ΣC (5.16)

qΣAq
T = 0 (5.17)

where Eq. 5.15 shows the formulation to obtain the mean value, µC11 , of the stiff-

ness parameter C11. p11 is the vector of length k including single crystal coefficients

for C11. The computations of the mean values for the other stiffness parameters apply

the same formulation. Eq. 5.16 shows the computation of the covariance matrix for

the joint probability distribution of the stiffness parameters. In Eq. 5.16, P is a

(9×k) matrix including the k single crystal values for 9 stiffness coefficients, and ΣA

and ΣC are the ODF and stiffness covariance matrices respectively. It is assumed

that the mean values of the stiffness parameters (µC11 , µC12 , ..., µC66), and stiffness

covariance matrix, ΣC are provided. Note that the input stiffness covariance matrix

is generated using 100000 design samples generated for the ODF values using MCS. In

these samples the ODF values are varied according to a Gaussian distribution around

the mean values which correspond to a random texture design. The stiffness values

are computed with volume averaging equations for each design sample, and the semi
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positive definite covariance matrices are generated accordingly. The unknowns of the

problem are ODF mean values vector, µA, and ODF covariance matrix, ΣA. The

ODF covariance matrix is expected to agree with the given relation in Eq. 5.17 since

for any point drawn from the joint ODF probability distribution the normalization

constraint (qTA = 1) should be satisfied. This constraint (Eq. 5.17) can be enforced

strictly by using an equivalent formulation derived separately for all columns of the

covariance matrix such that qTΣA:,j = 0 (j = 1, 2, .., k). The new constraint will be

shown as Q̄ΣA = 0 hereafter. Note that the input covariance matrix of the ODFs

which show the variations of the initial ODF samples generated by the MCS approach

also satisfies this constraint.

In the previous application the problem was solved for k−1 independent ODF pa-

rameters by introducing the definition of the kth ODF through volume normalization

constraint. However in this problem the solution is already defined for all k ODFs

directly and thus the volume normalization constraint (Eq. 5.18) should be included

as an equality constraint:

qTµA = 1 (5.18)

Using the above formulation the augmented system of equality constraints for the

ODFs can be derived as:



qT (1×k) 0(1×n−k)

P (9×k) 0(9×n−k)

0(9×k) P̄ (9×k)

0(k×k) Q̄(k×n−k)


 µA(k×1)

ΣA
vec

(n−k×1)

 =



1

µC
vec

(k×1)

ΣC
vec

(n−k×1)

0(k×1)


where µC is the vector of stiffness mean values such that:

µC = [µC11 µC12 µC13 µC22 µC23 µC33 µC44 µC55 µC66 ]
T , and ΣC

vec is the vector con-

taining the elements of stiffness covariance matrix, ΣC , such that:
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ΣC
vec = [ΣC11 ΣC12 ΣC13 ΣC22 ΣC23 ΣC33 ΣC44 ΣC55 ΣC66 ]

T . Similarly, the ODF co-

variance matrix elements are also included in ΣA
vec such that:

ΣA
vec = [ΣA1,1 ΣA2,2 ... ΣAk,k ΣA1,2 ... ΣA1,k ... ΣAk−1,1]

T . P̄ is the coefficient matrix

derived through the covariance relation in Eq. 5.16 to represent the ODF covariance

matrix, ΣA, in the vector form, ΣA
vec.

The inequality constraints are the same with the constraints in Eq. 5.7 and 5.8.

Eq. 5.8 can be modified for the new problem to include the constraints for all the

ODFs, therefore the constraint defined for the kth ODF in the previous problem (Eq.

5.9) is not required. The augmented system for inequality equations is given below:

qT (1×k−1) 0(1×n−(k−1))

−[I](k×k) z[I](k×k) 0(k×n−2k)


 µA

vec
(k×1)

ΣA
vec

(n−k×1)

 ≤
 1

0(k×1)


The objective of the problem is again to maximize the mean value of the yield

stress. Therefore the objective function derivation is very similar to the previous

problem. Since the unknowns of this application include the kth ODF the objective

function can directly be written as:

f = [−yT
(1×k) 01×n−k]

T (5.19)

The lower and upper bound vectors for this problem are then defined as: lb =

[0(1×2k) -∞(1×n−2k)] and ub = [ 1

qT (1×k)
+∞(1×n−k)]. Here the mean values of the

ODFs are bounded between 0 and 1
qi

(where i = 1, 2, ..., k). The on-diagonal covari-

ance terms can vary in [0,+∞). The off-diagonal covariance terms can be any real

value in (−∞,+∞).
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5.2.2 Optimization problem and results

The mathematical definition of the optimization problem is given below:

max µσy (5.20)

s = (µA,ΣA) (5.21)

The optimization problem does not have any global design constraint this time,

and the objective function is directly dependent on the optimization variables which

are the unknowns of the LP problem. It is assumed that the stiffness parameters have

some uncertainty around their mean values, and the mean values are obtained from

the random texture design. It is also assumed that the stiffness covariance matrix is

provided initially. The stochastic optimization problem is solved directly as an LP

problem since global sampling is not required for this unconstrained problem. The op-

timum value of the objective function, max µσy , is calculated as max µσy = 502.2867

MPa for z = 3.5 case. This problem has a unique solution due to the use of all

the elements in ODF and stiffness covariance matrices. Even though there are some

other ODF solutions which can provide the same objective function value these solu-

tions do not lead to the same stiffness covariance matrix. The unique ODF solution

changes slightly when the problem is solved with different z values but all cases imply

very similar textures. The initially provided probability distributions of the stiffness

parameters were generated by assuming variations around a random texture design.

Therefore the mean ODF values, which are calculated with the presented analytical

formulation, are expected to correspond to similar textures, and eventually converge

to the random texture. Fig. 5.5 shows the mean ODF solutions with different z

values and random texture ODFs (The ODFs are the same in a random texture.).

According to Fig. 5.5, all the ODF solutions provide very similar textures to random

texture, however, starting with z = 3.5 case the ODF solutions converge even more
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to the random texture. The effect of z parameter is also investigated for maximum

yield stress in Fig. 5.6. The LP solutions with various z values are not compared

to the MCS solution due to the uniqueness of the solution. According to Fig. 5.6,

z = 3.5 and z = 5 cases provide similar variations. The variations in these cases can

be considered sufficient for a reliable design since the ODFs converge to the expected

values.

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

z = 0               z = 1              z = 2              z = 3.5             z = 5          random     

Figure 5.5: Comparison of ODF mean values with random texture
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Figure 5.6: Yield stress distributions of the optimum microstructure design with
varying z values in the analytical solution
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We already saw in the previous chapters that the deterministic optimization prob-

lem results in multiple solutions due to the null space of the coefficient matrix. The

stochastic optimization problem can also be understood in this context. The PDF of

the ODF that results in a given set of properties is non–unique. There are several

solutions to the mean value of the ODF that can result in the desired set of properties.

In the formulation above, we aim to identify the Gaussian PDF around these mean

solutions that will lead to the desired range of properties. However, the problem of

maximizing the yield stress given a set of known properties (and its statistics) will

result in a much more constrained solution. In effect, we are looking at the null space

of the former problem and are identifying the small set of solutions that leads to the

highest yield strength. Again, we have solved for the statistics around one of these

solutions in this example.

5.3 Conclusion

Chapter 5 addresses a stochastic optimization problem which employs an analyti-

cal uncertainty modeling approach. The optimization problem is solved to maximize

the mean value of the yield stress of the Galfenol beam under vibration tuning con-

straints defined for the first torsion and bending natural frequencies. It is initially

assumed that the probability distributions of Young’s modulus and shear modulus

parameters (E1 and G12) were provided. The probability distributions of these in-

put parameters are assumed to be Gaussian with ±5 % variations around the mean

values. For vibration tuning constraints the random variables transformation rule

is applied to compute the probability distributions of the first torsion and bending

natural frequencies of the beam. In order to compute the probability distributions

of the ODF values the statistical properties of the compliances, S11 and S66, are first

computed using the same random variables transformation technique. It is assumed

that the probability distributions of the compliance parameters can be modeled with

101



Gaussian approach since the input uncertainties are small. Next, an inverse problem

is solved to identify the mean and variance values of the ODF parameters. The in-

verse design problem is solved by implementing an LP problem approach since the

equations to compute the compliance parameters and yield stress are linear in terms

of the ODFs. The values for the first k− 1 ODF parameters are computed, and then

the kth ODF is identified through the implementation of the volume fraction normal-

ization constraint to the LP problem. The stochastic optimization is performed on

this analytical model to find the optimal ODF solution which maximizes the mean

yield stress value. A stochastic optimization, which uses MCS method to model the

uncertainties, is also performed to test the analytical results. The analytical solution

for uncertainty modeling not only reduced the computational time requirement for

the optimization but also provided the same optimum parameters with very slight

differences in yield stress and frequency parameters compared to the MCS results.

A deterministic optimization is also performed to compare the optimum results with

and without the effect of uncertainties. The differences on the optimum solutions of

the deterministic and stochastic cases imply the necessity of considering uncertainties

when modeling the materials. The multiple optimal microstructure designs are also

identified by using the direct linear solver. Next, a parametric study is performed to

analyze the mathematical definition of the ODF variations in the LP problem and

its effect to the optimum result. Finally the LP solution algorithm is extended by

assuming that the ODFs are dependent. In this case, the mean values and covariance

elements of the stiffness parameters are assumed to be provided, and they are ob-

tained by considering variations around a random texture design. The LP problem is

solved to identify the mean values and covariance elements of the ODFs. The para-

metric study for the ODF variations shows that the optimum ODF solutions are very

similar to the random texture as expected. The future effort in this field may focus

on derivation of analytical techniques to represent joint probability distributions of
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nonlinear material properties.
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CHAPTER 6

Process-Texture-Property Identification

One of the important problems in engineering is the identification of the optimal

processing route of the materials with desired texture and/or material properties.

Manufacturability defines a natural constraint in design optimization problems, and

needs to be studied comprehensively in computational models. To this end, Chapter 6

focuses on the problem of identifying the optimal processing route/routes to produce

materials with optimized texture/properties. The motivation is to find out which of

the multiple optimum ODF solutions identified in Chapter 3 can be manufactured

using a set of deformation processes. The optimum ODF solutions are represented in

material plane using the mathematical form given in Eq. 3.6. The texture evolution

in a single/or a sequence of deformation processes can be shown using the ROMs

for the ODFs. In this chapter, the POD technique is used to characterize the ODF

evolution during different deformation processes. Each set of individual deformation

processes/or each set of a sequence of processes is associated with a separate ROM

representation generated with the POD technique. The POD of the deformation

process represents the ODF solutions in process plane. The ODF solutions in the

process plane are then projected to the material plane to minimize the differences

between the ODF solutions/or desired material property values in process and mate-

rial planes. This projection corresponds to an LP problem for matching the textures
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and/or desired material properties. Two approaches are implemented to the LP solu-

tion framework. The first case aims to minimize the difference between the textures

through minimization of the differences of the ODF values. The optimum processing

route is determined as the route which provides the minimum difference between the

ODF solutions in material and process planes. The second approach aims to minimize

the difference between the desired material properties. The material property values

can also be calculated in the process plane using the volume averaging equations with

the POD representation of the ODF values. The desired material property values in

the process plane are projected to the material plane where the optimum material

properties are previously obtained. The LP problem identifies the optimum process-

ing route to produce a material with desired material property values. In both cases

the LP solutions are identified for single deformation processes as well as a sequence

of deformation processes (including two or three deformation processes in sequence).

The summary of the two approaches (texture and material property matching) is

illustrated in Fig. 6.1.

The remainder of this chapter is organized as follows. Section 6.1 addresses the

ROM formulation to represent the texture evolution during deformation processes.

The LP problem definitions for texture and property matching approaches are pre-

sented in Section 6.2. The results for optimum processing routes are reported in

Section 6.3. A summary of the chapter is given in Section 6.4.

6.1 Reduced order model of the ODF

The discussion here follows the work in [76, 78, 79] where model reduction of

crystal plasticity was first introduced using the technique of POD. Model reduction

involves generation of basis functions for representing ODFs obtained from a process

path. Using such basis functions, any ODF, A(r, t), from the time-history of ODF

evolution in a given process can be approximated as follows:
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Figure 6.1: Optimum deformation process identification as an LP problem

A(r, t) =
b∑

m=1

am(t)φm(r) (6.1)

In the above equation φm represents ‘b’ basis functions (independent of time)

and am(t) denotes the corresponding time-dependent coefficients. Once such basis

functions φm are computed, time-dependent coefficients can be used to reconstruct

the textures arising from the process path. Readers are referred to [78] where texture

evolution is computed by using the Eq. 6.1. Texture evolution can also be computed

across a set of extrapolatory regimes of the process (i.e. conditions deviating from

those used to generate the basis functions) using the same set of basis functions.

The ‘method of snapshots’ is an efficient technique of obtaining basis functions

from an ensemble of ODF data, A(r, t)Ni=1, consisting of ODFs at various times during

texture evolution over a deformation path. Here, the basis functions φ take the

form [78]:
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φm =
N∑
i=1

umi A
i (6.2)

where Ai represent textures from the ensemble, and umi is determined by solving

the following linear eigenvalue problem:

CU = ΛU (6.3)

where C is the spatial correlation matrix defined as:

Cij =
1

N

∫
R
Ai(r)Aj(r)dv (6.4)

Λ and U comprise of the eigenvalues and the eigenvectors of the system, respec-

tively. To determine a suitable basis size, b, one must ensure that the eigen-modes

selected capture as much ‘system energy’ as possible. This is possible by selecting

the basis functions that correspond to the largest eigenvalues in Λ. Once the modes

have been evaluated, the optimal basis is generated from Eq. 6.2. The coefficients, a,

corresponding to any ODF in a deformation path can be retrieved from:

am =

∫
R
A(r)φmdv (6.5)

The space of reduced coefficients is called the process plane and satisfies the nor-

malization and positiveness constraints of the ODF. The ODFs in a deformation path

follow a curve in the space of reduced coefficients, a. The success of the technique

for representing texture evolution was shown in [76, 78, 80] where just three basis

functions were found to be sufficient for capturing most features of the evolving ODF

in any given process or set of processes. Basis functions are obtained for different

processing modes using a 448 element discretization of the fundamental region. Basis

used in the examples consist of modes generated from an ensemble of data obtained
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for tension, compression, shear and rotation processes up to time of 0.1 s when de-

formed with a strain rate of 1 s−1 using a time step of ∆t = 0.01 s. The basis depends

upon the initial texture A(r, t = 0) that is used in the solution of ODF evolution.

However, the strength of POD analysis used here lies in the fact that the reduced

basis works in extrapolatory modes to represent texturing under various deviations in

the initial texture. As a result, ODFs resulting from processing to a different strain

or processing a starting texture that deviates from the one used to build the basis are

well approximated using the same set of basis functions.

Figure 6.2: Basis functions of different deformation processes

Different basis functions are generated to simulate different process sequences [80].

Snapshots, which show the ODF values at different time steps, are taken to generate

the POD representations. One POD representation is used to represent the texture

evolution during a sequence of processes with two and three deformation processes.

In this case, the initial texture of the second and third deformation processes are iden-

tified with the crystal plasticity simulations. The reduced models used to represent
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the deformation paths are different, for example, when modeling tension process on

a rolled specimen compared to a process of tension acting on an annealed specimen

with random texture. The basis functions for the tension, plane strain compression

and shear processes are shown in Fig. 6.2. The process planes for these processes

are shown in Fig. 6.3 colored by a property (yield stress of the cantilever Galfenol

beam). The POD representations of each of the deformation processes shown in Fig.

6.2 are developed using 10 snapshots with 3 basis functions. In addition to these de-

formation processes, xy-rotation, xz-rotation and yz-rotation deformation processes

are also considered to generate the POD representations of sequential deformation

processes. However, the inclusion of rotation processes is constrained in such a way

that it is assumed that the rotations cannot be the first deformation process, and a

rotation cannot be followed by any rotation.

Figure 6.3: Property closures of different deformation processes
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6.2 LP problem formulation for optimum deformation pro-

cess identification

The LP problems which are solved to identify the optimum deformation processing

route are categorized to two approaches. The first case identifies the deformation

process which provides the closest texture match to the optimum design. The second

approach finds the optimum deformation process which provides the closest values to

the optimum material properties. The problem of process identification is solved using

these two approaches by modeling the single or sequence of deformation processes

with the POD. The same vibration tuning problem for a cantilever Galfenol beam,

which is discussed in Chapter 3, is considered. The first LP problem is solved to

identify the optimum processing route to provide a material design as close as to one

of the multiple optimum designs of this Galfenol problem. The second LP problem

determines the optimum processing route which can provide material property values

as close as to the optimum values. The material properties considered in the LP

problem are the 9 stiffness coefficients of the orthotropic beam as well as the yield

stress.

6.2.1 Identification of the ODFs closest to an optimum ODF in the ma-

terial plane

Five different processes are considered in this work. The ODFs from these pro-

cesses are obtained using a specific macro-velocity gradient (L) in the crystal plastic-

ity solver [80] corresponding to these deformation processes. For example, the x–axis

tension process is based on the following velocity gradient [80]:

L = α1


1 0 0

0 −0.5 0

0 0 −0.5

 (6.6)
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The location of optimal ODFs on the material plane does not convey information

on how to realize such ODFs in practice. There may be several processing solutions

to this problem. Here, a particular processing path is chosen and checked if it can

closely produce one of the optimum textures. The optimum ODF from the material

plane is assumed to be given by a perturbation, r, to an ODF in the process plane.

The perturbation is minimized in some sense such that an ODF from the process

plane is as close as possible to the optimum ODF in the material plane. In this work,

the optimum ODFs on the material plane are the optimum ODF values found for

Galfenol vibration tuning problem in Chapter 3.

The optimum ODF in the process plane is written as Aopt =
∑b

m=1 amφm +

r > 0, where A =
∑b

m=1 amφm provides the closest solution in the basis φ and

r is the perturbation (or error) between the optimum ODF in the material plane

(Ai = A1 + λiVi) and the optimum ODF in the process plane. The normalization

constraint is given as qTAi = 1, and qTA = 1. The bound in the value of the

solution ODF from the given ODF, r0 ≥ 0, is minimized. The problem is posed

as min
a
r0 such that

∑b
m=1 amφm + r −

∑n
i=1 λiVi = A1. Positivity of the optimal

ODF dictates the constraints A ≥ 0 and Ai ≥ 0. In the solution procedure,

the basis (φm) and the error (r) are represented as a vector containing values at

independent nodes (set of nodes representing distinct orientations while accounting

for crystal symmetries). The ODFs in the process and material planes also require

the positivity constraints:
∑b

m=1 amφm ≥ 0 and A1 +
∑n

i=1 λiVi ≥ 0. The additional

constraint on the bound in the value of the solution ODF from the given ODF is

defined as |ri| ≤ r0 equivalent to pairs of linear inequalities: −ri − r0 ≤ 0 and

ri−r0 ≤ 0, i = 1, . . . , N , where N is the number of independent nodes. This problem

uses x = [r1, . . . , rN , λ1, . . . , λn, a1, . . . , ab, r0]
T as the variables to be identified. The

error (ri) from the nodal values of the optimum ODF is allowed to be of either sign.

The implementation of the augmented system to the LP problem is given in details
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below:

1. Equality Constraints

b∑
m=1

amφm + r −
n∑
i=1

λiVi = A1

qT (
b∑

m=1

amφm) = 1

qT (
n∑
i=1

λiVi) = 1− qTA1 (6.7)

Three basis functions φ1, φ2 and φ3 with corresponding coefficients a1, a2 and

a3 are used to fully represent the ODFs during a particular process.

2. Augmented System Combining the Equality Constraints

The unknowns in the LP tableau are then written as:

x = [r1, . . . , rN , λ1, . . . , λn, a1, a2, a3, r0]
T . Thus, the augmented system com-

bining the constraints in Eq. (6.7) can be written as Paugx = b where b =

[AT
1 , 1, 1− qTA1]T and:

[Paug] =


IN×N −V1 . . . −Vn φ1 φ2 φ3 0N×1

01×N 0 . . . 0 qTφ1 qTφ2 qTφ3 0

01×N qTV1 . . . qTVn 0 0 0 0


where IN×N is an N×N identity matrix. The notation of 0N×1 and 01×N

indicates row and column vectors of zeros respectively.

3. Inequality Constraints

Similar augmentations are performed for the inequality constraints for the prob-
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lem given as:

−ri − r0 ≤ 0

ri − r0 ≤ 0
b∑

m=1

amφm ≥ 0

A1 +
n∑
i=1

λiVi ≥ 0 (6.8)

4. Augmented System Combining the Inequality Constraints

The augmented system combining the constraints in Eq. (6.8) can be written

as Maugx ≤ c where c = [01×N , 01×N , 01×N , A
T
1 ]T , and each row of Maug

corresponds to the inequalities in Eq. (6.8) as indicated below:

[Maug] =



−IN×N 0 . . . 0 0 0 0 −1N×1

IN×N 0 . . . 0 0 0 0 −1N×1

0N×1 0 . . . 0 −φ1 −φ2 −φ3 0

0n×N −V1 . . . −Vn 0 0 0 0


The notation 1N×1 indicates a vector of ones. The objective is to minimize the

bound on the error r given by r0. The objective is given as fTx where:

f =

[
01×N 01×n 01×3 1

]T
5. Final LP Problem

Thus, the final LP problem reduces to the solution of the following problem:
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min
a
fTx satisfying the constraints

Paugx = b

Maugx ≤ c

6.2.2 Identification of the ODFs to obtain material properties closest to

a desired set of properties

Similar to the optimization problem described in Section 6.2.1 where the process

plane ODFs closest to the optimum ODFs in the material plane are identified, another

optimization problem can be posed where the objective is to identify the ODFs in

the process plane that closely reproduce a desired set of properties. The optimization

problem in this case is posed so as to identify the ODFs in the process plane whose

properties are closest to a desired set of properties in some sense. This approach is

beneficial since the optimum ODFs in the process plane will provide the closest match

to the desired property values produced by the optimum ODF solution in the material

plane. Even though the problem definition does not provide any control on the ODF

values of the material plane, there is still a good possibility of matching the textures in

the material and process planes due to matching multiple properties. The objective

is to minimize the bound (e0 ≥ 0) on the absolute value of error from a desired

property: min
a
e0 such that

∑b
m=1 p

Tφmam + pTe = d, where d is the desired set of

properties. The normalization constraint is given as
∑b

m=1 q
Tφmam = 1. Positivity

of the ODF dictates the constraint
∑b

m=1 φmam ≥ 0. Bound on the absolute value

of error is defined as |ei| ≤ e0. This is equivalent to pairs of linear inequalities:

−ei − e0 ≤ 0 and ei − e0 ≤ 0, where i = 1, . . . , np, where np denotes the number

of properties to be optimized. This problem uses x = [e1, . . . , enp , a1, . . . , ab, e0]
T as

the variable to be identified. The error, ei, is allowed to be of either sign. The
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initial desired properties are the design objective (yield stress) and design constraints

(natural frequencies) of the Galfenol vibration tuning optimization problem. The

computation of natural frequencies is not linear but it is dependent on the stiffness

values. Thus the stiffness parameters, which are calculated with averaging equations,

are considered as the representative linear quantities of the design constraints. So,

the final desired properties are selected as optimum values of the yield stress and

9 independent orthotropic stiffness elements of the vibration tuning problem. The

implementation of the augmented system to the LP problem is given in details below:

1. Equality Constraints

pT (
b∑

m=1

amφm + e) = d

qT
b∑

m=1

amφm = 1 (6.9)

Three basis functions φ1, φ2 and φ3 with corresponding coefficients a1, a2 and

a3 are used to fully represent the ODFs during a particular process.

2. Augmented System Combining the Equality Constraints

The unknowns in the LP tableau are then written as x = [e1, . . . , enp , a1, a2, a3, e0]
T .

Thus, the augmented system combining the constraints in Eq. (6.9) can be writ-

ten as Paugx = b where b = [d, 1]T and:

[Paug] =

 pT pTφ1 pTφ2 pTφ3 0

0T
np×1 qTφ1 qTφ2 qTφ3 0


3. Inequality Constraints

Similar augmentations are performed for the inequality constraints for the prob-
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lem given as:

−ei − e0 ≤ 0

ei − e0 ≤ 0
b∑

m=1

amφm ≥ 0 (6.10)

4. Augmented System Combining the Inequality Constraints

The augmented system combining the constraints in Eq. (6.10) can be written

as Maugx ≤ 0 where each row of Maug corresponds to the inequalities in

Eq. (6.10) as indicated below:

[Maug] =


−Inp×np 0np×1 0np×1 0np×1 −1np×1

Inp×np 0np×1 0np×1 0np×1 −1np×1

0np×np −φ1 −φ2 −φ3 0np×1


The objective is to minimize the bound on the error e given by e0. The objective

is given as fTx where:

f =

[
01×N 01×3 1

]T
5. Final LP Problem

Thus, the final LP problem reduces to the solution of the following problem:

min
a
fTx satisfying the constraints

Paugx = b

Maugx ≤ 0
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6.3 Results

This section reports the results for the optimum process identification problems

which are posed to find the closest texture and material properties using a single de-

formation process or a sequence of two or three deformation processes. The problems

are also implemented to a global optimization framework, which utilizes the NSGA-

II algorithm, to identify the optimum maximum strain rates of the processes. In

the cases where a sequence of deformation processes is considered the order of these

processes requires another optimization sub-problem, which is solved with a simple

integer optimization method through assigning different integer values to different

deformation processes.

6.3.1 Results for the closest ODF identification problem

The objective is to identify the location {a1, a2, a3} on the process plane which best

represents the optimum ODFs on the ‘material plane’ computed for the Galfenol beam

vibration tuning problem. Tension, plane strain compression and shear are selected

as the particular processes when optimizing for the single processes while additional

rotation deformation processes are also considered to identify the optimum route of

the sequential deformation processes. The basis functions are computed to represent

the ODF evolution in these processes. The augmented LP problem is solved for each

of these individual processes to identify the closest ODFs on each process plane to

the optimum ODFs on the material plane. The values of the objective functions of

the LP problems, min r0 and max σy, are compared for optimum single process and

optimum sequence of processes in Table 6.1. It should be noted that the optimum

ODF of the vibration tuning problem provided a yield stress value of 308.4456 MPa

as shown in Table 3.3, and the ODFs on the process plane are expected to provide a

close value to the optimum yield stress value.

The results in Table 6.1 indicate that the ODFs can provide similar values to the
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Table 6.1: LP problem results for ODF matching on material and process planes

Process number Process order r0 σy (MPa)
1 Tension 0.4689 300.0880
2 Compression - Tension 0.3802 299.2848
3 Tension - yz-Rotation - Tension 0.4249 299.6211

highest yield strength when a single or a sequence of deformation processes is applied.

The objective, min r0, shows the maximum error value among all the ODF value

differences in the process and material planes. Thus, the other error values are less

than the objective function value. Since the main objective of this section is to find the

best match for the optimal ODF, tension is the optimum single deformation process

to produce the desired texture owing to its smallest r0 value among all the single

deformation processes. The implementation of a sequence of deformation processes

increases the variability in texture, and hence the probability of matching. Therefore

the sequence of deformation processes provides smaller r0 values compared to the

single deformation process solutions. However, the error on the optimum objective

function values increases when a sequence of deformation processes is considered. The

reason of this is the fact that the LP problem here is posed to match the textures, and

it does not have any design criteria on the property matching. The optimum material

property value should be expected to be closer in the property matching approach

where the results will be reported in the next section. The closest microstructure

designs on the process plane with this approach (ODF matching) to the optimum

microstructure on the material plane are shown in Fig. 6.4. In Fig. 6.4, Rate

represents the optimum maximum strain rate parameter obtained with NSGA-II. The

microstructure design in Fig. 6.4 shows a similar ODF distribution pattern compared

to tension process basis functions in Fig. 6.2. Thus, this microstructure design via

tension deformation process ensures the possibility of manufacturing a very similar

ODF to one of the optimum solutions to the Galfenol beam vibration tuning problem.

118



Figure 6.4: Optimum microstructures on process planes identified with ODF matching
approach
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6.3.2 Results for the closest material properties identification problem

The problem is to identify the point on a process plane that best represents op-

timum ODFs in the material plane with desired stiffness properties (C11 = 281.5559

GPa, C12 = 137.3222 GPa, C13 = 139.5597 GPa, C22 = 296.9677 GPa, C23 = 124.1479

GPa, C33 = 294.7302 GPa, C44 = 70.3946 GPa, C55 = 85.8063 GPa, C66 = 94.2138

GPa) and yield stress (σy = 308.4456 MPa) of the optimum design. The objective

function of the LP problem is a measure of the maximum error between the desired

property values in the material and process planes. The problem is solved for sin-

gle and sequence of deformation processes. The optimum results for the objective

functions of the LP problems (min e0 and max σy) are shown in Table 6.2.

Table 6.2: LP Problem results for desired properties matching on material and process
planes

Process number Process order e0 σy (MPa)
1 xz-Shear 1.93388 309.0784
2 xz-Shear - xz-Shear 1.9336 308.6296
3 xy-Shear - yz-Rotation - xz-Shear 1.9213 308.4964

The selection of the optimum processing route, which provides the closest desired

material property values, does not depend on the minimum value of e0 this time

since the sensitivity of stiffness parameters to the problem objective is different, and

all e0 values are close to each other. The optimum process is chosen according to

the optimum yield stress value matching. According to this criterion, xz-Shear is

the optimum single process for this problem. The increase in variability in textures

with the introduction of the sequence of deformation processes also provides a better

match for the optimum yield stress value. However, all the results, including the

optimum single deformation process case, indicate a good match with the desired

property values compared to the results for the ODF matching problem in the pre-

vious section. This is because the optimum process identification problem for the
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optimum properties does not have any restriction on the texture, which leads to a

less complicated LP problem with less number of variables. Both ODF and prop-

erty matching LP problems are underdetermined problems due to the number of the

ODF values to represent the Galfenol problem. Therefore the use of less number of

variables leads to better solutions for the property matching problem. The difference

in problem definitions also leads to different optimum solutions for both approaches.

The closest microstructure designs on the process plane with this approach (property

matching) to the optimum microstructure on the material plane are shown in Fig 6.5.

In Fig. 6.5, Rate represents the optimum maximum strain rate parameter obtained

with NSGA-II.

6.4 Conclusion

In this chapter, an optimization methodology for processing route identification is

developed for structural problems with a set of macroscale engineering design objec-

tives. An approach to identify the microstructures which can be manufactured using

a known set of deformation processes is presented. The ODFs during a particular

deformation process or a sequence of deformation processes are represented using the

POD technique with method of snapshots. The optimum processing route is deter-

mined by minimizing the distance between any one of the optimum ODF solutions

on the material plane and the ODF values on the process plane using an augmented

linear solver. Another approach where the optimum set of material properties are

directly projected onto the process plane is also developed. The methods are demon-

strated on the application problem, which is previously discussed in Chapter 3 for the

vibration tuning of a Galfenol beam. The maximum strain rates of the deformation

processes are also optimized through the implementation of a genetic algorithm. An

integer based sub-optimization problem is solved to identify the optimum order of

the deformation processes for the sequential process optimization. The sequence of

121



Figure 6.5: Optimum microstructures on process planes identified with property
matching approach

deformation processes is observed to increase the variability in texture, and there-

fore leads to better matches in both approaches. However, the results in both cases
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provide good matches for the property matching problem compared to the texture

matching owing to the problem definition with less number of design variables.
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CHAPTER 7

Future Directions on Multi-Scale Modeling of

Microstructures

Prediction and control of texture evolution in a deformation process are important

for the purposes of material design. Some of the modeling efforts concentrate on dis-

crete aggregate models based on FE analysis [81, 82, 83, 84, 85]. However, some of the

other studies, model texture evolution by quantifying the microstructure with proba-

bility descriptors [38, 40, 77, 80]. The microstructure modeling in the present work is

also based on the quantification of the microstructure using a probabilistic descriptor,

ODF. The ODF representation is extremely compact in comparison to discretized mi-

crostructures used in CPFE, leading to significant speed up in microstructure analysis.

However, the ODF representation does not contain information about the local neigh-

borhood of crystals. Thus, equilibrium across grain boundaries cannot be captured

and a Taylor assumption [81], where all crystals deform identically, is used. Such

a constraint leads to a stiff upper bound stress response, textures that are sharper

than measured and texture components that cannot be captured [8]. To improve

upon the microstructure description, higher order descriptors that can capture the

statistics of crystal neighborhood are required [86, 87, 88, 89, 90]. The next level of

descriptors, the two-point orientation correlation function (OCF), F (g′, g, r), gives

the probability density of finding orientations g′ and g at the end points of a randomly
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placed vector, r, within the microstructure. This descriptor contains neighborhood

information and holds the promise of modeling grain equilibrium, thereby relaxing the

Taylor assumption. Representations of the OCF in the form of global approximations

(exponentially decaying functions based on the Corson’s model [91, 92] and Fourier

space representations [93]) and local approximations (based on FEs, [94]) have been

studied in the past. However, the two-point measure is high dimensional (e.g. OCF

for a 3D polycrystal is 9-dimensional) and there is still a significant need for reduced

representations. Considerable improvements in OCF representation can be realized

by including the physics of deformation processes. For example, in viscoplastic self

consistent (VPSC) schemes, a Green’s function models the interaction between crys-

tals [84, 95]. The function decays with distance and can be used to estimate a cut-off

radius beyond which correlation information is redundant [94]. However, this radius

may encompass several grains and storage requirements are still significant. In this

chapter, a two-point OCF type of probabilistic technique, the NNOCF, is exercised

to capture the higher order features of the texture using the input of time snapshots

taken from the phase field simulations of a α-Ti material. The NNOCF is a condi-

tional OCF truncated to the nearest neighbors. The descriptor is extremely compact

and it can be used to locally enforce equilibrium (in an average sense) for each ori-

entation using a novel finite differencing scheme. In this study, only deformation

processes are studied. Another issue is to model heat treatment processes, which

are traditionally done using phase field methods. ODF descriptor can be mapped

to phase field outputs. There are some similar studies in literature focusing on the

quantification of the microstructure with two-point statistics using CPFE and phase

field simulations. For example, Paulson et. al [96] analyzed the two-point statistics of

the microstructures through implementing the Principal Component Analysis (PCA)

scheme to generate the reduced basis to represent the CPFE simulations of α-Ti ma-

terial. Yabansu et. al [97] extended this study by applying the PCA to extract the
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microstructural data from the phase field simulations. Considering the computation-

ally expensive nature of the phase field simulations as well as the large variations

in the microstructural texture during the simulations, the ROM techniques, such as

PCA or POD, are not found to be efficient in the application problem of this study

discussed in Section 7.1. The first reason is that neither one-point nor two-point

statistics are completely accurate to represent the changes in all the grain structures

over time (the snapshots used in this work usually have over 800 grains). Another

reason is that the ROM techniques require a great amount of snapshots to accurately

generate a surrogate for the actual texture evolution. The surrogate model can be

generated using less number of snapshots either by satisfying a lower accuracy level,

or if the changes in the microstructural texture are small. However, phase field sim-

ulations can model significant changes in different grain structures, and therefore the

PCA representations are not computationally efficient. In this section, we present a

preliminary study of using NNOCF to model phase field outputs. Here, the ODF and

NNOCF values are calculated using 9 discrete snapshots, and the overall stress-strain

curve of the α-Ti material is predicted using these discrete snapshots, and compared

to the FE results. The future focus should be on implementation of a multi-fidelity

modeling approach to represent the microstructure (inputting experimental data or

phase field simulations) using different techniques depending on the sensitivity level.

Considering the requirement for modeling the epistemic uncertainties introduced by

the use of the point statistical methods to quantify the microstructure, multi-fidelity

modeling will be beneficial in large variety of applications in ICME.

Another important future topic in materials engineering is multi-scale modeling

of composite materials. The microstructure modeling methodology discussed in this

work has particularly applied to the design problems with metals and metallic alloys.

However, the extension of these techniques to the modeling and design of composite

materials is important considering the growing use of composites in different areas
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including aircrafts. Therefore the multi-scale modeling and design optimization of

composite materials using the probabilistic descriptor based approaches are suggested

as a research direction which should be pursued in future. The multi-scale model-

ing can be extended in future to study the atomistic level features, which will be

beneficial to the design of nano-composites. The design framework can employ the

proposed multi-fidelity approach which implements one-point or two-point statistics

interchangeably to satisfy the accuracy and computational efficiency expectations.

The modeling of uncertainties through the multi-scale analysis is also necessary to

satisfy the performance needs of engineering structures. The analytical UQ algorithm,

developed in this work, can be used to study the quantification and propagation of

the uncertainties in composite materials. However, this methodology can further be

advanced, or some numerical techniques can be implemented to compute the uncer-

tainty propagation for more complex design criteria. The ultimate goal for future

research in multi-scale design of materials should focus on automated 3D multi-scale

modeling, design and optimization strategies for different materials (such as metals,

metallic alloys, composites, ceramics, etc.) through the mixed use of probabilistic

descriptor based approaches and FE by accounting for aleatoric and epistemic un-

certainties. The proposed future research areas are discussed in more details in the

following sections.

7.1 Higher order probabilistic features and multi-fidelity de-

sign approach

The accuracy needs for challenging material design problems brings about another

question: which modeling algorithm to choose? Not only the accuracy expectation

but also the computational time limitations have a significant effect on the selection

of the appropriate solution strategy. One example application for this accuracy need
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can be the modeling of microstructural features after an advanced manufacturing

technique is applied to the material. The deformation processes, which were modeled

in Chapter 6, are classical techniques. Going beyond these classical manufacturing

techniques one may need to use more advanced algorithms to capture the features of

the microstructural texture better. An example EBSD data, which is taken after an

additive manufacturing technique, known as Laser Engineered Net Shaping (LENS),

is applied to a representative microstructure, is shown in Fig. 7.1 [98]:

Figure 7.1: A representative EBSD plot for the LENS microstructure [98]

As represented by Fig. 7.1, the EBSD data, which indicates the texture infor-

mation of the microstructure after an additive manufacturing technique is applied,

is more complicated than the EBSD data previously illustrated in Chapter 4. The

quantification of the microstructural texture here needs a more accurate representa-

tion for the properties. Here, one higher order approach can be the NNOCF. The

NNOCF, F (g′|(g, r)), gives the probability density of occurrence of an orientation g′

at the end point of a vector r (of one pixel length) emanating from a given orientation

g. Fig. 7.2 [99] illustrates the NNOCF calculation scheme for a microstructure. The

NNOCF is also represented in the FE discretized fundamental region (called mesh

Mg′|g,r) in Fig. 7.2 [99]. In a 2D model of the microstructure, four such meshes are
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needed at every node point in Mg corresponding to the four nearest neighbor pixels.
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Figure 7.2: The NNOCF sampling from a microstructure (color coded based on grain
orientation). The FE mesh Mg represents the volume density of each orientation
(color). The volume density of each orientation (color) is represented by the NNOCF
mesh Mg′|gr attached to a node g in mesh Mg for the nearest neighbor pixels of g [99]

The NNOCF and ODF satisfy the following conservation equations at all times

during deformation respectively:

∫
F (g′|(g, r))dg′ = 1, F (g′|(g, r))dg′ ≥ 0 (7.1)

∫
A(g′)dg′ = 1, A(g′) ≥ 0 (7.2)

In addition to the above constraints, the orientation space corresponding to all

possible g’s must satisfy the crystallographic symmetries of the chosen system and

the switching symmetry of the two-point measure, given as:

F (g|(g′, r))P (r|g′)A(g′) = F (g′|(g, r))P (r|g)A(g) (7.3)
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where P (r|g) gives the probability density of occurrence of vector r from a location

with orientation g, which accounts for the finite size of the sampled microstructure

[94]. The details about the NNOCF approach such as the algorithm, probability

update and constitutive modeling can be found in details in [12, 17, 81, 82, 100, 101,

102, 103, 104, 105, 106, 107, 108, 109, 110]. An example application is discussed here

to compare the accuracy of the NNOCF approach to the ODF and FE techniques.

For this application, the time snapshots showing the temporal evolution of the α-Ti

microstructure are taken during the phase field simulations for cylindrical grains. The

ODF and NNOCF representations are shown for each snapshot of each case. For this

introductory study 10 independent ODF values and the corresponding 10×10 NNOCF

matrix are used to model the texture. The evolution of the grains for different cases

is illustrated through the evolution of the values in the ODF vector and NNOCF

matrix. The global stress-strain curve is also computed for different grain structures

using the Taylor assumption for the ODF and NNOCF representations, and FE to

compare the results of the probabilistic modeling schemes.

7.1.1 Cylindirical grains

The evolution of the microstructure having cylindrical grain structure during the

phase field simulations is shown in Fig. 7.3 and 7.4.

The ODF and NNOCF snapshots, shown in Fig. 7.3 and 7.4, depict similar

features for microstructures evolution during the phase field simulations.

7.1.2 Discussion

The change in grain structure also affects the global material parameters. This

effect is analyzed by calculating the global stress-strain curve of the microstructure

during the phase field simulations. The stress-strain curve is calculated for the final

time snapshot using the ODF, NNOCF and FE representations in Fig. 7.5. The
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Figure 7.3: The ODF representation for the texture evolution of a microstructure
with cylindrical grains during phase field simulation
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Figure 7.4: The NNOCF representation for the texture evolution of a microstructure
with cylindrical grains during phase field simulation (only the cross-diagonal terms
in the NNOCF matrix)

methods are available in another paper [99], and only the effect of adding neighbor-

hood information is shown. FE analysis is taken to be the ground truth, as it models

the complete microstructure.
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Figure 7.5: The stress-strain curves predicted using the ODF, NNOCF and FE rep-
resentations

The NNOCF representation includes higher order terms compared to the ODF

approach to model the correlations. Therefore it is expected to be more accurate (as

indicated in Fig. 7.5) in terms of calculating properties. Hence, it should be more

preferable to the ODF modeling when the major concern is the accuracy. On the

other hand, one needs to implement the classical FE to investigate the grain shape

effects more realistically, especially in grain level. However, not only the classical FE

but also the higher order probabilistic descriptors, such as the NNOCF, is at least one

order of magnitude slower than the ODF approach. Acknowledging the satisfactory

results of the ODF it is still the most preferable technique in many applications as a

result of its computational efficiency. Considering the high performance computing

applications which are required for materials design, such as optimization and UQ,

one better approach that should be implemented in future, is to use these lower and

higher order models interchangeably to balance the needs for accuracy and compu-

tational time efficiency. This methodology is known as ”multi-fidelity modeling”,

and it has been studied extensively in different disciplines such as fluid mechanics
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[111, 112, 113] and solid mechanics [114, 115, 116, 117]. However, its application

area has not been extended to materials modeling, especially to microstructural level.

Considering the most common application areas of multi-fidelity modeling, which

are observed as UQ, optimization and optimization under uncertainty respectively

[118], it is a certain requirement to implement this modeling approach to materials

design problems to satisfy the accuracy and computational time constraints at the

same time. A detailed review of the multi-fidelity modeling techniques is presented

in [118]. They observed that the multi-fidelity modeling approach in solid mechanics

problems usually considers the analytical techniques as the low fidelity approach. One

example can be found in [119], where the authors addresses multi-fidelity modeling

of interfacial load transfer for discontinuously reinforced polymer/carbon nano com-

posites. The low fidelity model is chosen as a simple analytical technique whereas

a 3D FE analysis is used as the high-fidelity approach. However, the multi-fidelity

modeling approach can be used for more than two fidelity levels [113, 120, 121, 122].

Therefore the lower fidelity approaches do not necessarily represent an inaccurate

approximation according to the definition given in [123], where it is defined as the

model with outputs less accurate than the higher fidelity models. In the view of such

information, the ODF, NNOCF and FE approaches can be defined using different

fidelity levels. In high performance computing applications, such as optimization and

UQ, the most appropriate fidelity level can be selected depending on the sensitivity

of the design parameters by using the numerical techniques which are available for

multi-fidelity analysis. The implementation of the multi-fidelity modeling strategy to

the materials design problems will enable the use of higher order modeling techniques

when they are actually needed as well as elimination of the redundant computations.
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7.2 Multi-scale modeling of composite materials

The multi-scale modeling methodology presented in this study focuses on appli-

cations for metals and metallic alloys. However, an important future direction should

include the extension of the same computational scheme to the modeling of composite

materials. The multi-scale modeling and optimization starting from the microstruc-

tural features allows the control of macro engineering material properties. It can lead

to design of engineering structures having heterogeneous material parameters depend-

ing on the application and performance needs. This concept also works in harmony

with the new generation additive manufacturing techniques. Considering the growing

application areas of the composite materials there is a definite need for implementing

the multi-scale modeling methodology for their design. The same probabilistic de-

scriptor based modeling approach can also be extended to the smaller length scales

such as molecular or atomistic level. This will enable the design of nano-composites

and multi-functional materials through optimization of the atomistic structure. An

example of the equivalence of our approach for nano-composites is shown in Fig. 7.6.

Even though the multi-scale modeling of polymer and epoxy-based composites

has been studied in literature [124, 125, 126, 127, 128, 129, 130] using different nu-

merical techniques, a design methodology, that is similar to the one presented in this

study, has not been integrated to improve the material performance for engineering

applications. The implementation of this multi-scale optimization approach to com-

posite materials design will enhance the structural performance of many aerospace

applications.
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