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“Our	deepest	fear	is	not	that	we	are	inadequate.	Our	deepest	fear	is	that	we	are	
powerful	beyond	measure.	It	is	our	light,	not	our	darkness	that	most	frightens	us.	We	
ask	ourselves,	Who	am	I	to	be	brilliant,	gorgeous,	talented,	fabulous?	Actually,	who	are	
you	not	to	be?	You	are	a	child	of	God.	Your	playing	small	does	not	serve	the	world.	
There	is	nothing	enlightened	about	shrinking	so	that	other	people	won't	feel	insecure	
around	you.	We	are	all	meant	to	shine,	as	children	do.	We	were	born	to	make	manifest	
the	glory	of	God	that	is	within	us.	It's	not	just	in	some	of	us;	it's	in	everyone.	And	as	we	
let	our	own	light	shine,	we	unconsciously	give	other	people	permission	to	do	the	same.	
As	we	are	liberated	from	our	own	fear,	our	presence	automatically	liberates	others.”	

Marianne	Williamson	
	
	
	
“We	pass	through	this	world	but	once.	Few	tragedies	can	be	more	extensive	than	the	
stunting	of	life,	few	injustices	deeper	than	the	denial	of	an	opportunity	to	strive	or	even	
to	hope,	by	a	limit	imposed	from	without,	but	falsely	identified	as	lying	within.”	

Stephen	Jay	Gould	
	
	
	

“May	love	swell	everywhere	today.	May	it	invite	you.	May	it	comfort	you.	May	it	
surprise	you.	May	it	overwhelm	you.	May	it	unmoor	you.	May	it	ignite	you.	May	it	
surround	you.	May	it	incite	you.	May	it	empower	you.	May	it	envelope	you.	May	it	
soothe	you.	May	it	consume	you.	May	you	face	it.	Boldly.	Humbly.	Desperately.”	

Jason	Harris	
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Abstract 

Amphetamine (AMPH) and its congeners are the second most widely abused 

drugs globally and their continued overuse comes with a high economic, health and social 

cost. Yet after decades of research, an effective treatment for AMPH abuse and addiction 

remains elusive. To tackle this unmet need, we have taken a step back to re-examine and 

further elucidate the mediators of AMPH reinforcement in hopes of finding novel targets 

for drug development. The reinforcing properties of AMPH are believed to stem from its 

reversal of the dopamine transporter (DAT), which greatly increases extracellular 

dopamine levels in the brain. Protein kinase C (PKC) is a major mediator of DAT 

localization and activity, and PKC activation facilitates AMPH-stimulated dopamine 

release. Inhibiting PKC attenuates the neurochemical and behavioral effects of AMPH. 

Therefore PKC inhibitors could be an appropriate pharmacological treatment for AMPH 

abuse and addiction.  

In pursuit of a blood-brain barrier permeant PKC inhibitor, we identified 

tamoxifen, a drug commonly used to prevent the recurrence of breast cancer, as a 

promising candidate. In fact, tamoxifen stands as the only validated CNS-permeant PKC 

inhibitor to date. Tamoxifen does act on other molecular targets, including the estrogen 

receptor (ER), and its promiscuity makes it an unattractive contender for AMPH abuse 

treatment. Nonetheless, tamoxifen has been the object of many structure-activity 

relationship studies and we have used the information from these investigations to make a 



	 x	

new generation of selective CNS permeant PKC inhibitors based on the tamoxifen 

scaffold. 

I evaluated the actions of these tamoxifen analogues at PKC and ER, in hopes of 

finding compounds with increased selectivity for PKC inhibition and reduced ER affinity 

compared to tamoxifen. This led me to our lead compound, 6c, which asymmetrically 

modulates DAT functioning in in vitro rat models. Specifically, 6c more potently blocks 

dopamine efflux compared to uptake. I demonstrated that 6c does not elicit these effects 

on dopamine transport by altering DAT levels or binding near the dopamine substrate 

site. Significantly, as predicted, 6c crosses the blood-brain barrier and potently inhibits 

striatal PKC activity in vivo. I also illustrate that 6c has a direct effect on PKC and can 

disrupt PKC conformational changes without having effects on PKC translocation. 

Peripheral administration of the compound leads to significant decreases in AMPH-

induced dopamine release, hyperlocomotion and reinforcement in vivo, predicting 

therapeutic effectiveness of 6c. Finally, I demonstrate that the in vivo effects of 6c are not 

due to its action on other closely related kinases that regulate DAT function. Together, 

the results from my thesis work highlight the potential of repurposing the tamoxifen 

scaffold to create new CNS-permeant PKC inhibitors and provide a foundation for 

developing therapeutics to treat AMPH addiction. 
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Chapter 1. Introduction 

	
Drug addiction is a chronic relapsing disorder, characterized by uncontrolled, 

compulsive, and harm-inducing drug consumption (Herman and Roberto, 2015; Nestler, 

2004). It represents a significant global burden due to the loss of productivity, health care 

costs and criminal justice expenses linked to the disorder. In the US alone, addiction to 

illicit drugs is estimated to cost more than $600 billion annually (Herman et al, 2015). 

My thesis focuses on the abused stimulant amphetamine (AMPH), the prototype for a 

group of structurally and pharmacologically similar compounds called “AMPH-like 

stimulants” or “AMPHs”. AMPHs are the second most widely abused drug in the world, 

falling right behind cannabis (UNODC, 2012).  

Behavioral therapies serve as the primary intervention mechanism to help 

individuals battling AMPH abuse and addiction. Unfortunately, these therapies provide 

limited benefits and to date, there are no therapeutics available to treat these patients 

(Vocci and Montoya, 2009). It is therefore imperative that more research be done to 

further understand the mechanism of action of AMPHs in an effort to unveil druggable 

targets that contribute to AMPH-type stimulant abuse. My thesis work aims to address 

this unmet need and although centered on AMPH, I believe the results from this project 

will also apply to its congeners.  
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History of AMPH 

AMPH is a well-known stimulant and some of its physiological effects include 

increased activity, euphoria and stereotypic behaviors such as rocking and pacing. Many 

historical accounts of AMPH begin in 1887, when the drug was first synthesized by the 

Romanian chemist, Lazar Edelman, in Germany. However, the clinical beginnings of 

AMPH are tied to the history of the structurally similar compound, ephedrine. Traditional 

Chinese medicine has employed the plant-derived stimulant ephedra (ma huang) for the 

treatment of asthma and the common cold for over 5000 years (Greene et al, 2008). The 

pharmacological effects of the preparation are mainly credited to the alkaloids ephedrine 

and pseudoephedrine. By the 1920s the sympathomimetic actions of ephedrine were well 

known in medicine and it was successfully marketed in the United States and Europe as a 

decongestant and asthma-relieving therapeutic. In a systematic search for novel 

sympathomimetics that were more efficacious and more cheaply synthesized than 

ephedrine, the American chemist, Gordon Alles, independently resynthesized AMPH. 

AMPH finally entered the Western market in the form of an inhaler to treat nasal 

congestion in 1932 (Greene et al, 2008; Heal et al, 2013). 

By World War II, the drug gained much popularity as a means to promote 

wakefulness and boost performance of pilots and other servicemen. As the therapeutic 

uses for AMPH increased, there was a growing awareness of its misuse and abuse among 

consumers. By 1959, AMPH inhalers were banned by the Food and Drug administration 

(FDA) as AMPH abuse became rampant. There was also an explosion in the production 

of AMPH congeners, namely methamphetamine and methylenedioxymeth-amphetamine 

(MDMA), for recreational purposes, and the illicit use of AMPH continued through the 
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decades (Berman et al, 2008; Greene et al, 2008; Maxwell and Rutkowski, 2008). At low 

doses, AMPH remains FDA approved for the treatment of attention-deficit/hyperactivity 

disorder (ADHD) and narcolepsy. However, as a Schedule II drug, it is recommended 

that the medical use of AMPH be tightly controlled due to its abuse potential (Berman et 

al, 2008). 

The abuse of AMPH and its congeners has placed an enormous weight on our 

psychiatric and medical resources (Brackins et al, 2011). AMPH overuse is known to 

precipitate psychosis or mood disorders. Early studies in which healthy patients were 

given AMPH in consecutively higher doses showed that AMPH could elicit acute 

psychosis in these patients and the effects were blocked using antipsychotic drugs 

(Espelin and Done, 1968; Klawans, 1968). The hyperactivity resulting from AMPH is 

used to model mania in animal studies. Other detrimental side effects of AMPH include 

hyperthermia, nephrotoxicity, cardiotoxicity and hepatotoxicity (Bramness et al, 2012; 

Carvalho et al, 2012). Strikingly, emergency department visits related to ADHD 

stimulant medications increased by over 200% between 2005 and 2010 (Substance Abuse 

and Mental Health Services Administration, 2013).  

Mechanism of action of AMPH 

AMPHs are all β-phenyl-ethylamine derivatives that structurally resemble 

catecholamine neurotransmitters, see Figure 1.1 for comparison to dopamine (Heal et al, 

2013). Their close resemblance to these monoamines led to the idea that AMPHs act as a 

substrate for plasmalemmal monoamine re-uptake transporters (norepinephrine 

transporter; NET, serotonin transporter; SERT or dopamine transporter; DAT) that can 

provide an entry for the drugs into the presynaptic neuronal cytosol. The primary role of 
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these transporters is to clear their respective monoamines from the synapse after 

exocytotic release. Therefore by acting as a substrate at the transporters, AMPH 

competitively blocks monoamine reuptake, and consequently increases synaptic 

monoamine levels.  

	

Figure 1.1. The structure of the catecholamine dopamine and some of its congeners. 
The common structural motif is emphasized by the bold blue outline (Fleckenstein et al, 2007). 

 

 In the presence of a newly synthesized pool of substrates at the cytoplasmic face 

of monoamine transporters, AMPH also elicits the reverse transport or efflux of 

catecholamines from the cytosol into the synapse (Chiueh and Moore, 1975; Parker and 

Cubeddu, 1986). Specifically, once bound to the outward-facing conformation of the 

transporters, AMPH is co-transported with sodium and chloride into the cytosol. The 

resulting rise in intracellular sodium promotes the reverse transport of endogenous 

substrates. This change in the intracellular sodium levels is crucial for substrate efflux 

and this is exemplified by the fact that Na+/K+-ATPase blockers, such as ouabain or 

monensin (dissipates the sodium gradient), can lead to monoamine efflux in the absence 

of AMPH (Liang and Rutledge, 1982; Raiteri et al, 1978; Scholze et al, 2000; Sitte et al, 
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2000). Some of the early evidence pointing to the importance of plasmalemmal 

transporters to this process came from Raiteri and colleagues, where the group showed 

that AMPH-induced dopamine release was blocked by the dopamine reuptake inhibitor, 

nomifensine (Raiteri et al, 1979). Relatedly, it was later shown that AMPH-induced 

increases in extracellular dopamine was absent in striatal slices from mice lacking the 

dopamine transporter (Jones et al, 1998).   

 There are also other mechanisms that are believed to contribute to AMPH-

stimulated monoamine efflux. If not degraded, cytosolic monoamines are taken up into 

vesicles by the vesicular monoamine transporter (VMAT) for storage until an action 

potential prompts their release. AMPH binds to VMAT with tighter affinity than the 

monoamines (excluding serotonin) and hence blocks the monoamine transport into the 

vesicles (Gonzalez et al, 1994). Additionally, according to the weak base hypothesis, 

AMPH (pKa 9.9) alkalinizes the vesicles once taken up and disrupts the proton gradient 

required for monoamine storage (Sulzer and Rayport, 1990). Recent work employing 

optical methods in Drosophila brain further proves AMPH disrupts the vesicular pH 

gradient and vesicular contents important for monoamine storage (Freyberg et al, 2016). 

Specifically, fluorescent sensors showed that AMPH redistributes vesicular contents in 

addition to reducing H+ levels in the vesicles (Freyberg et al, 2016). However, the need 

for VMAT in AMPH action has been debated, with many conflicting results. 

Additionally, using cellular models lacking VMAT, our group and others have shown 

that this transporter is not required for AMPH-stimulated dopamine release (Fon et al, 

1997; Kantor et al, 2001; Pifl et al, 1995).    
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 There is also a less recognized notion that AMPHs may also serve as competitive 

inhibitors of catecholamine metabolizing enzyme monoamine oxidase (MAO), leading to 

lower rates of amine metabolism. It is considered at most a weak MAO inhibitor in vitro 

and at high doses it may act as a competitive MAO type A inhibitor in vivo (Mantle et al, 

1976). The presence of an α-methyl group on the AMPH molecule prevents its oxidation 

by the enzyme (Carvalho et al, 2012). The blockade of VMAT and inhibition of MAO 

are both believed to lead to increases in cytosolic dopamine and ultimately monoamine 

efflux.  

 In summary, through these various mechanisms (however large or small each 

contribution), AMPHs lead to a significant, action potential-independent, increase in the 

extracellular concentration of dopamine, norepinephrine and serotonin when 

administered. This is depicted in Figure 1.2, using the dopamine transporter as an 

example. 

	

Figure 1.2. Actions of AMPH at the dopaminergic terminal.  
As a substrate of the catecholamine transporter (in this case DAT), AMPH is transported into the cytosol. Through 
various mechanisms, including competitively blocking dopamine uptake at the vesicle, AMPH increases cytosolic 
dopamine. The cytosolic dopamine is then transported out of the terminal via the AMPH-induced reversal in transporter 
direction (Lüscher, 2012). 
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Addictive liability  

 As mentioned, the actions of AMPHs on the monoamine transporters are generally 

non-specific and the elevation of norepinephrine, serotonin and dopamine all have 

various effects on the mood and alertness of the consumer. However, the reinforcing 

effects of AMPHs have been directly linked to its elevation of extracellular dopamine 

concentrations and subsequently, the lengthening of DA receptor signaling along the 

reward circuit. This is also a trait of other drugs of abuse such as opiates, ethanol, 

nicotine and cocaine. In 1988, Di Chiara and Imperato demonstrated in freely moving 

Sprague-Dawley rats, that drugs abused by humans increased synaptic dopamine levels in 

the mesolimbic system (Di Chiara and Imperato, 1988). Drugs that do not carry an abuse 

liability such as imipramine and diphenhydramine failed to alter the extracellular 

dopamine levels in the same experimental setup.  

 Therefore to create effective treatments for AMPH abuse, we must consider the 

life cycle of dopamine and the various regulators of extracellular dopamine levels for 

clues of novel druggable targets that can prevent AMPH abuse. 

Dopamine 

 Having major central and peripheral actions, dopamine has gained much attention 

since the 1950s when Arvid Carlsson demonstrated it was a bona fide neurotransmitter 

and not just a precursor to norepinephrine (Carlsson, 1993). Peripherally, the 

catecholamine has roles in hormone regulation and renal functioning. In the CNS, 

dopaminergic transmission is critical for proper execution of various functions, such as 

learning, sleep, working memory, voluntary movement, reward and reinforcement. Mid-

brain dopaminergic neurons are especially important for the latter two processes. These 
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neurons are divided into subgroups (A8, A9, A10) based on anatomical and functional 

differences. The A9 cell bodies are found in the substantia nigra and terminate in the 

dorsal striatum (nigrostriatal pathway). Meanwhile, the dopaminergic neurons originating 

in the ventral tegmental area (A10) innervate the ventral striatum (mesolimbic pathway) 

and the prefrontal cortex (mesocortical pathway), Figure 1.3 (Andén et al, 1964; 

Dahlström and Fuxe, 1963). Although there is mounting evidence for nigral modulation 

of reward and reinforcement (Kimura and Matsumoto, 1997; Ramayya et al, 2014; 

Routtenberg and Malsbury, 1969; Wise, 2009), the mesolimbic and mesocortical 

pathways, sometimes referred to as the mesocorticolimbic pathways, are generally 

thought to be the most important regulators of these processes.  

   

	

Figure 1.3. Major dopaminergic pathways. 
(Brody et al, 1998) 
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 In neurons, dopamine is synthesized from the amino acid tyrosine. Specifically, 

tyrosine is converted to L-DOPA (3,4-Dihydroxy-L-phenylalanine) by the cytosolic 

enzyme tyrosine hydroxylase and then L-DOPA is converted to dopamine via aromatic 

amino acid decarboxylase. The synthesis of L-DOPA is the rate-limiting step in the 

pathway. Once synthesized, dopamine is packaged in specialized vesicles where it 

remains until an action potential initiates the exocytotic release of the vesicular contents 

into the synapse (Elsworth and Roth, 1997). The synaptic dopamine can now bind to its 

postsynaptic receptors to propagate neuronal signaling. Dopamine exerts its actions by 

relatively slow modulation of glutamatergic- and GABAergic- mediated fast 

neurotransmission (Beaulieu and Gainetdinov, 2011).  

Regulation of extracellular dopamine levels 

DAT 

 Once dopamine is released, it must be cleared quickly to prevent overstimulation 

of post-synaptic receptors and downstream neuronal circuits. This is done partially 

through enzymatic degradation or simple diffusion of dopamine. However, the primary 

mechanism of removing dopamine from the synaptic cleft, particularly in the nigrostriatal 

and mesolimbic pathways, is via DAT. DAT is a part of the SLC6 Na+/Cl−-dependent 

transporter family (also includes NET and SERT) and is only found on dopaminergic 

neurons. DAT couples the potential energy generated by the movement of sodium and 

chloride down their electrochemical gradient to move dopamine into the neuron. Once in 

the cytosol, dopamine can be repackaged into vesicles for release upon a new action 

potential.  
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 In 1991, DAT from rat was first cloned and sequenced, closely followed by the 

cloning of human DAT in 1992 (Giros et al, 1991; Giros et al, 1992; Kilty et al, 1991; 

Shimada and Kitayama, 1991). Mammalian DAT cDNA sequences display a high degree 

of homology; for example, human DAT shares roughly 90% homology with rat, bovine 

and mouse (Sotnikova et al, 2006). In addition to mammalian DAT, the protein has also 

been identified in Caenorhabditis elegans and Drosophila melanogaster. Much of our 

current knowledge of the structure and function of DAT has been gained through its close 

relatives, the bacterial leucine transporter (LeuT) and recently crystallized Drosophila 

melanogaster DAT (Beuming et al, 2008; Penmatsa et al, 2013; Zhou et al, 2007).  

 DAT possesses twelve transmembrane (TM) spanning helices with a cytoplasmic 

N- and a C- terminal tail. TMs 1, 3, 6 and 8 provide the pathway for substrate 

translocation, with TM 1 and 6 forming the core of the active site (Vaughan and Foster, 

2013). Based on the alternating access model (first proposed by Oleg Jardetzky in 1966), 

it was believed that DAT cycles through an inward and an outward facing conformation. 

This would mean the substrate cavity alternates between the synaptic and the cytoplasmic 

face of the transporter. LeuT studies further expanded this model to include an additional 

low-energy state, the occluded conformation. One theory purports that binding of one 

molecule of dopamine to the substrate site in the outward facing conformation initiates 

transport, followed by the binding of two sodium ions and a chloride. Binding of the ions 

triggers the conformational changes needed for dopamine to be released on the cytosolic 

face. Studies with LeuT demonstrate that a second substrate molecule can bind to an 

allosteric site (the S2 site, versus the primary substrate site, S1) and this event may 

facilitate the conformational change from the occluded to inward-facing conformation 
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and the release of the substrate and sodium into the cytosol (German et al, 2015; Schmitt 

et al, 2013; Shan et al, 2011; Shi et al, 2008).  

 Several important components on the cytosolic side of the presynaptic dopamine 

terminal ensure efficient repackaging of the dopamine and prevent the accumulation of 

cytosolic dopamine. Firstly, the turnover number of VMAT, which transports dopamine 

into the vesicles, is 2 to 3 times higher than that of the monoamine transporters, and this 

creates a gradient for dopamine to be taken up into the vesicles versus diffusing in the 

cytosol (Erreger et al, 2008; Peter et al, 1994; Sucic et al, 2010).  

  Secondly, the terminal also contains a class of degrading enzymes referred to as 

the mitochondrial monoamine oxidases (MAO-A and B). MAOs can be found in the 

mitochondrial outer membrane, although is it important to note MAO-B is predominantly 

expressed in non-neuronal cells. Through oxidative deamination, they convert dopamine 

to 3,4-dihydroxyphenyl-acetaldehyde, which is further oxidized by aldehyde 

dehydrogenase (ALDH) to 3,4-dihydroxyphenylacetic acid (DOPAC). Another major 

dopamine metabolizing enzyme localized to glial and postsynaptic cells is catechol-O-

methyl transferase (COMT). COMT catalyzes the methylation of dopamine to 3-

methoxytyramine and this is later metabolized to homovanillic acid by MAO and ALDH. 

COMT also facilitates the conversion of DOPAC to homovanillic acid (Meiser et al, 

2013).  

 Post-translational modification is one of the most important regulators of DAT 

functioning. This generally occurs through the phosphorylation, palmitoylation, 

ubiquitination or glycosylation of the transporter (German et al, 2015; Vaughan et al, 

2013). These mechanisms can affect DAT transport kinetics in addition to distribution. 
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Phosphorylation of DAT is postulated to occur through a battery of kinases, including the 

ubiquitously expressed protein kinase C (PKC). A string of serines on the N-terminal tail 

form the putative PKC sites of DAT (see Figure 1.4). Studies in both heterologous cells 

and synaptosomes found that acute activation of PKC by phorbol esters, such as phorbol 

12-myristate 13-acetate (PMA), led to impaired dopamine uptake functioning and 

reduced DAT expression levels (Copeland et al, 1996; Vaughan et al, 1997; Zhu et al, 

1997). Mechanistically, these down-regulating effects were thought to stem from 

phosphorylation-dependent DAT internalization. However, elimination of the putative 

PKC substrate phosphorylation sites, either through mutation or truncation, terminated 

PKC induced DAT phosphorylation but surprisingly did not affect DAT trafficking. 

	
	

Figure 1.4. Depiction of DAT with putative PKC phosphorylation sites. 
(Vaughan, 2004) 

 

 PKC also modulates the reversal transport at DAT, that is, dopamine efflux. 

PMA-triggered PKC activity promotes dopamine efflux in rat striatal slices and 
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synaptosomes, an effect independent of extracellular calcium. Treatment with the 

selective PKC inhibitor, Ro31-8220, blocks this effect (Cowell et al, 2000). 

Correspondingly, PKC activation either via Gq-coupled glutamate receptors or directly 

with PMA promotes dopamine efflux in nigral slices (Opazo et al, 2010). Interestingly, 

AMPH increases PKC activity, which facilitates its ability to induce dopamine efflux 

(Cowell et al, 2000; Giambalvo, 1992, 2004; Kantor and Gnegy, 1998). There is still 

much to learn about the exact mechanism by which AMPH activates PKC. One proposed 

mechanism is through the trace amine associated receptor 1, which binds trace amines, 

monoamines and AMPH-like psychostimulants (Miller, 2011). A more direct mechanism 

may be the increase in intracellular calcium that follows AMPH treatment. The increased 

intracellular calcium could then activate PKC (Gnegy et al, 2004; Kantor et al, 2004).  

 Some of the post-translational mechanisms that regulate DAT have apparent 

reciprocal roles. For instance, it was recently reported that surface DATs that exhibited 

high levels of phosphorylation but low levels of palmitoylation have reduced maximal 

velocity (Vmax) for dopamine uptake and increased transporter downregulation. 

Conversely, DAT populations with low levels of phosphorylation but high levels of 

palmitoylation have increased Vmax and show no significant PKC-induced DAT 

downregulation (Moritz et al, 2015). Although less discussed, ubiquitination and 

glycosylation are very important in modulating DAT localization. PKC-triggered 

ubiquitination of DAT on the N-terminus governs whether internalized DAT will be 

directed towards recycling or will be degraded. (Miranda et al, 2005). On the other hand, 

the extent of transporter glycosylation dictates both its kinetics and its propensity for 

endocytosis. As shown in human embryonic kidney (HEK) cells expressing human DAT, 
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preventing or reducing transporter glycosylation, reduces DAT uptake functioning and 

promotes its endocytosis (Li et al, 2004). 

 Although mentioned already, the interaction of DAT with proteins such as 

palmitoylating enzymes and protein kinases is an important mode of DAT regulation. 

DAT also interacts with non-enzymatic proteins, for example adaptor proteins such as 

PDZ domain protein interacting with C-kinase 1 (PICK1) or the dopamine D2 

autoreceptor (discussed in the next section). There is evidence that SLC6 transporters can 

form homodimers and other higher order oligomeric complexes (Schmid et al, 2001; Sitte 

et al, 2004). A study using both fluorescence resonance energy transfer microscopy and 

coimmunoprecipitation, demonstrated that DAT can oligomerize and this complex was 

found in the endoplasmic reticulum and at the cell surface (Sorkina et al, 2003). DAT 

uptake and efflux functions can be differentially regulated and it is plausible that 

differences in DAT oligomeric states during these processes could account for this.  

D2 autoreceptor 

 In the synaptic cleft, dopamine can activate five G protein-coupled receptors 

(GPCRs); D1, D2, D3, D4 and D5. Based on their pharmacological, structural, and 

biochemical properties, the receptors are further subdivided into two classes, the D1-like 

(D1 and D5) and D2-like (D2, D3, D4) receptors. In 1978, Spano and colleagues carried 

out one of the pioneering studies that demonstrated that the difference in the two classes 

lies in their ability to modulate adenylyl cyclase activity and therefore cyclic AMP 

(cAMP) production (Spano et al, 1978). Specifically, the D1-like class of receptors 

activates the Gαs/olf  pathway which increases intracellular cAMP via adenylyl cyclase 

activation. On the other hand, the D2-like family of receptors stimulates the Gαi/o 
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pathway that decreases cAMP concentrations by inhibiting adenylyl cyclase. There is 

also a geographical difference in the groupings. D1 and D5 receptors are found 

exclusively post-synaptically while D2 and D3 can be found both on the pre- and post-

synaptic membrane (Beaulieu et al, 2011).  

 The D2-like family of receptors, mainly the D2 receptors (D2Rs), serve a critical 

function in the regulation of extracellular dopamine and dopaminergic signaling. These 

D2Rs can be found on the soma and dendrites of dopamine neurons in the ventral 

tegmental area and substantia nigra pars compacta, in addition to being on the 

dopaminergic terminals. The presynaptic localization of D2Rs allows them to serve as an 

autoreceptor. Through a negative-feedback mechanism, activation of the receptors 

modulates neuronal firing rate and the release and synthesis of dopamine. As previously 

mentioned, D2R activation decreases cAMP levels but its coupling to the Gi/o pathway 

also causes an increase in potassium currents via G-protein activated inwardly rectifying 

potassium channels and inhibition of calcium channels. Their activation also indirectly 

inhibits tyrosine hydroxylase and decreases dopamine transporter expression. This results 

in a reduction in the excitability of dopamine neurons and halts further synthesis and 

release of dopamine (Ford, 2014; Neve et al, 2004).   

 Alternative splicing results in two variants of D2 receptors, D2 short (D2RS) and 

D2 long (D2RL) that differ by 29 amino acids. Initial insights into the physiological roles 

of the isoforms were gained from the creation of selective D2RL knockout mice, which 

had a compensatory overexpression of D2RS (Usiello et al, 2000; Wang et al, 2000). 

These mice had reduced biochemical and behavioral responses linked to post-synaptic 

striatal D2Rs while maintaining classic autoinhibitory effects. Therefore it was postulated 
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that D2RS was the isoform responsible for D2 autoreceptor functioning. However, results 

from later experiments challenged this notion. For instance, both D2RS and D2RL mRNA 

are expressed in individually isolated dopaminergic substantia nigra pars compacta 

neurons. In fact, more cells showed D2RL expression than D2RS. Also dopaminergic 

substantia nigra pars compacta neurons from D2 receptor null mutant mice can generate 

large inhibitory potassium currents when treated with a D2 agonist after viral restoration 

of either D2RS or D2RL. This demonstrates that either isoform can display auto-inhibitory 

actions (Jang et al, 2011; Neve et al, 2013).  

 Although not as profusely studied as DAT, we now have insight into some of the 

components of D2R regulation. In 1991, it was shown that sodium levels and pH could 

affect D2R function. More specifically, the concentrations of Na+ and H+ ions can 

significantly change the affinity of the receptor for dopamine and other ligands, hinting 

that the ionic environment of the receptor can modulate the conformational state of the 

protein (Neve, 1991). D2R function is also modulated by kinases including protein kinase 

A (PKA), G protein-coupled receptor kinase (GRK) and PKC; the consensus sequences 

on the receptor for these three enzymes have been successfully identified. D2R 

phosphorylation initiated by PKA affects the binding affinity of the receptor for ligands 

(Elazar and Fuchs, 1991). Meanwhile, GRK phosphorylation seems to play a role in D2R 

receptor recycling after agonist stimulation (Namkung et al, 2009). PKC activation via 4-

β-phorbol-12,13-dibutyrate (PDBu) reduces the autoinhibitory actions of D2R on 

stimulation-evoked dopamine overflow (Cubeddu et al, 1989) and silencing (PKCβ-/- or 

chemical inhibitors) of the PKCβ isoform potentiates D2R inhibition of chemically and 

electrically stimulated dopamine release (Luderman et al, 2015). PKC-induced 
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phosphorylation of D2R also leads to the desensitization and β-arrestin- and dynamin- 

dependent internalization of the receptor (Namkung and Sibley, 2004).  

 In the previous section, it was briefly mentioned that D2R and DAT directly 

interact. Several lines of evidence support this contention. DAT, D2R and tyrosine 

hydroxylase coexist in striatal axon and axonal terminals (Hersch et al, 1997). A direct 

interaction between DAT-D2R was identified between the N-terminus of DAT and the 

third intracellular loop of D2R (Lee et al, 2007). Further evidence of functional 

interdependence between the two proteins is provided by genetic deletions of the 

proteins. The ability of DAT to clear dopamine is significantly blunted in D2R-/- mice and 

DAT-/- mice have reduced D2R expression and activity (Dickinson et al, 1999; Jones et 

al, 1999). Dissecting the communication between these two major regulators of 

extracellular dopamine may be key in creating a therapeutic against AMPH abuse. Chen 

and colleagues, showed that inhibiting PKC, specifically PKCβ, lowers D2R-induced 

DAT trafficking in neuroblastoma cells and striatal preparations (Chen et al, 2013). PKC 

sits as a common denominator in the regulation of DAT-D2R functioning and could serve 

as a druggable target to reduce AMPH-stimulated dopamine release, and ultimately 

reduce the reinforcing effects of the drug. PKC inhibition is particularly of interest, since 

PKC activation mediates AMPH-induced dopamine efflux and also suppresses D2R 

autoinhibitory function. Before delving into whether PKC is a viable target, a better 

understanding of the enzyme is necessary.  

PKC and PKC inhibitors 

 As alluded to previously, PKC is a major mediator of the cross-talk between DAT 

and D2R. PKC consists of a family of serine/threonine kinases that have been linked to a 
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vast and diverse collection of GPCR and growth factor-dependent cellular pathways such 

as proliferation, migration, inflammation and neurotransmission (Dempsey et al, 2000; 

Mochly-Rosen et al, 2012). It is therefore not surprising that dysregulation of PKC 

contributes to many known diseases such as cancer, heart disease, psoriasis and bipolar 

disorder (Mochly-Rosen et al, 2012).  

 There are ten homologous isoforms of PKC and in addition to being widely 

expressed, many of the PKC isoforms are co-expressed in the same cells. PKC is a single 

polypeptide that has two major structural domains: the C-terminal catalytic domain and 

the N-terminal regulatory domain (Newton, 1995). The C-terminus is highly conserved 

among the PKC isoforms but also among other kinases in the AGC (Protein Kinase A, G 

& C) superfamily of enzymes to which PKC also belongs. The catalytic domain is the site 

of substrate phosphorylation and possesses a conserved ATP and magnesium-binding 

site, along with a binding site for the substrate phosphoacceptor sequence (Mochly-Rosen 

et al, 2012). Conversely, the regulatory domain is poorly conserved. It is preceded by an 

autoinhibitory pseudosubstrate region and can contain a PKC homology 1 (C1), PKC 

homology 2 (C2) and the Phox and Bem1 (PB1) domains (Figure 1.5). Phorbol esters and 

lipid second messengers (eg. diacyglycerol (DAG) and arachidonic acid) bind to the C1 

domain while the C2 domain is responsible for calcium and phosphatidylserine binding. 

The PB1 domain is a key structure for protein interactions and can bind scaffold, adaptor 

and other kinases such as mitogen-activated protein/extracellular-signal-regulated kinase 

kinase (Kazi, 2011; Moscat et al, 2006). Overall the regulatory domain is responsible for 

locking the enzyme in its inactive state and hence restricts the enzyme activity.  
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 The PKC isoforms are divided into their subfamilies based on structural 

differences in the N-terminal regulatory domain that mediates the activation of the 

enzyme. The two major groups are the conventional PKCs (α, βI, βII, γ), which are 

activated by the phospholipid, DAG and Ca2+, and the novel PKCs (δ, ε, θ, η) that only 

require DAG for activation. The final group is the atypical PKCs (ζ, λ/ι) that do not 

respond to the same second messengers as the other subfamilies and have a significantly 

different homology when compared to the other isoforms (Wu-Zhang and Newton, 

2013). Three-dimensional crystallographic structures of PKC exist for the following 

catalytic domains: PKCβII (Moscat et al, 2006), PKCθ ((Xu et al, 2004) and PKCι 

	

Figure 1.5. Domain structures of PKC subfamilies. 
(Steinberg, 2008) 
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(Messerschmidt et al, 2005). There are still no resolved three-dimensional structures of 

PKC regulatory domains; nonetheless, the function of these domains have been  

comprehensively validated in various biochemical analyses. Figure 1.5 highlights our 

current knowledge of the structural differences in PKC isoform structure.   

 To gain insight into the in vivo contributions of specific PKC isoforms to disease 

initiation and progression, selective PKC inhibitors were created. Some of the challenges 

faced in this pursuit arise from the fact that PKC isoforms share at least 70% homology at 

the ATP binding site and there are no crystallographic data of full- length PKC isoforms 

that would help with in silico high throughput screening. In some cases, compounds that 

were initially classified as selective were later found to have multiple off-target effects. 

One of the most popular of these cases was Rottlerin, which was initially marketed as a 

selective PKCδ inhibitor but was later shown to inhibit multiple kinases (including 

checkpoint kinase 2) and non-kinase proteins (Soltoff, 2007). Even more unfortunate, 

cellular results gained from siRNA silencing of PKCδ or utilizing kinase dead enzyme 

did not align with events observed with Rottlerin treatments (Kang et al, 2004; Sarkis et 

al, 2006; Woo et al, 2004).  

 Yet, there has been some success in creating a collection of relatively selective 

PKC inhibitors. Many of these inhibitors bind to the active site and directly block 

catalysis, such as the bisindolylmaleimide compounds ruboxistaurin and enzastaurin, 

developed by Eli Lilly. Others interact with the regulatory domain. For instance, 

bryostatin binds to the C1 domain and has two-fold selectivity for PKCε compared to 

PKCα and PKCδ (Mochly-Rosen et al, 2012). For the purposes of treating brain disorders 

such as AMPH abuse, we would need the compound to cross the blood brain barrier and 
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be centrally active. Currently, there is only one known CNS permeant PKC inhibitor, 

tamoxifen, which inhibits all classical PKC isoforms (α, βI, βII, γ).  

(Trans)-Tamoxifen (ICI 46,474) 

 In an interesting turn of events, tamoxifen was discovered in the 1960s from a 

research program geared at finding non-steroidal estrogen receptor (ER) antagonists that 

would serve as contraceptive agents. This logic was grounded in early studies done with 

the first non-steroidal anti-estrogen, MER-25, which produced antifertility effects in rats 

(Wiseman, 1994). It was soon determined that MER-25 was too toxic for clinical 

applications but in the meantime, other less toxic, non-steroidal antiestrogens were being 

made. Once this work was translated to humans, it was quite a surprise that non-steroidal 

antiestrogens either had no effect or in the case of the drugs tamoxifen and clomiphene, 

did the opposite as expected and induced fertility in sub-fertile women (Wiseman, 1994). 

Nonetheless, the initial clinical failures of tamoxifen would soon give way to its claim to 

fame. 

 In a sequence of serendipitous events, tamoxifen was found to be effective in 

treating breast cancer and was marketed in the UK by ICI Pharmaceuticals (now known 

as AstraZeneca) for this indication in 1973 (Jordan, 2003). In 1977, tamoxifen was 

approved by the US FDA for the treatment of metastatic breast cancer in post-

menopausal women. It was later found to suppress ER-positive breast cancer in 

premenopausal women, lower contralateral breast cancer in breast cancer patients, lower 

the risk of breast cancer incidence in high risk women and also prevent the recurrence of 

breast cancer in previously diagnosed patients (Mourits et al, 2001; Peto and Group, 

1993). Each year, approximately 1.6 million cases of ER-positive breast cancer are 
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diagnosed and tamoxifen remains one of the front line-treatment for these individuals. It 

has been estimated that tamoxifen has spared the lives of 400,000 women alive today, 

which is quite an impressive statistic (Jordan, 2003).  

 Tamoxifen is classified as a selective estrogen receptor modulator (SERM) since 

its actions are dependent on the target tissue and species being studied. More specifically, 

the compound may act as a pure ER agonist, a partial agonist or an antagonist in different 

contexts. For instance, tamoxifen is an ER antagonist in breast and mammary tissue but is 

estrogenic in bones. It has also been found that although tamoxifen is a partial ER agonist 

in rat uterine tissue, it exhibits estrogenic activity in mouse uterine tissue (Jordan, 2003; 

Wiseman, 1994)  

 While tamoxifen itself is biologically active, it is considered a prodrug as its 

metabolites, 4-hydroxytamoxifen and endoxifen (via N-desmethyltamoxifen), act more 

potently at the ER (Figure 1.6). The cytochrome P450 enzymes CYP2D6 and CYP3A4/5 

catalyze the production of these metabolites. CYP2D6 is a highly polymorphic enzyme, 

which translates into significantly varied activity in humans (Jordan, 2007). Therefore the 

presence of CYP2D6 polymorphisms can affect the levels of the active metabolites 

generated upon tamoxifen administration and contribute to the variability in therapeutic 

benefits of the SERM in patients. 

 Although marketed as a SERM, tamoxifen has proven to be a promiscuous 

compound. In the early- to mid- 1980s, it was demonstrated that tamoxifen had two 

distinct effects on cell growth proliferation in ER-positive cell lines such as the Michigan 

Cancer Foundation-7 (MCF-7) cell line. At concentrations near its affinity for ER  
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Figure 1.6. Tamoxifen and its metabolites. 
(Jordan, 2007) 

 

(Kd ≈1nM), tamoxifen was cytostatic and adding the naturally occurring ER agonist, 17β-

estradiol, reversed this effect. At higher concentrations of 1-10 µM (levels achieved in 

patients) tamoxifen exhibited 17β-estradiol irreversible cytotoxic effects in ER-positive 

cell lines. Therefore, scientists began postulating that the in vivo anticancer effects of 

tamoxifen were only partially due to its action at ER and there were possibly other factors 

at play. In search of mediators that contributed to these cytotoxic effects, tamoxifen was 

later found to bind to other targets, such as PKC, calmodulin-dependent enzymes, acyl 

coenzyme A:cholesterol acyl transferase and the microsomal antiestrogen binding site (de 

Medina et al, 2004; Wiseman, 1994).  

 The jump from investigating the effects of tamoxifen on ER to its effect on PKC 

will not seem so unorthodox if one recalls that PKC was well-known to be a high affinity 

site for the tumor-promoting phorbol esters and that its activation played an important 

role in carcinogenesis and malignant transformation (de Medina et al, 2004; Griner and 
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Kazanietz, 2007). Therefore, the initial findings that tamoxifen inhibited PKC seemed a 

reasonable mechanism for the non-ER mediated antitumor effects of the compound.  

Tamoxifen as a PKC inhibitor: In vitro  

 A series of studies done between the mid 1980s and the early 1990s uncovered 

tamoxifen’s action as a PKC inhibitor. In 1985, O’Brian and colleagues were the first to 

report that tamoxifen inhibited the Ca2+ and phospholipid dependent PKC 

phosphotransferase activity with an IC50 of 100 µM in a partially purified enzyme system. 

Tamoxifen did not inhibit the PKC-induced phosphorylation of protamine sulfate, a Ca2+ 

and phospholipid independent process, and therefore implied tamoxifen acts at the 

regulatory domain of the enzyme. This study also showed that tamoxifen inhibited the 

binding of the PKC ligand [3H]PDBu (O'Brian et al, 1985).  

 Huai-De and colleagues furthered these findings by revealing PKC inhibition by 

tamoxifen was competitive with phosphatidylserine but non-competitive with Ca2+ (Huai-

De et al, 1985). The tamoxifen metabolites, 4-hydroxytamoxifen and N-

desmethyltamoxifen, also exhibited more potent Ca2+ and phospholipid dependent PKC 

inhibitory activity (IC50s of 25 µM and 8 µM respectively) in the same enzyme 

preparation used by O’Brian et al, 1985 (O'Brian et al, 1986). There are later reports, 

including data from O’Brian and colleagues, indicating that tamoxifen and its metabolites 

may also be able to directly bind and reduce the activity of the catalytic site of PKC 

(Nakadate et al, 1988; O'Brian et al, 1988).   

 Tamoxifen exhibits more potent inhibitory action on PKC-mediated effects in 

experiments conducted with cells compared to those using purified enzymes (Gundimeda 

et al, 1996; Horgan et al, 1986). Adding complexity to the picture of how tamoxifen 
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inhibits PKC activity, Gundimeda et al, showed that tamoxifen can partition in cell 

membranes, cause an initial translocation of PKC to the membrane, followed by 

inhibition and down-regulation of the enzyme. These effects of tamoxifen coincided with 

a release in arachidonic acid and are blocked with anti-oxidants, such as vitamin C, E and 

β-carotene, implying that the modulation of PKC by tamoxifen in cells is dependent on 

oxidative stress.   

Tamoxifen as a PKC inhibitor: In vivo  

 Studies in patients with bipolar disorder have given us a clue as to whether PKC 

inhibition by tamoxifen can be useful in a clinical setting. Bipolar disorder is an affective 

or mood disorder in which patients swing between states of mania and depression. 

Symptoms include, but are not limited to, hyperactivity, impulsivity and anhedonia 

(Abrial et al, 2013). Enhanced PKC activity has been linked to the pathology of bipolar 

disorder. Post-mortem frontal cortex tissue from patients with bipolar disorder show 

elevated PKC-induced phosphorylation and sub-cellular distribution compared to healthy, 

matched controls (Wang and Friedman, 1996). The standard treatments for bipolar 

disorder, lithium and valproate, affect multiple signaling pathways but it has been 

proposed that their ability to block PKC activity contributes to their therapeutic benefits 

for bipolar disorder (Einat et al, 2007).  

 With this in mind, studies were conducted to see whether the PKC inhibitory 

effects of tamoxifen could relieve symptoms in patients with bipolar disorder. In 2000, 

Bebchuk and colleagues conducted the first study to answer this question. The results 

were that bipolar disorder patients given tamoxifen had a significant decrease in manic 

symptoms as evaluated on the Young Mania Rating Scale or YMRS (Bebchuk et al, 
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2000). In line with this, it was later reported that tamoxifen significantly reduced 

symptoms of mania in bipolar disorder patients in a double blind, placebo controlled 

study. However, there was no significant change in depression score (Zarate et al, 2007). 

These initial investigations were all conducted in adults but recently the effect of 

tamoxifen was explored in an adolescent bipolar disorder population. In this study, 

adolescents given tamoxifen plus lithium had an improvement in both manic and 

depressive symptoms compared with participants given lithium alone. It is noteworthy 

that there were no serious adverse effects of tamoxifen in any of these short trials (Fallah 

et al, 2016).  

 Modeling bipolar disorder in animals is difficult. The closest we have come to 

achieving this is by using AMPH to induce ‘manic’ effects or hyperactivity. In rats 

tamoxifen reduces AMPH-stimulated hyperlocomotion and reduces the phosphorylation 

of growth-associated protein at a site specific for PKC phosphorylation (Einat et al, 

2007). Abrial, et al, reproduced these behavioral effects of tamoxifen in 2013. In addition 

to showing that tamoxifen reduces AMPH-induced hyperactivity, they also reported that 

tamoxifen reduces risk-taking behaviors, modeled using an open field test (Abrial et al, 

2013). Contrary to the clinical trials, tamoxifen did induce depressive-like symptoms as 

inferred from the rats displaying increased immobility in forced-swim tests (Abrial et al, 

2013).  

 With these promising results, tamoxifen could prove useful in PKC activation-

related brain disorders like bipolar disorder and AMPH abuse. However, although 

patients generally tolerate the drug, reducing the target promiscuity of the tamoxifen 

could lead to increased therapeutic outcomes. If we knew more about how different 
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substructures on the tamoxifen scaffold facilitated its interaction with its known targets, 

we may be able to engineer a more selective brain-penetrant PKC inhibitor. Fortuitously, 

some of this knowledge is available.     

Tamoxifen structure-activity studies 

 The increased curiosity in the antitumor mechanism of tamoxifen fostered an 

interest in the structure-activity relationship (SAR) of the tamoxifen at its known targets, 

namely the ER and PKC. The hope was that with a better understanding of the SAR, 

researchers could possibly make safer, more efficacious antitumor agents. Tamoxifen is a 

member of series of compounds called triphenylethylenes, to which the SERM 

clomiphene also belongs. One of the first studies that began to untangle the SAR of 

tamoxifen at PKC investigated the effects of side-chain substitutions on a closely related 

chemical class of compounds, the triphenylacrylonitriles. It was reported that 

diethylaminoethoxy side-chain substitutions, i.e. introducing basic residues, changed the 

manner by which the compounds inhibited the classical PKC isoforms. More specifically, 

phenyl substitutions with one or two diethylaminoethoxy groups flipped the mode of 

PKC inhibition from acting directly at the catalytic site to engaging the regulatory 

domain in a phospholipid-dependent manner (Bignon et al, 1989). 

 This was later expanded into more thorough SAR investigations dissecting the 

impact of both the di- and tri-phenylethylene structure on the activation and inhibition of 

classical PKC isoforms, which are well outlined in the 2004 review by DeMedina et al. 

These studies demonstrate that the PKC inhibitory properties of tamoxifen are facilitated 

by the presence of a) a basic side chain b) a phenylpropene moiety within the aromatic 

backbone c) a side chain with a protonable and H-bond donatable amino group. 
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Furthermore, replacing the ethyl group with a cyano group, adding another basic linker 

on the α-ring and adding substituents to the α-ring 4-position can all improve the 

scaffold’s PKC inhibitory potential. Loss of the aminoethoxy side chain and the β-ring 

leads to tamoxifen analogues that can activate PKC. On the other hand, the 

triphenyethylene backbone and side chain on tamoxifen are essential for its ability to bind 

to the ER (de Medina et al, 2004).   

	
	

Figure 1.7. Substructures of tamoxifen. 
adapted from (de Medina et al, 2004). 

 

Thesis hypothesis and summary  

 By mediating the communication between D2R and DAT, PKC stands as a novel 

target for the modulation of extracellular dopamine. My central hypothesis is that PKC 

activation is a fundamental mediator of the action of AMPH at the dopaminergic synapse 

and ultimately AMPH reinforcement. Therefore I propose that brain-permeant PKC 

inhibitors will reduce the reinforcing effects of AMPH, hence providing a suitable 

pharmacological treatment for AMPH abuse.  

 There are in vitro and in vivo experiments that support this hypothesis.  Our group 

has shown PKC inhibitors Gö6976, LY379196 and Ro31822 blocked AMPH-mediated 
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dopamine release in striatal slices (Johnson et al, 2005; Kantor et al, 1998). In vivo, 

accumbal administration of the PKC inhibitor Ro31822 reduced AMPH-stimulated 

dopamine overflow (Loweth et al, 2009). Recently we showed that accumbal 

administration of the PKCβ selective inhibitors, ruboxistaurin and enzastaurin, 

significantly decreased AMPH-induced dopamine overflow and hyperactivity in freely-

moving rats (Zestos et al, 2016). A study conducted by Aujla and Beninger, showed that 

accumbal administration of the PKC inhibitor, NPC 15437, blocked AMPH-induced 

condition place-preference (Aujla and Beninger, 2003). These studies support the idea 

that PKC inhibition can block the rewarding and reinforcing effects of AMPH.  

 Since there are no selective brain-barrier permeant PKC inhibitors available, all 

the previously mentioned in vivo studies required direct CNS administration of the PKC 

inhibitors under investigation. If our endpoint is to use PKC inhibitors clinically for 

AMPH abuse, we must create compounds that are brain permeant. With the extent of 

SAR available on the non-selective PKC inhibitor and SERM tamoxifen, the goal of my 

thesis work was to create a new generation of brain-permeant tamoxifen analogues with 

improved selectivity for PKC inhibition. In Chapter 2, I present a collection of novel 

tamoxifen analogues generated through collaboration with the Vahlteich Medicinal Core 

at the University of Michigan. In addition to showing the novel routes and compound 

characterization methods used to make and identify the compounds, I also present the in 

vitro methodologies I employed to characterize the ER binding properties and PKC 

inhibitory activity of the compounds. Through these studies, I was able to identify a 

promising compound, 6c, which was 250 times more potent than tamoxifen in inhibiting 

PKC in vitro, while not having appreciable affinity at ER.  



	 30	

 In Chapter 3, I elucidate the effect of 6c at the dopaminergic terminal. I begin by 

showing that the 6c maintains PKC inhibitory activity in synaptosomes, a popularly used 

model for the dopaminergic terminal. Interestingly, 6c shows PKC-substrate selectivity, 

which may be a clue of its action at PKC. I found that 6c dose-dependently blocks 

AMPH-stimulated dopamine efflux and less potently blocks dopamine uptake. We found 

no binding site for the compound at the dopamine transporter and 6c did not alter DAT 

levels at concentrations up to 3 µM. Finally, 6c crosses the blood-brain barrier and was 

able to block in vivo AMPH neurochemical effects and reinforcement.  

 In Chapter 4, I present results that paint a more mechanistic picture of the direct 

action of 6c on PKC. Using FRET (fluorescence resonance energy transfer)- based 

studies, my preliminary findings demonstrate that 6c does not block PKC translocation 

but instead alters its conformational states. Next, I evaluated whether 6c alters the activity 

of other feasible targets, such as protein kinase B (AKT) and Ca2+/calmodulin-dependent 

protein kinase II (CAMKII), that also affect dopamine transporter function. I found that 

6c does not affect AKT or CAMKII activity. In an effort to bolster our hypothesis that 

PKC is the likely culprit mediating the ability of 6c to block AMPH effects in vivo, I 

show that 6c inhibits PKC activity in vivo. To cap off this chapter, I present my findings 

assessing whether cells are the best systems for deciphering the action of compounds at 

the dopaminergic terminal. This small investigation demonstrates that DAT-modulating 

effects of 6c observed in vivo are better modeled in synaptosomes versus cells. 

 In the final chapter, I discuss the utility of repurposing the tamoxifen scaffold for 

novel therapeutics. There are still many unanswered questions regarding the mechanism 

of action of 6c. For instance, is there still a possibility that the compound could be 
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allosterically modulating DAT? Is 6c working through one or multiple PKC isoforms? I 

address questions regarding the effects of 6c on the uptake functioning of the transporter 

and postulate why 6c is not likely a primary reinforcer. I also present future studies we 

hope will address these ruminations. 
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Chapter 2. Design and synthesis of triarylacrylonitrile analogues of 

tamoxifen with improved binding selectivity to protein kinase C 

 

Abstract   

The clinical selective estrogen receptor modulator tamoxifen is also a modest 

inhibitor of protein kinase C (PKC), a target implicated in several untreatable brain 

diseases such as amphetamine (AMPH) abuse. This inhibition and tamoxifen’s ability to 

cross the blood brain barrier make it an attractive scaffold to conduct further SAR studies 

toward uncovering effective therapies for such diseases. Utilizing the known compound 

6a as a starting template and guided by computational tools to derive physicochemical 

properties known to be important for CNS permeable drugs, the design and synthesis of a 

small series of novel triarylacrylonitrile analogues have been carried out providing 

compounds with enhanced potency and selectivity for PKC over the estrogen receptor 

(ER) relative to tamoxifen. Shortened synthetic routes compared to classical procedures 

have been developed for analogues incorporating a β- phenyl ring, which involve 

installing dialkylaminoalkoxy side chains first off the α and/or α’ rings of a precursor 

benzophenone and then condensing the resultant ketones with phenylacetonitrile anion.  

A second novel, efficient and versatile route utilizing Suzuki chemistry has also been 

developed, which will allow for the introduction of a wide range of β-aryl or β-heteroaryl 

moieties and side-chain substituents onto the acrylonitrile core.  For analogues possessing 
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a single side chain off the α- or α’- ring, novel 2D NMR experiments have been carried 

out that allow for unambiguous assignment of E- and Z- stereochemistry.  From the SAR 

analysis, one compound, 6c, shows markedly increased potency and selectivity for 

inhibiting PKC with an IC50 of 80 nM for inhibition of PKC protein substrate and >10 

µM for binding to the ERα (tamoxifen IC50 = 20 µM and 222 nM, respectively). The data 

on 6c provide support for further exploration of PKC as a druggable target for the 

treatment of AMPH abuse.   

Introduction 

Protein kinase C (PKC) is a pivotal enzyme in cell signaling pathways and has 

been implicated in numerous brain diseases such as Parkinson’s disease (Zhang et al, 

2007), Alzheimer’s disease (Garrido et al, 2002), bipolar disease(Manji and Lenox, 2000; 

Wang and Friedman, 1996a) and substance abuse disorder (Olive and Messing, 2004; 

Schmitt and Reith, 2010). Although targeting PKC as a therapeutic target for these 

diseases has been proposed (Battaini, 2001; Manji and Chen, 2002; Mochly-Rosen et al, 

2012), in vivo validation has been difficult due to lack of a PKC inhibitor that is 

permeable to the central nervous system.  The only known PKC inhibitor that is 

permeable across the blood-brain barrier is the selective estrogen receptor modulator 

(SERM) tamoxifen, Figure 2.1 (Zarate et al, 2007), which inhibits cellular PKC activity 

reasonably potently, including that of PKCβ (O'Brian et al, 1985; Saraiva et al, 2003). 

Tamoxifen has been utilized to provide in vivo validation in rodents of PKC inhibition 

toward reducing the effects of AMPH, which is a model for bipolar mania (Dluzen et al, 

2001; Einat et al, 2007; Sabioni et al, 2008), and clinically has demonstrated efficacy in 

the treatment of this disorder (Armani et al, 2014). The blockade of AMPH behavioral 
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effects can also be achieved by other traditional PKC inhibitors, but not by the selective 

ER inhibitors medroxyprogesterone or clomiphene, Figure 2.1 (Pereira et al, 2011).  

Inhibition of PKC reduces AMPH-stimulated dopamine efflux through the dopamine 

transporter (Kantor and Gnegy, 1998; Zestos et al, 2016), as well as AMPH-stimulated 

locomotor (Browman et al, 1998) and rewarding activities (Aujla and Beninger, 2003). 

Although the exact mechanism is not known, the dopamine transporter is a substrate for 

PKC (Moritz et al, 2013) and AMPH-stimulated dopamine efflux is regulated by 

transporter phosphorylation (Khoshbouei et al, 2004; Wang et al, 2016). Development of 

a potent PKC inhibitor that is permeable across the blood brain barrier would enhance 

exploration of the effect of PKC on numerous behavioral functions and could prove 

therapeutically useful. 

	

Figure 2.1. Clinical triphenylethylene SERMS. 
 
 

Despite its wide use, tamoxifen is a drug with many sites of action.  Its most 

common use is as a SERM to treat the recurrence of ER-positive breast cancer (Jordan, 

2003). In addition to the ER and PKC, other identified binding sites for tamoxifen include 

calmodulin (O'Brian et al, 1990), voltage-dependent Ca2+ channels (Kuo et al, 2012) and 
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acyl-CoA:cholesterol acyl transferase (De Médina et al, 2004). Binding to all of these 

sites occurs at micromolar levels, which is greater than that required for binding to the 

ER.  

Evidence suggests that although tamoxifen binds weakly to the catalytic subunit 

of PKC (O'Brian et al, 1988), its functional binding site is the Ca2+ and phospholipid-

binding C2 regulatory subunit (Bignon et al, 1990). Inhibition of PKC by tamoxifen 

requires Ca2+ and phospholipid (O'Brian et al, 1985; Su et al, 1985), and is competitive 

with phospholipids and noncompetitive with Ca2+ (Gundimeda et al, 1996; Su et al, 

1985). Tamoxifen inhibits PKC more potently in the presence of diolein and phorbol 

myristate acetate (PMA), but is not competitive with them (Gundimeda et al, 1996). The 

crystallographic structure of the phorbol ester and PKC regulatory site has been reported, 

but the mode of interaction between tamoxifen and its derivatives with PKC remains to 

be fully elucidated (Ochoa et al, 2001; Szallasi et al, 1996; Wang et al, 1996b). 

There have been extensive structure-activity relationship (SAR) studies of the 

tamoxifen scaffold to dissect structural features that confer selective binding to ER 

relative to other targets such as PKC (Bignon et al, 1991; de Medina et al, 2004; Ohta et 

al, 2015). While tamoxifen can serve as an in vivo inhibitor of PKC, its high affinity for 

the ER and low affinity for PKC compromise its utility to selectively target PKC for 

brain disorders. To that end, our goal has been to use the triphenylethylene core of 

tamoxifen as a starting point to design analogues with increased affinity for PKC and 

decreased affinity for ER. A systematic study by Bignon et al, showed that PKC activity 

could be enhanced by substituting the tamoxifen ethyl moiety with a cyano function 

(Bignon et al, 1991). This paper delineates further SAR of this core change toward the 
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design and synthesis of a small series of novel triarylacrylonitrile derivatives with 

enhanced selectivity for PKC, and which have the potential for improved permeability 

across the blood brain barrier. 

Analogue Design. Our goal was to design tamoxifen analogues that display 

enhanced selectivity for PKCβ versus ER binding and exhibit good CNS permeability. 

Compound 6a (Table 2.1), previously synthesized and tested for PKC and ER binding 

(Bignon et al, 1989a; Bignon et al, 1989b; Dore et al, 1992), became our starting 

template for further SAR exploration. Our focus was to expand on 6a with a small series 

of triarylacrylonitrile derivatives, listed in Table 2.1, which could dissect out structural 

features contributing to selectivity and potency for PKC over ER without a concomitant 

loss of molecular transport into the brain. The initial selection of 6a and analogues was 

guided by computational tools (ChemAxon) to derive properties known to be important 

for CNS permeable drugs. The calculations for several key physicochemical descriptors 

are shown in Table 2.1, and reveal that our targeted analogues possess many of the 

critical parameters that track fairly closely with those for marketed CNS drugs (Abraham 

et al, 1997; Pan et al, 2004). While molecular weights tend to be greater than found for 

typical CNS drugs, cLogP and topological polar surface area (tPSA) values trend toward 

those favoring CNS penetration. 

Chemistry. Our synthetic strategy to construct triphenylacrylonitrile compounds 

with variable aqueous solubilizing dialkylaminoalkoxy side chains is shown in Figure 2.2 

(Scheme 1). The overall SAR trends for our small series of triarylacrylonitriles with 

respect to PKC activity are in general alignment with those summarized in a review in 

2004 (de Medina et al, 2004), showing that the introduction of an additional basic side 
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chain of sufficient length off the 4-position of the α-phenyl ring and the nature of the 

terminal amine head group markedly increase potency for PKC inhibition relative to 

tamoxifen.   

Materials and methods 

General Chemistry Procedures. All starting materials were obtained from 

commercial suppliers and were used without further purification. Routine 1H NMR 

spectra were recorded at 400 or 500 MHz on a Varian 400 or 500 instrument, 

respectively, with CDCl3, CD3OD, or DMSO-d6 as solvent. 13C NMR were recorded in 

DMSO-d6 at 126 MHz on a Varian 400 instrument. Chemical shift values are recorded in 

δ units (ppm). The 1D 1H, 1D 13C, 2D 1H-1H TOCSY and 2D 1H-13C HSQC experiments 

were measured at 25 °C using a 600 MHz Bruker spectrometer equipped with a cryogenic 

probe. Compounds were dissolved either in DMSO-d6 or a 1:1 DMSO-d6:CD3OD 

mixture. Mass spectra were recorded on a Micromass TofSpec-2E Matrix-Assisted, 

Laser-Desorption, Time-of-Flight Mass Spectrometer in a positive ESI mode (TOFES+) 

unless otherwise noted. High resolution mass spectrometry (HRMS) analysis was 

performed on an Agilent Q-TOF system. Analytical HPLC was performed on an Agilent 

1100 series instrument with an Agilent Zorbax Eclipse Plus C18 (4.6 mm × 75 mm, 3.5 

µm particle size) column with the gradient 10% ACN/water (1 min), 10−90% ACN/water 

(6 min), and 90% ACN/water (2 min) flow = 1 ml/min. Thin-layer chromatography 

(TLC) was performed on silica gel GHLF plates (250 microns) purchased from Analtech. 

Column chromatography was carried out in the flash mode utilizing silica gel (220−240 

mesh) purchased from Silicycle. Extraction solutions were dried over MgSO4 prior to 

concentration. 
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(4-(2-Bromoethoxy)phenyl)(phenyl)methanone (1b), (Chen et al, 2014). A 

stirred suspension of 4-hydroxybenzophenone (1a; 700 mg, 3.53 mmol), 1,2-

dibromoethane (3.04 ml, 35.3 mmol), cesium carbonate (2.3 g, 7.1 mmol) and acetonitrile 

(35 ml) was heated at reflux for 48 h. The mixture was diluted with 250 ml of water and 

extracted with dichloromethane (3x). The combined extracts were washed with water, sat. 

brine, dried, and concentrated to a solid that was purified by flash silica gel 

chromatography, eluting with chloroform. Product fractions were combined and 

concentrated to leave 1b (750 mg, 70%) as a white solid, mp 74-75 °C. Rf  0.44 

(chloroform). 1H NMR (400 MHz, DMSO-d6): δ 7.76 – 7.60 (m, 5H), 7.52 (t, J = 7.5 Hz, 

2H), 7.10 (d, J = 8.7 Hz, 2H), 4.41 (t, J = 5.4 Hz, 2H), 3.83 (t, J = 5.3 Hz, 2H). MS 

TOFES+: m/z 305.0, 307.0 (M+H)+. 

Bis(4-(2-bromoethoxy)phenyl)methanone (1d), (Tang et al, 2012) A stirred 

suspension of 4,4’-dihydroxybenzophenone (1c; 1.93 g. 9 mmol), 1,2-dibromoethane 

(15.5 ml, 180 mmol), cesium carbonate (11.77 g, 36.1 mmol) and acetonitrile (66 ml) was 

heated at reflux for 22 h. The suspension was filtered and the salts washed well with 

dichloromethane. The combined filtrate was filtered through a small pad of flash silica 

gel, washing the pad well with dichloromethane. The filtrate was concentrated to a 

semisolid that was diluted with 2-propanol. The suspension was heated for ∼ 5 min and 

allowed to cool. The resulting solids were collected, washed with 2-propanol, and dried 

to leave 2.3 g of 1d, mp 125-127 ºC. Upon standing for several days, additional product 

crystallized from the mother liquor and was collected to give 130 mg of 1d, mp 120-125 

ºC. Total yield = 2.43 g (63%). 1H NMR (400 MHz, DMSO-d6): δ 7.73 – 7.64 (m, 4H), 

7.13 – 7.04 (m, 4H), 4.45 – 4.37 (m, 4H), 3.87 – 3.79 (m, 4H). MS TOFES+: m/z 427.9 
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(M+), 428.9 (M+H)+. 

(4-(2-Morpholinoethoxy)phenyl)(phenyl)methanone (2a), (Meegan et al, 

2001). A stirred suspension of 4-hydroxybenzophenone (1a; 750 mg, 3.8 mmol), 4-(2-

chloroethyl)morpholine hydrochloride, (739 mg, 4 mmol), cesium carbonate (3.7 g, 11.4 

mmol) and acetonitrile (30 ml) was heated at reflux for 21 h. The mixture was poured 

into 250 ml of water and stirred overnight. The formed suspension was collected, washed 

with water, and dried to give 2a (1.0 g, 85%) as an off-white powder, mp 64-66 °C. Rf 

0.61 (85:15:2  ethyl acetate/methanol/triethylamine. 1H NMR (400 MHz, DMSO-d6): δ 

7.75 – 7.60 (m, 5H), 7.53 (t, J = 7.5 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 4.17 (t, J = 5.7 Hz, 

2H), 3.55 (t, J = 4.6 Hz, 4H), 2.70 (t, J = 5.7 Hz, 2H); remaining protons overlap DMSO 

peak. MS TOFES+: m/z 312.1 (M+H)+, 334.1 (M+Na)+. 

(4-(2-(Dimethylamino)ethoxy)phenyl)(phenyl)methanone (2b), (Meegan et al, 

2001). A stirred mixture of (4-(2-bromoethoxy)phenyl)(phenyl)methanone (1b; 750 mg, 

2.5 mmol), dimethylamine hydrochloride (301 mg, 3.7 mmol), potassium carbonate (1.36 

g, 9.8 mmol), and acetone (10 ml) was heated at reflux for 16 h. The mixture was 

concentrated to a solid residue that was partitioned between ethyl acetate and water. The 

aqueous layer was further extracted with ethyl acetate and the combined organic phases 

were washed sequentially with water and sat. brine, dried and concentrated to an oil that 

was purified by flash silica gel chromatography eluting with 4:1 

dichloromethane:methanol. Concentration of product fractions left 2b (0.50 g, 76%) as a 

colorless syrup; Rf 0.25 (85:15:2  ethyl acetate/methanol/trimethylamine). 1H NMR (400 

MHz, DMSO-d6): δ 7.71 (d, J = 8.3 Hz, 2H), 7.69 – 7.59 (m, 3H), 7.53 (t, J = 7.4 Hz, 

2H), 7.07 (d, J = 8.3 Hz, 2H), 4.13 (t, J = 5.7 Hz, 2H), 2.63 (t, J = 5.8 Hz, 2H), 2.20 (s, 
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6H). MS TOF-ES+: m/z 270.2 (M+H)+. 

(E and Z)-3-(4-(2-Morpholinoethoxy)phenyl)-2,3-diphenylacrylonitrile, 

hydrochloride (3a and 4a). Run 1: The anion of phenylacetonitrile (32.1 mmol) in THF 

(30 ml) was generated as described below for the synthesis of 6c. A solution of (4-(2-

morpholinoethoxy)phenyl)(phenyl)methanone (2a; 500 mg, 1.6 mmol) in THF (5 ml) 

was added over a period of 5 min. After 30 min the cooling bath was removed and the 

mixture warmed gradually to room temperature. After stirring for 48 h, the mixture was 

poured into 150 ml of 2N aq. HCl and further worked up as described below for 6c below 

to leave a crude mixture by NMR of 3a and 3b (570 mg, 86%) as a syrup; Rf 0.44 

(85:15:2 ethyl acetate/methanol/trimethylamine); Rf 0.18 (ethyl acetate). MS 

TOFES+: m/z 411.1 (M+H)+. Upon standing at room temperature (~1 month) the syrup 

crystallized. The solids were triturated in a few ml of ethanol with sonication, collected, 

washed with ethanol, and dried to leave an isomeric mixture of products (150 mg, 23%) 

as a cream-colored powder, mp 135-142 °C, shown by HPLC to be a 91:9 mixture of 

3a:4a. 1H NMR (400 MHz, DMSO-d6): δ 7.47 (m), 7.43 – 7.36 (m), 7.33 – 7.21 (m), 6.88 

– 6.82 (m), 6.81 – 6.75 (m), 4.01 (t, J = 5.7 Hz), 3.53 (t, J = 4.7 Hz), 2.62 (t, J = 5.7 Hz), 

2.41 (t, J = 4.7 Hz), remaining protons hidden under DMSO signal. The mother liquor 

was concentrated to leave ~400 mg of an isomeric mixture for further processing. Run 2: 

The above reaction was repeated on starting ketone 2a (550 mg, 1.8 mmol) to give crude 

product (700 mg, 97%) that was processed as above to leave 164 mg (23%) of a powder, 

mp 136-142 °C, shown by HPLC to be a 82:18 mixture of 3a:4a. The mother liquor was 

concentrated to leave ~530 mg of an isomeric mixture for further processing. To a stirred 

solution of 100 mg (0.24 mmol) of the 82:18 mixture of 3a:4a from Run 2 in 5:1 
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ethanol/dichloromethane (6 ml) was added HCl in ether (0.26 ml of 1M solution). After 3 

h the mixture was concentrated to a glassy residue that eventually crystallized after 

treatment with a few drops of methanol. The solids were collected, washed with 2-

propanol, and dried to give 3a hydrochloride (54 mg, 50%) as a white powder; mp 200-

202 °C; Rf  0.85 (97:3 methanol/conc. ammonium hydroxide); Rf  0.66 (85:15:2 ethyl 

acetate/methanol/triethylamine). HPLC rt 6.1 min (98%), 6.3 min (2%). 1H NMR (400 

MHz, DMSO-d6): δ 7.48 (m, 3H), 7.43 – 7.36 (m, 2H), 7.33 – 7.22 (m, 5H), 6.91 (d, J = 

8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.33 (t, J = 4.7 Hz, 2H), 3.93 (d, J = 13.0 Hz, 2H), 

3.73 (t, J = 12.2 Hz, 2H), 3.55-3.39 (m, 4H), 3.15 (d, J = 5.2 Hz, 2H); 1H NMR (600 

MHz, DMSO-d6): δ 3.02 - 3.18 (m, 2H, (CHH)2N-), 3.29 - 3.48a (m, 2H, (CHH)2N-)), 

3.38 - 3.52a (m, 2H, NCH2CH2O), 3.69 - 3.98 (m, 4H, (CH2)2O), 4.25 – 4.44 (m, 2H, 

NCH2CH2O), 6.68 – 6.84 (m, 2H, Arα'H), 6.84 – 6.93 (m, 2H, Arα’H), 7.15 – 7.32 (m, 

5H, ArβH), 7.33 - 7.51 (m, 5H, ArαH); 1H NMR (600 MHz, DMSO-d6:CD3OD, 1:1 v:v): 

δ 3.08 - 3.17 (m, 2H, (CHH)2N-), 3.36 - 3.46 (m, 2H, (CHH)2N-)), 3.46 - 3.52 (m, 2 H, 

NCH2CH2O), 3.65 - 3.78 (m, 2H, (CHH)2O), 3.85 - 3.98 (m, 2H, (CHH)2O), 4.22 – 4.28a 

(m, 2H, NCH2CH2O), 6.80 (d, J = 8.1 Hz, 2H, Arα’H), 6.88 (d, J = 8.1 Hz, 2H, Arα’H), 

7.21 (m, 5H, ArβH), 7.31 - 7.49 (m, 5H, ArαH); 13C NMR (150 MHz, DMSO-d6): δ 51.7, 

54.9, 62.3, 63.2, 110.0, 114.4, 119.9, 128.5, 128.6, 128.8, 129.4, 129.6, 129.9, 131.2, 

132.1, 134.7, 140.3, 157.1, 157.9; (apeaks overlapped with solvent, determined from 

HSQC). The sticky semisolid from the above combined mother liquors (~930 mg) was 

triturated in ethanol to leave solids that were collected, washed well with ethanol, and 

dried to leave 250 mg of a different mixture of isomers from above, as shown by tlc (95:5 

dichloromethane/methanol), as an off-white powder; mp 123-135 °C. The mixture was 



	 54	

dissolved in 5 ml of 4:1 methanol/ dichloromethane, and anhydrous HCl in ether (0.7 ml 

of 1M solution) was added. The mixture was stirred at room temperature for 18 h and 

concentrated to a solid residue, which was triturated in several ml of 2-propanol, 

sonicated briefly, and stored overnight. The solids were collected, washed with 2-

propanol, and dried to leave enriched 4a (165 mg), mp 144-169 °C; Rf  0.72 (97:3 

methanol/conc. ammonium hydroxide); Rf  0.55 (95:5 dichloromethane/methanol). The 

product was recrystallized from 2-3 ml of ethanol to leave highly pure 4a, hydrochloride 

(45 mg) as a beige powder; mp 144-146 °C. HPLC:  rt 6.1 min (6%), 6.3 min (94%). 1H 

NMR (400 MHz, DMSO-d6): δ 7.35 (d, J = 8.6 Hz, 2H), 7.27 - 7.17 (m, 8H), 7.04 (d, J = 

8.4 Hz, 2H), 6.97 (dt, J = 6.8, 1.5 Hz, 2H), 4.25 - 4.15 (m, 2H), 3.65 – 3.58 (m, 4H), 

remaining protons hidden under DMSO signal. 1H NMR (600 MHz, DMSO-d6): δ 2.38 – 

2.62a (m, 4H, (CH2)2N-), 2.64 – 2.88 (m, 2H, NCH2CH2O), 3.50 – 3.84 (m, 4H, 

(CH2)2O), 4.03 – 4.47 (m, 2H, NCH2CH2O), 6.95 – 7.04 (m, 2H, ArαH), 7.05 - 7.12 (m, 

2H, Arα’H), 7.18 – 7.34 (m, 8H, ArαH,ArβH), 7.35 - 7.44 (m, 2H, Arα’H); 1H NMR (600 

MHz, DMSO-d6:CD3OD, 1:1 v:v): δ 2.70 – 2.86 (m, 4H, (CH2)2N-), 2.94 - 3.04 (m, 2H, 

NCH2CH2O), 3.60 – 3.73 (m, 4H, (CH2)2O), 4.17 – 4.25a (m, 2H, NCH2CH2O), 6.95 (d, J 

= 7.0 Hz, 2H, ArαH), 7.01 (d, J = 8.4 Hz, 2H, Arα’H), 7.12 – 7.26 (m, 8H, ArαH,ArβH), 

7.34 (d, J=8.4 Hz, 2H, Arα’H); 13C NMR (150 MHz, DMSO-d6): δ 53.1b, 56.5b, 64.6b, 

65.5b, 109.7, 114.6, 120.2, 128.4, 128.4, 128.7, 129.1, 129.4, 130.4, 131.3, 132.1, 134.8, 

138.9, 157.6; (apeaks overlapped with solvent, determined from HSQC, bdue to broad 

signals the chemical shifts have been extracted from the HSQC experiment); MS 

TOFES+: m/z 411.1 (M+H)+ ; TOFES-: m/z 409.2 (M-H)+. 

(E and Z)-3-(4-(2-(Dimethylamino)ethoxy)phenyl)-2,3-diphenylacrylonitrile, 
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hydrochloride (3b and 4b), (Lashley et al, 2003). The anion of phenylacetonitrile (33.4 

mmol) in THF (45 ml) was generated as described below for the synthesis of 6c. After 30 

minutes at 0-5 °C, the anion was cooled to -78 °C and a solution of the ketone 2b (450 

mg, 1.7 mmol) in THF (15 ml) was added over a period of 5 min. Cooling was removed 

and the red-brown mixture was stirred at room temperature for 5 d. The mixture was 

poured into ice-cold 3N aq. HCl and further worked up as described for the preparation of 

6c below to leave a solid residue (600 mg, 97%) that was triturated in 2-propanol, 

collected, washed with ether and dried to leave crude 3b, 4b (98 mg, 16%), confirmed by 

NMR and MS, as a tan powder. The combined mother liquor and washes were 

concentrated to a residue that was dissolved in methanol and treated with an excess of 

anhydrous 1N HCl in ether. After stirring for 20 h the solution was concentrated leaving a 

glassy residue that was triturated in 2-propanol. The precipitate was collected and dried to 

leave an 84:16 mixture (by hplc) of 3b:4b hydrochloride (0.14 g, 20%) as a cream-

colored powder, mp 217-230 °C. Rf 0.69 (99:1 dichloromethane/methanol). 1H NMR 

(400 MHz, DMSO-d6): δ 10.47 (s, 1H), 7.49 - 6.83 (m, 14H), 4.42, 4.29 (m, 2H), 3.51, 

3.44 (m, 2H), 2.83, 2.78 (s, 6H). MS TOFES+: m/z 369.1 (M+H)+. 

Bis(4-(2-(diethylamino)ethoxy)phenyl)methanone (5a), (Palopoli et al, 1966). 

A mixture of bis(4-hydroxyphenyl)methanone (1c;  1.07 g, 5 mmol), 2-chloro-N,N-

diethylethylamine hydrochloride (1.76 g, 10.2 mmol), cesium carbonate (8 g, 24.6 mmol) 

and acetonitrile (52 ml) was stirred at reflux for 18 h. The mixture was poured into 500 

ml of water and then extracted with ethyl acetate (3x). The combined extracts were 

washed with sat. brine, dried and concentrated to leave 1.93 g (92%) of 5a as a free-

flowing pale orange oil, 91% pure by HPLC, that solidified in the refrigerator. The 
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compound was used directly in the next step. 1H NMR (400 MHz, DMSO-d6): δ 7.71 – 

7.61 (m, 4H), 7.09 – 7.00 (m, 4H), 4.09 (t, J = 6.1 Hz, 4H), 2.78 (t, J = 6.1 Hz, 4H), 2.53 

(q, J = 7.1 Hz, 8H), 0.95 (t, J = 7.1 Hz, 12H); MS TOFES+: m/z 413.3 (M+H)+. 

Bis(4-(2-morpholinoethoxy)phenyl)methanone (5b). A stirred mixture of 4,4'-

dihydroxybenzophenone (1c; 500 mg, 2.3 mmol), 4-(2-chloroethyl)morpholine 

hydrochloride (864 mg, 4.6 mmol), cesium carbonate (3.69 g, 11.3 mmol) and 

acetonitrile (25 ml) was heated at reflux for 18 h. The mixture was diluted with 250 ml of 

water and the resulting solution was stirred at room temperature for 18 h. The 

precipitated solids were collected, washed with water, and dried to leave 5b (0.9 g, 90%) 

as a white powder, mp 119-120 °C. Rf 0.33 (ethyl acetate/methanol/triethylamine, 

85:15:2]. 1H NMR (400 MHz, DMSO-d6): δ 7.67 (d, J = 8.7 Hz, 4H), 7.06 (d, J = 8.7 Hz, 

4H), 4.17 (t, J = 5.6 Hz, 4H), 3.59 – 3.52 (m, 8H), 2.70 (t, J = 5.6 Hz, 4H); remaining 

protons overlap DMSO peak. MS TOFES+: m/z 441.2 (M+H)+. 

Bis(4-(2-(4-methylpiperazin-1-yl)ethoxy)phenyl)methanone (5c). A suspension of the 

bis-bromoethoxy compound (1d; 1.3 g, 3.0 mmol), N-methylpiperazine (1.52 ml, 13.7 

mmol), and acetonitrile (6 ml) was stirred at reflux for 2 h. The mixture was cooled and 

distributed between 5% aq. NaHCO3 and dichloromethane, using NaCl to break up the 

emulsion. The layers were separated and the aqueous phase was further extracted with 

dichloromethane (2x). The combined extracts were dried and concentrated to a semisolid 

that was dissolved in a minimum volume of hot 2-propanol (5-6 ml). The solution was 

refrigerated for several hours and the precipitated solids were collected, washed with 2-

propanol, and dried to leave 1.17 g of 5c, mp 129-130 ºC. Concentration of the mother 

liquor and further processing as above gave 45 mg of a second crop, mp 129-130 ºC.  
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Total yield = 1.22 g (86%). 1H NMR (400 MHz, DMSO-d6): δ 7.68 (d, J = 8.8 Hz, 4H), 

7.08 (d, J = 8.9 Hz, 4H), 4.17 (t, J = 5.7 Hz, 4H), 2.71 (t, J = 5.6 Hz, 4H), 2.32 (m, 6H), 

2.14 (s, 6H), remaining protons hidden under solvent signal. MS TOFES+: m/z 467.3 

(M+H)+. 

3,3-Bis(4-(2-(diethylamino)ethoxy)phenyl)-2-phenylacrylonitrile, 

dihydrochloride (6a), (Dore et al, 1992). A solution of commercially available lithium 

diisopropylamide (1M in THF/hexanes, 30 ml, 30 mmol) under nitrogen at -78 °C was 

treated dropwise with phenylacetonitrile (3.46 ml, 30 mmol) over ∼5 min. The cooling 

bath was removed and the temperature was allowed to come to 0 - 10 °C. The deep 

yellow anion suspension was re-cooled to -78 °C and diluted with THF (17 ml). Ketone 

5a (619 mg, 1.5 mmol) in 5 ml THF was added over a ∼1 min and the resultant 

suspension was maintained at -78 °C for 3-3.5 h (beige suspension) and then allowed to 

slowly warm to room temperature overnight. After stirring for a total of 19 h from the 

point of ketone addition, the violet mixture was poured into 2N aq. HCl (125 ml), stirred 

for 2.5 h, and extracted with ethyl acetate (2x). The combined organic extracts were 

discarded. The acidic aqueous phase was ice-cooled and treated portion-wise with 10.5 g 

of NaOH dissolved in minimal water. The cloudy aqueous solution (pH ∼12) was 

extracted with ethyl acetate (3x), with small aliquots of aq. NaOH added to keep the 

aqueous phase basic. The combined extracts were washed with sat. brine, dried, and 

concentrated to a viscous oil that was pumped in vacuo 2 h to leave 700 mg (91%) of 6a 

as a pale orange viscous oil, shown by HPLC to be 94% pure. Processing a small amount 

of product by re-dissolving it in 2N aq. HCl followed by further treatment as above 

provided 6a that was 96% pure by HPLC. Rf ∼0.35 (95:5 methanol/conc. ammonium 
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hydroxide). 1H NMR (400 MHz, DMSO-d6): δ 7.36 –7.16 (m, 7H), 7.04 – 6.96 (m, 2H), 

6.91 – 6.80 (m, 2H), 6.79 – 6.71 (m, 2H), 4.11 – 3.96 (m, 2H), 3.93 (t, J = 6.1 Hz, 2H), 

2.78 (t, J = 6.1 Hz, 2H), 2.69 (t, J = 6.1 Hz, 2H), 2.59 – 2.43 (m, 8H), 0.94 (dt, J = 18.2, 

7.1 Hz, 12H). 1H NMR (500 MHz, CD3OD): δ 7.39 (d, J = 8.8 Hz, 2H), 7.25 (s, 5H), 

7.02 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 4.19 (t, J = 

5.6 Hz, 2H), 4.07 (t, J = 5.6 Hz, 2H), 3.07 – 2.95 (m, 2H), 2.95 – 2.84 (m, 2H), 2.75 (m, 

4H), 2.69 (m, 4H), 1.14 (t, J = 7.2 Hz, 6H), 1.09 (t, J = 7.2 Hz, 6H); The dihydrochloride 

salt was made as follows: 6a free base (90 mg) was dissolved in minimal  

dichloromethane and the solution was treated with 800 µl of anhydrous 1N HCl in ether.  

The mixture was stirred for 10 min and then filtered through a cotton plug to remove a 

few insolubles. The filtrate was concentrated to a residue that was redissolved in 

dichloromethane/hexane and then concentrated to a yellow solid that was triturated in 

hexane. The solids were collected and dried to leave 100 mg (97%) of 6a 

dihydrochloride. 1H NMR (400 MHz, DMSO-d6): δ 10.02 (s, 2H), 7.37 (d, J = 8.2 Hz, 

2H), 7.30-7.19 (m, 5H), 7.08 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 

8.4 Hz, 2H), 4.39 (t, J = 5.8 Hz, 2H), 4.28 (t, J = 5.2 Hz, 2H), 3.51 (t, J = 6.7 Hz, 2H), 

3.43 (t, J = 6.2 Hz, 2H), 3.25-3.08 (m, 8H), 1.25-1.17 (m, 12H). MS TOFES+: m/z 512.4 

(M+H)+. 

3,3-Bis(4-(2-morpholinoethoxy)phenyl)-2-phenylacrylonitrile, 

dihydrochloride (6b). The anion of phenylacetonitrile (36.2 mmol) was generated in 

THF (45ml) as described below for the synthesis of 6c. The ketone 5b (800 mg, 1.8 

mmol) in THF (15 ml) was added over a period of 5 min, the solution allowed to 

gradually warm to room temperature over 2-3 h and maintained there for 18 h. The 
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mixture was poured into 100 ml of ice-cold 3N aq. HCl, stirred for 30 min, and washed 

with ether (2x). The aqueous phase was made strongly basic with 15% aq. NaOH, and 

extracted with ethyl acetate (3x). The combined extracts were washed with water and 

then sat. brine, dried, and concentrated to leave a clear amber syrup (960 mg, 98%), 

which crystallized upon standing at room temperature over several days. The solids were 

triturated in ethanol with sonication, collected, washed with ethanol, and dried to leave 

6b (0.54g, 55%) as a pale yellow powder, mp 130-131 °C. Rf 0.15 (85:15:2 ethyl 

acetate/methanol/trimethylamine). HPLC:  rt 4.9 min (96% purity). 1H NMR (400 MHz, 

DMSO-d6) δ 7.35 – 7.17 (m, 7H), 7.02 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.78 

(d, J = 8.6 Hz, 2H), 4.13 (t, J = 5.6 Hz, 2H), 4.01 (t, J = 5.6 Hz, 2H), 3.60 – 3.45 (m, 8H), 

2.69 (t, J = 5.6 Hz, 2H), 2.62 (t, J = 5.7 Hz, 2H); 2.47-2.40 (m, 8H). MS 

TOFES+: m/z 540.0 (M+H)+. The dihydrochloride salt was prepared as follows: A 

solution of 6b (100 mg, 0.19 mmol) in dichloromethane at room temperature was treated 

dropwise with anhydrous HCl (0.39 ml, 1M in ether) and the resulting gummy 

suspension was concentrated. The residue was triturated in ether to give a glassy solid 

that was collected, rinsed thoroughly with ether and dried to leave 6b dihydrochloride 

(0.10 g, 82%) as a yellow powder and solvated with ~0.6 equivalents of ether. Rf 0.77 

(95:5 methanol/conc. ammonium hydroxide). 1H NMR (400 MHz, DMSO-d6): δ 11.22 

(br s, 3H), 7.40 - 7.21 (m, 7H), 7.09 (d, J = 8.5 Hz, 2H), 6.91 - 6.84 (m, 4H), 4.51-4.32 

(m, 6H), 4.08 – 3.65 (m, 8H), 3.60 – 3.00 (remaining protons overlapping water peak). 

3,3-Bis(4-(2-(4-methylpiperazin-1-yl)ethoxy)phenyl)-2-phenylacrylonitrile, 

2.5 hydrochloride salt (6c). To a solution of diisopropylamine (10.03 ml, 71.6 mmol) in 

THF (50 ml) under nitrogen at -78 °C was added dropwise n-BuLi (44.7 ml of 1.6 M 



	 60	

solution in hexane, 71.6 mmol). The solution was stirred for 10 min and then treated 

dropwise with phenylacetonitrile (8.26 ml, 71.6 mmol) over 20 min. The bath was 

removed and the temperature was allowed to come to ∼0 °C. The pale yellow anion 

suspension was recooled to -78 °C and diluted with THF (40 ml). The solid ketone (5c; 

1.67 g, 3.6 mmol) was added all at once and the resultant suspension was maintained at -

78 °C for 2-2.5 h and then allowed to slowly warm to room temperature. During this time 

there was a deepening orange suspension, which became a deep purple solution that 

remained while the solution was stirred at room temperature for 18 h. The solution was 

poured into ice-cold 2N aq. HCl (300 ml), stirred for 1.5 h, and extracted with ethyl 

acetate (2x). The combined extracts were washed with sat. brine and discarded. The brine 

was combined with the aq. acid phase, the solution ice-cooled and treated portion-wise 

with 25 g of NaOH dissolved in minimal water. The cloudy aqueous solution (pH ∼12) 

was extracted with ethyl acetate (3x), checking after each extraction to ensure the 

aqueous phase was basic. The combined extracts were washed with sat. brine, dried, and 

concentrated to a viscous oil that was pumped in vacuo overnight to leave 2 g (100%) of 

partially crystalline 6c as a golden solid. Rf ∼0.35 (95:5 methanol/conc. ammonium 

hydroxide).1H NMR (400 MHz, DMSO-d6): δ 7.50 – 7.18 (m, 6H), 7.09 – 6.85 (m, 3H), 

6.85 – 6.70 (m, 4H), 4.12 (t, J = 5.7 Hz, 2H), 3.99 (t, J = 5.7 Hz, 2H), 2.69 (t, J = 5.8 Hz, 

2H), 2.61 (t, J = 5.7 Hz, 2H), 2.50 – 2.16 (m, 9H), 2.13 (s, 3H), 2.11 (s, 3H), remaining 

protons hidden under solvent signal; MS TOFES+: m/z 566.2 (M+H)+. The residue was 

dissolved in minimal 2-propanol and while stirring vigorously the solution was treated 

with anhydrous HCl (12 ml, 1N in ether) resulting in precipitation of a gum. After stirring 

for 18 h, the supernatant liquid was decanted and the residue washed once with ether by 
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decantation. The residue was then immersed in fresh ether and stirred vigorously at room 

temp for 20 h leaving a fine filterable pale yellow solid that was collected, washed with 

portions of ether, and then once with 1% methanol in dichloromethane, resulting in 

conversion to a thick gummy syrup, which was collected and dissolved in methanol.  The 

solution was concentrated in vacuo and the resulting glass was immersed in ether and 

stirred vigorously at room temperature overnight. The resulting yellow solid was 

collected, rinsed with ether and dried in vacuo over P2O5 at 55-60 °C for 36 h to leave 6c 

dihydrochloride (1.35 g, 53%) as a pale yellow slightly hygroscopic powder, mp >135 

°C.  HPLC: rt 4.8 min (90% purity). 1H NMR (400 MHz, DMSO-d6): δ 10.36 (bs, 3H), 

7.35 - 7.18 (m, 7H), 7.03 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.5 

Hz, 2H), 4.15 (bs, 2H), 4.02 (bs, 2H), 2.99 (m, 8H), 2.80 – 2.60 (m, 10H); remaining 

protons overlap DMSO peak; 13C NMR (126 MHz, DMSO-d6) δ 157.48, 135.57, 132.71, 

131.93, 131.40, 129.79, 129.17, 128.64, 120.92, 114.85, 114.71, 108.69, 55.93, 52.72, 

49.95, 42.51. Anal. Calcd. for C35H43N5O2 · 2.5 HCl · 3.3 H2O (MW 716.36): C, 58.68; 

H, 7.33; N, 9.78; Cl-, 12.37. Found: C, 59.06; H, 7.20; N, 9.60; Cl-, 12.17. 

3,3-Bis(4-methoxyphenyl)acrylonitrile (8). A solution of diethyl 

(cyanomethyl)phosphonate (8.77 g, 49.5 mmol) in THF (10 ml) was added dropwise to a 

stirred suspension of sodium hydride (1.98 g of 60 wt %, 49.5 mmol) in THF (50 ml) 

under nitrogen at room temperature. After 30 min a solution of 4,4'-

dimethoxybenzophenone (7; 2.0 g, 8.3 mmol) in THF (30 ml) was slowly added, and the 

resulting solution was heated at reflux for 20 h. The mixture was poured into 300 ml of 

ice water, stirred, and acidified with 4N aq. HCl. After 1 h the mixture was concentrated 

to ~75 % volume and extracted with ethyl acetate (3x). The combined extracts were 
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washed with sat. aq. NaHCO3, then sat. brine, dried and concentrated to a solid that was 

triturated in 2-propanol. The solids were collected, washed with 2-propanol and then 

hexane, and dried to leave 8 (1.96g, 89%) as a white powder, mp 104-106 °C. Rf 0.68 

(98:2 dichloromethane/ethyl acetate). 1H NMR (400 MHz, CDCl3): δ 7.40 (d, J = 8.0 Hz, 

2H), 7.25 (d, J = 8.6 Hz, 2H), 7.18 – 6.93 (m, 2H), 6.88 (d, J = 8.3 Hz, 2H), 5.55 (s, 1H), 

3.87 (s, 3H), 3.84 (s, 3H).  MS TOFES+: m/z 266.0 (M+H)+. 

2-Bromo-3,3-bis(4-methoxyphenyl)acrylonitrile (9). A solution of bromine 

(0.55 ml, 10.7 mmol) in 1,2-dichloroethane (12 ml) was added dropwise to a stirred 

solution of 3,3-bis(4-methoxyphenyl)acrylonitrile (8; 1.9 g, 7.2 mmol) in 1,2-

dichloroethane (15 ml) at -25 °C. After a few minutes the mixture was warmed slowly to 

room temperature where it was stirred for 4 h. The mixture was diluted with 

dichloromethane and then washed successively with sat. aq. NaHCO3, aq. sodium 

thiosulfate, sat. brine, and dried. Concentration left a solid that was recrystallized from 3-

4 ml of ethanol to give 9 (1.45 g, 59%) as an off-white powder; mp 105-107 °C. 1H NMR 

(400 MHz, CDCl3): δ 7.34 – 7.23 (m, 4H), 6.93 – 6.84 (m, 4H), 3.85 (s, 3H), 3.84 (s, 

3H).  MS TOFES+: m/z 344.0, 346.0 (M+H)+. 

3,3-Bis(4-methoxyphenyl)-2-(thiophen-2-yl)acrylonitrile (10). A stirred 

mixture of 2-bromo-3,3-bis(4-methoxyphenyl)acrylonitrile (9; 500 mg, 1.5 mmol),  

thiophen-2-ylboronic acid (195 mg, 1.5 mmol), Pd(PPh3)4 (84 mg, 7.3 mmol), potassium 

carbonate (1.0 g, 7.3 mmol), toluene (7.3 ml), and 2-propanol (7.3 ml) was heated at 

reflux for 42 h, and then treated with additional Pd catalyst (84 mg). After heating 18 h 

more, the mixture was diluted with water and extracted with ethyl acetate. The combined 

organic phases were washed with sat. brine, dried and concentrated to an oil that was 



	 63	

purified by flash silica gel chromatography, eluting with 4:1 hexane/ethyl acetate. 

Product fractions were combined and concentrated to give 10 (440 mg, 87%) as a yellow 

syrup. 1H NMR (400 MHz, DMSO-d6):  δ 7.45 (dd, J = 5.1, 1.2 Hz, 1H), 7.33 (d, J = 8.8 

Hz, 2H), 7.17 (dd, J = 3.7, 1.2 Hz, 1H), 7.09 (d, J = 8.7 Hz, 2H), 7.02 – 6.89 (m, 5H), 

3.79 (s, 3H), 3.76 (s, 3H). MS TOFES+: m/z 348.0 (M+H)+, 370.0 (M+Na)+. 

3,3-Bis(4-hydroxyphenyl)-2-(thiophen-2-yl)acrylonitrile (11). BBr3 (0.86 ml of 

a 1M solution in dichloromethane) was added to a stirred solution of 3,3-bis(4-

methoxyphenyl)-2-(thiophen-2-yl)acrylonitrile (10; 100 mg, 0.3 mmol) in 

dichloromethane at room temperature. The mixture was stirred for 16 h, and then poured 

into water, stirred vigorously for 5 min, and extracted with ether (2x). The combined 

extracts were washed with sat. brine, dried and concentrated to leave 11 (90 mg, 98%) as 

an amber syrup. 1H NMR (400 MHz, DMSO-d6): δ 9.99 (s, 1H), 9.89 (s, 1H), 7.42 (d, J = 

3.9 Hz, 1H), 7.22 (d, J = 8.6 Hz, 2H), 7.13 (dd, J = 3.7, 1.3 Hz, 1H), 6.95 (d, J = 8.7 Hz, 

2H), 6.79 (d, J = 8.7 Hz, 2H), 6.87-6.78 (m, 3H). MS TOFES+: m/z 320.1 (M+H)+. 

3,3-Bis(4-(2-(dimethylamino)ethoxy)phenyl)-2-(thiophen-2-yl)acrylonitrile 

(12). A stirred mixture of 3,3-bis(4-hydroxyphenyl)-2-(thiophen-2-yl)acrylonitrile (11; 30 

mg, 0.1 mmol), 2-bromo-N,N-dimethylethylamine hydrobromide (328 mg, 1.4 mmol), 

cesium carbonate (612 mg, 1.9 mmol), and acetonitrile (3 ml) was heated at reflux for 18 

h. The mixture was diluted with water and extracted with ethyl acetate (3x). The 

combined extracts were washed successively with water and sat. brine, dried and 

concentrated to a syrup that was purified by flash silica gel chromatography, eluting first 

with 4-5 column volumes of 3:1 dichloromethane/methanol and then with 95:5 

methanol/conc. ammonium hydroxide to elute the product. Combined product fractions 
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were concentrated to leave 12 (18 mg, 42%) as an amber gum. HPLC: rt 5.1 min (89% 

purity). 1H NMR (400 MHz, DMSO-d6): δ 7.46 (d, J = 5.2 Hz, 1H), 7.32 (d, J = 8.9 Hz, 

2H), 7.17 (d, J = 2.5 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H), 7.03 – 6.87 (m, 5H), 4.15 – 3.97 

(m, 4H), 2.65 – 2.53 (m, 4H), 2.20 (s, 12H). MS TOFES+: m/z 462.1 (M+H)+. 

Preparation of compounds for biological testing. Stock solutions of tamoxifen 

and triarylacrylonitrile analogues (12.5 or 25 mM) were made up in DMSO and stored at 

20 °C for no longer than 3 weeks.  

PKC assay. To evaluate the ability of tamoxifen and the triarylacrylonitrile 

analogues to inhibit PKC activity, SHSY5Y cells were incubated in Krebs Ringer HEPES 

(KRH) buffer (25 mM HEPES, 125 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.3 mM 

CaCl2, 1.2 mM MgSO4, pH 7.4) at 37 °C for 15 min followed by a 1 h treatment with 3 

and 10 µM of each compound in KRH. PKC was activated by adding a final 

concentration of 333 nM phorbol 12-myristate 13-acetate (PMA) in KRH to the samples 

for 15 minutes and the reaction quenched with 1 ml cold KRH. The samples were 

pelleted at 3000 rpm for 2 min. The pellets were washed twice in cold KRH and lysed in 

solubilization buffer (1% Triton X-100, 50 mM Tris HCl, 150 mM NaCl, pH 7.4). 

Lysates were rotated at 4 °C for 1 h and centrifuged at 14000 rpm for 15 min to remove 

debris. Protein assays were conducted using the Biorad DC Protein Assay Kit. PKC 

activity was quantified using western blot analysis of the phosphorylation of 

myristoylated alanine-rich C kinase substrate (MARCKS). To obtain the IC50 for 6c and 

tamoxifen, the PKC assay was carried out by treating the SHSY5Y cells with 0.1-10 µM 

6c or 0.03-30 µM tamoxifen in KRH for 1 h.  

Western blot analysis. Lysates were resolved (50 µg/lane) on a 12% 
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polyacrylamide gel using SDS-PAGE. The proteins were transferred onto a nitrocellulose 

membrane at 0.1 A for 12-16 h. Membranes were incubated in blocking buffer (5% w/v 

milk, 150 mM NaCl, 10 mM Tris, 0.05% Tween 20). The membranes were probed with 

anti-phospho-MARCKS Ser 152/156 antibody (1:1000, catalogue # 2741, Cell Signaling 

Technology Inc, Danvers, MA) and anti-glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) 14C10 (1:10000, catalogue # 2118, Cell Signaling Technology Inc, Danvers, 

MA) antibodies for 24 h at 4 °C. Primary phospho-MARCKS antibody binding was 

detected using goat-anti rabbit antibody (1:2000, catalogue # sc-2054, Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA) for 1 h at room temperature and ECL Western 

Blotting Substrate (catalogue #32106, ThermoFisher Scientific, Waltham, MA). Primary 

GAPDH antibody binding was detected using donkey-anti rabbit antibody (1:20000, 

catalogue # sc-2054, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) for 1 h at room 

temperature and Chemiluminescent Western Substrate (catalogue # WBKLS0500, EMD 

Millipore, Darmstadt, Germany). Band densities were quantified using Image J software. 

PKC activity of each compound was calculated as the ratio of phosphorylated MARCKS 

to GAPDH as a percentage of that ratio for the PMA control sample. The results are 

displayed in Table 2.1 as percent inhibition of PMA-stimulated PKC activity. 

ERα binding assay. ER binding of tamoxifen and triarylacrylonitrile analogues 

was evaluated using a commercially available competitive binding assay (PolarScreen™ 

ER Beta Competitor Assay Kit, Green, catalogue # 15883, ThermoFisher Scientific, 

Waltham, MA). Compounds were loaded in triplicates. 

Statistical analysis. Statistical differences were calculated by one-way analysis of 

variants (ANOVA) using GraphPad Prism 6. Statistical significance was set at p ≤ 0.05. 
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Figure 2.2. Scheme 1. 
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Figure 2.3. Scheme 2. 
 

Results  

Bignon et al. carried out a systematic study of a series of triphenylacrylonitrile 

derivatives for their effects on PKC (Bignon et al, 1991). One sub-series of compounds, 

substituted with at least one basic dialkylaminoethoxy side chain, inhibited type α, β, and 

γ PKC subspecies activated by Ca2+ and phosphatidylserine (PS) at micromolar 

concentrations, with or without diolein, but did not inhibit protamine sulfate 

phosphorylation. One compound (6a, Table 2.1) was one of the most potent tested (IC50 

~3 µM with PS; tamoxifen ~75 µM, (Bignon et al, 1991)). Based on an earlier study in 

which 6a also displayed a lowered binding affinity to calf uterus cytosolic ER relative to 

tamoxifen (Bignon et al, 1989b), we decided to utilize it as a starting point for further 

SAR investigation.    
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Compound  Physicochemical Descriptora Inhibition of PKC-specific  
MARCKS Phosphorylation (% 

inhibition ± SEM), n = 3 

ERα Binding IC50 
(nM) [95% CI], n 

= 2-3b 

 
MWc cLogP tPSA 3 µM 10 µM  

Tamoxifen 
371.52 6.74 12.47 27 ± 9 52 ± 7 

222  [48-1035] 

3a · HCl 
410.52 5.57 45.49 43 ± 13 57 ± 9 

224   [38-1326] 

4a · HCl 
410.52 5.57 45.49 37 ± 18 70 ± 11 

97 [14-665] 

3b:4b · HCl (17:3) 
368.48 5.91 36.26 22 ± 10 67 ± 16 

86 [18-405] 

6a 
511.71 7.01 48.73 12 ± 5 68 ± 8 

>10,000 

6b · 2 HCl 
539.68 4.96 67.19 62 ± 8 72 ± 7 

553 [101-3015] 

6c · 2.5 HCld 565.76 5.24 55.21 83 ± 4 78 ± 13 
>10,000 

12 
461.62 5.46 48.73 39 ± 7 68 ± 5 

>10,000 
 

Table 2.1. Computed physicochemical properties and binding of compounds to PKC and ER. 
Computed physicochemical properties and binding of compounds to PKC and ER. aCalculations utilizing 
ChemAxon/Marvin Sketch software. bFor comparison, β-estradiol binding to ERα has IC50 = 4.4 nM [95% CI, 1-17]; n 
= 10. cFree base. dPKC IC50 = 160 nM; n = 6. 
 

To determine the effectiveness of compounds against PKC, SHSY5Y cells were 

pre-incubated with vehicle or two concentrations (3 µM and 10 µM) of tamoxifen or 

triarylacrylonitrile analogue at 37 °C followed by a 15 min treatment with the phorbol 

ester PMA. These concentrations were chosen because in cellular models, tamoxifen 

inhibits PKC with an IC50 of approximately 1-10 µM (Horgan et al, 1986; O'Brian et al, 

1985). Therefore, we tested tamoxifen and its analogues in our PKC activity assay at both 

3 µM and 10 µM to rapidly evaluate whether the analogues had improved PKC inhibitory 

activity compared to tamoxifen. The inhibition of phosphorylation of myristoylated 

alanine-rich C kinase substrate (MARCKS), a known PKC target, was quantified using 

western blotting. To assess effects against the ER, a complex of full length ERα and a 

proprietary fluorescent estrogen ligand were added to various concentrations of estradiol, 

tamoxifen and triarylacrylonitrile analogue for up to 4 h. Relative binding affinities were 

determined from changes in fluorescence polarization.  
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Inhibition data against PKC and ERα for synthesized triarylacrylonitrile 

analogues versus tamoxifen as control are shown in Table 2.1.	The results are displayed 

in Table 2.1 as percent inhibition of PMA-stimulated PKC activity. Representative 

western blots for all compounds except for 6c, which is shown in Figure 2.4, are shown 

in Figure 2.5. In our ERα binding assay, tamoxifen displaced estradiol binding with an 

IC50 of 222 nM. Additionally, we observed a 27 ± 9% and 52 ± 7% inhibition of PKC 

activity by tamoxifen at 3 µM and 10 µM, respectively. This was nearly equivalent to the 

inhibition of PKC by the isomeric compounds 3a and 4a, which possess a single 

morpholinoethoxy side chain, with each showing nearly equivalent inhibition of PKC 

relative to tamoxifen at the two concentrations tested. These compounds also display 

essentially equivalent affinity for binding to ERα, which is within the same range as 

tamoxifen. The same pattern holds for the direct nitrile congener of tamoxifen, 3b, which 

was tested as a mixture highly enriched in the E-isomer. More specifically, 3b:4b caused 

a 22 ± 10% and 67 ± 16% reduction in PKC activity at 3 µM and 10 µM, respectively. 

Analogues 6a-6c with solubilizing dialkylaminoalkoxy side chains attached to both the α 

and α' rings show a different pattern of inhibition. In general, there is a trend for greater 

potency toward inhibition of PKC at both concentrations tested relative to tamoxifen, 

and/or reduced affinity to the ERα. Compound 6a with the (diethylamino)ethoxy side 

chains shows essentially equivalent potency to tamoxifen for inhibition of PKC, but with 

negligible binding to ERα. In contrast, compound 6b with the less basic 

morpholinoethoxy side chains shows much greater sensitivity toward PKC, with 3 µM 

and 10 µM of 6b causing a 62 ± 8% and 72 ± 7% decrease in PKC activity respectively. 

However, 6b displays equivalent potency for ERα relative to tamoxifen. Compared to 6a, 
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6b showed significantly more inhibition of PKC at 3 µM (one-way ANOVA, *p < 0.05; 

see Table 2.1). Compound 6c with the more basic (4-methylpiperazin-1-yl)ethoxy side 

chains shows the best selectivity profile relative to tamoxifen for all analogues 

synthesized with excellent potency toward inhibition of PKC and undetected binding to 

ERα. Similar to 6b, 6c inhibited PKC more significantly at 3 µM when compared to 6a 

(one-way ANOVA, **p < 0.01; see Table 2.1). Dose response experiments with 6c 

shows that it inhibits PKC activity with an IC50 of 80 nM, but does not bind ERα at 

concentrations up to at least 10 µM. A representative blot with a calculated dose response 

curve demonstrating the inhibition of PMA-stimulated MARCKS phosphorylation is 

shown in Figure 2.4. By comparison, tamoxifen in our cell-based PKC inhibition assay 

has an IC50 of 20 µM against PKC and an IC50 of 222 nM for binding to ERα. 

	

Figure 2.4. Compound 6c dose dependently inhibits PMA-stimulated MARCKS phosphorylation. 
A. Representative western blot of pMARCKS (top row) with GAPDH loading control (bottom row). Concentrations in 
µM are given above the lanes. V1 and V2 are vehicle; P1and P2 are PMA control. The molecular weight markers of 95 
and 34 kDa are shown. B. Dose response curve calculated from pMARCKS western blot analysis. PMA control is 
calculated as PMA values minus vehicle control and set at 100%. n=4-6. 
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Figure 2.5. The effect of tamoxifen and the tamoxifen analogues on PKC activity. 
SHSY5Y cells were incubated in the presence or absence (vehicle) of the compounds for 1 h at 37 ˚C. PMA (333 nM) 
was used to stimulate PKC for 15 min and then the samples were lysed and probed for phosphorylated MARCKS 
(pMARCKS). GAPDH served as the loading control. Representative blots show actions of A: tamoxifen (TMX) and 
12 (cropped blots), B: 3b:4b and 3a, C: 6a (cropped), D: 6b. E: 4a (cropped). V1, V2: vehicle; P1, P2, P3: PMA 
control, Rub = 500 nM ruboxistaurin (positive control). 
 
 

The data for a single congener, 12, in which the β-phenyl ring has been replaced 

with a thiophen-2-yl ring, show a similar selectivity pattern to 6c but with reduced 

potency for inhibition of PKC. More specifically, unlike 6c which causes a 83 ± 4 % 

reduction in PKC activity at 3 µM, 12 inhibits only at 39 ± 7 %. More work needs to be 

carried out to fully map out a β-heteroaryl ring SAR. 
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Figure 2.6. Assignment of aromatic regions of NMR spectra compounds 3a and 4a hydrochloride salts. 
Assignment of aromatic regions of NMR spectra for compounds 3a and 4a hydrochloride salts. A. Structures of 3a and 
4a with labeled aromatic protons; B. Assigned 1H aromatic regions for 3a and 4a; C. 2D 1H-1H TOCSY spectra for 3a 
(left) and 4a (right);  D. 2D 1H-13C HSQC spectra for 3a (left) and 4a (right). 
 

Discussion 

Protocol optimization 

The classical procedure to construct the triphenylacrylonitrile compounds used for 

this study is through condensation of a methoxy benzophenone precursor and phenyl-

acetonitrile anion, generated either with NaH or sodium amide in refluxing benzene, 
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followed by pyridinium hydrochloride demethylation (Gilbert et al, 1983) and phenolic 

alkylation with an appropriate dialkylaminoalkyl halide (Dore et al, 1992). In order to 

shorten the sequence and provide the option of introducing variable β-ring aryl or 

heteroaryl moieties, we decided to install our dialkylaminoalkoxy side chains first off the 

α and/or α’ rings and then condense the resultant ketones with a phenylacetonitrile anion.   

Toward that end, we generated a small set of mono- and bis-

(dialkylaminoalkoxy)benzophenones either through a one-step phenolic alkylation of 1a 

or 1c with readily available dialkylaminoalkyl halides to give 2a, 5a, 5b in 85-92% yield, 

or in two steps via mono bromo displacement with excess 1,2-dibromoethane to give 1b 

and 1d, followed by a second bromo displacement with a chosen dialkylamine to give 2b 

and 5c in an overall  ~55% yield. The latter method, while longer, is especially suited 

toward installing a wide range of distal amino headpieces onto the alkoxy side chain, 

which otherwise would not be readily accessible from aminoalkyl halides. We then 

examined condensation of these elaborated benzophenones with phenylacetonitrile by 

screening a range of anion forming conditions. Notably, reaction of 5a with 1 – 5 

equivalents of NaH under a variety of solvent (THF, p-dioxane, toluene, DMSO) and 

temperature (25 ºC – 110 ºC) conditions resulted in recovery of starting ketone or the 

generation of complex mixtures showing only trace amounts of product 6a. Reaction with 

potassium t-butoxide in DMSO at 25 ºC left starting material. We then progressed to 

stronger bases such as n-BuLi and LDA at low temperature. Anion generation in THF at -

78 ºC with 5 equivalents of n-BuLi followed by addition of ketone 5a and warming to 25 

ºC provided the desired product 6a contaminated with a small amount of by-product, 

whereas the use of LDA under the same conditions resulted in a cleaner condensation. 
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Optimization of reaction conditions, utilizing 20 equivalents of LDA, and 

application to ketones 2a, 2b, 5a-5c provided condensation products (3a – 4b, 6a – 6c) in 

86-100% yields prior to crystallization. Unsymmetrical ketones 2a and 2b generated 

mixtures of E and Z isomers (3a/4a and 3b/4b) in an E/Z ratio of 9:1 to 5:1 by HPLC.  

Partial separation of isomers 3a and 4a was achieved through fractional 

crystallization/trituration of the free base. Further fractional crystallization of the formed 

hydrochloride salts of each enriched mixture then provided individual isomers in ≥ 94% 

purity by HPLC. No attempt was made to purify each isomer of the 3b/4b mixture, which 

was tested as such.   

Having developed condensation conditions to add phenylacetonitrile to a range of 

dialkylaminoalkoxy-substituted benzophenones, we were interested in applying the same 

anion generating conditions to provide target compounds in which the β-aryl moiety is 

derived from representative heterocyclic acetonitriles. Thus, LDA treatment of 2- or 4-

pyridylacetonitrile or 2-thienylacetonitrile under the optimum conditions discussed above 

followed by addition of ketone 5c resulted either in recovered starting ketone (for 

pyridylacetonitriles) or a very low yield of product (for 2-thienylacetonitrile), along with 

intractable side products. This necessitated the development of a completely novel 

approach (“Suzuki strategy”) for this type of scaffold. Its reduction to practice, which is 

exemplified with a test heteroaryl boronic acid, is shown in Figure 2.3 (Scheme 2).   

Accordingly, Horner-Wadsworth-Emmons (HWE) reaction of diethyl 

(cyanomethyl)phosphonate with benzophenone 7 proceeded under literature conditions to 

provide the elaborated acrylonitrile 8 in 89% yield. Selective olefin bromination of 8 was 

patterned after an analogous literature reaction to give 9 in 59% yield. Heteroarylation of 
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9 with thiophen-2-ylboronic acid proceeded under standard Suzuki conditions (Lone and 

Bhat, 2014) to give the core scaffold 10 in 87% yield incorporating the β-heteroaryl 

moiety (similar reaction of furan-2-ylboronic acid proceeded also in high yield).  

Installation of the bis-(2-dimethylamino)ethoxy side chains was then accomplished by a 

standard sequence of methoxy ether demethylation (BBr3) followed by alkylation with  2-

bromo-N,N-dimethylethylamine to give target compound 12 in 41% yield. Attempts to 

further shorten the sequence were evaluated with elaborated ketone 5c and found to be 

unsuccessful. While HWE reaction proceeded successfully, attempted bromination of the 

resultant product under several conditions left only starting cyano olefin. 

Most compounds could be rigorously purified by flash chromatography and/or 

crystallization, except for except for 6a-6c. Each of these shows a spot on silica gel TLC 

that overlaps with its respective precursor ketone 5, and requires an extremely polar 

eluant (95:5 methanol: concentrated ammonium hydroxide) to develop the plate to a 

reasonable Rf (~0.35). Hence, standard flash chromatography or preparative thick layer 

chromatography was not useful, so hydrochloride salts were formed and crystallized for 

further purification. Structural assignments for all compounds were supported by 

diagnostic peaks in the 1H NMR spectra and by mass spectrometry. For purified 

unsymmetrical E- and Z-isomers, 3a and 4a hydrochloride salts, respectively, structural 

assignments were based on 1D 1H, 1D 13C, 2D 1H-1H TOCSY and 2D 1H-13C HSQC 

experiments. Chemical shift analysis revealed that 3a is the E-isomer while 4a is the Z-

isomer. These assignments are based on significant differences between proton chemical 

shifts for protons in the α-ring of each isomer (Figure 2.6). In 4a (Z-isomer) the C-1 

proton of the α-phenyl ring has a strong upfield shift (6.95 ppm) due to its location above 
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the plane of either the α’- or β-phenyl ring. By contrast, the C-1 proton of the α-phenyl 

ring in 3a shows a downfield shift (~7.4 ppm), which is consistent with E-

stereochemistry. Such a strong conformational effect on chemical shifts allows for 

unambiguous assignment of Z- and E-isomers, which is more convenient than the 

classical methods of isomeric assignments by x-ray crystallography (Gilbert et al, 1983). 

Lead compound 

 Overall, we are interested in pursuing the effects of the tamoxifen analogues, 6c, 

on AMPH neurochemical and behavioral effects in vivo. 6c proved to be 250 times more 

potent than tamoxifen in inhibiting PKC in our cellular assay and displayed no affinity at 

the ER, and therefore was the most promising tamoxifen analogues generated from this 

study. There are many quantifiable traits of drugs that successfully cross the blood-brain 

barrier. These include good lipophilicity (calculated logP <5), a total polar surface area 

(tPSA) <60-70 Å2 and a molecular weight <450 Da (Pajouhesh and Lenz, 2005). 

Compared to tamoxifen (molecular weight 371 Da; tPSA, 12 Å2 ; calculated logP, 6.8), 

6c has improved calculated logP (5.2), increased tPSA (55 Å2) and molecular weight 

(566 Da; free base). Although, the molecular weight is slightly higher than desired, we 

believe the other physicochemical properties of the compound will allow it to cross the 

blood-brain barrier.  

Conclusion 

Utilizing the known compound 6a as a starting template, we have designed and 

synthesized a small series of novel triarylacrylonitrile analogues with some possessing 

enhanced potency and selectivity for PKC over the ER. For analogues incorporating a β-

phenyl ring, we have shortened the classical synthetic route by installing 
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dialkylaminoalkoxy side chains first off the α- and/or α’- rings of a precursor 

benzophenone, and then condensing the resultant ketones with phenylacetonitrile anion.  

Additionally, we have developed a completely novel, efficient, and versatile route 

utilizing Suzuki chemistry, which will allow for the introduction of a wide range of β-

aryl or β-heteroaryl moieties and side-chain substituents onto the acrylonitrile scaffold.  

For analogues possessing a single side chain off the α- or α’- ring, we have developed 

novel 2D NMR experiments that allow for unambiguous assignment of E- and Z- 

stereochemistry. From our SAR, we have successfully uncovered a compound, 6c, with 

markedly increased potency and selectivity for inhibiting PKC and reduced ER binding 

compared to tamoxifen. Future publications will detail studies that show that 6c 

significantly inhibits AMPH-induced dopamine release using both in vitro and in vivo 

models. Additional studies investigating the effects of 6c on AMPH reinforcement using 

self-administration in rats as well as current studies to determine CNS penetration will 

also be reported. These, in addition to the binding data reported herein, support further 

SAR exploration of the triphenylacrylonitrile scaffold, and heteroaryl congeners, toward 

the development of potential clinical agents to treat AMPH abuse.  
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Chapter 3. Direct and systemic administration of a CNS-permeant 

tamoxifen analogue reduces amphetamine-induced dopamine release 

and reinforcing effects 

 

Abstract 

Amphetamines (AMPHs) are globally abused. With no effective treatment for 

AMPH addiction to date, there is urgent need for the identification of druggable targets 

that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine 

efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces 

AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-

permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this 

study we demonstrate that a tamoxifen analogue, 6c, which more potently inhibits PKC 

than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated 

increases in extracellular dopamine and reinforcement-related behavior. In rat striatal 

synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated 

dopamine efflux than [3H]dopamine uptake through the dopamine transporter (DAT). 

The compound did not compete with [3H]WIN35,428 binding or affect surface DAT 

levels. Using microdialysis, direct accumbal administration of 1 µM 6c reduced 

dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-

permeant. Systemic treatment of rats with 6 mg/kg of 6c either simultaneously or 18 h 
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prior to systemic AMPH administration reduced both AMPH-stimulated dopamine 

overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 

mg/kg of 6c s.c. reduces AMPH-self administration but not food self-administration. 

These results demonstrate the utility of tamoxifen analogues in reducing AMPH effects 

on dopamine and reinforcement-related behaviors and suggest a new avenue of 

development for therapeutics to reduce AMPH abuse. 

Introduction  

Amphetamine (AMPH) and its congeners are highly addictive stimulants and their 

abuse remains a significant health, social and economic burden (Berman et al, 2008; 

Carvalho et al, 2012). Yet an effective treatment for AMPH abuse remains elusive. Like 

other drugs of abuse, the reinforcing effects of AMPH are attributed to its ability to 

significantly increase extracellular dopamine in the nucleus accumbens (Di Chiara and 

Imperato, 1988; Wise and Bozarth, 1985). AMPH achieves this effect through its action 

at the dopamine transporter (DAT). The primary role of DAT is to clear extracellular 

dopamine, thereby terminating pre- and post-synaptic dopamine signaling (Zhu and 

Reith, 2008). AMPH, a substrate of DAT, disrupts this process by competitively blocking 

dopamine reuptake and also promoting reverse transport of dopamine via DAT 

(McMillen, 1983). Unlike stimulants such as cocaine, whose actions are more reliant on 

storage pools of monoamines, the release of newly synthesized dopamine also contributes 

to AMPH action (Chiueh and Moore, 1975; Parker and Cubeddu, 1986).  

We found that protein kinase C (PKC) enhances AMPH-stimulated dopamine 

efflux. AMPH increases striatal particulate PKC activity (Giambalvo, 1992, 2004) and 

PKC stimulates the phosphorylation of N-terminal DAT residues (Foster et al, 2002). 
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Phosphorylation of DAT is permissive for AMPH-stimulated dopamine release 

(Khoshbouei et al, 2004; Wang et al, 2016). Selective PKC inhibitors and genetic 

deletion of PKC significantly reduce AMPH-stimulated dopamine release from striatal 

synaptosomes and slices (Chen et al, 2009; Kantor and Gnegy, 1998). PKC inhibition, 

however, does not alter the normal uptake functioning of the transporter (Johnson et al, 

2005; Kantor et al, 1998; Zestos et al, 2016). Therefore PKC represents a novel 

therapeutic target for the treatment of AMPH abuse.  

The selective estrogen receptor modulator tamoxifen stands as the only 

commercially available central nervous system (CNS)-permeant PKC inhibitor (Zarate 

and Manji, 2009). Tamoxifen is commonly used to reduce estrogen receptor (ER)-

positive breast cancer recurrence and to prevent breast cancer in high-risk women (Fisher 

et al, 1998; Jordan, 2003). Early reports using purified PKC show that tamoxifen inhibits 

the calcium- and phospholipid- dependent activity of classical PKC isoforms, with IC50s 

between 25-100 µM (Su et al, 1985). In cells, tamoxifen inhibits PKC at more 

pharmacologically relevant concentrations (1-5 µM) (Gundimeda et al, 1996; Horgan et 

al, 1986; Lien et al, 1991; O'Brian et al, 1985). There are findings that suggest PKC 

activity is elevated in patients suffering from bipolar mania, a disorder modeled by 

repeated AMPH administration in animals (Wang and Friedman, 1996). Interestingly, 

systemic tamoxifen reduces manic symptoms in patients with bipolar mania and this 

effectiveness is believed to stem from the action of tamoxifen at PKC (Kulkarni et al, 

2006; Zarate et al, 2007). These data point to the clinical relevance of tamoxifen as a 

CNS-permeant PKC inhibitor. Although tamoxifen is well tolerated overall, it can cause 

ER-mediated adverse effects including increased risk of hot flashes, thromboembolisms 
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and endometrial cancers (Fisher et al, 1998; Gradishar, 2004). Therefore a CNS-permeant 

tamoxifen analogue lacking ER activity could be useful in the context of AMPH abuse 

treatment.  

Extensive structure-activity relationship (SAR) studies have investigated 

tamoxifen substructures that contribute to its ability to bind to the ER and inhibit PKC 

(de Medina et al, 2004). We used this wealth of knowledge to synthesize a new 

generation of tamoxifen analogues with increased selectivity for PKC over ER (Carpenter 

et al, 2016).  In this paper we investigate the effect of our most promising novel 

compound, 6c (Figure 3.1A), at DAT and also on the neurochemical, behavioral and 

reinforcing actions of AMPH. Our key findings show that 6c modulates DAT 

asymmetrically, in that it is more potent in reducing dopamine efflux than uptake. 

Importantly, intra-accumbal and systemic administration of the tamoxifen analogue 

significantly reduces dopamine overflow and locomotion stimulated by AMPH. Finally, 

our self-administration studies demonstrate that 6c effectively reduces AMPH self-

administration but not food self-administration. This work supports the repurposing of the 

tamoxifen scaffold as a treatment for AMPH abuse and elucidates an effective route for 

blocking AMPH reinforcement. 

Materials and methods 

Compounds. 6c (6c�2.5 HCl) was synthesized and provided by the Vahlteich 

Medicinal Chemistry Core at the University of Michigan (Carpenter et al, 2016). D-

AMPH hemi-sulfate, dopamine, nomifensine maleate salt and phorbol-12-myristate-13-

acetate (PMA) were purchased from Sigma-Aldrich. Ruboxistaurin and cocaine 

hydrochloride were provided by NIDA-NIH. [3H]Dopamine and [3H]WIN35,428 ((−)-2-
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β-carbomethoxy-3-β-(4-fluorophenyl)tropane-1,5-napthalenedisulfonate) were purchased 

from Perkin Elmer. Heparin was purchased from Sagent Pharmaceuticals.  

Animals. Animal use and procedures were approved by the Institutional Animal 

Care and Use Committee at the University of Michigan and followed the guidelines put 

forth by the National Institutes of Health. Male Sprague Dawley rats were purchased 

from Envigo laboratories and were maintained on a 12-h light cycle with lights on at 

0700 (or 7 am) and all experiments were performed during the light phase. For in vitro 

experiments the rats were 7-12 wks. The age of rats for microdialysis and self-

administration ranged from 7 wks-10 months. During self-administration, the rats were 

food restricted to 80-85% of their free-feeding body weight and given free access to 

water. 

Synaptosome preparation. Rat striata were dissected on ice and homogenized in 

10 volumes of homogenization buffer comprised of 0.32 M sucrose, 1 mM EDTA, 

cocktail of protease inhibitors (Complete Mini, Roche), pH 7.4. Homogenates were 

centrifuged at 3000 rpm for 10 min and the supernatant saved. The supernatant fractions 

were then centrifuged at 14000 rpm for 15 min. For the PKC activity experiments, the 

supernatants were aspirated and the pellets resuspended in Kreb’s Ringer buffer (KRB) 

made of 145 mM NaCl, 2.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM CaCl2, 1.0 mM MgCl2, 

10 mM glucose, 24.9 mM NaHCO3, pH 7.4. For dopamine uptake and suprafusion 

experiments, the pellets were resuspended in KRB that included 0.05 mM ascorbic acid 

and 0.05 mM pargyline.   

PKC activity assay. Synaptosomes were incubated in KRB at 37 °C for 15 min 

followed by a 1 h treatment with 0-3 µM 6c and 500 nM ruboxistaurin (PKC inhibitor; 
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positive control). The final percentage of DMSO in all samples was 0.01%. PKC was 

activated by adding 100 nM PMA to the samples for 15 min and the reaction quenched 

with 1 ml cold KRB. The samples were pelleted at 3000 rpm for 3 min. The pellets were 

washed once in cold KRB and lysed in solubilization buffer (1% Triton X-100, 50 mM 

Tris HCl, 150 mM NaCl, pH 7.4). Lysates were rotated at 4 °C for 1 h and centrifuged at 

14000 rpm for 15 min to remove debris. Protein assays were conducted using the Biorad 

DC Protein Assay Kit. 

Western blotting. Samples (20 µg) were resolved on a 12% polyacrylamide gel 

using SDS-PAGE. The proteins were transferred onto a nitrocellulose membrane at 100 

mA for 12-16 h. Membranes were incubated in blocking buffer (5% w/v milk, 150 mM 

NaCl, 10 mM Tris, 0.05% Tween 20) and probed with either anti-phospho- ser152/156 

MARCKS antibody (1:1000, catalogue # 2741, Cell Signaling Technology Inc, Danvers, 

MA), or anti-phospho-ser41-GAP43 (1:1000, catalogue # sc-135697, Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA) anti-GAPDH 14C10 (1:10000, catalogue # 2118, 

Cell Signaling Technology Inc, Danvers, MA) antibodies for 24 h at 4 °C. Primary 

phospho-MARCKS and phospho-GAP-43 antibody binding were detected using goat-anti 

rabbit antibody (1:2000, catalogue # sc-2054, Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA) for 1 h at room temperature and ECL Western Blotting Substrate (catalogue 

#32106, ThermoFisher Scientific, Waltham, MA). Primary GAPDH antibody binding 

was detected using goat-anti rabbit antibody (1:20000, catalogue # sc-2054, Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA) for 1 h at room temperature and Chemiluminescent 

Western Substrate (catalogue # WBKLS0500, EMD Millipore, Darmstadt, Germany). 

Band densities were quantified using Image J software. 
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[3H]Dopamine uptake. Synaptosomes were treated with 0-3 µM 6c at 37 °C for   

1 h. [3H]Dopamine (PerkinElmer Life Sciences) was added for 3 min and [3H]dopamine 

uptake was terminated with 5 ml cold KRB. The samples were then rapidly filtered on 

Fisherbrand GF/C filters and washed with 5 ml of cold KRB twice. Non-specific uptake 

was determined using 100 µM cocaine. Once dried, the filters were counted in a 

Beckman LS 5801 liquid scintillation counter.  

Biotinylation. The effect of 6c on DAT surface levels in synaptosomes was 

investigated with sulfo-NHS-SS-biotin using a method previously described (Furman et 

al, 2009). Rat striatal synaptosomes were incubated with 3 µM 6c or vehicle in KRB for 

at 37 °C for 1 h. Synaptosomes were washed twice with cold PBS/Ca–Mg buffer pH 7.3 

(138 mM NaCl, 2.7 mM KCl, 1.5 mM K2PO4, 9.6 mM Na2PO4, 1 mM MgCl2 and 0.1 

mM CaCl2), before treating with sulfo-NHS-SS-biotin (2.0 mg/ml) at 4 °C for 1 h in 

PBS/Ca–Mg. 1 M glycine was added for 15 min to quench the biotinylation reaction and 

then the samples were washed twice with 100 mM glycine in PBS/Ca–Mg. The 

synaptosomes were lysed in solubilization buffer (25 mM, Tris, 150 mM NaCl, 1 mM 

EDTA, 5 mM N-ethylmalemeide, and 1% triton-X 100) and protease inhibitors (Roche, 

Indianapolis, IN) for 1 h at 4 °C. Lysates were centrifuged at 20000 × g for 30 min at 4 

°C and protein concentration determined using a Bio-Rad Dc protein assay kit. Samples 

(∼200 µg) were incubated with streptavidin beads (50 µl) for 1 h at room temperature. 

The beads were washed three times with solubilization buffer and then eluted in 2X 

sample buffer. Proteins were resolved by 10% SDS-PAGE and immunoblotted using 

1:1000 dilution MAB16, anti-DAT donated by Dr. Roxanne Vaughn, Department of 
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Biochemistry, University of North Dakota. Quantification of the bands was performed 

with Image J software. 

[3H]WIN35,428 Binding. Radioligand saturation binding assays were performed 

by incubating synaptosomes with 3 µM 6c at 37 °C for 1 h followed by 0-200 nM of the 

cocaine analogue [3H]WIN35,428 for 2 h at 4 °C. Five ml cold KRB was then added to 

samples followed by rapid filtration on Fisherbrand GF/C filters and washed twice with 5 

ml of cold KRB. Non-specific binding was determined using 30 µM nomifensine.  

Suprafusion. Synaptosomes were loaded onto filters in chambers of a Brandel 

perfusion apparatus (Brandel SF-12, Gaithersburg, MD) and perfused with 0-3 µM 6c at 

37 °C for 1 h at a rate of 400 µl/min. Following this wash, 16 fractions were collected in 

2 min increments in vials containing internal standard solution (final concentration 

50 mM perchloric acid, 25 µM EDTA, and 10 nM 2-aminophenol). Dopamine efflux was 

stimulated by the addition of 10 µM AMPH from fractions 6-11. The vehicle control or 

6c was also present during collection. Dopamine was quantified using high performance 

liquid chromatography coupled to electrochemical detection (Thermo Scientific/ESA, 

Sunnyvale, CA).  

Microdialysis and locomotor behavior. Probes were prepared and implanted as 

previously described (Zestos et al, 2016). Rats were anesthetized with 5% isofluorane 

and fixed on a stereotaxic frame. Probes were implanted bilaterally (+1.7 A/P, ±1.4 M/L, 

-7.5 D/V in reference to bregma) to sample from the nucleus accumbens core. 

Measurements attained from both probes in each rat were averaged to represent a single 

replicate. The perfusion flow rate through the probe for all experiments was 1 µl/min and 
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fractions were collected in 3 min increments. After the experiments, cannula placement 

was confirmed using histology.  

Acute 6c preteatment. After probe implantation, rats were allowed to recover and 

habituate to the Raturn testing chamber (Bioanalytical Systems, Inc., West Lafayette, IN) 

for 24 h. Immediately before the experiment, the probe was perfused with aCSF for 1 h 

and then baseline fractions were collected for 30 min. Next, 1 µM 6c or saline was 

administered directly to the nucleus accumbens core using retrodialysis for 30 min, with 

fractions being collected during this time. Two mg/kg of AMPH i.p. was then 

administered and fractions collected for another 1 h.  

Detection of 6c and AMPH. 6 mg/kg of 6c was given s.c. and the presence of the 

compound was monitored in accumbal dialysate from 0 to 18 h. The presence of AMPH 

was only monitored for 60 min. 

Simultaneous administration of 6 mg/kg of 6c and AMPH. After probe 

implantation, rats were allowed to recover and habituate to the Raturn testing chamber 

(Bioanalytical Systems, Inc., West Lafayette, IN) for 24 h. Immediately before the 

experiment, the probe was perfused with aCSF for 60 min and then baseline fractions 

were collected for 30 min. Then 6 mg/kg of 6c or saline was given with 1 mg/kg of 

AMPH subcutaneously and fractions were collected for another hour.  

18 h 6 mg/kg of 6c pretreatment. After probe insertion, the rats were given 6 

mg/kg of 6c or saline subcutaneously and were placed in the Raturn testing chamber 

(Bioanalytical Systems, Inc., West Lafayette, IN) for 18 h. Immediately before the 

experiment, the probe was perfused with aCSF for 1 h and then baseline fractions were 
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collected for 30 min. Two mg/kg of AMPH i.p. was then given and fractions collected for 

another hour.  

Sample derivatization and neurotransmitter analysis. Standards and fractions 

were derivatized with benzoyl chloride and analyzed on a Thermo TSQ LCMS as 

previously described (Zestos et al, 2016). In experiments monitoring the presence of 6c, 

samples were not derivatized since the compound has no primary amine.  

Locomotor behavior. During microdialysis, locomotor behavior was recorded using 

Logitech webcams (Apples, Switzerland) placed above the Raturns chambers 

(Bioanalytical Systems, Inc., West Lafayette, IN). Webcams were connected via USB 

port to analysis PC running Matlab 2009 (Mathworks, Natick, MA, USA) software. The 

data were collected using the image acquisition toolbox in Matlab via a custom designed 

motion-monitoring program (Mark Dow, University of Oregon) and quantified as 

previously described (Zestos et al, 2016).  

Apparatus for self-administration. Self-administration studies were conducted in 

operant chambers (ENV-008CT, Med Associates, St. Albans VT) inside sound-

attenuating cubicles (ENV-018V, Med Associates). Each box contained two nose poke 

devices with yellow lights (ENV-114BM, Med Associates Inc) on the left and right sides 

of the front wall and a pellet receptacle in between the nose pokes (ENV-200R7M, Med 

Associates Inc). The pellet receptacle was attached to a dispenser (ENV-203-45, Med 

Associates Inc) that delivered 45 mg sucrose pellets. A white house light was at the top of 

the wall opposite the nose poke devices. Drug solutions were delivered by variable 

infusion rate syringe pumps (PHM-107, Med Associates Inc) through Tygon tubing 

attached to single channel plastic swivel (375/22PS, Instech Laboratories, Plymouth 
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Meeting, PA) on a counterbalanced arm (PHM-110-SAI, Med Associates). Tygon tubing 

connected the swivel to the implanted backplate (313-000BM-15-5UP/1/SPC, Plastics 

One, Roanoke, VA) and was protected by a stainless steel spring. Data was collected 

using MED-PC software (SOF-735, Med Associates).  

18 h 6 mg/kg of 6c pretreatment on AMPH self-administration. Rats were 

surgically implanted with intravenous catheters in their left or right femoral vein under 

ketamine/xylazine anesthesia (90:10 mg/kg i.p.). Catheters were attached to backplates 

made of stainless steel tubing and polyester mesh (313-000BM-15-5UP/1/SPC, Plastics 

One, Roanoke, VA) that exited between the scapula. Rats recovered for a minimum of 7 

days following the surgery and were flushed with 0.3 ml of heparinized-saline (50 U/ml) 

during recovery and before and after each self-administration session. The rats were 

trained to respond in the nose poke device for 0.1 mg/kg/infusion AMPH during 60 min 

sessions under a fixed-ratio 1 (FR1) schedule of reinforcement. One nose poke, the 

“active” nose poke, was illuminated with a yellow light; and the “inactive” nose poke 

was not illuminated and responses in this nose poke were recorded but had no scheduled 

consequences. Ratio completion resulted in an infusion (100 µl/kg/1 sec), turning of the 

nose poke light, and 1 sec illumination of the house light. All stimuli were turned off for 

a 10 sec period following the infusion and responses during blackout period were 

recorded but had no consequences. Upon acquisition of stable responding (defined as 3 

consecutive sessions with less than a 20% difference in infusions earned and no 

increasing or decreasing trend in the number of infusions earned), the response 

requirement was gradually increased to FR5 and then the AMPH dose was decreased to 
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0.032 mg/kg/infusion. The training data depict average responses for each group at each 

FR schedule.  

Following stable AMPH self-administration under the FR5 schedule, saline was 

substituted repeatedly for AMPH for 1-3 consecutive sessions until responding dropped 

to less than 30% of stable responding levels within a single substitution session. Once 

responding rapidly extinguished in the absence of AMPH, baseline AMPH responding 

was re-established for a minimum of 3 days prior to evaluating the effects of 6c 

pretreatment on AMPH self-administration. Injections of vehicle (5% tween in saline) or 

6 mg/kg of 6c were administered subcutaneously 18 h prior to an AMPH self-

administration session.  

18 h 6 mg/kg of 6c pretreatment on food self-administration. Food self-

administration studies were carried out with a similar design to the AMPH self-

administration studies but for a few differences. The rats were not implanted with 

intravenous catheters and the sessions lasted for 20 min. Responses on the active nose 

poke were reinforced with 45 mg sucrose pellets instead of AMPH. Stable responding 

was defined as 2-3 consecutive sessions with less than a 20% difference in food pellets 

earned and no increasing or decreasing trend in the number of food pellets earned. 

Instead of saline substitution, responding was extinguished by removing delivery of the 

sucrose pellets only (cues remained).   

Statistics. The results were analyzed using GraphPad Prism 6 software (San 

Diego, CA) and are plotted as mean ± SEM.  Statistical significance was determined 

using 2-way repeated measures (RM) ANOVA, 1-way ANOVA or a 2-tailed Students t 

test. When concentration response curves were compared, comparison of fits in non-
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linear regression was used to determine whether curves differed from each other. The null 

hypothesis was that the best-fit parameters for the values did not differ. A conclusion of 

statistical significance represents a rejection of the null hypothesis and indicates a 

difference between designated values. 

Results 

6c inhibits PKC in synaptosomes. Previously, we showed that 6c inhibits PKC 

activity 250 times more potently than tamoxifen in the human neuroblastoma cell line 

SHSY5Y and displayed a Ki > 10 µM at the ERα (Carpenter et al, 2016). Here we 

examined the effect of 6c on PKC activity in striatal synaptosomes that contain 

dopaminergic terminals. To do this, we determined the effect of 6c on the 

phosphorylation of the PKC substrates growth associated protein-43 (GAP-43) and 

myristoylated alanine-rich C-kinase substrate (MARCKS) at the PKC-specific 

phosphorylation sites ser41 and ser152/156 respectively (Heemskerk et al, 1993; Nielander 

et al, 1990). 6c decreased both GAP-43 and MARCKS phosphorylation in a 

concentration dependent manner up to 3 µM but showed greater potency in inhibition of 

GAP-43 phosphorylation as compared to MARCKS (3.1B). The IC50 of 6c for inhibition 

of PMA-stimulated phosphoser41-GAP-43 was 30 nM [95% confidence interval (CI), 9 

nM to 98 nM, n=4] while that for inhibition of phophoser152/156-MARCKS was 189 nM 

[95% CI, 25 nM – 1460 nM, n=5]. A comparison of fits in Prism 6 showed the two IC50s 

were significantly different (F(2,45)=7.7, p<0.01).  

6c asymmetrically blocks AMPH-stimulated dopamine efflux and uptake. We 

showed that selective PKC inhibitors reduce AMPH-stimulated dopamine release in vitro 

(Kantor et al, 1998). Using suprafusion of striatal synaptosomes, the effect of the PKC 



	 96	

inhibitor 6c on AMPH-stimulated dopamine efflux was tested. Synaptosomes were 

incubated with 6c for 1 h before AMPH exposure. 6c effectively and dose-dependently 

reduced dopamine efflux induced by 10 µM AMPH (Figure 3.2A). No concentration of  

	

Figure 3.1. Structure of tamoxifen analogue, 6c, and its effect on PMA-induced PKC activity in synaptosomes. 
A. Structures of tamoxifen and its analogue, 6c. B-C. Rat striatal synaptosomes were incubated in the presence or 
absence of 6c for 1 h at 37 °C. 100 nM PMA was added for 15 min to stimulate PKC and the samples were lysed and 
probed for phosphoser41-GAP-43 (n=4) and phosphoser152/156-MARCKS (n=5). GAPDH served as the loading control. 
B. Data are represented as percent of vehicle optical density and each data set represents mean ± SEM. C. 
Representative western blots. V1, V2: vehicle; P1, P2: PMA control; Rub: 500 nM ruboxistaurin, a control PKC 
inhibitor. 
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6c tested affected basal dopamine release (Figure 3.3). Our group has shown that PKC 

inhibitors exhibit asymmetry in their effects on DAT activity, where the compounds 

preferentially block dopamine efflux without having significant effects on [3H]dopamine 

uptake (Johnson et al, 2005; Zestos et al, 2016). The effect of a 1 h pretreatment of 0.3-3 

µM 6c on [3H]dopamine uptake was determined in striatal synaptosomes. Only 3 µM 6c 

had a significant effect on dopamine uptake, reducing [3H]dopamine uptake by 60% 

compared to the vehicle treatment (Figure 3.2B). Calculation of the dose-dependent 

percent inhibition of dopamine efflux and uptake (0.35 µM and 1.60 µM respectively) 

demonstrates a 4.6-fold selectivity for efflux over influx (Figure 3.2C).  

 

	

Figure 3.2. 6c modulation of DAT efflux and uptake processes. 
A. Rat striatal synaptosomes were incubated in the presence or absence of 6c for 1 h at 37 °C, efflux was stimulated 
with 10 µM AMPH (n=4). Post hoc Dunnett multiple comparison test, * p≤0.05. B. Synaptosomes were incubated with 
vehicle or 6c for 1 h at 37 °C and [3H]dopamine uptake was quantified (n=5). Post hoc Dunnett multiple comparison 
test, *p<0.01. C. Efflux and uptake results represented as % vehicle. All points are mean ± SEM. 
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Figure 3.3. The effect of 6c on basal dopamine release in synaptosomes. 
Rat striatal synaptosomes were incubated in the presence or absence of 6c for 1 h at 37 °C and at a flow rate of 400 
µl/min, six fractions were collected and basal dopamine release was quantified using HPLC coupled to electrochemical 
detection (n=4).  

 

6c does not affect DAT trafficking and does not displace [3H]WIN35,428 binding. 

Two potential explanations for the effect of 6c on dopamine uptake or efflux are that the 

compound is altering surface transporter levels or that it is directly binding to DAT. After 

incubating rat striatal synaptosomes with 3 µM 6c for 1 h at 37 °C, our biotinylation 

studies showed that the compound did not cause a change in DAT surface levels as 

compared to vehicle (Figure 3.4). Many dopamine uptake blockers, such as cocaine, 

interact with a binding site close to the substrate site and hence reduce the normal uptake 

functioning at DAT (Beuming et al, 2008). To investigate whether 6c is directly binding 

at this site, we tested the ability of the compound to alter binding of the cocaine analogue 

[3H]WIN35,428. We found that treating synaptosomes with 3 µM 6c for 1 h at 37 °C 

caused no changes in the subsequent equilibrium binding of [3H]WIN35,428. The Kd for 

[3H]WIN35,428 in the absence or presence of 6c in nM ± SEM was 77±17 and 71±19 

respectively. The Bmax for [3H]WIN35,428 binding in the absence or presence of 6c in 

pmol/mg protein ± SEM was 2.4±0.4 and 2.2±0.3, respectively, n=3. 
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Figure 3.4. The action of 6c on DAT surface expression. 
A. Rat striatal synaptosomes were incubated in the presence or absence of 3 µM 6c for 1 h at 37 °C, followed by the 
biotinylation of surface DAT as previously described in Methods. B. Representative western blots. Data shown as mean 
± SEM (n=5). 
 

Direct accumbal and systemic administration of 6c decreases AMPH-stimulated 

dopamine overflow and locomotion. To assess if the effect of 6c on reduction of AMPH-

stimulated dopamine efflux in synaptosomes would occur in vivo, we conducted a series 

of microdialysis experiments in which dopamine overflow and locomotor activity were 

measured simultaneously.  In the first experiment, we collected baseline samples for 30 

min, then 1 µM 6c was perfused directly into the nucleus accumbens core 30 min prior to 

the peripheral administration of 2 mg/kg of AMPH.  As shown in Figure 3.5A, 6c 

significantly reduced AMPH-stimulated dopamine overflow in freely moving rats at a 

concentration that did not reduce dopamine uptake (2-way RM ANOVA, F(39, 507)=22.42, 

p<0.0001 for time; F(1, 13)=7.23, p<0.05 for drug; and F(39, 507)=4.04, p<0.0001 for time-

drug interaction). Similarly, as depicted in Figure 3.5B, locomotor activity in response to 

the injection of AMPH was significantly reduced (2-way RM ANOVA, F(39, 546)=19.15, 

p<0.0001 for time; F(1, 14)=4.26, p=0.058 for drug; and F(39,546)=1.92, p<0.01 for 

interaction of drug and time). 
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Because 6c was designed on the scaffold of the CNS-permeant drug, tamoxifen, 

there was some expectation that it might cross the blood-brain barrier.  To test this 

possibility, we administered the compound systemically and checked for its presence in 

the nucleus accumbens using microdialysis coupled to LC-MS. 6 mg/kg of 6c s.c. 

resulted in detectable levels of the compound in the nucleus accumbens (Figure 3.5G, 2-

way RM ANOVA, F(1,4)=22.53, p<0.01 for drug). The data demonstrate that 6c peaks in 

the brain within 10 min and remains relatively steady at concentrations between 10 nM 

and 20 nM over the next hour. Estimated percent recovery through the probe was 10-15% 

and was used to calculate the concentration of 6c in vivo. 

Based upon the rapid appearance of 6c in the brain after peripheral injection, we 

examined if subcutaneous administration of 6c with AMPH would reduce the effects of 

AMPH on dopamine overflow and locomotion. As shown in Figure 3.5C, simultaneous 

subcutaneous injection of 6 mg/kg of 6c and 1 mg/kg of AMPH resulted in a significant 

decrease in dopamine overflow as compared to AMPH alone (2 way RM ANOVA F(29, 

116)=5.17, p<0.0001 for time; F(1, 4)=16.15, p<0.05 for drug; and F(29, 116)=2.85, p<0.0001 

for interaction of drug and time). Figure 3.5D demonstrates that administration of 6c 

elicited a corresponding significant decrease in AMPH-stimulated locomotor behavior 

compared to AMPH alone (2 way RM ANOVA, F(29, 174)=6.45, p<0.0001 for time; F(1, 

6)=15.82, p<0.01 for drug; and F(29, 174)=1.95, p<0.01 for drug and time interaction). To 

rule out whether 6c was simply reducing the amount of AMPH getting into the brain, we 

tested the concentrations of AMPH in the brain after 6c was given subcutaneously with 

AMPH. Subcutaneous administration of 6c with 1 mg/kg of AMPH had no effect on the 
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AMPH levels achieved in the nucleus accumbens when compared to rats treated with 

vehicle and 1 mg/kg of AMPH (Figure 3.6).  

We next queried if pretreatment with 6c had extended effects. A subcutaneous 

injection of 6mg/kg of 6c was given 18 h prior to AMPH and AMPH-stimulated 

dopamine overflow and locomotor behavior were measured. As shown in Figure 3.5E, 

pretreatment with 6 mg/kg of 6c s.c. 18 h prior to an injection of 2 mg/kg of AMPH i.p. 

significantly decreased AMPH-stimulated dopamine overflow (in 2-way RM ANOVA, 

F(29, 319)=9.05, p<0.0001 for time; F(1, 11)=5.05, p<0.05 for drug; and F(29, 319)=2.87, 

p<0.0001 for drug and time interaction). Again, there was a corresponding decrease in the 

locomotor response to AMPH (Figure 3.5F) following 6c pretreatment (in 2-way RM 

ANOVA, F(29, 319)=7.97, p<0.0001 for time; F(1, 11)=9.87, p<0.01 for drug; and F(29, 

319)=2.56, p<0.0001 for interaction of time and drug). Although higher than null value, 

only low picomolar levels of 6c were detected in accumbal dialysate 18 h after s.c. 

administration (data not shown). 

Systemic 6c reduces AMPH-self administration but not food self-administration. 

Since 6c effectively reduced AMPH neurochemical and behavioral effects in vivo, we 

next investigated whether the tamoxifen analogue could effectively reduce the reinforcing 

effects of AMPH in a rat model of self-administration. Rats were trained to administer 

AMPH i.v. on a FR5 schedule of reinforcement and both groups of rats in the AMPH 

self-administration studies demonstrated similar patterns of responding for AMPH during 

training (Figure 3.7A). As shown in Figure 3.7C, 18 h following s.c. injection of 6c, the 

number of infusions of AMPH earned over a 1 h session significantly decreased 

compared to the vehicle-treated animals (in 2-way RM ANOVA, F(2, 20) =76.56, p<0.0001  
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Figure 3.5. The effect of 6c on in vivo AMPH-induced dopamine overflow and locomotion. 
A. and B., 1 µM 6c or vehicle was perfused into the nucleus accumbens using retrodialysis 30 min prior to the 
administration of 2 mg/kg of AMPH i.p. A. Dopamine overflow; vehicle (n=7) and 6c (n=8). Post hoc Sidak’s multiple 
comparison test, *p<0.05. B. Locomotion; in post hoc Sidak’s multiple comparison test, *p<0.05; vehicle (n=8), 6c 
(n=8). C. and D., 6 mg/kg of 6c or vehicle were given to rats s.c. simultaneously with 1 mg/kg of AMPH i.p. C. 
Dopamine overflow; post hoc Sidak’s multiple comparison test, *p<0.05; vehicle (n=3), 6c (n=3). D. Locomotor 
activity; post hoc Sidak’s multiple comparison test, *p<0.01; vehicle (n = 4), 6c (n=4).  E. and F., 6 mg/kg of 6c or 
vehicle was given 18 h prior to the administration of 2 mg/kg of AMPH i.p.. In post hoc Sidak’s multiple comparison 
test, E, *p<0.05 for dopamine overflow. F. Post hoc Sidak’s multiple comparison test, *p<0.05 for locomotion. For 
dopamine and locomotor activity, vehicle (n=7) and 6c (n=6). G. 6 mg/kg of 6c or vehicle (n=3) was administered s.c., 
and dialysate collected from time 0 to 80 min. Post hoc Sidak’s multiple comparison test, *p<0.05. Levels of 6c were 
quantified using LC-MS and corrected for recovery. 
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Figure 3.6. The effect of 6c on AMPH entry in the brain. 
Vehicle or 6 mg/kg of 6c were given to rats s.c simultaneously with 1 mg/kg of AMPH i.p. Using microdialysis 
coupled to LC-MS, the levels of AMPH were quantified from accumbal dialysate from time 0 to 60 min.  
 

for responses; F(1,10)=12.90, p<0.01 for drug; and F(2, 20) =7.25, p<0.01 for interaction of 

infusion and drug). In a similar procedure, rats were trained to self-administer sucrose 

pellets on a FR5 schedule of reinforcement in 20 min daily sessions. Again, both groups 

of rats in the food self-administration studies demonstrated similar patterns of responding 

for food pellets during training (Figure 3.7B). We found that 18 h pretreatment with 6 

mg/kg of 6c did not alter the number of active nose poke responses as compared with 

vehicle pretreatment (Figure 3.7D). There were no significant differences in the rats 

responding at the inactive nose poke for either the AMPH or food self-administration 

experiments (Figures 3.7E and 3.7F).  

Discussion 

In this paper, we report our findings on a novel tamoxifen analogue and PKC 

inhibitor that modulates DAT functioning. It is well known that phosphorylation serves 

as a major regulator of DAT expression and activity (Foster et al, 2006). Enhanced PKC 

activity results in internalization of DAT, although a direct mechanism linking DAT 

phosphorylation and internalization has not been elucidated (Zahniser and Doolen, 2001). 
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Figure 3.7. The effect of 6 mg/kg of 6c s.c. on AMPH and food self-administration. 
A. Training data for rats used in AMPH self-administration experiments. Rats were escalated from a FR1 to a FR5 
schedule with 0.1 mg/kg/infusion of AMPH. Finally rats were trained to stably administer on the FR5 schedule with 
0.032 mg/kg/infusion of AMPH. B. Training data for rats used in food self-administration. Rats escalated from a FR1 
to a FR5 schedule for food pellets. C. On test day, 6 mg/kg of 6c or vehicle was given 18 h prior to AMPH self-
administration session. Post hoc Sidak’s multiple comparison test, * p<0.0001, a significant difference between 
vehicle- and 6c-treated rats. D. On test day 6 mg/kg of 6c or vehicle was given 18 h prior to food self-administration 
session. E. and F. Inactive nose poke responses during AMPH and food self-administration sessions respectively. All 
data sets are represented as mean ± SEM. 
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DAT contains PKC consensus sites (Foster et al, 2002) in its N-terminal domain and 

truncation of this region attenuates DAT phosphorylation induced by the PKC activator 

phorbol 12-myristate 13-acetate (Granas et al, 2003). Phosphorylation of DAT in the N-

terminus has been reported to be permissive for AMPH-stimulated dopamine efflux with 

no effect on dopamine influx (Khoshbouei et al, 2004; Wang et al, 2016). Several reports 

have shown that PKC inhibitors reduce dopamine release (Kantor et al, 1998; Loweth et 

al, 2009; Zestos et al, 2016) while treatment of striatal synaptosomes with PKC activators 

stimulates dopamine efflux (Cowell et al, 2000; Opazo et al, 2010). We previously 

demonstrated that specific inhibitors of PKCβ inhibit AMPH-stimulated dopamine 

overflow and locomotor activity when administered directly into the core of the nucleus 

accumbens (Zestos et al, 2016). 

In vitro studies 

AMPH-induced dopamine efflux is central to the abuse-liability of the stimulant. 

Therefore we hypothesize that a CNS-permeant PKC inhibitor may be therapeutically 

beneficial in the treatment of AMPH abuse. Since the only CNS-permeant PKC inhibitor, 

tamoxifen, causes undesirable ER-mediated side effects, we used previously available 

SAR information to create a CNS-permeant PKC inhibitor lacking ER affinity (Carpenter 

et al, 2016). As shown in Figure 3.1B-C, 6c reduced PMA-stimulated PKC activity in 

striatal synaptosomes. Moreover, the compound demonstrated selectivity for PKC 

substrates, in that its inhibitory activity was more potent for phospho-GAP-43 than for 

phospho-MARCKS. Tamoxifen acts as an allosteric inhibitor of PKC by interacting with 

its regulatory domain and competing with phospholipids (O'Brian et al, 1985). It is 

possible that the mechanism of action of 6c at PKC is also at the regulatory site but 



	 106	

further studies must be undertaken to confirm this. An action at a regulatory subunit of 

PKC, similar to that of tamoxifen, could explain the differential effect on substrates. 

There was also a differential potency of 6c on the direction of dopamine transport 

in that 6c more potently inhibited reverse transport of dopamine than inward transport. 

This observation is comparable to, but not identical to our previous studies examining the 

effects of PKCβ inhibitors on DAT. We and others have reported that PKC inhibitors, 

including specific PKCβ inhibitors, reduce AMPH-stimulated dopamine efflux but have 

no effect on dopamine uptake (Browman et al, 1998; Loweth et al, 2009; Zestos et al, 

2016). The asymmetric regulation of DAT is possible because forward and reverse 

transport appear to be mediated by different factors (Sitte and Freissmuth, 2015). For 

example, the DAT ligand SoRI-20041 inhibited substrate uptake with no significant 

effects on efflux (Rothman et al, 2009; Schmitt et al, 2013).  6c has different effects on 

DAT from the standard PKC inhibitors, however, because at higher concentrations it will 

inhibit dopamine uptake.  This suggests that the compound might interact directly with 

DAT, although not at the cocaine binding site since up to 3 µM 6c had no effect on the 

binding of [3H]WIN35,428. Although the cocaine and dopamine binding sites on DAT 

overlap, they are not the same (Beuming et al, 2008). Therefore it is possible, albeit 

unlikely, that 6c can affect substrate but not cocaine binding.   

The biotinylation experiments showed that the inhibition of dopamine uptake 

could not be attributed to a reduction in cell-surface DAT.  It is possible that the diphenyl 

structural motif in 6c could partially account for its blockade of dopamine uptake because 

this motif also exists in atypical DAT blockers such as modafinil and benztropine which 

appear to bind preferentially to the inward-facing conformation of DAT (Reith et al, 
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2015; Schmitt et al, 2013).  In addition to the well-characterized substrate site (S1), 

crystal structures of the bacterial leucine transporter (Zhen and Reith, 2016), the 

drosophila DAT and the serotonin transporter show the presence of secondary allosteric 

sites (S2 and S3), where compounds can bind and modify the conformation and function 

of DAT (Reith et al, 2015; Schmitt et al, 2013). It is possible that 6c could occupy one of 

these allosteric sites. Alternatively, the effect on uptake effect could be through an as yet 

unidentified mediator.   

In vivo studies 

We previously demonstrated that direct administration of specific inhibitors of 

PKCβ via retrodialysis into the nucleus accumbens inhibit AMPH-stimulated dopamine 

overflow and locomotor activity (Zestos et al, 2016).  This result was recapitulated with 

the structurally unrelated 6c, using a concentration (1 µM) that did not disrupt inward 

transport in our in vitro studies. A notable advantage of 6c over the other inhibitors, 

however, is that it can cross the blood brain barrier, like its parent compound tamoxifen. 

We found that giving 6 mg/kg of 6c subcutaneously led to detectable levels of the 

compound in the brain within the first 5 min following administration. The maximally 

measured concentration of 6c in the brain was approximately 15 nM; but it appeared 

biologically active even at that concentration. Simultaneous subcutaneous injection of 6 

mg/kg of 6c with 1 mg/kg of AMPH resulted in a rapid reduction in both dopamine 

overflow and locomotor behavior. Therefore, despite the seemingly low level, the 

compound was active. Also, the low concentration of 6c in the nucleus accumbens was 

comparable to the IC50 of 6c for inhibition of GAP-43 phosphorylation in synaptosomes 

(Figure 3.1B).  
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Our ultimate goal is to determine if 6c would alter the reinforcing properties of 

AMPH. Therefore, we measured the effect of subcutaneous administration of the 

compound on AMPH self-administration. As previously mentioned, giving 6c 18 h prior 

to AMPH significantly decreased AMPH induced-dopamine overflow and locomotion. In 

agreement with this, we found that administering 6 mg/kg of 6c 18 h prior to an AMPH 

self-administration session significantly reduced responding on the active nose poke 

manipulandum as compared with vehicle pretreatment (Figure 3.7C). This finding serves 

as direct evidence that 6c decreases on-going AMPH self-administration. Ultimately, we 

are interested in investigating how 6c affects the inverted U-shaped dose-response curve 

for AMPH self-administration and whether the results obtained in this current study 

translate to other schedules of reinforcement, such as a progressive ratio schedule. The 

lack of effect of 6c on sucrose self-administration demonstrates that the drug did not alter 

responding for all reinforcers and did not suppress all operant responding.  

We are in the process of performing time-course studies documenting the onset 

and duration of the ability of 6c to reduce the neurochemical and behavioral effects of 

AMPH in vivo. Nonetheless, it is highly interesting that 18 h after s.c. administration, 6c 

can still produce a reduction in AMPH-stimulated dopamine overflow and locomotor 

activity. Our measurement of 6c in the nucleus accumbens showed that it is still present, 

albeit at extremely low levels.  Nothing is known of the metabolism of this compound, 

but it is possible that there is a long-lasting metabolite that remains active.  Another 

explanation is that the initial action of the compound, perhaps PKC inhibition, elicits a 

long-term change in downstream signaling that maintains inhibition of AMPH action. A 

limitation to our methodology for measuring 6c levels in the brain is that it only reflects 
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extracellular concentrations. It is therefore also conceivable that the long-term effects of 

6c could be due to intracellular accumulation of the compound, which we did not sample.  

PKC is widely expressed in the body and is involved in a diverse collection of 

GPCR and growth factor-dependent cellular pathways. Therefore, there are concerns that 

targeting the enzyme could lead to significant, unwanted side effects. However, clinical 

work with PKC inhibitors proves otherwise. For instance, chronic tamoxifen 

administration is generally well-tolerated by women and selective PKC inhibitors have 

not caused severe toxicities in clinical studies (Mochly-Rosen et al, 2012). Recent 

findings suggest that PKC inhibitors would be useful in other central nervous system 

disorders, such as Alzheimer’s disease where activating forms of PKCα support Aβ 

activity (Alfonso et al, 2016). A total block of PKC activity is likely not required for 

adequate treatment; if increases in PKC activity are involved in a particular pathology, 

reduction to normal levels could be effective. Repeated treatment with AMPH, for 

example, leads to an increase in striatal PKC activity in rats (Iwata et al, 1997).  

Development of inhibitors selective for specific isozymes or substrate-specific inhibitors 

would increase the utility of PKC inhibitors. Our data showing greater potency by 6c for 

inhibition of phosphorylation of GAP-43 over that of MARCKS demonstrates that 

substrate selectivity is possible, especially if the drug does not act directly at the ATP-

substrate binding site on the PKC isozyme. We are hopeful in the possibility of creating 

even more selective CNS permeant-tamoxifen analogues and also implementing tools 

that will allow site-specific targeting of these compounds.  
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Conclusion 

In summary, this study presents a new CNS permeant PKC inhibitor, 6c, which 

attenuated in vitro and in vivo neurochemical and behavioral effects of AMPH. 

Furthermore, systemic administration of 6c significantly reduced AMPH self-

administration without generally suppressing behavior. These findings further support the 

targeting of PKC for the treatment of AMPH abuse and also illuminate the use of 

tamoxifen as a scaffold to create a new generation of CNS-permeant PKC inhibitors. 

Additionally, 6c, may serve as a useful tool for investigating other PKC-related brain 

disorders such as bipolar mania (Mochly-Rosen et al, 2012).  
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Chapter 4. Mechanistic characterization of tamoxifen analogue, 6c 

 

Abstract 

There is growing interest surrounding the creation of selective CNS-permeant 

protein kinase inhibitors for use as treatments for neurological and psychiatric disorders. 

Protein kinase C (PKC) inhibitors could be useful to treat amphetamine (AMPH) use 

disorder and the manic phase of bipolar disorder. Tamoxifen still remains the only 

available and validated blood-brain barrier permeable PKC inhibitor. However, in 

addition to being a selective estrogen receptor modulator, it has numerous other targets. 

In hopes of creating a more selective CNS permeant PKC inhibitor, we revisited the 

tamoxifen scaffold and generated a brain-permeant tamoxifen analogue, 6c. We 

previously showed that 6c more potently inhibits PKC activity than tamoxifen in vitro 

and reduces AMPH action at the dopamine transporter (DAT). In this study, we expand 

on the profile of 6c by investigating the mechanism by which it inhibits PKC, its in vivo 

activity and its selectivity for PKC. Our results indicate that 6c does not disrupt PKCβ 

translocation but may instead alter PKCβ conformational changes. Importantly, we next 

prove that peripheral administration of 6c inhibits PKC activity in vivo. 6c does not 

inhibit Ca2+/calmodulin-dependent protein kinase II and protein kinase B in vitro, 

enzymes structurally related to PKC. Finally, our data show that synaptosomal 

preparations are a better system for predicting in vivo effects of 6c at the dopamine 

transporter as compared to heterologous cell-based assays. This points to the importance 
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of choosing appropriate models for initial screening studies when evaluating the effects 

of compounds, such as tamoxifen analogues, on DAT functioning.   

Introduction 

There is mounting evidence from in vitro and in vivo animal studies highlighting 

the therapeutic potential of CNS-permeant PKC inhibitors in treating neurological and 

psychiatric diseases, including Parkinson’s disease and AMPH abuse (Aujla and 

Beninger, 2003; Burguillos et al, 2011; Mochly-Rosen et al, 2012; Zestos et al, 2016; 

Zhang et al, 2007). In addition to the selective estrogen receptor modulator (SERM), 

tamoxifen, other PKC inhibitors have been proposed to be CNS permeant. The naturally 

occurring alkaloid, chelerythrine, has been repeatedly reported as a potent CNS-permeant 

PKC inhibitor with an IC50 of ~660 nM (Herbert et al, 1990). However, numerous studies 

have shown chelerythrine lacks inhibitory effects at PKC in enzyme-purified and cell-

based assays, and may even have PKC stimulatory effects (Davies et al, 2000; Gould et 

al, 2011; Lee et al, 1998). The fungi derived compound, calphostin C, is another known 

potent PKC inhibitor (IC50; 50 nM (Tamaoki, 1991)),with possible CNS-penetrant 

properties. For instance, peripheral administration of the compound can affect CNS-

related processes, such as reversing tolerance to morphine-induced respiratory depression 

in mice and reducing morphine withdrawal-induced enhancement of the rat 

hypothalamus-pituitary-adrenal axis (Cerezo et al, 2002; Withey et al, 2017). 

Nonetheless, no thorough investigation documenting the presence and distribution of 

calphostin C in the brain has been performed. 

Tamoxifen therefore remains the only known pharmacokinetically-characterized 

PKC inhibitor that readily crosses the blood-brain barrier (Lien et al, 1991a; Lien et al, 
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1991b). However, tamoxifen is a relatively promiscuous compound, hitting multiple 

targets such as the estrogen receptor (ER) and calmodulin-dependent enzymes (de 

Medina et al, 2004). In an effort to address this need for selective brain-permeant PKC 

inhibitors, specifically for treatments for AMPH abuse and addiction, we revisited the 

tamoxifen scaffold to create a new generation of CNS permeant PKC inhibitors. Through 

this study we found an attractive drug candidate, 6c, which possesses significantly 

improved PKC inhibitory action and shows no appreciable binding at the ER in vitro 

(Carpenter et al, 2016). In this current study, we further investigate the mechanism of 

action and selectivity of 6c.   

The PKC family of enzymes is divided into three subfamilies based on their mode 

of activation: the classical or conventional (α, βI, βII, γ) isoforms, the novel (δ, ε, θ, η) 

isoforms and the atypical (ζ, λ/ι) isoforms (Wu-Zhang and Newton, 2013). Tamoxifen 

has been shown to inhibit classical PKC isoforms (Bignon et al, 1991; O'Brian et al, 

1985, 1986). Activation of classical PKCs is facilitated by an increase of intracellular 

calcium and diacylglycerol levels upon cell stimulation. Specifically, cytosolic calcium 

binds to the C2 domain on PKC and increases the affinity of the enzyme for the 

negatively-charged membrane lipids (Bazzi and Nelsestuen, 1987). This leads to the 

translocation of PKC to the membrane. Once at the membrane, PKC interacts with 

diacylglycerol at its C1 domain, which releases its auto-inhibitory pseudosubstrate 

domain and exposes the active site of the enzyme (Colón-González and Kazanietz, 2006; 

Dutil and Newton, 2000). 

Many consider PKC translocation to the membrane as the hallmark of PKC 

activation. However, events such as the accumulation of PKC at a perinuclear site, also 
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termed the pericentron, have complicated this simplistic model (Becker and Hannun, 

2003; Idkowiak-Baldys et al, 2006). Additionally, PKCα forms dimers in vitro and this 

may serve as an important step in the regulation of its activation (Swanson et al, 2014). 

Although many PKC inhibitors inhibit PKC translocation, restricting analysis to only this 

single marker of activation can be misleading. We therefore began our investigation into 

the direct effects of 6c on PKC by monitoring its action on both PKCβ translocation and 

conformational states using fluorescence resonance energy transfer (FRET) experiments.  

The addictive properties of AMPH are linked to its ability to significantly increase 

dopamine release via the dopamine transporter (DAT) in the brain (Di Chiara and 

Imperato, 1988; Wise and Bozarth, 1985). In addition to PKC, there are other 

serine/threonine kinases that regulate DAT activity, notably Ca2+/calmodulin-dependent 

protein kinase II (CAMKII) and protein kinase B (AKT). Inhibition of CAMKII and 

AKT impairs the ability of AMPH to induce dopamine efflux in vitro (Speed et al, 2011; 

Steinkellner et al, 2014; Steinkellner et al, 2012). AKT is a member of the AGC kinase 

superfamily, to which PKC belongs, and therefore these two enzymes share a high degree 

of homology (Pearce et al, 2010). With this in mind, and in consideration of the fact that 

tamoxifen inhibits calmodulin-dependent enzymes, we investigated the possibility that 

the ability of 6c to reduce AMPH effects in vivo could be mediated through AKT and or 

CAMKII.  

 Our previous results demonstrated that 6c could enter the brain, but upon 

peripheral administration of 6 mg/kg of 6c only low nM concentrations were measured in 

the nucleus accumbens (Carpenter et al, 2017). We now endeavor to prove that 6c, even 

at low concentrations, will inhibit PKC activity in vivo. We also hope to revisit the 
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tamoxifen scaffold to create 6c analogues with improved CNS permeability. Rapid cell-

based assays are usually used to screen compounds. However, this approach may not 

work in all cases, especially for drugs that are active in the CNS. The data presented in 

this chapter lead us to conclude that synaptosomal-based in vitro assays are more 

appropriate than cellular assays for future studies evaluating the potential of these 

tamoxifen analogues to modulate DAT and attenuate AMPH reinforcement. 

Materials and methods 

Compounds. 6c (6c�2.5 HCl) was synthesized and provided by the Vahlteich 

Medicinal Chemistry Core at the University of Michigan (Carpenter et al, 2016). 

Dopamine, ionomycin, 4-hydroxytamoxifen (4-OH) and phorbol-12-myristate-13-acetate 

(PMA) were purchased from Sigma-Aldrich. Cocaine hydrochloride was provided by 

NIDA-NIH. [3H]Dopamine was purchased from Perkin Elmer.  

Cell culture: Chinese hamster ovary (HEK)-293 cell line. CHO Flp-in cells stably 

expressing mCerulean (mCer)-PKCβ-mCitrine (mCit)-FLAG were generated and 

maintained as previously described (Swanson et al, 2014). Briefly, cells were cultured in 

DMEM supplemented with FBS (10%), 4.5 g/liter D-glucose, glutamax (1%), 20 mM 

HEPES, pH 7.5, and antibiotic-antimycotic (1%) at 37 °C and 5% CO2. Cells were 

trypsinized and seeded at 100,000 cells on 35 mm plates (MatTek Corporation) coated 

with 1 µg fibronectin for at least two hours prior to each experiment.  

Live cell imaging experiments. The plate was washed twice with 2 ml of 0.2% 

dextrose in HEPES-buffered saline followed by the addition of 500 µl of 10 µM 6c, 10 

µM 4-OH or vehicle in this buffer. Cells were incubated at 37 °C for 30 min and then 

placed on microscope platform for imaging. Imaging was done on a Nikon TiE 
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microscope fitted with an Evolve 512 x 512 EM-CCD camera (Photometrics), a mercury 

arc lamp, and the appropriate band pass filters. FRET signal from the mCerulean and 

mCitrine were acquired at the same time using a Dual-View filter (Photometrics). 1 µM 

PMA (PKC activator) with 10 µM 6c, 10 µM 4-OH or vehicle was then added to 

respective plates and excitation coupled to image acquisition occurred for 200–500 ms 

every 30 sec for 10 min (600 sec). A subset of plates pretreated with vehicle was treated 

with buffer to provide a no PMA control. Images were taken from the basolateral 

membrane and FRET analysis was performed as previously described (Swanson et al, 

2014) using custom software in Mathlab (Mathworks Incorporated). FRET ratios 

represent the individual pixel-by-pixel ratio between mCitrine and mCerulean intensities 

averaged for all pixels in a cell. We observed that when acquiring images focused on the 

basolateral surface of the cell, PKC membrane recruitment results in an averaging of 

fluorescent signal throughout the cell. To quantify PKCβ translocation, areas of high 

contrast were manually chosen (cytosol and nucleus). A line was drawn between these 

areas and the average of the lowest pixels and the highest pixels were attained for that 

line for each image and that difference is reported as the translocation ratio. 

Animals. Animal use and procedures were approved by the Institutional Animal 

Care and Use Committee at the University of Michigan and followed the guidelines put 

forth by the National Institutes of Health. Male Sprague Dawley rats were purchased 

from Envigo laboratories and were used at 7-12 wks old. All animals were maintained on 

a 12-h light cycle with lights on at 0700 (or 7 am), with experiments performed during 

the light phase. 
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In vivo PKC activity assay. Rats were administered 1 mg/kg of AMPH with 6 

mg/kg of 6c or vehicle s.c., and then sacrificed 10 min or 30 min post-injection. The 

ventral and dorsal striatum were quickly dissected from each animal on ice and promptly 

frozen in liquid nitrogen. After at least 5 min in the liquid nitrogen, 250 µl hot 1% SDS 

was added to the ventral and dorsal striatal samples. All samples were sonicated on a 

Fisher ultrasonic processor at 50% maximum amplitude with alternating 1 sec on, 1 sec 

off, for a total of four pulses (Fisher ultrasonic processor, ThermoFisher Scientific, 

Waltham, MA). The homogenate was centrifuged at 14000 rpm for 10 min and the 

supernatant was probed for GAP-43 phosphorylation using western blotting.  

Synaptosome preparation. Rat striata were dissected on ice and homogenized in 

10 volumes of homogenization buffer comprised of 0.32 M sucrose, 1 mM EDTA, and a 

cocktail of protease inhibitors (Complete Mini, Roche), pH 7.4. Homogenates were 

centrifuged at 3000 rpm for 10 min and the supernatant saved. The supernatant fractions 

were then centrifuged at 14000 rpm for 15 min. For the AKT and CAMKII activity 

experiments, the pellets were resuspended in Kreb’s Ringer buffer (KRB) made of 145 

mM NaCl, 2.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM CaCl2, 1.0 mM MgCl2, 10 mM 

glucose, 24.9 mM NaHCO3, pH 7.4. For dopamine uptake and suprafusion experiments, 

the pellets were resuspended in KRB that included 0.05 mM ascorbic acid and 0.05 mM 

pargyline.   

CAMKII activity assay. Rat striatal synaptosomes were incubated in KRB at 37 

°C for 15 min followed by a 1 h treatment with 0-3 µM 6c. The final percentage of 

DMSO in all samples was 0.01%. CAMKII was activated by adding 2 µM ionomycin to 

the samples for 5 min and the reaction quenched with 1 ml cold KRB. The samples were 



	 123	

pelleted at 3000 rpm for 3 min. The pellets were washed twice in cold KRB and lysed in 

solubilization buffer (1% Triton X-100, 50 mM Tris HCl, 150 mM NaCl, pH 7.4). 

Lysates were rotated at 4 °C for 1 h and centrifuged at 14000 rpm for 15 min to remove 

debris. Protein assays were conducted using the Biorad DC Protein Assay Kit. Samples 

were probed for CAMKII phosphorylation using western blotting.   

AKT activity assay. Rat striatal synaptosomes were incubated in KRB at 37 °C for 

15 min followed by a 1 h treatment with 0-3 µM 6c and 10 µM enzastaurin (AKT 

inhibitor, positive control). The final percentage of DMSO in all samples was 0.01%. The 

reaction was quenched with 1 ml cold KRB and the samples were pelleted at 3000 rpm 

for 3 min. The pellets were washed twice in cold KRB and lysed in solubilization buffer 

(1% Triton X-100, 50 mM Tris HCl, 150 mM NaCl, pH 7.4). Lysates were rotated at 4 

°C for 1 h and centrifuged at 14000 rpm for 15 min to remove debris. Protein assays were 

conducted using the Biorad DC Protein Assay Kit. Samples were probed for AKT 

phosphorylation using western blotting.   

Western blotting. Samples (75 µg for PKC assay; 20-25 µg for AKT/CAMKII 

assay) were resolved on a 12% polyacrylamide gel using SDS-PAGE. The proteins were 

transferred onto a nitrocellulose membrane at 100 mA for 12-16 h (PKC assay) or 100 V 

for 90 min (AKT and CAMKII assay) and the membranes were incubated in blocking 

buffer (5% w/v milk, 150 mM NaCl, 10 mM Tris, 0.05% Tween 20). The antibodies used 

for protein detection are as follows: 

In vivo PKC activity assay. Membranes were probed with anti-phospho-ser41-

GAP43 (1:500, catalogue # sc-135697, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) 

and anti-GAP-43 (1:1000, catalogue # sc7457, Santa Cruz Biotechnology, Inc., Santa 



	 124	

Cruz, CA) antibodies for 24 h at 4 °C. Primary phospho-GAP-43 antibody was detected 

using goat-anti rabbit antibody (1:2000, catalogue # sc-2054, Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA) for 1 h at room temperature and Chemiluminescent Western 

Substrate (catalogue # WBKLS0500, EMD Millipore, Darmstadt, Germany).  

AKT activity assay. Membranes were probed with anti-AKT (1:1000, catalogue # 

9272, Cell Signaling Inc, Danvers, MA) and anti-phospho-ser473-AKT (1:1000, 

catalogue # 4060S, Cell Signaling Inc, Danvers, MA) antibodies for 24 h at 4 °C. Primary 

AKT and phospho-AKT were detected using goat-anti rabbit antibody (1:2000, catalogue 

# sc-2054, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) for 1 h at room temperature 

followed by ECL Western Blotting Substrate and Chemiluminescent Western Substrate 

respectively.  

CAMKII activity assay. Membranes were probed with anti-pan-CAMKII (1:1000, 

catalogue # 4436S, Cell Signaling Inc, Danvers, MA) and anti-phospho-thr286-CAMKII 

(1:1000, catalogue # 12716S, Cell Signaling Inc, Danvers, MA) antibodies for 24 h at 4 

°C. Primary CAMKII and phospho-CAMKII were detected using goat-anti rabbit 

antibody (1:2000, catalogue # sc-2054, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) 

for 1 h at room temperature followed by ECL Western Blotting Substrate and 

Chemiluminescent Western Substrate respectively. Band densities were quantified using 

Image J software. 

Cell culture: human embryonic kidney (HEK)-293 cell line. HEK cells stably 

expressing rat DAT (HEK rDAT) were cultured in high glucose Dulbecco’s modified 

Eagle’s medium supplemented with fetal bovine serum (10%), penicillin (1%) at 37 °C 

and 5% CO2. Cells were trypsinized one day prior to experiments and seeded on 24-well 
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plates at 125,000 cells per well to achieve 80-90% confluence the next day (experiment 

day).  

[3H]Dopamine uptake in cells. HEK rDAT were treated with 0-10 µM 6c in 

Kreb’s Ringer Hepes buffer (25 mM HEPES, 125 mM NaCl, 4.8 mM KCl, 1.2 mM 

KH2PO4, 1.3 mM CaCl2, 1.2 mM MgSO4, 5.6 mM glucose, 50 µM pargyline, and 50 µM 

ascorbic acid, pH 7.4) at 25 °C for 1 h. [3H]Dopamine (PerkinElmer Life Sciences) was 

added for 3 min and uptake was terminated by aspirating the hot solution followed by 

three quick washes with approximately 2 ml cold KRH. Cells were lysed in 1% triton X 

solution and samples were counted in a Beckman LS 5801 liquid scintillation counter. 

Non-specific uptake was determined using 100 µM cocaine.  

[3H]Dopamine efflux in cells. Cells were plated on a 24-well plate at 100,000 

cells/well 24 h prior to the experiments. Following three washes with KRH, 

[3H]dopamine was added to each well and incubated at 37 °C for 20 min. Cells were 

again washed three times with KRH followed by the addition of vehicle or 0-3 µM 6c in 

KRH and incubation for 1 h at 37 °C. A steady basal efflux was achieved by removing 

and replacing these solutions every 10 min for a total of 50 min. The counts from the 

final fraction was set as the baseline. Ten micromolar AMPH was added to each well and 

three fractions were obtained by collecting and replacing the solution in the wells every 

10 min. 1% SDS was added to each well to lyse the cells and the lysate counted to 

quantify total remaining [3H]dopamine. Dopamine efflux was calculated by normalizing 

the amount of dopamine released during the efflux fractions to the total dopamine content 

in the cells.  
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Statistics. The results were analyzed using GraphPad Prism 6 software (San 

Diego, CA) and are plotted as mean ± SEM. Statistical significance was determined using 

2-way repeated measures ANOVA or a 2-tailed Students t test.  

Results 

6c modulates conformational states of PKCβ but not its translocation. Although 

PKC translocation is considered the hallmark for PKC activation, inhibition of PKC can 

be achieved via other mechanisms. In a study performed by Gundimeda and colleagues 

(Gundimeda et al, 1996), incubation with tamoxifen and 4-hydroxytamoxifen initially 

induced PKC translocation but ultimately downregulated the enzyme. To get a more 

holistic picture of the direct effects of 6c on PKC, we monitored the effect of the 

compound on both PKC translocation and conformational changes. Using a mammalian 

cell line stably expressing PKCβ containing an N-terminal mCerulean and C-terminal 

mCitrine, we concomitantly monitored subcellular localization as well as FRET between 

the fluorophores fused to PKCβ. In this cell line FRET is an indicator of both 

conformational and oligomeric states of PKCβ. By monitoring FRET we can assess if 

compounds directly influence PKCβ structurally, although we cannot assess the nature of 

those structural changes. A 30 min pretreatment of CHO cells with 10 µM 6c did not alter 

PMA-stimulated PKCβ translocation but did elicit significantly lower FRET levels 

(FRET: In 2-way RM ANOVA, F(120, 4200) =3.85, p<0.0001 for time; F(1, 35)=8.64, p<0.01 

for drug; and F(120, 4200) =3.45, p<0.0001 for interaction of time and drug, Figure 1B). The 

change in FRET levels indicates that compound 6c is directly influencing PKCβ function. 

4-hydroxytamoxifen was employed as a positive control and inhibited both PMA-induced 

PKCβ translocation and FRET increases. 
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Figure 4.1. 6c does not inhibit PKCβ translocation but prevents the increase in FRET elicited by PMA. 
Cells were preteated for 30 min at 37°C with 10 µM 6c, 10 µM 4-OH (positive control) or vehicle. PKC activity was 
stimulated with 1 µM PMA and frames were taken over 10 min. Control: n=19; 10 µM 6c n=18; 10 µM 4OH: n=11; No 
PMA, n=15. Post hoc Sidak’s multiple comparison test, *p<0.05. 
 

6c reduces striatal PKC activity in vivo. We recently showed that 6c inhibits in 

vitro PKC-induced phosphorylation of growth associated protein-43, GAP-43, a protein 

enriched in nerve terminals (Gispen et al, 1985; Van Lookeren Campagne et al, 1990), 

and myristoylated alanine rich C kinase substrate, MARCKS, which is widely expressed 

throughout the brain (Brudvig and Weimer, 2015; Carpenter et al, 2017; Ouimet et al, 

1990). We also demonstrated that peripheral administration of 6 mg/kg of 6c will reduce 

efflux through DAT at extracellular concentrations in the nucleus accumbens of ≤ 20 nM 

(Carpenter et al, 2017).  Because we are postulating that the effects of 6c on DAT 
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function may involve PKC, we investigated whether peripherally-administered 6c would 

inhibit PKC in vivo in the ventral striatum. The ventral striatum contains dopaminergic 

terminals in the nucleus accumbens and plays an important role in reinforcement and 

reward (Kravitz and Kreitzer, 2012). AMPH increases PKC activity in vivo (Giambalvo, 

1992; Gnegy et al, 1993), therefore we co-administered 6 mg/kg of 6c with 1 mg/kg of 

AMPH and probed the effect of 6c 10 min and 30 min post-injection. In experiments 

where the rats were sacrificed 10-min post injection, we found that 6c significantly 

reduced PKC activity in the ventral striatum, however had no effect in the dorsal striatum 

(Figure 4.2A-B). At 30 min however, we see no effect of 6c within the dorsal or ventral 

striatum (Figure 4.2C-D). 

6c does not inhibit AKT and CAMKII. In addition to PKC, there are other 

structurally similar kinases that modulate DAT, such as AKT and CAMKII. With the 

knowledge that tamoxifen is a promiscuous drug (de Medina et al, 2004), we investigated 

whether 6c’s effect on DAT could also be due its blockade of AKT and CAMKII activity. 

We found that unlike its effect on PKC, 6c does not affect the auto-phosphorylation of 

CAMKII or AKT, which serves as a marker of the respective enzyme activities (Figure 

4.3).  

6c does not alter [3H] dopamine uptake or efflux in HEKrDAT cells. 6c is a 

member of our first, small library of tamoxifen analogues that were designed to be more 

selective PKC inhibitors when compared with tamoxifen (Carpenter et al, 2016). 6c 

exhibits limited CNS permeability and we hope to expand this library by using 6c as a 

scaffold to create another generation of tamoxifen analogues with improved CNS 

penetrability. In doing this we evaluated whether a cellular model would be more 
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efficient for initially screening the action of these compounds on DAT. In contrast to its 

effectiveness in synaptosomes, pretreatment with 3 µM 6c had no effect on [3H]dopamine 

uptake or efflux in our cellular, HEKrDAT, model (Figure 4.4). 

	

Figure 4.2. 6c reduces PKC activity in the ventral striatum. 
Rats were given 6 mg/kg of 6c or saline (Veh) with 1 mg/kg of AMPH s.c., sacrificed 10 min (A-B) or 30 min (C-D) 
post-injection and levels of GAP-43 phosphorylation probed in ventral and dorsal striatal sections. A. Data from ventral 
striatal samples (10 min) shown as mean ± SEM and representative blots. Two-tailed Students t test, *p<0.05. B. Data 
from dorsal striatal samples (10 min) shown as mean ± SEM and representative blots. C-D. Data from ventral and 
dorsal striatal samples (30 min) shown as mean ± SEM and representative blots.  
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Figure 4.3. 6c does not inhibit AKT or CAMKII activity. 
A. Representative blots for AKT assay: Rat striatal synaptosomes were incubated in the presence or absence of 6c for 1 
h at 37 °C, lysed and then probed for total AKT and phospho-ser473-AKT. V1, V2: vehicle; Enz: enzastaurin (positive 
control; AKT inhibitor). B.  Representative blots for CAMKII assay: Rat striatal synaptosomes were incubated in the 
presence or absence of 6c for 1 h at 37 °C. Ionomycin (2 µM) was added for 5 min to stimulate CAMKII activity and 
the samples were lysed and probed for pan-CAMKII and phospho-thr286-CAMKII. V1, V2: vehicle; I1, I2, I3: 
Ionomycin. C. The effect of 6c on CAMKII (n=3) and AKT (n=4) phosphorylation overlayed on curves showing the 
inhibition of MARCKS (n=5) and GAP-43 (n=4) phosphorylation, Figure 2.1, Chapter 3. pGAP-43 and pMARCKS 
(normalized to GAPDH): percent phorbol 12-myristate 13-acetate (PMA) control; pCAMKII (normalized to CAMKII): 
percent ionomycin control; pAKT (normalized to AKT): percent vehicle control. All points are mean ± SEM. 
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Figure 4.4. 6c modulation of DAT uptake and efflux processes in HEKrDAT cells. 
HEKrDAT cells were incubated with vehicle or 6c for 1 h at 25 °C and [3H]dopamine uptake was quantified (n=2, ± 
SD). HEKrDAT cells were incubated in the presence or absence of 6c for 1 h at 37 °C, efflux was stimulated with 10 
µM AMPH (n=2, ± SD). Overlayed on plot of the modulation of DAT uptake and efflux processes by 6c in rat striatal 
synaptosomes, Figure 3.2, Chapter 3.  
 

Discussion 

Direct effects of 6c on PKC 

Our investigations of 6c so far at PKC have entailed looking at down-stream 

substrates of the enzyme. Nevertheless, we wanted to take a step back to investigate the 

direct mechanistic effects of 6c on PKC. Our group has shown PKCβ is the likely 

isoform mediating the modulation of AMPH-stimulated dopamine efflux by PKC. 

LY379196, a selective inhibitor of PKCβ, reduces AMPH-stimulated dopamine release in 

vitro (Johnson et al, 2005). Furthermore, pharmacological and genetic silencing of PKCβ 

in vivo also reduces AMPH-stimulated dopamine release and behavioral effects in both 

mouse and rat models (Chen et al, 2009; Zestos et al, 2016). Importantly, DAT 

colocalizes with PKCβ (Hadlock et al, 2011; Johnson et al, 2005). Our group 

demonstrated that 6c effectively attenuates AMPH-stimulated dopamine release and 
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behaviors related to AMPH reinforcement (Carpenter et al, 2017). The current study aims 

to elucidate the direct effects of 6c at PKC, particularly at the PKCβ isoform.  

We utilized a version of a previously reported unimolecular construct (mCer-

PKC-mCit-FLAG) of PKCβ to monitor the effect of 6c on PMA-stimulated translocation 

and changes in FRET (Swanson et al, 2014). Employing a bimolecular FRET reporter 

system (mCer-PKC-FLAG and PKC-mCit-FLAG), it was shown that PMA-stimulated 

increases in levels of FRET from the unimolecular PKC construct are likely due to 

intermolecular interactions between different PKC molecules and the investigation 

provided a novel mechanism of PKC regulation through dimerization (Swanson et al, 

2014).  It is therefore intriguing that though 6c does not affect PKCβ translocation, it 

significantly reduces the PMA-induced FRET increases. Our data suggest that 6c could 

be inhibiting PKC activity by interfering with conformational changes and dimerization 

of the enzyme. We utilized 4-hydroxytamoxifen, an active metabolite of tamoxifen, as 

our positive control (PKC inhibitor) for these experiments. Similar to many other PKC 

inhibitors, 4-hydroxytamoxifen inhibits PMA-induced translocation of PKC; we found it 

also blocked increases in PMA-stimulated FRET. Thus, although 6c is an analogue of 

tamoxifen, its mechanism of interaction with PKC may differ from the parent molecule. 

We hope to employ this methodology to investigate the effect of 6c on other PKC 

isoforms as a way to gain insight into isoform specificity.  

Differential effects of PKC inhibition by 6c between striatal sub-regions 

Our data demonstrate that the systemic administration of the novel tamoxifen 

analogue, 6c, causes a significant decrease in PKC activity in the striatum. The striatum 

is a subcortical region of the forebrain and receives dopaminergic inputs from the 



	 133	

midbrain. It is divided into the ventral (nucleus accumbens, olfactory tubercle) and dorsal 

striatum (caudate and putamen), with both regions implicated in the mediation of 

motivation and the reinforcement of natural rewards and drugs of abuse (Voorn et al, 

2004). Much early attention was focused on the ventral striatum because drugs of abuse 

more strikingly increase dopamine in the ventral as compared with the dorsal striatum (Di 

Chiara et al, 1988). Rats will self-administer d-AMPH when delivered directly to the 

nucleus accumbens (Hoebel et al, 1983) and destroying dopaminergic terminals in the 

nucleus accumbens extinguishes AMPH self-administration (Lyness et al, 1979). 

However, there is growing evidence that compulsivity of drug addiction is driven through 

dorsal pathways (Everitt and Robbins, 2005, 2013). Therefore in determining the in vivo 

effects of 6c on PKC, we investigated whether or not it had differential effects on the 

ventral and dorsal striatum.   

Compared to vehicle treated rats, we found that co-administration of 6 mg/kg of 

6c with 1 mg/kg of AMPH significantly reduced GAP-43 phosphorylation in the ventral 

striatum but not the dorsal striatum 10 min post-injection. Coupling and regulation of 

signaling molecules can differ between the ventral and dorsal striatum. For example, 

dopamine D1-receptor induced extracellular signal-regulated protein kinases 1 or 

2 activation is dependent on the dopamine- and cAMP-regulated phosphoprotein of 32 

kDa (DARPP-32) in the ventral but not dorsal striatum (Gerfen et al, 2008). Furthermore 

there are innervation and protein expression differences between the two regions. There 

is an apparent gradient in DAT expression and uptake rates, with increased levels 

observed dorsally (Coulter et al, 1996; South and Huang, 2008). It is therefore feasible to 

envision how differences in the regulation or levels of PKC and its substrates between the 
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ventral and dorsal striatum could lead to differences in the PKC inhibitory potency of 6c 

within the two areas. Following a dose of 6 mg/kg, levels of 6c reaches ~20 nM in the 

nucleus accumbens (Carpenter et al, 2017). We have not yet measured 6c levels in the 

dorsal striatum. If the levels are lower than in the nucleus accumbens, we may need to 

increase the dosage of 6c or perform repeated administration to see a notable decrease of 

dorsal PKC activity. The effect of 6c on PKC activity in the ventral striatum is transient 

and is lost by 30 min post-injection. It is therefore possible that an early, transient 

inhibition of PKC in the ventral striatum leads to more sustained reductions in AMPH-

induced changes, such as increased dopamine release and locomotion (Carpenter et al, 

2017). 

6c’s modulation of DAT is likely independent AKT and CAMKII 

Two other important protein kinase mediators of dopamine uptake and efflux 

through DAT and potential targets for 6c are CAMKII and AKT. DAT directly interacts 

with CAMKII at the last 11 amino acids on the C-terminus domain (Fog et al, 2006). On 

the other hand, it has yet to be shown that DAT directly interacts with AKT and there are 

no AKT consensus sequences on the transporter. However, through an indirect pathway, 

inhibition of AKT downregulates surface DAT levels and function (Garcia et al, 2005; 

Speed et al, 2010). Using the same synaptosomal preparations utilized for our PKC 

activity assay, we found that 3 µM 6c causes a roughly 13% and 22% decrease in AKT 

and CAMKII activity. Since we only achieve much lower concentrations of 6c in the 

brain during our in vivo experiments, these proteins likely do not mediate 6c’s effect on 

AMPH-stimulated dopamine release or -reinforcement. Tamoxifen also displayed no 

significant effects on AKT or CAMKII activity (data not shown).  
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Optimal model systems 

Our first round of tamoxifen analogues proved successful but we hope to use the 

information gained from our small SAR study (Carpenter et al, 2016) to guide the 

creation of new tamoxifen analogues with improved physicochemical properties for CNS 

penetrance. In anticipation of future screening studies we wanted to evaluate whether the 

effects of 6c on dopamine uptake and effux through DAT could be replicated in cellular 

models. This would improve the efficiency and scalability of the current screening 

process. We employed HEK cells stably expressing DAT to avoid problems with 

transiently transfected systems, such as low protein levels and inconsistent transfection 

efficiencies (Gibson et al, 2013). Unfortunately, we found that 6c had no effect on uptake 

or efflux in the HEK-rDAT cells.  

This lack of effect of 6c in these cells could be due to multiple reasons. It is 

possible that the ratio of DAT to PKC for 6c to modulate transporter function is not 

optimal in this cellular overexpression system. The inhibition of PKC by tamoxifen is 

competitive with phospholipids (Su et al, 1985), therefore differences in the lipid 

environment or even the presence of different neuronal factors in synaptosomes versus 

cells may also account for this discrepancy. There are many compounds that affect DAT 

function in a consistent manner when cellular models with cloned DAT and 

synaptosomal preparations are compared. Nevertheless, the opposite is also true. Both 

dopamine and AMPH are much more potent in synaptosomal preparations than in 

heterologous cells (Giros and Caron, 1993). Therefore, careful considerations should be 

made in choosing appropriate models for effectively screening compounds for DAT 

function. Albeit more labor intensive, these data support the use of a synaptosomal-based 
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assay for initial screening of future generations of tamoxifen analogues with respect to 

evaluating their action at DAT. 

Conclusion 

Through this investigation, we have extended our mechanistic view of 6c. We 

provide evidence suggesting 6c may inhibit PKC activity by interrupting its 

intermolecular interactions and possible dimerization with other PKC molecules. We 

have proven that systemic administration of 6c leads to inhibition of PKC in the ventral 

striatum. Furthermore, we propose that the ability of 6c to reduce AMPH-induced 

dopamine release and AMPH reinforcement-related behavior is independent of CAMKII 

and AKT. In refining our SAR for the creation of new tamoxifen analogues, our data 

support the use of synaptosomal or possibly neuronal-based preparations for optimizing 

the in vivo translatability of screening results.  
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Chapter 5. Discussion 

	
Amphetamine (AMPH) abuse is a global burden and unfortunately, attempts at 

creating therapeutics to combat this problem have been unfruitful. Work by our group has 

centered on understanding the mechanism of action of AMPH in hopes of elucidating 

novel targets for drug development. Our central hypothesis is that protein kinase C 

(PKC) is a fundamental mediator of AMPH action at the dopaminergic synapse and that 

PKC inhibitors will reduce the reinforcing effects of AMPH, hence providing a suitable 

pharmacological treatment for AMPH abuse and addiction. In pursuit of a CNS permeant 

PKC inhibitor, we identified tamoxifen, a drug commonly used to prevent breast cancer 

recurrence, as a promising candidate (Osborne 1998). In addition to PKC, tamoxifen has 

other in vivo targets. However, the numerous reported structure-activity relationship 

(SAR) studies conducted with tamoxifen afforded us the opportunity to create a new 

generation of more selective CNS-permeant PKC inhibitors. My thesis highlights the 

creation of a small library of novel tamoxifen analogues and my work evaluates their in 

vitro and in vivo actions on the dopaminergic system.  

Scaffold repositioning 

In Chapter 2, I provide the rationale by which we designed the tamoxifen 

analogues. The substitution of a cyano group for the ethyl group and changes to the α and 

α’ ring (refer to Figure 1.7) generated compounds that trended towards improved PKC 

inhibitory activity and/or loss of estrogen receptorα (ERα) affinity compared with 
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tamoxifen. The lead compound, 6c, which was by far the most soluble compound, was 

250 times more potent at inhibiting PKC than tamoxifen. Solubility issues may have 

accounted for the lower PKC inhibitory effects exhibited by some of the other tamoxifen 

analogues. We synthesized most of the compounds as hydrochloride salts in hopes of 

preventing these issues. However, future efforts should take a more systematic approach 

in making structural modifications that can improve the solubility of tamoxifen analogues 

in future SAR studies. One way to do this is by adding moieties, such as solubilizing 

appendages, that can increase polarity and hence lower the calculated logP (Walker, 

2013). Notably, the three tamoxifen analogues from our library with the most improved 

clogP (6b, 6c and 12) were also the compounds which exhibited the most favorable 

profiles: improved PKC inhibition and decreased affinity to ERα as compared to 

tamoxifen.  

We believe that repurposing the scaffold of a drug already on the market, such as 

tamoxifen, can expedite the drug development process since the parent drug provides 

hints of the pharmacokinetic and pharmacodynamic properties of future analogues. Of 

course, the ideal situation would be to repurpose tamoxifen itself since its pharmacology 

and toxicology have been studied in great detail. There are countless reports of drug 

repositioning successes, even for the treatment of neuropsychiatric disorders. 

Galantamine, an acetylcholinsterase inhibitor, is used in the treatment of individuals with 

mild-to-moderate Alzheimer’s disease (Corbett et al, 2012). Recently, the nicotinic 

receptor modulator, dexmecamylamine showed promising results for the treatment of 

major depressive disorder (Moller et al, 2015; Vieta et al, 2014). Also, as previously 

discussed, tamoxifen reduces the manic symptoms in patients suffering from bipolar 
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mania (Bebchuk et al, 2000; Fallah et al, 2016; Yildiz et al, 2008; Zarate et al, 2007). 

Although tamoxifen had no serious complications in these short studies, we are aware of 

its side effects (such as ER-mediated hot flashes) that lead to compliance issues with 

longer usage. Therefore we thought it would be more useful to use the tamoxifen scaffold 

to create more targeted tamoxifen analogues for the context of AMPH abuse and 

addiction treatment.  

There is encouraging work done in the area of repurposing drug scaffolds as well. 

This is especially true in cancer drug discovery and drug development. For example, 

analogues of the 90 kDa heat shock protein (Hsp90) inhibitor, novobiocin, and the 

selective estrogen receptor modulator, raloxifene, show superior target selectivity or 

display improved pharmacology when compared to their parent drug in preclinical 

studies. In addition to our work centered on using the tamoxifen scaffold to make CNS-

permeant PKC inhibitors, others have revisited the structure to create tamoxifen 

analogues that are immune to cytochrome P450 2D6 metabolism (Ahmed et al, 2016). 

Therefore we are excited by the prospect that the work from this thesis will further 

support drug scaffold repositioning, especially in a field such as addiction, where it is not 

commonly seen.  

We know that AMPH (A) can activate PKC (1) and cause the reverse transport of 

dopamine through DAT (2). In chapter 3, we show that 6c crosses the blood-  

brain barrier, inhibits PKC activity (3) and blocks the dopamine efflux (4), Figure 5.1. 

Unlike classical PKC inhibitors, such as enzastaurin and ruboxistaurin, 6c significantly 

decreases uptake in the µM range in our rat synaptosomal preparations (Carpenter et al, 
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2017; Zestos et al, 2016). The effect of 6c on dopamine uptake and efflux is 

asymmetrical because the compound more potently affects the latter process.  

Our model 

	

Figure 5.1. Proposed action of 6c at the dopaminergic terminal in vivo. 
	
	

Through our binding studies using the cocaine analogue [3H]WIN35,428, we have 

ruled out an interaction of 6c with the cocaine site that overlaps the substrate binding site. 

This may seem odd as compounds that block dopamine uptake tend to alter 

[3H]WIN35,428 binding. However, work by Kitayama and colleagues demonstrate that 

the cocaine and substrate site on DAT can be uncoupled, providing evidence that one can 

alter one site without affecting the function of the other. Specifically, mutations of the 

only aspartic acid residue (Asp79) in the first hydrophobic transmembrane domain of 

DAT will significantly affect dopamine transport without altering the binding of 

[3H]WIN35,428 (Kitayama et al, 1992). Moreover, mutating the serines at positions 356 

and 359 in the seventh transmembrane domain to alanine and glycine leads to a 

preferential effect on dopamine uptake compared to binding of the cocaine analogue 

(Kitayama et al, 1992). It is possible that binding of 6c to an allosteric site on the 

transporter could lead to conformational changes that disrupt the optimal orientation at 
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Asp79, Ser356 or Ser359 while preserving optimal contacts at the cocaine site, ultimately 

causing an effect on dopamine uptake and not [3H]WIN35,428 binding.  

 Another point to consider is that 6c may not alter the initial binding of dopamine 

to the substrate site but instead may affect the rate or efficiency by which the transporter 

transitions through its open-occluded-closed conformations to release dopamine on the 

cytosolic face of the transporter. In future studies, we must therefore attain the kinetic 

parameters, such as the Km (Michaelis constant) and Vmax (maximal velocity) of 

dopamine uptake, in the presence or absence of 6c to examine this possibility. Although 

we believe the in vivo effects of 6c on the neurochemical and behavioral effects of 

AMPH are largely due to a reduction of dopamine efflux, we cannot rule out the 

possibility the compound is blocking the uptake of both dopamine and AMPH (5), Figure 

5.1.   

 A decade ago, the effect of 6c on dopamine uptake would be considered a red flag 

for further development of the compound. The notion was that by blocking the normal 

uptake functioning at the transporter, DAT inhibitors would increase extracellular 

dopamine levels and hence act as primary reinforcers. However this assumption has been 

repeatedly challenged by compounds, called atypical DAT inhibitors, which inhibit 

dopamine uptake but exhibit no or low stimulant and/or reinforcing properties (Schmitt et 

al, 2013). Furthermore, these compounds can block the effects of other stimulants. For 

example, the benztropine analogue, JWH007, is a potent DAT inhibitor that antagonizes 

the in vivo effects of cocaine (Desai et al, 2005; Velazquez-Sanchez et al, 2010). Work 

from our group recently showed that tamoxifen binds to DAT and likely inhibits 

dopamine uptake via an uncompetitive or mixed mechanism at the transporter (Mikelman 
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et al, 2017). Tamoxifen does not exhibit stimulant or reinforcing effects in humans or 

laboratory animals but it does inhibit AMPH-stimulated locomotion in laboratory animals 

in vivo (Einat et al, 2007). Therefore tamoxifen may also be classified as atypical DAT 

inhibitor. In the case of 6c, the one caveat is that although it presents as a functional 

dopamine uptake inhibitor, we cannot truly classify it as an atypical DAT inhibitor 

without confirming its direct interaction with the transporter. This further supports the 

need for future molecular docking studies that can investigate the binding of 6c to the 

allosteric sites on DAT.  

 Atypical inhibitors have expanded our understanding of DAT modulation. Simply 

envisioning the transporter as a gate is now insufficient; we now realize that different 

ligands binding to DAT can elicit different responses. More specifically, the protein 

exhibits dual transporter-receptor functioning. Initially it was thought that atypical DAT 

inhibitors functioned by stabilizing the inward-facing conformation of the transporter 

while typical inhibitors stabilized the outward-facing orientation (Loland et al, 2008; 

Reith et al, 2015). By 2016, this theory was debunked (Hiranita, 2016). Differences in 

kinetics between atypical and typical inhibitors were also postulated as the likely basis 

for their different downstream effects. Studies correlated the rate of onset with 

reinforcing efficacy of various compounds at DAT, where compounds with slower rates 

of onset were weaker reinforcers (Desai et al, 2005; Lile et al, 2002; Tanda et al, 2005; 

Woolverton et al, 2002). However, it was later revealed that a group of benztropine-based 

atypical DAT inhibitors possessed relatively fast rates of onset at DAT, yet were not 

stimulant-like or did not produce conditioned place preference when administered alone 

(Li et al, 2011).  
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 Poly-pharmacology may be at the root of the mechanism of atypical DAT 

inhibitors. Apart from DAT, there are a few common targets shared by many of the 

atypical inhibitors, including binding to non-opioid σ receptors (Reith et al, 2015). Sigma 

receptors are expressed widely in the brain (Jansen et al, 1991a; Jansen et al, 1991b; 

Kitaichi et al, 2000) and can be divided into two subtypes: σ1 and σ2 receptor. The σ1 

receptor is a small protein possibly containing one or two transmembrane domain and 

likely resides in the endoplasmic reticulum membrane (Aydar et al, 2002; Hanner et al, 

1996; Hayashi and Su, 2005). The gene responsible for coding the σ2 receptor remained a 

mystery until recently, when it was revealed that the σ2 receptor is the cloned 

endoplasmic reticulum-transmembrane protein, TMEM97 (Alon et al, 2017). Although 

much remains unknown about the molecular coupling of σ receptors in the cell, subtype-

selective ligands exist for the receptors (Narayanan et al, 2011).  

Interestingly, the administration of σ antagonists with DAT inhibitors that are 

behaviorally inactive on their own, reduces methamphetamine self-administration in 

combination (Hiranita et al, 2011). Moreover, the σ1 receptor agonist, (+)-pentazocine, 

enhances AMPH-stimulated dopamine release and this effect is blocked by PKC 

inhibition (Derbez et al, 2002). Through the National Institute of Mental Health 

psychoactive drug screening program at the University of North Carolina Chapel Hill, we 

found 6c and tamoxifen both potently bind to the σ1 receptor (Kd’s of 261 nM and 203 

nM respectively) and the σ2 receptor (Kd’s of 5.6 nM and 31 nM respectively). 

Therefore, the effect of 6c on the dopaminergic system may indeed be mediated by its 

action on the σ receptor. One of the next steps will be to establish whether 6c is an 

agonist or antagonist at the σ receptor. With little information available on the σ receptor, 
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there is no standard means to distinguish between compounds that are agonists or 

antagonists at the receptor. One of the more trusted methods is to monitor the dissociation 

of the σ receptor from the molecular chaperone, binding immunoglobulin protein (BiP). 

The principle here is that agonist binding at the σ receptor leads to its separation from 

BiP and subsequent translocation from the endoplasmic reticulum to other regions in the 

cell. Sigma antagonists block this process (Hayashi and Su, 2007). Nonetheless, the 

creation of the σ1 receptor knockout mice (Langa et al, 2003) and the availability of σ 

receptor ligands gives us an opportunity to begin tackling questions of whether there is a 

σ component of 6c’s action on dopamine uptake and AMPH-stimulated dopamine efflux.  

Isoform specificity 

It is obvious that much more needs to be done to evaluate the potential PKC-

independent mechanisms through which 6c is working to attenuate AMPH activity. 

Nevertheless, we are still left with many questions regarding 6c’s action at PKC, 

especially with respect to PKC isoform specificity. We showed earlier that 6c inhibits 

phorbol 12-myristate 13-acetate (PMA)-stimulated increases in PKC activity in both in 

cells and striatal synaptosomes. By acting as a diacylglerol mimic, PMA can activate 

both classical and novel PKC isoforms. However, with the knowledge that 6c is a 

tamoxifen analogue and that tamoxifen is an inhibitor of classical PKCs, we hypothesized 

that the action of 6c on PKC and ultimately AMPH, is mediated via PKC α, β or γ. 

Interestingly, 6c inhibits phosphorylation of GAP-43 more potently than that of 

MARCKS, and GAP-43 displays more sensitivity for phosphorylation by PKCβ as 

compared to the other classical isoforms (Sheu et al, 1990). Considering all the lines of 

evidence that strongly point to PKCβ as the prominent PKC isoform mediating AMPH 
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action at DAT (Chen et al, 2009; Johnson et al, 2005; Zestos et al, 2016), it is likely that 

6c is at least partly working through PKCβ to block the effects of AMPH reported in this 

thesis.  

Rapid screening assays used to identify kinase inhibitors or activators generally 

rely on a purified enzyme system. A major advantage is speed and knowing that the 

readouts are a reflection of individual kinase activity. Tamoxifen, however, exhibits 

greater PKC inhibitory potency in cellular versus purified enzyme systems (Gundimeda 

et al, 1996; Horgan et al, 1986; Huai-De et al, 1985; O'Brian et al, 1985). This was our 

rationale for creating a cell-based PKC assay, which quantified PKC activity via substrate 

phosphorylation. However, even though substrates can display isoform preference, there 

are no known isoform-specific substrates. Therefore no conclusions on specificity can be 

made from these types of experiments and this question is best addressed using assays 

such as the FRET-based experiment described in Chapter 4, which directly monitors PKC 

subtypes. Another option would be to monitor the effect of 6c on MARCKS and GAP-43 

phosphorylation in cells with a kinase-dead or genetically-silenced PKC isoform. The 

idea would be that changes in the potency of the PKC inhibitor would signify the 

importance of specific isoforms to these downstream actions. Along these lines, we could 

use PKC isoform-specific global or conditional knockout animal models to identify the 

isoform associated with 6c’s effects on AMPH-stimulated dopamine release and 

reinforcement-related behaviors.  

Animal models 

 In choosing an animal model, we focused on rats versus mice in evaluating the in 

vitro and in vivo effects of 6c for two main reasons: 
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1) The pharmacokinetics and metabolism of tamoxifen in humans more resembles 

that observed in rats than in mice (Kisanga et al, 2003; Lien et al, 1991; Lim et al, 

1994).  

2) There are practical disadvantages in using mice in behavioral models, especially 

for self-administration studies (Ellenbroek and Youn, 2016). Therefore we wanted 

to be consistent with our choice of animal models for our initial studies.   

However, we have begun studies investigating the actions of 6c on AMPH-related 

processes in mice. As shown below, systemic administration of 6c decreases AMPH- 

stimulated locomotion (in 2-way RM ANOVA, F(25, 725) =74.58, p<0.0001 for time; F(1, 

29)=22.49, p<0.0001 for drug; and F(25, 725)=10.43, p<0.0001 for interaction of time and 

drug) and does not induce locomotion on its own, Figure 5.2. Interestingly, unlike in rats,  

	

Figure 5.2. Effect of 3 mg/kg of 6c on locomotion induced by 3 mg/kg of AMPH in C57BL/6 wild type mice. 
Mice were allowed to habituate to experimental boxes for two days (two hours daily) and given two saline injections to 
mimic treatment on the experiment day. On test day, mice were given either vehicle (5% tween) or 3 mg/kg of 6c i.p. 
and one hour later given 3 mg/kg of AMPH or saline. Locomotion activity was recorded as chamber crossovers, i.e., 
the number of times breaking one photocell beam at one end of the chamber was followed by breaking the other 
photocell beam at the other end of the chamber. Data represented as ± SEM. Post hoc Sidak’s multiple comparison test, 
*p<0.05. 
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we find that the inhibition of dopamine uptake by 6c directly correlates with its inhibition 

of AMPH-stimulated dopamine efflux. This would suggest, at least with respect to mice, 

that these processes are coupled. We have yet to investigate PKC inhibition by 6c in 

mouse striatal synaptosomes and it would also be beneficial to investigate whether the 

blockade of AMPH-stimulated dopamine release and locomotor behavior also translates 

into a reduction of AMPH reinforcement-like behaviors. Ultimately, it is possible that 6c 

modulates DAT through a different mechanism in mice as compared to rats.  

 

	

Figure 5.3. 6c modulation of dopamine efflux and uptake through DAT in mice. 
A. Mouse striatal synaptosomes were incubated in the presence or absence of 6c for 1 h at 37 °C. Dopamine efflux was 
stimulated with 10 µM AMPH (n=4 for all points but 0.3 µM, n=2). Synaptosomes were incubated with vehicle or 6c 
for 1 h at 37 °C and [3H]dopamine uptake was quantified (n=3). C. Efflux and uptake results represented as % vehicle. 
All points are mean ± SEM.  
 
 
Final remarks 

The work highlighted in this thesis focuses on the action of 6c at DAT and shows 

that we successfully designed a tamoxifen analogue that can attenuate the neurochemical 

and behavioral effects of AMPH. Nonetheless, the dopamine D2 autoreceptor (D2R) 

represents another major regulator of extracellular dopamine at the dopaminergic 

terminal. Work from our group shows PKC inhibition potentiates D2R function 
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(Luderman et al, 2015). In moving forward, it is therefore important to investigate if 6c 

potentiates D2R activity as a mechanism of modulating dopaminergic signaling. 

Additionally, work must be done to better understand the pharmacokinetic and 

pharmacodynamic profile of 6c, as this will provide useful information for further SAR 

studies using the tamoxifen scaffold. In summary, this work gives us hope for the future 

of drug development for AMPH addiction treatment and provides a new use for the 

tamoxifen scaffold.  
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