
Diffuse Scattering and Diffuse Optical

Tomography on Graphs

by

Jeremy Hoskins

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2017

Doctoral Committee:

Professor Anna C. Gilbert, Co-Chair
Professor John C. Schotland, Co-Chair
Professor Liliana Borcea
Professor Sergey Fomin
Professor Eric Michielssen



Jeremy G. Hoskins

jhoskin@umich.edu

ORCID iD: 0000-0001-5307-2452

c© Jeremy G. Hoskins 2017



To my parents, to Vivienne, and to Henri.

ii



ACKNOWLEDGEMENTS

I owe many people many thanks. First and foremost I would like to thank my

advisors, Anna Gilbert and John Schotland, for their guidance, their patience, their

wisdom, and their humor. It was truly an honor to work with you. Over the last five

years I have laughed much and learned more. I would also like to thank the members

of my committee: Liliana Borcea, Eric Michielssen, and Sergey Fomin. Without their

advice and teaching I would not be what and where I am today. Finally, I would like

to thank Francis Chung for many valuable discussions.

While at the University of Michigan I was fortunate to have many amazing teach-

ers. I learned much from the faculty in courses, seminars, and the occasional im-

promptu lecture at tea. I also owe much to my fellow graduate students, and my

friends, and those who are both. They helped make the last five years pass as if it

were no time at all. I would be remiss in my acknowledgements if I did not also

thank the staff in the graduate student office. They treated my fiftieth question of

the day like it was the first, and always greeted me with a smile. I would also like

to thank the Mathematics department for giving me the opportunity to teach, and

all of my former students for making it so easy. Additionally, I would like to thank

iii



NSERC for funding my research.

Finally, I would like to thank my family. I would like to thank my mother and

father for their constant support, for picking up the phone late at night to give advice

on the day-to-day troubles which seemed so important at the time. I would like to

thank them for their unwavering belief that this thesis would one day be written,

and for all their help along the way. I would also like to thank the cat, Henri.

What she lacks in understanding of mathematics and physics she makes up for in

companionship. I hope she was able to learn something from the many versions of

my talks she heard. Lastly, I would like to thank Vivienne: my best friend; my

fiancée; and my partner in crime.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Time-independent diffusion equations on graphs . . . . . . . . . . . . . . . . 8
2.2 Linear systems for finite boundary value problems . . . . . . . . . . . . . . . 10
2.3 Spatially varying absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Green’s functions for graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

III. Diffuse Scattering on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Born series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Representation theory and the background Green’s function . . . . . . . . . 25

3.4.1 Cayley graphs of finite abelian groups . . . . . . . . . . . . . . . . 25
3.4.2 Cayley graphs of finite groups . . . . . . . . . . . . . . . . . . . . . 28

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Inhomogeneous absorption on a path . . . . . . . . . . . . . . . . . 36
3.5.2 Inhomogeneous absorption on a complete graph with boundary . . 37

v



3.6 Point Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.1 A single point absorber . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Multiple point absorbers . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Computation of background Green’s functions . . . . . . . . . . . . . . . . . 49
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ABSTRACT

We formulate and analyze difference equations on graphs analogous to time-

independent diffusion equations arising in the study of diffuse scattering in con-

tinuous media and consider the associated inverse problem, which we call discrete

diffuse optical tomography.

For the forward problem we show how to construct solutions in the presence of

weak scatterers from the solution to the homogeneous (background problem) using

Born series, providing necessary conditions for convergence and demonstrating the

process through numerous examples. In addition, we outline a method for finding

Green’s functions for Cayley graphs for both abelian and non-abelian groups. Finally,

we conclude our discussion of the forward problem by considering the effects of

sparsity on our method and results, outlining the simplifications that can be made

provided that the scatterers are weak and well-separated.

For the inverse problem, we present an algorithm for solving inverse problems on

graphs analogous to those arising in diffuse optical tomography for continuous media.

In particular, we formulate and analyze a discrete version of the inverse Born series,

proving estimates characterizing the domain of convergence, approximation errors,

and stability of our approach. We also present a modification which allows additional

information on the structure of the potential to be incorporated, facilitating recovery

x



for a broader class of problems.
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CHAPTER I

Introduction

1.1 Introduction

It is the nature of many systems, continuous or discrete, that given a quantity of

interest, Q, and a region, R, it is infeasible to measure Q at every point in R. Instead,

measurements are limited to the boundary of R, or a small subset of the vertices or

edges of R. Often this limitation is imposed by cost, time, or the destructive nature

of the measurement process. In medicine, for example, one wishes to ascertain the

presence of a tumor without surgery. In material science, one might wish to find any

cracks in an airplane wing without having to destroy it.

One possible way to circumvent this obstruction is to consider instead a related

quantity Y, whose dependence on Q is non-local; changing Q on a subset, RS, of R

affects the value of Y at points far away from RS. In this way, information about Q

in the interior of R can propagate out to the boundary of R via Y. The goal of inverse

problems is to understand to what extend knowledge of Q in R can be gained by

measuring Y on the boundary of R. For example, in optical imaging light is sent into

1



2

biological tissue where it is scattered and absorbed. By measuring the light which

comes out one wishes to deduce the internal structure of the tissue. In seismology,

earthquakes propagate through the Earth’s crust. The strength of the vibrations

measured at the surface depends on the structure of the ground below. Using this

information, one tries to infer the presence and location of oil or mineral deposits.

In practice, Y is modelled by a differential, or difference, equation. The quantity,

Q, arises in this model as either a coefficient in the differential equation or a source.

The forward problem is to determine Y given knowledge of Q. The corresponding

inverse problem is to find Q given Y at the boundary of the domain.

In this work we consider a discrete analog of diffuse scattering and its associated

inverse problem: optical tomography. In continuous media, optical tomography is

a biomedical imaging modality that uses scattered light as a probe of structural

variations in the optical properties of tissue [6], see Figure 1.1. The inverse problem

of optical tomography consists of recovering the absorption and diffusion coefficients

from boundary measurements.

Scattering medium

So
ur

ce

Absorbing inclusions Detector

Figure 1.1: Experimental setup for optical tomography in diffuse media
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1.2 The forward problem

Let G = (V,E) be a graph with vertex set V and edge set E, and L be the

combinatorial Laplacian L, or some suitably rescaled variant [28]. We can then

formulate a graph analog of Poisson’s equation

(1.1)





(Lu)(x) = f(x), x ∈ V

u(x) = g(x), x ∈ δV

where δV is the set of boundary vertices, which will be discussed in more detail later,

and the functions f and g represent internal and boundary sources, respectively.

Equation (1.1) has been studied both when the edges are equally-weighted and when

the edge weighting varies throughout the graph [13, 28, 29]. In this work, we consider

the effect of introducing inhomogeneities on the vertices rather than on the edges, as

represented by the addition of a (vertex) potential term to equation (1.1). We call

this problem diffuse scattering on graphs because of its analogy to a related problem

in the continuous setting, where the vertex potential is often called the absorption.

A similar problem arises in the study of Schrödinger operators on graphs, see for

example [12, 10, 19, 20, 21, 72]. In order to develop the necessary foundations

to formulate corresponding inverse problems, which will be analyzed in subsequent

works, we also study the role of boundary conditions on the solutions. In particular,

we consider Dirichlet, Neumann and Robin, or mixed, boundary conditions, which

are often employed in the continuous setting.

The graph analog of Poisson’s equation is related to the classical problem of
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resistor networks first studied by Kirchhoff in 1847 [55]. In that setting, one is

given a collection of interconnected resistors to which a voltage source is attached

at various points [35]. The resulting system can be thought of as a weighted graph,

with each edge corresponding to a particular resistor and the vertices representing

the connections between them [35]. In the event that all the resistors are identical,

the voltage at each point satisfies Poisson’s equation on the associated graph [31].

In this setting, one seeks either to map the network, finding its corresponding graph

[35], solely by measuring the current or potential at various points in the network.

This physical analogy is also employed for graph sparsification [73], as well as in near

linear-time solvers for symmetric, diagonally dominant linear systems [36, 56, 80].

Discrete analogs of PDEs on graphs are not limited to Poisson-type problems and

are used extensively in lattice dynamics where we consider the graph analog of the

Helmholtz equation [61, 76], which arises when considering time-harmonic waves. In

lattice theory, one problem of particular importance is to examine the propagation of

phonons through a crystal in order to determine the size and location of imperfections

[61, 76].

In Chapter III we consider the graph analog of a different PDE, which we call

the problem of diffuse scattering on graphs, though the equation also arises in the

study of discrete Schrödinger operators [19] . A key component of our analysis will

be constructing methods for obtaining the appropriate Green’s functions for the

problems we wish to consider. The idea of discrete Green’s functions has a long
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history arising in many important problems and fields such as the study of inverses

of tri-diagonal matrices [42], potential theory [15, 26, 37], the study of Schrödinger

operators on graphs [5, 10, 19, 20, 21, 22, 72, 81], and the graph-theoretic analog

of Poisson’s equation [29, 52, 77, 78]. Additionally, Green’s function methods have

yielded interesting results in many areas including the properties of random walks

[29, 53], chip-firing games [40], analysis of online communities [58], machine learning

algorithms [68, 82] and load balancing in networks [24].

1.3 The inverse problem

Inverse problems arise in numerous settings within discrete mathematics, includ-

ing graph tomography [79, 48, 49, 45, 27] and resistor networks [32, 33, 34, 35, 50,

17, 16]. In such problems, one is typically interested in reconstructing a function

defined on edges of a fixed graph or, in some cases, the edges themselves. Here we

focus on recovering vertex properties of a graph from boundary measurements. The

problem we consider is the discrete analog of optical tomography, and the inverse

problem associated with diffuse scattering on graphs.

The underlying model of discrete optical tomography also arises in the study of the

Schrödinger equation on graphs and its related inverse problems [67, 51, 3, 17, 18].

For circular planar graphs, or lattice graphs in two or more dimensions, [67, 51, 3, 17]

outline an algorithm that can be used to recover the vertex potential. In particular,

the first three employ special combinations of boundary sources which force the

solution in the interior to be zero except on a small, controllable set of vertices.
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Using this approach, the potential at each vertex can be calculated. Then, starting

at the boundary, the entire potential can be recovered. The resulting algorithm

relies on the lattice structure of the graphs and is unstable for potentials with large

support.

In Chapter IV we present a reconstruction method for graph optical tomography

that is based on inversion of the Born series solution to the forward problem [64, 9,

59, 65, 60, 7, 54]. Using this approach, we show that it is possible to recover vertex

potentials for a general class of graphs under certain smallness conditions on the

boundary measurements. Our results are complementary to those in [18], where a

discrete analog of complex geometrical optics solutions are used to show that if the

linearized problem is solvable, then the Robin-to-Dirichlet map is invertible almost

everywhere. We also note that our algorithm applies to complex η, a case that arises

in optical tomography. In addition, we obtain sufficient conditions under which the

inverse Born series converges to the vertex potential. We also obtain a corresponding

stability estimate, which is independent of the support of the potential. In numerical

studies of the inverse Born series for large potentials or large graphs, where exact

recovery is not guaranteed, we nevertheless find that good qualitative recovery of

large scale features of the potential is possible. Moreover, our approach can be easily

modified to incorporate additional information on the structure of the potential,

improving both the speed and accuracy of the algorithm. As an application of this

idea, we show how to determine the potential η using data for multiple values of
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α0, assuming η is independent of α0. This allows us to apply our method to graphs

whose structure makes exact potential recovery otherwise impossible.



CHAPTER II

Preliminaries

2.1 Time-independent diffusion equations on graphs

Let Γ = (V ′, E) be a connected locally finite loop-free graph with edge set E and

vertex set V ′. Given a subset, V, of the vertex set V ′, we define the vertex boundary

of V, δV, by [28]

(2.1) δV = {y ∈ V ′ \ V | ∃x ∈ V such that x ∼ y ∈ E},

where x ∼ y if x is adjacent to the vertex y, i.e. there is an edge in E joining

the vertex x to y. Here we assume that V is a proper subset of V ′ so that δV is

not empty. As in [28], if dx is the degree of the vertex x, we consider the (vertex)

Laplacian L : (V ∪ δV )× (V ∪ δV )→ R defined by

(2.2) L(x, y) =





dx if y = x

−1 if y ∼ x

0 otherwise.

Note that in the following, by a slight abuse of notation, we will use the same symbol,

L, to denote the Laplacian operator, its kernel, and the corresponding matrix. In

8
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later sections we will employ a similar convention when discussing operators for the

time-independent diffusion equation and their associated Green’s functions.

To develop the time-independent diffusion equation on graphs we require suit-

able boundary conditions analogous to those arising in partial differential equations

(PDEs). We say a function u : V ′ → R satisfies a homogeneous Dirichlet bound-

ary condition if its restriction to δV is identically zero [28]. To obtain appropriate

derivative-type boundary conditions we define the discrete analog of the normal

derivative ∂ : `2(V ∪ δV )→ `2(δV ) by

(2.3) ∂u(y) =
∑

x∈V
x∼y

[u(y)− u(x)].

A function u : (V ∪ δV )→ R satisfies a homogeneous Neumann boundary condition

[28] if ∂u(x) = 0 for all x ∈ δV and satisfies a Robin boundary condition [11] if there

exists a constant t ≥ 0 such that

(2.4) t u(x) + ∂u(x) = 0

for all x ∈ δV. Note that choosing t = 0 yields Neumann boundary conditions while

letting t→∞ produces Dirichlet boundary conditions. Given a function g : δV → R

we can also define corresponding inhomogeneous boundary conditions

(2.5) t u(x) + ∂u(x) = g(x), x ∈ δV

which arise when sources or sinks are located on the boundary. For a given interior
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source f and boundary source g we define the constant absorption diffusion equation

(2.6)





∑
y∈V ′ L(x, y)u(y) + α0u(x) = f(x), x ∈ V

t u(x) + ∂u(x) = g(x), x ∈ δV.

Here, in analogy with the physical problem of diffuse scattering, α0 is a strictly

positive constant which represents the absorption of the medium. Note that L is

positive semidefinite [11, 28].

2.2 Linear systems for finite boundary value problems

In the case where |V | and |δV | are both finite the boundary value problem (2.6)

can be written as a linear system of equations for u. We first index the vertices of

V by 1, . . . , n = |V | and those of δV by n + 1, . . . , n + k where k = |δV |. Next we

construct the (n+ k)× (n+ k) matrix

(2.7) H0 = L+




α0In×n 0n×k

0k×n tIk×k




where In×n and Ik×k are the n×n and k×k identity matrices, respectively, and 0n×k

is the n× k zero matrix. If we let u = (u(x1), . . . , u(nn+k))
∗ and

f̃ = (f(x1), . . . , f(xn), g(xn+1), . . . , g(xn+k))
∗,

where w∗ denotes the conjugate transpose of w, then we can rewrite the diffusion

equation (2.6) as

(2.8) H0 u = f̃ .
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Similarly, we obtain Dirichlet boundary conditions by replacing the matrix oper-

ator H0 in (2.7) by the matrix

(2.9) HD
0 =




L(V ;V ) + α0In×n L(V ; δV )

0k×n Ik×k




Here we have used the convention that given any two sets A,B ⊂ V ∪ δV, L(A;B) is

the submatrix of the Laplacian matrix, L, obtained by taking the rows corresponding

to the elements in A and the columns corresponding to the elements in B. We say

the vector u satisfies the diffusion equation with Dirichlet boundary conditions if

(2.10) HD
0 u = f̃ .

Alternatively, one can obtain u by noting that

(2.11) u = lim
t→∞

ut

where ut satisfies the equation

(2.12) H0ut =




f

t g




and H0 is the matrix operator corresponding to Robin boundary conditions depend-

ing on the parameter t as in (2.5).

It is clear by construction that H0 is symmetric. As shown in the following

proposition, under certain restrictions, the matrix H0 is also positive definite and

hence has a well-defined inverse. This is equivalent to the existence of a unique

solution to the diffusion equation (2.6).
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Proposition II.1. For all t such that 0 ≤ t < ∞ the smallest eigenvalue λm of H0

satisfies

(2.13) λm ≥ min{t, α0},

and hence the matrix H0 is positive definite if t > 0 and H0 is positive semidefinite

if t = 0, though later, in Proposition II.2, we will show that in the latter case H0 is

also positive definite provided that α0 > 0, see also [12].

Proof. The desired inequality follows immediately from an analysis of the variational

formulation of the problem, as in [11, 12]. Alternatively, the result can also be shown

by applying the Gerschgorin circle theorem to the operator H0.

Proposition II.2. Consider the diffusion equation (2.6) on a connected graph Σ

with Neumann boundary conditions corresponding to t = 0. The associated matrix

operator H0 is positive definite for all α0 > 0 and moreover

(2.14) λm =
|V |

|V |+ |δV |α0 +O(α2
0)

as α0 → 0+.

Proof. The proof is by contradiction. Suppose v is an eigenvector of H0 with eigen-

value 0. Let A be the matrix defined by

(2.15) Ai,j =





1, i = j, 1 ≤ i ≤ n,

0, otherwise,

.
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By construction it is clear that

(2.16) H0 = L+ α0A

and, that both A is positive semidefinite. Note that

0 = v∗H0 v

= v∗ Lv + α0 v
∗Av.

(2.17)

Since L and A are positive semidefinite and A is diagonal it is clear that v is in

the kernel of A and is an eigenvector of L with eigenvalue 0. Since v ∈ kerA it

follows that its first n entries must be identically zero. From [28] we observe that

since Γ is connected, the eigenvalue 0 of L has multiplicity one corresponding to the

eigenvector (1, . . . , 1)∗. Thus, since v is a scalar multiple of the all ones vector and

its first n entries are zero, it follows that v is the zero vectorand hence cannot be an

eigenvector of H0, completing the proof.

It follows immediately from the theory of asymptotic analysis of linear systems,

see [63] for example, that the smallest eigenvalue of L+ α0A is

(2.18) λm = α0
v∗Av

v∗v
+O(α2

0),

from which the required result follows immediately.

Plots of the minimum eigenvalue of H0 as a function of α0 are shown for a path

in Figure 2.2a and for a complete graph in Figure 2.2b. As we can see, for small
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Figure 2.2: The minimum eigenvalue of the operator H0 as a function of the absorption α0 for: a)
a path of length 64 with Neumann boundary conditions, and b) a complete graph on 64 vertices
and Neumann boundary conditions. For both plots the line corresponds to the bound in equation
(2.18).

α0 the curve approaches the bound given in (2.18), which is shown in both plots for

reference.

2.3 Spatially varying absorption

When discussing diffusion problems in the continuous setting we often wish to

consider media with spatially varying properties. A similar idea can be applied to

graphs through a suitable modification of the graph diffusion problem (2.6). Suppose

the absorption at each vertex in V is given by a non-negative function η : V → R≥0.

The resulting perturbed diffusion equation is

(2.19)





∑
y∈V ′ L(x, y)u(y) + α0 [1 + η(x)]u(x) = f(x), x ∈ V,

t u(x) + ∂u(x) = g(x), x ∈ δV.

Note that equation (2.19) also arises in the study of Schrödinger equations on graphs

where it can be interpreted as the Robin boundary value problem for the Schrödinger
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operator with potential q = α0(1 + η). To write this as a linear system we let Dη be

the (n+ k)× (n+ k) matrix with entries

(2.20) (Dη)ij =





η(xi), i = j ≤ n,

0, otherwise.

It follows that u solves the boundary value problem (2.19) if and only if it satisfies

(2.21) [H0 + α0Dη]u = f̃ .

For convenience we define H = H0 + α0Dη to be the matrix operator corresponding

to the more general diffusion equation.

In many physical applications we are often interested in inhomogeneities confined

to a region whose volume is significantly smaller than that of the whole domain. An

analogous idea for diffuse scattering on graphs is to consider absorption functions,

α(x), with small support. Given a function α(x) defined on a graph with vertex set

V, its support is the set of all vertices in V for which the function α(x) is non-zero.

We also note that in some cases it is useful to consider graphs with no boundary.

In this case we take δV in (2.19) to be the empty set and consider the effects of

sources placed in the interior, ie. the support of f̃ in (2.21) is contained in V.

2.4 Green’s functions for graphs

Green’s functions are a useful tool for obtaining and analyzing solutions to PDEs.

When discussing similar equations on graphs, the analogous operator G(x, y) is the

inverse of H [28]. Suppose the number of interior vertices of Σ and the number of
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boundary vertices of Σ are both finite. If we defineGy = (G(x1, y), G(x2, y), . . . , G(xn+k, y))∗

and let H∗ denote the adjoint of the operator H, then Gy satisfies the linear system

(2.22) H∗Gy = δy

where δy is the vector whose components are all zero except for the one corresponding

to y which is one. Observe that sinceH = H0+α0Dη, whereH0 and α0 are symmetric,

it follows that H is also symmetric, and so is its inverse G. Using (2.22) we see that

if u is a solution of (2.19) then

(2.23)

G∗y f̃ = G∗yHu

= (H∗Gy)
∗ u

= δ∗y u

= u(y).

In this work the examples in which we are primarily interested are those for which

|V | and |δV | are both finite, though when |V |+ |δV | is infinite Green’s functions can

also be defined, see [11, 77] for example.



CHAPTER III

Diffuse Scattering on Graphs

3.1 Introduction

Here we consider a graph analog of the time-independent diffusion equation, which

we call diffuse scattering on graphs. This model also arises in the study of discrete

Schrödinger operators [19] . As in the continuous problem, we are particularly inter-

ested in systems with nearly uniform absorption. By this we mean that the variations

in the absorption are small relative to the mean and are typically limited to a small

subset of vertices. By defining and applying a discrete version of the Born series

we obtain, under suitable conditions, a series solution to the forward problem for a

heterogeneous medium, given in terms of the Green’s function for the diffusion equa-

tion on the same graph but with uniform absorption, called the background Green’s

function. We then provide sufficient conditions on the inhomogeneities for the series

solution to converge to the correct solution and provide estimates for the rate of

convergence.

In Section 3.2 we develop the necessary tools to construct the Born series from

17
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the background Green’s function. In particular, we prove necessary conditions for

the convergence of the series, and discuss the dependence of the rate of convergence

on the structure of the graph.

Before applying the Born series to a specific graph, it is first necessary to obtain

the background Green’s function. In Section 3.3 we provide examples of various

families of graphs for which the background Green’s function is explicitly known

and in Section 3.4 we discuss the connection between the symmetries of vertex-

transitive graphs and group representation theory, showing how to use knowledge

of the symmetry group of a graph to obtain an expression for the corresponding

background Green’s function.

In Section 3.5 we present a few representative numerical experiments demonstrat-

ing the convergence of the Born series for small perturbations to the absorption and

compare the empirical convergence results to the bounds obtained in Section 3.2.

Finally, in Section 3.6, we consider the discrete analogue of a classical problem in

scattering theory; the scattering due to a small collection of point absorbers. In

the case where there are only one or two point absorbers present, we explicitly sum

the Born series and give exact formulae for the scattered fields provided the Green’s

function for the homogeneous medium is known. We conclude with a comparison

of the scattering of light from point absorbers on infinite one-dimensional and two-

dimensional lattice graphs to the well-known formulae for the continuous problem of

the same dimensions.
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3.2 Born series

We next discuss a useful perturbative method, called Born series, for constructing

series solutions to (2.19) using the homogeneous Green’s function.

3.2.1 Construction

Consider the matrix operator H0 for the unperturbed diffusion equation (2.6) and

let G0 be the matrix such that G0H0 = I. In particular we require the columns of H0

to be linearly independent so that H0 has a well-defined inverse. As in the previous

section, we define the matrix operator H for the perturbed problem (2.19) by

(3.1) H = H0 + α0Dη,

where Dη is once again the matrix defined in (2.20). Since η ≥ 0, H−1 exists and

satisfies

(3.2) H−1 = (I + α0G0Dη)
−1G0

and we can write a corresponding Neumann series

(3.3) B =

[ ∞∑

n=0

(−1)nαn0 (G0Dη)
n

]
G0,

which, under suitable conditions on G0 and Dη, is equal to the inverse of H. In the

context of scattering theory such an expansion is often called a Born series. Assuming

the series in (3.3) converges to H−1 it follows immediately that for any source vector

f̃ the corresponding solution u of the time-independent diffusion equation (2.19) is
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given by

(3.4) u =

[ ∞∑

n=0

(−1)n(α0)n (G0Dη)
n

]
G0 f̃ .

3.2.2 Convergence

To show convergence of the Born series (3.3) with respect to a norm ‖ · ‖ it is

sufficient to show that the induced operator norm of B, denoted by ‖B‖, is bounded,

as shown in the following theorem.

Theorem III.1. The series

(3.5) B =

[ ∞∑

n=0

(−1)nαn0 (G0Dη)
n

]
G0

converges to the Green’s function of the perturbed problem (2.19) if α0 ‖G0‖ · ‖Dη‖ <

1. Moreover, if BN , the truncated operator formed by taking the first N + 1 terms of

the Born series, we have the following estimate of the error

(3.6) ‖B −BN‖ ≤ ‖G0‖2 αN0 ‖G0‖N‖η‖∞
1− α0‖G0‖ ‖η‖∞

Proof. The proof is an immediate consequence of the existing theory of Neumann

series, see [30] for example.

In particular we see from the previous theorem that approximating the Green’s

function by a truncated Born series is more accurate when ‖Dη‖ ‖G0‖−1 α−1
0 are

small, sometimes called the weak scattering limit [8]. We can also obtain tighter

bounds if additional information about the structure of the absorption matrix Dη
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is used. In particular it is natural to assume that the matrix Dη has few non-zero

diagonal entries. This is analogous to the physical situation where the spatial support

of the scatterers is much smaller than the total volume.

Proposition III.2. Suppose η has support Λ ⊆ V and let IΛ be the restriction

of the identity matrix to the support of η. Further define G0,Λ = IΛG0IΛ and let

ηmax = supx∈Λ η(x). The series

(3.7) B =

[ ∞∑

n=0

(−1)nαn0 (G0Dη)
n

]
G0

converges to the Green’s function of the perturbed problem (2.19) if ηmaxα0 ‖G0,Λ‖ <

1. Moreover, the truncation error associated with taking the first N + 1 terms of the

Born series,

(3.8) BN =

[
N∑

n=0

(−1)nαn0 (G0Dη)
n

]
G0,

is O
(
αN0 ||G0,Λ||N · ηNmax

)
as N →∞.

Proof. Since Dη is a diagonal matrix it follows that ‖Dη‖ = ηmax = supx∈V |η(x)|. Let

Λ be the support of η and let IΛ be the restriction of the identity matrix to the support

of η. In particular, IΛ is the diagonal matrix IΛ(x, y) = δx,yχ{x∈Λ}, where χA denotes

the characteristic function of the set A. Note that Dη = IΛDη = DηIΛ and thus

if we define G0,Λ = IΛG0IΛ and let n > 1, then (G0Dη)
n = G0Dη(IΛG0IΛDη)

n−1 =

G0Dη(G0,ΛDη)
n−1. Defining the truncated operator BN =

∑N
n=0(−1)kα0 (G0Dη)

nG0,

we note that

(3.9) BN = G0 +G0Dη

N−1∑

n=1

(−1)kαn0 (G0,ΛDη)
n−1G0.
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The result now follows immediately from the theory of Neumann series.

3.3 Examples

Having developed the theory of Born series in the previous section, provided

the perturbations to the absorption are sufficiently small, we can now apply this

method to approximate Green’s functions for which the background Green’s function

is known. A non-exhaustive list of families graphs for which the background Green’s

function is known is given in Table 3.1.



Name Figure Background Green’s function Reference

Path

truncated operator BN =
PN�1

n=0 (�1)k↵0 (G0⌘̃)
n G0. Clearly BN satisfies

kB � BNk =

�����
1X

n=N

(�1)n↵n
0 (G0⌘̃)

n G0

�����

=

�����G0⌘̃

1X

n=N�1

(�1)n+1↵n+1
0 (G0,⇤⌘̃)

n G0

�����

 ↵N
0 kG0k2k⌘̃k kG0,⇤⌘̃||N�1

1X

n=0

↵n
0 kG0,⇤⌘̃kn

 kG0k2 ↵N
0 kG0,⇤kN⌘N

max

1 � ↵0 kG0,⇤k⌘max

(43)

and hence the truncation error associated with BN is O
�
⌘N
max↵

N
0 kG0,⇤kN

�
as N ! 1. It

follows that B is bounded if ↵0 ⌘max kG0,⇤k < 1.

4 Examples

Having developed the theory of Born series in the previous section, we now apply this
method to approximate the Green’s functions for specific families of graphs, including the
path, the loop, the Möbius ladder, the complete graph, the Bethe lattice, and the two-
dimensional lattice.

4.1 Analysis of a path

Consider the finite path of length n embedded in a path of infinite length as in Figure 4.1.
In particular we can identify vertices with the integers 0, 1, . . . , n, n + 1, where 0 and n + 1
are the boundary of the graph.

0 1 2 · · · n � 1 n n + 1

Figure 2: A diagram representing the finite path of length n with boundary points 0 and
n + 1 coloured red.

Following [8] we proceed by obtaining a recursive equation for the elements of the
Green’s function matrix G for the time-independent homogeneous di↵usion equation (2.7),
though in our case we consider the more general Robin boundary conditions rather than
the Dirichlet boundary conditions studied in [8]. We first consider the entries of G with
1  i  n + 2 and 1  j  n and find the entries of G for i  j. Symmetry is then used
to determine the entries for i > j. The remaining elements of G are found using a similar

11

G(i, j) = (ari−a−1r−i)(arn+1−j−a−1r−(n+1−j))

(r− 1
r )(a2rn+1−a−2r−(n+1))

, 0 ≤ i ≤ j ≤

n+ 1, r + 1/r = 2 + α0, and a =

[
1 +

(r2−1)
r[1+t−r]

]1/2 [10, 29]

Cycle

4.2 Analysis of a loop

As in the previous example we can compute the Green’s function for the di↵usion equation
on a loop. For convenience we choose the loop to have 2n+2 vertices, where n is an integer.
Similar results can be obtained for an odd number of vertices by a slight variation of the
argument outlined in the following proposition.

Let ⌃ be the loop with 2n + 2 vertices {0, 1, . . . , 2n + 1} as shown in Figure 4.4. The
associated Green’s function for the di↵usion equation (2.7) is

G(i, j) =
rn+1�|i�j|min + r�(n+1�|i�j|min)

�
r � 1

r

� �
rn+1 � r�(n+1)

� (78)

for all 0  i, j  2n + 1, where |i � j|min = min{|i � j|, 2n + 2 � |i � j|}.

1

0

2n + 12n

. . .

n + 2

n + 1

n . . .

2

Figure 5: The loop graph with 2n + 2 vertices.

Before proceeding to the proof we remark that the equation we are solving closely
resembles that considered in [13], though both the ultimate aim of that work and the
resulting Green’s function di↵er from ours. The proof we give here is based on the method
for the path outlined in [8].

By symmetry we observe that G(x, y) must depend only on the relative distance of
the vertices xi and xj since the graph ⌃ is invariant under cyclic permutation of vertices.
Thus without loss of generality we can fix j = 0. Further notice that for all 0 < i < n
G(i, 0) = G(2n + 2 � i, 0) and hence it is su�cient to find G(i, 0) when 0  i  n + 1.
Finally, we observe that G(n + 2, 0) = G(n, 0) and therefore, as in the previous example,
it is possible to write an expression for G(n + 1, 0) in terms of G(n, 0). In particular, if we
define r implicitly by r + 1/r = 2 + ↵0 then the equation

0 =
⇥
(r + r�1)G(n + 1, 0) � G(n, 0) � G(n + 1, 0)

⇤
(79)
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G(i, j) =
rn+1−|i−j|min + r−(n+1−|i−j|min)

(
r − 1

r

)
(rn+1 − r−(n+1))

,

for all 0 ≤ i, j ≤ 2n+ 1, where |i− j|min = min{|i− j|, 2n+ 2− |i− j|}.

[10, 39]

Möbius ladder

4.3 Analysis of a Möbius ladder

Another family of vertex-transitive graphs of particular interest in material science [25, 21,
27] and computer science [15] are the Möbius ladders on 2n + 2 vertices. Using a similar
approach as above we can compute the background Green’s function for the di↵usion
equation on this family of graphs. For convenience we assume n is odd though a similar
result can be obtained in the even case by a slight modification to the proof of the following
proposition.

Let ⌃ be the Möbius ladder with 2n + 2 vertices {0, 1, . . . , 2n + 1}, n odd, as shown
in Figure 4.7. The associated Green’s function for the di↵usion equation with uniform
absorption (2.7) is

G(i, j) =

⇢
g1(|i � j|min) + g2(|i � j|min), |i � j|  n+1

2 + 1
g1(|i � j|min) � g2(|i � j|min), |i � j| > n+1

2

(84)

for all 0  i, j  2n + 1, where |i� j|min = min{|i� j|, 2n + 2� |i� j|, | |i � j| � (n + 1)|},

gk(s) =
(akr

(n+1)/2
k � a�1

k r
�(n+1)/2
k )(akr

(n+1)/2�s
k � a�1

k r
�[(n+1)/2�s]
k )

(rk � r�1
k )(a2

kr
n+1
k � a�2

k r
�(n+1)
k )

, k = 1, 2, (85)

rk satisfies rk + 1/rk = 2k + ↵0,

a1 =


1 +

r2
1 � 1

r1(1 + ↵0
2 � r1)

� 1
2

, (86)

and a2 = 1.

1

0

2n + 12n

. . .

n + 2

n + 1

n . . .

2

Figure 8: The Möbius ladder with 2n + 2 vertices.
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G(i, j) =

{
g1(|i− j|min) + g2(|i− j|min), |i− j| ≤ n+1

2 + 1

g1(|i− j|min)− g2(|i− j|min), |i− j| > n+1
2

for all 0 ≤ i, j ≤ 2n + 1, where |i− j|min = min{|i− j|, 2n +
2− |i− j|, | |i− j| − (n+ 1)|},

gk(s) =

akr n+1
2

k −
r
−n+1

2
k
ak

akr n+1
2

−s
k −

r
−[n+1

2
−s]

k
ak


(rk − r−1

k )(a2kr
n+1
k − a−2

k r
−(n+1)
k )

,

k ∈ {1, 2}, rk satisfies rk + 1/rk = 2k + α0,

a1 =

[
1 +

r21−1

r1(1+
α0
2

−r1)

] 1
2
, a2 = 1.

Section 3.7
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Complete graph

4.4 Analysis of the complete graph on d vertices

We can perform a similar computation with the complete graph on d vertices, an example
of which is shown in Figure 4.10 for d = 10.

Let R be the complete graph on d vertices {0, 1, . . . , d � 1} with d boundary vertices
{00, . . . , (d � 1)0}. The associated Green’s function for the di↵usion equation (2.7) with
Robin boundary conditions is

G(x, y) =

8
><
>:

�
(��1)(��1+d) if x = y 2 V,

1
(��1)(��1+d) if x 6= y, x, y 2 V,

�2�
(��1)(��1+d) + � if x = y, x0 2 �V,

(96)

where � = 1/(1 + t) and � = 2 + ↵0 � �. The remaining entries can be obtained via the
Robin boundary conditions and the identity

G(x, y) = G(y, x) (97)

which holds for all x, y 2 V [ �V.
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Figure 11: The complete graph on 10 vertices with 10 boundary vertices.

We first consider the case where the source is located at an interior vertex. By symmetry
we may assume without loss of generality that y = 0. Note that upon fixing y = 0 the
graph is invariant under a permutation of all remaining vertices, provided it preserves the
edge between the vertex in R and the corresponding boundary point.
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G(x, y) =





σ
(σ−1)(σ−1+d)

if x = y ∈ V,
1

(σ−1)(σ−1+d)
if x 6= y, x, y ∈ V,

γ2σ
(σ−1)(σ−1+d)

+ γ if x = y ∈ δV,

where γ = 1/(1 + t) and σ = 2 + α0 − γ.
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As a second example we consider the scattering from two point absorbers on the infinite
two-dimensional lattice. An analysis of the scattering properties of this system requires an
expression for the Green’s function of the di↵usion equation (2.7) on Z ⇥ Z, an integral
formula for which was found in Proposition 4.10. For simplicity we specialize to the case in
which the are two point absorbers are positioned on the y-axis and the source and detector
are located on the x-axis as in Figure 18.

Figure 18: A diagrammatic representation of the geometry of the point absorbers (blue
circles), source (green diamond) and detector (red square) used to study the scattering
properties of the two point absorber system on the infinite square lattice.

If we assume the source is located at (s, 0) the detector is at (j, 0), and the point
absorbers are located at (0, k1), and (0, k2), then an analogous calculation to the one
performed for the one-dimensional case yields

e⇤j (G0 � B)es =
1

2

�
fj,k1 + fj,k2 fj,k1 � fj,k2

�
 

↵0
1+↵0�+

0

0 ↵0
1+↵0��

!

⇥
✓

fs,k1 + fs,k2

fs,k1 � fs,k2

◆
.

(178)

G((m1, n1), (m2, n2)) =
1

2π

∫ π
0

cos
(
d− v

)
(cos(v))

d+

(a +

√
a2 − cos(v))

d+
√
a2 − cos(v)

dv

where a = 1 + α0/4, and d± = |m2 −m1| ± |n2 − n1|.

Section 3.7

Table 3.1: Summary of Green’s function results
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3.4 Representation theory and the background Green’s function

In the previous section we obtained the background Green’s function for a variety

of examples by solving corresponding recurrence relations. In every example, exclud-

ing the finite path, clearly-visible symmetries were employed in an intuitive way to

reduce the problem to a more tractable set of equations. This connection between

symmetry and PDE analogues on graphs can be formalized using the language of

representation theory.

3.4.1 Cayley graphs of finite abelian groups

As a particularly important special case we first consider Cayley graphs of abelian

groups. In particular, let G be a finite abelian group and S be a symmetric subset of

the elements of G. Recall that S is a symmetric subset of a group G if g ∈ S implies

g−1 ∈ S. This condition is required to ensure that the resulting graph is undirected

and the associated Laplacian operator is symmetric. We can then define the Cayley

graph X(G,S) to be the graph whose vertices are indexed by the elements of G with

edge set [75]

(3.10) E = {(g, h) ∈ G×G | gh−1 ∈ S}.

Looking at the examples considered in the previous section we note that the loop,

Möbius ladder, and complete graph are all Cayley graphs with group G = Z/nZ, for

some n, and S = {−1, 1}, {−1, 1,−n/2, n/2} and {−n+1,−n+2, . . . ,−1, 1, . . . , n−

2, n − 1}, respectively. The infinite path is the Cayley graph of the free group on
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2 generators and the Bethe lattice with coordination number k is the Cayley graph

of the free group on k generators. Finally, the two-dimensional lattice is the Cayley

graph with group Z× Z and generator set S = {(−1, 0), (0,−1), (1, 0), (0, 1)}.

For Cayley graphs the combinatorial Laplacian can be compactly expressed using

the convolution operator ∗ : `2(G)× `2(G)→ `2(G) defined by

(3.11) (f ∗ g)(x) =
∑

y∈G
f(y) g(y−1x).

It is clear that the adjacency matrix A for X(G,S) is given by [75]

(3.12) A(f)(x) = (δS ∗ f)(x)

where δS is the characteristic function on the set S and hence if k = |S| then

(3.13) L(f)(x) = (k I − A)(f)(x) = kf(x)− (δS ∗ f)(x).

In order to diagonalize this operator using Fourier analysis, we next define the

dual group

(3.14) Ĝ = Hom(G,T)

where T is the multiplicative group of complex numbers with modulus one. If χ ∈ Ĝ

then we call χ a character. If G is a finite abelian group then it is self-dual [70], and

hence G is isomorphic to Ĝ. We then have the following proposition, proved in [75].

Proposition III.3. If h ∈ `2(G) then the eigenvectors of the corresponding convo-

lution operator are equal to the characters of G. In particular, if χ ∈ Ĝ then

(3.15) (h ∗ χ)(x) = ĥ(χ)χ(x)
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for all x ∈ G and where ĥ(χ) =
∑

x∈G h(x)χ(x).

The following corollaries are immediate consequences of Proposition III.3.

Corollary III.4. The characters of G are the eigenvectors of L with corresponding

eigenvalues

(3.16) λχ = k −
∑

s∈S
χ(s).

Corollary III.5. The Green’s function for the uniform diffusion equation is

(3.17) G(f)(x) =
∑

χ∈Ĝ

∑

y∈G

1

λχ + α0

f(y)χ(y)χ(x).

Proof. We begin by observing that since the eigenfunctions of L are the characters

of G through an appropriate change of basis we may diagonalize L. If we denote the

elements of G by x1, . . . , xk and the characters of G by χ1, . . . , χk then we can form

the corresponding k × k matrix defined by

(3.18) Xi,j = χj(xi).

It follows from the above results that the matrix representation of L can be written

as

(3.19) L = X




λχ1

λχ2

. . .

λχk−1

λχk




X†,
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where X† denotes the conjugate transpose of the matrix X. Since XX† = I, the

k × k identity matrix, it follows that

H0 = L+ α0 I

= X




λχ1 + α0

λχ2 + α0

. . .

λχk−1
+ α0

λχk + α0




X†,
(3.20)

from which the formula (3.17) follows immediately, using the fact that G = H−1
0 .

3.4.2 Cayley graphs of finite groups

The results of the previous section can be extended to non-abelian groups in a

natural way. As before, we use the fact that the operator H0 can be written as a

convolution operator on `2(G) to find a spectral decomposition of its Fourier trans-

form. Applying the inverse Fourier transform yields a complete set of eigenvectors

and eigenvalues of H0 from which it is straightforward to obtain an expression for

the background Green’s function G0 of the corresponding Cayley graph.

Before presenting the main results we first introduce some basic definitions and

results associated with Fourier analysis on finite non-abelian groups (for a more

complete description see [75], for example). As in [70], let ρ be a homomorphism from

the group G to the automorphism group of V, a k-dimensional vector space over C.

Such a map ρ is called a k-dimensional representation ofG and is said to be irreducible
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if the only subspaces of V which are invariant under ρ(g) for all g ∈ G are 0 and V.

We say that two representations ρ : G→ GL(V ) and τ : G→ GL(W ) are equivalent

[70] if there exists an isomorphism f : V → W such that τ(g) = f ◦ ρ(g) ◦ f−1.

Given a representation ρ : G → GL(V ) of G, let dρ = dim(V ) denote its degree.

If f ∈ `1(G) then its Fourier transform is the map F [f ] : ρ→ Cdρ × Cdρ defined by

[75]

(3.21) F [f ](ρ) =
∑

g∈G
f (g)ρ(g).

Observe that the Fourier transform of a function f at a representation ρ will, in

general, be matrix-valued and is called the Fourier coefficient matrix of f at ρ.

If two representations ρ1 and ρ2 are equivalent then it is straightfoward to show

that the corresponding Fourier coefficient matrices are similar and hence the Fourier

transform of f is completely determined by its value on a maximal set of inequivalent

irreducible representations, called the dual and denoted by Ĝ.Note that ifG is abelian

then its irreducible representations must be of degree one and this definition of Ĝ is

equiavalent to the one given in (3.14).

Given a function h : ρ ∈ Ĝ→ Cdρ×Cdρ we can define its inverse Fourier transform

by the following expression [75]

(3.22) ȟ = F−1[h](g) =
1

|G|
∑

ρ∈Ĝ

dρTr
(
ρ(g−1)h(ρ)

)
.

The proof that F−1F is the identity operator on `2(G) and is independent of the

choice of the elements in Ĝ, provided they form a maximal set of irreducible inequiv-

alent representations can be found in [75].
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From the definitions given above it is straightforward to prove the following result

[75] which will be useful in decomposing the operator H0.

Proposition III.6. Consider the convolution operator ∗ : `1(G) × `1(G) → `1(G)

defined by

(3.23) f ∗ h(g) =
∑

r∈G
f(r−1)h(rg).

If f̂ = F [f ] and ĥ = F(h) then

(3.24) F [f ∗ h](ρ) = f̂(ρ)ĥ(ρ).

We can now employ the theory developed above to analyze the spectrum of the

Cayley graph X(G,S) with vertices once again indexed by the elements of G and

edge generating set S. We begin by observing that the adjacency operator A for

X(G,S) can be written as

(3.25) A[f ](g) = χS ∗ f(g), ∀g ∈ G

where χS is the characteristic function of S. It follows immediately that if e ∈ G is

the identity element then

(3.26) H0[f ](g) = ((|S|+ α0)χe − χS) ∗ f(g)

and thus from Proposition III.6 that

(3.27) Ĥ0[f̂ ](ρ) = (|S|+ α0) f̂(ρ)−
∑

g∈S
ρ(g)f̂(ρ).
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The problem then becomes to diagonalize the operator Ĥ0 in Fourier space by find-

ing suitable eigenfunctions of (3.27). Using the properties of the Fourier transform

outlined above we can then find the corresponding eigenfunctions of H0 in `2(G).

For ease of exposition, let M(ρ) =
∑

g∈S ρ(g) in which case we have the following

useful lemma.

Lemma III.7. If M(ρ) =
∑

g∈S ρ(g) where ρ is a representation of a finite group,

G, then M(ρ) is diagonalizable.

Proof. We begin by noting that since G is finite, ρ is equivalent to a representation

ρ′ such that ρ′(g) is unitary for all g ∈ G. In particular, there exists a dρ× dρ matrix

B such that

(3.28) M(ρ) = BM(ρ′)B−1.

Since ρ′(g) is unitary observe that ρ′(g−1) = ρ′(g)−1 = ρ′(g)∗, where ∗ once again

denotes the adjoint of a matrix. Furthermore, we note that since S is symmetric, if

g ∈ S then g−1 ∈ S so that

(3.29) M(ρ′) =
1

2

∑

g∈S

[
ρ′(g) + ρ′(g−1)

]
.
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It follows immediately that

M(ρ′)∗ =

[∑

g∈S
ρ′(g)

]∗

=
1

2

∑

g∈S

[
ρ′(g) + ρ′(g−1)

]∗

=
1

2

∑

g∈S
[ρ′(g) + ρ′(g)∗]

∗

= M(ρ′),

(3.30)

and so M(ρ′) is Hermitian. Since M(ρ) is similar to M(ρ′) it follows that it too is

diagonalizable.

Fixing a maximal set of inequivalent irreducible representations Ĝ = {ρ1, . . . , ρL},

let vij be the jth eigenvector of M(ρi) with eigenvalue νij. Furthermore, let H i
jk be

the dρi × dρi zero matrix with the kth column replaced by vij. We then define the

function f ijk : ρ ∈ Ĝ→ Cdρ × Cdρ by

(3.31) f ijk(ρ) = δρi(ρ)H i
jk

where δρi(ρ) is 1 if ρ = ρi and zero otherwise. We remark that the function f has

only been defined on the set of representations Ĝ though it has a natural, and unique,

extension, f̃ , to all representations of G by requiring the following two conditions

hold:

i) if ρ and ρ′ are equivalent representations such that ρ = B ρ′(g)B−1 for all g ∈ G

then f̃ ijk(ρ) = B−1f ijk(ρ
′)B, and

ii) if ρ = ρ1 ⊕ ρ2 then f̃ ijk(ρ) = f ijk(ρ1)⊕ f ijk(ρ2).
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The following proposition is an immediate consequence of the previous definitions.

Proposition III.8. The function f ijk(ρ) defined in (3.31) is an eigenfunction of the

operator Ĥ0 with corresponding eigenvalue

(3.32) λijk = |S|+ α0 − νij.

for all i = 1, . . . , L and 1 ≤ j, k ≤ dρi .

Notice that Proposition III.8 tells us that given the irreducible representations

of G we can reduce the problem of finding the eigenfunctions and eigenvalues of

the operator Ĥ0 to that of finding the eigenvectors and eigenvalues of the matrices

{M(ρi)}Li=1. To find the corresponding eigenfunctions of the operator H0 we observe

that

(3.33) H0[f ](g) = F−1 [H0F [f ]] (g)

from which it follows that H0 has eigenfunctions uijk = F−1f ijk with eigenvalues λijk.

Proceeding in this way will generate
∑

ρ∈Ĝ d
2
ρ distinct eigenfunctions of H0. However,

we know that [70]

(3.34) n = |G| =
∑

ρ∈Ĝ

d2
ρ,

and so the above procedure will produce a complete set of eigenfunctions for the

operator H0. Since H0 is Hermitian we can use Gram-Schmidt orthogonalization to

produce a complete orthonormal set of eigenvectors φijk, with eigenvalues once again
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given by λijk, from which it follows that

(3.35) G0 =
L∑

i=1

∑

1≤j,k≤dρi

1

λijk
φijkφ

i
jk

∗
.

As an illustration of this procedure we now consider the background Green’s

function for the permutohedron of order 4, shown in Figure 3.1, though the following

analysis generalizes to permutohedra of arbitrary order.

Figure 3.1: The permutahedron of order 4.

We begin by noting that the permutohedron of order n is isomorphic to the Cayley

graph X(Sn, S), where Sn is the symmetric group on n letters and S is the symmet-

ric set of generators consisting of all transpositions which interchange neighbouring

elements [4]. For each irreducible representation ρ of Sn we can construct the matrix

M(ρ), given by

(3.36) M(ρ) =
∑

g∈S
ρ(g).
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Next, for each non-equivalent irreducible representation ρ, we diagonalize the matrix

M(ρ) and form the eigenvectors of Ĥ0 using (3.31). Taking the inverse Fourier

transform of each of these eigenvectors yields eigenvectors of the original operator

H0, with corresponding eigenvalues (3.32). After normalizing the eigenvectors we

construct the background Green’s function using (3.35). The matrix given by this

procedure, plotted in Figure 3.2, agrees to within machine precision with the inverse

of H0 calculated numerically.

Figure 3.2: The background Green’s function for the permutohedron of order 4, with α0 = 0.1.
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3.5 Numerical experiments

In this section we demonstrate the use of the Born series for two illustrative exam-

ples to approximate Green’s functions when the absorption is a small perturbation

of a constant background value α0, comparing the convergence we observe with the

bounds obtained in Section 3.2.

3.5.1 Inhomogeneous absorption on a path

Using the background Green’s function for the path given in Table 3.1, we can

solve the diffusion equation (2.19) on a path provided the absorption coefficients

η(x) are sufficiently small. Let uN = BN f̃ where f̃ is the source vector and BN is

the truncated Born series matrix operator. Figure 3.4 gives the numerical results

obtained when using the particular η given in Figure 3.3 with a unit source located

at the left boundary vertex and t = 1/2. As predicted the error decays exponentially

as N → ∞ if ηmax is less than a cut-off value, which is approximately 1.15. The

comparison between the empirically determined cut-off for ηmax and the upper bounds

given by Section 3.2.2 is summarized in Table 3.2.

Bound Cut-off ηmax

Numerical Experiment 1.15
Theorem III.1 0.8333
Proposition III.2 1.14655

Table 3.2: Comparison of theoretical bounds and experimental results for the maximum possible
value of ηmax for which the Neumann series converges.
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Figure 3.3: The absorption vector η used for the example of constructing a Green’s function for the
heterogeneous diffusion equation (2.6) via Born series. The support of η is chosen to be a random
subset of the interior vertices of size (2n+ 2)/4.

3.5.2 Inhomogeneous absorption on a complete graph with boundary

As a second example, using the background Green’s function for the complete

graph obtained in Appendix A, and listed in Table 3.1, we can once again solve the

time-independent diffusion problem (2.19) for sufficiently small perturbations. In

particular, choosing η to be that given in Figure 3.5, the associated errors for various

values of ηmax are given in Figure 3.6.
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Figure 3.4: Plots of the `∞ error of the truncated solution uN . The green and red curves correspond
to the bound on ηmax from Theorem III.1 and Proposition III.2, respectively. The other blue lines
correspond to ηmax spaced 0.026 apart.
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Figure 3.5: A typical absorption vector η used for the example of constructing a Green’s function
for the spatially-varying time-independent diffusion equation (2.6) via Born series. The support of
η is once again chosen to be a random sample of the interior vertices of size d/4.
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Figure 3.6: Plots of the `∞ error of the truncated solution uN . The green and red curves correspond
to the bound on ηmax from Theorem III.1 and Proposition III.2, respectively.
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3.6 Point Absorbers

In scattering theory a classic problem is to consider a medium which is entirely

homogeneous except for a few small inhomogeneities referred to as point absorbers

[41]. For convenience we typically assume that the inhomogenieties are sufficiently far

apart relative to their diameters, so that each can be thought of as being supported

on a single point.

3.6.1 A single point absorber

As above let Γ = (V ′, E) be a graph, let V ⊂ V ′ and let δV be defined as in (2.1).

If a single point absorber is present then η : (V ∪ δV )→ R is of the form

(3.37) η(x) = κ δy,

where y ∈ V is the location of the point absorber and κ is a positive constant. For

potentials of this form, we have the following theorem.

Theorem III.9. Let G0 be the background Green’s function for the diffusion equation

(2.6). If the potential, η, is due to a single point absorber located at the vertex labelled

by y, then the Green’s function, G, for (2.19) satisfies

(3.38) G0 −G =
α0κ

1 + α0κG0(y, y)
G0(·, y)G0(·, y)∗.

Proof. Let G denote the Green’s function for the diffusion equation (2.19). By defi-

nition, we see that

(3.39) G = H−1 = [H0 + α0κeye
T
y ]−1,
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and hence that H is a rank one perturbation of the operator H0. The Sherman-

Morrison formula, see [19] for example, then yields

(3.40) (G0 −G)(i, j) =
α0G

∗
0(j, y)G0(i, y)

1 + α0κG0(y, y)
,

which completes the proof.

For example, consider the infinite path whose background Green’s function can

be obtained by taking the limit as n goes to infinity of the Green’s function for the

finite path given in Table 3.1. If the point absorber is located at the vertex k then

equation (3.38) yields

(3.41) (G0 −G)(i, j) =
α0κ

1 + α0κ
r−r−1

e− log(r) (|i−k|+|j−k|).

Note that unlike the continuous case [41], no renormalization is required to obtain

equation (3.41). This is an immediate consequence of the fact that in the discrete

setting the operator G0 is bounded for all i and j, whereas for the continuous prob-

lem G0 is a singular integral operator. Physically, renormalization corresponds to

giving each point absorber a non-zero size which we assume is small relative to the

wavelength of the incident field. For the infinite path, since the system is discrete,

the point absorbers automatically have a non-zero width and so no additional length

scales need to be introduced.

As a second example, we consider the complete graph with boundary. For conve-

nience we assume that the absorber is located in the interior of the graph and that

the source and detector are located on the boundary of V. Using the Green’s function
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given in equation (3.72) with the formula (3.38) we obtain

(3.42) (G0 −G)(i, j) =
α0κ

1 + α0κσ
(σ−1)(σ−1+d)

γ2σ2

(σ − 1)2(σ − 1 + d)2
,

where i, j ∈ δV, γ = 1/(1 + t) and σ = 2 + α0 − γ.

3.6.2 Multiple point absorbers

We now consider the case where there are m identical point scatterers.

Theorem III.10. Let G0 be the background Green’s function for the diffusion equa-

tion (2.6). Further suppose that the potential, η, consists of m identical point ab-

sorbers of strength κ, located at the vertices Λ = {xk1 , . . . , xkm} ⊂ V. Let IΛ be the

(|V |+ |δV |)×m submatrix of the identity obtained by taking the columns of I indexed

by Λ. The Green’s function, G, for (2.19) satisfies

(3.43) G0 −G = α0κG0IΛ[I + α0κI
T
ΛG0IΛ]−1ITΛG0.

Proof. We begin by observing that by definition, G satisfies

(3.44) H0G = I − α0DηG.

Using our definition of IΛ, we can rewrite this as

(3.45) H0G = I − α0κIΛI
T
ΛG.

Similarly, we observe that

(3.46) G = G0 − α0κGIΛI
T
ΛG0,
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from which it follows that

(3.47) H0G = I − α0κIΛI
T
Λ [G0 − α0κGIΛI

T
ΛG0],

where we have used the fact that

(3.48) H0G0 = I.

Thus

(3.49) (G0 −G) = α0κ
[
G0(IΛI

T
Λ )G0 − α0κG0IΛ(ITΛGIΛ)ITΛG0

]
,

and hence

(3.50) G0 −G = α0κ(G0IΛ)
[
ITΛ IΛ − α0κ(ITΛGIΛ)

]
(ITΛG0).

To find ITΛGIΛ we left muliply (3.46) by ITΛ and right multiply by IΛ to obtain

(3.51) G′ = G′0 − α0κG
′G′0,

where G′0 = ITΛG0IΛ and G′ = ITΛGIΛ. It follows that

(3.52) G′ = G′0[ITΛ IΛ + α0κG
′
0]−1.

Note that the inverse of the matrix in (3.52) exists since the smallest eigenvalue of

G′0 must be greater than the smallest eigenvalue of G0, which is positive definite.

Since ITΛ IΛ is the m ×m identity matrix it follows that ITΛ IΛ + α0κG
′
0 has positive

eigenvalues and is therefore invertible.
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Finally, observe that

(3.53) ITΛ IΛ − α0κG
′
0[ITΛ IΛ + α0κG

′
0]−1 = [ITΛ IΛ + α0κG

′
0]−1,

from which it follows that

(3.54) G0 −G = α0κ(G0IΛ)
[
ITΛ IΛ + α0κI

T
ΛG0IΛ

]−1
(ITΛG0),

which completes the proof. Alternatively we could iterate the Sherman-Morrison

formula, or follow the approach of [19].

As an example, we once again consider the infinite path and suppose there are

two point absorbers located at the vertices corresponding to k1 and k2. Here

(3.55) G′0 =
1

2 sinh log r




1 e− log(r)|k2−k1|

e− log(r)|k2−k1| 1


 .

If fi,j = e− log(r)|i−j|/2 sinh log r and s = sinh(log(r)) a straightforward calculation

yields

e∗j(G0 −G)ei =
1

2

(
fj,k1 + fj,k2 fj,k1 − fj,k2

)



α0κ
1+α0κ(s−1+fk1,k2 )

0

0 α0κ
1+α0κ(s−1−fk1,k2 )




×




fi,k1 + fi,k2

fi,k1 − fi,k2


 .

(3.56)

Observe that in the limit as |k1 − k2| → ∞, fk1,k2 = o(1) and hence equation (3.56)
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becomes

e∗j(G0 −G)ei ≈
α0κ

2(1 + α0κs−1)

(
fj,k1 + fj,k2 fj,k1 − fj,k2

)



fi,k1 + fi,k2

fi,k1 − fi,k2




=
α0κ

2(1 + α0κs−1)
[fi,k1fj,k1 + fi,k2fj,k2 ]

=G1(i, j; k1) +G1(i, j; k2)

(3.57)

where G1(i, j;k ) is the Green’s function for one point absorber located at the point

k. Thus as the separation of the two point absorbers increases, the Green’s func-

tion tends toward the sum of the Green’s functions for two non-interacting point

absorbers. Sample plots are shown in Figure 3.7 for the infinite path with two point

absorbers equidistant from a point source located at the origin. Here u0 represents

the solution to the homogeneous problem and u denotes the solution to the full

time-independent diffusion equation.
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Figure 3.7: Plots of u0−u for the infinite path with two identical point scatterers equidistant from
a point source located at the origin with α0 = 0.001 and κ = 100.
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As a second example we consider the scattering from two point absorbers on

the infinite two-dimensional lattice. An analysis of the scattering properties of this

system requires an expression for the Green’s function of the diffusion equation (2.6)

on Z×Z, an integral formula for which was found in Proposition III.13 of Appendix

A. For simplicity we specialize to the case in which the are two point absorbers are

positioned on the y-axis and the source and detector are located on the x-axis as in

Figure 3.8.

DIFFUSE SCATTERING ON GRAPHS 45

As a second example we consider the scattering from two point absorbers on the infinite
two-dimensional lattice. An analysis of the scattering properties of this system requires an
expression for the Green’s function of the di↵usion equation (2.7) on Z ⇥ Z, an integral
formula for which was found in Proposition 4.10. For simplicity we specialize to the case in
which the are two point absorbers are positioned on the y-axis and the source and detector
are located on the x-axis as in Figure 18.

Figure 18: A diagrammatic representation of the geometry of the point absorbers (blue
circles), source (green diamond) and detector (red square) used to study the scattering
properties of the two point absorber system on the infinite square lattice.

If we assume the source is located at (s, 0) the detector is at (j, 0), and the point
absorbers are located at (0, k1), and (0, k2), then an analogous calculation to the one
performed for the one-dimensional case yields

e⇤j (G0 � B)es =
1

2

�
fj,k1 + fj,k2 fj,k1 � fj,k2

�
 

↵0
1+↵0�+

0

0 ↵0
1+↵0��

!

⇥
✓

fs,k1 + fs,k2

fs,k1 � fs,k2

◆
.

(178)

Figure 3.8: A diagrammatic representation of the geometry of the point absorbers (blue circles),
source (green diamond) and detector (red square) used to study the scattering properties of the
two point absorber system on the infinite square lattice.

If we assume the source is located at (s, 0) the detector is at (j, 0), and the point

absorbers are located at (0, k1), and (0, k2), then an analogous calculation to the one
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performed for the one-dimensional case yields

e∗j(G0 −G)es =
1

2

(
fj,k1 + fj,k2 fj,k1 − fj,k2

)



α0κ
1+α0κλ+

0

0 α0κ
1+α0κλ−




×




fs,k1 + fs,k2

fs,k1 − fs,k2


 .

(3.58)

where

λ± = g(0, 0)± g(0, k2 − k1)

=
1

πa
K

(
1

a2

)
± 1

2π

∫ π

0

cos[(k2 − k1) v] (cos v)|k2−k1|

(a+
√
a2 − cos2 v)|k2−k1|

√
a2 − cos2 v

dv

(3.59)

and fs,k = g(|s|, |k|). Results for −s = j = 1 and k1 = −k2 are shown in Figure

3.9 for various values of the point absorber separation |k2 − k1| with α0 = 10−3 and

κ = 103. Note that due to the nature of our expression for the isotropic Green’s

function we cannot evaluate equation (3.58) exactly and must make use of numerical

integration both to evaluate g(|s|, |k|) and to find values for the integrals in (3.59).

3.7 Computation of background Green’s functions

3.7.1 Analysis of a Möbius ladder

Another family of vertex-transitive graphs of particular interest in material science

[71, 62, 74] and computer science [44] are the Möbius ladders on 2n+2 vertices. Using

a similar approach as above we can compute the background Green’s function for

the diffusion equation on this family of graphs. For convenience we assume n is odd
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Figure 3.9: Plots of u0−u for the infinite plane with two identical point scatterers equidistant from
a point source located at (−1, 0) and detector located at (1, 0) with α0 = 10−3 and κ = 103.

though a similar result can be obtained in the even case by a slight modification to

the proof of the following theorem.

Theorem III.11. Consider the Möbius ladder with 2n+2 vertices {0, 1, . . . , 2n+1},

n odd, as shown in Figure 3.10. The associated Green’s function for the diffusion

equation with uniform absorption (2.6) is

(3.60) G(i, j) =





g1(|i− j|min) + g2(|i− j|min), |i− j| ≤ n+1
2

+ 1

g1(|i− j|min)− g2(|i− j|min), |i− j| > n+1
2
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for all 0 ≤ i, j ≤ 2n+1, where |i−j|min = min{|i−j|, 2n+2−|i−j|, | |i− j| − (n+ 1)|},

(3.61)

gk(s) =
(akr

(n+1)/2
k − a−1

k r
−(n+1)/2
k )(akr

(n+1)/2−s
k − a−1

k r
−[(n+1)/2−s]
k )

(rk − r−1
k )(a2

kr
n+1
k − a−2

k r
−(n+1)
k )

, k = 1, 2,

rk satisfies rk + 1/rk = 2k + α0,

(3.62) a1 =

[
1 +

r2
1 − 1

r1(1 + α0

2
− r1)

] 1
2

,

and a2 = 1.

4.3 Analysis of a Möbius ladder

Another family of vertex-transitive graphs of particular interest in material science [25, 21,
27] and computer science [15] are the Möbius ladders on 2n + 2 vertices. Using a similar
approach as above we can compute the background Green’s function for the di↵usion
equation on this family of graphs. For convenience we assume n is odd though a similar
result can be obtained in the even case by a slight modification to the proof of the following
proposition.

Let ⌃ be the Möbius ladder with 2n + 2 vertices {0, 1, . . . , 2n + 1}, n odd, as shown
in Figure 4.7. The associated Green’s function for the di↵usion equation with uniform
absorption (2.7) is

G(i, j) =

⇢
g1(|i � j|min) + g2(|i � j|min), |i � j|  n+1

2 + 1
g1(|i � j|min) � g2(|i � j|min), |i � j| > n+1

2

(84)

for all 0  i, j  2n + 1, where |i� j|min = min{|i� j|, 2n + 2� |i� j|, | |i � j| � (n + 1)|},

gk(s) =
(akr

(n+1)/2
k � a�1

k r
�(n+1)/2
k )(akr

(n+1)/2�s
k � a�1

k r
�[(n+1)/2�s]
k )

(rk � r�1
k )(a2

kr
n+1
k � a�2

k r
�(n+1)
k )

, k = 1, 2, (85)

rk satisfies rk + 1/rk = 2k + ↵0,

a1 =


1 +

r2
1 � 1

r1(1 + ↵0
2 � r1)

� 1
2

, (86)

and a2 = 1.

1

0

2n + 12n

. . .

n + 2

n + 1

n . . .

2

Figure 8: The Möbius ladder with 2n + 2 vertices.

23

Figure 3.10: The Möbius ladder with 2n+ 2 vertices.

Proof. The result is proved in a manner similar to the method of images used in

PDEs. We decompose the Green’s function into two functions one of which is sym-

metric and the other antisymmetric with respect to reflection through the origin.

Unlike in the case of method of images, however, the ‘mirror charges’ are located

within the domain of interest and we rely on cancellations to recover the desired
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solution. In considering the symmetries of the problem, it is clear that G(i, j) must

depend only on the number of vertices of the loop lying between the two vertices xi

and xj, since the graph Σ is invariant under cyclic permutations of its vertices. Thus,

without loss of generality, we can fix j = 0. Letting H0 be the operator associated

with the homogeneous time-independent diffusion equation (2.6) we now consider

two related problems:

(A) find the vector g2 ∈ R2n+2 such that H0 g2 = 1
2
(e0 − en+1), where ek is the kth

canonical basis vector

(B) find the vector g1 ∈ R2n+2 such that H0 g1 = 1
2
(e0 + en+1).

In considering subproblem (A), we see by inspection that if g2 is a solution then

it must satisfy

(3.63) g2(i) = g2(2n+ 2− i) = −g2(n+ 1− i) = −g2(n+ 1 + i),

where once again for ease of notation we take all indices modulo 2n + 2. It follows

immediately that

(3.64) g2((n+ 1)/2) = g2(−(n+ 1)/2) = 0.

Moreover, applying H0 we see that

1

2
δ0,i = (3 + α0)g2(i)− g2(i+ n+ 1)− g2(i+ 1)− g2(i− 1),

= (4 + α0)g2(i)− g2(i+ 1)− g2(i− 1),

(3.65)

for −(n+1)/2 < i < (n+1)/2. Hence 2g2(i), −(n+1)/2 < i < (n+1)/2 satisfies the

same equation as the Green’s function for the centered path with source at j = 0,
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α0 replaced by 2 + α0 and with Dirichlet boundary conditions at i = ±(n+ 1)/2. A

slight modification to the first example of Table 3.1 then yields

(3.66) g2(i) =
(r(n+1)/2 − r−(n+1)/2)(r(n+1)/2−i − r−(n+1)/2+i)

2(r − r−1)(rn+1 − r−(n+1))

where r + r−1 = 4 + α0.

To solve subproblem (B), we begin by noting that

(3.67) g1(i) = g1(2n+ 2− i) = g1(n+ 1− i) = g1(n+ 1 + i),

for all i = 0, . . . , 2n+ 1 and where all indices are taken modulo 2n+2. It follows that

it is sufficient to find g1(i) for i = −(n + 1)/2, . . . ,−2,−1, 0, 1, 2, . . . , (n + 1)/2. By

symmetry we know that g1((n+ 1)/2− 1) = g1((n+ 1)/2 + 1) and g1(−(n+ 1)/2) =

g1((n+ 1)/2) so that

0 = (3 + α0)g1((n+ 1)/2)− g1(−(n+ 1)/2)− g1((n+ 1)/2− 1)− g1((n+ 1)/2 + 1)

= (2 + α0)g1((n+ 1)/2)− 2g1((n+ 1)/2− 1).

(3.68)

Similar reasoning applies to g1(−(n+ 1)/2) and hence

(3.69)

(1+
α0

2
)g1(

n+ 1

2
)−g1(

n+ 1

2
−1) = 0, and (1+

α0

2
)g1(−n+ 1

2
)−g1(−n+ 1

2
+1) = 0.

For all i, −(n+ 1)/2 < i < (n+ 1)/2 we find from the above symmetries that

(3.70) (2 + α0)g1(i)− g1(i− 1)− g1(i+ 1) =
1

2
δi,0.
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It follows immediately that the equations satisfied by 2g1(i), i = −(n+1)/2, . . . , (n+

1)/2 are identical to those defining the Green’s function for the centered path with

source at j = 0 and with Robin boundary conditions t = α0/2. Once again using a

slight modification of the first line of Table 3.1, we find that if r + 1/r = 2 + α0,

t = α0/2 and a =
[
1 + r2−1

r(1+t−r)

] 1
2

then

(3.71) g1(i) =
(ar(n+1)/2 − a−1r−(n+1)/2)(ar(n+1)/2−i − a−1r−(n+1)/2+i)

2(r − r−1)(a2rn+1 − a−2r−(n+1))
.

The remaining entries can then be found immediately by reflection.
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3.7.2 Analysis of the complete graph on d vertices

We can perform a similar computation for the complete graph on d vertices, an

example of which is shown in Figure 3.11 for d = 10.

Proposition III.12. Let R be the complete graph on d vertices {0, 1, . . . , d − 1}

with d boundary vertices {0′, . . . , (d − 1)′}. The associated Green’s function for the

diffusion equation (2.6) with Robin boundary conditions is

(3.72) G(x, y) =





σ
(σ−1)(σ−1+d)

if x = y ∈ V,
1

(σ−1)(σ−1+d)
if x 6= y, x, y ∈ V,

γ2σ
(σ−1)(σ−1+d)

+ γ if x = y ∈ δV,

where γ = 1/(1 + t) and σ = 2 + α0 − γ. The remaining entries can be obtained via

the Robin boundary conditions and the identity

(3.73) G(x, y) = G(y, x)

which holds for all x, y ∈ V ∪ δV.

Proof. We first consider the case where the source is located at an interior vertex. By

symmetry we may assume without loss of generality that y = 0. Note that upon fixing

y = 0 the graph is invariant under a permutation of all remaining vertices, provided

it preserves the edge between the vertex in R and the corresponding boundary point.

If x 6= 0 we observe that

(3.74) [(d+ α0)G(x, 0)− (d− 2)G(x, 0)−G(0, 0)−G(x′, 0)] = 0.
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4.4 Analysis of the complete graph on d vertices

We can perform a similar computation with the complete graph on d vertices, an example
of which is shown in Figure 4.10 for d = 10.

Let R be the complete graph on d vertices {0, 1, . . . , d � 1} with d boundary vertices
{00, . . . , (d � 1)0}. The associated Green’s function for the di↵usion equation (2.7) with
Robin boundary conditions is

G(x, y) =

8
><
>:

�
(��1)(��1+d) if x = y 2 V,

1
(��1)(��1+d) if x 6= y, x, y 2 V,

�2�
(��1)(��1+d) + � if x = y, x0 2 �V,

(96)

where � = 1/(1 + t) and � = 2 + ↵0 � �. The remaining entries can be obtained via the
Robin boundary conditions and the identity

G(x, y) = G(y, x) (97)

which holds for all x, y 2 V [ �V.
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Figure 11: The complete graph on 10 vertices with 10 boundary vertices.

We first consider the case where the source is located at an interior vertex. By symmetry
we may assume without loss of generality that y = 0. Note that upon fixing y = 0 the
graph is invariant under a permutation of all remaining vertices, provided it preserves the
edge between the vertex in R and the corresponding boundary point.

27

Figure 3.11: The complete graph on 10 vertices with 10 boundary vertices.

Using Robin boundary conditions we see that G(x′, 0) = G(x, 0)/(1 + t) and hence

(3.75) G(0, 0) = [2 + α0 − γ] G(x, 0).

Let g = G(x, 0) and σ = [2 + α0 − γ] in which case we obtain

1 = [(d+ α0)G(0, 0)− (d− 1)g − γG(0, 0)]

= [(d+ α0)σ g − (d− 1)g − γσg]

= g(σ − 1)(σ + d− 1)

(3.76)

and thus

(3.77) g =
1

(σ − 1)(σ + d− 1)
.

The remainder of the result follows immediately from noting that G(0, 0) = σg and

by using the symmetries of the complete graph described above.
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Now suppose the source is located on the boundary. Again, without loss of gen-

erality, we may assume that the source is located at the vertex 0′. If x 6= 0 then

(3.78) 0 = [(d+ α0)G(x, 0′)− (d− 2)G(x, 0′)−G(0, 0′)−G(x′, 0)].

If G(x, 0′) = g then G(0, 0′) = (2 + α0 − γ)g = σg. If x = 0 then

(3.79) 0 = [(d+ α0)σg − (d− 1)g −G(0′, 0′)].

The Robin boundary condition tG(0′, 0′) + [G(0′, 0′)−G(0, 0′)] = 1 implies that

(3.80) g = γ
1

(d+ α0)σ − (d− 1)− σγ =
γ

(σ − 1)(σ + d− 1)
.
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3.7.3 Analysis of a two-dimensional lattice

We conclude our catalogue of examples with a discussion of the Green’s function

for the two-dimensional lattice Σ = Z × Z. For convenience, we index the vertices

with ordered tuples V = {(m,n) |m,n ∈ Z} and hence if x = (m1, n1) and y =

(m2, n2) are two vertices then x ∼ y if and only if |m2 −m1|+ |n2 − n1| = 1. In the

following proposition we obtain an integral representation of the Green’s function

for the isotropic time-independent diffusion equation on the infinite two-dimensional

lattice by means of a discrete Fourier transform.

Proposition III.13. Let Γ be the graph Z×Z with vertices labelled by {(m,n) |m,n ∈

Z}. The Green’s function for the corresponding homogeneous time-independent dif-

fusion equation (2.6) is

(3.81) G((m1, n1), (m2, n2)) =
1

2π

∫ π

0

cos (d− v) (cos(v))d+

(a+
√
a2 − cos(v))d+

√
a2 − cos(v)

dv

where a = 1+α0/4, and d± = |m2−m1|±|n2−n1|. In particular, if (m1, n1) = (m2, n2)

then

(3.82) G((m,n), (m,n)) =
1

πa
K

(
1

a2

)

where K is the complete elliptic integral of the first kind defined by [1]

(3.83) K(m) =

∫ π
2

0

1√
1−m2 sin2 φ

dφ,

for m2 < 1.
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Proof. The approach for finding the Green’s function is similar to that used for the

Helmholtz equation [38, 61] and the Poisson equation [72] on lattices. We begin by

noting that the problem is invariant under translations and reflections, from which it

follows that G must only depend on the quantities m = |m2−m1| and n = |n2−n1|.

Hence

(3.84) G((m1, n1), (m2, n2)) = G((m,n), (0, 0)) = g(m,n)

for some function g(m,n) ∈ `2(Z2). Applying the operator H0 defined in (2.7), we

see that g(m,n) satisfies the difference equation

(3.85) (4+α0) g(m,n)−g(m−1, n)−g(m+1, n)−g(m,n−1)−g(m,n+1) = δm,0δn,0.

We next consider the discrete Fourier transform of (3.85). On Z × Z the Fourier

transform F : `1(Z× Z)→ L1((−π, π]2) of a function f is given by

(3.86) f̂(ξ, η) = F (f)(ξ, η) =
∑

n,m∈Z
e−iξm−iηnf(m,n).

Thus, upon taking the Fourier transform of equation (3.85), we obtain

(3.87)
[
(4 + α0)− eiξ − e−iξ − eiη − e−iη

]
ĝ(ξ, η) = 1,

where ξ, η ∈ (−π, π]. Using the identity

(3.88) eiξ + e−iξ + eiη + e−iη = (ei(ξ+η)/2 + e−i(ξ+η)/2)(ei(ξ−η)/2 + e−i(ξ−η)/2)

yields

(3.89) ĝ(ξ, η) =
1

4
[
1 + α0/4− cos

(
ξ+η

2

)
cos
(
ξ−η

2

)] .
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Upon application of the inverse Fourier transform we find

(3.90) g(m,n) =
1

(2π)2

∫ π

−π

∫ π

−π

eimξ+inη

4
[
1 + α0/4− cos

(
ξ+η

2

)
cos
(
ξ−η

2

)] dξ dη.

If we change variables, letting u = (ξ + η)/2 and v = (ξ − η)/2, we obtain

(3.91) g(m,n) =
1

2(2π)2

∫ π

−π
ei(m−n)v

∫ π

−π
ei(m+n)u 1

1 + α0

4
− cosu cos v

du dv.

If we let a = 1 + α0/4 and choose z = eiu we obtain

(3.92) g(m,n) =
1

2(2π)2i

∫ π

−π
ei(m−n)v

∮

C1

zm+n

az − cos v
2

(z2 + 1)
dz dv

where C1 is the unit circle oriented counterclockwise. Integration then yields

(3.93) g(m,n) =
1

4π

∫ π

−π
ei(m−n)v (cos v)m+n

(a+
√
a2 − cos2 v)m+n

√
a2 − cos2 v

dv.

Using the fact that the above expression is the Fourier transform of an even function

we can re-write it as a real integral, yielding

(3.94) g(m,n) =
1

2π

∫ π

0

cos[(m− n)v] (cos v)m+n

(a+
√
a2 − cos2 v)m+n

√
a2 − cos2 v

dv.

The expression for the Green’s function given in (3.81) follows by employing the

translation and reflection symmetries outlined above. To obtain the expression (3.82)

we observe that (m2, n2) = (m1, n1) corresponds to m = n = 0 and hence is given by

g(0, 0) =
1

2π

∫ π

0

1√
a2 − cos2 v

dv

=
1

2πa

∫ π
2

−π
2

1√
1− (1/a)2 cos2 φ

dφ

=
1

πa

∫ π
2

0

1√
1− (1/a)2 cos2 φ

dφ

=
1

πa
K

(
1

a2

)
.

(3.95)
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CHAPTER IV

Optical Tomography on Graphs

4.1 Introduction

Inverse problems arise in numerous settings within discrete mathematics, includ-

ing graph tomography [79, 48, 49, 45, 27] and resistor networks [32, 33, 34, 35, 50,

17, 16]. In such problems, one is typically interested in reconstructing a function

defined on edges of a fixed graph or, in some cases, the edges themselves. Here

we focus on recovering vertex properties of a graph from boundary measurements.

The problem we consider is the discrete analog of optical tomography. Optical to-

mography is a biomedical imaging modality that uses scattered light as a probe of

structural variations in the optical properties of tissue [6]. The inverse problem of

optical tomography consists of recovering the potential of a Schrödinger operator

from boundary measurements.

Let G = (V,E) be a finite locally connected loop-free graph with vertex boundary

62



63

δV . We once again consider the time-independent diffusion equation [64]

(Lu)(x) + α0[1 + η(x)]u(x) = f(x), x ∈ V,(4.1)

t u(x) + ∂u(x) = g(x), x ∈ δV,(4.2)

which, in the continuous setting, describes the transport of the energy density of

an optical field in an absorbing medium. Here we assume that the absorption of

the medium is nearly constant with background absorption α0 and inhomogeneities

represented by the vertex potential η. In place of the Laplace-Beltrami operator, we

introduce the combinatorial Laplacian L defined by

(4.3) (Lu)(x) =
∑

y∼x
[u(x)− u(y)] ,

where y ∼ x if the vertices x and y are adjacent. We make use of the graph analog

of Robin boundary conditions, where the normal derivative is defined by

(4.4) ∂u(x) =
∑

y∈V
y∼x

[u(x)− u(y)] ,

and t is an arbitrary nonnegative parameter, which interpolates between Dirichlet

and Neumann boundary conditions. If the vertex potential η is non-negative, then

there exists a unique solution to the diffusion equation (4.1) satisfying the boundary

condition.

In Chapter III we presented an algorithm for solving the forward problem of de-

termining u, given η. Our approach was a perturbative one, making use of known

Green’s functions for the time-independent diffusion equation (or Schrödinger equa-

tion) [5, 11, 12, 10, 19, 20, 21, 22, 72, 81], with η identically zero. The corresponding
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inverse problem, which we refer to as graph optical tomography, is to recover the

potential η from measurements of u on the boundary of the graph. More precisely,

let G = (V,E) be a connected subgraph of a finite graph Γ = (V , E) and let δV

denote those vertices in V adjacent to a vertex in V. In addition, let S,R denote

fixed subsets of δV . We will refer to elements of S and R as sources and receivers,

respectively. For a fixed potential η, source s ∈ S and receiver r ∈ R, let u(r, s; η)

be the solution to (4.1) with vertex potential η and boundary condition (4.2), where

(4.5) g(x) =





1 x = s,

0 x 6= s.

We define the Robin-to-Dirichlet map Λη by

(4.6) Λη(s, r) = u(r, s; η).

The inverse problem is to recover η from the Robin-to-Dirichlet map Λη.

The remainder of this chapter is organized as follows. We begin by highlighting

differences between discrete and continuous diffuse optical tomography. In Section

4.2, we give an example of a family of graphs for which exact recovery is impossible.

In Section 4.3 we briefly review key results on the solvability of the forward problem

and introduce the Born series. We obtain necessary conditions for the convergence of

the inverse Born series depending on the measurement data and the graph. We also

describe related stability and error estimates. Next, in Section 4.4 we discuss the

numerical implementation of the inverse series and present the results of numerical
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simulations. Following this, in Section 4.5 we extend our results to the case where

measurements can be taken at multiple values of α0. Finally, in Section 4.6 we show

how for a certain class of graphs it is possible to give an explicit algebraic formula

for the potential in terms of the data.

4.2 Non-uniqueness of absorption recovery

Unlike in continuous media, in the discrete setting there are a number of conditions

which prohibit the unique reconstruction of the vertex potential η. As is true for

resistor networks [35], it is easy to construct large families of graphs for which any η is

unrecoverable. Here we proceed by considering graphs with special path subgraphs,

though the construction can be generalized easily to a large class of graphs, ie. those

containing an unrecoverable subgraph.

Proposition IV.1. Let G = (V,E) be a graph containing a path P = (V ′, E ′) of

length four, connected at each end to a single vertex in the remainder of the graph

V \V ′, as illustrated in Figure 4.1. Then, for each vertex potential η : V → R there

exists an infinite family of potentials which yield the same Robin to Dirichlet map.

Explicitly, η̃s is given by

η̃s(x) =η(x) 1V \V ′(x) +

(
− 2

α0

− 1

)
1V ′(x) +

σ(β + s+ n3)

α0(βγ − 1)
1x1(x)+

σ + βγ − 1

α0σ(s+ n3)
1x2(x) +

s+ n3

α0

1x3(x)+

σ + σγ(s+ n3) + βγ − 1

α0(βγ − 1)(s+ n3)
1x4(x),

(4.7)
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for s > −n3, where

ni = 2 + α0[1 + η(xi)], i = 1, · · · , 4,

σ = n1n2n3n4 − n1n2 − n1n4 − n2n4 + 1,

β = n1n2n3 − n1 − n3,

γ = n2n3n4 − n2 − n4.

(4.8)

x′1 x1 x2 x3 x4 x′4

Figure 4.1: A graph G = (V,E) with a path subgraph (V ′, E′) of length 4. The remainder of the
vertices V \V ′ and edges E\E′ are represented by the grey annulus.

Proof. Let η be a vertex potential defined on all of V. Since the solution to the forward

problem is unique, to each η we can associate a corresponding Robin-to-Dirichlet map

Λη : `2(δV )→ `2(δV ). Our goal is to construct explicitly an infinite family of vertex

potentials η̃s parametrized by s ∈ Ω ⊂ R, Ω open, such that Λη̃s = Λη. In particular,

we will show that this can be accomplished if we assume that supp(η − η̃s) ⊂ V ′.
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Let g be an arbitrary source function supported on δV, and u the resulting solution

of (4.1) on V, with vertex potential η. Note that only boundary sources are permitted

and hence f ≡ 0 in (4.1). Consider also ũ, the solution of (4.1) obtained by replacing

η with a new vertex potential η̃, with supp(η − η̃) ⊂ V ′, and g held fixed. We wish

to find an η̃ such that supp(η − η̃) ⊂ V ′ and supp(u − ũ) ⊂ V ′, for all sources g. If

V ′ = {x1, x2, x3, x4}, and δV ′ = {x′1, x′4}, where x1 and x4 are adjacent to x′1 and x′4,

respectively, then it is sufficient to require that u(x′1) = ũ(x′1) and u(x′4) = ũ(x′4).

We seek suitable (ũ, η̃) by first considering the subgraph V ′ ⊂ V with boundary

δV ′. For an arbitrary vertex potential η̃ on V ′, we find a function ψ solving (4.1) on

V ′ with η replaced by η̃ and subject to the boundary conditions (on δV ′ ⊂ V \ V ′),

(4.9) ψ(x′1) = u(x′1), and ψ(x′4) = u(x′4).

Initially, we assume no additional constraints on η̃, and add additional requirements

as necessary. After obtaining an expression for ψ as a function of η̃, we extend it

to a function, ũ, on all of V by setting ũ|V \V ′ = u. The resulting function ũ will

not necessarily be a solution to (4.1) with potential η̃, unless u(x1) = ũ(x1) and

u(x4) = ũ(x4) for all source functions g. This yields conditions on η̃ which can be

solved to obtain potentials with the same Robin-to -Dirichlet map as our original η.

Step 1: solving for ψ
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For ease of exposition, we begin by defining ni = 2 + α0[1 + η(xi)], and ñi =

2 + α0[1 + η̃(xi)]. We then construct the linear system

(4.10) Aψ =




0

0

0

0

ψ(x′4)

ψ(x′1)




where

(4.11) A =




ñ1 −1 0 0 0 −1

−1 ñ2 −1 0 0 0

0 −1 ñ3 −1 0 0

0 0 −1 ñ4 −1 0

0 0 0 0 1 0

0 0 0 0 0 1




.

Observe that A is the restriction of (4.1) to V ′ ⊂ V, with vertex potential η̃ and

Dirichlet boundary conditions ψ(x′1) = u(x′1) and ψ(x′4) = u(x′4). Upon solving (4.10)
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for ψ we obtain

(4.12)

ψ =
1

ñ1ñ2ñ3ñ4 − ñ1ñ2 − ñ1ñ4 − ñ2ñ4 + 1




(ñ2ñ3ñ4 − ñ2 − ñ4)u(x′1) + u(x′4)

(ñ3ñ4 − 1)u(x′1) + ñ1u(x′4)

ñ4u(x′1) + (ñ1ñ2 − 1)u(x′4)

u(x′1) + (ñ1ñ2ñ3 − ñ1 − ñ3)u(x′4)

(ñ1ñ2ñ3ñ4 − ñ1ñ2 − ñ1ñ4 − ñ2ñ4 + 1)u(x′4)

(ñ1ñ2ñ3ñ4 − ñ1ñ2 − ñ1ñ4 − ñ2ñ4 + 1)u(x′1)




.

Step 2: constructing ũ

We next extend ψ to a function, ũ, on V via the following formula:

(4.13) ũ = u1V \V ′ + ψ1V ′ ,

where 1C denotes the indicator function on C ⊂ V. Note that this function need not

be the solution to (4.1) with vertex potential η̃. In particular, we require that

1. ũ(x1) = u(x1) and

2. ũ(x4) = u(x4),

which together ensure that ũ will satisfy the necessary equations on V \V ′. Together

these conditions imply that

ψ(x′1) + (ñ1ñ2ñ3 − ñ1 − ñ3)ψ(x′4)

ñ1ñ2ñ3ñ4 − ñ1ñ2 − ñ1ñ4 − ñ2ñ4 + 1
=

ψ(x′1) + (n1n2n3 − n1 − n3)ψ(x′4)

n1n2n3n4 − n1n2 − n1n4 − n2n4 + 1
,

(ñ2ñ3ñ4 − ñ2 − ñ4)ψ(x′1) + ψ(x′4)

ñ1ñ2ñ3ñ4 − ñ1ñ2 − ñ1ñ4 − ñ2ñ4 + 1
=

(n2n3n4 − n2 − n4)ψ(x′1) + ψ(x′4)

n1n2n3n4 − n1n2 − n1n4 − n2n4 + 1
.

(4.14)
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Step 3: constructing η̃

To guarantee that no possible measurement can distinguish {ñi} from {ni}, and

hence distinguish {η̃i} from {ni}, we require the new vertex potential values, {ñi},

to be independent of ψ(x′1) and ψ(x′4). This can be achieved by insisting that the

coefficients of ψ(x′1) and ψ(x′4) on the left and right hand sides of (4.14) are equal.

Hence, we obtain

ñ1ñ2ñ3ñ4 − ñ1ñ2 − ñ1ñ4 − ñ2ñ4 + 1 =σ = n1n2n3n4 − n1n2 − n1n4 − n2n4 + 1,

ñ1ñ2ñ3 − ñ1 − ñ3 = β = n1n2n3 − n1 − n3,

ñ2ñ3ñ4 − ñ2 − ñ4 = γ = n2n3n4 − n2 − n4.

(4.15)

Note that the constants σ, β, and γ are completely determined by the values of

n1, · · · , n4 and hence by the original vertex potential η. We can now solve (4.15) for

ñ1, ñ2, and ñ4 in terms of ñ3, σ, β, and γ, which yields

ñ1 =
σ[β + ñ3]

βγ − 1
,

ñ2 =
σ + βγ − 1

σñ3

,

ñ4 =
σ + σγñ3 + βγ − 1

(βγ − 1)ñ3

.

(4.16)

Since ñ3 is arbitrary, we can choose ñ3 = s+ n3. Hence, we obtain an infinite family

of vertex potentials, η̃s, s ∈ (−n3,∞) ⊂ R, which have the same Robin-to-Dirichlet
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map as the original vertex potential η. Explicitly, η̃s is given by

η̃s(x) =η(x) 1V \V ′(x) +

(
− 2

α0

− 1

)
1V ′(x) +

σ(β + s+ n3)

α0(βγ − 1)
1x1(x)+

σ + βγ − 1

α0σ(s+ n3)
1x2(x) +

s+ n3

α0

1x3(x)+

σ + σγ(s+ n3) + βγ − 1

α0(βγ − 1)(s+ n3)
1x4(x),

(4.17)

for s > −n3, where

ni = 2 + α0[1 + η(xi)], i = 1, · · · , 4,

σ = n1n2n3n4 − n1n2 − n1n4 − n2n4 + 1,

β = n1n2n3 − n1 − n3,

γ = n2n3n4 − n2 − n4.

(4.18)

As an example of the above phenomenon, we consider the case where G = (V,E) is

an 8×8 lattice with edges deleted so that it contains a path of length four connected

to the rest of the graph solely at its two endpoints, as shown in Figure 4.2.

Letting each boundary vertex serve as both as a source and as a receiver we observe

that the problem is formally over-determined since we have 32 × 16 measurements

and 64 internal nodes, though Proposition IV.1 guarantees that we cannot uniquely

recover the potential. A plot of η̃s is shown in the left panel of Figure 4.3 for various

values of s, where once again we have taken our initial η to be identically zero. The

right plot of Figure 4.3 is the `1-norm of the relative difference between the Robin

to Dirichlet map for η and the Robin to Dirichlet map for η̃s.
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Figure 4.2: A graph G with edges deleted to create an interior path of length four, as required by
the conditions of Proposition IV.1. The blue circle, red square, green diamond, and orange star
mark the vertices x1, x2, x3, and x4, respectively.

4.3 Inverse Born series

4.3.1 Forward Born series

In this section we formulate the inverse Born series. We begin by reviewing some

important properties of the Born series introduced in Chapter III, based in part on

[43, 64].

We recall that the background Green’s function [43] for (4.1) is the matrix G0

whose i, jth entry is the solution to (4.1), with η ≡ 0, at the ith vertex for a unit

source at the jth vertex. Under suitable restrictions this matrix can be used to

construct the Robin-to-Dirichlet map Λη giving the solution of (4.1) on R ⊂ δV to

unit sources located in S ⊂ δV. To write a compact expression for Λη in terms of G0,
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Figure 4.3: Left: Values of η restricted to an unconnected path subgraph of a lattice (see Figure
4.2), which are indistinguishable from η ≡ 10, for α = 0.2. Right: `1 norm of the relative difference
between the Robin to Dirichlet map of η and the Robin to Dirichlet map of η̃s.

let Dη denote the matrix with entries given by

(Dη)i,j =





ηi if i = j,

0 else.

Additionally, for any two sets U,W ⊂ V ∪ δV, let GU ;W
0 denote the submatrix of

G0 formed by taking the rows indexed by U and the columns indexed by W. For η

sufficiently small we may write the Robin-to-Dirichlet map as a Neumann series

(4.19) Λη(s, r) = G0(r, s)−
∞∑

j=1

Kj(η, · · · , η) (r, s), r ∈ R, s ∈ S,

where Kj : `p(V n)→ `p(R× S) is defined by

(4.20) Kj(η1, · · · , ηj) (r, s) = (−α0)jGr;V
0 Dη1 G

V ;V
0 Dη2 · · ·GV ;V

0 DηjG
V ;s
0 .
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We refer to the series (4.19) as the forward Born series.

In order to establish the convergence and stability of (4.19), we seek appropriate

bounds on the operators Kj : `p(V × · · · × V )→ `p(δV × δV ). Note that if |V | and

|δV | are finite then all norms are equivalent. However, since we are interested in the

rate of convergence of the inverse series it will prove useful to establish bounds for

arbitrary `p norms.

Proposition IV.2. Let p, q ∈ [1,∞] such that 1/p+1/q = 1 and define the constants

νp and µp by

(4.21) νp = α0‖GR;V
0 ‖`q(V )×`p(R)‖GV ;S

0 ‖`q(V )×`p(S), and µp = α0CGV ;V
0 ,q,

where

(4.22) CGV ;V
0 ,q = maxv∈V ‖GV ;v

0 ‖`q(V ).

The forward Born series (4.19) converges if

(4.23) µp‖η‖p < 1.

Moreover, the N-term truncation error has the following bound,

(4.24)

∥∥∥∥∥Λη −
(
G0 −

∞∑

j=N

Kj(η, · · · , η)

)∥∥∥∥∥
`p(R×S)

≤ νp‖η‖N+1
p µNp

1

1− µp‖η‖p
.

Remark IV.3. The bounds we obtain are similar to those found in the continuous

setting [64], though here we present a novel proof of `2-boundedness and extend our

results to include p ∈ [1, 2); a case not previously considered.
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Before proving the proposition, we first establish the following useful identities.

Lemma IV.4. Let M be an n × n matrix, and Da, Db be n × n diagonal matrices

with diagonal entries given by vectors a and b, respectively. Let M(k) denote the kth

row of M, and

(4.25) CM,q = max
k
‖M(k)‖q,

for 1 ≤ q ≤ ∞. Then for any vectors uT and v, and p, q ∈ [1,∞], such that 1/p +

1/q = 1,

(4.26) |uTDaMDbv| ≤ CM,q‖u‖q‖a‖p‖b‖p‖v‖∞.

Proof. We begin by observing that if ek is the kth canonical basis vector, a =

∑
kDaek and I =

∑
k eke

T
k , where I is the n× n identity matrix. Hence

|uTDaMDbv| ≤
(∑

k

|uTDaek|
)

max
k
|M(k)Dbv| ,

≤ ‖u‖q‖a‖p max
k

∑

j

|M(k)Db ej|max
j
|eTj v|,

≤ ‖u‖q‖a‖p‖b‖p max
k
‖M(k)‖q max

j
|eTj v|.

(4.27)

We can iterate the result of the Lemma to obtain the following corollary.

Corollary IV.5. Let M1, · · · ,Mj−1 be n × n matrices and Da1 , · · · , Daj be n × n

diagonal matrices with diagonal elements given by the vectors a1, · · · , aj. If Mi(k)

and CMi,q are defined as in the previous Lemma, then for all u and v,

(4.28)
∣∣uTDa1M1Da2 · · ·Mj−1Dajv

∣∣ ≤ ‖a1‖p · · · ‖aj‖pCM1,q · · ·CMj−1,q‖u‖q‖v‖∞,
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where once again p, q ∈ [1,∞] and 1/p+ 1/q = 1.

We now return to the proof of Proposition IV.2.

Proof. Since Dηi is a diagonal matrix, Dηi =
∑

k∈V ηi(k)eke
T
k , where ηi(k) is the kth

component of the vector ηi and ek is the canonical basis vector corresponding to the

vertex k. From the definition of Kj, we see that

‖Kj(η1, · · · , ηj)‖p ≤ αj0

( ∑

r∈R, s∈S

[
Gr;V

0 Dη1 G
V ;V
0 Dη2 · · ·GV ;V

0 DηjG
V ;s
0

]p
)1/p

.(4.29)

The previous Corollary implies that

∣∣∣Gr;V
0 Dη1 · · ·DηjG

V ;s
0

∣∣∣ ≤ ‖η1‖p · · · ‖ηj‖pCj−1

GV ;V
0 ,q
‖Gr,V

0 ‖q‖GV,s
0 ‖∞.(4.30)

Thus

‖Kj‖p ≤ αj0‖GR,V
0 ‖`p(R)×`q(V )‖GV,S

0 ‖`q(V )×`p(S)C
j−1

GV ;V
0 ,q

,

≤ νp µ
j−1
p ,

(4.31)

where νp = α0‖GR,V
0 ‖`q(V )×`p(R)‖GV,S

0 ‖`q(V )×`p(S) and µp = α0CGV ;V
0 ,q, from which the

result follows immediately.

4.3.2 Inverse Born series

Proceeding as in [64], let φ ∈ `2(R× S) denote the scattering data,

(4.32) φ(r, s) = G0(r, s)− Λη(r, s),
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corresponding to the difference between the measurements in the background medium

and those in the medium with the potential present. Note that if the forward Born

series converges, we have

(4.33) φ(r, s) =
∞∑

j=1

Kj(η, . . . , η).

Next, we introduce the ansatz

(4.34) η = K1(φ) +K2(φ, φ) +K3(φ, φ, φ) + · · · ,

where each Kn is a multilinear operator. Though φ can be thought of as an operator

from `2(R) to `2(S), in (4.34) we treat it as a vector of length |R| · |S|. Similarly,

though it is often convenient to think of η as a (diagonal) matrix, in (4.34) it should

be thought of as a vector of length |V |. Treating η and φ as matrices results in a

different approach related to matrix completion [57]. With a slight abuse of notation,

we also use K1 to denote the |R||S| × |V | matrix mapping η (viewed as a vector) to

K1η, once again thought of as a vector.

To derive the inverse Born series, we substitute the ansatz (4.34) into the forward

series (4.33) and equate tensor powers of φ. We thus obtain the following recursive

expressions for the operators Kj [64]:

K1 = K+
1 ,

K2 = −K1K2K1 ⊗K1,

K3 = − (K2K1 ⊗K2 +K2K2 ⊗K1 +K1K3)K1 ⊗K1 ⊗K1,

Kj = −
(

j−1∑

m=1

Km
∑

i1+···+im=j

Ki1 ⊗ · · · ⊗Kim

)
K1 ⊗ · · · ⊗ K1,

(4.35)
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where K+
1 denotes the (regularized) pseudoinverse of K1.

The following result provides sufficient conditions for the convergence of the in-

verse Born series for graphs where |V | = |R × S|, corresponding to the case of a

formally determined inverse problem.

Theorem IV.6. Let |V | = |R × S| and p ∈ [1,∞]. Suppose that the operator

K1 is invertible. Then the inverse Born series converges to the true potential η if

‖φ‖p < rp. Here the radius of convergence rp is defined by

(4.36) rp =
Cp
µp

[
1− 2

νp
Cp

(√
1 +

Cp
νp
− 1

)]
,

where

(4.37) Cp = min
‖η‖p=1

‖K1(η)‖p

and νp, µp are defined in (4.21).

Remark IV.7. The convergence of the inverse Born series in the continuous setting

was analyzed in [60]. It was found that certain smallness conditions on both ‖K1‖p

and ‖K1φ‖p are sufficient to guarantee convergence. Note that such a condition on

‖K1‖p is not present in Theorem 5, Proposition 10 or Theorem 11. As explained

below, this is due to the use of different techniques than in [60].

The proof of Theorem IV.6 depends on the following multi-dimensional version of

Rouché’s theorem.

Theorem IV.8. [Theorem 2.5, 2] Let D be a domain in Cn with a piecewise smooth

boundary ∂D. Suppose that f, g : Cn → Cn are holomorphic on D̄. If for each point
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z ∈ ∂D there is at least one index j, j = 1, . . . , n, such that |gj(z)| < |fj(z)|, then

f(z) and f(z) + g(z) have the same number of zeros in D, counting multiplicity.

Proof of Theorem IV.6. Put n = |V | = |R × S|. Let F : Cn × Cn → Cn be the

function defined by

(4.38) F (η, φ) = φ−
∞∑

j=1

Kj(η, . . . , η).

Note that F has n components F1, . . . , Fn, each of which is well-defined and holo-

morphic for all φ if ‖η‖p < 1/µp, since they are defined by a convergent Taylor series

in φ and η. Let

(4.39) Cp = min
‖η‖p=1

‖K1(η)‖p,

which is non-zero for all p since K1 is invertible. Then

‖F (η, 0)‖p ≥ Cp‖η‖p −
∞∑

j=2

‖Kj(η, . . . , η)‖p,

≥ Cp‖η‖p − νp
∞∑

j=2

µj−1
p ‖η‖jp,

≥ Cp‖η‖p − νpµp‖η‖2
p

1

1− µp‖η‖p
,

(4.40)

where the second inequality follows from the bounds on the forward operators ob-

tained in the proof of Proposition IV.2. For 0 < ‖η‖p < 1/µp, ‖F (η, 0)‖p is non-

vanishing if

(4.41) ‖η‖p <
1

µp

Cp
Cp + νp

.



80

Suppose λ ≥ 1. We then define

(4.42) Rλ =
1

µp

Cp
Cp + νpλ

,

and let Ω1,λ = {η ∈ Cn | ‖η‖p < Rλ}.

Next, we observe that F (η, φ)− F (η, 0) = φ and hence if

(4.43) ‖φ‖p < ‖F (η, 0)‖p,

then

(4.44) ‖F (η, φ)− F (η, 0)‖p < ‖F (η, 0)‖p.

Note that

(4.45) ‖F (η, 0)‖p ≥ Cp‖η‖p − νpµp
‖η‖2

p

1− µp‖η‖p
,

and thus (4.43) holds if

(4.46) ‖φ‖p < Cp‖η‖p − νpµp
‖η‖2

p

1− µp‖η‖p
.

If η ∈ ∂Ω1,λ, (4.43) holds if

(4.47) ‖φ‖p < RλCp

(
1− 1

λ

)
≡ rp,λ.

Defining Ω2,λ = {φ ∈ Cn | ‖φ‖p < rp,λ}, we note the following: for all (η, φ) ∈

Ω1,λ × Ω2,λ, F (η, 0) 6= 0; and, for all (η, φ) ∈ ∂Ω1,λ × Ω2,λ, ‖F (η, φ) − F (η, 0)‖p <

‖F (η, 0)‖p. By Theorem IV.8, F (η, 0) and F (η, φ) have the same number of zeroes

counting multiplicity on Ω1,λ × Ω2,λ, namely precisely one. Thus, for all φ ∈ Ω2,λ
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there exists a unique η = ψ(φ) such that F (ψ(φ), φ) = 0. Since the unique zero must

have multiplicity one,

(4.48) det
(
{∂ηjFi (ψ(φ), φ)}ni,j=1

)
6= 0.

Consequently, by the analytic implicit function theorem [Theorem 3.1.3, 69], ψ is

analytic in a neighborhood of each φ ∈ Ω2,λ, which is sufficient to prove that ψ is

analytic on all of Ω2,λ. Hence ψ has a Taylor series converging absolutely for all

φ ∈ Ω2,λ. By construction, the terms in this series must be the same as those of the

inverse Born series, since they are both power series for the same function. It follows

that the inverse Born series must also converge for all φ ∈ Ω2,λ. Optimizing over

λ ≥ 1, the inverse Born series converges for all φ ∈ Cn, such that

(4.49) ‖φ‖p <
Cp
µp

[
1− 2

νp
Cp

(√
1 +

Cp
νp
− 1

)]
,

which completes the proof.

Remark IV.9. We note that Theorem 6 is closely related to the problem of deter-

mining the domain of biholomorphy of a function of several complex variables, where

the radii of analyticity of the function and its inverse are referred to as Bloch radii

or Bloch constants [47, 46, 25]. In the context of nonlinear optimization a related

result was obtained in [23], which also made use of Rouché’s theorem.

Remark IV.10. The bound constructed in Theorem IV.6 is only a lower bound for

the radius of convergence. In practice, the series converges well outside this range,
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as the example in the next section confirms. Additionally, if in the proof of Theorem

IV.6 we instead define F (η, φ) by

(4.50) F (η, φ) = K1φ−
∞∑

j=1

K1Kj(η, . . . , η),

then it can easily be shown that the inverse series converges if

(4.51) ‖K1φ‖p < r̃p :=
1

µp

[
1− 2

νp
Cp

(√
1 +

Cp
νp
− 1

)]
.

Though the right-hand side is slightly more complicated, it is often easily computed

and gives a better bound.

Figure 4.4 shows a plot of the bound on the radius of convergence,

rp =
Cp
µp

[
1− 2

νp
Cp

(√
1 +

Cp
νp
− 1

)]

for various values of Cp/νp. For large graphs we expect the determinant of K1 to be

small, corresponding to a small value of Cp. In this regime we observe that the first

term in the asymptotic expansion of (4.49) is

(4.52) rp =
C2
p

4νpµp
+ O

(
C3
p

)
.

We now consider the stability of the limit of the inverse scattering series under

perturbations in the scattering data. The following stability estimate follows imme-

diately from Theorem IV.6.

Proposition IV.11. Let E be a compact subset of Ωp = {φ ∈ Cn | ‖φ‖p < rp} , where

rp is defined in (4.36) and p ∈ [1,∞]. Let φ1 and φ2 be scattering data belonging to
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Figure 4.4: The bound on the radius of convergence of the inverse Born series as a function of
Cp/νp. The radius rp (multiplied by µp/νp) is shown in blue. The red curve is the asymptotic
estimate given in (4.52).

E and ψ1 and ψ2 denote the corresponding limits of the inverse Born series. Then

the following stability estimate holds:

‖ψ1 − ψ2‖p ≤M‖φ1 − φ2‖p ,

where M = M(E, p) is a constant which is otherwise independent of φ1 and φ2.

Proof. In the proof of Theorem IV.6 it was shown that ψ is analytic on Ωp. In

particular, it follows that there exists an M <∞ such that

(4.53) ‖Dψ‖p ≤M,
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for all φ ∈ Ω. Here Dψ is the differential of ψ and ‖ · ‖p is its induced matrix p-norm.

By the mean value theorem,

(4.54) ‖ψ1 − ψ2‖p ≤M‖φ1 − φ2‖p,

for all φ1, φ2 ∈ Ω.

Theorem IV.6 guarantees convergence of the inverse Born series, but does not

provide an estimate of the approximation error. Such an estimate is provided in the

next theorem.

Theorem IV.12. Suppose that the hypotheses of Theorem IV.6 hold and ‖φ‖p < τrp,

where τ < 1. If η is the true vertex potential corresponding to the scattering data φ,

then ∥∥∥∥∥η −
N∑

m=1

Km(φ, . . . , φ)

∥∥∥∥∥
∞
< M

(
1

1− τ

)n(‖φ‖p
τrp

)N
1

1− ‖φ‖p
τrp

.

Proof. The proof follows a similar argument to one used to show uniform conver-

gence of analytic functions on polydiscs, see [Lemma 1.5.8 and Corollary 1.5.9, 69]

for example. By Theorem IV.6, since ‖φ‖p < rp, the inverse Born series converges.

Moreover, the value to which it converges is precisely the unique potential η corre-

sponding to the scattering data φ.

Let ψj be the jth component of the sum of the inverse Born series, which is of

the form

(4.55) ψj =
∞∑

|α|=0

c(j)
α φα,
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for suitable c
(j)
α , consistent with (4.34). Here we have used the following notational

convention: if α = (α1, . . . , αn) then φα ≡ φα1
1 . . . φαnn . Additionally, for a given multi-

index α we define |α| = α1 + · · · + αn. Note that each α in the sum has exactly n

elements, though any number of them may be zero.

Let

ψ
(N)
j =

N∑

|α|=0

c(j)
α φα,

and ∆φ be the polydisc

∆φ =

{
z ∈ Cn | |zs| < |φs|

rp
‖φ‖p

, s = 1, . . . , n

}
.

We note that φ ∈ ∆φ ⊆ {φ | ‖φ‖p < rp}. It follows by Cauchy’s estimate [Theorem

1.3.3, 69] that

(4.56) |c(j)
α | ≤M

(‖φ‖p
rp

)|α|
1

|φ|α ,

where M = max‖φ‖p<rp ‖ψ‖p. To proceed, we employ the following combinatorial

identity, [Example 1.5.7, 69],

(4.57)
∞∑

|α|=0

t|α| =
1

(1− t)n ,

for all t ∈ (−1, 1). In light of the above, we see that

M
∑

|α|=0

(‖φ‖p
rp

)|α|
= M

( ∞∑

m=1

(‖φ‖p
rp

)m)n

= M

(
1

1− ‖φ‖p
rp

)n

.

The function 1/(1− t)n is bounded by

M

(
1

1− τ

)n
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for all |t| < τ < 1. Thus the one-dimensional Cauchy estimate implies that the kth

coefficient of its Taylor series, bk, is bounded by

|bk| ≤M

(
1

1− τ

)n
1

τ k
,

and so

∑

|α|>N

(‖φ‖p
rp

)|α|
≤M

∞∑

k>N

(
1

1− τ

)n(‖φ‖p
τrp

)k
,

= M

(
1

1− τ

)n(‖φ‖p
τrp

)N
1

1− ‖φ‖p
τrp

.

(4.58)

Hence, independent of j,

∣∣∣ψj − ψ(N)
j

∣∣∣ =

∣∣∣∣∣∣
∑

|α|>N
c(j)
α φα

∣∣∣∣∣∣
,

≤
∑

|α|>N
|c(j)
α ||φ|α,

≤M
∑

|α|>N

(‖φ‖p
rp

)|α|
,

≤M

(
1

1− τ

)n(‖φ‖p
τrp

)N
1

1− ‖φ‖p
τrp

,

(4.59)

from which the result follows immediately.

Remark IV.13. Note that in the previous theorem we can minimize our bound over

τ ∈ (‖φ‖p/rp, 1). Letting γ = ‖φ‖p/rp the minimum occurs at

τ∗ =
γ

2



(

1 +
N − γ

γ(n+N)

)
+

√(
1− N − γ

γ(N + n)

)2

+ 4
1− γ

γ(N + n)


 .
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Finally, we conclude our discussion of the convergence of the inverse Born series

by proving an asymptotic estimate for the truncation error. Specifically, we show

that for a fixed number of terms N the error in the N -term inverse Born series goes

to zero as η goes to zero. We note that our estimate does not apply to the case of

fixed φ and N →∞ since CN,ax
N →∞ for any fixed positive x.

Theorem IV.14. Let ‖η‖pµp < a < 1. Then there exists a constant CN,a, depending

on N such that

(4.60)

∥∥∥∥∥η −
N∑

j=1

Kj(φ, · · · , φ)

∥∥∥∥∥
p

≤ CN,a‖η‖N+1
p .

Proof. We begin by considering the truncated inverse Born series,

(4.61) ηN(φ) =
N∑

j=1

Kj(φ, · · · , φ).

If µp‖η‖p < 1, φ is equal to its forward Born series, and hence

(4.62) ηN − η =
N∑

j=1

∞∑

i1,··· ,ij=1

Kj[Ki1(η, . . . , η), · · · , KiN (η, . . . , η)]− η.

Using (4.35) we find that

(4.63) ηN − η =
n∑

j=1

∞∑

i1+···+ij>N
Kj[Ki1(η, . . . , η), · · · , KiN (η, . . . , η)],
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which follows from the construction of the inverse Born series. Therefore

‖ηN − η‖p ≤
N∑

j=1

‖Kj‖p νjp
∞∑

k>N

µk−jp ‖η‖kp,

≤
N∑

j=1

‖Kj‖p
(
νp
µp

)j ∞∑

k>N

µkp‖η‖kp,

≤
N∑

j=1

‖Kj‖p
(
νp
µp

)j
‖η‖N+1

p µN+1
p

∞∑

k=0

(µp‖η‖p)k,

=
N∑

j=1

‖Kj‖p νjpµN+1−j
p ‖η‖N+1

p

1

1− µp‖η‖p
.

(4.64)

In order to proceed, we require a bound on ‖Kj‖p. As in [64], we begin by observing

that if p ∈ [1,∞], j > 2,

‖Kj‖p ≤ ‖K1‖jp
j−1∑

m=1

‖Km‖p
∑

i1+···+im=j

‖Ki1‖p · · · ‖Kim‖p,

≤ ‖K1‖jp
j−1∑

m=1

‖Km‖p
∑

i1+···+im=j

(
νp
µp

)m
µjp,

= ‖K1‖jp
j−1∑

m=1

‖Km‖p
(
j − 1

m− 1

)(
νp
µp

)m
µjp,

≤ νpµ
j−1
p ‖K1‖jp

(
j−1∑

m=1

‖Km‖p
)

j−2∑

m=0

(
j − 1

m

)(
νp
µp

)m
,

(4.65)

where we have shifted the index m in the last expression. It follows immediately
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from the binomial theorem that

‖Kj‖p ≤ ‖K1‖jpνp
[
(µp + νp)

j−1 − νj−1
p

]( j−1∑

m=1

‖Km‖p
)
,

≤ [‖K1‖p (µp + νp)]
j

(
j−1∑

m=1

‖Km‖p
)
,

≤ ‖K1‖p (µp + νp) ‖Kj−1‖p +
νp

µp + νp
[‖K1‖p (µp + νp)]

j ‖Kj−1‖p,

≤ ‖K1‖p(µp + νp)
[
1 + (µp + νp)

j−1‖K1‖j−1
p

]
‖Kj−1‖p.

(4.66)

Further note that if j = 2, then

(4.67) ‖K2‖p ≤ ‖K1‖3
pν

2
p ≤ ‖K1‖3

p(µp + νp)
2.

For ease of notation, let r = (µp + νp)‖K1‖p and note that

‖Kj‖p ≤ ‖K1‖p(µp + νp)
[
1 + (µp + νp)

j−1‖K1‖j−1
p

]
‖Kj−1‖p,

≤ r [1 + rj−1]‖Kj−1‖p,

≤ ‖K1‖prj2j [max{1, r}]
j(j−1)

2 .

(4.68)

If we define C = max{1, r}, then it follows from (4.64) and (4.68)

‖ηN − η‖p ≤
‖η‖N+1

p µN+1
p ‖K1‖p

1− µp‖η‖p

N∑

j=1

(
2νp r

µp

)j
C

j2

2 ,

≤ ‖η‖
N+1
p µN+1

p ‖K1‖p
1− µp‖η‖p

1−
(
2νpµ

−1
p r
)N+1

1− 2νpµ−1
p r

C
N2

2 ,

≤ C̃(N)
‖η‖N+1

p

1− µp‖η‖p
.

(4.69)

Thus, for ‖η‖p < µ−1
p a < µ−1

p ,

(4.70) ‖ηN − η‖p ≤ C ′(N)‖η‖N+1
p

for some constant C ′(N).
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4.4 Implementation

4.4.1 Regularizing K1

In the previous section we found that the norm of K1 plays an essential role in

controlling the convergence of the inverse Born series. In practice, for large graphs

‖K1‖p is too large to guarantee convergence of the inverse series. Moreover, even

if the series converges, a modest amount of noise can lead to large changes in the

recovered potential. Regularization improves the stability and radius of convergence

of the inverse Born series by employing a regularized pseudoinverse, K+
1 in place of

the true inverse K−1
1 in the definition of K1. In our numerical studies we compute

K1 using a Tikhonov-regularized singular value decomposition of K1 [66]. In the

following we denote the regularization parameter by ε, noting that when ε = 0 no

regularization has been performed.

4.4.2 Numerical examples

In the following we present numerical reconstructions for a 12 × 12 lattice with

boundary vertices connected to the outermost layer of vertices, as illustrated in

Figures 4.5-4.9. Note that each outgoing edge connects to a boundary vertex. The

scattering data is obtained by solving the forward problem by applying a direct

solver to to the linear system (4.1). As is often the case in biomedical applications,

we consider a homogeneous medium with a small number of large inclusions.

Figures 4.5–4.9 show typical results of the inverse Born series reconstruction.

Note that due to the rapid increase in the number of terms at each order in the
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inverse Born series, it is seldom practical to proceed beyond the first few terms of

the series. As such, in each of our experiments it is not possible to say whether the

series converges, since we are well beyond the radius of convergence guaranteed by

Theorem 5. Instead, we consider the behavior of the first five terms. If the sum

grows exponentially in the order of truncation then we say that the series diverges.

In Figure 4.6 the potental η is scaled by a factor of 10 compared to Figure 4.5. The

inverse Born series diverges for the larger potential, and regularization is necessary to

ensure convergence. Though this regularization improves the rate of convergence of

the inverse Born series, it no longer converges to the true potential. We note, however,

that there is still good qualitative recovery of the potential. Moreover, the method

of regularization we have used here, Tikhonov regularization, has a smoothing effect

on the recovered potential in the continuous setting. The same effect is evident in

the transition from Figure 4.6 to Figure 4.7 where the regularization parameter, ε,

has been increased from 10−7 to 10−5. Figure 4.8 shows the effect of changing the

boundary condition parameter t. In particular, decreasing t appears to shrink the

radius of convergence, necessitating a larger regularization parameter. Finally, in

Figure 4.9 we see the effect of partial boundary data. Note that a larger regularization

parameter is required since the forward operator K1 is more ill-conditioned.
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Figure 4.5: a) True potential b) first term of the inverse Born series, c) first two terms of the inverse
Born series, d) first five terms of the inverse Born series. Here α0 = 0.1, t = 1, ε = 0, and every
boundary vertex is both a source and a receiver. µ2 = 0.0874, ν2 = 0.4702, and r̃2 = 3.7× 10−7.
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Figure 4.6: a) True potential b) first term of the inverse Born series, c) first two terms of the inverse
Born series, d) first five terms of the inverse Born series. Here α0 = 0.1, t = 1, ε = 10−7, and every
boundary vertex is both a source and a receiver. µ2 = 0.0874, ν2 = 0.4702, and r̃2 = 1.215× 10−6.
Note that without the regularization the inverse Born series diverges.
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Figure 4.7: a) True potential b) first term of the inverse Born series, c) first two terms of the inverse
Born series, d) first five terms of the inverse Born series. Here α0 = 0.1, t = 1, ε = 10−5, and every
boundary vertex is both a source and a receiver. µ2 = 0.0874, ν2 = 0.4702, and r̃2 = 1.224× 10−4.
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Figure 4.8: a) True potential b) first term of the inverse Born series, c) first two terms of the inverse
Born series, d) first five terms of the inverse Born series. Here α0 = 0.1, t = 0, ε = 10−5, and every
boundary vertex is both a source and a receiver. µ2 = 0.1738, ν2 = 10.7463, and r̃2 = 2.677×10−6.
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Figure 4.9: a) True potential b) first term of the inverse Born series, c) first two terms of the
inverse Born series, d) first five terms of the inverse Born series. Here α0 = 0.1, t = 1, ε = 10−9,
and every boundary vertex on the top and bottom edges of the lattice is both a source and a
receiver. µ2 = 0.0874, ν2 = 0.2351, and r̃2 = 2.656× 10−7.
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4.5 Incorporating potential structure

The inverse Born series algorithm can be extended to take into account addi-

tional constraints on the vertex potential η, such as restrictions on its support or

requirements that it is constant on some subset of the domain, allowing the recovery

of vertex potentials which would otherwise be unrecoverable using the inverse Born

series described above.

Theorem IV.15. Let φ be the measurement data and F be a linear mapping from

Rk → R|V |, where k ≤ |V |. Moreover, suppose that η is in the image of F and let η′

be its pre-image,

(4.71) η′ = F−1(η).

Then

(4.72) η′ = K′1(φ) +K′2 (φ, φ) + · · ·+K′n(φ, . . . , φ) + · · · ,

and

K′1 = (K1 ◦ F )+,

K′2 = −K′1 ◦K2 ◦ ((F ◦ K1)⊗ (F ◦ K1)) ,

K′n = −
n−1∑

j=1

K′j ◦


 ∑

i1+···+ij=n
Ki1 ⊗Ki2 ⊗ · · · ⊗Kij


 ◦ ((F ◦ K1)⊗ · · · ⊗ (F ◦ K1)) ,

(4.73)

where (K1 ◦ F )+ denotes the (regularized) pseudoinverse of (K1 ◦ F ).
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Proof. We begin by rewriting the discrete time-independent diffusion equation as

Lu+ α0[I +DF (η′)]u− ATV,δV v = 0,

−AV,δV u+Dv = g,

(4.74)

where DF (η′) is the diagonal matrix whose diagonal elements are given by the vector

F (η′). If Λ′η′ : `2(Rk)→ `2(R×S) denotes the Robin-to-Dirichlet map for the modified

system (4.74) and η is in the image of F, then

(4.75) Λ′η′ = Λη.

Thus the forward Born series of (4.74) is given by

(4.76) Λ′η′(s, r) = G0(r, s)−
∞∑

n=1

Kn (F (η′), . . . , F (η′)) .

Following the construction of the inverse Born series, we let φ represent the measured

data, and consider the ansatz

(4.77) η′ = K′1(φ) +K′2 (φ, φ) + · · ·+K′n(φ, . . . , φ) + . . .

We see immediately that

K′1 ◦K1 ◦ F = I,

K′1 ◦K2 ◦ (F ⊗ F ) +K′2 ◦ ((K1 ◦ F )⊗ (K1 ◦ F )) = 0,

. . .

n∑

j=1

K′j ◦


 ∑

i1+...ij=n

Ki1 ⊗Ki2 ⊗ · · · ⊗Kij


 ◦ (F ⊗ · · · ⊗ F ) = 0.

(4.78)
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If (K1 ◦ F )+ denotes the (regularized) pseudoinverse of (K1 ◦ F ), then we obtain

K′1 = (K1 ◦ F )+,

K′2 = −K′1 ◦K2 ◦ ((F ◦ K1)⊗ (F ◦ K1)) ,

K′n = −
n−1∑

j=1

K′j ◦


 ∑

i1+···+ij=n
Ki1 ⊗Ki2 ⊗ · · · ⊗Kij


 ◦ ((F ◦ K1)⊗ · · · ⊗ (F ◦ K1)) .

(4.79)

We observe that bounds on the radius of convergence, truncation error, and stabil-

ity of the modified inverse Born series can be easily obtained using arguments similar

to those made in Section 4.3. Theorem IV.15 can easily be applied to incorporate

measurements from multiple values of α0, provided the vertex potential η is indepen-

dent of the value of α0. In optical tomography, this corresponds to varying the optical

wave wavelength so that the absorption coefficients of the background medium and

the inhomogeneities to be imaged have the same wavelength dependence.

In particular, let Γ = (E, V ) be a graph and suppose we have measurements for

α0 = (αi)
m
1 . Let Γ′ = {Γ1, . . . ,Γm} be the graph with vertices V ′ = {V1, . . . , Vm} and

edges E ′ = {E1, . . . , Em}, consisting of m copies of Γ. Here the subscript denotes the

copy of E, V, or Γ to which we are referring. Let π : V ′ → V denote the projection

map taking a vertex in Vi or δVi to the corresponding vertex in V or δV, respectively.

Finally, for a given vertex potential, η, on Γ let η′ denote the corresponding potential
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on Γ′. Thus, for each vertex v ∈ V ′,

(4.80) η′(v) = η(π(v)).

Next we construct the following modified time-independent diffusion equation

Liui + αi[I +Dη′ ]ui − (Ai)
T
V,δV vi = 0,

−(Ai)V,δV ui +Dvi = gi,

(4.81)

where ui and vi, i = 1, . . . ,m, are supported on Vi and δVi, respectively, and Li is

the Laplacian corresponding to the ith subgraph. As before Dη′ denotes the diagonal

matrix with entries given by η′.

Note that Γ′ consists of m disconnected components, and hence the solution in

one component is independent of the solution in another. If W,U ⊂ Vi×δVi let GW ;U
i

denote the submatrix of Gi consisting of the rows indexed by W and the columns

indexed by U. It follows that the background Green’s function for (4.81) is given by
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(4.82)

G0 =




GV1;V1
1 GV1;δV1

1

GV2;V2
2 GV2;δV2

2

. . . . . .

GVm;Vm
m GVm;δVm

m

GδV1;V1
1 GδV1;δV1

1

GδV2;V2
2 GδV2;δV2

2

. . . . . .

GδVm;Vm
m GδVm;δVm

m




Thus, if u = (u1, . . . , um, v1, . . . , vm)T solves (4.81) when η′ ≡ 0, and

g = (0, . . . , 0, g1, . . . , gm)T ,

then

(4.83) u = G0g.

Using this we can define the operators K1, . . . , Kn for (4.81), where we replace G0
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by

G′0 =




α1

α0
GV1;V1

1
α1

α0
GV1;δV1

1

α2

α0
GV2;V2

2
α2

α0
GV2;δV2

2

. . . . . .

αm
α0
GVm;Vm
m

αm
α0
GVm;δVm
m

α1

α0
GδV1;V1

1
α1

α0
GδV1;δV1

1

α2

α0
GδV2;V2

2
α2

α0
GδV2;δV2

2

. . . . . .

αm
α0
GδVm;Vm
m

αm
α0
GδVm;δVm
m




,

(4.84)

to account for the different α value in each component.

We now enforce the condition that η is identical on each copy of Γ, and hence is

independent of α. The map F : `p(V1)→ `p(V1 × · · · × Vm) in (4.71) is defined by

(4.85) F{η}(v) = η(π(v)).

Using this we form the modified inverse Born series operators in (4.79) and thus

construct the modified inverse Born series. Provided that (K1 ◦ F ) is invertible and

the measured data φ is sufficiently small, by Theorem IV.6 the inverse Born series

converges to the true (unique) value of η. Since η is the α-independent absorption

of the vertices in Γ, we have constructed a reconstruction algorithm using data from
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multiple α0. To illustrate this algorithm we consider a path of length 10, noting that

it cannot be imaged using the standard inverse Born series, that is with one value of

α0. Observe that, more generally, any graph containing a path of length greater than

six in its interior, connected to the remainder of the graph only at its endpoints, the

corresponding K1 is not invertible. In fact, it can be shown that for such graphs that

the absorption η cannot be uniquely determined from the data φ.

To illustrate the effect of the number of αi on recovery, we choose one bound-

ary vertex to act both as source and receiver and take αi = 0.1
(
1 + 4 i

N−1

)
, i =

0, . . . , N − 1, for N = 8, 16, 24, and 32; see Figure 4.10. Here η is chosen to be a

function supported on the interior vertices 2, 3 and 6, with a height of 0.01. In each

case the sum of the first 6 terms of the inverse Born series is taken with the Tikhonov

regularization parameter ε = 10−10). The effect of regularization on the recovery of

the potential is similar to that obtained in the results presented in Section 3.

4.6 Inversion through Internal Polling

4.6.1 Internal Polling

In the internal polling approach to vertex data recovery we allow ourselves to

select a fixed number of internal vertices to which we attach our boundary vertices.

By polling the system in this way we wish to recover the absorption at each interior

vertex. As before we consider the time-independent diffusion equation

Lu+ α0(I + η)u = f, on V

t u+ ∂u = g, on ∂V.

(4.86)
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Figure 4.10: Reconstructions using the multi-frequency inverse Born series for αi =

0.1
(

1 + 4 i
N−1

)
, i = 0, . . . , N − 1, t = 0.01, and ε = 10−10.

Typically we take f to be identically zero and g is assumed to be supported on one

vertex. As in Chapter III, we can write this as a linear system,

L̃u+ α0(I + η)u− ATV,δV v = 0

−AV,δV u+Dv = g,

(4.87)

where L̃ is the restriction of the Laplacian to the interior vertices, AV,δV is the interior

to boundary adjacency matrix, D is a diagonal matrix, u is taken to be the solution

restricted to interior vertices and v is the solution on the boundary.
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It is also convenient to consider solutions to the unperturbed problem (ui, vi)

satisfying the system

L̃ui + α0ui − ATV,δV vi = 0

−AV,δV ui +Dvi = g.

(4.88)

If we let φ = ui − u and ψ = vi − v then we obtain

L̃φ+ α0(I + η)φ− ATV,δV ψ = α0 η ui

−AV,δV φ+Dψ = 0.

(4.89)

Now suppose that each interior vertex is connected to at least one boundary vertex

and

(4.90) A†V,δVAV,δV = I,

where I is the |V | × |V | identity matrix. In this case, using Schur complements

we can prove the following proposition, which guarantees an exact recovery of the

absorption at all interior vertices.

Proposition IV.16. Suppose the columns of AV,δV are linearly independent and let

A†V,δV denote its pseudoinverse. Further suppose that we are given the solution (ui, vi)

to the unperturbed problem everywhere, as well as ψ, the solution to the perturbed

problem on the boundary. Provided that ui−A†V,δVDψ is nowhere vanishing, we find

that

(4.91) ηi =
(Aψ)i

α0[ui − A†V,δVDψ]i
, i = 1, . . . , |V |,
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where (·)i denotes the ith component of a vector and

(4.92) A = L̃A†V,δVD + α0A
†
V,δVD − ATV,δV .

Proof. Using the second line of the system (4.89) we can solve for φ in terms of ψ to

obtain

(4.93) φ = A†V,δVDψ.

We can then substitute that equation into the first equation of (4.89), which yields

(4.94) L̃A†V,δVDψ + α0A
†
V,δVDψ − ATV,δV ψ = α0 η (ui − A†V,δVDψ).

Recalling that η is a diagonal matrix, we let η be the vector whose components are

the diagonal elements of η, and let U be the diagonal matrix whose non-zero entries

are the corresponding components of ui−A†V,δVDψ. If A is defined as in (4.92) then

we find

(4.95) Aψ = α0Uη.

Provided that U is invertible, which is equivalent to saying that ui − A†V,δVDψ is

non-vanishing, we obtain

(4.96) η = α−1
0 U−1Aψ.

The result follows immediately by observing that

(4.97) (U−1)ij =





1

(ui − A†V,δVDψ)i
, if i = j,

0, otherwise.
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As an example, consider the complete graph on n vertices, choosing the bound-

ary so that each interior vertex is connected to a single unique boundary vertex.

Additionally, we suppose that each boundary vertex has both a receiver and a unit

source, so that g in (4.86) is identically one. The following proposition guarantees

exact absorption recovery in this case. Note that we assume g is identically one to

obtain a compact expression for the absorption, but similar results can be obtained

for any non-zero source function.

Proposition IV.17. Consider the complete graph on n vertices with full boundary,

and suppose that the set of receivers, VR, is the whole boundary vertex set, δV. More-

over, assume that the source function g is identically one. If ψ(x′) is the measured

solution on the boundary then the absorption η is given by

(4.98) η(x) =
(σ − 1)(1 + t)

α0

[(1 + t)(n+ α0)− 1]ψ(x)− (1 + t)
(∑

x′∈δV ψ(x′)
)

1− (1 + t)2(σ − 1)ψ(x)
.

Proof. We begin by observing that AV,δV from Proposition IV.16 is the identity

matrix,

(4.99) D = (1 + t)I,

and

(4.100) L̃ = (n+ 1)I − 1T1,

where I is the n× n identity matrix and 1 is the n-vector of all 1’s. Thus,

(4.101) Aψ = [(1 + t)(n+ α0)− 1]ψ − (1 + t)

(∑

x′∈δV
ψ(x′)

)
1.
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Recall from Chapter 2 that

(4.102) ui(x) =
1

(1 + t)(σ − 1)
,

and hence from (4.91) we obtain

(4.103) η(x) =
(σ − 1)(1 + t)

α0

[(1 + t)(n+ α0)− 1]ψ(x)− (1 + t)
(∑

x′∈δV ψ(x′)
)

1− (1 + t)2(σ − 1)ψ(x)
.



CHAPTER V

Conclusion and Further Work

5.1 Conclusion

In this thesis we analyzed a discrete analog of the time-independent diffusion

equation, considering both the forward problem, which we call diffuse scattering on

graphs, as well as the corresponding inverse problems, which we call diffuse optical

tomography on graphs.

For the forward problem we used Born series to construct perturbative solutions

to time-independent diffusion equations. Since our method relied on knowledge of

the Green’s function for the homogeneous (background) problem, we reviewed a

few useful families of graphs for which the homogeneous Green’s functions could be

explicitly constructed and outlined a method for finding Green’s functions for Cayley

graphs for both abelian and non-abelian groups.

For the inverse problem we presented and analyzed an algorithm based on the

inverse Born series, proving estimates characterizing the domain of convergence,

approximation errors, and stability of our approach. Our convergence results rep-

107
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resent a substantial improvement over existing proofs of convergence for continuous

problems, which require a smallness condition on the pseudoinverse of the forward

operator. Finally, we presented a modification to our inversion algorithm which al-

lows for the incorporation of additional information on the structure of the potential.

Numerical experiments were performed to validate the algorithms. It was found that

in practice our approach works well beyond the domain of convergence guaranteed

by the analysis.

5.2 Future work

5.2.1 The inverse Born series in infinite dimensions

A natural direction for future work is to apply the techniques used in the discrete

setting to continuous problems. As mentioned previously, the current bounds for the

radius of convergence of inverse Born series for partial differential equation problems

require that the norm of the linearized operator K1 is bounded by a constant ν, and

the norm of its regularized pseudoinverse, K1, is bounded by 1/(ν+µ), where µ > 0.

If K1 is the true inverse of K1 this is a contradiction since for any f in the domain

of K1,

‖f‖ = ‖K1K1f‖ ≤
ν

ν + µ
‖f‖.

More generally, if K1 is any operator taking the range of K1 to the domain of K1

such that ‖K1‖ < 1/(µ+ ν), then

‖f −K1K1f‖ ≥
(

1− ν

µ+ ν

)
‖f‖.
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Now suppose thatK1 is a compact operator between Hilbert spaces and has a singular

value decomposition

K1 =
∞∑

j=1

σj uj ⊗ v∗j ,

with σ1 > σ2 > · · · ≥ 0. Many common methods for computing regularized pseu-

doinverses are based on applying a function ψε to σj, where ψε(σj)→ 1/σj as ε→ 0

for any fixed j, and typically 0 ≤ ψε(σj) ≤ σ−1
j . It follows that

(5.1) K1K1 =
∞∑

j=1

σjψε(σj) vn ⊗ v∗n,

and hence in this setting the boundedness condition is equivalent to

σ1

(
max
k
ψε(σk)

)
≤ ν

ν + µ
.

Moreover,

‖vj −K1K1vj‖ = 1− σjψε(σj) ≥ 1− σj
σ1

µ

ν + µ
.

Hence, unless the largest singular values of K1 are approximately the same size, the

error in the approximation K1K1f ≈ f will increase quickly with the number of

singular vectors.

Our approach does not require the above additional smallness condition. In par-

ticular, for discrete systems if K1 is the true inverse of K1, then provided the data

is sufficiently small, the inverse Born series is guaranteed to converge to the exact

solution. A natural aim is then to extend our result to the infinite-dimensional set-

ting, in order to remove the smallness condition for the convergence of the inverse

Born series in the setting of partial differential equations.
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5.3 Operator bounds and the Inverse Born series

In Chapter IV our analysis of the convergence and stability of the inverse Born

series required bounding both the smallest and largest singular values of K1, as well

as the norms of K2, K3, · · · . Such a dependence is inescapable, since it is in these

operators that the structure of the graph, the sources, and the receivers is encoded.

The task of producing suitable bounds for a general graph is, however, a difficult one.

In particular, Proposition IV.1 suggests that deleting a single edge can make K1 non-

invertible, producing a graph with a non-invertible absorption to measurement map.

This suggests the following general question.

Question V.1. Characterize those graphs, or families of graphs, for which the map

taking absorption vectors to boundary data is invertible.

Additionally, when comparing with continuous media and physical applications

we often wish to consider families of graphs in the limit where the number of vertices

is taken to infinity. For example, if a mesh is used to approximate a domain then

it is natural to consider what happens when the mesh is refined. Bounding the

behaviour of operators in this limit is an interesting approach to studying the effects

of regularization when dealing with pseudo-inverses of certain integral operators.

Hence the following question is a natural one.

Question V.2. For what families of graphs can suitable asymptotic bounds on the

largest and smallest singular values of K1 be determined, and what are the implica-

tions of these bounds for the continuum limit?
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Note that in general we expect that the smallest singular value will go to zero

as the graph size goes to infinity. Though for the complete graph with boundary

we have an explicit formula, the problem remains open for many other families of

graphs, including those most often employed in discretizing continuous problems.

5.4 Sparsity and internal polling

When considering physical or computational applications of inverse problems we

are often given additional information a priori about the inhomogeneities in the ab-

sorption which we wish to recover. For example, it is often natural to assume that the

support of the inhomogeneities in question is small, or at least the inhomogeneities in

the absorption can be approximated well by a sparse vector, which corresponds to the

presence of a relatively small number of point absorbers in an otherwise-homogeneous

medium. Our inverse problem then becomes to find the sparsest vector η, such that

the resulting Robin-to-Dirichlet map (Λη) is equal to the measurement data (Φ). In

other words, thinking of η, Φ, and Λη as vectors, we solve the exact recovery problem

(5.2) argmin ‖η‖0 such that Λη = Φ,

where ‖η‖0 denotes the number of non-zero entries of η. Note that unlike traditional

compressed sensing our objective function ‖Λη −Φ‖2 has a nonlinear dependence on

η. In the absence of noise, if η is exactly k-sparse we might expect (5.2) to recover

the true vertex potential exactly. Here we assume that there is no sparser vector η̃

which yields the same Robin-to-Dirichlet map. In the presence of noise we replace
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(5.2) by

(5.3) argmin ‖η‖0 such that ‖Λη − Φ‖2 < ε,

or

(5.4) argminη ‖Λη − Φ‖2 such that ‖η‖0 ≤ k.

In (5.3) we seek the sparsest vector which yields a Robin-to-Dirichlet map which

is within a given tolerance of our measurements, while in (5.4) we seek the vector

with fewer than k non-zero entries whose Robin-to-Dirichlet map, Λη, is closest to

the measured data, Φ. In theory, an exhaustive search over all possible vectors could

be used to solve (5.2)-(5.4), though such an approach is computationally infeasible.

Thus we have the following question for future research.

Question V.3. Find an efficient algorithm to solve (5.2), (5.3), or (5.4), together

with conditions assuring the successful recovery of η.

We observe that Proposition IV.1 provides a pathological example which any such

conditions must rule out in order for the algorithm to have any chance of recovering

the correct vertex potential. These results suggest that suitable conditions must be

placed upon the underlying graph, the distance between the point absorbers, or both.

One specific case in which sparsity can be implemented is via internal polling. In

the internal polling approach to vertex data recovery, we allow ourselves to select

a fixed number of internal vertices to which we attach our boundary vertices. By
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polling the system in this way we wish to recover the absorption at each interior

vertex. We consider the time-independent diffusion equation

Lu+ α0(I + η)u = f, on V

t u+ ∂u = g, on ∂V.

(5.5)

As before, we can write this as a linear system,

L̃u+ α0(I + η)u− ATV,δV v = 0

−AV,δV u+Dv = g,

(5.6)

where L̃ is the restriction of the Laplacian to the interior vertices, AV,δV is the interior

to boundary adjacency matrix, D is a diagonal matrix, u is taken to be the solution

restricted to interior vertices and v is the solution on the boundary.

Once again we also consider solutions to the unperturbed problem (ui, vi), which

satisfy

L̃ui + α0ui − ATV,δV vi = 0

−AV,δV ui +Dvi = g.

(5.7)

If we let φ = ui − u and ψ = vi − v then we obtain

L̃φ+ α0(I + η)φ− ATV,δV ψ = α0 η ui

−AV,δV φ+Dψ = 0.

(5.8)

In Proposition IV.16 we showed that if

(5.9) A†V,δVAV,δV = I,
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where I is the |V |× |V | identity matrix, then we can recover η exactly. The assump-

tions on the graph geometry and the number of measurements are, in general, too

restrictive for this result to be applicable to a broad range of families of graphs. If we

relax the requirement that the recovery be exact, or assume that the absorption η is

sparse, then we can employ sparse recovery methods to achieve good approximations

with fewer measurements.

Consider the system of equations in equation (5.8). We wish to obtain the diagonal

matrix η from measurements taken only on the boundary, ie. with access solely to

ψ = vi− v. It is convenient to first multiply the second equation by −1 and let AV,δV

denote the adjacency matrix between δV and V so that it has non-zero entries. Our

first step is to solve

(5.10) AV,δV φ = Dψ

for φ.

In the internal polling approach, before taking measurements we are able to choose

the connections between internal and boundary vertices, or equivalently, to design

the adjacency matrix AV,δV . We do so assuming that the difference φ from the un-

perturbed problem is equal, or close in norm, to an exactly k-sparse vector.

One way to construct a suitable AV,δV is to let AV,δV be the adjacency matrix

of another graph Γ with good expansion properties. In particular, if n = |V | and

m = |δV | then we choose Γ to be an (n,m, d, k, ε) a bipartite, unbalanced, degree d
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expander with n vertices on the left and m vertices on the right. These parameters

ensure that if U is a neighbourhood on the left of size at most k, then the size of

its neighbourhood is almost d|U |. Formally, we require that |N(U) ≥ (1 − ε)d|U |.

Such expanders can be constructed deterministically for m = O(k 2(log logn)O(1)
) and

randomly for m as low as O(k/ε2 log(n/k)).

We next observe the following fact.

Theorem V.4. [14] There is an m×n matrix AV,δV that is the adjacency matrix of

an expander such that for any φ, given AV,δV φ = Dψ, we can recover φ̂ such that

(5.11) ‖φ− φ̂‖1 ≤ C(ε)‖φ− φk‖1.

The inversion algorithm is a linear program of the form

(5.12) φ̂ = argmin‖z‖1 s.t. AV,δV z = Dψ

with O(n) variables and O(m+ n) constraints. Furthermore, if there is noise in our

measurements; i.e.,

AV,δV φ = Dψ + ν,

then the linear program in Equation 5.12 returns φ̂ with the guarantee

‖φ− φ̂‖1 ≤ C(ε)‖φ− φk‖1 +
‖nu‖1

d
.

Heuristic arguments indicate that the time to solve such a linear program is ap-

proximately
√
nT where T is the time it takes to multiply AV,δV times a vector, if

the interior point method is used [14].



116

After solving for φ in (5.10) we can then proceed as in Proposition IV.16, with φ̂

in place of A†V,δVDφ, to obtain

(5.13) ηi ≈
[(L̃+ α0)φ̂− ATV,δV ψ]i

α0[ui − φ̂]i
, i = 1, . . . , |V |,

where the subscripts in the numerator and denominator denote the ith component

of the vector.

5.5 Fast summation of the inverse Born series

The first few terms of the inverse Born series are useful for computing relatively

cheaply a good approximation to the true potential, provided the smallness condition

is met and the background Green’s function is already known. However, in many

cases it becomes computationally expensive to compute beyond the sixth or seventh

order due to the exponential growth in the number of sub-terms associated with

each Kn. An important direction for future research is to construct algorithms for

efficiently computating, storing and applying the Kn.

Increasing the efficiency of the code would not, however, remove the bottleneck

associated with the exponential growth in the number of terms required at each

order. Thus, it is natural to ask if it is possible to eliminate this restriction. In some

cases the answer is yes.

Suppose there is only one source (a similar argument holds if there is only one

receiver). Then,

(5.14) Λ = GR;V
0

[
I +DηG

V ;V
0

]−1

DηG
V ;s
0 ,
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where Λ is a column vector of length |R|, GR;V
0 is an |R| × |V | matrix, GV ;V

0 is a

|V | × |V | matrix and GV ;s
0 is a column vector of length |V |. Here we also scale G0 so

that the factors of α2
0 are included in the operators. Additionally, recall that Da is

a diagonal matrix with entries given by the vector a. We will sometimes also denote

this by D[a]. Then

K1(η) = GR;V
0 DηG

V ;s
0 = GR;V

0 DGV ;s
0
η

and hence

K1 = (GR;V
0 DGV ;s

0
)+.

For ease of exposition we take K1 to be the inverse of K1, whence it follows that

both GR;V
0 and DGV ;s

0
are invertible and thus

[I +DηG
V ;V
0 ]

(
GR;V

0

)−1

Λ = DηG
V ;s
0 .

Hence

Dη

[
GV ;s

0 −GV ;V
0

(
GR;V

0

)−1

Λ

]
=
(
GR;V

0

)−1

Λ,

and thus if

[
GV ;s

0 −GV ;V
0

(
GR;V

0

)−1

Λ

]
does not vanish then

η =

(
D

[
GV ;s

0 −GV ;V
0

(
GR;V

0

)−1

Λ

])−1 (
GR;V

0

)−1

Λ.

In terms of K1 this may be re-written as

η =
(
I −D[GV ;s

0 ]−1D
[
GV ;V

0 D[GV ;s
0 ]K1[Λ]

])−1

K1[Λ].
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Expanding in powers of Λ we obtain

η =
∞∑

j=0

(
D[GV ;s

0 ]−1D
[
GV ;V

0 D[GV ;s
0 ]K1[Λ]

])j
K1[Λ]

=
∞∑

j=0

(
D[GV ;s

0 ]−1D
[
GV ;V

0 Dη̃G
V ;s
0

])j
η̃,

(5.15)

where η̃ = K1[Λ]. Evidently, for this setup the inverse Born series may be re-written so

that there is only one term at each order which contributes. Note that the evaluation

of (5.15) only requires one matrix-vector multiply which can be pre-computed. The

remainder is elementwise arithmetic. A natural question is if reductions of this sort

are possible when there is more than one source. In numerical experiments it has

been observed that such cancellations do occur, though no general theory has been

developed to explain or quantify these cancellations.
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